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ABSTRACT 

In a layered feed-forward network the error surface with respect to a 

desired goal function completely describes the potential of that network to carry 

out a particular task. Such an error surface can be obtained by plotting the max

imum error or the sum of the squares of the errors, where the individual errors are 

the deviation of the actual output of the network from the desired goal function. 

For a network with W individual (synaptic) weights, these error surfaces are W

dimensional surfaces embedded in a W +!-dimensional space and defined over 

the W -dimensional domain determined by the ranges of the W weights. 

We have studied in detail the error surfaces of a few small networks that we 

believe exhibit some of the typical characteristics also found in large networks. 

For the chosen networks we have determined the inherent symmetries of their 

associated error surfaces, the shape of the region around the origin, and the 

numbers and types of local minima. For each type of local minimum, we exam

ined its multiplicity, the fractional coverage of the total domain space by its col

lection zone, and the approximate shape of the valleys leading into it. This study 

of small three-layered networks performing the Exclusive-OR function of two or 

three inputs provides some insight into the general structures of the error surfaces 

and thus the capabilities of more complicated networks. 
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1. MOTIVATION 

ANALYSIS OF SIMPLE NEURAL NETWORKS 

Chedsada Chinrungrueng 

Master's Report 
Under the Supervision of Prof. Carlo H. Sequin 

Department of Electrical Engineering & Computer Science 
University of California, Berkeley 

Berkeley, CA 94720 

A neural network is a system that achieves computational power via a massively parallel 

network composed of many simple computational elements arranged in patterns similar to those 

found in some biological neural systems. Computational elements are connected by links that 

can vary in strengths called weights. The patterns of connections, which are called architec

tures , have a great effect on the computational power of the network. Networks with different 

architectures have different computation capabilities. Although, we have some knowledge about 

such networks, their" real potential will remain a conjecture until their characteristics are better 

understood. 

One example of an architecture is the layered feed-forward network. This class of networks 

has recently met with great interest because of its ability to represent complex mappings. More

over, it is claimed that this kind of network is able to capture regularities in the specified mapping 

[1]. Specifically, if there is a regularity in the mapping, these networks can exploit this regularity 

to generate the correct output patterns for input patterns they have never encountered before; a 

task called generalization. The capability of a layered feed-forward network to represent a par

ticular mapping is completely described by the corresponding error surf ace. The error surface, 

usually high dimensional, measures the deviation between the desired mapping and the actual 

mapping performed by the network for all possible combinations of link strengths, i.e., values of 

its weights. Understanding the structure of the error surface will help us answer many questions 

about the network's properties. 

The goal of this report is to increase understanding of layered feed-forward networks by 

studying their error surfaces. We also wish to present new visualization techniques for high 

dimensional error surfaces. We have chosen to concentrate on problems concerning error sur

faces associated with the networks performing the exclusive-or (XOR) function and the parity 

function of three inputs. These are among the simplest problems that cannot be solved with a 

simple two-layer network. For these cases, the error surfaces are mapped out and presented in a 

form that are intuitively understandable. We believe that these simple studies provide insight 

into the structure of the error surfaces of more complicated neural networks. 
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2. LAYERED FEED-FORWARD NETWORKS 

A layered feed-forward network is a type of neural network that consists of layers of simple 

computational elements. These computational elements, referred to as neurons, are connected by 

links with variable weights. 

In a layered feed-forward network only neurons belonging to different layers are connected 

by links. The first, or bottom, layer is an input layer. The neurons in the input layer are not 

actual computational elements. Their task is simply to provide an impedance match to the input 

signals. The last, or top, layer is an output layer. Every observable output variable is associated 

with one output neuron. Between the input and the output layers there can be any number of hid

den layers. Each neuron in the hidden layers must receive its input signal from the neurons in the 

layers lower than its own and must send the output signal to neurons in layers higher than its 

own. When given an input vector, the network computes its output by a forward pass. In this 

event all neurons in each layer receive vector signals from lower layers and compute outputs for 

subsequent layers. 

Output Layer 

Hidden Layer 

Input Layer 

Inputs 

Fig. 1 A Network with Complete Connection between Adjacent Layers 

Computational elements, or neurons, are usually non-linear analog processors capable of 

performing simple tasks, such as summing, thresholding, scaling. A typical model of a neuron is 

a processor that forms the weighted sum of all its input signals, adds a bias term to the sum, and 

then passes the result through a switching function as shown in Fig 2. The value of the function 

becomes the output of the neuron. 

The particular networks considered in this report belongs to a class of three-layer networks 

with complete connectivity between the adjacent layers. A sample of this class of network is 

illustrated in Figure 3. The network is composed of three layers of neurons : an input layer (Ll), 

a hidden layer (L2), and an output layer (L3). Neurons in one layer are connected only to neurons 

in the subsequent layer. That is, the neurons in L1 are connected only to neurons in L2 but are 

not connected directly to neurons in L3. 
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--F -t= -t= 
Hard Limiter Threshold Logic Sigmoid 

Fig. 2 Various Types of Switching Functions 

Outputs 

L3 

L2 

Ll 

inputs 

Fig. 3 A Sample of the Oass ofNetworks Studied in this Report. 

To see how the neurons in this class of networks compute their output, let us consider neu

ron o and neurons h 1, h 2, •..• h11 as shown in Fig. 4.a. In this figure, neurons h 1, h2, ... , h11 pro

vide input signals to neuron o through connections with strengths of w 1, w 2 , ... , W 11 • When the 

neuron o receives inputs i 1, i 2, .•. , i11 , which are the outputs of the neurons h 1, h 2 •... , and h11 

respectively, it forms the weighted sum of all the incoming signals by multipling each input sig

nal with its corresponding weight and adding the products. Also, a bias term Wn+I is added to the 

weighted sum, and the new sum is passed through the sigmoid function such as that demonstrated 

in Fig. 4.b. This sigmoid function has been chosen to be symmetric with respect to the origin in 

order not to conceal any symmetry inherent in the topology of the network or in the specified 

mapping. Also, we normalize the value of the function so that the output of a neuron is in the 

range of [-1,1]. 
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Fig. 4.a Input-Output Relation of a Neuron 

f (a) = 1 + exp (-a) 
1-exp(-a) 

Fig. 4.b Sigmoid Function 
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3. MATHEMATICAL DEFINITIONS 

3.1. Input-Output Relation of a Layered Feed-Forward Network 

Out 

Fig. 5 A Network with Two Input Neurons and Two Hidden Neurons 

When an input is presented to a layered feed-forward network, the signals are propagated 

from the input layer through hidden layers to the output layer. To find the input-output relation 

of a layered feed-forward network, let us consider the example shown in Figure 5. This network 

consists of two input neurons, two hidden neurons and one output neuron. In all but the input 

neurons, the sigmoid function illustrated in Figure 4.b is used as a switching function. These five 

neurons in the network are connected by nine adjustable weights labeled according to Figure 5. 

The values of these weights can be represented by an ordered nine-tuple of real numbers ( w 1, w 2 

, ... , w 8, w 9 ) and be conveniently referred to as a nine-dimensional point or a vector with nine 

components. Let us denote an input vector ( i 1, i 2 ) by i, and a vector (w 1, w 2 , .•• , w 8, w 9 ) 

representing a set of the weights of the network by w. The output values of the hidden neurons, 

h 1 and h 2 can be computed by the following equations : 

h1(w,i) = swj(w4+wsi1+w6i2), 

h2( W, i) = SWj ( W7 + Wgi 1 + W9i2), 

(1) 

(2) 

where swf is the sigmoid switching function. The output neuron uses h 1 and h 2 to compute its 

output ( o 1 ), which is the output of the network, according to the following equation: 

Ot(w,i) = swj(w7+wsi1 +w9i2). (3) 

Equations 1, 2 and 3 define the input-output relation of the network for a given set of weights w. 

This overall input-output relation of the network can be summarized into one equation: 

0 = 0 ( W, i ). (4) 

For this particular network, the input-output relation is a function from R 2 to R with w as a 

vector-valued parameter. 
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For a network with m input neurons and n output neurons, an input vector i becomes a vec

tor with m components and an output vector o becomes a vector with n components. We call the 

set containing all possible input vectors an input space and the set containing all possible output 

vectors an output space. In this case, the input space is a subset of Rm and the output space is a 

subset of R" . Furthermore, if we assume that the network consists of k weights, then w becomes 

a vector with k components. We call the set containing all possible w a weight space. When we 

relate equation (4) to this case, the input-output relation of the network will be a function from an 

input space to an output space with w, a vector in a weight space, as a parameter. 

3.2. Mapping Representability of a Network 

As the previous section mentions, the input-output relation of a layered feed-forward net

work is a function whose mapping rule depends on the connection weights of the network. That 

is, by altering the weights, the network can be used to implement different mappings. Suppose 

we want the network to perform the goal-mapping G, which is defined as { ( i1, g1 ), ( i2, g2 ), ... 

, ( ig, gg ) } , where ( ip, gP ) are respective the input-output pair. If we restrict the input space of 

the network to the domain of G, denoted as D (G), the restricted input-output relation of the net

work becomes a mapping with the domain equal to D (G) and with the mapping rule 0 (w, ). 

We call the mapping produced by the network for this restricted input set an actual mapping and 

we denote it as A (w). By comparing A (w) to mapping G, we can see how well the network per

forms a specified task when it is assigned a set of weights w. 

As an alternative to describing mapping G by specifying all input-output pairs, let us 

describe mapping G by specifying its domain D (G) and its rangeR (G). We order the elements 

in R (G) so that the p -th element of R (G) is an image of the p -th element of D (G) under map

ping G , for p e 1, 2, 0 0 0 

, g . According to this method, mapping G can be described as a map

ping with 

domainD(G) = {i1,i2, •oo ,ig}, (5) 

and 

rangeR(G) = {gt.g2, 000 ,gg }o (6) 

As A (w) and G have the same domain, by keeping the elements of the domain of A (w) in the 

same order as those of D (G), we can describe mapping A (w) as a mapping with 

domain D (A (w)) = { it. i2, 0 0 0 ,ig }, (7) 

and 

rangeR (A (w)) = { Ot. o2, · 0 0 ,og } 0 (8) 

where Op = 0 (w,ip ). Since the domains of G and A (w) are the same, we can define a 

difference mapping, denoted as ( G -A (w) ), as follows : 

( G -A (w) )(ip) = G (ip)- A (w,ip ); (9) 

for every ip in the domain of G and A (w). This new mapping has the same domain as that of G 

or of A (w) and the range which is described as : 

range of ( G -A (w)) = { ( g1- o1 ), ( g2- 02 ), 0 0 0 

, ( gg - og ) }o (10) 
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By examining the magnitude of the elements in the range of ( G -A (w) ), we can find out how 

well the network with weights w can represent mapping G. For example, if all the elements in 

the range of mapping (G -A (w)) are zero, this function will map every element in its domain to 0. 

It means that A (w) and G are the same, and in this case the network with weights w can exactly 

represent mapping G. On the contrary, if the magnitudes of most elements in the range of map

ping (G-A (w)) are large, A (w) and G will be are quite different. This implies that the perfor

mance of the network with weights w is poor in representing mapping G. 

3.3. Error Function and Error Surface 

Rather than using the range of mapping ( G -A (w) ) to reflect the performance of the pre

viously discussed network, it is preferable to use only one scalar value to measure the perfor

mance of this network for representing mapping G. Therefore, we will associate the range of 

mapping ( G -A (w) ) wiu.~ a given norm and then use this norm as a performance measure. Sup

pose the network has n output neurons and mapping G consists of g ordered pairs. This implies 

that there are also g ordered pairs in mapping ( G -A (w) ). According to the mapping descrip

tion mentioned above, the range of ( G -A (w) ) must have g elements and may be described by 

equation (10). Reconsidering this equation, let us substitute 1 ( gp1, g/. · · ·, g;) for gP and 

( oP1, ol, · · · , o;) for oP. The range of ( G -A (w) ) then becomes 

( ((g( - Ot ), (g'f- of), ... , (g1 -o1)), ((gt -Ot ), (gz- Of), ... , (g~- 0~)), 

((gg1 - o/ ), (g/- o/) • ... , (gg- o;)) } . 

Since we are not concerned with each individual vector, we can rewrite the set of vectors 

specified above as a single vector: 

( (g t -0 (), (g f -0 f), ... , (g1 - 01), (gt - Ot ), (gz - Ot ), ···, (g~ - 0~), 

. . . (g 1 - 0 1) (g 2- 0 2) (gil- 011) ) 
' g g' g g , ..• , g g • 

We call this ordered gn -tuple a vector representing the range of ( G -A (w) ). The magnitudes of 

the elements in the range of ( G -A (w) ) reflect the difference between mapping G and mapping 

A (w). They are summarized in the norm of the vector representing the range ( G -A (w) ), 

which can thus be viewed, intuitively, to represent the error between mapping G and mapping 

A (w). We thus call the function that maps w, a point in the weight space, to this error value the 

error function, with respect to the goal mapping. 

The definition of an error function depends on the definition of the vector norm. With a 

Euclidean norm,2 the error function is expressed as 

I 

EucErr(w) = ( .~ 
1
t (gj- Qi (w,ii) )2 ) "T (11) 

However, for ease of computation we will employ the square of the Euclidean norm in our study 

cases. Therefore, our error function is defined as 

1 We use a superscript to indicate output neuron number. 
1 

2 For vector X specified as (A\, x~ •...• x. ), the Euclidean norm is defined as ( xr + xr + ... + x.2) "!. 

(12) 
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If we are interested in the maximum error made for any of the elements in the domain of G, a 

norm defined as : 

loo(x) = max( lx1l, lxzl, · · · , lx,. I ). 

should be used. This gives the error function of the form : 

MaxErr(w) = max I gj- Oi( w, i1 ) I, 

fori c: { 1, 2, ... , n}, and j c: { 1, 2, ... , g}. 

(13) 

(14) 

For a given network and a given problem statement. an error function that maps a set of 

weights to an error value fully describes how well the network performs for all possible values of 

its weights. Since the error function that we use in this report is continuous, we can use this func

tion to define a surface called an error surface .3 By studying this surface, we can know how 

well the network can be used to represent a designated mapping. Unfortunately, these error sur

faces are of very high dimensions and thus cannot be easily perceived. We shall now discuss 

some visualization techniques to study such hypersurfaces. 

3 A surface of dimension n, or n -surface, is a set in Rn+1 that contains all the points of the form 

(c, f (c) ) . where f is a smooth function from R• _...Rand c belongs to the domain off. 
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4. MODELING ERROR SURF ACES 

For a layered feed-forward network with k variable weights, an error surface is an k

dimensional manifold embedded in an k + 1-dimensional space and defined over an k -dimensional 

space given by the weight space. This error surface completely describes the potential of the net

work for its desired goal mapping. Therefore, understanding this surface will help us answer all 

the questions related to the capability of the associated network in performing a designated map

ping. For a very simple network, such as the Perceptron with two inputs, error surfaces are sur

faces of two or three dimensions, and thus can be displayed wii:h regular graphical techniques. 

However, for a more complicated system, error surfaces are usually of very high dimension 

where a simple visualization is impossible. Accordingly, for high-dimensional surfaces we need 

to consider ways other than those of modeling the surfaces. One alternative approach for portray

ing such hyper-surfaces is to present them in conceptual forms that reflect significant structures 

of those surfaces. Exactly what significant means depends on the particular questions that con

cern us. 

In this report, we have chosen to concentrate on problems concerning error surfaces associ

ated with networks performing Boolean functions. Since the sigmoid function employed as a 

switching in our neurons has its output value defmed over [ -1, 1 ], we use the value of 1 to 

represent the on state and the value of -1 to represent the off state. This representation also 

preserves symmetries inherent in the mapping statement The importance of these symmetries 

will be fully discussed later. 

4.1. Error Surfaces of a Perceptron with Two Inputs 

Out 

I~ 

Fig. 6 A Perceptron with Two Inputs 

For a layered feed-forward network with two or three variable weights, the error surface has 

two or three dimensions, and thus can be actually modeled. This is illustrated by the error sur

faces associated with the Perceptron with two inputs, shown in Figure 6. This system has three 

variable weights; therefore, the error surfaces affiliated with this system will be 3-dimensional 

surfaces. One way to model these surfaces is by displaying a family of contour plots, which is 

demonstrated in Figure 7. From Figure 7.3, which illustrates the error surface of the Perceptron 

performing the XOR mapping, we see that no local minimum exists deep enough to constitute a 

good solution. Therefore, the single Perceptron cannot perform the XOR mapping. 



.., 
3: 

.., 
3: 

..., , .. 

Wl = -2.0 

5.00 

. . 
3.00 

1.00 

-1.00 

.· 
-3.00 

W2 

Wl = 0.0 

. . " ...... . /0 . 
3.00 . , . 

. . . 
1.00 

•1.00 : 

-3.00 

·5.00 
·5.00 ·3.00 ·1.00 1.00 3.00 5.00 

W2 

Wl = 2.0 

5.00 ,...-~~--.,....---.,....---.,...~,...... 

3.00 

1.00 

·1.00 

-3.00 

·. '· .. ·· .. '·· .. 
·· .. '·· ...... · 

. ..... 6.0 ..... 
/ 

/ 
/ / 

/ 
/ .· .... . 

····· I .·· - , .. ----rf'·· · .. ,·· ........... ·o: a... • 

· .. - - "o ·. . o ·. 
····· . ·o : · .. \ ·· .. 

~---/, ·. : 
........ <:-o • •• I : · .. \, · .. 

: : \ ·.. ·· .. '·· ... 
. . ·· ... '. 

·. 

·3.00 

W2 

- 10-

5.00 

3.00 

1.00 

.., 
3: 

-1.00 

.].00 

3.00 

1.00 

.., 
3: 

-1.00 

·3.00 

5.00 

3.00 

1.00 

..., 
3: 

-1.00 

-3.00 

Wl = -1.0 

.·· / . 
..·· / .. ·· 

..··· / 

.. ·· / .· 
.·· / .·· 

.· / .·· : .· 
: I .· . : 

.· I : 
.·· ~ .... 

-$l· ••• • 

.· 

-3.00 

W2 

Wl = 1.0 

W2 

Wl =3.0 

'· .. .. ·· / 

·· .. '· .... · / 
. - 6.0' .. ........... 

•• . • •.•••.• •• .• <fo 

'

••• •••• ..... - .;,0 •• 
.... _, ·o ·. 

..... - . .. ···. ·········· I : 
•. . . .•. "-?o • -/ 

···. 
.· 

W2 

3.00 5.00 

.· 
.· 

: . /. 

:· I .·· 
: I : 
• 0... • 

:0 ·. . ' . . . 
· .. '·· .. 

·· .. ' 

Fig. 7.1 Error Surface Associated with Perceptron Perfonning AND Function 



~ 
" 

...., 
;;.. 

" 

- 11 -

Wl = -2.0 

5.00 --...-------------

.. '··.. / 

·· .. '··.. / / 
3.00 ·· .. '·· ...... · / / 

. ..... 6.0/ / ..... 
······. I .. ·· 

1.00 •• ' • •• ----, •• • 
• ..... • •• • • • ••••• • ·O ': a- :' 

· .. - - /o : . o . 
......... ·o : :. \ -._ 

--.-.. -.-. -.. ?o\ I f \ ' . · · ·. 
. ··· ·. :. \ ·. · .. ' ·· .. 

./. . ·. ·· ... '. ,. V:o 
/ I . · 

·1.00 

·3.00 

W2 

Wl = 0.0 

3.00 , 
.· 

1.00 

·1.00 . · 

·3.00 . · 

~ 

-5.00 ~--'""' --....~.o--....o.-..o....;;a...;.....llo.i...l 
·S.OO ·3.00 ·1.00 1.00 3.00 s.oo 

W2 

Wl = 2.0 

·. 

3.00 

·.' · .. ·.. '\ ... 
\ ': .· 

!.00 
I : 
I : 

: \ .... . .·· / 
• . ..? • ..... • •• · .. ·0-- / .· 

-1.00 
: \ · .. ······ ... 

!70-----~ 
•• • IT ••••• • • •• • • ••••• 

·· .. ·o ....... - --
············· 

.J.OO 

W2 

...., 
:::: 

...., 

5.00 

3.00 

1.00 

·1.00 

-3.00 

Wl = -1.0 

· .. ,· ... 
·· .. ,· .. 

·· ... ,·· ... 
· .. ,· .. 

·· .. ,·· ... . . ·. ·. ··.~ · .. 
• ' ·• . cfo. . . "'. . 

·· .. ';· .. ·o··. ,· .. 

·3.00 

. 0. •. . 
•• •• ·Q • •• • •• ,· ••• 

? · .. , .... ·· .. ,· ... 
·O •• •• '·· •• •• •• ,· ••• 

·1.00 

· .. , ... ·. ,· .. 
·· .. ,· .... 

W2 

Wl = 1.0 

s.oo ~-::--,....-~,....--,....-=-~,...-=----

3.00 

1.00 

... · / . 
. ·· / .·· 

.·· / .. ·· .. ·· / 
.·· / . 

.. ·· / .. ·· 
. . 
: I .· . : 

;::: -I.oo •• I : 
.·· ~ .... 

...., 
:::: 

-.<;:)· ••• 

-3.00 •• . / 

.·· / .·· . . 
·S.OO i.-....0-"-....0-..._. __ ..._. __ ...._ ..... _ 

-5.00 ·3.00 ·1.00 1.00 3.00 5.00 

3.00 

1.00 

-1.00 

·3.00 

W2 

Wl = 3.0 

·. \\ 
I ; 

I .-· 
:· I _.· 
: I _.· 
: . 
: \ · .. 
· .. '·· .. 

• IT • 

_.· I .· 
: I : . : 
:_ \.... q/ 

' . . 
•• ..? •• •• 

·· .. ·o, · ..... · / 
.... -

·········· 

- ..... • •• ·O • ••• 

' 
/ ...... ' 

············ 

·1.00 1.00 3.00 5.00 

W2 

Fig. 7.2 Error Surface Associated with Perceptron Perfonning OR Function 



3.00 

Wl = -2.0 

0 

••••• ••• t:f0\.\ j ( ..... 
. . \ . 

' ••• : J : ••••• 

1.00 • ' • • • • • • / • •• ':'-- 8.0 
.... •• 6 .••• • ...... . 

> • •. . o_ - \:J""- •• 
... ...... b· ....... • •• 

''• I ,••'"'•,,,' ', 

.... 
;;.. .... 

-1.00 a: ·: I :: . ·. "' 
.... 0. ' 

-3.00 

: \ · .. . . 
/ 

"'2 

Wl = 0.0 

s.oo 
'to? .·· 

~ 

3.00 . 
~ , .............. ·. . // ...... · / 

,. I .· .· --
1.00 

·. \ ·. 
\ 

0 
'0' . 
I 

I \ ·. 
·1.00 ...... · 

I - -1/ 
,. ....... ...... 

-3.00 fo' ~ .... 

\ ·. 
' '\. 
' " .· 

I"' 

/ •• t:fo 

·S.OO 11:[/~---------------·· __ _. 

s.oo 

3.00 

1.00 

·1.00 

·3.00 

-5.00 -3.00 -1.00 1.00 3.00 5.00 

W2 

Wl = 2.0 

' . \ .·· ; . 
".?o'·. ·'/·' 
' ·O • ,• \:J ,• 

/.o \ '?" • to· .· 
·0 • 0 • • 

oJ ~J:'t.:' 
..... · :,:.. // 

:--- 8.0__./ ... ·. .·· / . 

······· ' · ..... · b~ .. ·· 

. ··,.--15' -- ... 
/ • •• ·••• ·0 •·••• . ··\:) ___ _ 

/ ••• \ :' ,'+:,· ......... --

' : \:Jt:;l 

"' . ·· / : \ ' 
.·· / .·· \ ' . 

.· / .· ·, ' 
-5.00 "-----..... _._ __ ......, __ .._....l-.1 

-5.00 ·3.00 -1.00 1.00 3.00 5.00 

W2 

- 12-
Wl = -1.0 

s.oo ·. '·· .. 
·· .. '·· .. 

3.00 ·· .. '·· .. 
1.00 

' ·. ·. '·. ·· .. '··.. ·· ... ,·· .. 
•• •• '··.. • •• t:f •• ••• 

.... •• ·• •• 0. •• 

·. ' ·· .. ·· .. ' · .. :::: 

.... 
;;.. , 

.... 
:::: 

·1.00 

·3.00 

·.. ' . . . 
•• •• t:fo •• • •• ' • •• . . . \ ·.. . . . "' ... . . . ' . 

·. '·.. · .. ' ·· .. '··.. . ·. 
·· .. '·· .. 

·· .. '·· .. . . 
.s.oo L-._ ....... ___________ ;:r,...-.,_.. 

·S.OO ·l.OO ·1.00 1.00 3.00 s.oo 
W2 

Wl = 1.0 

s.oo --~------------

3.00 

1.00 

-1.00 

-3.00 

<P ·o 
.. ·· / 

.. ·· / .. ·· 
.. ·· / .. ·· 

.· 

.·· / ~0 ) - : / .· .· .·· .·· / .· .. ·· \:)' ... .·· .·· 
.• • b· : •• / •• .· ~ .· .· .· .· / .... · / . 

•• •••• / •• ••••• ... •• bt:;l~······· 
.· / .· .· I .· 

•• •• •• / : ,_t:;l 
/ •• •• • v 

..·· .. ·· / .. ·· 
..·· .. ·· / .. ·· 

.. ·· / .. ·· . . . . .s.oo ..... .-. _______________ ~ _ _. 

-s.oo -3.00 -1.00 1.00 3.00 5.00 

s.oo 

3.00 

1.00 

-1.00 

-3.00 

W2 

Wl =3.0 

·. ' ·.. \ ... ./ .·· 
... . • 0 • 

•• <?0 •• : '0' ... 

J : ; : I : 
'-I / .: J : \ · .. 

• Oo • • • 
··········~ ... ,·... .· 
1"- 8.0 '·· ....... ·• / 

·· ... '6.o- .... . ········· -- ··········· ' ·. 
•• 15' • • 

/ .... 
.· • •• ·0. • . . 

·· .. \ : 
: ( ·: I : . : 

.·· I .: · .. \ 

... 

-S.OO '--,_,j-....;..' ·-·"-/....;...'__.L-..;...~ ,_·..;. ~~ 
-S.OO -3.00 -1.00 1.00 3.00 s.oo 

V\'2 

Fig. 7.3 Error Surface Associated with Perceptron Perfonning the XOR Function 



- 13-

4.2. High-Dimensional Error Surfaces 

To gain some general insight into the structures of high-dimensional error surfaces, we shall 

study the error surfaces associated with the following problems : 

the network in Figure 8.1 with 2 hidden neurons performing the XOR function, 

the network in Figure 8.2 with 3 hidden neurons performing the XOR function, 

the network in Figure 8.3 with 4 hidden neurons performing the XOR function, 

the network in Figure 8.4 with 3 hidden neurons performing the 3-input odd-parity 

function, 

In these study cases, we shall map out the error surfaces and then portray the derived infor

mation in terms of tables and graphs. We are interested in the potential of these networks to 

represent the designated mappings and in the efficiency of the networks in learning to perform 

such a mapping. Our conceptual models will concentrate on the following information: 

the nature of the error surface at the origin, 

the number of different types of minima and the multiplicity of each, 

the approximate shapes of the valleys affiliated with the various minima, and 

the fractional coverage of the total domain space by the collection zone of each 

minimum. 1 

Out 

Fig. 8.1 A Network with Two Input Neurons and Two Hidden Neurons 

1 The collection zone of a given minimum is the region for which a steepest descent ends up in the given 

minimum. 
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Out 

Fig. 8.2 A Network with Two Input Neurons and Three Hidden Neurons 

Out 

1 

Fig. 8.3 A Network with Two Input Neurons and Four Hidden Neurons 
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Out 

Fig. 8.4 A Network with Three Input Neurons and Three Hidden Neurons 
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5. SYMMETRIES IN WEIGHT SPACE 

An error surface, defined over the weight space of a network, reflects the symmetries of the 

network and of the desired mapping. These symmetries are very useful to reduce the fraction of 

the surface that needs to be explicitly explored in order to understand the behavior of the net

work. In this section we shall investigate the symmetries that exist in our study cases and derive 

the regions in the weight spaces that need to be investigated. 

5.1. Nature of Symmetries 

The symmetries exhibited on an error surface of a network can be characterized as those 

reflecting the symmetries of the network and those reflecting the symmetries of the desired 

input/output mapping. To see the effects of the symmetries in a network on its associated error 

surface, let us examine the network in Fig 8.1. The first symmetry in any error surface associated 

with network 8.1 occurs because the signs of all the weights connected to hidden neuron h 1 can 

be inverted simultaneously without changing the overall i/o relation of the network [2]. This 

corresponds to the operation : 

opH1: w2 --1- -w2, w 4 --1- -w 4, ws --1- -ws. w6 --1- -w6. 

When we apply opH1 tow, a point in the weight space of network 8.1, opH1w, the image of w 

under opHl, will have the same error as w, and we say w and opH1 ware equivalent according to 

this type of symmetry. Similarly, changing the signs of the weights connected to neuron h 2 also 

leaves the behavior of network 8.1 unchanged; this is achieved by: 

opH2: w 3 --1- -w 3, w 7 --1- -w 7, w 8 ~ -wg, w9 ~ -w9. 

Since 22 different operations can be derived from the combinations of opH1 and opH2, four 

equivalent configurations result from this type of symmetry. This tells us that the overall input

output relation of a network is unchanged if the signs of all the weights connected to a hidden 

neuron in that network are simultaneously inverted. Therefore, for a network with H hidden neu

rons, 2H equivalent configurations result from this type of symmetry. 

For a network with complete connectivity between its layers, the connection patterns of all 

neurons in the same hidden layer will be identical and any permutation of the roles of the hidden 

neurons in that layer will lead to the same behavior of the network [2]. For example, for a hidden 

layer of H neurons where the roles of these H neurons can be arranged in H! different ways, the 

weight space associated with this case exhibits H! equivalent configurations. In network 8.1, 

hidden neurons h 1 and h 2 are connected identically to the rest of the system, so changing the 

roles of these two neurons does not affect the function performed by the network. As a result, the 

error function of network 8.1 is not changed when we make the following four substitutions: 

OpHX: Wz ~~ w 3, w 4 ~--1- W7, W5 ~--1- Wg, w 6 ~--1- w 9. 

Thus two equivalent configurations result from this symmetry. 

When a network with complete connectivity between the input layer and the first hidden 

layer is used to perform the /-bit parity function, we can arrange I input neurons in I! ways 

without changing the behavior of the network. These equivalent arrangements result in I! 

equivalent configurations in the error surface with respect to /-bit parity. For example, when we 

employ network 8.1 to represent exclusive-OR mapping, the symmetries inherent in this function 

will be reflected in the error surface. One symmetry in this function comes from the fact that 

input signals ( -1, 1 ) and ( 1, -1 ) both map to ( 1 ). Exchanging the identities of input neurons i 1 
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and i 2 does not affect the global characteristics of the network since the error function sums 

equally over all input patterns. This exchange can be simulated by the following operation: 

Oplx: W5 f-~ W 6, Wg f-~ Wg. 

Since there are 2! ways to arrange two input neurons, two equivalent configurations arise from 

this type of symmetry. 

Another symmetry related to the XOR function occurs because simultaneous complementa

tions of the two inputs do not change the definition of the XOR function. On the other hand, 

when we complement only one input, the output is complemented. The inversion of the signal to 

unit i 1 can be simulated by changing the signs of w s and w 8• The inversion of the output is 

achieved by changing the signs of w 1o w 2 and w 3. Therefore, when the operation 

opll: ws f-~ -ws. ws f-~ -w 8, w 1 f-~ -w 1, w 2 f-~ -w2, w 3 f-~ -w 3 

is carried out, the behavior of network 5.2 is left unchanged. In the same way, inversion of the 

input signal to neuron i 2 and of the output signal according to the operation 

Opl2: W6 f-~ -w 6, Wg f--~ -Wg, W1 f-~ ·W1, W2 f-~ ·W2, W3 f-~ ·W3 

does not affect the behavior of network 8.1. This symmetry results in 22 equivalent 

configurations in the error surface associated with the XOR mapping. When we generalize this 

result to the case of the I -bit parity function, this type of symmetry produces 21 equivalent 

configurations in the associated error surface. 

In summary, for a fully connected layered feed-forward network, the number of equivalent 

configurations produced by a hidden layer of H neurons is 2H H !. When such a network is used 

to represent the I -bit parity function, the error surface associated with this case has at least 

21 I !2H H! equivalent configurations. For example, when network 8.1 is employed to perform 

XOR mapping, the associated error surface will exhibit sixty-four1 fold symmetry. To know 

these symmetries will enable us to define the fraction of the weight space that we need to explore 

in order to understand the behavior of such a network. 

5.2. Defining a Representative Sector 

For any error surface and the weight space over which it is defined, symmetries in the error 

surface imply certain equivalences among points in the weight space. These equivalences can be 

used to divide the weight space into regions such that the error surface pieces over these regions 

have the same characteristics. One such portion of the error surface ( which shows all charac

teristics of the entire error surface ) is called a representative part of the error surf ace, and its 

corresponding domain is called a representative sector. We need to explore only a representa

tive sector in order to understand the whole structure of the error surface. 

A representative sector can be defined by specifying its boundaries. A logical choice for 

these boundaries is a subset of the hyper-planes left invariant by inherent symmetry operations. 

For example, a mirroring operation, wi ~ -wi, leads to a hyper-plane of the form wi = 0. 

Exchanging the values of two weights, Wi f-~ Wj, implies a hyper-plane of the form wi - Wj = 

0. Each of these operations reduces the amount of space that must be investigated by a factor of 

2; that is, for each operation, we can restrict ourselves to examining only the region to one side of 

1 22 X 2! X 22 X 2! = 64. 
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the hyper-plane implied by the operation. When more than one operations are involved, hyper

plane boundaries must be properly defined so that the application of all the involved operations to 

the chosen region can produce the entire weight space. 

In selecting hyper-plane boundaries associated with a given set of symmetry operations, we 

assign the given operations different priorities. Any sector partitioned by hyper-planes associated 

with operations of higher priorities are closed under operadons of lower priorities.2 For example, 

if opA, opB are assigned with priorities higher than that of opC, then hyper-planes implied by 

opA ahd opB can be defined in such a way that any sector bounded by these two hyper-planes is 

closed under opC. Once the priorities are determined, the operations of the first priority are used 

to define hyper-planes to bound a proper region, referred to as the first-level representative sec

tor, in an associated weight space. This first-level sector must be defined in such a way that, 

when we apply all combinations of operations with highest priority to this region, the entire 

weight space must be generated. We then subdivide the first level sector by the operations of the 

second priority. The subdivision recursively proceeds in this manner until all the operations have 

been considered and the final representative sector has been found at the lowest sector level. 

Applying the above method to the case of network 8.1 performing the XOR mapping, we 

assign the first priority to opHl, opH2 and opHx, the operations associated with the symmetries 

in the network, and the second priority to opll, opU and oplx, the operations associated with the 

symmetry in the XOR mapping. The reason for this assignment is that opll, opi2 and oplx do 

not affect w4 ( the threshold of neuron h 1 ) and w7 ( the threshold of neuron h 2 ). That is, w and 

its image under any combination of these three operations have the same w4 and w7 components. 

If we define the hyper-plane associated with opHl, opH2 and opHx in terms of only w4 and w7, 

any partitions defined by these hyper-planes will be closed under any combination of opll, opi2 

and oplx. We then further subdivide the first level sector by opll, opi2 and oplx. The second 

level sector derived from this partition can be used as a representative sector. This second level 

sector is a valid representative sector, because when we apply all eight distinct combinations of 

opll, opi2 and oplx to this region, we produce the first level sector. Then, by applying the eight 

combinations of opHl, opH2 and opHx to the first level sector, we generate the entire weight 

space. 

To locate the first-level sector, we first employ opHl and opH2 to divide the weight space 

into four equivalent sectors. Because the sets of the weights mirrored by each of these two opera

tions are disjoint, we can define hyper-planes opHl and opH2 independently of each other. The 

mirroring of wi implies a hyper-plane of the form wi = 0. OpHl, a composite operation that mir

rors w2, w 4, w s and w 6, implies a hyper-plane of the form 

aw2+bw4+cws+dw6 = 0, 

where a, b, c and d are arbitrary numbers. Similarly, opH2, a composite operation that mirrors 

WJ, W7, ws and w9, implies a hyper-plane of the form 

ew3+jw7+gwg+hw9 = 0, 

where e, f, g and h are arbitrary numbers. By restricting ourselves to w 4 and w 7 , hyper-planes 

2 For function f : S -+ S and subset T inS , f is closed under T if for every x in T, f (x) is also in T. 
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opH1 and opH2 are reduced to w 4 = 0 and w7 = 0. Examining each region bounded by these two 

hyper-planes, we find that the region that satisfies 

(15) 

is closed under opHx. Since it is closed, we choose this region, implicitly defining the hyper

plane for opHx to be W4 = w7. Considering these three hyper-planes, we define the first-level 

sector as a region satisfying 

(16) 

This is a valid first-level sector, because when we apply all eight combinations of opHl, opH2 

and opHx to this region, the entire weight space is generated. 

To find second level sectors, we note that the relationship of opl 1, opU and oplx to one 

another are similar to that of opH1, opH2 and opH3. Hyper-planes for opll, opl2 and oplx can 

thus be chosen as w 5 = 0, w 6 = 0 and ws = w 6 respectively. The second level sector which is also 

a representative sector for a whole problem can be expressed as a region satisfying 

(17) 

For a case of a network with H hidden neurons, inequality (16) can be generalized to 

(18) 

where whi is the threshold of hidden neuron hi. Two factors yield these inequalities. The first is 

that the mirroring of Whi leads to a hyper-plane whi = 0. The second is that one permutation of 

the threshold values can be selected from the rest by imposing the constraint: 

(19) 

Similarly, a sector related to the operations associated with the I-input parity function can be 

defined as 

W ·1 > w ·2 > ··· > w·· > ··· > w·1 > 0 
) - ) - - )I - - ) - ' 

(20) 

where w1i is the weight connecting input neuron i to hidden neuron j. Finally, by combining 

constraints (19) and (20), a representative sector of a three-layered network with complete con

nectivity performing the I-input parity function can be defined. 
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6. THE ERROR SURFACE OF NETWORK 8.1 PERFORMING THE XOR MAPPING 

6.1. Region around the Origin 

In the error function of network 8.1, with respect to the XOR mapping, the origin is the 

center of symmetry. Using TsqErr( w) as in Equation 12, the value at the origin is four, and the 

first derivatives at the origin are zero in all directions. The error surface at the origin has a posi-
• 

tive curvature for the axis corresponding to w 1 and zero curvature on all other axes. This is easily 

understood by looking at the network itself. If all the weights are zero, the output of the network 

is zero for every input pattern and each individual error is thus one. If we allow only w 1 to be 

nonzero, the output of the network is 

0 (ip) = 1 - exp( -w 1 ) 
1 + exp ( -w 1 ) ' 

for any ip. Near the origin, this equation can be approximated as 

O(ip) = +w1--i4w?· 
Then, the error near the origin and along w 1 axis can be approximated by: 

4+wt. 

This result tells us that the origin is a local minimum along the direction w 1. Changing any sin

gle weight other than w 1 will not result in a change of error, thus producing a surface that is 

totally flat along all other axes. 

Analyzing the pattern of connections in network 8.1, we find that at least four nonzero 

weights must be involved in defining a direction where the error is reduced when we move away 

from the origin. A sample direction is 

(Wt.Wz,WJ,W4,WS,W6,W7,WS,Wg) = ( 0, 1, 0,-1, 1,-1, 0, 0, 0), (20) 

and the error along this direction can be approximated by 

4.00 - 0.25e4, 

where e is the distance from the origin along the direction defined by (20). Thus the origin of the 

error surface of network 8.1 in representing the XOR function is a multidimensional saddle point. 

Oose inspection shows that it is a plateau in which a few very shallow valleys start radially from 

the origin; in all other directions the surface turns upwards. 

6.2. Minima in the Error Surface 

To obtain a survey of the minima in the error surface of network 8.1 in performing the XOR 

mapping, we employeded a search from one thousand points randomly distributed in the 

representative sector. We limited the value of each weight to [ -3, 3 ], reducing the associated 

weight space to a compact set, and recorded the local minima found in this 9-dimensional cube. 

All minima fall on the surface of this cube, i.e. the boundary of the weight domain. For each 

minimum, we also recorded the percent of the steepest descents approaching that point. This sta

tistical figure reflects the fraction of the weight space covered by the collection zone of that 
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minimum. 

The minima found can be separated into three types; the minima that lie in the representa

tive sector defined by Inequalities (17) are used as representatives of their types and are listed in 

Table 1. Because of the 64-fold symmetry inherent in this error surface, each such minimum will 

be replicated sixty-four times; however, some of these replicas may fall on top of one another. 

For example, minimum MA has a multiplicity of four and thus there are a total of only sixteen 

such locations in the whole weight space. 

The minima of type MA and MB are local minima of distinct points while the minima of 

type MC are not. Each member in type .MC is a connected set that forms a groove of constant 

error; the same minimal error is obtained for all points where the sum of two weights w 2 and w 3 

is equal to 1.62. These points satisfy the conditions 

(21) 

and 

Wz + w3 = 1.62. (22) 

Condition (21) implies that neurons h 1 and h 2 have identical roles and thus their outputs are the 

same for every input. Denoting these two equal outputs by s, the output of network 8.1 becomes 

swf ( (wz + w3)s ), where swf 0 is the sigmoid function. According to condition (22), for every 

point in the groove, the output of network becomes swf ( 1.62s ). 

Examining the minima in Table 1, we see that all of them lie at the surface of the 9-

dimensional cube of half-size 3. They are not the real minima on the whole error surface; they 

are simply the lowest points in valleys that radiate out from the center of the surface and get trun

cated by the finite size of the domain. To find the real minima, we can selectively trace these val

leys to larger distances from the origin. 

Based on the capability of a minimum in representing a solution to the XOR task, we clas

sify these minima into two classes: good and bad minima. Good minima produce the desired 

output value of the XOR function for all four possible input patterns within some small error mar

gin; while bad minima produce an output that will show an unacceptably large error for one or 

more input patterns. With this classification, MA can be considered a good minimum, while MB 

and MC are bad minima. 
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Table 1 
Minima in Error Surface of Network 8.1 

Performing the XOR ~tapping 

Identifier MA MB MC 

Valley AC B AC 

Error 0.0803 2.0969 2.8835 

Radius from the Origin 8.95 7.42 7.48* 

Multiplicity 4 2 4 

Percent of the Weight Space 
Covered by the Collection Zone 60.3 37.5 2.2 

of the Minimum 

WJ 2.86 0.00 0.82 

w2 -3.00 3.00 A 

W3 -3.00 -3.00 B 

w4 3.00 3.00 3.00 

ws 3.00 3.00 3.00 

w6 -3.00 1.05 -3.00 

W7 3.00 3.00 3.00 

Wg -3.00 3.00 3.00 

W9 3.00 -1.05 -3.00 

Classification good bad 

Percent of the Weight Space 
Covered by the Collection Zone 60.3 39.7 

of the class 

A+B=-1.62 

* minimum radius 
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6.3. Characteristics of Valleys 

Since the valleys run roughly radially away from the origin, we characterize them by study

ing their error value profiles on subsequent spheres of larger and larger radii around the origin. 

On each 9-dimensional sphere, we determine a local minimum by running a steepest descent 

from a starting point that is given by the projection of the local minimum on the previous sphere. 

Finding the local minimum has been implemented as follows: 

Assume that at iteration n, the process is at point xll. To find X11+I. we first compute the 

gradient of the error function at X11 • This gradient is projected along the radius direction onto the 

8-dirnensional hyper-plane which is tangent to the sphere at X11 • Let us denote the projected gra

dient by ( V'Err )p. According to this projected gradient, the process moves downhill to a point ( 

x + h ( V'Err )p ), where h is a step-size. Projecting the point ( x + h ( V'Err )p ) along its radius 

direction back onto the sphere locates point X11 +l· This iterative process stops when ( V'Err )p is 

smaller than a given threshold. At our stopping point, we define an 8-dimensional hyper-plane 

tangent to the sphere and then compute the principal curvatures of the error function on this 

hyper-plane. If all eight curvatures are positive, the stopping point is a local minimum on the 

sphere and the process ends. In all other cases, we choose a new point in the vicinity of the stop

ping point and lying on the axis of strongest negative curvature. From this point, we again run 

the steepest descent to locate a new stopping point We continue this process until we find a final 

local minimum. 

We now project this minimum point along its radius direction onto a new sphere of larger 

radius and locate a minimum on the new sphere with the above process. Generally, this will 

quickly converge to a corresponding minimum on the new sphere, since the minima on the two 

spheres are near each other. The locus of all the minima on subsequent spheres defines the floor 

of a valley. 

To explore the structure of the valley associated with minimum MA, we run the abo·>'e pro

cess from minimum MA tracing out the valley's floor backwards toward the origin. This floor is 

then used to represent the path of the valley. In Figure 9 we portray the path of this valley by 

plotting the coordinates w 1 , ..• , w 9 of the local minima as a function of the radius of the 

corresponding sphere. Near the origin, the valley splits into two branches which then merge 

again at a distance of about 2 from the origin. We display the profile of the valley by plotting 

the error value along the floor of the valley as a function of the radius ( graph AC in Figure 10 ). 

This graph illustrates that the floor of the valley approaches 0 if we follow it far enough from the 

origin. It is thus a good valley since it leads to a proper solution for the XOR problem. 

We also apply this method to examine the valley associated with minimum MB. We find 

that when the radius of the sphere is less than 3.3, there is only one type of minimum located on a 

sphere, the one that belongs to the valley associated with minimum MA. We therefore say that 

the valley associated with minimum MB starts only at a radius of about 3.3. Graph B in Figure 

10 portrays the profile of this valley. Since the floor of this valley never falls below an error 

value of 2.0, it represents a bad valley that never yields a solution. 

For the valley associated with minimum MC, we find that the local minimum located by a 

steepest descent on each sphere is the same as that of the valley associated with minimum MA. 

We therefore conclude that minima MA and MC lie in the same class of valley. The reason that 



- 24-

two separate minima, MA and MC, can be associated with one valley catl be understood by look

ing at Figure 11. This figure shows the contour plot of a scalar-valued function defined over 

two-dimensional space. When the domain of this function is restricted to the region inside the 

square box, points Ml, M2 and M3 become local minima of the restricted function. If, however, 

we run a steepest descent from the minima Ml, M2 and M3 while limiting the search space to the 

circle shown, then these tb -~e steepest descents all stop at the same point on the circle labeled 

Min. This figu.e is an oversimplification, but it provides a model for the real situation of minima 

MAandMC. 

Path of Valley 5.0 
0.0 2.0 4.0 6.0 8.0 10.0 Radius 

WI 

2.5 

0.0 

-2.5 

-5.0 

0.0 2.0 4.0 6.0 8.0 10.0 Radius 

Fig. 9 The Locus of the floor of the Valley Associated 
with Minimum tviA in Table 1. 

Error 

5.0 

4.0-+----

3.0 

2.0 

1.0 

...... 
............. ...... 

·~~-~-----e B ---------------·· 

0.0 2.0 4.0 6.0 8.0 10.0 Radius 

Fig. 10 The Profiles of Valleys on the Error Surface of 
Network 8.1 Performing the XOR Mapping. 

To obtain some information about the shape of the valleys, we studied their cross-section 

on the 9-dimensional spheres around the origin. We first located the floor of a valley on a 
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particular sphere. Next, we defined an 8-dimensional hyper-plane tangent to the sphere at the 

intersection point. By restricting the domain of the error function to this hyper-plane, we derived 

eight principal curvature axes from the restricted function. Figure 12 shows the error values 

along an arc produced by the intersection of the plane through the principal curvature axis and the 

origin; the lateral deviation is measured in degree from the floor of the valley along the arc. 

3 

4 
........................... 

5 
........................ 

................ ................ 

y 

M2 
2 

Fig< 11 A Conceptual Model illustrating that Limitation of 
All Weights to Fixed Intervals Can Lead to Multiple Minima. 

Next, we have tried to obtain some measure for the cross-section of a valley as a function of 

R, the distance from the origin. For each error value profile on a particular sphere (Fig. 12), we 

locate the interval ( Supper, 81ower ) where the error is less than four, i.e., the error value at the ori

gin. We use the smaller value of these two bounds for each axis and call it the half -width. 

Using all the eight half-widths, we calculate the area of an 8-dimensional elliptical patch provid

ing some measure of a cross-section of a valley. 

4 8 
Area of elliptical patch = ~4 R 8C[J8i ), 

where R is a radius of the sphere and 8i ( measured in radians ) is the half-width associated with 

a:<is i. The cross-sectional areas of these valleys as functions of a sphere's radius are displayed in 

Figure 13. Our measure for the cross-section of valley AC displays a discontinuity at a radius of 

about 4.8. This can be understood by comparing the structure of the cross-section at radius 4.7 

(Fig. 12a) with that at radius 4.9 (Fig. 12b). Around a radius of 4.8, the shoulders of one of the 

proflles ( shown as a solid line ) rise above 4.0 and thus lead to a drastic reduction in the cross-
s 

section. Figure 14 shows the graph of the product of all the eight angular half-widths ( [J8i ) as 

The volume of an n-dimensional sphere with radius R is equal to 2(1t"'
2
)R • where f( n ) is defined to be 

n f( -1") ""I 

'~Tt(n-2)(n-4)···1 when n is odd, and(~)! when n is even. 
2(· 1)12 .:. 
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a function of a sphere's radius, thus providing a measure of the fraction of the area of the total 

sphere that has an error value less than 4.0. This view which is more sensitive in the region 

around the origin shows a second discontinuity in valley AC at a radius of about 2.0. This occurs 

because two valleys radiating from the origin merge into a single valley at this point (see Fig. 9). 
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Fig. 12 Cross-Section of the Valley Associated with Minimum MA: 
(a) on the Sphere with Radius 4.7, 
(b) on the Sphere with Radius 4.9. 
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Fig. 13 The Cross-sectional Areas of the Valleys 
on the Error Surface of Network 8.1 Performing the XOR Mapping. 
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Fig. 14 The Product of all the Eight Half-widths ( nei ) 
of the Valleys on the Error Surface of Network 8.1 Perfonning the XOR Mapping. 
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7. ERROR SURFACES OF OTHER NETWORKS PERFORMING THE XOR MAPPING 

7.1. The Error Surfaces of Networks 8.2 and 8.3 Performing the XOR Mapping 

To gain insight into changes in the structures of an error surface as the number of hidden 

neurons in a network increases, we study two other networks implementing the XOR function; 

one has three hidden neurons (Fig. 8.2), and the other has four (Fig. 8.3). Network 8.2 differs 

from network 8.1 by the additional hidden neuron h 3 and its associated weights w 4, w 11o w 12 and 

w 13• Similarly, network 8.3 has an additional hidden neuron h4 and weights ws. w 15• w 16 and 

w 17• To investigate the error surfaces of networks 8.2 and 8.3, we have employed the approaches 

discussed above for network 8.1. 

The characteristics of the region around the origins of the error surfaces of networks 8.2 and 

8. 3 are similar to those of network 8.1. The errors at the origins of the error surfaces of network 

8.2 and 8.3 are 4.0, and the first derivatives at their origins are zero in every direction. We also 

find that both surfaces have positive curvatures along the w 1-axis, and that near the origin the 

error along this axis can be approximated by 

4+wr. 

To confirm that the two functions again form saddle points, we look back to the case of net

work 8.1. If the weight space of network 8.2 is limited toW s.1• i.e., the subspace spanned by w 1. 

w;, w 3, w 5, w 6, w 7, w 8, w 9, and w 10, the error surface of network 8.2 will be identical (except 

for the labeling of the coordinates) to the error surface of network 8.1. This likeness tells us that 

the error surface of network 8.1 is a subset of the error surface of network 8.2 when both net

works represent the same function. In section 6.1, we have shown that the error surface of net

work 8.1 has a direction where the error is reduced when we move away from the origin. 

Because the error surface of network 8.1 is a subset of the error surface of network 8.2, one will 

fmd the same behavior along this direction in the error surface of network 8.2. We can therefore 

conclude that the origin of the error surface of network 8.2 is also a multi-dimensional saddle 

point. By the same process, one can also conclude that the origin of the error surface of network 

8.3 is a multi-dimensional saddle point. 

By probing the weight space with random starting points, followed by gradient descent, we 

find four types of minima, denoted by MD, :ME, MF and MG, in the error surface of network 8.2, 

and eight types of minima, denoted by MH, MI. MJ, MK, .ML, MM, MN and MO, in the error 

surface of network 8.3. The representatives of these minima for networks 8.2 and 8.3, which are 

points in the representative sectors, are listed in Tables 2 and 3, respectively. 

In network 8.2, the minima of type MD are distinct points while those of types NIE, .MF and 

MG are sets of points with the constant error values. N1E and MG are again one dimensional 

grooves, while MF is a two dimensional surface. One interesting point about minima .MF is that 

every point in this type of minima satisfies 

w4( 1- exp (w11)) 
WI+ 1 + exp(wu) = -2.86. 

The expression on the left hand side of this equation is simply the threshold of the output neuron 

which is modified by adding to weight w 1 a constant of 
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w4( 1-exp(w!l)) 
1 + exp(wll) 

This constant comes from the fact that w 12 and w 13 of every point in minima .MF are zero. As a 

result, the signal contributed by hidden neuron h 3 to the output neuron is a constant, thus acting 

like an additional threshold of the output neuron. 

Comparing the data in Tables 1 and 2, we find that the minima J'vfF contain the minimum 

point MA If we choose the point in minima .MF where the weights w 4, w 11, w 12. and w 13 that are 

absent in network 8.1 arc all zero, w 1 becomes -2.86, and all the corresponding weights of the 

two networks are the same. We also find that minima MG in the case of network 8.2 is a 

transformed version of minima MB. If we allow w 2 of network 8.1 to be larger than 3.0 while 

still restricting the other weights in the range of [-3, 3], minimum MB will move to the point 

= ( --D.10, 3.10, -3.00, 3.00, 3.00, 1.04, 3.00, 3.00, -1.03 ). 

This new minimum is equivalent to the point in minima MG where w 2 = 3.10 and w 4 = 0.0. 

Hence, minimum MB is transformed into a minimum of class MG when we add an extra hidden 

neuron to network 8.1, and it remains a projection of MG onto the subdomain of network 8.1. 

In network 8.3, minima of types MH, MJ, MK and .MN are distinct points, while those of 

types MI, MI.. can be viewed as grooves of constant error, and minima MM and MO are planes of 

constant error. Comparing the data in Table 2 and 3, we find that minima MI.., MM, MO contain 

minima MD, .ME, and MG, respectively. 

The characteristics of the valleys on the error surface of network 8.2 are illustrated in Fig

ures. 15, 16, and 17. There are only two types of valleys on this error surface and both of them 

are good valleys. MD, ME, and MG are all associated with the same valley (valley DEG in Fig. 

15). The cross-sectional areas of these two valleys are displayed in Figure 16, and the product of 
13 

all the thirteen angular half-widths ( [l8i ) is shown in Figure 17. The cross-section of the main 

valley shows several discontinuities. The ones at radius 2.0 and 4.8 are the ones already known 

from network 8.1 (Fig. 14). New discontinuities at radii of about 7 and about 13 are caused by 

the merging of two valleys into one and by an abrupt change of a half-width, respectively. 

The characteristics of the valleys on the error surface of network 8.3 are displayed in Fig

ures 18, 19, and 20. One point about valley M1 deserves mentioning: no minimum lies inside 

valley M1, because valley M1 merges into valley HLO at a radius of about 7.5. Thus, a steepest 

descent that runs into valley M1 will eventually slide into valley HLO, and stop at a minimum in 

valley HLO. 
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Table 2 
Minima In the Error Surface of ~etwork 8.2 

Performing the XOR Mapping 

Identifier MD ME MF MG 

Valley bEG DEG F DEG 

Radius from the Origin 10.07 10.22. 8.93. 8.42 • 

Error 0.0605 0.0665 0.0803 2.0965 

Multiplicity 2 2 8 2 

Percent of the Weight Space 
Covered by the Collection Zone 67.1 25.3 1.5 6.1 

of the Minimum 

wl -2.20 -3.00 c -0.10 

w2 3.00 A 3.00 F 

W3 3.00 B 3.00 -3.00 

W4+ -LOl 3.00 D G 

ws 3.00 3.00 3.00 3.00 

W6 3.00 3.00 3.00 3.00 

W? 2.70 3.00 3.00 1.04 

wg 3.00 3.00 3.00 3.00 

W9 -2.70 3.00 -3.00 3.00 

W1Q -3.00 3.00 -3.00 -1.03 

wll+ 3.00 2.92 E 3.00 

w12 + 3.00 -3.00 0.00 3.00 

w 13 + -3.00 -3.00 0.00 1.04 

Classification good bad 

Percent of the Weight Space 
Covered by the Collection Zone 93.9 6.1 

of the class 

A +B = 3.42 
C + D ( 1- exp(-E) ) = -2.86 

1 + exp(-E) 
F+G=3.10 
• minimum radius 
+new over network 8.1 
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Table 3 
:\tinima in the Error Surface of Network 8.3 Performing the XOR Mapping 

' 

Identifier MH MI M1 MK ML MM MN MO I 

Valley HLO IK 1 IK HLO M N HLO 

Error 0.0005 0.0213 0.0236 0.0356 0.0605 0.0665 2.0808 2.0965 

Radius from the Origin 12.00 11.09* 11.22 11.40 10.96* 11.38* 10.45 9.41 * 

Multiplicity 8 4 16 2 4 12 8 6 

Percent of the Weight Space 
Covered by the Collection 48.6 4.5 5.7 38.6 1.4 0.5 0.2 0.5 

Zone of the Minimum 

WI 0.00 -3.00 -3.00 -2.97 -2.20 -3.00 0.00 -0.10 

w2 3.00 A 3.00 3.00 3.00 E 3.00 H 

WJ 3.00 B 3.00 3.00 3.00 F 3.00 I 

w4 -3.00 3.00 3.00 3.00 c 0+ -3.00 1+ 

ws -3.00 -3.00 3.00 -3.00 D+ 3.00 -3.00 -3.00 

w6 3.00 3.00 1.49 3.00 3.00 3.00 3.00 3.00 

W7 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 

ws 3.00 3.00 3.00 1.18 2.70 3.00 0.54 1.04 

w9 3.00 3.00 1.49 3.00 3.00 3.00 3.00 3.00 

wlo -3.00 3.00 3.00 -3.00 -2.70 3.00 3.00 3.00 

wn -3.00 3.00 3.00 -3.00 -3.00 3.00 0.54 1.04 

WJ2 3.00 2.82 1.49 3.00 3.00 3.00+ 3.00 3.00+ 

wn 3.00 -3.00 -3.00 3.00 3.00 3.00+ 3.00 3.00+ 

W14 -3.00 -3.00 -3.00 1.18 -3.00 3.00+ -0.54 1.04+ 

W1s 3.00 0.68 1.49 3.00 3.00+ 2.92 3.00 3.00 

W16 -3.00 0.84 -3.00 3.00 3.00+ -3.00 3.00 3.00 

w17 3.00 0.84 -3.00 -1.17 -3.00+ -3.00 -0.54 -1.03 

Classification good bad 

Percent of the Weight Space 
Covered by the Collection 99.3 0.7 

Zone of the class 

A+B= 5.32; C + D = -1.01; E + F + G = 3.42; H +I +1 = 3.10 
*minimum radius 
+new over network 8.2. Note that the added weights may be different from ws, w 1s, w 16 and w 17. 

This occurs because the points listed in this table are the points in the representative sector. 

Weight w s. w 1s. w 16 and w 11 are mapped to other weights when it is mapped into the representative sector. 
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Fig. 15 The Profiles of Valleys on the Error Surface of 

Network 8.2 Performing the XOR mapping. 

At the Bottom Is a Magnified Image of the Indicated Portion of the Graph Shown on the Top. 
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Fig. 16 The Cross-sectional Areas of Valleys 

on the Error Surface of Network 8.2 Performing the XOR Mapping. 
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Fig. 17 The Product of All the Thirteen Half-widths ( fJ8i ) of Valleys 

on the Error Surface of Network 8.2 Perfonning the XOR Mapping. 
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Fig. 19 The Cross-sectional Areas of the Valleys 

on the Error Surface of Network 8.3 Performing the XOR Mapping. 
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Fig. 20 The Product of All the Seventeen Half-widths ( uei ) of Valleys 

on the Error Surr·ace of Network 8.3 Perfonning the XOR Mapping. 



- 39-

8. ERROR SURFACE OF NETWORK 8.4 PERFORMING 3-INPUT PARITY MAPPING 

Investigating the error surface of network 8.4, computing the three-input parity function, we 

find that the error at the origin is 8 and the first derivatives at the origin are zero in every direc

tion. The curvatures of the surface at the origin are zero except for the curvature along axis w 1• 

The error near the origin along axis w 1 can be approximated by 

8 + 2wr. 

At the origin we find that along the direction 

= ( 0, 1, 0, 0, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0 ), (23) 

the error can be approximated by 

where e is a distance from the origin along the direction defined by (23). Because there is a 

down-hill path at the origin, the error surface has a saddle point at the origin. 

Employing the search method used in the case of network 8.1, we found nine types of 

minima. The representatives of these nine types are listed in Table 4. This table tells us that 

minima of types MP, MQ, MR., MV and MW are distinct points, while those of types MS, MT 

and MU are grooves of constant error values. On this error surface, we found three valleys, the 

characteristics of which are illustrated in Figures 21, 22 and 23. Figure 21 indicates that of the 

three valleys, two are good, since their floors approach zero when one proceeds far enough from 

the origin. The good valley (P-X), associated with minima .MP, MQ, MS, MT, MU, MV and 

NIX, starts at the origin. The second good valley (R), associated with minimum MR., starts at a 

distance of about 7.0 from the origin. The valley (W), associated with minimum M\V, starts at a 

distance of about 6 from the origin. Its floor is not close to zero; it is therefore a bad valley. 
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Table 4 

Minima in Error Surface of Network 8.4 

Performing 3-input Parity \lapping 

Identifier MP YfQ MR MS Mf .\.fU .\N ~ MX I 

Valley P-X P-X R P-X P-X P-X P-X w P-X 

! 

furor 0.1551 0.1661 0.7123 3.3473 3.4420 4.1937 5.9983 6.0635 7.1144 

Radius 

from 9.63 9.49 9.20 9.22• 8.24* 8.42* 8.92 8.27 7.53 

the Origin 

Multiplicity 4 8 12 12 24 8 4 6 2 

Percent of the Weight Space 

Covered by the Collectioo 85.2 1.5 8.7 0.3 1.3 23 0.2 0.3 0.2 

Zone of the Minimwn 

WJ 0.00 0.00 0.00 -1.60 0.00 0.00 -274 -3.00 1.30 

Wz -3.00 3.00 3.00 3.00 c E 3.00 1.84 214 

WJ -3.00 3.00 -3.00 A D F 3.00 1.84 -0.95 

W4 -3.00 -3.00 -3.00 B -3.00 -3.00 -3.00 1.84 -3.00 

ws 0.00 0.00 3.00 3.00 0.00 0.00 3.00 3.00 3.00 

W6 3.00 3.00 1.45 1.75 3.00 3.00 1.77 1.69 1.56 

W7 3.00 0.00 1.45 1.75 3.00 3.00 1.13 151 1.56 

Wg 299 0.00 1.45 !.7S 3.00 1.05 1.13 1.51 0.32 

W9 0.00 0.00 3.00 0.82 0.00 0.00 3.00 3.00 3.00 

WJQ 1.18 -3.00 -1.45 3.00 3.00 3.00 1.77 -1.51 -1.25 

WJJ -1.18 -3.00 -1.45 3.00 3.00 3.00 -1.13 1.51 -1.25 

WJ2 -3.00 -3.00 -1.45 3.00 3.00 1.05 -1.13 -1.69 -1.09 

W13 0.00 0.00 0.00 0.82 0.00 0.00 267 3.00 3.00 

W14 -3.00 3.00 3.00 3.00 -0.78 -3.00 294 -1.51 1.43 

WJ5 -3.00 -3.00 3.00 3.00 -0.78 -3.00 0.00 -1.69 1.43 

Wt6 2.99 -3.00 3.00 3.00 -0.78 1.05 0.00 1.51 -0.44 

Classificatioo good bad 

Percent of the Weight Space 

Covered by the Col!ectioo 95.4 4.6 

Zone of the class 

A+ B =-2.53; C+ D2 247; E + F=-3.01 

• minimum radius 
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Fig. 21 The Profiles of Valleys on the Error Surface of 
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Fig. 22 The Cross-sectional Areas of Valleys 
on the Error Surface of Network 8.4 Performing the 3-Input Parity Mapping. 
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Fig. 23 The Product of All the Sixteen Half-widths ( 1J8i ) of Valleys 

on the Error Surface of Network 8.4 Performing the 3-Input Parity Mapping. 
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9. WEIGHT CONTAINMENT 

Our study of some sample error surfaces have shown that all minima on these surfaces are 

at infinity. This characteristics is not desirable because actual weights are typically limited to 

finite values. There are several methods to produce stable, good minima at the finite distance 

from the origin. Besides limiting the weight space to be a compact set, we can move the loca

tions of all minima to a finite distance from the origin by using weight decay or by setting the 

goal values of the output function to be 0.9 or -0.9 rather than ±1.0. The update formula wit.~ 

weight decay is: 

Wn+l = Wn -rl'Y'Err(w)-8w, 

where 11 and 8 are some constants. [8] recommends 8 for the XOR task to be 0.0001. 

To see the correlation among the three weight containment methods mentioned above, we 

run a steepest descent from each minimum on the error surface of network 8.1 performing the 

XOR task. These three weight containments are used to prevent the steepest descent from going 

too far from the origin. Since the minima of class MC are not distinct points, we chose three 

separate points: the point where w 2 = w 3 = -0.81, the point where w2 = -1.62 and w3 = 0.0, and 

the point where w 2 = 0.0 and w 3 = -1.62. Geometrically, the first point is a symmetry point in the 

middle of the groove, while the other two points are more general, asymmetric solutions. The 

data gained from this experiment are illustrated in Table 5. This data indicates that the results 

derived from all three weight containments are consistent: if one scheme locates a good 

minimum, the other schemes will also locate a corresponding good minimum. 

In order to compare these results with the minima found by limiting the weight domain, we 

also terminated the steepest descent from each minimum at the surface of a cube of half-size 5 

(C-5) and also with a sphere of radius 18 (R-18). Examining the minima at R-18, we find that the 

ones corresponding to points MA and MB have error values of 0.000001 and of 2.000014, respec

tively. This data is consistent with the fact that point MA is in the good valley and point MB is 

in the bad valley, and thus the steepest descents starting from these two points should end up in 

different minima. 

For the minimum associated with point MC, we find it approaches the minimum associated 

with point MA except when we start from the symmetry point MC where w 2 = w 3. The trajec

tories of the steepest descents strating from MA and MC get closer to each other the further we 

pursue from the origin. The fact that they approach each other only very gradually indicates that 

the associated valley has a very broad and flat floor further out from the origin. When we start 

from the symmetry point MC with w2 = w3 = -0.81, we slide down on the crest of the ridge to a 

point with an error value of 2.6673. This is not an actual minimum. However, since the weights 

at this point which is one of the symmetry planes of the error surface have the following sym

metries: w2 = w3, w4 = w7, ws = ws, and w6 = w9, the trajectory will maintain this symmetry 

state unless we perturb it deliberately, e.g., by eliminating one of the equalities listed above. 



-45-

Table 5-1 

Comparison of the Stopping Point of Different LP.arning Algorithrrs 

Starting from Point MA in Network 8.1. 

Method ST C-5 SI WD G0.9 

Error 0.0803 0.0009 0.000001 0.0019 2.6xlo-19 

Wl 2.86 4.97 8.29 4.87 3.21 

wz -3.00 -5.00 -8.71 -5.57 -3.39 

W3 -3.00 -5.00 -8.71 -5.57 -3.39 

W4 3.00 5.00 3.93 2.54 3.02 

ws 3.00 5.00 4.26 2.81 3.11 

W6 -3.00 -5.00 -4.26 -2.81 -3.11 

W7 3.00 5.00 3.92 2.54 3.02 

Wg -3.00 -5.00 -4.26 -2.81 -3.11 

W9 3.00 5.00 4.26 2.81 3.11 

ST Starting point (on cube with half-size 3) 

C-5 Cube with half-size 5 

R-18 Sphere with radius 18 

WD Weight decay 

G0.9 Goal value of 0.9 or -0.9 
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. 
Table ~-2 

Comparison of the Stopping Point of Diff~rent Le:1rning Algorithms 
Starting from Point MB in Network 8.1. 

Method ST C-5 R-18 WD G0.9 

Error 2.0969 2.0028 2.000014 2.0028 1.62 

Wt 0.00 0.00 0.00 0.00 0.00 

wz 3.00 5.00 5.16 3.48 3.70 

W3 -3.00 -5.00 -5.16 -3.48 -3.70 

W4 3.00 5.00 8.12 5.19 8.64 

ws 3.00 5.00 8.12 5.19 8.64 

W6 1.05 1.08 1.83 1.61 0.84 

W7 3.00 5.00 8.12 5.19 8.64 

Wg 3.00 5.00 8.12 5.19 8.64 

W9 -1.05 -1.08 -1.83 -1.61 -0.84 

ST Starting point (on cube with half-size 3) 

C-5 Cube with half-size 5 

R-18 Sphere with radius 18 

WD Weight decay 

G0.9 Goal value of 0.9 or -0.9 



-47-

Table 5-3 

Comparison of the Stopping Point of Different Learning Algorit~ms 

Starting from Point MC where w2 = w3 = -0.81 in Network 8.1. 

Method ST C-5 R-18 WD G0.9 

Error 2.8835 2.7037 2.6673 2.6721 2.1600 

WJ 0.82 1.36 3.18 2.54 2.03 

W2 -0.81 -1.04 -1.94 -1.62 -1.33 

W3 -0.81 -1.04 -1.94 -1.62 -1.33 

W4 3.00 5.00 9.65 7.40 14.72 

ws 3.00 5.00 5.48 4.30 7.72 

W6 -3.00 -5.00 -5.48 -4.30 -7.72 

W7 3.00 5.00 9.56 7.40 14.72 

Wg 3.00 5.00 5.48 4.30 7.72 

W9 -3.00 -5.00 -5.48 -4.30 -7.72 

ST Starting point (on cube with half-size 3) 

C-5 Cube with half-size 5 

R-18 Sphere with radius 18 

WD Weight decay 

G0.9 Goal value of 0.9 or -0.9 
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Table 5-~ 

Comparison of the Stopping Point of Different Learning A 'fY,orithrns 

Starting from Point MC where wz = -1.62 and w3 = 0.0 in Network 8.1. 

Method ST C-5 R-18 WD G0.9 

Error 2.8835 0.0009 1.3xl()-{i 0.0075 2.4x10-19 

' ' 

wr 0.82 4.97 8.17 4.87 3.09 

W2 -1.62 -5.00 -8.54 -5.57 -3.61 

WJ 0.00 5.00 8.57 5.57 3.56 

W4 3.00 5.00 4.44 2.54 4.21 

ws 3.00 5.00 4.69 2.81 3.86 

W6 -3.00 -5.00 -4.69 -2.81 -3.86 

W7 3.00 -5.00 -3.72 -2.54 -1.77 

Wg 3.00 5.00 4.09 2.81 3.06 

w9 -3.00 -5.00 -4.09 -2.81 -3.06 

ST Starting point (on cube with half-size 3) 

C-5 Cube with half-size 5 

R-18 Sphere with radius 18 

WD Weight decay 

G0.9 Goal value of 0.9 or -0.9 
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Table 5-5 

Comparison of the Stopping Point of Different Learning Algorithms 

Starting from Point MC where w2 = 0.0 and w, = -1.62 in Network 8.1. 

Method ST C-5 R-18 WD G0.9 

Error 2.8835 0.0009 1.3x1G-6 0.0075 2.4x1Q-I9 

WI 0.82 4.97 8.17 4.37 3.09 

W2 0.00 5.00 8.57 5.57 3.56 

W3 -1.62 -5.00 -8.54 -5.57 -3.61 

w4 3.00 -5.00 -3.72 -2.54 -1.77 

ws 3.00 5.00 4.09 2.81 3.06 

w6 -3.00 -5.00 -4.09 -2.81 -3.06 

W7 3.00 5.00 4.44 2.54 4.21 

Wg 3.00 5.00 4.69 2.81 3.86 

w9 -3.00 -5.00 -4.69 -2.81 -3.86 

ST Starting point (on cube with half-size 3) 

C-5 Cube with half-size 5 
R-18 Sphere with radius 18 
WD Weight decay 
G0.9 Goal value of 0.9 or -0.9 
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10. GENERAL STRUCTURES OF ERROR SURFACES ASSOCIATED WITH THE 

PARITY FUNCTIONS 

10.1. Area around the Origin 

For an error surface of a layered feed-forward network performing a boolean function, the 

error at the origin has a moderate bad value. Specifically, for a boolean function with g input

output patterns and ON and OFF states of 1 and -1, the error at the origin equals g. This value 

occurs, because at the origin, where all the weights are zero, the output of the network is zero. 

Therefore, the square of the difference between t...~e actual output and the goal output is 1, and the 

sum of the squares of the difference is g. 

For an error surface derived from the parity function, the region around the origin is very 

flat, because the first derivatives at the origin are zero in all directions. To show this, we begin by 

approximating the output of the network in a region close to the origin by 

o c ip) = 1 w 1 - 2~ w r· 

For a parity function of m inputs, the function consists of 2m input-output patterns. Denoting i th 

input-output pattern by ( ii, 8i ), the error near the origin can be approximated by 

Err = ~~ ( 8i- -i-w1- -ftwr )2. 

We note that the goal output of the function is either 1 or -1, and the number of the input-output 

patterns with output of 1 and -1 are the same and equal 2"-1• Hence, the error function becomes 

Err = 2m-1( 1- tw 1- -ftw ( )2 + 2m-1( -1- tw 1- -kw ( )2. (24) 

Simplifying this expression, we have 

Err = 2m - 2m-2w r + e(w ( ). 

where e() is a polynomial function with a smallest degree of 3. Taking the first derivative with 

respect to w 1, we have 

At the origin, where w 1 = 0, the first derivative of the error with respect to w 1 is zero. For the 

first derivatives with respect to the ot.l].er weights, they must also be zero because the error func

tion (24) is a function ofw 1 only. 

10.2. General Structure of Error Surfaces Associated with the Parity Functions 

The following characteristics appeared in all the cases we studied: 

1 Symmetries exist in an error surface. Any feature of the error surface must be thought 

of as a class of equivalent configurations. 
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2 At the origin an error surface has a moderately bad error. Close to the origin the sur

face is quite level and then turns upward in every direction except for a few directions 

where shallow valleys run out from the origin. The floors of these valleys get deeper 

and approach zero. One must be aware that the "origin" of weight space is an artifact. 

In other problem where a switching function is an odd function plus a constant (which 

is typical when ON = 1 and OFF = 0), all the features of the error surface will be 

modified according to the constant term. 

3 Several additional valleys originate further away from the origin and then radiate out. 

Some of these valley floors approach zero as they run further out. 

4 There are no actual minima except at infinity. This characteristics comes from the 

fact that the sigmoid function used in our study only asymptotically approaches ±1 

only at infinity. However, we can create minima in a bounded region by restricting 

the weight space to a compact set, by weight decay, by setting the the goal values to 

be -0.9 or 0.9, by using a hard limiter (Fig. 2) as a switching function, or by several 

other methods. 

10.3. Effect of the Number of Hidden Neurons 

The number of hidden neurons in a layered feed-forward network affects the potential and 

th~ karning efficiency of the network in performing a desired function. A network can perform 

an assigned function if there is a minimum on the error surface deep enough to constitute a good 

solution which corresponds to a set of weights that allows the network to perform an assigned 

function. Comparing the errors at the deepest minima on the error surfaces of network 8.1, 8.2 

and 8.3 in the XOR task (Table 6), we see that the error surface of a network with more hidden 

neurons has a smaller error at its deepest minimum than the error surface of a network with fewer 

hidden neurons. In effect, a network with more hidden neurons can perform the XOR function 

better than a network with fewer. This statement is also true for other functions. We therefore 

conclude that the accuracy with which a network can approximate a given function is higher for 

networks with more hidden neurons. 

Table 6 
The Deepest Minimum on the Error Surfaces of 

Networks 8.1, 8.2 and 8.3 Performing the XOR Function. 

Network 8.1 8.2 8.3 

Number 
of 2 3 4 

Hidden Neurons 

The Error 
of 0.0803 0.0605 0.0005 

the Deepest Minimum 

To enable a layered feed-forward network to perform a desired function, a proper set of 

weights must be assigned to the network. One algorithm for finding such a set is 



-52-

back-propagation [2]. This algorithm is an iterative process that, for infinitely small step size, 

approximates steepest descent in the weight space of a network. If the minimum found has a 

small enough error, the network has learned to perfo::m the assigned function, otherwise, the net

work is stuck and has failed to learn. 

If the starting point of the back-propagation process is chosen randomly in weight space, the 

chance that back-propagation will locate a particular minimum is proportional to the percent of 

the weight space covered by the collecjon zone of that minimum. That is, the success rate of 

back-propagation with a random starting ~oint in training a network is proportional to the percent 

of the weight space covered by the collection zones of all the good minima. This success rate is a 

measure of how likely it is that a network will learn to perform an assigned task when using a 

steepest descent algorithm. 

Comparing the fraction of the weight spaces covered by the collection zones of all the good 

minima in networks 8.1, 8.2, and 8.3 (Table 7), we see that the percentages increase from net

work 8.1 to 8.3. These examples indicate that the fraction of weight space covered by all the 

good minima is higher in a network with more hidden neurons. We therefore conclude that the 

learning success probability of a network can be increased by adding hidden neurons to the net

work. 

Table 7 
Percent of the Weight Space Covered by 

the CoUection Zones of All the Good Minima 

in Networks 8.1, 8.2 and 8.3. 

Network 8.1 8.2 8.3 

Number 
of 2 3 4 

Hidden Neurons 

Percent of the Weight Space 
Covered by 60.3 93.9 99.3 

the Good Collection Zone 
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11. METHODS FOR LOCATING GOOD MINIMA 

Considering the infonnation obtained from this study of several error surfaces, we suggest 

three methods for increasing the cha!lCe of finding a good minimum in a bounded weight space 

while restricting ourselves to gradient descent on the error surface. The success rate can be 

further increased by various dynamic methods, e.g., by taking large steps of varying size, by 

using the back-propagation with a momentum tenn, by adding noise to the system, or in several 

other ways. This issue is beyond the scope o~ this paper, which considers only the static nature of 

the error surface. 

A first method exploits the fact found in the parity networks that bad valleys usually start 

further out from the origin, and that the valleys starting near the origin lead to good minima. In 

this approach, we first construct a small sphere centered at the origin. We then locate a minimum 

on this sphere with the method discussed in section 6.3. From there we run a steepest descent to 

a minimum in the weight space. If we define the radius of the searched sphere to be less than the 

distance between the origin and the starting point of any bad valleys, we ensure that the steepest 

descent starting from the minimum on the sphere will definitely lead to a good minimum. 

However, we usually do not have priori knowledge about bad valleys. Also, finding the 

minimum on a sphere is complex and expensive to compute. We therefore recommend a simpler 

version of the above method. This method uses steepest descent starting from a point randomly 

chosen near the origin. This will significantly increase the chance of sliding first into a good val

ley. Starting steepest descent near the origin also decreases the chance of being trapped in bad 

minima whose collection zones are small and mostly concentrated in the regions near the boun

daries of the weight domain. Examples of such minima are minimum MC in network 8.1, 

minimum MG in network 8.2, and minimum MO in network 8.3. 

We used some statistical probing to verify the statement above. For each error surfaces stu

died earlier, we ran steepest descents from a thousand starting points randomly distributed in a 

cube of a given half-size. The percentages of the steepest descents stopping at each minimum in 

a weight domain corresponding to a cube of half-size 3.0 is given in Table B-1 through B-4 in 

appendix B. Comparing these data with those in Table 1, 2 and 3, we find that the steepest des

cents with starting points distributed in a cube of half-size 1.5 has a better chance of locating a 

good minimum than those with starting points distributed in a cube of half-size 3 (see Table 8). 

Lippeman[3] also suggests that the starting weights of back-propagation should be small. 

The restriction of a starting point near the origin has one disadvantage. Since the gradient 

of an error function in an area around the origin is small, a steepest descent must run many itera

tions to get out of that area and so it slows down the convergence rate. 
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Table 8 

The Comparison of Two Classes of Steepest Descents in Searching the Minima 

A) The Starting Points of the Processes are randomly distributed in a cube of half-size 1.5. 

B) The Starting Points of the Processes are randomly distributed in a cube of half-size J.O. 

Network 8.1 8.2 8.3 

Percent of Trajectories 
in Class A 74.1 99.2 100 

Approaching good Minima 

Percent of Trajectories 
in Class B 60.3 93.9 99.3 

Approaching good Minima 

The third method is useful where the weight space is bounded by a cube. This method 

assumes that all miPJma lie close to comers of the cube, and that large gradients exist in the 

region further out from the origin. Exploiting these facts, we start our steepest descents near the 

comers of the cube. We may need to run several steepest descents before we can locate a good 

minimum. However, we will still be able to find a good minimum rather quickly, because each 

run will be very fast. 

i 
I 

I 
I 



-55-

12. CONCLUSION 

Layered feed-forward networks have recently received renewed interest because of their 

ability to represent complex mappings. This ability is completely described by the corresponding 

error surf ace. Such an error surface can be obtained by plotting the maximum error or the sum 

of the squares of the errors, where the individual errors are the deviation of the network's actual 

output from its desired goal function. The error surfaces of a network with W weights are W

dimensional surfaces embedded in a W +!-dimensional space and defined over a 'weight space', a 

W -dimensional domain given by the ranges of the W weights. The error surface can be viewed 

as a measure of the deviation of a desired mapping from a mapping represented by the network 

for all possible combinations of weight strengths. Understanding the structure of the error surface 

will help us answer many questions about the network's properties. 

In this report, we have chosen to study a class of simple three-layer networks with complete 

connecti·:ity between adjacent layers. We have found that error surfaces of these networks exhi

bit two kinds of symmetries. The first symmetry occurs, because the signs of all the weights con

nected to any hidden neuron can be inverted simultaneously without changing the behavior of the 

networks. The second symmetry occurs, because the connection patterns of all neurons in the 

hidden layer are identical; thus any permutation of these neuron roles leads to the same network 

behavior. When these networks perform the Exclusive-Or or the parity functions, their error sur

faces have two other symmetries. The first arises from arbitrary ordering of the input neurons, 

and the second arises from the fact that simultaneous complementations of any two inputs do not 

change the definition of the functions. 

Knowing these symmetries, we can define the region of a weight space such that the error 

surface defined over this chosen fraction possesses every aspect of the entire error surface. This 

region, referred to as a representative sector, can be located by recursively subdividing the 

weight space by the implied hyper-planes. This representative sector is important, because it 

reduces the scope of the visualization task, leaving only the region in the representative sector to 

be explored in order to gain full understanding of the behavior of the network. 

We have studied in detail a few small networks performing the Exclusive-OR function of 2 

or 3 inputs. For each case, we found that the surface at the origin is a saddle point, and the area 

around the origin is very level. By limiting the weight space to the region within a cube with 

half-size 3, we then employed steepest descent with random starting points to search for all 

minima on the error surface. For each minimum found, we determined its location, its error 

value, and the characteristics of the associated valley. We have also found that the minima found 

within a restricted weight space are consistent with those found by employing weight decay or by 

using goal values of0.9 or -0.9 to limit the range of all the weights. 

Comparing the error surfaces of the sample networks, we found that the accuracy with 

which a network can approximate a given function and the learning success probability are higher 

for a network with more hidden neurons. Finally, three methods for increasing the chance of 

finding a good minimum when using gradient descent emerged from the understanding of the 

structure of the error surface gained in this study. 



-56-

REFERENCES 

[1] T. J. Sejnowski and C. R. Rosenberg, "NETtalk: A Parallel Network that learns to Read 

Aloud," tech. report JHU/EECS-86-01, The Jolms Hopkins Univ., EE and CS tech. repcrts, 

1986. 

[2] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning Internal Representations by 

Error Propagation," Parallel Distributed Processing: Explorations in the Microstructure of 

Cognition, eds. D.E. Rumelhart. J. L. McClelland, and the PDP Research Group, Bardford 

Books, Cambridge, MA, 1986. 

[3] R. P. Lippmann, "An Introduction to Computing with Neural Nets," IEEE ASS? Magazine, 

Apr. 1987. pp 4-22. 

[4] J. Denker, D. Schwartz, B. Witmer, S. Solla, J. Hopfield, R. Howard, and L. Jackel, 

"Automatic Learning, Rule Extraction, and Generalization," Complex Systems 1, Oct 1987, 

pp 877-922. 

[5] N. Nilsson, "Learning Machines, Foundations of Trainable Pattern-Classifying System," 

McGraw-Hill, Inc. 1965. 

[6] S. E. Fahlman, G. E. Hinton, "Connectionist Architectures for Artificial Intelligence," IEEE 

Trans, Computer, Jan 1987, pp 100-109. 

[7] R. Courant, "Differential and Integral Calculus," Vol2 New York: Interscience, 1936, pp 

298-304 

[8] A. H. Kramer, A. Sangiovanni-Vincentelli, "Efficient Parallel Learning Algorithms for 

Neural Networks," [ To be published in IEEE Conference on Neural Information on Pro

cessing Systems, Natural and Synthetic.] 



-57-

APPENDIX A Symmetry Operations 

Table A-1 

Symmetry Operations Associated with the Error Surface 

of 

~etwork 8.1 Performing the XOR mapping 

Notation Description 

opHl w2 ---+ -w2. w4 ---+ -w4, w5 ---+ -w5, w6 ---+ -w6 

opH2 w3 ---+ -w3, w7---+ -w7, w8---+ -w8, w9---+ -w9, 

opHx21 w2 f--. w3, w4 f----+ w7, w5 f----+ w8, w6 f----+ w9, 

oplx w5 f-.--+ w6, w8 f----+ w9. 

opll w5 f-.--+ -w5, w8 f----+ -w8, wl f-.--+ -wl, w2 f-.--+ -w2, w3 f-.--+ -w3. 

opl2 w6 f--. -w6, w9 f-.--+ -w9, wl f-.--+ -wl, w2 f-.--+ -w2, w3 f-.--+ -w3. 

Number of Equivalent Configurations 64 

Representative Sector 

w4 ~ w7 ~0; w5 ~ w6 ~0 



Notation 

opHl 
opH2 
opH3 

opHx132 
opHx213 
opHx231 

opHx312 

opHx321 

oplx 

opll 

op12 
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Table A-2 

Symmetry Operations Associated with the Error Surface 

of 
Network 8.2 Performing the XOR mapping 

Description 

w2 ~ -w2, w5 ~ -w5, w6 ~ -w6, w7 ~ -w7 

w3 ~ -w3, w8 ~ -w8, w9 ~ -w9, wlO ~ -wlO 

w4 ~ -w4, wll ~ -wll, wl2 ~ -wl2, w13 ~ -wl3 

w3 +---+ w4, w8 +---+ wll, w9 +---+ w12, wlO +---+ w13 

w3 +---+ w4, w8 +---+ wll, w9 +---+ wl2, wlO +---+ w13 

w3 ~ w2, w4-+ w3, w2 ~ w4, w8 ~ w5, w9 ~ w6, wlO-+ w7, 

wll -+ w8, wl2-+ w9, wl3-+ wlO, w5-+ wll, w6-+ wl2, w7-+ w13 

w4-+ w2, w2-+ w3, w3-+ w4, wll-+ w5, w12-+ w6, wl3-+ w7, 

w5 ~ w8, w6-+ w9, w7 ~ wlO, w8 ~ wll, w9-+ wl2, wlO-+ wl3 

w2 +---+ w4, w5 +---+ wll, w6 +---+ w12, w7 +---+ wl3 

w6 +---+ w7, w9 +---+ wlO, w12 +---+ wl3 

wl ~ -wl, w2-+ -w2, w3 ~ -w3, w4 ~ -w4, 

w6 ~ -w6, w9 -+ -w9, w12 ~ -w12 

wl-+ -wl. w2-+ -w2, w3 ~ -w3, w4 ~ -w4, 

w7-+ -w7, wlO-+ -wlO, w13 -+ -w13 

Number of Equivalent Configurations 384 

Representative Sector 

w5 :2: w8 :2: wll :2: 0; w6 :2: w7 :2: 0 



I 

Notation 

opHl 
opH2 
opH3 
opH4 

opHx1243 
opHx1324 
opHx1342 

opHx1423 

opHx1432 
opHx2134 
opHx2143 

opHx2314 

opHx2341 

opHx2413 

opHx2431 

opHx3124 

opHx3142 

opHx3214 
opHx3241 

opHx3412 

opHx3421 
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Table A-3 

Symmetry Operations Associated with the Error Surface 
of 

;-..;etwork 8.3 Penorm:ng Lhe XOi~ mappmg 

Description 

w2 ~ -w2, w6 ~ -w6, w7 ~ -w7, w8 ~ -w8 

w3 ~ -w3, w9 ~ -w9, wlO ~ -wlO, wll ~ -wll 

w4 ~ -w4, w12 ~ -w12, w13 ~ -wl3, w14 ~ -wl4 

w5 ~ -w5, w15 ~ -wl5, w16 ~ -wl6, w17 ~ -w17 

w4 ~~ w5, w12 ~~ wl5, w13 ~~ wl6, wl4 ~~ w17 

w3 ~~ w4, w9 ~~ w12, wlO ~~ w13, wll ~~ w14 

w4 ~ w3, w5 ~ w4, w3 ~ w5, w12 ~ w9, w13 ~ wlO, w14 ~ wll, 

w15 ~ wl2, w16 ~ w13, w17 ~ w14, w9 ~ wl5, wlO ~ w16, wll ~ w17 

w5 ~ w3, w3 ~ w4, w4 ~ w5, w15 ~ w9, w16 ~ wlO, wl7 ~ wll. 

w9 ~ wl2, wlO ~ wl3, wll ~ wl4, wl2 ~ wl5, w13 ~ w16, w14 ~ w17 

w3 ~~ w5, w9 ~~ w15, wlO ~~ wl6, wll ~~ w17 

w2 ~~ w3, w6 ~~ w9, w7 ~~ wlO, w8 ~~ wll 

w3 ~ w2, w2 ~ w3, w5 ~ w4, w4 ~ w5, w9 ~ w6, wlO ~ w7, 

wll ~ w8, w6 ~ w9, w7 ~ wlO, w8 ~ wll, w15 ~ wl2, 

w16 ~ wl3, w17 ~ wl4, w12 ~ w15, w13 ~ wl6, w14 ~ w17 

w3 ~ w2, w4 ~ w3, w2 ~ w4, w9 ~ w6, wlO ~ w7, wll ~ w8, 

w12 ~ w9, w13 ~ wlO, w14 ~ wll, w6 ~ w12, w7 ~ wl3, w8 ~ w14 

w3 ~ w2, w4 ~ w3, w5 ~ w4, w2 ~ w5, w9 ~ w6, wlO ~ w7, 

wll ~ w8, w12 ~ w9, wl3 ~ wlO, w14 ~ wll, w15 ~ w12, 

w16 ~ w13, w17 ~ wl4, w6 ~ wl5, w7 ~ wl6, w8 ~ w17 

w3 ~ w2, w5 ~ w3, w2 ~ w4, w4 ~ w5, w9 ~ w6, wlO ~ w7, 

wll ~ w8, w15 ~ w9, w16 ~ wlO, wl7 ~ wll, w6 ~ wl2, 

w7 ~ wl3, w8 ~ wl4, w12 ~ wl5, w13 ~ w16, w14 ~ w17 

w3 ~ w2, w5 ~ w3, w2 ~ w5, w9 ~ w6, wlO ~ w7, wll ~ w8, 

w15 ~ w9, w16 ~ wlO, w17 ~ wll, w6 ~ w15, w7 ~ w16, w8 ~ w17 

w4 ~ w2, w2 ~ w3, w3 ~ w4, w12 ~ w6, w13 ~ w7, w14 ~ w8, 

w6 ~ w9, w7 ~ wlO, w8 ~ wll. w9 ~ w12, wlO ~ w13, wll ~ w14 

w4 ~ w2, w2 ~ w3, w5 ~ w4, w3 ~ w5, w12 ~ w6, w13 ~ w7, 

w14 ~ w8, w6 ~ w9, w7 ~ wlO, w8 ~ wll, w15 ~ w12, 

w16 ~ wl3, w17 ~ w14, w9 ~ w15, wlO ~ wl6, wll ~ w17 

w2 ~~ w4, w6 ~~ w12, w7 ~~ w13, w8 ~~ w14 

w4 ~ w2, w5 ~ w4, w2 ~ w5, w12 ~ w6, w13 ~ w7, w14 ~ w8, 

wl5 ~ wl2, w16 ~ w13, w17 ~ wl4, w6 ~ wl5, w7 ~ w16, w8 ~ w17 

w4 ~ w2, w5 ~ w3, w2 ~ w4, w3 ~ w5, w12 ~ w6, w13 ~ w7, 

w14 ~ w8, wl5 ~ w9, w16 ~ wlO, wl7 ~ wll, w6 ~ wl2, 

w7 ~ wl3, w8 ~ wl4, w9 ~ wl5, wlO ~ wl6, wll ~ w17 

w4 ~ w2, w5 ~ w3, w3 ~ w4, w2 ~ w5, w12 ~ w6, w13 ~ w7, 

w14 ~ w8, w15 ~ w9, w16 ~ wlO, w17 ~ wll, w9 ~ wl2, 

wlO ~ wl3, wll ~ w14, w6 ~ wl5, w7 ~ w16, w8 ~ w17 



Notation 

opHx4123 

opHx4132 

opHx4213 

opHx4231 
opHx4312 

opHx4321 

opix 

opil 

opi2 
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Table A-3 Continued 

Symmetry Operations Associated with the Error Surface 
or 

Network 8.3 Performing the XOR mapping 

Description 

w5 ~ w2, w2 ~ w3, w3 ~ w4, w4 ~ w5, w15 ~ w6, w16 ~ w7, 

w17 ~ w8, w6 ~ w9, w7 ~ wlO, w8 ~ wll, w9 ~ w12, 

wlO ~ wl3, w 11 ~ wl4, w12 ~ w15, w13 ~ w16, w14 ~ w17 

w5 ~ w2, w2 ~ w3, w3 ~ w5, w15 ~ w6, wl6 ~ w7, w17 ~ w8, 

w6 ~ w9, w7 ~ wlO, w8 ~ wll, w9 ~ wl5, wlO ~ wl6, wll ~ w17 

w5 ~ w2, w2 ~ w4, w4 ~ w5, wl5 ~ w6, wl6 ~ w7, w17 ~ w8, 

w6 ~ wl2, w7 ~ wl3, w8 ~ wl4, wl2 ~ w15, w13 ~ wl6, w14 ~ w17 

w2 +-~ w5, w6 +-~ wl5, w7 +-~ wl6, w8 +-~ w17 

w5 ~ w2, w4 ~ w3, w2 ~ w4, w3 ~ w5, w15 ~ w6, w16 ~ w7, 

w17 ~ w8, w12 ~ w9, wl3 ~ wlO, w14 ~ wll, w6 ~ wl2, 

w7 ~ wl3, w8 ~ wl4, w9 ~ w15, wlO ~ wl6, wll ~ w17 

w5 ~ w2, w4 ~ w3, w3 ~ w4, w2 ~ w5, w15 ~ w6, w16 ~ w7, 

w17 ~ w8, wl2 ~ w9, w13 ~ wlO, w14 ~ wll, w9 ~ wl2, 

wlO ~ wl3, wll ~ wl4, w6 ~ wl5, w7 ~ w16, w8 ~ w17 

w7 +-~ w8, wlO +-~ wll, w13 +-~ wl4, w16 +-~ wl7 

wl ~ -wl, w2 ~ -w2. w3 ~ -w3, w4 ~ -w4, w5 ~ -w5, 

w7 ~ -w7, wlO ~ -wlO, w13 ~ -w13, wl6 ~ -wl6 

wl ~ -wl, w2 ~ -w2. w3 ~ -w3, w4 ~ -w4, w5 ~ -w5, 

w8 ~ -w8, wll ~ -wll, w14 ~ -wl4, wl7 ~ -w17 

Number of Equivalent Configurations 3072 

Representative Sector 

w6 ~ w9 ~ w12 ~ w15 ~ 0; w7 ~ w8 ~ 0 



Notation 

opHl 
opH2 
opH3 

opHx132 
opHx213 
opHx231 

opHx312 

opHx321 

opixl32 
opix213 
opix231 

opix312 

opix321 

opil 

opi2 

opi3 
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Table A-4 

Symmetry Operations Associated with the Error Surface 
of 

Network 8.4 Performing the 3-input Parity Mapping 

Description 

w2 ~ -w2. wS ~ -wS, w6 ~ -w6, w7 ~ -w7, w8 ~ -w8 

w3 ~ -w3, w9 ~ -w9, wlO ~ -wlO, wll -t -wll, w12 ~ -w12 

w4 ~ -w4, w13 ~ -wl3, w14 ~ -wl4, w15 ~ -w15, w16 ~ -w16 

w3 ~~ w4, w9 ~~ w13, wlO ~~ wl4, wll ~~ w15, w12 ~~ w16 

w2 ~~ w3, wS ~~ w9, w6 ~~ wlO, w7 ~~ wll. w8 ~~ w12 

w3 ~ w2, w4 ~ w3, w2 ~ w4, w9 ~ wS, wlO ~ w6, 

wll ~ w7, w12 ~ w8, w13 ~ w9, w14 ~ wlO, wl5 ~ wll, 

w16 ~ w12. wS ~ wl3, w6 ~ wl4, w7 ~ wl5, w8 ~ w16 

w4 ~ w2, w2 ~ w3, w3 ~ w4, w13 ~ w5, w14 ~ w6, 

w15 ~ w7, w16 ~ w8, wS ~ w9, w6 ~ wlO, w7 ~ wll, 

w8 ~ wl2, w9 ~ w13, wlO ~ wl4, wll ~ wl5, w12 ~ w16 

w2 ~~ w4, w5 ~~ w13, w6 ~~ wl4, w7 ~~ wl5, w8 ~ w16 

w7 ~~ w8, wll ~~ wl2, w15 ~~ w16 

w6 ~~ w7, wlO ~~ wll, w14 ~~ w15 
w7 ~ w6, w8 ~ w7, w6 ~ w8, wll ~ wlO, w12 ~ wll, 

wlO ~ wl2, w15 ~ w14, w16 ~ w15, w14 ~ wl6, 

w8 ~ w6, w6 ~ w7, w7 ~ w8, wl2 ~ wlO, wlO ~ wll, 

wll ~ wl2, w16 ~ wl4, w14 ~ w15, wl5 ~ wl6, 

w6 ~~ w8, wlO ~~ w12. w14 ~~ w16 

wl ~ -wl, w2 ~ -w2, w3 --+ -w3, w4 ~ -w4 

w6 ~ -w6, wlO ~ -wlO, wl4 ~ -w14 

wl ~ -wl, w2 ~ -w2, w3 --+ -w3, w4 ~ -w4 

w7 ~ -w7, wll ~ -wll. w15 ~ -w15 

wl ~ -wl, w2 ~ -w2, w3--+ -w3, w4--+ -w4 

w8 ~ -w8, w12 ~ -wl2, w16 ~ -w16 

Number of Equivalent Configurations 2304 

Representative Sector 

w5 ~ w9 ~ w13 ~ 0; w6 ~ w7 ~ w8 ~ 0 
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APPENDIX B Influence of Starting Point on Gradient Descent 

Table B-1 

The Comparison of Two Classes of Steepest Descents in Searching 

the :Ytin!ma in the Error Surface of Network 8.1 Performing the XOR Mapping. 

A) The Starting Points of the Processes are randomly distributed in [ -1.5, 1.5]9 
ll) The Starting Points of the Processes are randomly distributed in [ -3.0, 3.0]9 

Identifier MA MB MC 

Error 0.0803 2.0969 2.8835 

Percent of Trajectories 
in Class A 74.1 25.6 0.3 

Approaching the Point 

Percent of Trajectories 
in Class B 60.3 37.5 2.2 

Approaching the Point 

Table B-2 

The Comparison of Two Classes of Steepest Descents in Searching 

the Minima in the Error Surface of Network 8.2 Performing the XOR Mapping. 

A) The Starting Points of the Processes are randomly distributed in [ -1.5, 1.5] 13 

B) The Starting Points of the Processes are randomly distributed in [-3.0, 3.0]13 

Identifier MD ME MF MG 

Error 0.0605 0.0665 0.0803 2.0965 

Percent of Trajectories 
in Class A 74.8 20.7 3.7 0.8 

Approaching the Point 

Percent of Trajectories 
in Class B 67.1 25.3 1.5 6.1 

Approaching the Point 


