
Type-Safe Compilation of Covariant

Specialization: A Practical Case

John Boyland Giuseppe Castagna

Report No. UCB/CSD-95-890

November 1995

Computer Science Division (EECS)
University of California
Berkeley, California 94720



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
NOV 1995 2. REPORT TYPE 

3. DATES COVERED 
  00-00-1995 to 00-00-1995  

4. TITLE AND SUBTITLE 
Type-Safe Compilation of Covariant Specialization: A Practical Case 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
Despite its lack of type safety, some typed object-oriented languages use covariant specialization for
methods. In this work, we show how one may modify the semantics of languages that use covariant
specialization in order to improve their type safety. We demonstrate our technique using O2, a strongly
and statically typed object-oriented database programming language which uses covariant specialization.
We propose a modification to the O2 compiler that adds code to correct previously ill-typed computations
that arise from the use of covariant specialization. The modification we propose does not affect the
semantics of those computations without type errors. Furthermore, the new semantics of the previously
ill-typed computations is defined in a very "natural" way and ensures the type safety (w.r.t. covariance) of
the program. Since the solution consists of a conservative backward-compatible modification of the
compiler, it does not require, unlike other solutions, any modification of existing O2 code. Our solution is
based solely on a type-theoretic analysis and thus is general. Therefore, although this paper applies it to a
particular programming language, the same ideas could easily be applied to other languages that uses
covariant specialization. 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

21 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



Type-Safe Compilation of Covariant

Specialization: A Practical Case

John Boyland�

Computer Science Division, EECS

University of California

e-mail: boyland@cs.berkeley.edu

Giuseppe Castagna

CNRS, LIENS-DMI
�Ecole Normale Sup�erieure

e-mail: castagna@dmi.ens.fr

November 1995

Abstract

Despite its lack of type safety, some typed object-oriented languages use covariant special-
ization for methods. In this work, we show how one may modify the semantics of languages that

use covariant specialization in order to improve their type safety. We demonstrate our technique

using O2, a strongly and statically typed object-oriented database programming language which
uses covariant specialization. We propose a modi�cation to the O2 compiler that adds code to

correct previously ill-typed computations that arise from the use of covariant specialization.

The modi�cation we propose does not a�ect the semantics of those computations without type
errors. Furthermore, the new semantics of the previously ill-typed computations is de�ned in a

very \natural" way and ensures the type safety (w.r.t. covariance) of the program. Since the

solution consists of a conservative backward-compatible modi�cation of the compiler, it does
not require, unlike other solutions, any modi�cation of existing O2 code. Our solution is based

solely on a type-theoretic analysis and thus is general. Therefore, although this paper applies it

to a particular programming language, the same ideas could easily be applied to other languages
that uses covariant specialization.

1 Introduction

Strongly-typed object-oriented languages impose conditions in order to statically ensure type safety
for method overriding. In particular, in the presence of subtyping, type safety requires that the
type of the result of the overriding method be a subtype of the type of the result of the overridden
one, and that the types of the parameters of the overridden method are subtypes of those of the
corresponding parameters in the overriding one. In type theory, this rule is said to be covariant

in the result type (since it preserves the sense of the subtype relation) and contravariant on the
parameters' types (since it inverts the sense of the relation). Since the parameter behavior is taken
as representative, one speaks in this case of contravariant specialization.

Although type-safe, contravariant specialization restricts the exibility of a language consider-
ably. For this reason, some object-oriented language designers put expressiveness above strict type
safety and instead adopt the more exible covariant specialization rule, which requires exactly the
opposite subtyping relation for parameters, namely that the type of the parameters in the overriding
method are subtypes of those of the corresponding parameters in the overridden one. It would seem

�
The work of John Boyland was supported in part by Advanced Research Projects Agency grant MDA972-92-

J-1028, and by NSF Infrastructure grant CDA-9401156. The content of this paper does not necessarily reect the

position or the policy of the U. S. Government, and no o�cial endorsement should be inferred.



that one cannot combine covariant specialization and inheritanced-based subtyping in a type-safe
manner.

In the last years, several solutions have been suggested to retain some of the exibility of co-
variant specialization in a type-safe framework. These solutions propose new languages constructs
(e.g. [Cas95a]), or new relations on types (e.g. [Bru94]), or the use of di�erent typing techniques
for the methods (e.g. [BHJL86]): see [BCC+96] for a wide review. However, none of them can be
directly applied to programs written in languages that use covariant specialization. To use these
solutions, one has to throw away the programs written with covariant specialization, and to rewrite
them from scratch either in a di�erent language or in a extended version of the old language. In
many practical cases, such as in large databases, a complete rewrite of the existing code would be
much too expensive, even if feasible. Such cases are not merely hypothetical, since the world's third
most popular commercial object-oriented database system, O2, uses covariant specialization.

Despite its great practical implications, nearly no work to our knowledge has tried to handle the
problem of ensuring the type safety of existing code that uses covariant specialization. A notable
exception to this is given by the work done for the language Ei�el [Mey91, Mey96]. Ei�el uses
covariant rede�nition, but uses an additional check, the \system validity" check to detect possible
type errors admitted due to covariant specialization. Currently, the de�nition of Ei�el gives a link-
time (i.e. global) data-ow analysis for this purpose, but Meyer has proposed a new check that can
be done locally. Due to its complexity, the current de�nition is not incorporated into any widely
available compiler. The new check is much less complex, but may possibly prove too strict. Either
analysis guarantees type-safety but can only reject programs with potential type errors.

In this article we propose another solution, di�erent from Ei�el's, but in the same spirit, since it
can be directly applied to the existing code. What we show is that it is not necessary to rewrite some
programs or to discard any of them, since by slightly changing the interpretation of the programs,
we can ensure complete type safety. Furthermore, this change will a�ect only those computations
that would otherwise have unde�ned semantics due to a type error.

In other words, type theoretic research so far addresses the question: How should I have written

my program to obtain type safety and also the exibility of covariant specialization without using

it? The analysis for Ei�el answers the question: Is my program type-safe even if I used covariant

specialization? The problem addressed by this article is substantially di�erent. This work answers
the question: How can I change the semantics of my programs that use covariant specialization in

order to ensure type safety?

Of course, the new semantics must satisfy some minimal requirements:

1. The new semantics must be conservative over type-safe programs, in the sense that the pro-
grams that worked safely even with covariance must not be a�ected by the change. In other
words, programs that have no type problems must have, with the new semantics, the same
meaning as with the old semantics.

2. The new semantics of ill-typed computations1 must be somehow \natural", in the sense that
the de�nition of the new semantics must take into account why an ill-typed situation has been
reached and what could reasonably be its intended meaning. The new semantics must recover
from the errors, not simply hide them.

We describe our solution which ful�ls these requirements by applying it to O2, a strongly-typed
object-oriented database programming language [BDK92] that uses covariant specialization together
with run-time checks to ensure type safety. The choice is not arbitrary since the question we address
is acutely pertinent in the presence of persistent data. In particular, we sketch how to modify
the standard O2 compiler to make O2's covariant specialization rule type-safe. Our solution does

1
By an ill-typed computation we mean a computation that includes at least one ill-typed application: an application

of a function or a method to an argument whose type is not compatible with the parameter type (the domain) of the

function/method.

2



not require any source code to be changed, neither does it require the \bases" to be recompiled; a
\schema" recompilation will su�ce.2

Although in this paper, we apply our ideas to a particular programming language, our solution
is general. Being based solely on type theoretic observations, it can be applied to other languages
that uses covariant specialization, to yield a type-safe semantics, or it can be used to de�ne a new

type-safe object-oriented language that provides covariant specialization.
The work is organized as follows. Section 2 introduces O2 and shows why covariant specialization

is not type-safe. Section 3 reviews the work on multi-methods done in [Cas95a]. These ideas are
used in Section 4 to illustrate the solution we propose here in the case of single inheritance. Section 5
shows that the naive extension of the previous solution to the multiple inheritance doesn't work and
uses this analysis to describe a more sophisticated solution that does work. We close our presentation
by comparing our work with other solutions presented in the literature.

2 The Language O2 and Covariance

O2 is a strongly-typed, object-oriented database programming language. The most important as-
pect of O2's type system, as with most typed object-oriented languages, is its subtyping relation.
Subtyping allows a value of a subtype to be used anywhere a value of the supertype is expected. The
use of this relation enhances the exibility of the language since it allows the values of a given type
to use operations originally de�ned for a di�erent type.

However, the O2 type discipline is not safe; type errors may occur at run-time, even if a program
has successfully passed static type checking.3 In particular, type errors may arise due to the use of
covariant specialization. We demonstrate the problem by an example:4

class Point

type tuple (x:real,

y:real)

method equal(p:Point):boolean

end;

method body equal(p:Point):boolean in class Point

{return( (self->x == p->x) && (self->y == p->y) );};

class ColorPoint inherit Point

type tuple(c:string) /* x and y are inherited from Point */

method equal(p:ColorPoint):boolean

end;

method body equal(p:ColorPoint):boolean in class ColorPoint

{return( (self->x == p->x) && (self->y == p->y) && (self->c == p->c) );}

We have two classes that represent two-dimensional points and colored points respectively. The class
Point has two instance variables x and y of type real and a method for the message equal that
returns a boolean when applied to an argument of class Point. Its de�nition compares the instance
variables of the receiver of the message (self) with the ones of the argument. The class ColorPoint
is obtained by inheritance from Point. To represent the color, it adds the instance variable c to

2
In O2 jargon, the schema of a database is the description of the structure and the behavior of the data; it

essentially consists of class and method de�nitions. A collection of data (objects and values) whose structure and

behavior conforms to the de�nitions in a schema is called base. A schema may be created and modi�ed without a

reference to a particular base and it can be shared by several bases, while a base must always refer to a single schema.

3
In classical languages, the de�nition of a type error is well-known. In addition, in object-oriented languages,

sending a message to an object that cannot respond to it is considered a type error.

4
We use version 4.0 of O2 and we specify the methods in O2C.

3



those inherited from Point. It rede�nes (or, overrides) the method for the message equal, in order
to take into account the color of the point.

In O2, an overriding method must satisfy the following covariant specialization rule:

1. It must have the same number of parameters as the method it overrides.
2. The type of each parameter must be a (possibly improper) subtype of the type of the corre-

sponding parameter in the overridden method.
3. The type of the result must be smaller than or equal to the type of the result of the overridden

method.

The classes Point and ColorPoint satisfy these conditions. The rule is quite intuitive, but it is not
type-safe, as can be demonstrated by adding the following method to the class Point:

method break_it(p:Point) in class Point;

method body break_it(p:Point) in class Point {p->equal(self);}

This method5 sends the message equal to the parameter p and with self as argument. It is easy
to verify that, although the command (new Point)->break_it(new ColorPoint) is well typed
according to the rules of O2 (the command new creates a new instance of the speci�ed class), it leads
to a type error: its execution produces the ill-typed application of the equal method in ColorPoint

to an argument of class Point.6

The problem arises from the covariance introduced in condition (2). Type theory states that a
class C2 is a subtype of another class C1 (namely, that objects of C2 can be type-safely used wherever
an object of C1 is expected) only if the methods de�ned in C1 can be type-safely replaced by those
of C2 [Car88]. If a method for a message is inherited in C2, then no typing issue is raised, since the
method is the same for C1 and C2. If the method is rede�ned in C2, type safety is ensured only if
the new method can replace the method de�ned in C1 in every context . In particular, the method
in C2 must be able to handle at least the same arguments that can be passed to the method in C1.
In our example with points, the method for equal in Point accepts arguments of type Point while
the one in ColorPoint does not. The type error in the call of break_it is caused by the fact that
the method for equal in ColorPoint is applied to an argument of type Point, a legal argument for
the method it overrides.

More formally, the problem is that the type ColorPoint ! boolean of the equal method in
ColorPoint is not a subtype of Point ! boolean.7 Indeed recall that by de�nition of subtyping,
S ! T � S0 ! T 0 holds only if every function f of type S ! T can be used where a function g

of type S0 ! T 0 is expected. This implies that the result of f (of type T ) must be able to replace
the result of g (of type T 0), i.e. T � T 0; and that f can handle any argument g can, i.e. S0 � S.
Thus the orientation of the inequality of the arrow is inverted on the domains: the subtyping rule
is \contravariant" in the left component of the arrow.

In conclusion, to ensure type safety in an object-oriented language (such as used in O2), one
must require that the types of the parameters of an overriding method are supertypes of those of
the parameters of the overridden method. Otherwise the subclass cannot be considered a subtype
of its superclass, and thus objects of the subclass cannot be used where objects of the superclass
are expected. This rule disallows a useful specialization of equal in ColorPoint, because there is
no way to compute the color component of an argument known only to be a Point. Going ahead
with the specialization would mean that the class ColorPoint would not be a subtype of the class

5
In O2, methods can be declared outside class de�nitions, as in the example above. This allows one to add new

methods to an existing class or to rede�ne the old methods.

6Note that the kind of error produced by break_it is not so hard to generate. Every function that needs to test

the equality of two parameters of type Point may generate a type error of this sort.

7According to the O2's notation, the types of the methods for equal in ColorPoint and Point are, respectively,

ColorPoint�ColorPoint! boolean and Point�Point! boolean since the type of the receiver (i.e. of self) is included

among the parameters of the method. In order to simplify the exposition, we will omit the receiver's type from the

type of the methods. This omission does not a�ect the core of our discussion. For more details on receiver types,

see [Cas95a].

4



Point, and thus that colored point could not be used where points are expected. Thus, it appears
one is left with the choice between a useful subtype relation and a useful specialization.

The designers of O2 have preferred to give up some type safety, and to adopt covariant special-
ization. In the next section, we show that there is way to allow covariant specialization without
sacri�cing type safety.

3 Multi-methods

Our solution for making covariant specialization type-safe uses multi-methods. Multi-methods ap-
pear in the CLOS language [DG87] and their typing issues have been studied in [ADL91, CGL95,
CL94]. However, none of these approaches can be directly applied to the case of O2, since they do
not retain the notion of method encapsulation: there is no privileged receiver |as in O2| to which
a message is sent. Thus in this article, we utilize a di�erent kind of multi-methods, those studied
in [Cas95a, MHH91] (and, implicitly, also in [Ing86]). These multi-methods allow the use of multiple
dispatching (i.e., the possibility that the selection of a method is also based on other arguments
of the message) even in presence of a privileged receiver. (A detailed comparison between the two
kinds of multi-methods can be found in [BCC+96]).

In particular, it is possible to have type-safe covariant specialization when using this second kind
of multi-method with late-binding [Cas95a]. We demonstrate the idea with the Point/ColorPoint
example introduced in the previous section. The problem with the de�nition of equal in ColorPoint

is that it cannot handle arguments of type Point . The intuition of our solution is that some code
can be added to compensate for this de�ciency. The original method de�nition is executed for
arguments of type ColorPoint while the new code handles arguments of type Point. In practice, this
corresponds to changing the de�nition of ColorPoint:

class ColorPoint inherit Point

type tuple(c:string) /* x and y are inherited from Point */

method equal(p:Point):boolean,

equal(p:ColorPoint):boolean

end;

method body equal(p:Point):boolean in class ColorPoint

{return( (self->x == p->x) && (self->y == p->y) );};

method body equal(p:ColorPoint):boolean in class ColorPoint

{return( (self->x == p->x) && (self->y == p->y) && (self->c == p->c) );};

There are now two di�erentmethod branches (branches for short) for the message equal in ColorPoint.
Both method branches together can be considered a single multi-method .8 When the message equal
is sent to an object of type ColorPoint , one of the two method branches is selected for execution
according to the type of the argument. If the argument is of type Point , the �rst branch is used;
if it is of type ColorPoint , or of a subtype, the the second method branch is used. The selection
of the branch is performed at run-time after the argument of the message has been fully evaluated.
This is a crucial feature that di�erentiates multi-methods from C++'s overloaded methods (where
the selection is performed at compile time), and ensures the appropriate use of the covariant spe-
cialization. Consider the fragment p->equal(self) in the code of break_it in Point; self has
static type Point , therefore if the selection of the method were performed at compile time, the �rst
branch of equal would be always executed, even for

(new ColorPoint)->break_it(new ColorPoint)

Here, we would expect the two points to be compared also in their color component.

8
These kinds of multi-methods are called multivariant in [MHH91] and encapsulated multi-methods in [BCC

+
96]

in order to distinguish them from CLOS's multi-methods.

5



What then are the rules that ensure the type safety of this approach? Recall that type safety
is guaranteed only if every overriding method possesses a subtype of the type of the method it
overrides. The type of a multi-method is the set of the types of its various branches. The subtyping
relation between sets of types (not to be confused with the type of sets) states that one set of types
is smaller than another set of types only if for every type contained in the latter, there exists a type
in the former smaller than it.9 This �ts the intuition that one multi-method can be replaced by
another multi-method of di�erent type, when for every method branch that can be selected in the
former, there is one in the latter that can replace it (for subtyping, an ordinary method is considered
to be a multi-method with just one branch: its type is a singleton).

In the new version of the point example, the type of the multi-method for equal in ColorPoint

is fPoint ! boolean;ColorPoint ! booleang. By the rule above we have

fPoint ! boolean;ColorPoint ! booleang � fPoint ! booleang

Since fPoint ! booleang is the type of the method associated with equal in Point, the subtyping
condition is ful�lled and type safety ensured.

More generally, if one wishes to override a method10 and covariantly specialize the type of its
parameters, it is necessary also to add another branch to handle the arguments that could be passed
to the overridden method.

Adding multi-method branches to achieve type safety does not require a large amount of pro-
gramming: in case of single inheritance, the number of branches su�cient to override covariant
methods is independent from both the size and the depth of the inheritance hierarchy; it is always
equal to two. Indeed, when a multi-method of type fS1 ! T1; : : : ; Sn ! Tng is applied to an argu-
ment of type U , the branch executed is the one de�ned for the type Sj = mini=1::nfSi j U � Sig.
Thus a single branch with a su�ciently high (in the inheritance hierarchy) type may handle all the
remaining arguments that are not handled by the specializing code. For example, suppose that we
further specialize our point hierarchy by adding dimensions, each with their own equal methods:

class Point3D inherit Point

type tuple(z:real)

method equal(p:Point3D) : boolean

end;

class Point4D inherit Point3D

type tuple(w:real)

method equal(p:Point4D) : boolean

end;

and so on, up to dimension n. The new classes form a chain in the inheritance hierarchy. Each
class covariantly overrides the equal method inherited from its superclass. It may appear to be
necessary to add n� 2 more branches to each class PointnD in order to guarantee safety; however,
one additional branch with a parameter of type Point su�ces. This branch will handle all other
possible points. For example, in the case of n = 4, one could de�ne

class Point4D inherit Point3D

type tuple(w:real);

method equal(p:Point4D) : boolean,

equal(p:Point) : boolean

end;

method body equal(p:Point4D):boolean in class Point4D

{return( (self->x == p->x) && (self->y == p->y)

&& (self->z == p->z) && (self->w == p->w) );};

9
The subtyping relation for function types is, of course, the contravariant rule de�ned before.

10
We assume here that overriding a multi-method overrides all its branches.

6



method body equal(p:Point):boolean in class Point4D

{return( p->equal(self) ); }

Type safety stems from the fact that the subtyping condition is satis�ed.11

In conclusion, if we extend the syntax of O2 with multi-methods, we can have type safety and
covariant specialization. Every time we perform a covariant specialization in a class with a single
direct superclass, it will su�ce to add one (and one only) branch to handle all the arguments
\inherited" from the superclasses, although one may wish to add multiple branches for semantic
reasons.

This still does not solve the problem we want to address with this work and which concerns
existing O2 code. In the rest of this paper, we show that a compiler can automatically add branches
that make a program type-safe. Note that the type safety is obtained without any modi�cation of
the source code.

A more formal treatment of multi-methods can be found in [Cas95a]. For the formal type
system and the proof of its type safety see [CGL95]. Examples of type safe use of multi-methods in
programming languages with a privileged receiver are proposed in [MHH91] and [Cas95b].

4 Single inheritance

We �rst describe our solution as it applies when there is only single inheritance. We generalize this
solution to multiple inheritance hierarchies in Section 5.

For this section, we use &(C) to denote the unique direct superclass of C, i.e. the class that follows
the inherit keyword in the de�nition of C. Besides this notation, we need to introduce some more
O2 syntax.

4.1 The @ notation

In O2, it is possible to invoke the method attached to a speci�c class by the following @-notation:
r->C@m. This invokes the method attached to the message m in the class C instead of the one
attached in the class of the receiver r, provided that the latter is a subclass of C. In particular, in
this work we use the @-notation in commands of the form self->A@m which inside a proper subclass
of A dispatches the message m to self but it starts the search for the method associated to m from
the class A. This mechanism is di�erent from the super mechanism of, say, Smalltalk: suppose that
the class A de�nes a method for the message m, that the class B is de�ned by inheritance from A

(i.e. A = &(B)) and that B inherits from A the method for m. Then self->A@m always begins the
search for the method for m from the class A (thus, in this case it is equivalent to self->m), while
super->m begins the search from the superclass of the class containing the method, namely from
the superclass of A (therefore, in this example it is equivalent to self->&(A)@m). In other words,
the @-notation expresses absolute addressing, whereas super is a relative addressing.

4.2 The solution

We start the presentation of our solution in the simpli�ed case of methods with just one parameter.
Suppose we have two classes C0 and Cn, Cn < C0, de�ned by the following program

11
In general, according to the subtyping rule for multi-methods, if T1 � T2 � : : : � Tn and S1 � S2 � : : : � Sn

then we have the following type inequalities:

fSn ! Tn; S1 ! Tn�1g � : : : � fSi+1 ! Ti+1; S1 ! Tig � fSi ! Ti; S1 ! Ti�1g � : : : � fS1 ! T1g

The declarations of the classes for points are a special case of this, where S1 =Point, for i 2 [3::n] Si�1 =PointiD,

and for i 2 [1::n-1] Ti =boolean.

7



class C0

type ... /* The type is not important */
method m(x:S0):T0

end;

class Cn inherit Cn�1 /* Cn�1 is a subclass of C0 */
method m(x:Sn):Tn

end

where Sn < S0 and Tn � T0. Suppose also that the message m has not been rede�ned in the
inheritance hierarchy between Cn and C0. Our solution has the compiler add the following method
branch to Cn:

method m(x:S0):T0 in class Cn;

method body m(x:S0):T0 in class Cn { return(self->Cn�1@m(x)); }

The program is now type-safe since by the subtyping rule of multi-methods fS0 ! T0; Sn ! Tng �

fS0 ! T0g, that is, the type of the (multi-)method in Cn is smaller than the type of the method
in C0 it overrides. Note also that since m has not been rede�ned between C0 and Cn, the type of
self->Cn�1@m(x) is the type of the result of the method in C0 (that is, T0) and that therefore the
body of the new method branch conforms to its signature. This same branch must also be added to
all subclasses of Cn which invariantly override m, by which we mean that the parameter type of m
remains the same in the rede�nition.

In the case in which m has been covariantly rede�ned multiple times in the hierarchy between
C0 and S0, our solution has the compiler add multiple branches. For example, suppose that for
a class Ci, Cn < Ci < C0, the method for m has been rede�ned with signature Si ! Ti, where
Sn < Si < S0, but that it is not rede�ned elsewhere between C0 and Cn. Then the compiler will
add to the class Ci a method branch of type S0 ! T0, and will add two method branches to Cn:
one of type S0 ! T0 and another of type Si ! Ti.

method m(x:Si):Ti in class Cn;

method body m(x:Si):Ti in class Cn { return(self->Cn�1@m(x)); }

method m(x:S0):T0 in class Cn;

method body m(x:S0):T0 in class Cn { return(self->Cn�1@m(x)); }

By the multi-method subtyping rule we have

fS0 ! T0; Si ! Ti; Sn ! Tng
| {z }

type of m in Cn

� fS0 ! T0; Si ! Tig
| {z }

type of m in Ci

� fS0 ! T0g
| {z }

type of m in C0

The subtyping condition is ful�lled since the type of every overriding (multi-)method is a subtype
of the type of the (multi-)method it overrides. This guarantees type safety.12 Both added method
branch bodies have the same code; they are type-safe because self->Cn�1@m is of multi-method
type. We will return to this fact after describing the algorithm more precisely.

Viewed as a top-down process over the inheritance hierarchy, our solution descends the inheri-
tance hierarchy looking the �rst class containing a covariant rede�nition of a given message. When
it �nds one, it adds to the class a branch that points to the last de�nition of the message, and
continues to descend the hierarchy looking for the next class where the message is rede�ned (either
covariantly or invariantly). If the rede�nition is invariant, it adds to the class all the branches that
were added to the last de�nition; if the rede�nition is covariant, it adds the same branches plus one
branch that points to the last de�nition.

The general task of the compiler can be described as follows

12
For those familiar with [Cas95a] note that O2's covariance rule ensures that the overloaded types are well formed.

8



Algorithm 1 For every class C, for every message m overridden in C with type S ! T , and for
every superclass Ci (for which m has type Si ! Ti) where m is covariantly rede�ned in the direct
subclass Ci+1 to Si+1 ! Ti+1 (that is C � Ci+1 < Ci; &(Ci+1) = Ci; S � Si+1 < Si), add the
following method branch:

method m(x:Si):Ti in class C;

method body m(x:Si):Ti in class C { return(self->&(C)@m(x)); }

The intuition underlying this rule is that the compiler adds branches to handle all possible arguments
that are not handled by the original rede�nition. There is a one-to-one correspondence between the
superclasses of a class (including itself) that covariantly rede�ne a method, and method branches
one has to add to it.

Note that the method body declarations are well typed (this can be proved by induction on the
depth of the inheritance hierarchy). Note also that all the added branches perform the same thing:
they search up in the inheritance hierarchy for the �rst de�nition of a method that can handle the
argument. In practice, the compiler can collapse all the added branches into a single branch to be
selected when the argument is of a supertype of that in the covariant method. This branch simply
performs a lookup in the inheritance hierarchy. This observation is used in Section 4.5 to give an
implementation of our solution. Since our methods already have multi-method type, with a little
abuse of notation, we could use multi-method typed branches as well. For the second example with
Cn, Ci and C0, the addition would look like

method m:fS0 ! T0; Si ! Tig in class Cn

method body m(x) in class Cn { return(self->&(Cn)@m(x)); }

Intuitively, such a (multi-)method is selected when the type of the argument is a subtype of Si (in
which case the result will be of type Ti), or is a type included between S0 and Si (in which case the
result is of type T0)

13.
More generally, when a message m has been covariantly overridden, the compiler adds a single

branch (possibly of multi-method type) whose type is the type of the superclass' de�nition of the
method (ignoring any arrow type whose domain is the same as the one de�ned for this class). This
can be expressed by reformulating the previous algorithm in the following implementation-oriented
way:

Algorithm 1 (Implementation-Oriented Version) For every class C, for every message m
that is rede�ned in C whose type is not a subtype of the method de�ned in some superclass, add
the following branch:

method m : typeof (&(C)@m)=fSg in class C

method body m(x) in class C { return(self->&(C)@m(x)); }

where S is the parameter type of m in C, typeof (.) is a meta-operator that returns the type of a
(multi-)method, and T=fSg denotes the multi-method type T in which a possible arrow of domain
S has been erased.

It is not necessary that the syntax of the language being made safe actually allow these new multi-
methods, since the method is added by the compiler as a part of the implementation, as shown in
Section 4.5. This notation is only used to express implementation at the source level.

13
Note that it is not necessary to restate the type of the branch in the body declaration since there will be only one

such branch.

9



4.3 Naturalness

In the introduction, we state that our solution is natural. First of all, note that the semantics of well-
typed programs is not modi�ed: indeed all the (non-functional) expressions have, after the compiler's
completion, the same type as before the completion. Thus in the case of well-typed programs, the
original method de�nitions are always selected. For example, if we compare a ColorPoint with
another ColorPoint , after the completion, the method written by the programmer in the ColorPoint
class is executed. We give a new semantics only to those computations that produce a run-time type
error. Because of covariant specialization, it may happen that a method is applied to an argument
that it cannot handle. In that case, an added method branch is executed: it ascends the inheritance
hierarchy to look for the last de�nition of that method that can handle the argument (it knows that
one exists). Thus, we have an intelligent compiler that inserts the code the programmer has forgotten
to write, thus ensuring type safety for covariant specialization. The naturalness of our solution is
given by the fact the method executed is always the most specialized one written by the programmer
for the arguments in the call. Of course, no solution for adding multi-methods automatically can
be as natural as one in which the multi-methods are hand-written, but our solution is the most
natural �x that can be done automatically. Furthermore, the new semantics takes into account
the reason for an ill-typed application, namely the application can be ill-typed only if the receiver
is statically considered an object of a superclass of its actual class. Our solution has the method
lookup mechanism ascend the inheritance hierarchy from the receiver's dynamic class (where it would
otherwise stop) towards the static class, looking for a de�nition that supports the arguments given.

4.4 Multiple-argument methods

It is straightforward to extend this solution to methods with multiple parameters. As before, the
algorithm leads to the most speci�c method de�nition being used:

Algorithm 2 For every class C, for every message m with k parameters overridden in C with type
(S1� � � ��Sk)! T , and for every superclass Ci (for which m has type (S1i � � � ��Sk

i )! Ti) where
m is covariantly de�ned in the direct subclass Ci+1 (that is, C � Ci+1 < Ci; Ci = &(Ci+1); (S

1
i+1 �

� � � � Sk
i+1) < (S1i � � � � � Sk

i )), add the following method branch:

method m(x1:S1i ,: : :,xk:S
k

i ):T
0 in class C;

method body m(x1:S1i ,: : :,xk:S
k

i ):T
0 in class C { return(self->&(C)@m(x1,: : :,xk)); }

The implementation-oriented version of Algorithm 1 can be extended similarly so that the solution
works by adding a single (multi-method) branch.

The formal justi�cation of the type safety of this second algorithm is straightforwardly obtained
by using cartesian products to type multi-argument methods.

4.5 Implementation

The solution admits at least two di�erent implementation techniques.
One could change the compiler to use the observation that all the method branches added to

a method de�nition have the same body, thus applying the implementation-oriented versions of
Algorithms 1 and 2. The (new) compiler \marks" methods needing extra branches, and compiles
these methods di�erently. Either extra code may be added which tests the argument types, or a
description of the types may be used at run-time by the message dispatcher. In any case, if a marked
method does not handle its arguments, the dispatch mechanism searches for a new method de�nition
starting from the superclass. If this method is also marked then the argument types must be checked
again and so on. Our solution ensures that as long as a method is marked, there is another method
for the same message higher up in the inheritance hierarchy that can handle more argument types.

10



It also ensures that if a method de�nition is not marked, then it can handle all arguments that the
static type system permits. E�ectively, a marked method overrides a previous de�nition for only
some of its arguments.

A more conservative, but less e�cient way to implement the algorithms is to simulate multi-
methods in the source language, using the technique proposed by Ingalls [Ing86]. Ingalls' simulation,
o�ered in the context of single-dispatching languages such as Smalltalk-80 [GR83], uses a second
message dispatch to obtain the dynamic selection on an extra argument. Every multi-method can
be simulated by several normal method dispatches. After the �rst dispatch, only the type of the
receiver is known. After the second dispatch, the type of the �rst argument is known, and so on.
The realization of this method for the example from Section 3 is presented in Appendix A. The
reader can try to follow the execution of p->equal(q): for all the possible combinations of p and q

(both arguments instances of Point, p instance of Point and q instance of ColorPoint, and so on)
the code executed is always the same as that executed with the multi-methods de�ned in Section 3.
Also, note that all the methods have the same types for Point and ColorPoint. This means that
covariant specialization is not used and therefore, as expected, the class de�nitions are type-safe.

The advantage of using Ingalls' simulation is that it can be implemented by a preprocessor, rather
than changing the core of the standard O2 compiler. The preprocessor would transform the covariant
specialization of a method with one argument into one dispatching method plus one more for the
original method and one more for each additional branch determined by Algorithm 1 in any of its
subclasses. This advantage, however, must be weighed against several disadvantages. The method-
marking implementation is more e�cient both in terms of space (there is no code duplication)
and of time (the overhead to select the branch is much more prominent in Ingalls' simulation).
Furthermore, Ingalls' simulation is neither modular nor incremental. If we compiled some classes
using the marking implementation and later added some new subclasses, we do not need to recompile
the �rst ones. With an implementation based on Ingalls' simulation, every new covariant rede�nition
would require the recompilation of every class that implements a method for the message. Another
problem is that, as shown in [BCC+96], Ingalls' simulation does not work properly when the result
types of overriding methods di�er from the methods they override. This problem can be �xed using
parametric polymorphism, but since O2 does not provide this kind of polymorphism, it would be
necessary to bypass the type-checking phase when compiling pre-processed code.

Finally, note that although marked methods require extra checking to implement the added
method branches, the current O2 compiler already generates code to perform these checks, in order
to detect the run-time type-errors caused by covariant specialization.

5 Multiple inheritance

Multiple inheritance presents several obstacles to our solution as de�ned for single inheritance. The
most pertinent is that we do not have a privileged superclass; therefore the notation &(:) is unde�ned.
To put it otherwise, there is no longer a standard place from where to start the search for a method
de�nition for an ill-typed application.

A second problem concerns the application of multi-methods. In Section 3, we said that if a
multi-method of type fS1 ! T1; : : : ; Sn ! Tng is applied to an argument of type U , the branch
executed is the one de�ned for the type Sj = mini=1::nfSi jU � Sig. With multiple inheritance,
some conditions are needed to ensure that the set fSi jU � Sig has a least element.

These two problems are connected. Indeed, if we generalize the algorithm given for single inheri-
tance in a straightforward way, we run into pathological cases that break naturalness and type safety.

In this section, we �rst study the cases in which the straightforward extension of the solution
for single inheritance fails. Next, we de�ne an extension of the multi-method syntax and behavior
that allows us to generalize the single inheritance solution to multiple inheritance in a type-safe and
natural way.

11



5.1 Pathological cases

Consider four classes A1, A2, B, and C, with C de�ned by inheritance from B and B de�ned by
multiple inheritance from A1 and A2. This situation is graphically represented in the �gure below.
Consider now the following program, where T � T1; T2 (as before, we omit the type declarations):

class E

method m(x:A1):T1;

method n(x:B):T1

end;

class F

method m(x:A2):T2;

method n(x:B):T2

end;

class G inherit E, F

method m(x:C):T;

method n(x:C):T

end;

A1 A2

I@
@
@
@
@
@ �

�
�
�
�
��

B

6

C

The class G inherits from E and F . Since the message m is de�ned in both E and F , O2 requires
the programmer to rede�ne the message inside G (otherwise there would be a conict in the choice
of the method to inherit). In G, the method for m covariantly overrides the two previous methods.
In order to make this rede�nition type-safe, one must add new method branches to handle potential
arguments of type A1, A2 and B. For the arguments of type A1, our solution has the compiler use
the method de�ned in E; it will add to G the following method branch:

method body m(x:A1):T1 in class G freturn(self->E@m(x))g

Similarly for arguments of type A2 it will add
method body m(x:A2):T2 in class G freturn(self->F@m(x))g

Note also that the compiler must add a branch for B, otherwise the type of the multi-method in G
would be fA1 ! T1; A2 ! T2; C ! Tg and for an argument of type B, there would be no branch
with least parameter type. So the compiler also adds a branch for B. But what shall the compiler
use as the body for this branch? There are only two possible choices: either it uses the method in
E or it uses the method in F , but both choices are equally good (or bad). The return type for the
method branch will reect this choice, either T1 or T2. A similar problem arises when trying to add
a method branch for n to handle arguments of type B. If one wants to use multi-methods as de�ned
in Section 3 then the only way out is to perform arbitrary choices that break the type safety of our
solution and, perhaps more seriously, its naturalness.

To see how arbitrary choices break type safety, consider
again the example of m. Imagine that T1 and T2 are incompa-
rable (as in the �gure to the right), and that for the body of the
code for B in G, the compiler has arbitrarily chosen the method
in E. Let b be an object of class B and consider the expression
o->m(b). If the static type of o is F , then the static type of
this expression is T2. But if the dynamic type of o is G (which

T1 T2

I@
@
@
@
@
@ �

�
�
�
�
��

T

is feasible since G � F ) then the method inserted for B in G is selected and, as a consequence of the
arbitrary choice, the method in E is executed. Thus the dynamic type of the expression is T1 which
is incompatible with the static type T2. This inconsistency may lead to a run-time type error. In
this case, the natural method to call would be the one in F , but of course, choosing that method for
the branch could also lead to a type error. No automatic addition of method branches (as de�ned
so far) can give complete type safety.

12



All these pathological cases can only occur in the following situation: some class has two incom-
parable superclasses each de�ning a method for the same message and the domains of these two
methods have a common subtype not handled by the rede�nition in the class. For some particular
con�gurations of the result types of the two methods, there exists a type-safe and natural choice,
but in the remaining cases one cannot avoid an arbitrary choice.

This arbitrary choice breaks the naturalness of the solution and, in particular, when it is necessary
to make an arbitrary choice between methods with incomparable result types, a run time type error
may occur.

In conclusion, the analysis performed for single inheritance is no longer su�cient to solve the
problem with multiple inheritance.

5.2 The intuition of our solution

To give a solution for multiple inheritance we revisit the causes of type errors due to the covariant
specialization.

Recall that covariant specialization can lead to ill-typed applications only in the case that an
object has a (non-trivial) superclass of its true class as its static type. Consider the following
fragment in the context of the example in the Section 5.1 (where t1 is some message that can be
sent only to objects of the T1 class, and t2 is legal only for T2):

o2 B b = new B; /* create an object of the B class */

o2 G g = new G; /* create an object of the G class */

o2 E e = g; /* treat g as an object of the E class */

o2 F f = g; /* treat g as an object of the F class */

(e->n(b))->t1; /* Application #1 */

(f->n(b))->t2; /* Application #2 */

First, note that both applications are ill-typed in unmodi�ed O2, despite being legal under covariant
specialization. Note also that the only way to avoid type errors in both applications is to select
a di�erent method for each, despite the fact that both applications have the same receiver and
argument objects.

Our multi-method solution works for single inheritance by ascending the inheritance hierarchy
starting from the dynamic class of the receiver object. If the method de�nition for the class can
handle the parameters, it is used, otherwise the direct superclass is examined, and so on. This
solution works because eventually the search will reach the static class of the receiver which must
have a method de�nition that can handle the arguments. This solution does not work for multiple
inheritance because when the search must continue from a class with multiple direct superclasses,
it does not \know" which of the direct superclasses is on a path to the static class of the receiver,
and so can get \lost." The intuition behind our solution for multiple inheritance is to use the static
class of the receiver to direct the ascension of the hierarchy.

So the �rst idea for a solution for multiple inheritance is to limit the search of the method to
that part of the inheritance hierarchy that is included between the static and the dynamic type of
the receiver. Applying this restriction in the fragment above, the method for the receiver e will not
be looked for in F and the one for f will not be looked for in E.

This idea is enough to avoid type errors, but it does not remove the need for arbitrary choices.
Arbitrary choices interfere with naturalness and, more seriously, with the predictabilty and under-
standability of the semantics.

13



Consider again the example at the beginning of Section 5.1
and suppose that both E and F are subclasses of some class
D (as in the �gure on the side) which has methods for both
m and n. Consider further that we are sending the message
m or n to a receiver with static type D and dynamic type G.
If the type of the argument is B, the methods of E and F

are equally applicable and only an arbitrary choice can choose
between them. Predictability can be restored in a type-safe
manner by choosingthe method de�ned for D, but at the ex-
pense of some naturalness, since the methods in E and F are
not considered.14

D

�
�
�
�
�
�� I@

@
@
@
@
@

E F

I@
@
@
@
@
@ �

�
�
�
�
��

G

The solution we present for multiple inheritance uses both these ideas to assure type-safety and
(a certain degree of) naturalness, namely:

1. The search of the method is restricted to the portion of the inheritance hierarchy included
between the static type and the dynamic type of the receiver.

2. If this portion of the inheritance hierarchy includes a zone in which a pathological cases may
happen, this zone is skipped by the search.

Note that the decision to skip a zone is based on the static type of the receiver. For example, for m
or n messages, if the receiver's dynamic type is G then the class E must be skipped if the receiver's
static type is D, but E must be searched if the static type of the receiver is E.

To see the solution in a di�erent way, consider the inheritance hierarchy between the static and
the dynamic class of the receiver. The hierarchy forms a directed acyclic graph. There are several
paths that lead from the dynamic to the static class. Consider the set of nodes that belong to every
such path. Because of the acyclicity of the graph, this set is totally ordered (w.r.t. the subtyping
relation). Therefore if we consider only the classes of this set, we have a single-inheritance-like
hierarchy going from the dynamic class to the static class of the receiver. Our solution applies the
single inheritance solution from Section 4 to this hierarchy.

The multi-methods described in Section 3 do not su�ce to implement this strategy. A further
extension and semantics must be given that permit the selection to take into account the receivers'
static type. Before de�ning this extension, some further notation is needed.

5.3 Notation

A chain from a class C up to another class C0 is a set of comparable classes fCn�1; : : : ; C0g; n > 0,
where C = Cn < Cn�1 < : : : < C0. If each Ci is the direct superclass of Ci+1, we call it a path.
There are many chains in a multiple inheritance hierarchy. Thus, we pick a particular chain (denoted
�(C;C0)), which is de�ned as the set of all classes that appear in every path from C to C0, or more
precisely:

�(C;C0) � fC0

j C < C0

� C0; 8T: (C < T � C0 ) T � C0

_ T � C0)g

We distinguish the least class in this chain, Cn�1, as &C0
(C), the direct join superclass of C for C0,

and the greatest class (other than the superclass itself), C1, as &
0

C(C0), the direct join subclass of C0

for C:

&C0
(C) � min�(C;C0)

&0C(C0) � max�(C;C0)nC0

14Of course, predictability could be also be achieved by, say, searching from the �rst parent that is on a path to the

static class of the receiver. Such a de�nition, however, makes the semantics dependent on the order of the parents in

the inheritance clause which can be confusing and inelegant.

14



Intuitively, the direct join superclass of a class C for a class A is the next class up the inheritance
hierarchy that is comparable with every other class between A and C. Note that a direct join
superclass (there may be several) is not necessarily a direct superclass and a direct join subclass
is not necessarily a direct subclass. Note that in the case of single inheritance, the direct join
superclasses are simply the direct superclasses (that is, C0 > C ) &C0

(C) = &(C))
The method branches added in the enhanced solution are restricted to calls depending on the

static class of the receiver. The notation

method : : : in class C < C 0

is used to specify that this method branch should only be considered if C0 is in the chain from C

to the static class A of the receiver, that is, C0 2 �(C;A). The intuition is that the body of this
method has been de�ned in the class C0 and therefore it should be executed (that is, C0 can be
searched) only if C0 is on all paths going from the dynamic to the static class of the receiver.

Note that in the case of single inheritance, the branch is applicable when the receiver is of the
class C0 or any superclass of C0. Since the typing rules of O2 ensure that branches added by our
solution are only needed in such situations, a restriction of this form is vacuous.

5.4 The solution

Our solution works very similarly to the case of single inheritance, a method branch is added for
each de�nition in a superclass which is covariantly rede�ned in a subclass. The di�erence if that the
added branch is restricted to apply only to certain static classes of the receiver.

For the example in the Section 5, the compiler would add the following methods

method body m(x:A1):T1 in class G < E {return(self->E@m(x));}

method body m(x:A2):T2 in class G < F {return(self->F@m(x));}

method body n(x:B):T1 in class G < E {return(self->E@n(x));}

method body n(x:B):T2 in class G < F {return(self->F@n(x));}

Note that this completion avoids the arbitrary choices imposed by the pathological cases: if an
object of class G receives the message m or n with an argument of class B then the method will be
selected on the base of the static type of the receiver (if the static type is a superclass of D |see
Section 5.2| then the algorithm will add other branches that handle it).

In general, the solution (for the single argument case) works as follows:

Algorithm 3 For every class C, for every message m overridden in C with type S ! T , and for
every superclass Ci (for which m has type Si ! Ti) where m is covariantly rede�ned in the direct
join subclass Ci+1 to Si+1 ! Ti+1 (that is, C � Ci+1 < Ci; Ci+1 = &0C(Ci); S � Si+1 < Si), add the
following method branch:

method m(x:Si):Ti in class C < Ci;

method body m(x:Si):Ti in class C < Ci { return(self->&Ci
(C)@m(x)); }

Notes:
First note that in the case of single inheritance, this algorithm yields exactly the same method

branches as Algorithm 1 aside from vacuous restrictions. More generally, if C has a single superclass,
then despite any multiple inheritance among its ancestors, its direct superclass is always its direct
join superclass.

Secondly, note that the type safety of the method branch bodies is proved by induction down
the inheritance hierarchy. The class &C0(C) is the �rst in the chain to C0, and if it is not equal to
C0, it will have a similar method branch added to it. In general, &C0(C)@m has multi-method type.

Lastly, and most importantly, for every receiver with static class A, the set of applicable method
branches includes only the original method de�nition in C and branches for classes along the chain

15



�(C;A). By including the original de�nition, the solution ensures that well-typed applications
have the same semantics as previously. The covariant specialization rules for O2 guarantee that
the domains of these branches will form a chain themselves, and a minimum applicable branch is
ensured.

So what is the exact behavior of this new algorithm?
Imagine that the message m has been sent to some object
whose static type was C0, but whose dynamic type was Cn.
The systems looks for the method in class Cn but because
of covariant specialization, the method for m cannot handle
the actual argument of the method. Our algorithm adds the
branches that make the system continue the search up in the
inheritance hierarchy. This search continues from the direct
join superclass of Cn for C0 (Cn�1 in the �gure on the right).
Note that in the inheritance hierarchy included between Cn

and Cn�1, (darker in the �gure) there may be some de�nitions
for m able to handle the argument of the method, but also
that precisely this possibility makes this particular part of the
inheritance hierarchy a place (better, the place) of potential
indeterminacies, where an arbitrary choice might be required.
Therefore the search skips this dangerous zone.

Cn  (a definition of  m 
        compatible with  
        the argument type 
        is not found here)
         

Cn-1  start the search 
          of m from here

Cn-2

Co  static class of
       the receiver

zone of potential 
indeterminacy
(skip the m defs)

C1

C2

inheritance hierar-
chy between two
points of κ(Cn,Co)

Since the search goes up through subtypes of the static type of the receiver eventually reaching
this class, there will always be a method that can handle the argument. Note that in the limit case,
where &C0

(Cn) = C0, the algorithm simply executes the method that was statically predicted for the
message, that is, the one de�ned for the static class of the receiver.

The solution given here does maintain a degree of naturalness: it may not perform the most
specialized method for the argument (e.g. any method that is de�ned in the grey zone) but it never
has to make an arbitrary choice. This property makes it behave predictably. In the case of single
inheritance, the semantics of the multi-method solution is that each covariant specialization is only
overriding part of the de�nition of its direct superclass. This concept is clear and natural. Here,
we are overriding the de�nition of the direct join superclass, in order to avoid choosing between
two direct superclasses. Note that we have done nothing but to expand the solution we gave for
single inheritance; indeed the single inheritance solution is nothing but the special case in which
all inheritance hierarchies between two classes of the chain are replaced by a single link (in single
inheritance &C0

(Cn) = &(Cn)).
Thus in summary, this solution is good, not merely because it avoids type errors, but more

importantly because it makes a natural and predictable completion of the class.
As with the �rst algorithm, it is straightforward to extend Algorithm 3 to methods with multiple

arguments by considering the arguments to be a single argument with cartesian product type.

5.5 Implementation

There are at least two possible implementation possibilities for the enhanced solution.
The �rst implementation possibility involves compiling all message sends to implicitly also send

some indication of the static class of the receiver. As with the marking method for single inheritance,
all methods that have additional branches added are marked. If the arguments are not handled by
the method de�nition, then the method must compute the direct join superclass of the class which
de�ned the method for the static class passed implicitly. This computation could involve a table
lookup compiled into the marked method. Once a new class was determined, the method lookup
mechanism could proceed from there. A compiled table lookup requires that every method in a class
be recompiled if there is any change in the inheritance hierarchy above the class. Alternately, if the
structure of the hierarchy was available at runtime, the computation of the direct join superclasses

16



could be deferred to this point.
The second implementation possibility involves having a di�erent method lookup table depending

on the static class of the receiver. For example, if an object of class G were given static class F ,
it would be given a di�erent set of method de�nitions. The compiler can detect these occurrences
statically and arrange that the correct method de�nition table be used. The original de�nitions
would not need to be marked, because the static typing rules of O2 would prevent any type errors.
A compiled method for a particular static non-trivial superclass would have to check its arguments
and then if the de�ned method was unable to handle them, would defer to the appropriate method of
the direct join superclass (known statically). The method tables for a class tailored for two di�erent
superclasses on the same �(:; :) chain could be identical, thus avoiding massive code duplication.
This implementation possibility does not require method sends to implicitly send the static class of
the receiver and thus should not impact the e�ciency of the dispatch mechanism. However, this
possibility would require a class to be recompiled if any class above it in the hierarchy was changed.

These two possibilities both share the advantage that they would not require the data to have a
new representation, and thus large bases would not need to be recompiled.

6 Comparison with other works and conclusion

We want to stress, once more, that our main concern for this work is to de�ne a technique that
could be applied to the existing programs without requiring any modi�cation of them. This is a
crucial characteristic in the �eld of large databases, where the rewriting of the code would be much
too expensive, even if feasible. Indeed, there already exist several solutions that handle the problem
of covariant specialization: some very \ad hoc" like the run-time handling of exceptions [ABDS95],
others much more elegant and formal such as a relation that replaces subtyping [Bru94], or the use
of less precise types for the methods [BHJL86]. In the same spirit, we could have further developed
Section 3 and de�ned an extension of O2 to handle multi-methods. But all these solutions require at
least the modi�cation of the existing code, if not the use of a totally di�erent paradigm. Therefore
they cannot be strictly compared with the solution we propose here.

The only other solution that, like ours, does not require any modi�cation of existing code is
Ei�el's one. The former de�nition of system validity [Mey91] would use global data-ow analysis to
ensure that arguments to procedures such as break_it in Section 3 can only be passed expressions of
dynamic type Point . The newer de�nition [Mey96] would disallow routines like break_it outright.
If a compiler using one of these rules detects a violation, it can only issue warnings (to little e�ect)
or reject the program. It cannot �x the (potential) error.

Our solution takes a di�erent tack. Rather than disallowing potentially ill-typed applications,
our solution patches them so that they are well-typed. The patch is executed only upon an actual
ill-typed application, and could optionally generate a warning message at this point as well. The
added code uses the conditions under which application occurred to choose the most appropriate
method de�nition. To use a medical metaphor, Ei�el performs a much more accurate screening
process to search for type errors, while our solution addresses more the prophylaxis by vaccinating
risky situations. It is important to stress that the solution a�ects only the de�nition of the methods.
All the existing bases are una�ected and can be used as before.

Another important remark is that our solution does not merely �x existing code, it also provides
a �x that works for possible evolutions of the system. Every use of covariant specialization is a
potential time bomb that can explode a long time after that the code has been written. This may
happen, for example, because a new version of a library is released or merely because the run-time
values of the data are di�erent. Ei�el's solution blocks all possible explosive situations (thus the
use of a new library version may occasion that an old program no longer type-checks). Our solution
instead defuses the time bombs.

In other words, our solution gives a predictable and type-safe semantics for covariant specializa-

17



tion. Covariant specialization may be seen as partial overriding of a previous de�nition, contrasting
with the full overriding by an invariant (or contravariant) specialization. Our solution could be in-
corporated into a new language that permits type-safe covariant specialization, possibly along with
contravariant specialization as well.

Incidentally, our paper also proposes a possible extension of O2 to incorporate multi-methods.
This idea deserves more extensive treatment, especially concerning modularity issues, which con-
stitute a peculiar problem of multi-methods (see [Coo91]). The great advantage of multi-methods
is that the programmer can choose the de�nition to be used in the case of failure of the covariant
specialization, instead of delegating this choice to the compiler.

Last but not least, our analysis is founded on well-established type-theoretic bases, so that the
correctness of our solution is formally proved and type-safety is guaranteed.

Acknowledgments

Giuseppe Castagna is very grateful to Kim Bruce, Luca Cardelli, Gary Leavens, Scott Smith and
Benjamin Pierce. The joint paper [BCC+96] and the several e-mails exchanges were crucial to the
development of this work. In particular, Gary gave the pointer to Ingalls' simulation and Scott was
the �rst who noticed that this simulation might be used to implement our ideas. William Maddox
and Tim A. Wagner read early drafts of this paper and provided useful criticism.

References

[ABDS95] E. Amiel, M.-J. Bellosta, E. Dujardin, and E. Simon. Type-safe relaxing of schema
consistency rules for exible modelling in OODBMS. VLDB journal, 1995. To appear.

[ADL91] R. Agrawal, L. DeMichiel, and B. Lindsay. Static type checking of multi-methods. SIG-
PLAN Notices, 26(11):113{128, 1991. Proceedings of OOPSLA'91.

[BCC+96] K. Bruce, L. Cardelli, G. Castagna, The Hopkins Object Group, G. Leavens, and
B. Pierce. On binary methods. Theory and Practice of Object Systems, 1996. To appear.
Currently available: ftp://ftp.ens.fr/pub/dmi/users/castagna/binary.ps.Z

[BDK92] F. Bancilhon, C. Delobel, and P. Kanellakis, editors. Implementing an Object-Oriented

Database System: The Story of O2. Morgan Kaufmann, 1992.

[BHJL86] Andrew Black, Norman Hutchinson, Eric Jul, and Henry Levy. Object structure in the
Emerald system. ACM SIGPLAN Notices, 21(11):78{86, November 1986. OOPSLA '86
Conference Proceedings, NormanMeyrowitz (editor), September 1986, Portland, Oregon.

[Bru94] K.B. Bruce. A paradigmatic object-oriented programming language: Design, static typing
and semantics. Journal of Functional Programming, 4(2):127{206, 1994.

[Car88] Luca Cardelli. A semantics of multiple inheritance. Information and Computation,
76:138{164, 1988. A previous version can be found in Semantics of Data Types, LNCS
173, 51-67, Springer-Verlag, 1984.

[Cas95a] G. Castagna. Covariance and contravariance: conict without a cause. ACM Transactions

on Programming Languages and Systems, 17(3):431{447, 1995.

[Cas95b] G. Castagna. A meta-language for typed object-oriented languages. Theoretical Computer

Science, 151(2):297{352, November 1995. Extended abstract in the Proceedings of the
13th Conference on the Foundations of Software Technology and Theoretical Computer

Science; Lecture Notes in Computer Science number 761, December 1993.

18



[CGL95] G. Castagna, G. Ghelli, and G. Longo. A calculus for overloaded functions with sub-
typing. Information and Computation, 117(1):115{135, 1995. A preliminary version
was presented at the 1992 ACM Conference on LISP and Functional Programming , San
Francisco, June 1992.

[CL94] Craig Chambers and Gary T. Leavens. Typechecking and modules for multi-methods.
In OOPSLA'94, 1994.

[Coo91] William R. Cook. Object-oriented programming versus abstract data types. In J. W.
de Bakker, W. P. de Roever, and G. Rozenberg, editors, Foundations of Object-Oriented
Languages, REX School/Workshop, Noordwijkerhout, The Netherlands, May/June 1990,
volume 489 of Lecture Notes in Computer Science, pages 151{178. Springer-Verlag, 1991.

[DG87] L.G. DeMichiel and R.P. Gabriel. Common Lisp Object System overview. In B�ezivin,
Hullot, Cointe, and Lieberman, editors, Proc. of ECOOP '87 European Conference on

Object-Oriented Programming, number 276 in Lecture Notes in Computer Science, pages
151{170, Paris, France, June 1987. Springer-Verlag.

[GR83] A. Goldberg and D. Robson. Smalltalk-80: The Language and Its Implementation.
Addison-Wesley, Reading, Mass., 1983.

[Ing86] Daniel H. H. Ingalls. A simple technique for handling multiple polymorphism. In Norman
Meyrowitz, editor, OOPSLA '86 Conference Proceedings, Portland, Oregon, September

1986, volume 21(11) of SIGPLAN Notices, pages 347{349, November 1986.

[Mey91] Bertrand Meyer. Ei�el: The Language. Prentice-Hall, 1991.

[Mey96] Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall, 2nd edition, to
appear 1996.

[MHH91] W. B. Mugridge, J. G. Hosking, and J. Hamer. Multi-methods in a statically-typed
programming language. In Pierre America, editor, ECOOP '91 Conference Proceedings,

Geneva, Switzerland, volume 512 of Lecture Notes in Computer Science. Springer-Verlag,
1991.

A Ingalls' simulation for the Point/ColorPoint problem

class Point

type tuple (x:real,

y:real)

method equal(p:Point):boolean,

method equalPoint(p:Point):boolean,

method equalColorPoint(p:ColorPoint):boolean

end;

method body equal(p:Point):boolean in class Point

{return(p->equalPoint(self));};

method body equalPoint(p:Point):boolean in class Point

{return( (self->x == p->x) && (self->y == p->y) );};

method body equalColorPoint(p:ColorPoint):boolean in class Point

{return( self->equalPoint(p) );};

19



class ColorPoint inherit Point

type tuple(c:string) /* x and y are inherited from Point and the */

end; /* signature of the methods does not change */

method body equal(p:Point):boolean in class ColorPoint

{return( p->equalColorPoint(self) );};

/* ColorPoint inherits equalPoint from Point */

method body equalColorPoint(p:ColorPoint):boolean in class ColorPoint

{return( (self->x == p->x) && (self->y == p->y) && (self->c == p->c) );};

20


