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ABSTRACT

The temperature distribution due to a rotating or dithering Gaussian laser beam on a finite body is obtained
numerically. The authors apply various techniques to solve the nonhomogeneous heat equation in different
spatial dimensions. The authors’approach includes the Crank-Nicolson method, the Fast Fourier Transform
(FFT) method and the commercial sofiware COMSOL. It is found that the maximum temperature rise de-
creases as the frequency of the rotating or dithering laser beam increases and the temperature rise induced
by a rotating beam is smaller than the one induced by a dithering beam. The authors’ numerical results also
provide the asymptotic behavior of the maximum temperature rise as a function of the frequency of a rotating
or dithering laser beam.

Keywords: Crank-Nicolson, Fast, Fourier Transform (FFT), Nonhomogeneous Heat Equation, Rotating
or Dithering Gaussian Laser Beam
INTRODUCTION heating process. There are many previous works

The impact of laser beams on metals or other
materials is of great interest in industry and
military. This ismainly due to the fast processing
time and precise operation. A deeper understand-
ing of the physics requires a modeling of the
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on the theoretical and numerical modeling of
temperature profiles induced by laser radation
in solids (Araya & Gutierrez, 2006; Bertolotti
& Sibilia., 1981; Burgener & Reedy, 1982;
Calder & Sue, 1982; Cline & Anthony, 1977,
Lax, 1977 and 1978; Moody & Hendel, 1982;
Sanders, 1984). However, most of these studies
are limited to a scanning Gaussian beam. Until
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Figure 1. (1) A dithering laser beam on a 1-D rod. (2) 1-D temperature distribution along the
rod from various numerical methods. (3) 1D maximum temperature rise of steel AISI 4340 ver-
sus frequency of the dithering laser beam. (4) The curve in (3) is well approximated by the
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recently laser forming of plates using a rotat-
ing or dithering laser beam has been studied
(Sistaninia et al., 2009). A more detailed study
of the temperature rise induced by a rotating or
dithering laser beam on a semi-infinite domain
isnewly provided by Zhou (2011). In this paper
we want to extend the study in Zhou (2011)
to a more realistic finite geometry and figure
out the quantitative relationship between the
maximum temperature rise and the frequency
of the rotating or dithering laser beam.

It should be pointed out that the models
used here are heat equations, which are deter-
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ministic. In order to be able to include random
effects (e.g. laser beam jitter) it is desirable to
use stochastic differential equations instead of
heat equations. This will be the direction of
future work.

We organize our paper into five sections.
In the first four sections we present the numeri-
cal modeling of the temperature distributions
induced by a dithering or rotating laser beam
in one-dimensional, two-dimensional and
three-dimensional finite solids, respectively.
Conclusions and future work are given in the
last section.
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1-D MATHEMATICAL
MODELING

Consider a laser beam hitting a 1-D rod with
finite length L . The beam moves along the rod
which is insulated at the two endpoints. Math-
ematically, the temperature distribution of the
rod can be modeled by the nonhomogeneous
heat equation:

Ou u  «
o = ae T Al o

where u (x, t) denotes the temperature rise of
the rod at position x (0 <x< L) and time ¢,
. is the thermal diffusivity of the rod, K is

T
the thermal conductivity, and q(x,t) is the

energy distribution of the moving laser beam.
In the case of a dithering laser beam shown in

Figure 1 (1), ¢ (x,t) can be expressed as

q(x7t) = Ly exp

%

X, (t) =x,+ asin%,

2)

where x| (t) is the position of the dithering
Gaussian beam, x, is the initial position of the
laser beam, 1, isthe intensity of the laser beam,
r, is the effective radius of the laser beam, and
k is a constant used for the Gaussian model.
The initial condition for u (x, t) is zero which

assumes that the rod has the same temperature
astheambientinitially. The boundary conditions
impose that the rod is insulated at the two ends:

ou
Ox

_ Ou

=—| =0. 3
T 3)

x= x=L

The boundary conditions reflect the as-
sumption thatno energy escapes into the ambient
at the air/rod interface. This is a good approxi-
mation for most materials under consideration
because heat flow by conduction through the
material is much larger than heat loss by radia-
tion or convection at the air/material interface.

An analytical solution based on the ei-
genfunction expansion can be derived for this
initial-boundary value problem. Assume

u(x,t) = Zﬂ:un (t)Xn (x)7 q(x,t) = Zn:qn (I)Xn (x)7
“)

where X (x) = cos[nLix] (n =1, 2,--~) are

the eigenfunctions. After substituting (4) into
(1), one has

)

with the initial condition (O) = 0. Equation

(5) is a first-order linear ODE for u_and it can
be solved by the standard integrating factor
method:

—Q

u, (t) = exp .

Once the coefficients (t)s are found,
the solution u (x, t) is given analytically by (4).
However, the computation of (4) can be expen-
sive if one uses direct summation. A more ef-
ficient numerical approach is to use the Fast

Fourier Transform (FFT). In order to so, one
first needs to even extend the problem from the
domain [0, L} to [*L, L] and make it periodic
with period 2L . Then one can apply FFT and
itsinverse to find the numerical solution. Details

of the implementation can be found in Tan’s
thesis (Tan, 2010).
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An alternative way to solve the non-ho-
mogeneous 1-D heat equation (1) with insulat-
ing boundary conditions is to apply the Crank-
Nicolson method. We begin by discretizing the

interval [O,L] into » subintervals with nodes

o1
X =|i—=
! 2

Then we approximate (1) with the Crank-
Nicolson scheme:

Ax, i=12n

()

Ax:£,
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uk+l . u’k _ 077‘ u’+lk . 2u’k + u,f]k N u’+llx+l . Qu’ﬁvl + ulilki’l
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and the insulating boundary conditions can be
approximated by

k _ .k ko k
un+1 7un’

forall £ > 1.
9)

In (8) u'=u (iAx, kAt) . The linear
system (8) and (9) can be solved directly using
MATLAB built-in function or the Thomas al-
gorithm (Burden & Faires, 2005).

A third way to solve (1) is to use the com-
mercial software COMSOL. COMSOL Multi-
physics is a finite element analysis software for
various physics and engineering applications.

In Figure 1(2) we plot the numerical solu-
tion of (1) obtained from these three different
methods at # = 1s. As shown in Figure 1(2),
the temperature rise along the rod from differ-
ent methods agrees with each other very well.
The two sharp peaks of the temperature rise
occurnear x = 0.25and x = 0.75, which are
the endpoints of the path of the dithering laser
beam given in Equation (2). Since the beam
moves with the prescribed path

X, (t) = x, +asin 2111/T where

x, =0.5,a=0.25T =1 thevelocity of the
beam is x’ (z) = 0.57cos (27:1). Around the
two endpoints sin (Qm) =41 and

Table 1. Material properties of Steel AISI 4340 and parameters of the 1-D dithering laser beam

Property Name Value Unit
Heat Capacity C, 475 J/(kg*K)
Density 7850 Kg/(m”3)
Thermal Conductivity K, 44.5 W/(m*K)
K,
Thermal Diffusivity a, p-C, m”"2/s
Melting Point 1783 K
Magnitude of Gaussian beam 1, 1.0e9 W/(m"3)
Effective radius of Gaussian beam 7, 0.02 m
1

Dithering frequency T 1 Hz
Center of dithering X, 0.5 m
Dithering radius a 0.25 m
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cos(2m> = 0. Consequently, the beam moves

slower and stays longer near these two end-
points. Thus, the temperature is higher near the
two endpoints. The material that we choose
here is steel AISI 4340 with its physical prop-
erties listed in Table 1 and the parameters of
the dithering laser beam are also given in Table
1.

Figure 1(3) depicts the maximum tem-
perature rise as a function of the frequency of
the dithering beam at a fixed time # = 0.1 .
Figure 1(3) shows that the maximum tempera-
ture rise acts as a decreasing function of the
frequency ofthe dithering beam. In other words,
the faster the dithering beam moves, the lower
the maximum temperature rise. When the beam
does not dither, the maximum temperature rise
canbeashighas 534K . Once the beam dithers,
the maximum temperature decreases quickly.

The asymptotic behavior of the maximum
temperature rise can be predicted numerically
by a least-squares curve fitting. In Figure 1(4)
we show that the curve in Figure 1(3) can be
well approximated by a function

T = 137.0864/frequency +51.6960 _ Our

resultindicates thatata fixed time the maximum
temperature rise decays asymptotically as a
reciprocal function of the frequency of the
dithering laser beam as the frequency goes to
infinity. An intuitive physical explanation goes
like this. After long time the temperature rise
attains pseudo-steady state. If we observe the
temperaturerise ata fixed point, the temperature
rise oscillates periodically as the beam passes
through this point periodically. So the period
of the temperature rise oscillation coincides
with the period of the beam. The average tem-
perature rise over one oscillation period is in-
dependent of the frequency of the beam. The
maximum temperature rise over one oscillation
period minus the average temperature rise is
proportional to the period, which is inversely
proportional to the frequency of the dithering
laser beam.

Now we conduct an asymptotic analysis
for an infinite long rod and show that the lead-
ing order term of the maximum temperature
rise indeed is proportional to 1/frequency as
the frequency of the dithering beam gets large.
For simplicity, consider the following 1-D non-
homogeneous heat equation

) x—asin@
ou_ o, | 0T
= P B )

ot ox*

(10)

with initial condition
u(x,O) =0 (foo <x< oo) . The solution of

(10) can be found by Duhamel’s principle
(Asmar, 2004; John, 1981):

'7asiu@2
ST

2

ST

4 (t - v)‘ T ar

dyds.

”“O:II2$&7QQP

(11)

We need to borrow a well-known result
from probability theory (Hayter, 2002) to
simplify (11).

Lemma. Suppose ¢, and ¢, are nonzero
constants. Then

X — —z
J e 2 e
1 (x — 2)2
- \/4‘n (cl2 + czz) P17 4(612 + cf)
(12)

In other words, the integral of the product of
two Gaussian functions turns out to be another
Gaussian function. The lemma expresses the
fact that the convolution of two Gaussian (or
normal) densities is another Gaussian. The proof
of the lemma is straightforward and is skipped
here. A simple 2-D version of the proof can be
found in Zhou (2011).
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Applying the lemma, we arrive at

o 2
fexp— ) exp|—

,/411 t—s 447(1’0

\/41T t—S+r

(14)

Makingachangeofvariables s =1 —s

and then dropping the subscript, we obtain

X — ClSll’lZ)2
“a [l N AE R O

(15)

2w (t - s)
h(s) = 4(5—0—}’)2), e=T, z= —
(16)
We wish to find the asymptotic expansion

of u(x,t) for small values of €. To do so,

consider the Fourier series expansion of

2
(X — asmz)

hs)

as a function of z :

exp|—

2
(x —asin z)

hs)

= g[ak cos (kz) + b, sin (kz)},
17)

exp

where g, and b are the Fourier coefficients

that depend on x,s and a.
Using (17), (15) becomes

u(x,t):QIO[UU—f—]ZUk], (18)
k=1
where
Uu :L[ hl(.\') ds,
o1 21(1‘ s) X [ 27:([ s)
= a, cos|k + b, sin|k ds, k>0.
J L :
(19)

Note that the leading term is U, which is

0 (1) order, independent of = . We continue to
estimate U, .

When 7, = 0, there is no singularity in the
integrand function in U, . Integration by parts
yields

U, =0(e). (20)

So asymptotically u(x,t) behaves as
0(1) + O(a) when 7 = 0, which is exactly

what we have observed in Figure 4 even though
the rod considered there is finite instead of
infinite.

Itis worthwhile to pointout thatif . = 0,
then there is a singularity in the integrand func-
tion in U, . Applying the standard method of
stationary phase (Bush, 1992)asin Zhou (2011),
one can show that u (x, t) then behaves as

0(1) + o(ﬁ) as € — 0, which shares the

same scaling law as the 3-D semi-infinite case
(Zhou, 2011).
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Figure 4. (1) Snapshots of the normalized temperature rise for steel AISI 4340 induced by a
rotating Gaussian beam where o, =1.19x107°. (2) 2D maximum temperature rise versus fre-
quency of the rotating laser beam for a thin steel AISI 4340 film. (3) The numerical results in
(2) fitted by function T = 293.5153/frequency + 50.8908 -

1= 6.9727e-008 10" 1= 2.32420-007 4
1

15

nU 02 04 o6 os 1

(a)

1=897270-007 -

15
=y
|0S
o

02 04 06 08 1

(c)

[}

1100 10'
—e—Computed curve
1000 ) === Fitted curve
$00
800
£
i 700
-
600
500
400
1 2
mﬂ 0z 04 06 o8 1 00 0z 04 08 o8 1
frequency(Hz) frequency(Hz)

) 3)

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.



International Journal of Operations Research and Information Systems, 4(4), 22-38, October-December 2013 29

2-D MATHEMATICAL
MODELING

When a laser beam shines on a two-dimension-
al rectangular-shaped thin film, the temperature

rise of the film u (x, v, t) is governed by
ou_ [, o
ot Tlox> 0y’
0<x<L,0<y<L,

+%f(x,y,t),

T

2

where the heat source f (x, V, t) due to a rotat-
ing laser beam can be written as

f(x y’t) N 'rv() 2 PN 24 ;
xc(t):onracosm, x”:i7
T 2
L
yc(l):yu+bsin?7 ==

(22)

Inthecasethat b = 01in(22)thelaserbeam
is called a dithering beam. The 2-D rotating
laser beam and the finite thin film are illus-
trated in Figure 2(1) while the heat source
f(x,y,t) givenin(22)isshowninFigure2(2).

The boundary conditions impose the insu-
lating condition:

u

— =0atx=0o0rL,

Ox * (23)
a—uz()a‘[yzoorL7

oy !

and the initial condition is

u(x, y,O) = 0. (24)

Like 1-D case, one can derive the analyti-
cal solution to the initial-boundary-value
problem (IBVP) (21)-(24) using the eigenfunc-

tion expansion method and end up with double
summation, which is computationally expen-
sive. An alternative approach is to use Fast
Fourier Transform (FFT). Again, one firstneeds
to even extend the problem from the rectangu-

lar domain [0, LX] X [0, Ly] to a larger domain

[_L.w Lx] X [—Ly, Ly] and then apply FFT and

its inverse to obtain the numerical solution.

Another straightforward method to solve
(21)-(24) is to apply the Crank-Nicolson
scheme:

Y /k” - u:./‘ _ 9y Ui /k - 21/’ /k + urf\./k M;ﬂ./k‘L - 2ur,/k T Ui, /k”
At B 7 Ax? - Ax?
a, |u ]k72u Ftu f u I“'*Zl{ b 4“1}
2 Ay Ay* J
WT y
T Tyt )+ £ (507000
(25)
where the grid points are given by
o1 L .
¥, =li—-—|Ax, Ax=-—*, i=12--n
2 n
o1 Lo
yj: J__Ay’ Ay: =, ]:1,2,"',”’1
2 m
t, = kAt k=0,1,2,--
(26)

and ui‘j" =u (xi, yj,tk) . The boundary condi-

tions are approximated by

27

The linear system (25) together with (27)
can be solved efficiently in MATLAB by tak-
ing advantage of the built-in sparse matrix
operations.

A third method to solve the 2D problem
(21)-(24) is to apply COMSOL directly.

Before we present our numerical results,
we would like to investigate the effects of
physical parameters on the solution of (21). In
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Figure 2. (1) A schematic 2-D diagram shows a rotating laser beam and the finite work place.
(2) The plot of the heat source due to a Gaussian beam.
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order to do so, we first rescale the time variable

as /,,,, = @, I andthen drop the subscript. Then
(21) can be rewritten as

O%u

oy’

o _
ot

Fu

ox*

1
e
x

T

t
X, Vs —|-
OLT

(28)

Substituting (22) into (28), we obtain

ou_[ou o ?
ot ot oy
2 2
2wt 2t
x———acos + |y ———bsin

I o, T 2 a, T

+ ex
2rd’K, P 2d

Let u denote the solution to the following
IBVP problem

L otV L oy
[,\'—r—‘—acosﬂ +|y——-—bsin B
ou |0 d'n 2 o, 2 o,
5 ot exp|—

o |oxt oy 2d° ‘

i(x,,0) =0,

ﬂ:Ualx:(JorL,
0x :
@:()aty:()orL.
dy ’

Then it is obvious that the solution to (28)
with same initial/boundary conditions is related
to the solution of (30) through the relationship:

D (xp) (1)

uloi)= 2nd’K,

So from a computational point of view,
one should solve (30) to obtain the normalized

solution # (x7 ¥, t) and then multiply the nor-

malizedsolutionbyaconstantfactor /, / 2md K. T

to getthe solution for (28), orequivalently (21).
From this simple analysis, it is clear that the
effect of the thermal diffusivity o istochange
the effective frequency of rotation and the effect

of the intensity of the laser beam [ and the

thermal conductivity K, is to rescale the tem-
perature distribution by a factor proportional

to 1, / K, . The same argument applies to the
1D and 3D cases.

Now we show some numerical results. In
Figure 3 we take the snapshots of the numerical
solutions of the problem (30) with o, = 0.1
at various times where the parameters for the
rotating laser beam are listed in Table 2. Our
numerical experiments have shown that the
solutions obtained from the Crank-Nicolson
method, FFT and COMSOL all agree with each
other (Tan, 2010), which we do not present
individually here. We only give the FFT results
in Figure 3. One can see from Figure 3 that the
maximum temperature rise increases as time
increases. The hottest spot is the place that is
directly hit by the laser beam.

Figure 4(1) shows the numerical results of

(30)forsteel AISI4340where o, = 1.19 x 107°

(refer to Table 1). Due to the small value of «,
heat does not diffuse fast enough and conse-
quently a hot ring starts to form. Using the
values listed in Table 2, we find that the normal-
ized maximum temperature in Figure 4(1)d
corresponds to a value 270.6794K after mul-

tiplying by the factor £, / 21d°K, . Similarly,
the corresponding time of Figure 4(1)d is

0.0977s after multiplying by 1/ .

In Figure 4(2) we plot the maximum tem-
perature rise for different values of the fre-
quency (i.e. the reciprocal of the period 7') at
a fixed time # = 0.1s for a thin steel film with
the shape of a unit square. As the frequency
increases, the maximum temperature rise de-
creases and the asymptotic behavior of this
decrease is depicted in Figure 4(3) by a fitting
function

T, = 293.5153/frequency + 50.8908 _ Fig-

ure 4(3) implies that the maximum temperature
rise is proportional to the reciprocal of the
frequency as the frequency gets large.
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Figure 3. Snapshots of the temperature rise induced by a rotating Gaussian beam at various

times where o, = 0.1

1= 0.00058554

1 0.09

08 0.08
o2 007
07
¢ 10.06
06
I {005
05
0.04

L
04 :
0,03
03
i 0.02
0.1 0.01
0 o

0 02 04 08 08 1

1= 0.0039063

0.09

0.08

04 06

1= 00076125

1=0.0018531

0.08

0.08

1= 0.0058594
0.09

0.07

1= 0.0097656

In Figure 5(1) we give the snapshots of the
temperature rise when the laser beam is dither-
ing (where @ = 0.25and » =0 in equation
(22)). Here o, = 0.1 and the solutions are
obtained by solving (30) with FFT. Note that
the dithering beam moves at its slowest speed

at the endpoints of its trajectory so these two
endpoints are exposed directly to the beam
longer than other places.

In Figure 5(2) we compare the maximum
temperature rise against the frequency of the
rotating and dithering beams for a square-shaped
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Table 2. Parameters of the 2-D rotating laser beam

Parameter Value Unit
a, ms
K, W/(m*k)
I, 1.0e8 Wim?
d 0.02 m
L m
Ly m
X, m
a 0.25 m
b 0.25 m

period S

thin steel film at # = 0.1s. As the frequency
increases, the maximum temperature rise de-
creases. The maximum temperature rise cor-
responding to the rotating beam drops much
faster than the one induced by the dithering
beam for the same frequency. It implies that
rotating a beam is more effective than dithering
a beam if one desires a lower temperature rise.

3-D MATHEMATICAL
MODELING

In the case of a rectangular prism hitting by a
laser beam, the temperature rise on the solid
body is described by

o [ou gu ol o
ot T ox? ayz 027 KTq Y V2,
0<x<LO0<y<L0<:z<L

(0%

(32)

where the heat source ¢ (x, V, 2z, t) due to the
rotating laser beam can be modeled as

q(xayaz7t):f<xayat)6(z)- (33)

Here f (x, V, t) is given in equation (22)
and the delta function in z expresses the as-

sumption that all the energy is absorbed at the
surface Z = 0 whichis hitdirectly by the beam.
The boundary conditions are insulating and the
initial condition is zero.

Our numerical experiments in 1D and 2D
cases have indicated that COMSOL yields reli-
able results. So for 3D case, instead of using
FFT or the Crank-Nicolson method, we use
COMSOL alone to compute the temperature
rise induced by a rotating laser beam. The
parameters of the 3D rotating laser beam are
specified in Table 3. Details on how to imple-
ment COMSOL can be found in Tan (2010).

Figure 6(1) gives several snapshots of the
temperature rise induced by a rotating Gaussian
laser beam at different times within one time
period. The hottest spot is the place that is hit
directly by the laser beam, as in the 2D case. The
maximum temperature rise reaches 1468K at
time = 15 Those points far away from the
heat source have little temperature rise. Figure
6(2) is similar to Figure 6(1), but for a different
period 0.1s . Figure 6(2) shows a maximum
temperature rise drops from 1468 K with period
1sto 670K with period 0.1s , which is about
54% reduction in the maximum temperature
rise. Therefore, the maximum temperature rise
can be significantly reduced by increasing the
frequency of the rotating laser beam.

In Figure 7(1) we show the temperature
rise at different layers at time / =15 corre-
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Figure 5. (1) Snapshots of the temperature rise induced by a dithering Gaussian beam at various
times with o, = 0.1. (2) Comparison of the 2D maximum temperature rise versus frequency
of the rotating and dithering laser beams for a square-shaped thin steel film.
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Table 3. Parameters of the 3-D rotating laser beam

Input Value Unit
I, 5.0e5 Wim?
d 0.02 m
L, m
L, m
X, 0.5 m
Y 0.5 m
a 0.25 m
b 0.25 m

period s

sponding to the results in Figure 6(1). It is
observed thatheat does not spread out downward
quickly and there is almost no temperature rise
for the body part that is more than 0.1m below
the top surface. This is because the diffusivity
of steel AISI 4340 is quite small (recall
o, =1.19x107) and thus heat diffuses very
slowly. For materials with larger diffusivity we
observe that the heat spreads out fast and the
temperature rise occurs in other layers below
the top surface.

Finally, the relationship between the maxi-
mum temperature rise and the frequency of the
rotating laser beam is depicted in Figure 7(2).
As expected, the increase of the frequency of
the rotating laser beam leads to a decrease of
the maximum temperature rise. In Figure 7(3)
we fit the numerical results in Figure 7(2) by
a function

12283

= (34)
frequency

+522.5

max

using the lease-squares approach. The good
agreement between the fitted curve and the
numerical results indicates that the maximum
temperaturerise is inversely proportional to the
frequency of the rotating beam.

CONCLUSION AND
FUTURE EFFORTS

We have calculated the temperature rise induced
by a rotating or dithering Gaussian laser beam
for a finite body in different spatial dimensions.
We have confirmed that for a finite solid the
maximum temperature rise can be reduced
by increasing the frequency of a rotating or
dithering beam. Furthermore, the temperature
rise induced by a rotating laser beam is smaller
than the one induced by a dithering laser beam.
We have given the asymptotic behavior of the
maximum temperature rise as a function of
the frequency of the dithering or rotating laser
beam. Future efforts will include (1) experi-
mentally determining the actual temperature
profile induced by a rotating or dithering laser
beam on different materials and comparing the
measured temperature profiles to the predicted
profiles; (2) using stochastic differential equa-
tions to revisit the problem; (3) investigating
the temperature rise in a two-layer structure.
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Figure 6. Snapshots of the temperature rise on a steel AISI 4340 box induced by a rotating
Gaussian laser beam using COMSOL (1) with period 1s, (2) with period 0.1s
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Figure 7. (1) Temperature rise of a box made of steel AISI 4340 at different depth corresponding
toFigure6(1): (a) Z =1 (top surface hit directly by the laser beam) (b) Z = 0.99 (c) z = 0.95

and (d) z = 0.90 _(2) 3D maximum temperature rise of steel AISI 4340 versus frequency of the
rotating laser beam. (3) The numerical results in (2) are fitted by the function

T . = 1228.3/frequency + 522.5.
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