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Report for W911NF1210404: High Dimensional Learning

Motivation

Today we are facing a “data deluge” in almost every domain. Online social networks have seen an
explosion in activity and have fundamentally transformed the nature of human interaction. In the
biological realm, modern genome sequencers can output data at a rate 400 times faster than the
ones a decade ago, and so on. However, although having a transformative potential, the data deluge
has not yet been exploited to the fullest extent. Ironically, the data deluge has also resulted in a
“data desert”. The collected data in many domains are noisy, subsampled, with typically a large
number of variables or “unknowns” compared to the number of observations or the “knowns”.
Such high-dimensionality entails practical principled approaches for learning from ill-posed and
ill-behaved data.

Some of the fundamental questions in high-dimensional learning are: Can we design scalable

models for efficiently representing and learning high-dimensional data? Here, scalability refers
to low computational requirements and reduced sampling of high-dimensional data. Not all
phenomena can be learnt in a scalable manner. Can we characterize the fundamental limits

on complexity of learning complex phenomena? As part of this project, the PI has tackled the
above challenges by exploiting “inherent data architecture”. This can be in the form of structural
relationships among the variables, represented as graphs, or as parametric forms, represented
as tensor decompositions. The PI has developed novel approaches for handling such high-
dimensional data.

1 Summary of Results: Tensor Approaches for Learning Latent

Variable Models

Mixture Models: Classically, latent variables have been incorporated via mixture models. A
mixture model can be thought of as selecting the distribution of the observed variables, based on
a so-called latent choice variable. Gaussian mixtures are the most well studied class of mixture
models. Recently the so-called class of exchangeable topic models such as latent Dirichlet

allocation have been popular for modeling large word corpora [1]. These models incorporate
documents with multiple hidden topics. We propose efficient methods for learning these popular
mixture models.

Challenges: Learning general latent variable models through maximum likelihood is NP-hard.
Previous methods with theoretical consistency guarantees have high computational and sample
complexity which typically scale exponentially with the latent space dimensionality. The current
practice for estimating latent variable models is mostly through local search heuristics (e.g., the
EM algorithm) which are prone to failure in high dimensions.
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Spectral Approach to Inverse Moment Methods: The method of moments presents a
powerful alternative to EM and other heuristics. The basic paradigm of method of moments [2]
is to: (i) compute certain statistics of the data — often empirical moments such as means and
correlations — and (ii) find model parameters that give rise to (nearly) these moments. The
second step of equation solving to obtain the parameters can typically reduced to operations on
the “spectrum” of matrices and tensors obtained from the moments. Finally, these problems have
efficient iterative methods to find the solutions, even though they are non-convex.

Single Topic Exchangeable Model: Consider a simple bag-of-words model for documents
in which the words in the document are assumed to be exchangeable. Recall that a collection of
random variables x1, x2, . . . , xℓ are exchangeable if their joint probability distribution is invariant
to permutation of the indices. The well-known De Finetti’s theorem [3] implies that such ex-
changeable models can be viewed as mixture models in which there is a latent variable h such that
x1, x2, . . . , xℓ are conditionally i.i.d. given h (see Figure 1 for the corresponding graphical model)
and the conditional distributions are identical at all the nodes.

h

x1 x2 · · · xℓ

Figure 1: Exchange-
able Topic Models.

In our simplified topic model for documents, the latent variable h is
interpreted as the (sole) topic of a given document, and it is assumed
to take only a finite number of distinct values. Let k be the number of
distinct topics in the corpus, d be the number of distinct words in the
vocabulary, and ℓ ≥ 3 be the number of words in each document. The
generative process for a document is as follows: the document’s topic is
drawn according to the discrete distribution specified by the probability
vector w := (w1, w2, . . . , wk) ∈ ∆k−1. This is modeled as a discrete random
variable h such that Pr[h = j] = wj, for j ∈ [k]. Given the topic h, the
document’s ℓ words are drawn independently according to the discrete distribution specified by the
probability vector µh ∈ ∆d−1. It will be convenient to represent the ℓ words in the document by
d-dimensional random vectors x1, x2, . . . , xℓ ∈ R

d. Specifically, we set

xt = ei if and only if the t-th word in the document is i, t ∈ [ℓ],

where e1, e2, . . . ed is the standard coordinate basis for R
d. Because the words are conditionally

independent given the topic, we can use this same property with conditional cross moments, say,
of x1 and x2:

E[x1 ⊗ x2|h = j] = E[x1|h = j] ⊗ E[x2|h = j] = µj ⊗ µj, j ∈ [k].

This and similar calculations lead one to the following results: If M2 := E[x1 ⊗ x2] and M3 :=
E[x1⊗x2⊗x3], then M2 =

∑k
i=1wi µi⊗µi, M3 =

∑k
i=1 wi µi⊗µi⊗µi.. In [4], the PI establishes

that for many classes of latent variable models, including spherical Gaussian mixtures, latent

Dirichlet allocation and hidden Markov models, using low-order moments (typically first,
second- and third-order), we can obtain a symmetric tensor form as above. So the problem of
parameter estimation reduces to finding the components of the tensor.

Reduction to Orthogonal Symmetric Tensors: While general tensor decomposition is NP-
hard, the PI establishes that the symmetric tensor decomposition can be reduced to an orthogonal
symmetric decomposition given the moments as above, when the number of topics k ≤ d, where
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d is the dimension of observed space (i.e., vocabulary size for topic models). Additionally we
require non-degeneracy: the vectors µ1, µ2, . . . , µk ∈ R

d are linearly independent, and the scalars
w1, w2, . . . , wk > 0 are strictly positive.

Now, let W ∈ R
d×k be a linear transformation such that M2(W,W ) = W⊤M2W = I, i.e., W

whitens M2. Let µ̃i :=
√
wi W

⊤µi. Observe that M2(W,W ) =
∑k

i=1 µ̃iµ̃
⊤
i = I, so the µ̃i ∈ R

k

are orthonormal vectors. Now define M̃3 := M3(W,W,W ) ∈ R
k×k×k, so that

M̃3 =

k∑

i=1

wi (W
⊤µi)

⊗3 =

k∑

i=1

1√
wi

µ̃⊗3
i

is an orthogonal symmetric tensor.

Tensor Power Iterations: Efficient Methods for Tensor Decomposition: The orthogonal
tensor decomposition encountered in these models can be efficiently solved through a simple power
iteration method. For a tensor T , consider the vector-valued map

u 7→ T (I, u, u). (1)

This can be explicitly written as T (I, u, u) =
∑

1≤j,l≤d Ti,j,l(e
⊤

j u)(e
⊤

l u)ei. Observe that (1) is not a
linear map, which is a key difference compared to the matrix case.

An eigenvector u for a matrix M satisfies M(I, u) = λu, for some scalar λ. We say a unit
vector u ∈ R

n is an eigenvector of T , with corresponding eigenvalue λ ∈ R, if T (I, u, u) = λu. For
orthogonally decomposable tensors T =

∑k
i=1 λiv

⊗3
i ,

T (I, u, u) =

k∑

i=1

λi(u
⊤vi)

2vi .

By the orthogonality of the vi, it is clear that T (I, vi, vi) = λivi for all i ∈ [k]. Therefore each
(vi, λi) is an eigenvector/eigenvalue pair. Thus, we can find robust eigenvectors through a simple

power iteration: θ̄ 7→ T (I,θ̄,θ̄)
‖T (I,θ̄,θ̄)‖

and it turns out that all the basis vectors turn out to be robust.

Thus, the PI presents guaranteed algorithms for learning latent variable models with low sam-
ple and computational complexities (as a low order polynomial in the latent space dimensionality).
Additionally a subtle perturbation analysis controls the perturbation in multiple deflation stages
of the power method. This can be seen as analogue of Weyl’s and Wedin’s theorems for singular
value perturbation for matrices. Moreover, the proposed tensor power iteration algorithm is effi-
cient for large-scale implementation and can be implemented using extremely simple linear algebra
operations such as singular value decomposition and tensor power iterations.

Method of Moments for learning Community Models in Social Networks: The PI has
also employed the method of moments for learning another class of latent variable models, viz.,
community models in social networks and has conducted some preliminary on-going work in [5]. A
community generally refers to a group of individuals with shared interests (e.g. music, sports), or
relationships (e.g. friends, co-workers). In [5], The PI considers a mixed membership model

which incorporates overlapping communities, i.e., an agent can be part of multiple communities,
which is realistic. The PI proposes a novel algorithm for learning these models, based on simple
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edge counts and “3-star” counts (i.e., a star with three leaves). This is the first work to present
a guaranteed method for learning mixed membership community models. Moreover, the results
are tight and match the best known bounds (e.g. for spectral clustering) in the special case of
the stochastic block model, a well-studied model where individuals are present in only one
community. The PI’s research group has implemented these methods on graphics processing units
(GPU), which makes it tractable to learn communities in social networks in an extremely fast
manner [6].

2 Summary of Results: Learning Graph-Based Models

A

B
S

XA ⊥⊥ XB |XS

Probabilistic Graphical Models: One graphical framework for rep-
resenting high-dimensional data is that of probabilistic graphical models,
also known as Markov random fields or Markov networks. A Markov net-
work represents complex relationships between data at different nodes in
the form of a graph, known as the dependency graph [7–10]. Mathe-
matically, any two sets of nodes A and B are conditionally independent,
conditioned on the separator set S, as shown in the figure. Hence, the
data at each node is influenced mainly by its neighbors in the dependency graph. A Markov repre-
sentation is succinct with a much smaller number of parameters than the number of data dimensions
(variables), and at the same time, it explicitly encodes the relationships between the variables.

Formulation of Learning from Data: Given n i.i.d. data samples xn := [x(1),x(2), . . . ,x(n)]T

from a graphical model P with Markov graph G, the goal is the estimate the underlying graph.
The PI proposes methods and provides consistency guarantees for graph estimation in the high
dimensional regime.

Structure Learning with Hidden Variables: Developing tractable methods to discover
hidden nodes and the overall graph structure(s) (and parameters) was an important goal of this
project. The PI has developed efficient methods for learning latent variable models in a variety of
settings. This includes the development of novel methods for learning hidden tree models [11,12],
which are especially relevant in phylogenetics [13]. Phylogenetics involves the estimation of the
evolutionary tree process which resulted in the present-day species. The developed algorithms have
low sample complexity and are much faster and more robust than the state of art. The algorithm,
at a high level, maintains a tree model in each iteration and adds hidden variables by conducting
local tests. This property is unique to our approach and makes it amenable for applying it to
real data since we can tradeoff model complexity and data fitting in a principled and an efficient
manner. The PI has extended these methods for learning latent loopy models with long cycles [14],
and has demonstrated effectiveness in financial and topic modeling.

Bayesian Networks with Latent Variables: In addition to incorporating latent variables,
it is important to model the complex dependencies among the variables. In [15], the PI provides
novel methods for learning directed acyclic graphs (DAG) with hidden variables. The method is
based on the intuition that learning is tractable when there is sufficient expansion in the DAG from
hidden to observed variables (e.g. when it is latent tree or has small number of collidiers, i.e., nodes
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with multiple parents). This work combines sparse dictionary learning with method of moments in
a novel manner and is the first work to provide guaranteed learning for latent Bayesian networks.
This has implications in many practical settings, e.g. for learning correlated topic models.

Modeling Using Multiple Graphs: Modeling high-dimensional data involves a delicate trade-
off between faithful representation and parsimony. Models which are sparse in some domain achieve
a parsimonious representation but may poorly fit the given data. The PI has developed frameworks
for relaxing the sparsity constraints without sacrificing on parsimony in high dimensions. One
framework involves incorporating hidden factors which can change the structural (and paramet-
ric) relationships among the observed variables [16], thereby resulting in a mixture of probabilistic
graphical models. The PI has developed methods with guaranteed recovery of mixture components
which are also efficient for practical implementation. The PI has also considered another approach
for modeling with multiple graphs. In [17], the observed data is fitted to a combination of a sparse
graphical model and a sparse independence model, thereby incorporating different kinds of statis-
tical relationships among the variables. The PI has developed novel decomposition methods based
on convex relaxation with guaranteed recovery in both the domains.

The above developed algorithms have been applied by the PI to a number of practical problems
including financial and document modeling [11], object recognition in computer vision [18], to
track the evolution of dynamic social networks [19] and to model gene associations [20]. The PI’s
approaches have shown a huge improvement over previous ones in all these instances.

3 Significance and Impact of Conducted Research

Impact on the theory of high-dimensional learning: The PI’s recent contributions lie at the
forefront of innovation in big data and high-dimensional machine learning. She has provided a new
theoretical understanding of tractable models and regimes for high-dimensional learning, developed
novel approaches for handling massive scale data and also analyzed fundamental limits on learning.
Her work has direct implications to the areas of machine learning, statistics and algorithms, as well
as to a number of applications such as social network analysis, document categorization, computer
vision, recommendation systems, and computational biology.

The approaches employed by the PI involve a cross-pollination of tools and techniques from ma-
chine learning, statistics, signal processing, information theory, optimization, random graph models,
and social sciences. In particular, her work brings together techniques from machine learning and
statistics (e.g. probabilistic graphical models, mixture models), information theory (fundamental
information limits), signal processing (e.g independent component analysis), optimization (e.g con-
vex relaxation techniques and tensor algebra), statistical physics (e.g. phase transitions) and social
sciences (e.g. community formation models). This cross-disciplinary fusion of methods allows the
problem of data deluge to be tackled in ways far more effective than any individual approach.

Another significant contribution by the PI is to the area of learning latent variable mod-

els. It is widely recognized that incorporating latent or hidden variables is a crucial aspect of
modeling. Latent variables can provide a succinct representation of the observed data through
dimensionality reduction; the possibly many observed variables are summarized by fewer hidden
effects. Further, they are central to predicting causal relationships and interpreting the hidden
effects as unobservable concepts. For instance in sociology, human behavior is affected by abstract
notions such as social attitudes, beliefs, goals and plans. As another example, medical knowledge is

5



organized into casual hierarchies of invading organisms, physical disorders, pathological states and
symptoms, and only the symptoms are observed. However, learning general latent variable models
is challenging (in fact, it is NP-hard). Previous methods with theoretical consistency guarantees
have high computational and sample complexity, which typically scale exponentially with the latent
space dimensionality. The current practice for estimating latent variable models is mostly through
local search heuristics (e.g., the EM algorithm) which are prone to failure in high dimensions.

The PI has been able to circumvent the above challenges and she has developed novel scalable
approaches for learning a wide class of latent variable models, which are guaranteed to succeed, and
require only polynomial sample and computational complexity [4,5,15,21,22]. The PI has been able
to achieve these impressive results by invoking the underlying tensor algebra in many popular
latent variable models such as Gaussian mixture, latent Dirichlet allocation and hidden Markov
models. These models are relevant in a number of applications including document modeling,
natural language processing, as well as detecting overlapping communities in social networks.

In particular, the PI’s work on community detection [23] is the first guaranteed approach for
learning mixed membership community models, which are highly relevant for modeling on-
line social networks. Community detection is a classical problem studied in theoretical computer
science, statistics and sociology (see [23] for a survey). Previous theoretical guarantees for commu-
nity detection were mostly limited to the setting where each node belongs to a single community
(popularly known as the stochastic block model). In contrast, The PI’s innovative approach pro-
vides guaranteed recovery of hidden communities for a wide class of models where communities can
overlap, and also provides tight guarantees for the special case of the stochastic block model. Thus,
the PI’s work significantly advances the state of art on community detection in social networks.

Impact on applications of high-dimensional learning: Research involving learning from
high-dimensional data has widespread application. The PI has been actively involved in transform-
ing her theoretical results to practical algorithms in several domains. For instance, her algorithms
have been applied for text modeling [11, 14], to automatically categorize words into (local) hier-
archies of topics. It has been applied for object recognition in computer vision [18], where
robust detection is achieved by exploiting the contextual information in natural images using co-
occurrence of objects. Another important application is to model the co-evolution of vertices and
edges in dynamic social networks [19]. Recently, the PI is collaborating with domain experts
to apply the developed algorithms for modeling gene associations and predicting relationships
between regulators and genes [20]. The PI’s research group has implemented tensor decomposition
algorithms on graphics processing units (GPU), and can detect overlapping communities in

large graphs efficiently [6]. In all these instances, The PI’s approaches have shown a huge im-
provement in performance over previous ones. Thus, The PI has made great strides in pushing the
boundaries of large-scale machine learning, on both theoretical and practical fronts.
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