
'

Performance, Resources, and Complexity:

A Systematic Approach to Microarchitectural Design

By

Shing lp Kong

B.S. (Washington University, St. Louis) 1982

M.S. (University of California) 1985

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

ENGINEERING
ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

in the

GRADUATE DIVISION

of the

UNIVERSIIT OF CALIFORNIA at BERKELEY

Approved:

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAY 1989 2. REPORT TYPE

3. DATES COVERED
 00-00-1989 to 00-00-1989

4. TITLE AND SUBTITLE
Performance, Resources, and Complexity: A Systematic Approach to
Microarchitectural Design

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
VLSI design in general -- microprocessor design in particular -- has been treated more like an art than a
science in the past. The goal of this thesis is to explain the science of VLSI design to someone who wants to
build a microprocessor. This can be accomplished by providing a quantitative way to evaluate, and a
systematic approach to design, a microprocessor. Resources and complexity are two separate ways a
microprocessor designer can pay for performance. The microprocessor designer must evaluate the
performance, resources, and complexity tradeoffs quantitatively. In this thesis, the SPUR (SPUR stands for
Symbolic Processing Using RISC Machines) CPU microarchitecture is used as example to show how
performance, resources, and complexity tradeoffs can be evaluated quantitatively. A systematic approach
to microarchitectural design is then developed based on the SPUR CPU design experience. The SPUR CPU
is implemented in 1.6um, double layer metal, CMOS technology. It consists of 115,000 transistors, runs at
100ns, and consumes 0.8W of power. Important features of the SPUR CPU are: an internal instruction
cache; a four-stage pipeline; support for LISP; a cache controller interface for multiprocessing and virtual
memory support; and a parallel coprocessor interface for floating point arithmetic support. All these
features make the SPUR CPU significantly different and more complex than previous generations of
Berkeley RISC machines.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

236

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Performance, Resources, and Complexity:
A Systematic Approach to
Microarchitectural Design

Shing Ip Kong

Abstract

VLSI design in general-microprocessor design in panicular-has been treated more like an an

than a science in the past. The goal of this thesis is to explain the science of VLSI design to

someone who wants to build a microprocessor. This can be accomplished by providing a quanti-

tative way to evaluate, and a systematic approach to design, a microprocessor. Resources and

complexity are two separate ways a microprocessor designer can pay for performance. The mi-

croprocessor designer must evaluate the performance, resources, and complexity tradeoffs quanti-

tatively. In this thesis, the SPUR (SPUR stands for Symbolic Processing Using RISC Machines)

CPU microarchitecure is used as example to show how performance, resources, complexity trade-

offs can be evaluated quantitatively. A systematic approach to microarchitectural design is then

developed based on the SPUR CPU design experience. The SPUR CPU is implemented in

l.6f.i.m, double layer metal, CMOS technology. It consists of 115,000 transistors, runs at lOOns,

and consumes 0.8\V of power. Imponant features of the SPUR CPU are: an internal instruction

cache; a four-stage pipeline; support for LISP; a cache controller interface for multiprocessing

and virtual memory suppon; and a parallel coprocessor interface for lloating point arithmetic sup-

port. All tl1cse features make the SPUR CPU significantly different and more complex than previ-

ous generations of Berkeley RISC machines.

ii

Dedicated to my parents,

who gave so much for my education but

unfortunately did not live long enough to share this moment

iii

Acknowledgements

First I must thank my advisors Professor Patterson, Professor Hodges, and Professor Leach

man. This thesis would have been impossible without their advice and signatures. I would also

like to thank all the SPUR men and women who are mentioned in Section 6.1.2. In particular, I

would like to thank Professor Patterson for his great leadership, Dave Lee, Wook Koh, and Rich

Duncombe who worked closely with me on the SPUR CPU, and David Wood and Paul Hansen

who worked closely with me on the Cache Controller and Floating Point Unit interfaces.

I must also thank several people in the Berkeley EECS department Professor Randy Katz,

Professor John Ousterhout, and Mark Hill gave me much advice. My office mates and good

friends Mike Nelson, Andrew Cherenson, Brent Welch, John Hartman, and Bob Bruce who I

must say are great guys despite being "software engineers." I also benefited greatly from the

experiences of Manolis Katcvenis, Robert Sherburne, David Ungar, Joan Pendleton and all those

who made contributions to the first and second generations of Berkeley RISC machines.

Despite all rumors, EECS students do have family and friends outside the department. I

want to thank my two sisters Wendy and Janny who give me constant support My wild and crazy

friends at Mary Morse Hall and Mills College gave me great memories and headaches over the

years. My fellow bird men and women at the U.C. flying club gave me another view of the world

other than ls and Os. Last but not least, I must also thank two of my former professors at Wash

ington University. Professor Kline taught my first electrical engineering class. Professor Rosen

berger offered me my first electrical engineering job in Computer System Laboratory and intro

duced me to the fascinating world of VLSI.

Principal funding for the SPUR project was provided by the DARPA under contract

N00039-85-C-0269. Additional support was provided by the California MICRO program, a DEC

CAD/CAM grant, by the NSF under grant DCR-8202591, by equipment donations from TI, Inc,.

and by computer resources provided under DARPA contract N00039-84-C-0089.

iv

Table of Contents

1. INTRODUCTION ... 1

1.1. The Berkeley Tradition .. 1

1.2. Research Motivation .. 2

1.3. Contemporary RISC Processors .. 4

1.4. Research Goal and Thesis Organization 7

1.5. References.. 12

2. THE SPUR CPU MICROARCHITECTURE .. 14

2.1. The SPUR CPU Microprocessor 14

2.1.1. Overview of the SPUR CPU .. 15

2.1.2. Instruction Formats 16

2.1.3. LISP Support.. 17

2.1.4. The Basic Ingredients-
Blocks, Oocking, and Pipeline.. 19

2.2. Instruction Unit 22

2.2.1. Instruction Unit Organization 22

2.2.2. Instruction Unit Control ... 24

2.2.3. Instruction Unit Operation 27

2.3. Execution Unit 29

2.3.1. Execution Unit Data path 29

2.3.2. Execution Unit Operation-Normal Conditions ... 35

2.3.3. Execution Unit Operation-Adverse Conditions 37

2.4. The SPUR CPU Controller 39

2.4.1. Trap Logic.. 40

2.4.2. Control Unit ... 41

2.4.3. Controller Design Insights ... 44

2.5. References.. 47

3. THE SPUR CPU EXPERIENCE 48

3.1. From Chip to System ... 48

3.1.1. The Russian Approach ... 49

3.1.2. SPUR CPU System Features 51

3.1.3. Simulation Strategy ... 53

3.2. The SPUR CPU Design Process .. 55

3.2.1. The Construction of the SPUR CPU Behavioral Model 58

3.2.2. Behavioral Model-Formal Specification

for Logic and Circuit Designers 60

3.2.3. Behavioral Model-An Aid for Switch Level Simulation 61

3.2.4. Important Observations 62

3.3. The SPUR CPU Problems 64

3.3.1. Microarchitectural Problems ... 65

3.3.2. Electrical Problems 70

v

3.3.2.1. A Hazardous Circuit ... 70

3.3.2.2. Well Problems ... 73

3.3.3. Implementation Problems .. 76

3.4. The SPUR CPU Technical Lessons ... 76

3.4.1. Simulation and Testing Lessons .. 77

3.4.1.1. One Size Does Not Fit All .. 78

3.4.1.2. The Danger of Simulation 79

3.4.2. The Nature of Microarchitectural Design .. 80

3.5. The SPUR CPU Philosophical Lessons ... 82

3.6. References .. 85

4. :MICROARCHITECTURAL EVALUATION ... 87

4.1.
4.2.
4.2.1.
4.2.2.
4.2.3.
4.2.4.
4.3.
4.3.1.
4.3.2.
4.3.3.
4.3.4.

The Performance Model

LISP Support Evaluation .. .

LISP Support-Impact on Performance

LISP Support-Impact on Resources

LISP Support-Impact on Complexity .. .

LISP Support-Impact Summary

FPU Support Evaluation

FPU Support-Impact on Performance .. .

FPU Support-Impact on CPU Resources

FPU Support-Impact on CPU Complexity

FPU Support-Impact Summary .. .

87
91
92
95
97
99

101
102

108
109
111

4.4. Extra Pipeline Stage Evaluation .. 112

4.4.1. Extra Pipe Stage-Impact on Performance .. :-........ 112

4.4.2. Extra Pipe Stage-Impact on Resources ... 118

4.4.3. Extra Pipe Stage-Impact on Complexity .. 119

4.4.4. Extra Pipe Stage-Impact Summary ... 120

4.5. On-Chip Instruction Cache Evaluation.. 121

4.5.1. On-Chip Instruction Cache-Impact on Performance .. 121

4.5.2. On-Chip Instruction Cache-Impact on Resources .. 125

4.5.3. On-Chip Instruction Cache-Impact on Complexity .. 126

4.5.4. On-Chip Instruction Cache-Impact Summary .. 127

4.6. Multiprocessing Support Evaluation ... 128

4.6.1. Multiprocessing Support-Impact on Resources .. 129

4.6.2. Multiprocessing Support-Impact on Complexity ... 130

4.6.3. Multiprocessing Support-Impact Summary .. 131

4.7. Microarchitectural Evaluation Summary... 132

4.7.1. Versatility of the Performance Model ... 132

4.7.2. The Need for Speed ... 134

4.7.3. Performance Resources and Complexity Tradeoffs .. 136

4.8. References .. 140

5. A SYSTEMATIC APPROACH TO :MICROARCHITECTURAL DESIGN........... 142

5.1. TheMicroarchitecturalDesignProblem ... 142

5.1.1. Microarchitectural Design-The Definition.. 142

5.1.2. Microarchitectural Design Issues... 144

vi

5.1.3. A Systematic Approach to Microarchitectural Issues.. 146
5.2. Background Studies 14 7
5.2.1. Hardware Description Languages .. 148
5.2.2. Silicon Compilers .. 152
5.2.3. Meet in the Middle Approach .. 155
5.3. Steps Toward a Systematic Approach to Microarchitectural Design 157
5.3.1. The Design Strategy... 157
5.3.2. Different Models for Different Issues .. 160
5.3.3. CAD Tools Considerations .. 163
5.3.3.1. Unifying Different Levels of Verification.. 163
5.3.3.2. Timing Verification... 164
5.3.3.3. Documenting the Design Decisions .. 165
5.3.4. Stages of the Systematic Approach ... 166
5.4. The Abstract Stage of Microarchitectural Design ... 167
5.4.1. Off-Chip Communication .. 167
5.4.2. Pipeline and Clocking.. 171
5.4.3.
5.5.

The Abstract Model of the Microarchitecture
The Expansion Stage of Microarchitectural Design

176
179

5.5. 1. Micro-Modules Selection and Resources Allocation .. 179
5.5.2. On-Chip Interaction and Second Order Effects ... 182
5.5.3. The Expanded Model of the Microarchitecture ... 187
5.5.3. 1. Using the Expanded Model for Perfonnance Estimation 188
5.5.3.2. Using the Expanded Model for Resources Estimation 189
5.5.3.3. Using the Expanded Model for Complexity Estimation..................................... 189
5.6. The Floor Planning Stage of Microarchitectural Design 190
5.7. Conclusion .. . 192
5.8. References.. 194

6. SUMMARY AND FUTURE TRENDS ... 195
6.1. Summary 195
6.1.1. Thesis Summary .. 195
6.1.2. The History of the SPUR Project ... 196
6.1.3. The Organization of the SPUR Project.. 198
6.2. Future Trends ... 199
6.2.1. Architectural Trends .. 200
6.2.2. Teclmology Trends .. 200
6.2.3. CAD Support Trends ... 202
6.3. References 204

A. DETAILED DESCRIPTION OF THE SPUR CPU MICROARCHITECTURE
205

A.l. The SPUR CPU Block Diagram .. 205
A.2. The SPUR CPU Register Set ... 207
A.3. The SPUR CPU Instruction Set ... 209
A.4. Special Cases of Register-Register Instructions .. 215
A.S. References.. 219

B. THE SPUR CPU PROBLEMS REPORT .. 220

vii

B.l. Microarchitectural Problems ... 220
B.2. Electrical Problems .. 221
B.3. Implementation Problems .. 222

List of Figures

Figure 1-1-1 The SPUR Workstation

Figure 14-1 The First Generation Berkeley RISC Machne: RISC I

Figure 14-2 The Second Generation Berkeley RISC Machine: SOAR
..

Figure 14-3 The Third Generation Berkeley RISC Machine: SPUR CPU

Figure 2-1-1 SPUR Instruction Formats

Figure 2-1-2 SPUR Pointer

Figure 2-1-3 Pointer-Type O'lecking .. .

Figure 2-1-4 Generation Checking

Figure 2-1-5 The SPUR CPU Abstract Block Diagram

Figure 2-1-6 The SPUR CPU Pipeline

Figure 2-2-1 Instruction Unit Block Diagram .. .

Figure 2-2-2 Simplified State Diagrams

Figure 2-2-3 Generic Structure of the 1-Unit Finite State Machines

Figure 2-2-4 Classical Implementation of Finite State Machine .. .

Figure 2-2-5 Fetch and Prefetch-Execution Unit's Perspective

Figure 2-3-1 The SPUR CPU Lower Datapath

Figure 2-3-2 The SPUR CPU Upper Datapath

Figure 2-3-3 The SPUR CPU Timing

Figure 2-3-4 Pipeline During Trap

Figure 2-3-5 Global Pipeline Suspension

Figure 24-1 Trap Logic Block Diagram

Figure 24-2 The Control Unit Block Diagram

Figure 24-3 Local Decoding Logic

Figure 3-3-1· RISC II Pipeline vs. SPUR CPU Pipeline

Figure 3-1-2 Impact of the System Features-Graphical

Figure 3-1-3 Behavioral Simulation Strategy

Figure 3-2-1 The SPUR CPU Design Process .. .

Figure 3-2-2 The Structure of the SPUR CPU Behavioral Model

Figure 3-2-3 Formal Specification for Logic and Circuit Design Example

Figure 3-24 The Verification Process .. .

Figure 3-2-5 Conflicting Requirements of the Behaviroal Model

Figure 3-3-1 Structure and Timing of the Special Registers .. .

Figure 3-3-2 Problems with the Special Registers .. .

Figure 3-3-3 A Hazardous Circuit

Figure 3-3-4 Problems ofthe Hazadous Circuit

Figure 3-3-5 Misplaced Well and Substrate Contacts

Figure 3-3-6 A Quick Hardware Fix for Misplaced Well Contacts

Figure 3-3-7 Floating Well Problem

Figure 34-1 SPUR CPU Testing Strategy-.. ..

Figure 34-2 Random Simulation Algorithm

Figure 34-3 The Gap in Computer Engineering Education

viii

3
9

10

11
15

17
18

19
20
21

22
24

25

26

27
30

31

36

37

38

41

42

43

49

51

53

55

58
60
62

63

66
67

71
72

73

74
75
77
79
80

ix

Figure 3-4-4 Performance as a Function of Resources and Complexity 81
Figure 4-1-1 Performance Graphs.. 90
Figure 4-2-1 Performance Improvement due to Tag Checking ... 92
Figure 4-2-2 Three Different Views of the Tradeoffs .. 100
Figure 4-3-1 Performance Improvement due to FPU Support... 106
Figure 4-3-2 Three Different Views of the Tradeoffs .. Ill
Figure 4-4-1 RISC II Pipeline vs. SPUR CPU Pipeline .. 113
Figure 4-4-2 Performance Improvement due to the Extra Pipe Stage 116
Figure 4-4-3 Three Different Views of the Tradeoffs .. 120
Figure 4-5-1 Performance Improvement due to the On-Chip Instruction Cache 123
Figure 4-5-2 Three Different Views of the Tradeoffs .. 128
Figure 4-6-1 Three Different Views of the Tradeoffs 131
Figure 4-7-1 The Effect of Degrading P Factor 135
Figure 4-7-2 Performance Resources and Complexity Tradeoffs 137
Figure 5-1-1 The Tripartite Representation of a Design.. 143
Figure 5-1-2 The Tripartite Representation of the SPUR CPU Design Process 144
Figure 5-2-1 Oassification of Hardware Description Languages.. 149
Figure 5-2-2 Pure Top Down Design Methodology .. 151
Figure 5-2-3 Primitive Silicon Compilers ... 153
Figure 5-2-4 Modem Silicon Compiler Design Environment ... 154
Figure 5-2-5 Meet in the Middle Approach ... 155
Figure 5-3-1 Design Strategy .. !58
Figure 5-3-2 The Abstract Model .. !59
Figure 5-3-3 The Expanded Model .. 160
Figure 5-4-1 Off-Chip Communication ... 168
Figure 5-4-2 SPUR CPU Off-Chip Communication ... 170
Figure 5-4-3 Pipeline and Clocking... 172
Figure 5-4-4 M-Stage Pipeline .. 173
Figure 5-4-5 Operations for Several SPUR Instruction Types .. 174
Figure 5-4-6 Potential Structural Conflict ... 175
Figure 5-4-7 On-Chip Interaction .. 177
Figure 5-4-8 SPUR CPU Abstract Model .. 178
Figure 5-4-9 Building the Abstract Model .. 179
Figure 5-5-1 Micro-Modules Selection for the SPUR CPU Functional Unit...................... 180
Figure 5-5-2 Performance Resources and Complexity Tradeoffs 181
Figure 5-5-3 The SPUR CPU Control Strategy ... 182
Figure 5-5-4 TheE-Unit Controller Bus Structure .. 184
Figure 5-5-5 Distribution of Control Information ... 185
Figure 5-5-6 Building the Expanded Model .. 187
Figure 5-6-1 Impottant Information for Floor Planning .. 191
Figure 5-6-2 The SPUR CPU Floor Plan... 192
Figure A-1-1 The SPUR CPU Block Diagram.. 206
Figure A-2-1 The SPUR CPU Register Set ... 207
Figure A-2-2 Upsw and Kpsw Bit Assigrunents .. 209

X

List of Tables

Table 1-1-1 The Berkeley Tradition 2

Table 2-2-1 Fetch and Prefetch-Instruction Unit's Perspective .. 28

Table 2-3-1 Register-Register Operation.. 32

Table 2-3-2 Store Operation .. 33

Table 2-3-3 Compare-Branch Operation .. 34

Table 2-3-4 Call-Jump Operation ... 35

Table 2-4-1 The SPUR CPU Trap Types .. 39

Table 2-4-2 The Execution Unit Controller Design Metrics ... 44

Table 3-1-1 Contributions to Performance 50

Table 3-1-2 Impact of the System Features-Quantitative ... 52

Table 3-1-3 Switch Level Simulation Summary ... 54

Table 4-2-1 Resources Metrics for Hardware Tag Checking .. 95

Table 4-2-2 Complexity Metrics for Hardware Tag Checking .. 98

Table 4-2-3 Three Different Views of the Tradeoffs ... 99

Table 4-3-1 RISC I Floating Point Operations Measurements.. 103

Table 4-3-2 Impact ofFPU Support on Performance.. 105

Table 4-3-3 Resources Metrics for FPU Support .. 109

Table 4-3-4 Complexity Metrics for FPU Support .. 110

Table 4-4-1 Resources Metrics for the Extra Pipe Stage 118

Table 4-4-2 Complexity Metrics for the Extra Pipe Stage .. 119

Table 4-5-1 Resources Metrics for the On-Chip Instruction Cache 126

Table 4-5-2 Complexity Metrics for the On-Chip Instruction Cache 127

Table 4-6-1 Resources Metrics for Multiprocessing Support .. 129

Table 4-6-2 Complexity Metrics for Multiprocessing Support ... 130

Table 5-3-1 The Microarchitectural Models and Issues .. 162

Table A-3-1 Load Instructions... 210

Table A-3-2 Register-Register Instructions .. 211

Table A-3-3 Jump-Register and Return Instructions .. 212

Table A-3-4 Read and Write Special Registers Instructions ... 212

Table A-3-5 Store Instructions... 213

Table A-3-6 Compare-Branch Instructions... 213

Table A-3-7 Call-Jump Instructions ... 214

Table A-3-8 The SPUR CPU Unusual Conditions .. 214

Table A-3-9 The SPUR CPU Branch Conditions.. 215

Table A-4-1 Load Operation.. 216

Table A-4-2 Jump-Register and Return Operations ... 217

Table A-4-3 Read Special Registers Operation ... 217

Table A-4-4 Write Special Registers Operation .. 218

Chapter 1: Introduction

Chapter 1

INTRODUCTION

What is hard to get across is the tremendous speed at which
things are changing in this business.

Dave Patterson, New York Times, 1988

1.1. The Berkeley Tradition

1

The history of VLSI chip projects at Berkeley is shown in Table I -1-I. This table also illus-

trates the evolution of VLSI projects in the research environment because what happened in

Berkeley was very typical. In the early I 980s~ the Mead and Conway design style enabled us to

build 40,000+ transistor (large for the time) NMOS VLSI microprocessors such as RISC I

[Pat82], RISC II [Kat83], and SOAR [Ung84]. Fueled by these successes and further advances in

teclmology, we started the SPUR project in 1985 after we completed the SOAR project. The

SPUR project's ambitious goal is to build a multiprocessor workstation system [Hil86].

SPUR stands for Symbolic Processing Using RISC machines. Figure I-1-1(a) is a block

diagram of the SPUR multiprocessor. SPUR is a shared-bus multiprocessor consists of 6 to 12

identical high-performance processors. These processors are connected to each other, to standard

shared memory, and to input/output devices with a modified Tl Nu-Bus which we called the

SPUR Bus [Gib87]. Figure 1-1-I(b) is an expanded view of the SPUR processor board. Each

SPUR processor contains a 128K-bytc cache to reduce the bandwidth required from the bus and

the shared memory. Each SPUR processor is implemented on a single board with about 200 stan-

dard chips and three custom CMOS chips: the Cache Controller (CC), the Floating Point Unit

Chapter 1: Introduction 2

Cycle Transistor Process Pin Design Effort
Generation

Project Time (ns) Count (Urn) Count (man vear)

1981 800 44K 4-NMOS 62 2.3
RISCI

1983 RISC II 1st

Chip A 500 41K
4-NMOS 62 2.8

ChipB 330 3-NMOS

1985 400 36K 4-NMOS 84 3.3 2nd
SOAR

1988 SPUR
CPU 120K

cc 100 68K 1.6-CMOS 208 4.5 3rd

FPU lOOK

Table 1-1-1 The Berkeley Tradition

(FPU), and the Central Processing Unit (CPU).

The Cache Controller handles cache accesses, performs address translation [Woo86],

accesses shared memory over the shared bus, and maintains cache consistency [KEW85]. The

Floating Point Unit [BPT87] supports the IEEE standard for binary floating-point arithmetic.

Finally, the CPU is based on the Berkeley RISC architecture. The SPUR CPU, however, is dif-

ferent from RISC n because it has a 512-byte internal instruction cache, a longer pipeline, a

coprocessor interface, and support for LISP. These three custom VLSI chips are implemented in a

l.6J.U11 double layer metal CMOS technology and each consists of approximately 100,000 transis-

tors.

1.2. Research Motivation

The research reported in this thesis is motivated by the design of the SPUR CPU. Micropro-

cessor design is influenced by many different issues, and their effects were studied by Katevenis

in 1983 [Kat83]. Since then, however, many old design issues have changed and many new

design issues have emerged due to influences from four areas:

Chapter 1: Introduction

SHARED
MEMORY

... 6tol2 ...

(a) SPUR Workstation Basic Architecture (b) SPUR Processor Board

Figure 1-1-1 The SPUR Workstation

The SPUR multiprocessor workstation is a shared-bus multiprocessor which consists of 6 to 12

identical high-performance custom processors. Each processor contains three custom VLSI

CMOS chips: the CPU, the CC, and the FPU. These three chips are connected by a 38-bit address

bus, a 64-bit data bus, and the CPU and FPU are connected by a parallel coprocessor interface.

The CPU only uses the lower 32 bits of the address bus and the lower 40 bits of the data bus.

System

3

There is demand for more support for coprocessors, memory management, multiple proces-

sors, and operating systems.

Software

There is demand for more support for specialized languages. Better compiler technology is

also available for better hardware-software trade-offs.

Simulation

The higher demands in the system and software areas increase the popularity of multiple

chip projects such as Berkeley's SPUR, XEROX's Dragon [MoS85], DEC's Firefly

[TSJ88], and HP's Spectrum project [BiW86]. A project spanning multiple chip designs

requires significantly more detailed behavioral simulation to resolve communication and

interaction problems among the chips. The need for detailed simulation is especially true

with respect to exceptional conditions such as interrupts and traps.

Chapter 1: Introduction 4

Technology

CMOS with higher speed and lower power ccnsurnption is replacing NMOS. As devices

scale to smaller geometries and as the chip area increases, many electrical problems, such as

inductance, can no longer be ignored. Furthermore as more functions can be placed on-chip,

on-chip interactions become more ccmplex while off-chip ccmmunication remains a major

bottleneck.

We believe the problems we faced in designing the SPUR CPU were a preview of what the

rest of the research community will need to confront in the near future. There are two terms that I

will use often in this thesis. Before going any further, let me clarify my definitions to avoid ceo

fusion latter.

Macroarchitecture

The term macroarchitecture can be defined as the machine language programmer's view of

the processor, generally found in the machine language programmer's manual. For a

microprocessor, however, a machine language programmer's manual really does not tell the

whole story. The macroarchitecture of a microprocessor should also include a interface

specification for the board designer.

Microarchitecture

The term microarchitecture will be defined formally in Chapter 5. In the meantime, it is

defined informally as the specification of how the macroarchitecture is implemented in a

given technology. The microarchitecture may have some impact on the macroarchitecture.

This feedback path is one of the main tenets of the original RISC argument

1.3. Contemporary RISC Processors

This section looks at several RISC processors that were introduced at approximately the

same time when the SPUR CPU was being built. I have selected two research projects and three

commercial projects. In my opinion, each of the selected processors has its own significant

feature or features that make the processor deserve a place in the short but brilliant history of

Chapter 1: Introduction 5

RISC processors. The two research processors I selected are MIPS-X and CRISP:

MIPS-X

MIPS-X [ChH87] [Hor87b] [Hor87a] was designed at Stanford University. It was imple

mented in 2J.UI1, double-layer metal, CMOS technology. It contains 150K transistors in an

8mm x 8.5mm die and has 84 signal pins and 24 power pins. The peak operating frequency

is 20MHz and the chip dissipates less than 1 W. MIPS-X has a 32-word register file, a 512-

word direct-mapped (32 blocks of 16 words) on-chip instruction cache, and uses a five-stage

pipeline. The five stages are: (1) Instruction Fetch, (2) Register Read, (3) Execute, (4)

Memory Access, and (5) Write Back of registers. The execution unit contains a 64-bit to

32-bit funnel shifter, a 32-bit ALU, and a special register MD that is used by the

multiplication-step and division-step instructions. Branches are delayed for two cycles. In

order to help the compiler to fill these two delay slots, MIPS-X has the option to change

these delay instructions into NOOP on the fly ("squash" the instructions). The MIPS-X

coprocessor interface treats coprocessor instructions as a form of memory operation and

uses the address lines to transmit the coprocessor instructions to the coprocessor(s). The

most significant feature of MIPS-X is its fast cycle time. Unlike the SPUR designers who

took the conservative approach to increase the chance of getting a reliable CPU, the MIPS

X circuit designer used very aggressive circuit designs to lower the cycle time.

CRISP

CRISP [BDM87] [DiM87] [Bcr87] was designed at AT&T Bell Laboratories. It was imple

mented in I.75l!m. single-layer metal, double-layer polysilicon, CMOS technology. It con

tains 170K transistors in an 10.35mm x 12.23mm die and has 95 signal pins, 20 power pins,

19 ground pins, and 6 test pins. The peak operating frequency is 16MHz and the chip dissi

pates 500mW. CRISP can be divided into six functional blocks: (1) Input/Output, (2) Pre

fetch Buffer, (3) Prcfetch and Decode Unit, (4) Decoded Instruction Cache, (5) Execution

Unit, and (6) Stack Cache. The prefetch buffer is a 512-byte direct-mapped cache organized

into 32 blocks. The decoded instruction cache is a direct-mapped cache with 32 192-bit

Chapter 1: Introduction 6

entries. Each entry is fully decoded instruction. The Execution Unit uses a three-stage pipe

line: (1) Operand fetch, (2) ALU operation, and (3) register writeback. The stack cache is

implemented with two 32-word byte-addressable register files. Branches can be "folded"

into other instruction and is executed implicitly as part of other instructions. The most

significant features of CRISP are its architectural innovations: stack cache and branch fold

ing. According to the CRISP designers, stack cache access time is as fast as register but has

the advantage of software transparency. Branch folding enable CRISP to execute branch in

parallel with other useful instructions. This makes CRISP the first microprocessor that can

execute multiple instructions per cycle.

The three commercial processors I selected are R3000, SPARC SF9010IU, and MC88000.

Information concerning the detailed microarchitecture of the commercial processors is not as

readily available as it is for the research processors. However, there are still enough information

for me to judge why these commercial processors deserve special attention.

R3000

R3000 [Kan88] was designed at MIPS Computer. It is implemented in l.2J.Lffi CMOS tech

nology and resides in a 172 pins PGA. The peak. operating frequency is 25MHz. R3000 has

a 32-word register file. There is no on-chip instruction nor data cache. Integer multiplica

tion is supported by hardware but integer division is supported by software only. Branches

are delayed for one cycle. The most significant feature of R3000 is its speed-the 25MHz

clock rate probably makes the R3000 the fastest RISC CPU when it was introduced.

SPARC SF9010IU

SPARC SF9010IU [NaA88] is the first implementation of Sun Microsystem's Scalable Pro

cessor Architecture (SPARC) [Gar88]. It was implemented in Fujitsu's high speed 20K

gate, 1.5J..Lm, 256-pin (156 of them are signal pins) gate-array. The peak operating fre

quency is 16.67MHz. SF9010IU has a 120-word register file organized into eight global

registers and seven overlapped windows, an dual-instruction buffer, and uses a four-stage

Chapter 1: Introduction 7

pipeline. The four stages are: (1) Instruction Fetch, (2) Decode, (3) Execute, and (4) Write.

Integer multiplication step is supported by hardware but integer division is supported by

software only. Branches are delayed for one cycle and the delay instruction can be

"squashed" depending on the branch outcome. The most significant feature of SP ARC

SF9010IU is its simplicity. It is so simple that it was implemented in single gate array in a

relatively short period of time.

MC88000

MC88000 [DRN88] was designed at Motorola. It was implemented in 1.5!1m CMOS tech

nology and resides in a 181 pins PGA. The peak operating frequency is 20MHz. MC88000

has a 32-word register file but there is no on-chip instruction nor data cache. Integer multi

plication, integer division, as well as floating point arithmetics are all supported by

hardware. The most significant feature of MC88000 is that it follows a supercomputer

model that employs a scoreboard similar to the CDC 7600. The centerpiece of the architec

ture is a set of multiple pipclined functional units that can execute independently and con

currently. The usage of these functional units are controlled via scoreboarding. MC88000 is

one of the few RISC processors that uses on-chip resources for floating point hardware

instead of for instruction cache.

1.4. Research Goal and Thesis Organization

The goal of this thesis is not to formulate the theory of VLSI design but to explain the sci

ence of VLSI design to someone who wants to build a microprocessor. This can be accomplished

by providing a quantitative way to evaluate and a systematic way to design microarchitecture.

Since this research is based on the SPRU CPU design experience, the SPUR CPU microarchitec

ture and the lessons I learned must be introduced first. This thesis is organized as follows:

Chapter 2 Describes the SPUR CPU microarchitccture.

Chapter 3 Discusses the lessons I learned in designing the SPUR CPU.

Chapter 1: Introduction 8

Chapter 4 Develops a quantitative way to evaluate a microprocessor's microarchitecture. Dif

ferent features of the SPUR CPU microarchitecture are then evaluated as examples.

Chapter 5 Develops a systematic approach to design a microprocessor's microarchitecture. I

illustrate this approach by using it to recreate the SPUR CPU microarchitecture.

Chapter 6 Summarizes the thesis. I also say a few words about what I think the future will be

like based on my experience in SPUR,

Chapter 1: Introduction 9

Figure 1-4-1 The First Generation Berkeley RISC Machine: RISC I

Chapter 1: Introduction 10

Figure 1-4-2 The Second Generation Berkeley RISC Machine: SOAR

Chapter 1: Introduction 11

Figure 1-4-3 The Third Generation Berkeley RISC Machine: SPUR CPU

Chapter 1: Introduction 12

1.5. REFERENCES

[BDM87] A. D. Berenbaum, D. R. Ditzel and H. R. McLellan, "Architectural Innovations in
the CRISP Microprocessor ", COMPCON 87, San Francisco, California, February
23-27, 1987.

[Ber87] A. Berenbaum eta!., "CRISP: A Pipelined 32-bit Microprocessor with 13-kbit of
Cache Memory'' ,IEEE Journal of Solid-State Circuits SC-22, 5 (October, 1987).

[BiW86] J. S. Birnbaum and W. S. Worley, Jr., "Beyond R1SC: High-Precision
Archite<;ture'', COMPCON 86, San Francisco, March 3-6, 1986.

[BPT87] B. K. Bose, L. Pei, G. S. Taylor and D. A. Patterson, "Fast Multiply and Divide for a
VLSI Floating-Point Unit", Proc. Eighth IEEE lnt' I. Symposium on Computer
Arithmetic, May 1987, 87-94.

[ChH87] P. Chow and M. Horowitz, "Architectural Tradeoffs in the Design of MIPS-X", The
14th Annual International Symposium on Computer Architecture, Pittsburgh,
Pennsylvania, June 2-5, 1987.

[DiM87] D. R. Ditzel and H. R. McLellan, "The Hardware Architecture of the CRISP
Microprocessor", The 14th Annual International Symposium on Computer
Arc:hitecture, PitiSburgh, Pennsylvania, June 2-5, 1987.

[DRN88] C. Dobbs, P. Reed and T. Ng, "Supercomputing on Chip", VLSI Systems Design IX,
5 (May 1988).

[Gar88] R. Gamer, "SPARC: Scalable Processor Architecture", Sun Technology, Summer,
1988.

[Gib87] G. Gibson, "Estimating Performance of Single Bus, Shared Memory
Multiprocessors", Report No. UCB/Computer Science Opt. 87/355, Computer
Science Division, EECS Department, University of California, Berkeley, May 1987.

[Hil86] M. Hill eta!., "Design Decisions in SPUR", Computer 19, 11 (November 1986).

[Hor87a] A. Horowitz eta!., "MIPS-X: A 20-MIPS Peak, 32-bit Microprocessor with On-Chip
Cache",IEEE Journal of Solid-State Circuits SC-22, 5 (October, 1987).

[Hor87b] M. Horowitz eta!., "A 32b Microprocessor with On-Chip 2Kbyte Instruction
Cache",ISSCC 87, New York, February 25-27, 1987.

[Kan88] G. Kane, MIPS RISC Architecture, Prentice Hall, 1988.

[Kat83] G. H. Katevenis, Reduced Instruction Set Computer Architectures for VLSI, Doctoral
Dissertation, Computer Science Division, EECS Department, University of
California, Berkeley, October 1983.

[KEW85] R. Katz, S. Eggers, D. Wood, C. Perkins and R. Sheldon, "Implementing A Cache
Consistency Protocol", The 12th Annual International Symposium on Computer
Architecture, Boston, Massachusetts, June 17-19, 1985.

[MoS85] L. Monier and P. Sindhu, "The Architecture of the Dragon", COMPCON 85, San
Francisco, February 25-28, 1985.

[NaA88] M. Namjoo and A. Agrawal, "Implementing SPARC: A High-Performance 32-bit
RISC Microprocessor", Sun Technology, Winter, 1988.

[Pat82] D. A. Patterson, "A RISCy Approach to Computer Design", COMPCON 1982,
February, 1982.

[TSJ88] C. P. Thacker, L. C. Stewart and E. H. S. Jr., "Fireny: A Multiprocessor
Workstation",/£££ Transactions on Computers 37,8 (August1988).

[Ung84] D. Ungaret a!., "Architecture of SOAR: Smalltalk on a RISC", The lith Annual
International Symposium on Computer Architecture, Ann Arbor, Michigan, June 5-7,

Chapter 1: Introduction 13

1984.
[Woo86] D. A. Wood et al., "An In-Cache Address Translation Mechanism", The 13th

Annual International Symposium on Computer Architecture, Tokyo, Japan, June 2-5,
1986.

Chapter 2: The SPUR CPU Microarchitecture

Chapter 2

THE SPUR CPU

MICRO ARCHITECTURE

If things are too complex, I can't understand them.

Seymour Cray, 1976

14

This chapter describes the microarchitecture of the SPUR CPU. Section 2.1 gives an over

view and covers all the important features. The SPUR CPU can be divided into two units: the

Instruction Unit and the Execution Unit. Section 2.2 describes the Instruction Unit and Section

2.3 describes the Execution Uriit. Finally, Section 2.4 describes the controller that controls the

SPUR CPU. The following naming conventions are used in describing the microarchitecture:

• Register names start with an upper case letter and the rest are lower case except to improve

readability. Examples are Dstl and IfetPC.

• Functional block names are in upper case letters only. Examples are ALU and EXT_INS.

• Signal names start with a lower case letter and the rest are lower case except to improve rea

dability. Examples are busA and trapType.

The goal of this chapter is to give an overall picture of the SPUR CPU microarchitecture, so

I can use the SPUR CPU as an example in latter chapters. Please refer to Appendix A for a

detailed discussion of the microarchi tecture.

2.1. The SPUR CPU Microprocessor

The SPRU CPU is a third generation Berkeley RISC microprocessor, and this section

describes the important features of the SPUR CPU microarchitecture.

Chapter 2: The SPUR CPU Microarchitecture 15

2.1.1. Overview of the SPUR CPU

The SPUR CPU is similar to RISC II that it has a reduced instruction set and a 138-register

register file organized into 10 global registers and eight overlapped register windows (see Appen-

dix A). However, unlike RISC II, the SPUR CPU also has a 512-byte on-chip instruction cache, a

four-stage pipeline, a cache controller interface, and a parallel coprocessor interface. Internally,

I opcode 1 Rd 1 Rsl : o: Rs2

Register-Register: Rd, Rsl, Rs2
unused

31 24 19 14 8 0

Register-Register: Rd. Rsl, Immediate

I opcod I Rd 1 Rs 1 1 11 Immediate • e I t 1

31 24 19 14 0

Swre: Rs2, Rsl, Immediate
Lowlmm

31 24 19 14 8 0

I Cond I Rs1 lol
•

Rs2 I Branch Offset

31 24 19 14 8 0

I Cond I Rs1 1 I 1Short Imm1 Branch Offset

24 19 14 8 0

are-Branch: Rsl Ta Imm
I Cond I Rs1 I Taglmm I Branch Offset

24 19 14 8 0

:Word Address
Word address within currect segment

0

Figure 2-1-1 SPUR Instruction Formats

Register-Register instructions use the Rsl-Rs2 or Rsl-Immediate pair to specify the source
operands and the result is stored into the register specified by Rd. For Store instructions, Rs2 con
tains the value to be stored and the effective address is formed by adding Rsl to the concatena
tion of the High Imm and Low Imm fields. Compare-Branch instructions' formats arc selected by
the Cond field. The three formats are: (I) Rsi-Rs2 format--;;ompare the two registers' contents,
the two registers' type-tags, or both contents and tags; (2) Short Imm format--<:ompare the zero
extension of the Short Imm field with Rsl's contents; (3) Tag Imm format--<:ompare the 6-bit Tag
Imm with Rsl's type-tag.

Chapter 2: The SPUR CPU Microarchitecture 16

the SPUR CPU uses a combination of a byte extractor!insertor and a shifter instead of the more

complicated barrel shifter. It also uses an extra adder to calculate the branch address to support

the 1-cycle Compare-Branch instructions. Finally, eight extra tag bits are attached to each 32-bit

register to support LISP. This makes SPUR CPU register 40 bits wide (see Figure 2-1-2). The

SPUR CPU was fabricated in l.6J.lm, double layer metal, CMOS technology. The die size is

1.15cm x 1.15cm and is packaged in a 208 pin pin grid array.

The SPUR CPU is a register-to-register machine in which load and store are the only type

of instructions that access memory. The effective address ofload and store instructions can either

be the sum of two registers or the sum of one register and an immediate constant. The SPUR

memory system does not support byte addressing and the two least significant bits of the 32-bit

address are always ignored by the memory system.

The SPUR CPU modes of operation can be divided into two orthogonal sets: (1) User vs.

Kernel and (2) Virtual vs. Physical. Only when the SPUR CPU is in kernel mode can privileged

instructions be executed. In virtual mode, data and instruction addresses generated by the SPUR

CPU are interpreted by the SPUR memory system as virtual addresses. In physical mode,

addresses are interpretated as physical address, which is useful in debugging and bootstrapping

the system. The mode of operation is controlled by writing different bit patterns into the Kernel

Processor Status Word-Kpsw (see Appendix A).

2.1.2. Instruction Formats

SPUR CPU instruction set [Tay85] (see Appendix A-3) can be grouped into four genetic

instruction types: Register-Register, Store, Compare-Branch, and Call-Jump. The fonnats of

these genetic types are shown in Figure 2-1-1.

Load and Return type instructions are special cases of Register-Register in which (Rs1 +

Rs2) or (Rsl +Immediate) are used as the the effective address. The Rd field specifies the regis

ter to be loaded for the Load type instruction and is not used for Return type instruction. In order

to modify any special register, its contents must first be read into a general purpose register and

Chapter 2: The SPUR CPU Microarchitecture

address or data (Fixnum or Character)

2 bits 6 bits 32 bits

Figure 2-1-2 SPUR Pointer

A SPUR pointer is a 40-bit word composed of a 32-bit address, a 6-bit type tag, and a 2-bit gen
eration number. These three parts are logically independent The 6-bit type tag allows up to 64
possible types. The SPUR CPU hardware only recognizes two data types: Fixnum, which is an
integer that fits in a 32-bit word, and Character. In SPUR, Fixnum and Character are not refer
enced indirectly through pointers but are represented as immediate data in the 32-bit
"address"field. Besides these two immediate data types, the SPUR CPU hardware also recog
nizes two pointer types: Cons and Nil.

then written back to the special register after the modification.

2.1.3. LISP Support

17

The SPUR CPU supports LISP by three types of tag checking [Tay86] [ZHH88]: data type

checking for general operations, pointer type checking for list operations, and generation check-

ing for garbage collection.

Data Type Checking. In a runtime typing system such as LISP, the type of a variable is

not known at compile time and can change during the course of execution. Therefore, every

object's type must be stored within the object itself or in all the pointers that point to it SPUR

stores the type in the pointer because the type information is then available before the memory

reference. Figure 2-1-2 shows the SPUR pointer which can be stored in a 40-bit CPU general pur-

pose register. The SPUR CPU instructions can be divided into two groups with respect to data-

type checking:

(1) Data-type checking is not performed and the tag field is ignored. LOAD is an example.

(2) Data-type checking is done in parallel with the data operation and traps conditionally. For

example, ADD will trap if either operand is not a Fixnum.

Chapter 2: The SPUR CPU Microarchitecture

SPUR CONS Cell:
2 bits 6 bits 32bits

CAR t~iiif type

CDR Sfgcif;_ type

address or data (Fixnum or Otaracter) m

address (Cons or Nil) or data m+l

Example:
SPUR List Representation: (33 12 (18 5))

R5 ~tfGJf,; f?3'j::; m Fi:utUm 12 '"I Coo•

/~ R6 ~~5. ! ""-!:: m+ll Cons - n+1J Nil

c R_CD ' Funum I 1s 1 Fixnum 5

[>+1 CoM I -f <+1 Nil 1/ v
CXR := Load + Type Ceck for Cons or Nil

Figure 2-1-3 Pointer-Type Checking

Fixnums 33, 12, 18, and 5 are stored as immediate data. Assume the shaded CONS cell is al
ready in the CPU registers R5 and R6 and all other CONS cells are still in memory. More
specificly, assume the dotted CONS cell is in memory location nand n + 1, then the operation:

CAR R6 <=> CXR (R6) =>Load at location m (data Fixnum 12);
CDR R6 <=> CXR (R6+ I) =>Load at location m+ 1 (pointer Cons n);
CAR R5 <=> CXR (R5) => Trap because R5 is a Fixnum.

In order to simplify the figure. this example does not show the generation portion of the tag.

18

Pointer Type Checking. Figure 2-1-3 shows how SPUR represents a LISP list element by

a pair of consecutive storage elements called a CONS cell-{)nc represents the CAR pointer and

the other represents the CDR pointer. Since the SPUR CPU is a load-store machine, CAR and

CDR operations are similar to the load operation. However, CAR and CDR operations are

defined in Common LISP to work only for a Cons pointer (points to another CONS cell) or Nil

pointer (points to nothing). The SPUR CPU supports this feature by a special load instruction: the

CXR instruction performs the load in parallel with the pointer-type checking for Cons or Nil.

Generation Checking. SPUR uses the generation scavenging garbage collection algorithm

[Ung84] [LiH83]. This is based on t11c observation that the longer an object has been in use, fue

more likely it is to continue to be in use. In SPUR, objects arc separated dynamically into three

generations. Each object's generation is recorded in its two generation bits. For simplicity, Figure

Chapter 2: The SPUR CPU Microarchitecture

Remembered
List

Memo

Old

Figure 2-1-4 Generation Checking

In this simplified drawing, objects are separated into two generations. New objects are allocated

in the younger generation and move to the older generation if they survive a garbage collection.

The garbage collector restricts its attention to the younger generations as much as possible. In

order to identify new objects that are currently in use, a "Remembered List" is used to keep track

of all the older objects that contain pointers to the younger generation.

19

2-1-4 only shows two generations. The SPUR CPU has a special store instruction which com-

pares the generation number of the operands in parallel with the store and traps to a routine that

updates the "Remembered List" whenever necessary.

2.1.4. The Basic Ingredients-Blocks, Clocking, and Pipeline

Block Diagram. Figure 2-1-5 can be considered as an abstract floor plan which shows the

relative position of each block within the SPUR CPU. The dimension of each block, however, is

not drawn in scale.

Clocking. The SPUR CPU uses a four-phase non-overlap clock, that is each cycle consists

of four phases. Each phase has an nominal duration of 18 ns and there are 7 ns nominal non-

overlap time between each phase. This makes the SPUR CPU cycle time 100 ns.

Pipeline. The SPUR CPU uses a unifonn four-stage pipeline (Figure 2-1-6). Each pipe

stage corresponds to one clock cycle and all instructions take four cycles to finish. The four stages

are:

Chapter 2: The SPUR CPU Microarchitecture

bus PC Execution! Unit

Instruction

Unit bus!

• Program
Special Registen ~ CoWlten

I

Upper Oatapath

Control Unit

Cache

Controller

Interface

Figure 2-1-5 The SPUR CPU Abstract Block Diagram

The SPUR CPU can be divided into two units: Instruction Unit and the Execution Unit. The Exe

cution Unit can be further divided into four parts: the Cache Controller Interface, which is out of

the scope of this chapter, the Lower Datapath that handles all the data manipulating operations,

the Upper Datapath that handles all the the program control operations, and the Control Unit that

controls the Upper Datapath and Lower Datapath.

lfet Instruction fetch. The instruction is delivered to the Execution Unit.

20

Exec Register read and instruction execution for register-to-register instructions or register

read and effective-address calculation for memory access instructions.

Mem Memory access for all memory access instructions.

Wr Register write. Write results back to the register file.

Unlike the RISC II 3-stage pipeline, the extra Mem stage in the SPUR CPU pipeline eliminates

the need to stall the pipeline whenever a load instruction is executed. This was considered to be

an important at the beginning of the project because the frequency of Loads was expected to be

higher in LISP than C. Similar to RISC II, a branch conflict in the SPUR CPU pipeline is

resolved by a delay branch with one instruction in the delay slot. Delay branch with the option to

cancel the instruction in the delay slot was considered but not implemented due to the

Chapter 2: The SPUR CPU Microarchitecture

10 I Ifet I Ex
of load cannot j
ded from Dstl

Destination
be forwar

nl Ifet

Mem_l Wr

Ex l Merr

Destination of load can
be forwarded from Dst2

I2 Ifet J Ex

rands can be forwarded from Dstl Ope

Bi Ifet

Load

Wr jLoa~ . w· cgtster nte
Conflict Must

Be Avoided

MemJ Wr !Reg-Reg
\

Ex I Meml Wr I
Operands can be forwarded from Dst2

I4L Ifet I Ex IMeml (

Figure 2-1-6 The SPUR CPU Pipeline

Register-to-Register instruction (!2) always finishes its execution at the end of its Exec stage.
However, to avoid register write conflicts with possible previous Load instructions (!0, Jl), !2' s
result is not written into the register file until its Wr stage. Because of this delay, two temporary
registers, Dstl and Dst2, are needed to store the result at the end of its Exec and Mem stage
respectively. Instructions J3 and !4, will not be able to read !2' s result from the register file but
the result can be read directly from Dstl and Dst2. This is referred to as internal forwarding.

21

complexities involving interactions of internal forwarding, pipeline suspension, and the coproces-

sor interface.

As illustrated in Figure 2-1-6, data conflicts in the SPUR CPU pipeline are resolved by

intema1 forwarding in which operands are supplied by temporary registers Dstl or Dst2. For the

Load instruction (JO in Figure 2-1-6) the value to be loaded comes from the extemal data bus at

the end of the Mem stage and goes directly into temporary register Dst2. Intemal forwarding via

Dstl is therefore impossible for the instruction immediately following the Load. In order to sim-

plify the intemal forwarding logic, the destination register of the Load instruction is defined to

have an unknown value for the instmction immediately following the Load.

Chapter 2: The SPUR CPU Microarchitecture 22

2.2. Instruction Unit

The Instruction Unit provides the SPUR CPU a 512-byte direct-mapped on-chip instruction

cache. The Instruction Unit's organization, control, and operation are discussed in Section 2.2.1,

Section 2.2.2, and Section 2.2.3 respectively. The implementation of the Instruction Unit is

described in Rich Duncombe's Master of Science report [Dun86].

2.2.1. Instruction Unit Organization

16 Blocks Internal Instructions
1 Block= (trap_call, rd_pc,
8 Instructions
\\

and miss)

-
0 " 0

+---4 16

M Address

-'r---t
Tags

<31:9>
bus I u

-'1:..-...t
and

Tag

X Comparison

2.!.. 2.!.. Logic

wv
''

wv_
\\ <31:9~ <8:2> bus PC

Decoden I I FET_FSM I <31:2>

PF ... FSM
_\\

''

Figure 2-2-1 Instruction Unit Block Diagram

The 512-byte direct-mapped instruction cache is organized into sixteen blocks with eight instruc

tions per block. The Execution Unit requests an instruction by placing an address onto busPC and

the Instruction Unit delivers the instruction via busl. Since all SPUR instructions are 4 bytes

long, only the upper 30 bits of busPC are used to access this cache. The Instruction Unit is con

trolled by two finite state machines: the Fetch Finite State Machine (FET_FSM) and the Prefetch

Finite State Machine (PF _FSM). Besides acting as an internal instruction cache, the Instruction

Unit also provides internal instructions to simply the control of the Execution UniL

Chapter 2: The SPUR CPU Microarchitecture 23

The Instruction Unit, as shown in Figure 2-2-1, contains a 512-byte direct-mapped on-chip

instruction cache [Hi187]. This cache is different from a regular cache that during a cache miss,

only the missing instruction rather than the full eight-instruction cache block is brought immedi

ately into the cache from the next higher level of memory. After the Execution Unit has received

this missing instruction and has resumed its normal operation, the Instruction Unit will try to pre

fetch the rest of the block into the cache one instruction per cycle starting at the instruction

immediately after the missing instruction. In other words, each eight-instruction block in Figure

2-2-1 is divided into eight one-instruction sub-blocks. On a cache miss, the requested sub-block is

brought into the cache immediately and a prefetching process is triggered to bring the rest of the

sub-blocks into the cache. Under ideal conditions, prefetching is fast enough that after the first

miss in a block, there will not be any more cache misses within that block as long as the Execu

tion Unit is executing sequential code.

Prefetching has the lowest priority among all cache access because the instruction being

prefetched may not be needed by the Execution Unit at all. Therefore, prefetching is interrupted

whenever the Execution Unit performs a data access (load or store) or whenever there is a new

miss in the Instruction Unit. Furthermore, if the instruction being pre fetched is not in the external

cache, it will not cause an external cache miss. The prefetcher simply move onto the next

instruction. Since prefetching is not always successful, each instruction must have a "Word Valid

Bit" (WV) to indicate its validity.

The Instruction Unit also plays a role in simplifying the control of the Execution Unit by

providing internal instructions to "fool" the Execution Unit pipeline. For example, the internal

instructions trap_call and rdyc are used to simplify trap handing. This will be explained in Sec

tion 2.3.3. The miss internal instruction is used whenever the Execution Unit requests an instruc

tion that is not currently in the Instruction Unit. This case is discussed in Section 2.2.3.

Chapter 2: The SPUR CPU Microarchitecture 24

Fetch Finite State Machine Prefetch Finite State Machine

Figure 2-2-2 Simplified State Diagrams

The diagram on the left is the state diagram for the Fetch Finite State Machine and the one on the
right is for the Prcfetch Finite State Machine. In the Fetch Finite State Machine, the input signal
star/Fetch is a composite signal:

startFctch; notSuspend & notWrKpsw & (ibMiss or flush)
Outputs of theso machines are not shown here for simplicity. All but one outputs are used to con
trol the datapath of the Instruction Unit. The exception is startPF. It is an output of the Fetch
Finite State Machine and it triggers the Prefetch Finite State Machine:

stanPF; l\1EM_BUSY or (NORMAL and notSuspend and (ibMiss or flush))

2.2.2. Instruction Unit Control

Initially, we envisioned a single finite state machine controlling the entire Instruction Unit.

This turned out to be a difftcult design task and the result was so hard to understand that we had

little confidence in its correctness. Further investigation revealed that prefctching should occur in·

parallel with other Instruction Unit operations and is quite autonomous. This gave us the idea of

delegating the control to two independent finite state machines: one for prefetching, the Prefetch

Finite State Machine, and one for the rest of the operations. For the lack of a better name, it is

Chapter 2: The SPUR CPU Microarchitecture

Outputs valid during Phil, 2, 3, or 4 respectively

Figure 2-2-3 Generic Structure of the 1-Unit Finite State Machines

The state of the finite state machine is determined by the contents of the Present State Register
(shaded in this figure). Since the output of the Present State Register is updated every <1>4 and is
stable by <1>1, a state begins in <1>1. The state informations state_cl must be used to generate out
puts that are valid during <1>4 to prevent race condition. Similarly, state_c4 must be used to gen

erate outputs that are valid during <1>1. For outputs that are valid during <1>2 and $3, either state_cl

or state c4 can be used Output of this finite state machine is a function of the Present State and
any inputs that are valid during <I>N (N=1, 2, or 3) can affect outputs that are valid during <I>N+l
of the same cycle. For example, outputs that are valid during <1>4 can be a function of inputs that

are valid during $1, <1>2, and $3.

25

called the Fetch Finite State Machine. The simplified state diagrams of these two finite state

machines are shown in Figure 2-2-2.

Both finite state machines only have a small number of states and are implemented by the

generic structure shown in Figure 2-2-3. The State Logic and Output Logic blocks are imple-

mented by PLAs. There are two reasons why they not combined into one single block (Figure 2-

2-4) as suggested by most "classical" VLSI text books. First, separating them makes the

designer's job easier. More importantly, in this arrangement the outputs depend on the Present

State and any inputs that are valid during phase N (N= 1, 2, or 3) can affect outputs that are valid

Chapter 2: The SPUR CPU Microarchitecture

Outpu!S valid during Phil, 2, 3, or 4 respectively

Figure 2-2-4 Classical Implementation of Finite State Machine

In this classical implementation, the State & Output Logic evaluates the next state and output

during $4. Since the output and next state are evaluated together and the results are latched into

the Output & Present State Register at the end of $4, the outputs can only be affect by the previ

ous state and inputs from the previous cycle. In contrast, the outputs of the organization in Figure

2-2-:3 are functions of the present state and inputs from any previous phase of the current cycle.

Notice that a latch must be placed between the Output register and the output signals that are

valid during $4 to prevent race condition.

26

during phase N+ 1 of the same cycle. On the other hand, if we combine the Output Logic and

State Logic as tradition dictates (Figure 2-2-4), the output signals can only depend on the previ-

ous state and the inputs from the previous cycle rather than the current state and the inputs from

the previous clock phase. This will increase the latency of the Instruction Unit

Since we did not implement the single finite state machine version of the control, it is hard

to judge the advantages of separating the control into two finite state machines in terms of imple-

mentation metrics such as area, power consumption, and number of logic gates. However, this

separation greatly simplifies the design and verification effort by allowing us to focus our atten-

tion on one thing at a time. This illustrates an important point in VLSI design: logic optimization

is important as long as you are still trying to meet implementation constraints. Once these con-

straints are met, continuing optimization can be counterproductive not only because the design

Chapter 2: The SPUR CPU Microarchitecture 27

IOI Ifet I Ex IMeml Wr I
(Word Address 06 g)

nl Ifet I Ex IMeml Wr I
(Word Address 07 8)

Inte~~ I Ifet I Ex IMem I Wr I

Int:;~ I Ifet I Ex I Mem I Wr

(Word Address 108)!21 Ifet I Ex I Meml (

(Word Address II 8) Bl Ifet I Ex I (

TO I T1 I T2 I TI I T4 I T5 I time 1

Figure 2-2-5 Fetch and Prefctch-Execution Unit's Perspective

Assume instructions !0, II, !2, and !3 are in consecutive word addresses (octal) 06, 07, IO, and II
and only IO is currently (Cycle TO) in the Instruction Unit cache array. Under ideal conditions
(most of the time), the Instruction Unit will be able to prcfetch Il in time. However, when the
Execution Unit requests !2, the block boundary is crossed and a miss occurs. Instead of suspend
ing everything in the Execution Unit's Pipeline, the Instruction Unit inserts internal instruction
miss into the pipeline such that both IO and II can proceed while !2 is being fetched. For the In
struction Unit's Perspective, please refer to Table 2-2-1.

time could be spent on something else, but also because it may make the design harder to under-

stand and thus harder to verify and modify.

2.2.3. Instruction Unit Operation

Figure 2-2-5 shows Execution Unit's view of how a miss in the Instruction Unit cache array

is handled under ideal conditions. After the Execution Unit is fooled by the internal miss instruc-

tions duting cycles T2 and T3, the Instruction Unit tries to fetch !2 and prefetch instructions in

the same block as 12 from the external cache during cycles T4 and T5. This is further illustrated

in Table 2-2-1. Notice that in Figure 2-2-5 during Cycle T2 and T3, instruction !0 and ll are

allowed to proceed. This is necessary to prevent deadlock since instructions !0 or II could be a

Load or Store type instruction which would start accessing the external cache at tl1c end of their

Chapter 2: The SPUR CPU Microarchitecture

Cycle Fetch Finite State Machine Prefetch Finite State Machine

Fi!!ure 2-2-5 State & Actions State & Actions

NORMAL: PREFETCH:

TO Deliver 10 (06) Prefetch (00)
Receive and write 11 (07) into cache

NORMAL: PREFETCH:

Tl Deliver 11 (07) Prefetch (01)
Instruction j_OO)is not written _lli"ote !l

NORMAL: PREFETCH:

T2 Deliver "miss" opcode Prefetch is blocked by Fetch

Fetch 12 (10) from external cache

MEMPEND: (Note 2) WAITING:

T3 Deliver "miss" opcode As soon as 12 is received,

Receive and write 12 (10) (Note 3) _Qrefetch 12 (11)

INSVALID: PREFETCH:

T4 Deliver 12 (10) (Note 4) Prefetch (12)
Receive and writes 13 (11)

NORMAL: PREFETCH:

T5 Deliver 12 (10) Prefetch (13)
Receive and Write (12)

Table 2-2-1 Fetch and Prefetch-Instruction Unit's Perspective

Notice that prefetching does not cross block boundary. This is illustrated by Cycle TO in which

the prefetcher has already "wrap" around and start prefctching instruction at word address 00 in

stead of instruction at word address 010 (octal).
Notes:

1. Assume instruction (00) is already in the cache - no need to write.

2. Assume the external cache is not busy.
Otherwise, it will go to MEM_BUSY and wait

3. Assume the external cache can deliver the instruction in one cycle.

Otherwise, it will stay in MEMPEND until it receives /2.
4. 12 is not received until phi3 of Cycle T3. Therefore it cannot

be delivered to the Execution Unit until Cycle T4.

28

Exec stage. If their already started cache access are not allowed to finish, the 1-Unit cannot start

the fetch for 12 because the external cache in SPUR is not separated into data and instruction

caches. A deadlock would have occured because the Execution Unit would wait for 12 but the

Instruction Unit could not fetch 12 until the cache is free.

Figure 2-2-5 and Table 2-2-1 show the ideal case in which the cache miss is handled in two

cycles and the prefetch of 13 is successful. In practice, either 10 or II can block off the cache

Chapter 2: The SPUR CPU Microarchitecture 29

access path and the Fetch machine must first go into MEMBUSY state during T3 and wait for

cache to be free before starting the fetch of 12 and entering the MEMPEND state. Once in the

MEMPEND state, the external cache may not be able to deliver the /2 within one cycle and the

Fetch machine must stay there until/2 is received. In other words, the Instruction Unit may take

more than two cycles to recover from the miss and more than two miss instructions must be

inserted.

The prefetching can be turned off by setting a bit in the Kernel Processor Status Word. In

that case, the Prefetch Finite State machine will remain in the IDLE state and will not prefetch

any instructions. Furthermore, the whole Instruction Unit can be disabled and none of the instruc

tions will be cached. If the Instruction Unit is disabled, the Prefetch Finite State machine will

remain in the IDLE state and the Fetch Finite State machine will continuously cycle between

NORMAL, MEM_PENDING (or MEM_BUSY), and INS_ VALID states. In other words,

Instruction Unit disabled is just a special case in which every access to the Instruction Unit

results in a miss.

2.3. Execution Unit

The Execution Unit executes the instructions delivered by the Instruction Unit. The Execu

tion Unit's datapath organization is discussed in Section 2.3.1. The Execution Unit's operation

under normal and adverse conditions are discussed in Section 2.3.2 and Section 2.3.3, respec

tively. The implementation of the Execution Unit's datapath is described by Dave Lee [Lee86].

2.3.1. Execution Unit Datapath

The Execution Unit datapath can be divided into two parts: the Lower Datapath and the

Upper Datapath. The Lower Datapath performs all the register-to-register operations and can be

further divided into an Operand Supplier and a Functional Unit. Here is a brief description of

each block in the Lower Data path, from left to right as shown in Figure 2-3-1 (please refer to the

naming conventions described in the beginning of Chapter 2, P.14):

Chapter 2: The SPUR CPU Microarchitecture

......... --- ----.... ---- ------------ ----- ----- ------- -- ----- ----- -- .. ---. ---- .. ----· -- --- --- -. ------.- -- --- -- -- --- -- ---------. -- --- -- ----- ---------··

REGISTER

DECODERS

&DRIVERS

IF_LOOIC
(Internal

ForwanJ!ng
Lol!:icJ

30

-~:;!,, ~FUNCTIONALU>.TI

'39 =! 39 il, bu•A ,r-I"W 1: ["J1J' 1 39 m bwA2 39 r' ,;~ Uppa
---+*:<:i;39~3\'i2>;,"-f-D-t--*-1f-0+---f-M-t-f--ifir: L; B l <39:32> L., Datapath

<--- ; ; h BRANCH l, & M.l•
s b : DibusD IJ. T< Data Pads

M S i <39:32> r COND
• EXT_INS

busL r s
<39:32>

!:1 bwB,[2 1: 1 U -i,- B lfh 7'3bffiu'"},B2f::-/----!-l-I..---.-J

32 <39'32> 32 32 L; _1l L; X ; !4 U 1 <39'32> ~
31 f,' _131' 3\ ' ' (B)'U' ~ Y

5
1 ~

3
l YBl

---+h_'-7Jbu\"'ll'A:-'r++--*-J"-I---++-t-'-'-fiL;r' F ~bo.A2 r 1 · 1 ·
REGISTER <3l:O> D D M A l, <3l:O> H A : U

Extractor "- l ' S
ALE busL_[s s h & i busD l. r ~ IL i:

T(Data Pads <31:0> t t r : B ~ <31:0> F) U i ~

··············0·········-~~~:-~-~---····-~--~-----~---··L·~---~-=~ _Q_ t~~;-~:-~----~~,)········-~----~<3r~- Li~
Figure 2-3-1 The SPUR CPU Lower Data path

The SPUR CPU Lower Datapath is 40 bits wide-the upper eight bits (39-32) are for tags. BUS
BUFA & B serves as operands buffers. Everything to its left can be considered as the Operand
Supplier and everything to its right as the Functional Unit. BusA, busB, busA2, and busB2 route
operands from the Operand Supplier to the Functional Unit. The result of the computation is
routed back to the Operand Supplier via busD. BusL connects the Lower Datapath to the data
pads and busS connects the Lower Datapath to the Upper Datapath and the Memory Address
Latches-Mals.

REGISTER FILE is a 138-word, 40-bit, dual-port read, but single-port write register file.

It is organized into ten global registers and eight overlapping register windows (see Appen-

dix A). Register RO is hardwired to zero.

Dst2<39:0> is the second temporary register for the 4-stage pipeline. The result of every

instruction that requires writing to the register file is saved here at the end of the Mcm stage.

Dstl<39:0> is the first temporary register for the 4-stage pipeline. The result of every

instruction that requires writing to the register f1le (except Load) is saved here at the end of

the Exec stage.

Chapter 2: The SPUR CPU Microarchitecture 31

IF _LOGIC detects data hazards and instructs Dstl or Dst2 or both to override the REGIS-

TER FILE and supply the operand or operands.

Mbr<39:0> is the memory buffer register. It stores the data to be written to external

memory.

MUXs route immediate constants into the datapath as operands.

BUSBUFA & B<39:0> latch in busA and busB, respectively during $1 and drive busA2

and busB2 during $2. They serve as buffers between the Operand Supplier (items listed

above) and the Functional Unit (items listed below).

EXT_ INS<39:0> is the byte extractor and inserter. The SPUR CPU uses this together with

the SHIFTER to replace the more traditional 32-bit barrel shifter.

SlllFTER<31:0> is a maximum of 3-bit left shift and 1-bit arithmetic and logic right shift.

~ ~ T T ~ r'2 T T T T T T 2 2 3

bus I T r c c SnExt B I E M F

<27:0:> r a <8: A u f ~ ~
u K

c s I X e p

a 1 0:> D s e e p p
w w N m u

p 1 D 2 t c s I

bus PC p p p l. p l. E p 1. p h. c h. p h. p p

<31:2> '-t
w w

c c / c c c c c
r 4 dL .1!.. r 1!. 1.l J.L 1L 3rl.~ .11 1L 1L4- 31 4--

<31:30:> <31:30:>
trapType<7:4>

busS<31:2>

To Lower Datapath & Mals

Figure 2-3-2 The SPUR CPU Upper Datapath

The SPUR CPU Upper Datapath is 30 bits wide because its main function is to provide instruc
tion address whose two LSBs are always ignored by the word addressing SPUR memory system.
Bus!, which contains the instruction, provides the immediate offsets for all the Call, Jump, and
Compare-Branch type instructions. BusPC contains the instruction address to be sent to the In
struction Unit. BusS, as explained before, connects the Lower Datapath, the Upper Datapath, and
the Memory Address Latches-Mals.

Chapter 2: The SPUR CPU Microarchitecture 32

ALU<31:0> performs A+ B, A- B, A XOR B, A AND B, and A ORB functions.

BRANCH COND evaluates the branch conditions for all the Compare-Branch type instruc-

tions.

BUSSTOD<31:0> is a buffer between the Upper Datapath and the Lower Datapath. The

Upper Datapath deposits values into it via busS during <j>2 and it is one of the potential busD

drivers during <!14.

The Upper Datapath, where all the special registers reside, performs all the program control

related operations. Below is a brief description of each block in the Upper Datapath, from left to

Stage/Phase Actions

Ifet Stage:
Phase 3 busl <- 1-Unit[busPCl·

Exec Stage:
busA <- REG_FILE[Rsl], busB <-(not REG_FILE[Rs2]);

Phase 1
BUSBUFA <- busA,
if (busl<14>=0) BUSBUFB <-(not busB)
else BUSBUFB <-Sign Extend (busl<l3:0>);

busA2 <- BUSBUFA, busB2 <- BUSBUFB;

Phase 2 Port A of (ALU, SHIFIER, or EXT_INS) <- busA2,

Port B of (ALU, SHIFfER, or EXT INS)<- busB2;

Phase4
busD <-Output Port of (ALU, SHIFfER, or EXT_INS);

Dstl <- busD ·

Mem Stage:

Phase 1
busPC <- INC ;
IfetPC <- busPC, I-Unit<- busPC;

Phase 3 Dst2 <- Dstl ;

Wr Stage:

Phase 3
busA <- Dstl, busB <-(not Dst2);
REG FILE[rd] <- (busA & (not busB)); (Note 1)

Table 2-3-1 Register-Register Operation

Load, Return, Read Special, and Write Special type instructions are special cases of Register

Register. Their operations are shown in Appendix A.
Note:

1. To write a register, the true and compliment values are put onto

busA and busB respectively.

Chapter 2: The SPUR CPU Microarchitecture 33

right as shown in Figure 2-3-2:

Cwp<4:2> is the Current window pointer that points to the register window that is currently

in use.

Swp<31:3> is the saved window pointer that points to the memory location where the last

overflow register window (pointed to by Swp<9:7>) is saved.

TrapPC<31:2> holds the word address of the trap vector. Whenever a trap occurs, the

hardware loads the upper 30 bits of the byte address (hex) OOOOlOTO into TrapPC<31:2>

where Tis a function of the trap type.

CallPC<31 :2> holds the target address for Can and Jump type instructions. This address is

formed by concatenating the 2 MSBs of ExecPC and a 28-bit value provided by the instruc-

tion.

ADDER<31:2> calculates the target address for all the Compare-Branch type instructions

while the ALU is doing the comparison. The 8-bit offset is first sign extended before adding

Stage/Phase Actions
Ifet Stage:
Phase 3 bus! <-1-Unit[busPCl·
Exec Stage:

busA <- REG_FILE[Rsl], busB <-(not REG_FILE[Rs2]);
Phase 1 Mbr <-(not busB), BUSBUFA <- busA,

BUSBUFB <-Sign Extend (busl<24:20> cat busl<8:0>);

Phase 2
busA2 <- BUSBUFA, busB2 <- BUSBUFB;
Port A of ALU <- busA2, Port B of ALU <- busB2;

Phase 4 busS<- ALU ·Address Pads<- busS
Mem Stage:

busPC <-INC, busL <- Mbr;
Phase I lfetPC <- busPC, 1-Unit <- busPC,

Data Pads<- busL;

Table 2-3-2 Store Operation

Chapter 2: The SPUR CPU Microarchitecture 34

to the ExecPC.

BUSS2PC<31:2> receives values from the Lower Datapath via busS during <l>4 and drives

bus! during cpl for Jump_Register or Return type instructions.

IfetPC<31:2> normally holds the addresses of the instructions currently in the !Jet stage. If

the instruction currently in the !Jet stage is not in the Instruction Unit, IfetPC must hold

onto the next instruction's address until the miss is serviced.

INC<31:2> is the incrementor. It evaluates the next instruction's address for sequential

operation.

ExecPC<31:2> and MemPC<31:2> hold the addresses of the instructions currently in the

Exec and Mem stages of the pipeline respectively. This chain of PCs is needed for trap

Sta2e/Phase Actions

Uet Stage:
Phase 3 busi <- I-Unit[h_usPC]·

Exec Stage:
busA <- REG_FILE[Rsl], busB <- (not REG_FILE[Rs2]) ;

BUSBUFA <- busA,

Phase 1
if ((Cond = eq_tc) or (Cond = neq_tc)) (Note 1)
BUSBUFB<39:32> <- busi<14:9>
else if (busi<l4> = 0) BUSBUFB <-Zero Extend (busi<l3:9>)
else BUSBUFB <- busB ;

busA2 <- BUSBUFA, busB2 <- BUSBUFB ;
Phase2 Port A of (ALU, BRANCH_COND) <- busA2,

Port B of_(ALU BRANCH CONDl <- busB2;

Mem Stage:
if (BRANCH_COND =valid)

Phase 1
busPC <- ExecPC +Sign Extend (busl<8:0>)
else busPC <- INC ;
IfetPC <- busPC, 1-Unit <- busPC;

Table 2-3-3 Compare-Branch Operation

Notes:
1. Cond is the conditional field of the instruction (Figure 2-1-1). eq tc and

neq tc are two possible branch conditions (see Appendix A). -

Chapter 2: The SPUR CPU Microarchitecture 35

handling (see Section 2.3.3).

FpuPC<31:2> holds the address of the last FPU (coprocessor) instruction that was send to

the FPU. This is needed for parallel operation between the FPU and CPU [HaK86].

Upsw<31:2> is the user processor status word (see Appendix A).

Kpsw<31:2> is the kernel processor status word (see Appendix A).

In order to get a better idea on how each block in the datapaths is being used during each of

the four phases at different pipeline stages, you must understand the operation of the Execution

Unit. The operations of the Execution Unit under normal conditions and adverse conditions are

discussed in Section 2.3.2 and Section 2.3.3, respectively.

2.3.2. Execution Unit Operation-Normal Conditions

Staee/Phase Actions

Ifet Stage:

Phase 3
busl <- 1-Unit[busPC] ;
Call PC<- ExecPC<31 :30> cat busk27:0> ·

Exec Stage:
if (opcode =CALL) Cwp <- Cwp + 1,

Phase 2 busS <- ExecPC ;
BUSSTOD <-busS ;

Phase4
busD <- BUSSTOD ;
Dstl <- busD ·

Mem Stage:

Phase 1
busPC <- CallPC ;
lfetPC <- busPC, 1-Unit <- busPC;

Phase 3 Dst2 <- Dst1 ·

Wr Stage:
if (opcode = CALL) {

Phase 3
Update Backup Copy of Cwp,
busA <- Dstl, busB <- (not Dst2) ;

REG Fll..E[rd] <- (busA & (not busB))} ;

Table 2-3-4 Call-Jump Operation

Chapter 2: The SPUR CPU Microarchitecture 36

In Table 2-3-1 through Table 2-3-4, the four generic instruction types-Register-Register,

Store, Compare-Branch, and Call-Jump-are used to show the Execution Unit operation under

normal conditions. Similar tables for the rest of the instruction types are presented in Appendix

A. In these tables, different phases are separated by a single horizontal line and different pipeline

stages are separated by the double horizontal lines. Within a phase, all operations are in parallel

unless they are separated by semicolon.

The general timing of the SPUR CPU is summarized in Figure 2-3-2. The SPUR CPU uses

a four-phase non-overlap clock [JBH87]. The duration of each phase is 18ns and the non-overlap

time is 7ns. The critical paths within each phase must be shorter than the phase duration (18ns)

because because all latches in the SPUR CPU latch in data during the falling clock edge. Figure

2-3-2 shows that the critical paths for the register file, the functional unit, the instruction unit, and

the external cache all have at least 4ns safety margin. This is probably why most of the CPUs we

phi 1 (18) phi 2 (18) phi 3 (18) phi 4 (18) c
~(6) od Reg. Write I (12) ~(6) od

I

(6) (12) ALUDrives (14) Sum onto bu.~S

(14) t Drive busi I (14)
I I I
r"m'l C.cho Criti"l Timing :

:
I

Cache Access (75) Address (10) Om
I

""' 25 .. 50n. 75 .. lOOn<

Figure 2-3-3 The SPUR CPU Timing

Each block represents a time interval and the number inside the parentheses is the duration of that
time interval in ns. The bit lines for both the register file and the instruction cache array are
prechargcd to high before read and write. For the register file, they arc prechargcd during <j>2 and
<j>4. For the instruction cache, they arc precharged during ¢I and <j>3. Notice that almost all actions
arc triggered by the the clock. There is no self lime circuit in the SPUR CPU.

Chapter 2: The SPUR CPU Microarchitecture 37

received can run at SOns cycle time. Figure 2-3-2 also illustrates one big drawback of multi-phase

clocking-there is a lot of dead time (horizontal white space between the boxes). Notice that not

only do we waste time during the non-overlap time, we also waste the time at the end of each

phase due to the requirement for a safety margin.

2.3.3. Execution Unit Operation-Adverse Conditions

Trap Request Handling. A trap request is caused by unusual conditions that arise at run

time. Trap request handling refers to the handling of these unusual run time conditions. The

detection of these conditions will be discussed in next section. This section explains how the

SPUR CPU handles trap requests. A trap request is handled in three steps: (1) branch to a loca-

tion defined by the trap type, (2) open a new register window, and (3) save the addresses of the

instructions that are affected. As illustrated in Figure 2-3-4, all these can be accomplished by the

IO I Ifet I Ex I Mem I Wr I trap request

nl Ifet I Ex ,t:i==] "Killed"

121 Ifet I Ex IMeml-1 "Killed"

Figure 2-3-4 Pipeline During Trap

In this example, trap request, which is asserted in the Mem stage of I1, can only due to either ll

or some external asynchronous unusual condition that happens to kill/1. Obviously, /1' s address

must be saved but /2' s address must also be saved because /0 may be a delay branch. Due to the

assertion of trap request, instructions 13 and 14' s positions in the pipeline are replaced by two

internally generated instructions: trap_call, and readyc. Trap_call branches to the trap location,

opens a new window, and saves Il' s address in R 10 of the new window. Read PC saves 12 's ad-

dress in R16 of the new window. -

Chapter 2: The SPUR CPU Microarchitecture 38

internal instruction sequence trap_call followed by rd_yc. Internal instructions are generated by

the Instruction Unit (see Figure 2-2-1). As far as the Execution Unit is concerned, rd_yc is the

same as "rd_special rl6, ExecPC" and the only difference between trap _call and the regular call

is that TrapPC is used as the target address instead of CallPC (Figure 2-3-2). Douglas Johnson

has evaluated the effectiveness of the SPUR CPU trap architecture [Joh88].

Pipeline Suspension. In theory, the SPUR CPU pipeline can be suspended for an infinite

number of cycles as illustrated in Figure 2-3-5. Notice that every instruction in the pipeline is

suspended unlike the situation shown in Figure 2-2-5, in which only the issue of new instruction

is suspended. Therefore, we refer to the pipeline suspension in Figure 2-3-5 as Global Pipeline

Suspension and the situation shown earlier in Figure 2-2-5 Partial Pipeline Suspension. Global

Pipeline Suspension is used to handle external cache miss and coprocessor busy conditions. Par-

tial Pipeline Suspension is used to handle internal instruction cache miss because as explained in

Section 2.2.3-Global Pipeline Suspension cannot be used due to potential deadlock condition.

r Global Pi~line i Suspension

ml Ifet I Ex IMemiMeml ((_ IMeml Wr

I I
nl Ifet I Ex I Ex ((_ Ex IMeml ?

I I
121 Ifet I lfet ((_ Ifet I Ex ?

Bl Ifet I ?

Figure 2-3-5 Global Pipeline Suspension

The SPUR CPU pipeline can be suspended for two reasons: coprocessor (FPU) busy, or cache

miss. The first reason is out of the scope of this chapter and is explained in [HaK86]. The second

reason can be explained using this figure by assuming 10 as a Load or Store type instruction. If

10 causes an external cache miss, then the SPUR CPU pipeline will be suspended until the data is

valid.

Chapter 2: The SPUR CPU Microarchitecture 39

2.4. The SPUR CPU Controller

The major design theme behind the SPUR CPU controller is decentralization. As described

in Section 2.2 above, the Instruction Unit and Execution Unit have their own controllers. Further-

more, using internal instructions miss, trap_ call, and read _yc, the Instruction Unit simplifies the

control of the Execution Unit by reducing complex control functions such as instruction miss and

trap handling into simple instruction sequences that can be executed uniformly by the Execution

Unit's four-stage pipeline. Within the Execution Unit, the control responsibility is further

delegated to three independent parts:

Priori tv Trap Type Vector (Hex) Side Effects Description
0 (highest) RESET (0) 1000 kpei power-on initiation

1 ERROR(!) 1010 kpei bus fault or hardware error

2
WIN_OV (2) 1020 window overflow
WIN UN (3) 1030 window underflow

3 FAU IN (4) 1040 k page fault or interrupt
4 FPU EX (5) 1050 FPU exception

Run time software errors:

5 RUN_ER(6) 1060
illegal opcode
kernel mode violation
LISP pointer type violation
Run time tag violation:

6 TAG_TR (7) 1070 generation trap
LISP data type violation

7 (lowest) IN OV (8) 1080 Integer overlow
7 (lowest) CMP TR(9) 1090 k cmp_ trap instruction

Table 2-4-1 The SPUR CPU Trap Types
In the table above, illegal opcode includes all the FPU opcodes whenever the the FPU is disabled.
LISP pointer type violation occurs when tag fails the "CONS or NIL" test. LISP data type viola
tion occurs when the tags fail the "Both operands are FIXNUM"' or "'Both operands are FIXNUM
or CHAR"' test.

Side Effects:
k - changes to kernel mode
p - changes to physical mode

e- turn off ERROR detection
i- disable the Instruction Unit

Chapter 2: The SPUR CPU Microarchitecture 40

Cache Controller Interface

This module communicates with the Cache Controller and is out of the scope of this

chapter. The cache controller interface is described in [WEG87].

Trap Logic

This module detects the unusual conditions (fable 2-4-1), prioritizes them, and determines

which trap type to take. The Trap Logic is discussed in Section 2.4.1.

Control Unit

This module controls the Execution Unit' Upper Datapath and Lower Datapath. The Con

trol Unit is discussed in Section 2.4.2.

2.4.1. Trap Logic

The Trap Logic block must be able to detect thirteen different trap conditions (refer to

column "Description" of Table 2-4-1). Once these conditions are detected, they are grouped into

ten different trap types that are prioritized into eight priority levels. Each trap type has its own 4-

bit trap number which is fed into TrapPC<7:4> (Figure 2-2-2) to form an unique trap vector. The

SPUR CPU can be programmed to selectively ignore most of these unusual conditions by writing

to the Upsw and the Kpsw (see Appendix A). In fact, whenever the CPU takes a trap, the

hardware disables any further traps by turning off the AllEn bit in the Kpsw.

Figure 2-4-1 shows that these enabling, detection, prioritizing, and grouping functions are

implement by five logic blocks separated by latches. Trap Enable and Trap Type are the only

logic blocks implemented by PLAs. Trap Enable updates the on/off status of the various traps

according to the contents of Kpsw and Upsw. Trap Type groups all the detected unusual condi

tions into trap types and decides which trap type to take according to the priority shown in Table

2-4-1. The three Trap Request blocks are implemented in random logic and together they gen

erate the trap request (assert the signal trap Request) whenever one or more unusual conditions are

detected. Pre-Trap Request docs the initial set up, Trap Request (AND) and Trap Request (OR)

are analogous to the AND and OR plane of a PLA. The reasons why they are not combined into

Chapter 2: The SPUR CPU Microarchitecture

trapRequest

Figure 2-4-1 Trap Logic Block Diagram

The pipeline diagram shows how the Trap Logic operates at different time points with respect to

any instruction that may trap. Each pipe stage (clock cycle) consists of four phases and the falling

clock edge of these phases are used by the latches to latch in the intermediate results. This is a

simplified view because in the real hardware, the clock phases are sometimes "ANDed" with

some other control signals before being used by these latches as trigger signals. Out of the five

combinational blocks, only the two shaded blocks are implemented by PLA's. Others are custom

logic due to timing or area constraints or both.

41

one logic block are the same as the reasons for not combining the Output and State logic blocks

in Figure 2-2-3-it makes the design easier to understand and reduces the input-output latency.

2.4.2. Control Unit

The Execution Unit's Control Unit (Figure 2-4-2) is divided into two parts: the Master Con-

trol and the Local Decoding Logic. Master Control decodes and buffers the opcode into high

level control signals. The Local Decoding Logic then decodes these high level control signals

into low level control signals that control the datapath. The coprocessor interface is part of the

Master Control but will not be discused here. In a simplified view, the Master Control consists of

two parts:

Chapter 2: The SPUR CPU Microarchitecture

Low Level Control Signals

Local Decoding Logic

OPOJDE I ve ontro tgn KghLe !C !S' a!s

Master Control

HOpcode~
PLA 40 Exec Mem Wr

Ctr r- Ctr r- Ctr

Y:Fas',p
Logic r Buf Buf Buf

3 50 ~ '
r-------~Lo~cal~D,ecodinrg~Lo-g~i_c ________ _,

Register Control Func. Unit Control

Low Level Control Signals
(fer l.<!wc::- Dataps.th)

Figure 2-4-2 The Control Unit Block Diagram

The Control Unit can be divided into two parts: Master Control and Local Decoding Logic. In the
layout, the Master Control resides in the center of the chip while the Local Decoding Logic
blocks are scattered along the Upper Datapath and Lower Datapath close to where the low level
control signals are needed.

Opcode PLA and Fast Logic

These modules decode the opcode into high level control signals.

Sequencer

42

11lis module sequences the high level signals. Exec-Ctr-Buf, Mem-Ctr-Buf, and Wr-Ctr-

Buf, which contain latches and simple logic, together combine and buffer the high level sig-

nals into three sets that are responsible for the control of the pipeline stages: Exec, Mem ,

and Wr, respectively.

There arc only three high level signals for the !Jet stage of the pipeline. However, these

must be provided by fast logic because the opcodc arrives at the Control Unit dUiing <!>3 of the !Jet

stage and !l1csc three high level control signals must be valid during the next clock phase (<1>4) of

the same stage. TI1e Exec stage is <he busiest, which is reflected by the large number of high level

control signals (50) needed to control it. The M em stage is a null stage except for memory access

Chapter 2: The SPUR CPU Microarchitecture 43

instructions and requires only seven high level control signals. Finally, the Wr stage operation is

not that much different for different instructions and it requires only eight high level control sig-

nals.

The local decoding logic is organized into four blocks, each of which is specialized in con-

trolling one local area of the datapath. The four blocks, as shown earlier in Figure 2-4-2, are:

Register Control

This block controls the register file and temporary registers: Dstl, Dst2, and Mbr.

Functional Unit Control

This block controls the functional units: Byte Extractor Inserter, the Shifter, and the ALU.

High Level Control Signals

•

Simple Combinational Logic

Figure 2-4-3 Local Decoding Logic

The Simple Combinational Logic blocks are located close to the datapath where the low level

control signals are needed. Each of these logic block generally consists of single level of random

logic and it also serves as a buffer between the high level and low level control signals.

Chapter 2: The SPUR CPU Microarchitecture 44

Special Control

This block controls the special registers: Cwp, Swp, Ins, Kpsw, and Upsw.

PC Control

This block controls the program counter generation logic: ADDER, INC, and the various

PCs.

These four blocks are implemented in the generic structure shown in Figure 2-4-3 in which

the high level control signals are decoded by the Simple Combinational Logic into low level con-

trol signals. There are never more than two levels of logic in the Simple Combinational Logic

and its outputs are then either used directly by the datapath or "ANDed" with one of the four

phases before they are used.

2.4.3. Controller Design Insights

Product Logic Implementation

Parts Inputs Outputs Terms Gates Effort (man-month)

Trap Logic:
Trap Enable 23 12 14 - 0.25

Trap Type 11 9 11 - 0.25

Pre Trap Req. 14 6 - 24 0.50

Trap Req. (AND) 24 16 - 18 0.50

Trap Req. (OR) 16 10 - 19 0.50

Control Unit:
Opcode PLA 8 40 68 - 0.50

Fast Logic 18 14 16 - 0.50

Reg_ Or 10 9 - 26 0.50

Func Ctr 19 13 - 26 0.50

Pc Ctr 17 14 - 41 0.50

Spec Ctr 27 19 - 23 0.50

Total - - 109 177 5.00

Table 2-4-2 The Execution Unit Controller Design Metrics

Chapter 2: The SPUR CPU Microarchitecture 45

The implementation metrics of the Trap Logic and the Control Unit are summarized in

Table 2-4-2. The implementation of the SPUR CPU Controller can be considered as an experi

ment which shows that by using internal instructions (Example: trap _cal[) and some satellite

logic blocks (Example: Trap Logic), the main control engine that controls the datapath (Example:

Control Unit) can be reduced to a simple N-Stage sequential logic structure (Figure 2-4-2) where

N is the pipeline length of the machine (Example: N=4 for the SPUR CPU). The term "N-Stage

sequential" is used because the outputs depend on the inputs of the previous N cycles only. There

is no feedback in this structure and therefore it is not a state machine. This N-Stage sequential

logic block has well defined inputs-the instruction set and internal instructions (mainly the

opcode)-and outputs-data path control signals.

While reducing control functions into internal instruction sequences and designing the satel

lite logic blocks may still require some human ingenuity, CAD designers should be able to pro

vide CAD tools that can generate the N-Stage sequential logic automatically. Ideally, a VLSI

designer would like to have a set of CAD tools that can partition this N-Stage sequential logic

into Master Control and Local Decoding Logic, generate them automatically, and route the con

nections between the two. An optimum solution is hard to define here but as most VLSI

designers can tell you, the optimum solution is not necessary as long as the Master Control, the

Local Decoding Logic, and the routing between them meet the area, timing, and power con

straints.

One final point is that reducing complex control functions by internal instructions gives

similar benefits to those found in microprogramming. However, in microprogramming, every

instruction (no matter how simple) is turned into a sequence of microinstructions. On the other

hand, in the internal instruction approach, only complex control functions are turned into

sequences of internal instructions. Tncse internal instruction sequence can be quite short because

only the most Ciitical steps need to be implemented. The rest of the steps can easily be coded as

software routine using the regular RISC-style instructions that are similar to traditional microin

stiuctions. In other words, unlike microprograming, internal instructions allows RISC-style

Chapter 2: The SPUR CPU Microarchitecture 46

machine to handle complex situation without introducing an overhead on all other instructions.

Furthermore, internal instructions will not greatly increase the complexity of the instruction

decoding unit because they are similar (if not the same) to those already exist in the RISC-style

instruction set For example, in the SPUR CPU, internal instruction trap_ call is similar to the reg

ular instruction call and rd _pc is the same as regular instruction rd _special ExecPC.

Chapter 2: The SPUR CPU Microarchitecture 47

25. REFERENCES

[Dun86] R. R. Duncombe, The SPUR Instruction Unit: An On-Chip Instruction Cache

Memory for a High Performance VLSI Multiprocessor, Master Report, EECS

Department, University of California, Berkeley, CA 94720, August, 1986.

[HaK86] P. Hansen and S. Kong, "SPUR Coprocessor Interface Description", Report No.

UCB/Computer Science Dpt 87/308, Computer Science Division, EECS

Department, University of California, Berkeley, October 1986.

[Hi187] M. D. Hill, Aspects of Cache Memory and Instruction Buffer Performance, Doctoral

Dissertation, Computer Science Division, EECS Department University of

California, Berkeley, Fall1987.

[JBH87] D. K. Jeong, G. Borriello, D. A. Hodges and R. H. Katz, "Design of PLL-Based

Clock Generation Circuits", IEEE Journal of Soloid-State Circuits SC-17, 3 (June

1987).

[Joh88] D. Johnson, "Trap Architectures for Lisp Systems", Report No. UCB/Computer

Science Dpt 88/470, Computer Science Division, EECS Department, University of

California, Berkeley, November 1988.

[Lee86] D. Lee, Datapath Design Considerations for a High Performance VLSI

Multiprocessor , Master Report, EECS Department, University of California,

Berkeley, CA 94720, November, 1986.

[LiH83] H. Liiberman and C. Hewitt, ''A Real-Time Garbage Collector Based on the

Lifetimes of Objects", Comm. ofthe ACM 26,6 (June 1983).

[Tay85] G. S. Taylor, "SPUR Instruction Set Architecture", in Proceedings of CS292i:

Implementation of VLSI Systems, R. Katz (editor), Computer Science Division,

EECS Department, University of California, Berkeley, September 1985.

[Tay86] G. Taylor et al., Evaluation of the SPUR Lisp Architecture, The 13th Annual

International Symposium on Computer Architecture, Tokyo, Japan, June 2-5, 1986.

[Ung84] D. Ungar, "Generation Scavenging: A Non-disruptive High Performance Storage

Reclamation Algorithm", ACM Software Engineering Notes/SIGPLAN Notices

Notices Software Engineering Symposium on Practical Software Development

Environments, Pittsburg, April, 1984.

[WEG87] D. Wood, S. Eggers and G. Gibson, "SPUR Memory System Architecture", Report

No. UCB/Computer Science Dpt. 87/394, Computer Science Division, EECS

Department, University of California, Berkeley, December 1987.

[ZHH88] B. Zorn, P. Hillfinger, K. Ho, J. Larus and L. Semenzato, "Features for

Multiprocessing in SPUR LISP", Report No. UCB/Computer Science Dpt. 88/406,

Computer Science Division, EECS Department, University of California, Berkeley,

March 1988.

Chapter 3: The SPUR CPU Experience

Chapter 3

THE SPUR CPU EXPERIENCE

The biggest performance enhancement is achieved when going

from a non-working system to a working system.

John Ousterhout, 1988

48

In this chapter, I will talk about the SPUR CPU experience. The lessons I learned from this

experience is the foundation of my view on the systematic approach to microarchitectural design

(Chapter 5) and the future trends (Chapter 6).

3.1. From Chip to System

SPUR's mission is not only to build a VLSI chip but to build a system around three custom

VLSI chips. As far as the CPU is concerned, the implications of this ambitious mission are:

• The CPU specifications do not come from expert VLSI designers whose goal is to build the

fastest and the most innovative CPU. The specifications come from the system goals.

• We must increase our chance of having a working chip by using as much proven "techno!-

ogy" as possible.

• Instead of experimenting with architectural ideas, we must implement certain features that

Chapter 3: The SPUR CPU Experience 49

building block for the SPUR system.

The first implication is partly responsible for our relatively slow cycle time of lOOns. We

did not set the SPUR CPU cycle time goal any faster than 1 OOns because the SPUR memory sys-

tern [WEG87] and the SPUR bus [Gib87] cannot run any faster. In the following sections, I will

explain the other implications in more details.

3.1.1. The Russian Approach

The phase "use proven technology" means we tried to build the CPU based on previous

experience. I called this the "Russian approach" because the Soviet space program is a good

example of not feeling ashamed of using old but proven technology. Since our project goal is to

build a system based on the SPUR CPU chip, we decided to increase our chances of having a

worldng chip by using as many proven ideas as possible from the two previous generations

Berkeley RISC processors: RISC I [Pat82] and RISC II [Kat83], and SOAR [Ung84b]. As men-

tioned in Chapter 2, the SPUR CPU differs in these five aspects:

Internal Instruction Cache

The SPUR CPU has an on-chip 512-byte direct-mapped instruction cache organized into

~Suspndto
~ LWr access data

~ lExecl Wr I
llfet JExecll

RISCIT pipeline + Mem stage =>

Load
l Ifet !ExeclMem I Wr I

llfet IExeciMeml Wr J

llfet IExeciMemll
SPUR CPU pipeline

Figure 3-3-1 RISC ll Pipeline vs. SPUR CPU Pipeline

Both pipelines consist of instruction fetch (Ifet), execution (Exec), and register write \Wr). The

SPUR CPU internal instruction cache allows Ifet in parallel with data access (Mem). Data

conflicts in both pipelines are resolved by internal forwarding and branch conflicts are resolved

by a single cycle delay branch. The SPUR CPU, however, requires two internal forwarding paths

(RISC II and SOAR only require one) due to the extra pipe stage.

Chapter 3: The SPUR CPU Experience so

sixteen blocks with eight instructions per block.

Four-Stage Pipeline

RISC II and SOAR use the same three-stage pipeline that is shown in Figure 3-1-1. The

internal instruction cache essentially provides the SPUR CPU an extra port to memory and

enables us to add a memory access stage (Mem) to the RISC II pipeline. This results in the

SPUR CPU 4-stage pipeline that does not have to be suspended for LOAD.

Support for LISP

The SPUR CPU supports LISP by three types of hardware tag checking [Tay86]: data type

checking for general operations, pointer type checking for list operations, and generation

checking for garbage collection [Ung84a] [ZHH88].

Cache Controller Interface

In order to support multiprocessing, the SPUR CPU must communicate constantly with the

Cache Controller chip via a cache controller interface [WEG87].

Parallel Coprocessor (FPU) Interface

The SPUR CPU supports a coprocessor interface which allows the FPU to operate in

Feature i
Extra Pipeline On Chip LISP Floating Pt.
Stae:e (Mem) 1-Cache Support Support

SPUR CPU vs.
1.12 1.30 1.73 30.0

SPUR CPU - Feature i
Performance

12% 30% 73% 2900%
Improvement(%)

Table 3-1-1 Contributions to Performance

The performance improvement due to each feature (Row 2) is estimated by comparing the per
formance of the SPUR CPU against the performance of an imaginary, stripped down, SPUR CPU

(Row 1). The details of this analysis can be found in Chapter 4. All numbers are only approxima

tions because they are sensitive to the frequencies of different instructions and the quality of the

compiler.

Chapter 3: The SPUR CPU Experience 51

parallel with the CPU [HaK86].

These features' contributions to performance are evaluated in Chapter 4. The results are

summarized here in Table 3-1-1. The stripped down CPU for Column 1 uses the RISC II 3-stage

pipeline. The stripped down CPU for Column 2 does not have an on-chip instruction cache. Since

it is difficult to implement the SPUR 4-stage pipeline without the instruction cache, this stripped

down CPU also uses the RISC II 3-stage pipeline. The stripped down CPU for Column 3 does not

support hardware tag checldng. Similarly, the stripped down CPU for Column 5 does not support

the FPU interface. For example in Column 3, we estimate the SPUR CPU to run LISP programs

1.73 times (73%) faster than a similar CPU without hardware tag checldng. The performance

improvement due to the multiprocessing support features is not included because we believe mul-

tiprocessing performance depends more on the shared bus utilization and cache performance

[Kat85] [EgK88] than the features in the CPU.

3.1.2. SPUR CPU System Features

reg_ file bu$AB ext _
_ int ins shifter

Figure 3-1-2 Impact of the System Features-Graphical

This illustrates qualitatively which portion of which module is affected by the system features.

Chapter 3: The SPUR CPU Experience 52

The SPUR CPU system features are essential to the SPUR system's functionality and per-

formance. The SPUR CPU system features come from three sources [Tay85]:

Multiprocessing and Cache Consistency Support

This requires seven load instructions, three store instructions, and a cache controller inter-

face. Although all load or store instructions are alike internally, the CPU must request dif-

ferent cache operations [KEW85] [WEG87] via the cache controller interface.

LISP Support

This requires four special load instructions, one read tag instruction, one write tag instruc-

tion, and eight extra tag bits in the datapath. This tag architecture also adds six branch and

five trap conditions.

Multiprocessine LISP Floatin_e Point Total

Control PLA
6/54 11% 4/54 7% 3/54 6% 24%

Outputs

Control PLA
2/84 2% 2.2/84 3% 4/84 5% 10%

Products

Chip Area
2.2/57 4% 4/57 7% 6/57 10% 21%

(mm xmm)

Transistors
0.8/115 1% 9.9/115 9% 0.4/115 0% 10%

(x 1000)

Number of
15/156 10% 8/156 5% 37/156 24% 39%

Signal Pins

Table 3-1-2 Impact of the System Features-Quantitative

The first row shows that the master control PLA has 54 outputs. Six of these 54 outputs (11%)

are used to control the multiprocessing supporting features, four outputs (7%) are used to control

the LISP supporting features, and three outputs (6%) are used to control the FPU supporting

features. The total is that 24% of the master control PLA outputs are used to control the system

features. Similarly, the second, third, fourth, and fifth row show that the system features are

responsible for 10% of the master control PLA product tenns, consume 21% of the total active

area, 10% of the total transistors, and 39% of the total signal pins.

Chapter 3: The SPUR CPU Experience 53

Floating Point Support

This requires eight load instructions, four store instructions, and a coprocessor interface.

The coprocessor FPU also adds two branch conditions and one trap condition.

The end results are 19 load instructions, seven store instructions, and a 40-bit non-standard

(not 32-bit) datapath. Furthermore, the CPU must be able to handle 20 branch conditions, nine

trap conditions, and support two non-trivial off-chip interfaces. The impact of these features on

resources are evaluated quantitatively in Chapter 4. The results are illustrated graphically in Fig-

ure 3-1-2 and summarized quantitatively in Table 3-1-2. The complexity of these features is not

additive, it is multiplicative! These features must be simulated at the behavioral level to ensure

they are implemented correctly. Since the complexity of these features is multiplicative, their

simulation effort is also multiplicative.

3.1.3. Simulation Strategy

Verified by
test vectors

Verified ,by
CPU diagnostics

CPU Behavioral Model

r;:J
~· ..

Figure 3-1-3 Behavioral Simulation Strategy

. . .

The behavioral model of the SPUR system was built from bottom up. The lowest level modules,

for example the ALU, were first modeled and a set of test vectors was written to verify its func

tionality. Once these lowest level modules were verified, they were grouped together to form

higher level composite modules following the hardware's hierarchical organization. This "verify

and merge" process was repeated until we had the composite module of the SPUR multiprocessor

workstation.

Chapter 3: The SPUR CPU Experience 54

At the behavioral level, the complete SPUR system is described in the ISP' hardware

description language [KWG87]. As shown in Figure 3-1-3, behavioral simulation is divided into

two categories: chip simulation and system simulation. The SPUR CPU behavioral model, which

is discussed in more details in Section 3.2, is not only used for chip level simulation but also used

as a building block for the processor board behavioral model for system level simulation. This is

necessary because not only do we need to verify each individual chip, we also need to verify the

interactions among the chips on the processor board and eventually the interactions among pro-

cessor boards in the multiprocessor. If our mission was just to build a CPU chip-the missions of

RISC I, RISC II, and SOAR-the chip simulation would have been sufficient Since our mission is

to build a system, however, we must also complete the system simulation. After the behavioral

simulation is completed, the behavioral test vectors for the lowest level modules are converted to

switch level vectors to simulate the corresponding layout modules. The layout modules are then

merged to form the layout of the CPU which is verified by the same diagnostic programs used for

behavioral simulation.

Table 3-1-3 summarizes the switch level simulation we performed. If we just wanted to

prove that we knew how to build a CPU chip, the first column is probably all the switch simula-

General Cache Controller Tags& FPU Bootstrap
Total

CPU Interface Traps Interface Pro2rams

Cycles of 13,113 13,875 8,675 1,543 18,310 55,516
Diagnostics (24%) (25%) (16%) (3%) (33%) (100%)

Man-Month 0.5 !.0 0.5 0.5 !.0 3.5

of Effort (14%) (29%) (14%) (14%) (29%) (100%)

Table 3-1-3 Switch Level Simulation Summary

The first column verifies the basic function of the CPU. 111c next three columns verify the utility
features. Boot programs arc simple bootstrap routines that are used to bootstrap the SPUR pro
cessor board.

Chapter 3: The SPUR CPU Experience 55

tion we would have needed. Columns 2 through 5, which constitute 76% of the cycles and 86%

of the effort, represent the extra simulation we have to do in order to build a chip to be used in a

system. This seems to indicate that it is three to six times the effort to build a system like SPUR

than just a chip like RISC II and SOAR. Despite the large amount of effort we spent on simula-

tion, simulation is only the tip of an iceberg-the rest of the iceberg is the design process dis-

cussed in the following section.

3.2. The SPUR CPU Design Process

Testing
R=l"'

Figure 3-2-1 The SPUR CPU Design Process

In this figure, rectangular boxes represent steps in the design process while hexagonal boxes
represent products of the design steps. This is a simplified view because we do not show all the
interactions between different steps that make iterations necessary. The behavioral description
and the layout arc the two most important products from the microarchitecture design and imple
mentation steps respectively.

Chapter 3: The SPUR CPU Experience 56

A simplified view of the SPUR CPU design process is shown in Figure 3-2-1. The major

steps are: Specification, Macroarchitectural Design, Microarchitectural Design, and Implementa

tion.

Specification

We studied multiprocessor issues and the tradeoffs between different multiprocessor

configurations and selected the shared bus configuration (Figure 1-1-1(a)) to fulfill our ini

tial performance goal. Each SPUR processor node was then partitioned into a large cache

memory and three custom VLSI chips: CPU, CC, and the FPU (Figure 1-1-1(b)). This

Specification step created a textual soecification of the requirements for the SPUR CPU

chip.

Macroarchitecture Design

We translated the textual specification into the instruction set, interfaces specifications, and

algorithms for the Cache Controller, the Floating Point Unit, and the CPU chips. In order to

specify each chip in more detail, we further divided each chip into modules which I called

the macro-modules. The Instruction Unit and the Execution Unit are examples of macro

modules in the SPUR CPU. As far as the CPU is concerned, this step created a machine

readable architectural description which enabled us to perform instruction level simulation

to evaluate the effectiveness and verify the correctness of this macro architecture.

Microarchitecture Design

The microarchitect studied the interactions among the macro-modules and described the

interactions in an behavioral description of the SPUR CPU. In describing the SPUR CPU

behavior, the microarchitect also expanded the macro-modules into smaller modules which

I call micro-modules and produced a block level design and a floor plan. The behavioral

description, which is the SPUR CPU behavioral model shown earlier in Figure 3-1-3,

models the microarchitecture and must be verified by behavioral level simulation.

Chapter 3: The SPUR CPU Experience 57

Implementation.

The behavioral description was translated into logic modules either automatically by CAD

tools (PLA) or by the logic designers (gates and latches). The circuit designer then imple-

mented these logic modules by transistors and wires that were eventually translated into

layout. The layout was then extracted by a circuit extractor to produce the switch level

description that can be verified by switch level simulation.

Strictly speaking, fabrication and testing are not part of the design process. They are

included in Figure 3-2-1 for the sake of completeness. Furthermore, in practice the SPUR CPU

design process is not a pure sequential process. A lot of work-especially among the microarchi-

tecture design and the implementation steps-can be and were done in parallel. Consequently, the

total nine man years required by these four steps were accomplished in approximately four years

by five graduate students.t The initial SPUR study was done in the Fall1983 and the first version

ofthe SPUR CPU was fabricated in the Fall1987.

The macroarchitectural design and implementation steps of the SPUR CPU design process

are discussed in more details in [Tay86] and [Lee86]. This thesis will focus on the microarchitec-

ture design step. The most important product of the microarchitectural design step is the machine

readable behavioral description of the CPU. This behavioral description models the microarchi-

.
tecture and was shown earlier as the SPRU CPU Behavioral Model in Figure 3-1-3 in relation to

the behavioral model of the SPUR system. Section 3.2.1 will discuss the construction of this

behavioral model. Section 3.2.2 discusses how this behavioral model can be used as a formal

specification for logic and circuit designers. Section 3.2.3 discuss how this behavioral model can

be used for layout verification. Finally, Section 3.2.4 summarizes some important observations

from the SPRU CPU design process.

t George Taylor is the macroarchitect, Shing Kong is the microarchitect, and Dave Lee is the chief

circuit designer. Wook Koh and Rich Duncombe are part time logic and circuit designers and Mark Hill is

our macroarchitecture consultant

Chapter 3: The SPUR CPU Experience 58

3.2.1. The Construction of the SPUR CPU Behavioral Model

The SPUR CPU behavioral model [Kon89] was developed using the N.2 hardware model-

ing package [EEE85]. In the N.2 environment, a piece of hardware can be modeled in two dif-

ferent ways (see Figure 3-2-2):

(1) As a primitive module that is described in ISP', or

cwp_swp

busAB
_int

ext_
ins

upsw_kpsw

trap_logic

func_ctr

branch_cond

shifter

alu

pc_logic

pc_ctr

cache_int

Figure 3-2-2 The Structure of the SPUR CPU Behavioral Model

The three shaded blocks: i_unit, reg_file, and mastcr_ctr arc composite modules. All other blocks
arc primitive modules. Primitive module is a hardware description written in ISP'. Composite
module is a collection of primitive modules connected together by a topology file. The CPU
behavioral model [Kon89] is by definition a high level composite modules which consists ofboth
composite and primitive modules.

Chapter 3: The SPUR CPU Experience 59

(2) As a composite module that consists two or more primitive modules connected together

by a topology file.

The ISP' hardware description language provides the designer a way to model the behavior while

the topology file facility provides the designer a way to model the structure.

The SPUR CPU behavioral model was built using the "meet-at-the-middle" approach. The

desired behavior of the microarchitecture was first determined informally and then it was decided

how this behavior can be implemented structurally. The next step was to divide the conceived

structure hierarchically into modules. Once the modules were defined, the SPUR CPU behavioral

model was built from bottom-up. The lowest level modules were described by the ISP' hardware

description language as primitive modules and a set of test vectors was written to test each

module's functionality. Once these lowest level modules were tested, they were grouped together

to form higher level composite modules following the hardware's hierarchical organization. This

test and merge process was repeated until the CPU composite module was built. Consequently,

this CPU composite module actually models both the behavioral and structural characteristics of

the SPUR CPU microarchitecture although it is only called the CPU behavioral model

The structure of the SPUR CPU behavioral model is shown in Figure 3-2-2. The only com

posite modules are: reg _file, master_ ctr, and i _unit, which model the register file and temporary

registers, the master control, and the instruction unit, respectively. Most of the modules in the

SPUR CPU behavioral model are primitive modules because we try to ease the behavioral model

to silicon transformation by keeping a one-to-one correspondence between the behavioral

modules and the prospective layout modules. Consequently, most of the behavioral modules are

therefore simple components-ALU, SHIFfER and so on-whose behavior is well understood and

can be described easily in single ISP' primitive module.

Chapter 3: The SPUR CPU Experience 60

3.2.2. Behavioral Model-Formal Specification for Logic and Circuit Designers

The behavioral model of the SPUR CPU was not only used for CPU chip and SPUR system

verification (Section 3.1.3), but was also used as a "formal" specification for logic and circuit

designers. This is illustrated by the example in Figure 3-2-3. The microarchitect prepared a block

diagram that showed the input output interfaces and the logic at register transfer level for each

module in the behavioral model. Furthermore, as mentioned earlier in Section 3.2.3, a set of test

vectors was created for each module to exercise its functionality during the construction of the

Behavioral Model

wait (phil :trail) ;

if (selectBusA eq 1)

REGl =busA

else

REGl =busB;

Test Vectors

set selectBusA

set bus A

set busB

set phil

verify REGl
•
•
•

Hl

Hffffffff

HOOOOOOOO

Hl

Hffffffff

Block Dia m

bus A
<31:0>

busB
<31:0>

"Formal"

Specifications

for the Logic &

Circuit Designers

Figure 3-2-3 Formal Specification for Logic and Circuit Design Example

In this simple example, there are two 32-bit busses (busA and busB), a two by one multipler

(MUX), and a 32-bit register (REG 1). The signal phil is a clock signal and selectBusA is a con

trol signal. Register REG 1 will latch in the value on either busA or busB during every phil. This

behavior is described textually by the behavioral model, illustrated graphically by the block di

agram, and verified by the test vectors.

Chapter 3: The SPUR CPU Experience 61

behavioral model. The behavioral model of module, the block diagram, and the test vectors

together form the specification of the module to be implemented by the logic and circuit

designers.

Ideally, we would like to have CAD tools to generate the block diagram automatically from

the behavioral model, or vice versa. We would also like to have another tool to generate the test

vectors automatically from either the behavioral model or the block diagram. Finally, we would

like to have some module generators to generate the layout for us automatically from this formal

specification. Alas, such ideal CAD tools were not available for SPUR. The block diagram, the

test vectors, and most of the logic design, circuit design, and layout had to be done by hand. The

only layout that can be generated automatically from the behavioral description was simple con

trol blocks from the PLA generators.

3.2.3. Behavioral Model-An Aid for Switch Level Simulation

The layout created by hand must be verified by switch level simulation to ensure it is func

tionally correct. The verification process shown in Figure 3-2-4 ensures the layout behaves the

same as specified in the behavioral model. As discussed earlier, there is a one-to-one correspon

dence between the behavioral module and the layout module and every behavioral module has its

own set of test vectors. By running this set of test vectors through the behavioral simulator, we

can trace the results, and do a simple fonnat conversion to obtain the switch level test vectors for

the layout of that module. After the layout of all the modules was tested individually, they were

merged to fonn the CPU chip.

The behavioral model of the CPU is not verified by test vectors. It is verified by diagnostic

programs written in SPUR assembly language. Since the N.2 behavioral simulator supports

simulated memories, all we had to do was to generate a memory image using tl-Ie SPUR assem

bler and linker, load this image into the simulated memory, and start the execution. This simu

lated execution was traced and the trace informations was then coverted to switch level test vec

tors for global switch level simulation of the CPU chip.

Chapter 3: The SPUR CPU Experience

Behavioral
(N .2) Description

Extracted
Layout

Figure 3-2-4 The Verification Process

The behavioral description on the right can be the description of a primitive module, or a compo

site module, or even the description of the CPU. The behavioral description is tested by the

behavioral simulator. Behavioral simulation guidance can be provided in two different ways.

Source 1: Test vectors are used to test the primitive and composite modules' functionality.

Source 2: Diagnostic programs that are assembled into a memory image are used to test the

description of the complete CPU.

3.2.4. Important Observations

62

Three important observations can be derived from the SPUR CPU design experience. These

three observations will become important considerations as I try to develop a more analytical

approach to microarchitectural design in Chapter 5 and predict the future trends in Chapter 6. The

three observations are:

(1) A CAD tool that can transform the behavioral model directly to the layout-a silicon

compiler-will be extremely useful, but still will not solve all the problems. As illustrated

in the SPUR design process (Figure 3-2-1), such a CAD tool will only simplify the

Chapter 3: The SPUR CPU Experience

c31

p
• A •

& • R •

R

cO

High Level Model Low Level Model

Figure 3-2-5 Conflicting Requirements of the Behavioral Model

The behavioral model can be a good tool to evaluate the effectiveness of alternative microarchi

tecture if it can be build rapidly. This require the description to be more abstract- higher level.

On the other hand, if one want to be able to transform the behavioral description into layout easi

ly or even automatically, it has to be less abstract- low level. Furthermore, if one wants to use

the behavioral verification results to drive the switch level simulation effectively, the one-to-one

mapping between the Behavioral description and the layout must be carry on to a relatively low

leveL

63

implementation step. The microarchitectural design step is still a major task by itself.

You may argue that if the same microarchitecture is to be implemented in different tech-

nology as different products, then the microarchitectural development cost can be divided

among different products. Practical experience showed that to get the highest perfor-

mance from technology, however, the microarchitecture has to be customized to a tech-

nology [Pat89]. Finally, if the microarchitectural design is poor, it will be impossible for

any silicon compiler to generate a good implementation from it.

(2) Verification is time consuming-it requires a lot of human interaction time because: (a)

the designer has to create all the test cases either directly in the form of test vectors or

indirectly via diagnostic programs, and (b) the designer has to interpret the verification

result. To make matter worse, verification is usually done repeatedly at different levels.

For example, in the SPUR CPU design process (Figure 3-2-1), verification is done after

Chapter 3: The SPUR CPU Experience 64

each major steps by Instruction Level Simulation, Behavioral Level Simulation, and

Switch Level Simulation. In order to speed up the design process, the human interaction

time needed for verification must be reduced. The options are: (a) reduce the time it takes

to generate the test cases, or (b) reduce the redundant verifications among different levels.

(3) There are two conflicting requirements for the description that models the microarchitec

ture (Figure 3-2-5). The SPUR CPU behavioral model [Kon89] is more towards the low

level for two reasons. First of all, we want to use the verification results of the behavioral

model to drive our switch level simulation. Secondly, we started writing the behavioral

model late-we had already committed on most of the microarchitectural features. Conse

quently, instead of being a microarchitecture test bed, the behavioral model was used

mainly as a specification for logic and circuit designers. Ideally, we would like to model

as many alternative microarchitectures as possible such that we can evaluate the effec

tiveness of each alternative quantitatively. Due to the time we spent in modeling the

SPUR CPU at low level, we could not afford major alteration in the SPUR CPU microar

chitecture by the time we completed the first SPUR CPU model. In the future, I think

VLSI designers should work on a high-level behavioral model earlier as a test bed for

microarchitcctural ideas. Once the high-level description is completed-hopefully with

extensive CAD tools support-the designer can transform it into a low-level description

for layout generation and switch level simulation.

3.3. The SPUR CPU Problems

All known SPUR CPU problems and their solutions are listed in Appendix B. TI1is section

discusses the more "educational" problems-problems that taught us some valuable lessons. The

CPU problems can be classified into three groups:

(l) ;vticroarchitcctural Problems

The CPU chip is doing exactly what the microarchitcct designed it to do although it is not

Chapter 3: The SPUR CPU Experience 65

doing what the microarchitect wanted it to do. The microarchitect has designed it wrong!

These problems can be simulated in behavioral and switch level simulation. They were not

detected during simulation because we did not cover all possible cases or we did not realize

they were problems.

(2) Electrical Problems

The CPU chip is not doing what the microarchitect nor the logic designer designed it to do

due to unexpected electrical problems. These problems cannot be simulated in behavioral

nor switch level simulation. Careful and in-depth circuit simulation is the only way to

detect these problems. These problems exist because the switch level simulation is not low

level enough and it is not practical to run circuit simulation for the entire chip.

(3) Implementation Problems

The CPU chip is doing exactly what the logic or circuit designer designed it to do although

it is not doing what the microarchitect want it to do. The logic or circuit designer imple

mented something differently than what the microarchitect had in mind! These problems

may be detected by comparing the switch level simulation results against behavioral level

simulation results if both the switch level and behavioral level descriptions have the proper

level of detail. These problems exist because of miscommunication between the microarchi

tect and the logic or circuit designer.

3.3.1. Microarchitectural Problems

The most educational microarchitectural problem for SPUR is in the design of special regis

ters. The SPUR CPU special registers that have potential problems are:

Cwp Current register window pointer.

Swp Save register window pointer.

Kpsw Kernel processor status word.

Chapter 3: The SPUR CPU Experience

write*phi3

busSr-

I

I -1 I I

I I I 1
I __ ~ll!!~tJG_wp)_ _ LT_em_pQr!TY_ L _B~c~_p _ ...J

(a) Structure of Current Window Pointer

Assume the operation that changes Cwp from
OLD to NEW is ''killed" by a trap!

uapRcqucst ~

(I

(b) Timing in the Pipeline

Figure 3-3-1 Structure and Timing of the Special Registers

The structure of Cwp is shown in (a). All special registers are similar in that they all consist of

two parts: Current and Backup. Any instruction that modifies the special register changes the

Current part during either $4 of its Exec stage (for Cwp, it can also be changed during <j>2 instead

of $4) and updates the the Backup during <j>3 of its Wr stage. (b) shows how the SPRU CPU can

recover the special register to its old value during $4 of the Mem stage if the instruction is killed

by a trap.

Upsw User processor status word.

Ins Insert byte count register.

66

These special registers are described in details in Appendix A. Figure 3-3-1 shows the struc-

ture and the timing of the special register Cwp. Cwp is the most complex special register because

it can be loaded from four different sources (see Figure 3-3-1 (a)):

(1) Load from busS during $4 for WR_SPECIAL instruction.

(2) Load from its Backup Copy during $4 when there is a trap.

(3) Load from its plus-one copy during <j>2 for CALL instruction.

(4) Load from its minus-one copy during <!>2 for RETURN instruction.

All other special registers have similar structure and timing as the Cwp but they can only be

loaded during $4 from two sources: busS or the Backup copy. I have simplified Figure 3-3-l(a)

by showing all storage nodes as dynamic latches-a simple pass transistor follow by a buffer. In

the SPRU CPU, the Current and Backup have to be pseudo-static registers. Furthermore all pass

Chapter 3: The SPUR CPU Experience 67

gates in the SPUR CPU are composite pass gates formed by connecting NMOS and PMOS

transistors in parallel.

The philosophy behind the special register design is that the Current part is changed as soon

as possible such that the next instruction can use the new value. The Backup part is needed to

recover the old value if the instruction that changes the special register is "killed" by a trap. This

is illustrated in Figure 3-3-1 (b) which shows that even if the instruction is "killed" in the last pos-

sible time (during ¢2 of its Mem stage-see Figure 2-3-4), the SPRU CPU can still recover the

special register to its old value during <1>4 of the Mem stage.

The first mistake I made in designing the special register can be traced to Figure 3-3-l(b). In

the regular register case, if any instruction that modifies regular registers is killed by a trap, its Wr

stage is disabled and its destination register is not modified. In the special register case, if any

instruction that modifies any special registers is killed by trap, Figure 3-3-l(b) seems to indicate

trapRcquesc:s 1

3: Cwp=Q 4~ Temp--Q 6: Backup=Q
Cwp=N+l Temp=N+l Backup=N+l

(a) Protential Problem (b) SPUR CPU Problem Assume originally Cwp=N

Figure 3-3-2 Problems with the Special Registers

(a) shows the potential problem with the special registers when two consecutive instructions try
to modify the same special registers. Since the second instruction (12) changes the Temp during
¢1 of its Mem stage (Step 4) before the first instruction (II) updates the Backup (Step 5), Backup
will get the latest value from Temp one cycle too early (in Step 5 instead of Step 6). (b) shows
how this potential problem turn into real problem in the SPUR CPU when a Call or Return in
struction is killed by a trap during its Exec stage. Since the internal instruction Trap_call uses the
Backup copy of the Cwp to decide where to save the return address during <1>2 of its write stage,
the return address is saved in tl1e new window (N+ I) instead of the desired old window (N).

Chapter 3: The SPUR CPU Experience 68

that writing the Backup copy does not change anything-the Backup remains equal to OLD. Sum

marizing this error:

Mistake 1

Instead of treating special registers the same way as I treated regular registers, I did not dis

able the Wr stage (did not set writex$3 in Figure 3-3-l(a) to 0) of instructions that modify

special registers even if it is killed by a trap. I had too much confidence in Figure 3-3-l(b).

The structure shown in Figure 3-3-l(a) has another potential problem. It will not allow two

consecutive instructions to modify the same special register. This is illustrated in Figure 3-3-2(a)

where the first instruction wants to set the Cwp to P while the second instruction wants to set the

Cwp to Q. Due to the timing and the limitation of the structure, the Backup copy has the wrong

value (Q) instead of the correct value (P) during the time period Tcritical:

$3 of 11 's Wr stage < Tcritical < $3 of I2's Wr stage

If the second instruction (!2) need to use the Backup during Tcritical, it will get the wrong value. I

discovered this problem very early in the design process. I also noticed that this problem can be

fixed easily by adding one more temporary latch between the Current and its Backup. Unfor

tunately, this was not done because I made my second and third mistakes:

Mistake 2

I thought the only time the second instruction used the Backup is when it is trapped in its

Mem stage as shown in Figure 3-3-l(b).

Mistake 3

I thought nobody in his right mind will try to change the same register in two consecutive

instructions as in Figure 3-3-2(a) because the first instruction can be replaced by an NOOP.

These two mistakes lead me to my fourth mistake:

Mistake4

Instead of fixing the problem in hardware, I established a software restriction forbidding

Chapter 3: The SPUR CPU Experience 69

instruction sequence that has consecutive instructions modify the same special register.

Needless to say, I was very surprised when the potential problem shown in Figure 3-3-2(a)

tum into a real problem in the SPUR CPU shown in Figure 3-3-2(b). The two surprises are:

Surprise 1

The discovery of Mistake 3. Two consecutive instruction modifying the same register can

happen implicitly when a Call or Return is killed by a trap during its Exec stage. This is

shown in Figure 3-3-2(b). The internal instruction Trap_call, which are placed in the pipe

line by the trapRequest signal (see Figure 2-3-4), modifies the special register Cwp the

same way as the regular Call.

Surprise 2

The discovery of Mistake 2. The second instruction, in the case of Figure 3-3-2(b), the

internal instruction Trap_call will use the Backup during Tcrirical even it is not trapped. Simi

lar to the regular Call, the Trap_call use the Backup copy to decide which register window

to save the return address.

Despite these two surprises, the potential problem shown in Figure 3-3-2(a) still would not

have turned into a real problem in the SPUR CPU shown in Figure 3-3-2(b) if I had not made

Mistake 1. If I did not make Mistake 1, the Wr stage of Call or Return in Figure 3-3-2(b) would

have been disabled by the trapRequest and the Backup would not have been clobbered. Tom

Wolfe, in his book "The Right Stuff', observed that many military pilots believed a pilot was

never killed by a single mistake. Well, in this case, I sure made enough mistakes to get the CPU

into serious trouble!

Fortunately, the case shown in Figure 3-3-2(a) is a very unusual case and it will never hap

pen when the on-chip instruction cache is disabled. Unfortunately, it is so unusual that it was

never tested in behavioral simulation and we did not detect this error until we have brought up the

operating system and decided to tum on the on-chip instruction cache to increase the speed. As a

matter of fact, this is the only reason why we have problem turning on the on-chip instruction

Chapter 3: The SPUR CPU Experience 70

cache. The rumor about the on-chip instruction cache's problem has been greatly exaggerated!

Notice that the problem shown in Figure 3-3-2(b) is only a transient error because the

Backup Cwp simply has the "correct" value at the wrong time (one cycle too early). Once the

Trap_call finishes its execution, it becomes perfectly legal for the Backup to have this latest

value. However, this is bad enough to cause the Trap_call to save the return address in R26 of

the new register window instead of R26 of the old register window. This problem does have a

simple software solution. If by software convention, all procedures and trap handlers must set its

R26 to zero before returning to its return address, then the SPUR CPU can check R26 of the new

window whenever it takes a trap. If it is not zero, the case shown in Figure 3-3-2(b) must have

occurred. The software can then find out what the return address is by reading and saving this

register.

One big lesson we learned here is: Keep it regular! Whenever you make an exception (Mis

take I and 4), there is likely to be some unexpected cases to get you in the most unexpected way.

Another lesson is that there may be many cases you may never thought of during simulation

(Mistake 2 and 3) and one must find some easy way to cover more cases in simulation. This is

discussed further in Section 3.4.1.

3.3.2. Electrical Problems

The microarchitect is not the only person in SPUR that makes multiple mistakes. The cir

cuit designer also made multiple mistakes at the electrical level that resulted in an electrical prob

lem in t11e SPUR CPU. This is discussed in Section 3.3.2.1. After discussing all these problems

caused by multiple mistakes, Section 3.3.2.2 shows how one single mistake can ruin your whole

day!

3.3.2.1. A Hazardous Circuit

The circuit shown in Figure 3-3-3(a) is hazardous because the clock signal clock is gated

with other inputs in a way that it is forced to pass through two different paths before it is merged

Chapter 3: The SPUR CPU Experience

C1=0.35pF, C2=1.0pF

--l~d _____________ _

:Z.,. 4ns 6os

(a) Hazardous Circuit (b) SPICE Simulation

Figure 3-3-3 A Hazardous Circuit

The case we are interested is when Input= 5V and clock goes from OV to 5V. When clock

equals to OV, Node ExecRd is charged to 5V. When clock switches from OV to 5V, we want Ex

ecRd to stay at 5V. The only hazard that may discharge ExecRd is that there may be glitches on

the ldRd_L and ldRd signals. Our SPICE circuit simulation showed this hazard can occur only if

C2>3xC 1• However, as shown in (b), even if there are glitches on ldRd_L and ldRd, ExecRd is

still not destroyed.

71

again into another signal (ldRd_L). This hazard, however, cannot be detected by a switch level

simulator that does not have a good capacitance model. When the effect of the parasitic capaci-

tors C1 and C2 are ignored, the bottom path in Figure 3-3-3(a) has one less gate delay and will go

0 before the top path goes to 5V. There will not be any glitch on the control lines ldRd_L and

ldRd.

Mistake 1

We believed our switch level simulation and kept a hazardous circuit in our design that

combines clock signal with other signals at a place other than at the control point.

This hazard can be detected by careful circuit level simulation using SPICE. If C2 > 3xC1,

the top path in Figure 3-3-3(a) will go to 5V before the bottom path go to OV. There will be

glitches on the control lines ldRd_L and ldRd. However, if this is the only problem, Figure 3-3-

3(b) shows that ExecRd still will not be discharged unintentionally because the glitches on the

control lines ldRd_L and ldRd are not big enough. But then again, as the great philosopher Mur-

Chapter 3: The SPUR CPU Experience

~. ! ,: ... ,
i~· j
i /
•/ SnH SnH

Vin~V2
7.3pF ~ ~7.3pF

/

- - .JdZc!. - - ,/

--..... , ,ExecRd

·,\ .. ···
'(.·

·· .. .,!.·· \ \
' ' ·,·~------------

\

/

..... ___ _

Ons 4ns

(a) Clock Line as a LC Network (b) SPICE Simulation with Clock Glitch

Figure 3-3-4 Problems of the Hazardous Circuit

The SPUR CPU clock line is modeled as an LC network in (a). This simulation indicates that

there will be some ringing in the clock signal clock. (b) shows how the glitches on ldRd_L and

ldRd. which were insignificant in Figure 3-3-3(b), are now amplified by the glitches in the clock

signal. These larger glitches are big enough to discharge ExecRd accidently.

72

phy had predicted, things usually get worse before getting any better. We made our second mis-

take:

Mistake 2

Instead of placing the clock generator and clock line drivers in the middle of the chip, they

were placed on the left hand side. This resulted in long and unbuffered clock wires.

In the first version of the CPU, the clock line is approximately 8mm long. We estimated it

to have one Ohm of resistance, lOnH of inductance, and 14.6pF of capacitance. Although the

resistance is relatively small, the inductance and capacitance are big enough to cause some ring-

ing in clock line (Figure 3-3-4(a)). While the ringing in the real clock line will die down due to

resistance, Figure 3-3-4(b) shows that the initial ringing on the clock line clock are enough to

amplify the glitches on the control lines ldRd_L and ldRd such that ExecRd will be discharged

unintentionally.

Chapter 3: The SPUR CPU Experience

N-well

Vdd
Prechar e

(a) Misplaced Well Contact

busD
Vdd

Prechar e

(b) Misplaced Substrate Contact

Figure 3-3-5 Misplaced Well and Substrate Contacts

Instead of placing the well and substrate contacts on the right side of the transistor and connects
to the power supply V dd and GND respectively (the dotted line), they are placed incorrectly on
the left side and connected to the busses. These misplaced contacts form diodes between the V dd
and GND that will prevent busS in (a) to go below 4.3V and busD in (b) to go above 0.7V.

73

This problem caused the Call instruction unable to save the return address. It was first

solved in software by emulating the Call instruction. The hardware is fixed in the second version

of the CPU chip where the hazardous circuit is redesigned and the clock generator is moved to the

center of the chip to reduce the length of the clock wire. The important lessons here is that one

should never trust the CAD tools blindly and use any marginal design just because the CAD tools

predict it will work. There are just too many second order effects you and the CAD tools may

have neglected.

Careful design is still necessary! Despite all rumors, there is still no good substitution for a

good electrical engineer knowing what he is doing and working very carefully.

3.3.2.2. Well Problems

The last two problems discussed in Section 3.3.1 and 3.3.2.1 are both caused by multiple

mistakes. In this section, I want to show how one single mistake can cause serious problem. One

of the supposingly good features of the Magic Layout System [SMH85] we used is that the

CMOS layout artists do not have to worry about well placement-Magic will generate the wells

automatically. Unfortunately, this simplifying assumption also means the Magic Layout System

Chapter 3: The SPUR CPU Experience 74

does not extract the well from the layout when it generates the switch level and circuit level

description. Thus any layout verification tools based on the Magic Layout System cannot check

the well either. One of the first things most circuit designers will warn you about this approach is

that you may end up with floating wells. However, one of the most painful lesson we learned in

SPUR is that floating well is not the only possible problem in this approach.

One problem in the SPUR CPU is the misplaced well and subtract contacts shown in Figure

3-3-5. In theN-well process used by SPUR, a misplaced well contact will cause a node to stuck

at one (Figure 3-3-S(a)) and a misplaced substrate contact will cause a node to stuck at zero (Fig-

ure 3-3-S(b)). In the SPUR CPU, we are fortunate that all misplaced well contacts are at redun-

dant precharge transistors in the lower datapath. As illustrated in Figure 3-3-6, this enabled us to

solve the stuck at 1 problem by cutting off the power supply to these precharge devices. The

stuck at 0 problem, however, cannot be solved by laser cutting and we were forced to do most

primary testing using a crippled 8-bit CPU until the problem was fixed in the second version of

Vdd

Cut off by laser beam

+---~=7';-,-,-~?Vdd •
To maJor

power bus

Lower data ath

busS

Figure 3-3-6 A Quick Hardware Fix for Misplaced Well Contacts

The misplaced well contacts are all at the redundant precharge PMOS transistors at the lower da

tapath. These precharge transistors are redundant because busS is also prechargcd by transistors

at the upper datapath. Furthermore, the V dd lines that supply power to these redundant transistors

are connected to major power busses on either side. Therefore, by using the laser cutting system

at Information Science Institute [Par87] to cut off the V dd supply on both sides, we can isolate

these precharging device without affecting the CPU function.

Chapter 3: The SPUR CPU Experience 75

the SPUR CPU.

The floating well is not a problem in the SPUR CPU but it is a problem in the Cache Con-

troller chip. The Cache Controller floating well problem is discussed here because it is quite dif-

ferent from what most people expected from floating well. The first problem come to most

people's mind concerning floating wells is latch up. In the Cache Controller case, however, we

learned that floating well can also be a problem if there is any dynamic storage node inside the

floating well. This is illustrated in Figure 3-3-7. This is ironic because a common technique to

build dynamic storage node is to use a pair of pass transistors and the well for one of these

transistors is likely to be a floating well because it is usually hard to place a well contact in this

congested area. As shown in Figure 3-3-7, if the PMOS pass transistor is in a floating well, the

dynamic register will retain its value correctly only if the well is above 4.3V.

One thing we learned after we discoved all the well problems is that all these problems can

be detected by Magic if we do some tricks to the Magic technology file. In order to detect these

cl,d Well Dsave

ov X Din

sv :>=4.3V Dsave(t-1)

Din Well sv <4.3V Din (Oh Boy!)

ov Well (t-1)
P-Substnte sv 4.3V

(a) Dynamic Register (b) PNPTransistor (c) Equivalent Circuit

Figure 3-3-7 Floating Well Problem

(a) shows a dynamic storage device in which data is stored dynamically in the node Ds~)

shows how a PNP transistor is formed if the PMOS transistor whose gate is connected to clock is

in a floating well. (c) shows the equivalent circuit. When clock is asserted (OV), the dynamic re

gister latches in the data Du. correctly. Unfortunately, when clock is disasserted (5V), this

dynamic register holds the value correctly only if the Well node is above 4.3V. Since the Well

node is charged to to 4.3V whenever Du. is 5V and will stay there until leakage current discharge

it. this dynamic register will operate correctly most of the time.

Chapter 3: The SPUR CPU Experience 76

errors in Magic, the designer must request Magic to display the wells explicitly. Therefore I con

cluded that as far as the Magic Layout System is concerned, well-independent design style can be

dangerous, although it may seem attractive in theory.

3.3.3. Implementation Problems

The only implementation problem we have is that the backup copies of all special registers

(Figure 3-3-l(a)) were implemented incorrectly in dynamic registers instead of static or pseudo

static registers. Since the current copy loads from its backup whenever a trap occurs, the backup

copy must retain the correct value at all time. This fact was so obvious to me, the microarchitect,

that I did not even bother to specify it explicitly in the documentation. The circuit designer on the

other hand did not have the same understanding of the operation and thought a dynamic register

was sufficient.

This problem is not detected during switch level simulation because the switch simulation

do not simulate leakage current in the dynamic node. Furthermore, since all our test programs

have short run time (relative to the real work load), the leakage current is not a problem either.

This problem was not discovered until we started debugging the operating system. It was fixed in

software by interrupting the CPU regularly to refresh (read and write back) the special registers.

The lesson here is that the microarchitect should specify everything explicitly because what is

obvious to him may not be obvious to the logic and circuit designers who are looking at the

design at a much lower and local level.

3.4. The SPUR CPU Technical Lessons

The SPUR CPU design process and all the problems taught us some valuable lessons. The

technical lessons are summarized in this section. The philosophical lessons are summarized Sec

tion 3.5.

Chapter 3: The SPUR CPU Experience 77

3.4.1. Simulation and Testing Lessons

The SPUR CPU simulation process consists of two levels: behavioral level and switch

level. They have already been discussed in Section 3.1.3 and Section 3.2.3, respectively. The

SPUR CPU chip testing process shown in Figure 3-4-1 also consists of two levels: chip test and

board test. The switch level simulation vectors were used for initial chip testing. For chip debug-

ging, we found out we must be able to write a new test, run it, and verify the results rapidly. This

is accomplished by automating the five-step chip testing process.

The behavioral level diagnostics for the SPUR processor board (see Processor Behavioral

Model, Figure 3-1-3) were used for initial board test. In order to debug the processor board, we

must also write new tests. Although the board test for SPUR is much more extensive than that

for RISC II and SOAR, it is still not the ultimate test. One important lesson we learned is that the

ultimate test came when we tried to bring up the operating system [OCD88]. This is the time

when we discovered most of the problems. It is interesting to note that the operating system in its

first 5ms of operation requires the SPUR CPU to execute more instructions than the total number

Chip Test ·Cpu or CC Diagnostics

r.=:~,..t~ D DAS 9100 '--""'"""='"..., DAS Por11

TeotBoord

Board Test· Uniprocessor Diagnostics

Memory Board

1 l
SPUR Board

J.

BG OoAS9lOO

Figure 3-4-1 SPUR CPU Testing Strategy

The chip test is a five-step process: (1) Generate test vectors on the SUN work station by running

behavioral diagnostics. (2) Down load the vectors onto the DAS. (3) DAS drives the test board

and collects output vectors. (4) DAS sends output vectors back to the SUN. (5) Verify output

vectors on the SUN. After the CPU and Cache Controller chips have been tested independently,

they are tested together on the SPUR processor board. Uniprocessor diagnostics are loaded onto

the memory board and the DAS is used for debugging.

Chapter 3: The SPUR CPU Experience 78

of instructions the switch level simulator has simulated (fable 3-1-3). This is unavoidable

because real machines must run much faster than the simulator. It is not a major problem if the

diagnostics are well chosen. There were, however, a couple of important lessons we learned con

cerning simulation and testing.

3.4.1.1. Lesson 1: One Size Does Not Fit All

The switch level simulator is twenty times slower than the behavioral simulator (60

sec/cycle versus 3 sec/cycle). Therefore only a subset of the behavioral diagnostics are used in

switch level simulation. Initially, we envisioned that the following process could be fully

automated:

(1) Run the diagnostics in the behavioral simulator and trace the input/output ports of the

CPU.

(2) Convert the traces into switch level test vectors for switch level simulation.

(3) Convert switch level test vectors to logic analyzer vectors for chip testing.

We encountered two problems in automating this process. First, the behavioral simulator,

switch level simulator, and the logic analyzer all have different input/output formats. More

importantly, each initializes the chip differently and propagates "don't care" conditions dif

ferently. Consequently, we must edit some automatically generated test vectors and examine

whether reported errors are real errors. Both tasks are time consuming and error prone. The

designers of different simulators and the logic analyzer must work together to avoid this problem.

Second, behavioral diagnostics and switch level diagnostics have different requirements.

Behavioral diagnostics are verification diagnostics and you want them to be long and general.

Switch level and chip testing diagnostics, on the other hand, are debugging diagnostics-you want

them to be short and specific. We solved this problem by building long verification diagnostics

from short self-testing debugging diagnostics.

Chapter 3: The SPUR CPU Experience 79

3.4.1.2. Lesson 2: The Danger of Simulation

In our simulation world, diagnostics are executed one at a time: Start a diagnostic, finish it,

then start the next diagnostic. This is not realistic because in the real world, programs seldom run

from start to finish without being interrupted. As a matter of fact, the special registers problem

discussed in Section 3.3.1 is one case where the SPUR CPU cannot recover from an interrupt. In

order to make behavioral simulation more realistic, we must ensure that each diagnostic can run

successfully even if its execution is interrupted randomly. An interesting approach is shown in

Figure 3-4-2 where the execution of one diagnostic is interrupted constantly by another diagnos-

tic.

This approach has several advantages. One major reason for multiplicative complexity is

the random interaction of different architectural features. This random interaction is caused by

Dianostic B

. . .

Figure 3-4-2 Random Simulation Algorithm

This example limits the number of active diagnostics to two: A and B. The software manager be

gins the simulation by randomly starting a diagnostic, say diagnostic N. After a random period of

time, the manager interrupts diagnostic N's execution by starting another randomly selected diag

nostic, say diagnostic M. The manager then switches between the two diagnostics until one of

the diagnostic is completed. The manager then randomly selects another diagnostic: diagnostic P.

Each diagnostic must be self checking and the manager should terminate the simulation as soon

as any error is detected.

Chapter 3: The SPUR CPU Experience 80

random events such as traps and interrupts and can create a large number of CPU states. It is very

time consuming (it may not even be possible) for the designer to visualize all the possible states

and write diagnostics to cover them. However, by letting diagnostics interrupt each other ran-

domly, we can explore a large number of CPU states by using only a relatively small set of diag-

nostics. Furthermore, due to random interaction, each time a new diagnostic is added to the set,

the increase in CPU states that can be tested goes beyond the checks in the new diagnostics.

3.4.2. The Nature of Microarchitectural Design

The simulation and testing lessons we learned are only part of the story. The root of the

problem is a gap in the computer engineering education. The term microarchitecture, as defined

in Chapter 1, is the specification of how the macro architecture is implemented in a given technol-

ogy. Microarchitectural design has been treated more like an art than science. This is unfor-

tunate because you can teach science but you cannot teach art! Consequently, the art ofmicroar-

chitectural design is not well taught and, as shown in Figure 3-4-3, there is a gap in the computer

Microarchitectural Design

Mead & Conway Style VLSI Design

Figure 3-4-3 The Gap in Computer Engineering Education

At the highest level, Computer Science classes are available for computer architecture. At the

lowest level, Electrical Engineering classes are available for digital circuit design. There is a big

gap between these two levels. In my opinion Mead & Conway style VLSI design class only

bridges the gap between these two levels because it is a only a digital circuit design class in in

Computer Science perspective.

Chapter 3: The SPUR CPU Experience 81

engineering education. This gap is not as apparent in the past in the academic world because most

universities' VLSI projects are either driven from the top-implement architectural innovations, or

driven from the bottom-try out fast circuit technology. The only way to close this gap is to make

the microarchitectural design process more a science than art by developing a more systematic

approach to microarchitectural design.

In my opinion, the key of making the microarchitectural design process into a science is to

put more emphasis on the tradeoffs between performance, resources, and complexity. As will be

discussed in Section 4.1, one way to measure performance is the T xI x C product where T is

cycle time, I is the number of instructions it takes to execute certain benchmark programs, and C

is the average number of cycle per instruction. Chip area and transistors count are two examples

Performance Performance

Resources

(a) (b)

Performance

Complexity

(c)

Figure 3-4-4 Performance as a Function of Resources and Complexity

(a) is a three dimensional plot of performance as a function of resources and complexity. (b) and

(c) are the two-dimensional projections of this design surface onto the resources and complexity

axes respectively. (b) shows that for a fixed amount of complexity, increase the amount of

resources will increase the performance. Similarly, as shown in (c), for a fixed amount of

resources, increase the amount of complexity will increase the performance. In either case, the

rule of diminishing return applies. The RISC argument carries one step further than the rule of di

minishing return. RISC proponents suggest that as the complexity gets too high, the performance

actually goes down.

Chapter 3: The SPUR CPU Experience 82

of resources metrics. The complexity of a design can be considered qualitatively as a measure of

how hard it is to specify and implement that design. The number of cycles of diagnostics and the

simulation effort are examples of quantitative complexity metrics.

Performance, resources, and complexity can be considered as three independent dimensions

in a multidimensional design space. With other variables such as technology and designer's abil

ity in this multi-dimensional design space being constant, alternative microarchitectures are res

tricted to points on a three-dimensional design surface shown in Figure 3-4-4(a). Without a

high-level design automation system, a designer must go through the process of pruning this

design space by making trade-offs. The most systematical way to make these trade-offs is to per

form experiments that gives quantitative estimates in the performance, resources, and complexity

dimensions. A designer would like to get these estimates with minimal effort and as early as pos

sible in the design process such that more alternative microarchitectures can be evaluated.

Figure 3-4-4(a) is a simplified view of the design space because, in reality, resources and

complexity are not completely independent. However, they are not as dependent as most people

think either. If resources are measured in terms of area and complexity is defined as the degree of

difficulty in understanding the operation of a module, then resource and complexity can be quite

independent. For example, a module may be small but its operation can still be very difficult to

understand. In Chapter 4, I will evaluate the different SPUR CPU features in terms of the perfor

mance, resources, and complexity tradeoffs. Before I move on to the next chapter, I like to list the

philosophical lessons I learned.

3.5. The SPUR CPU Philosophical Lessons

In this section, we will summarize some of the philosophical lessons we learned in design

ing the SPUR CPU. Our experience has shown that these apparently trivial lessons may easily be

forgotten.

Chapter 3: The SPUR CPU Experience 83

Keep it Simple. The simplest solution that works is also the most elegant solution because:

(1) unless you are willing and able to use the highest performance solutions for all components,

the overall performance gain from the improvement of a single component is limited, (2) simple

solutions require less design and implementation time and thus can make use of newer technol

ogy that may negate many performance advantages of the complex solution, and (3) the simplest

solution requires the least human designer time which in a sense is the most limited and expen

sive resource. Consequently, as long as the simplest solution meets the performance goal and is

within the resources available range, the designer should accept the solution and move onto other

problems waiting for him to solve. For example, the SPUR CPU uses a simple 4-phase clocking

scheme that places a lower limit on the CPU cycle time (approximately lOOns). This is acceptable

because the external bus and the memory system cannot run any faster than 1 OOns.

A Working Whole is Better than a Working Part. A designer should spend his time

solving unsolved problems instead of trying to find a better solution for an already solved prob

lem. Professor John Ousterhout at Berkeley once said: "The biggest performance enhancement is

achieved when going from a non-working system to a working system." This may sound trivial

but whenever a designer is not making any progress in solving a new problem it can be very

tempting for him to go back to something he already understands and try to optimize it. For

example, we did not attempt to reduce the size of the CPU's master control PLA any further

because it can already fit nicely into its assigned space.

The A in CAD Means Aided. The CAD tools are there to help the designer, not to replace

him. The result can be catastrophic if the designer does not think nor work carefully and expects

the CAD tools to do all his work and catch all his foolish mistakes. For example, switch level

simulators or even electrical rules checkers cannot detect many electrical problems such as cou

pling, charge sharing, and race conditions. They can only be avoided by careful design. Further

more a VLSI designer should realize that building his own simple tools is the best way to define

his problems for CAD tool designers. No matter how simple the tool he build is, it is probably

Chapter 3: The SPUR CPU Experience 84

still the best way to define the problem. Once the problem is better defined, it can be explained to

CAD tools designers who can then develop tools that are more general, have more features, and

more efficient for the problem.

The Rubik's Cube Analogy. One of the most interesting features of the Rubik's Cube

puzzle is that each step in solving the puzzle usually has the horrendous effect of destroying some

results of previous steps. Similarly the designer must be willing to throw away some of his work

that does not perform in order to finish the design project. More importantly, if the designer is

unwilling to throw away any of his work, he probably will be unwilling to start until he has all

the answers. Unfortunately, in most if not all cases, one will never get all the answers unless one

starts. For example, in the beginning of the SPUR project, we did some layout to estimate the

relative sizes of various modules. None of this layout was used in the final CPU.

Keep it Regular. The designer must always try to follow the same regular pattern. Our

experience in SPUR is that whenever we make an exception to save area, power, or just being

lazy, we usually regret it later. For example, in SPUR, everything in the behavioral level is

modeled in N.2 [EEE85] except the FPU, which is modeled in SLANG [Van82]. Although the

reasons for using SLANG have long been forgotten, none of us forget the grief it caused when we

tried to simulate the FPU with the rest of the system.

Chapter 3: The SPUR CPU Experience 85

3.6. REFERENCES

[EEE85] N.2 Simulator User's Manual, ENDOT, Inc., Cleveland, OHIO, 1985.

[EgK88] S. Eggers and R. Katz, ''A Olaracterization of Sharing in Parallel Programs and its
Application to Coherency Protocol Evaluation", The 15th Annual International
Symposium on Computer Architecture, Honolulu, Hawaii, May 30-June 2, 1988.

[Gib87] G. Gibson, ''Estimating Performance of Single Bus, Shared Memory
Multiprocessors", Report No. UCB/Computer Science Opt 87/355, Computer
Science Division, EECS Department, University of California, Berkeley, May 1987.

[HaK86] P. Hansen and S. Kong, "SPUR Coprocessor Interface Description", Report No.
UCB/Computer Science Opt 87/308, Computer Science Division, EECS
Department, University of California, Berkeley, October 1986.

[Kat83] G. H. Katevenis, Reduced Instruction Set Computer Architectures for VLSI, Doctoral
Dissertation, Computer Science Division, EECS Department, University of
California, Berkeley, October 1983.

[KEW85] R. Katz, S. Eggers, D. Wood, C. Perkins and R. Sheldon, "Implementing A Cache
Consistency Protocol", The 12th Annual International Symposium on Computer
Architecture, Boston, Massachusetts, June 17-19, 1985.

[Kat85] R. Katz, et al., "Memory Hierarchy Aspects of a Multiprocessor RISC: Cache and
Bus Analyses", Report No. UCB/Computer Science Opt. 85/221, Computer Science
Division, EECS Department, University of California, Berkeley, January 1985.

[KWG87] S. Kong, D. Wood, G. Gibson, R. Katz and D. Patterson, "Design Methodology for a
VLSI Multiprocessor Workstation", VLSI Systems Design VIII, 2 (February 1987).

[Kon89] S. Kong, "The SPUR CPU Behavioral Model", Report No. UCB/Computer Science
Opt. 89/508, Computer Science Division, EECS Department University of
California, Berkeley, May 1989.

[Lee86] D. Lee, Datapath Design Considerations for a High Performance VLSI
Multiprocessor , Master Report, EECS Department, University of California,
Berkeley, CA 94720, November, 1986.

[0CD88] J. Ousterhout, A. Cherenson, F. Douglis, M. Nelson and B. Welch, "The Sprite
Network Operating System'', Computer 21,2 (February 1988).

[Par87] B. Parker, Private Communication Information Science Institute, December, 1987.

[Pat82] D. A. Patterson, "A RISCy Approach to Computer Design", COMPCON 1982,
February, 1982.

[Pat89] D. Patterson, Private Communication Computer Science Division, EECS
Department, University of California, Berkeley, CA 94720, January, 1989.

[SMH85] W. Scott, R. Mayo, G. Hamachi and J. Ousterhout, editors. "1986 VLSI Tools: Still
More Works by the Original Artists", Report No. UCB/Computer Science Opt.
86/272, Computer Science Division, EECS Department University of California,
Berkeley, CA 94720, December 1985.

[Tay85] G. S. Taylor, "SPUR Instruction Set Architecture", in Proceedings of CS292i:
Implementation of VLSI Systems, R. Katz (editor), Computer Science Division,
EECS Department, University of California, Berkeley, September 1985.

[Tay86] G. Tayloret al., Evaluation of the SPUR Lisp Architecture, The 13th Annual
International Symposium on Computer Architecture, Tokyo, Japan, June 2-5, 1986.

[Ung84a] D. Ungar, "Generation Scavenging: A Non-disruptive High Performance Storage
Reclamation Algorithm", ACM Software Engineering Notes/SIGPLAN Notices

Chapter 3: The SPUR CPU Experience 86

Notices Software Engineering Symposium on Practical Software Development

Environments, Pittsburg, April, 1984.

[Ung84b] D. Ungaretal., "Architecture of SOAR: Smalltalk on a RISC", The 11th Annual

International Symposium on Computer Architecture, Ann Arbor, Michigan, June 5-7,

1984.

[Van82] K. VanDyke, Slang: A Logic Simulation Language, Master Report, Computer

Science Division, EECS Department, University of California, Berkeley, CA 94720,

June, 1982.

[WEG87] D. Wood, S. Eggers and G. Gibson, "SPUR Memory System Architecture", Report

No. UCB/Computer Science Dpt. 87/394, Computer Science Division, EECS

Department, University of California, Berkeley, December 1987.

[ZHH88] B. Zorn, P. Hillfinger, K. Ho, J. Larus and L. Semenzato, "Features for

Multiprocessing in SPUR LISP", Report No. UCB/Computer Science Dpt. 88/406,

Computer Science Division, EECS Department, University of California, Berkeley,

March 1988.

Chapter 4: Microarchitectural Evaluation

Chapter 4

MICRO ARCHITECTURAL

EVALUATION

Few things are harder to put up with than the annoyance
of a good example.

Mark Twain

87

This chapter evaluates various features of the SPUR CPU in terms of their impact on perfor-

mance, resources, and complexity. Resources and complexity are quantified by sets of metrics.

Since each feature has different impact on resources and complexity, the metrics used to quantify

the impact may be different. Therefore, I will talk about the metrics for each feature separately

when I discuss each feature. On the other hand, in order to study the performance impact quanti-

tatively, I must develop a performance model. This is done in Section 4.1. This performance

model can then be used to evaluate the performance improvement due to each feature by compar-

ing the performance of the SPUR CPU against the performance of an imaginary stripped down

SPUR CPU that does not have that feature. The SPUR CPU features to be evaluated in this

chapter are: LISP support in Section 4.2, FPU support in Section 4.3, longer pipeline in Section

4.4, on-chip instruction cache Section 4.5, and multiprocessing support in Section 4.6. Insights

base on this evaluation are summarized in Section 4.7.

4.1. The Performance Model

Performance of a microarchitecture can be measured independent of implementation con-

siderations by measuring the number of instructions it takes to execute some benchmarks (I):

Chapter 4: Microarchitectural Evaluation 88

Performance = f
However, just as cache perfom1ance cannot be measured in terms of hit rate alone [Hi187a]

[Hil88], ignoring implementation considerations can be misleading. In order to include imple-

mentation considerations, microarchitectural perfonnance can be measured in tenns of the TIC

product [Hen85]:

Performance 1
= TxlxC (4.1.1)

where

T = Cycle time

I = Number of instructions it takes to execute a benchmark

C = Average number of cycles per instruction

Clearly T xI x C :F. I. Therefore, perfonnance is not simply a function of instruction count

During the design process, the microarchitect must make decisions constantly concerning

whether to include certain features in the microarchitecture. In order to make these decisions

quantitatively, the microarchitect wants to be able to use the perfonnance model" to predict the

perfonnance improvement due to each feature under consideration. This can be accomplished by

comparing the perfonnance of a base microarchitecture without the feature under consideration

against the perfonnance of the enhanced microarchitecture with the feature.

In the following discussion, I will refer to the feature under consideration as feature; . I will

also use subscript "o" for the base microarchitecture without feature; (T0 , Io, and Co) and sub-

script "i" for the enhanced microarchitecture with feature; (T;, I;, and C;). Using this notation,

the performance gain and percentage performance improvement due to feature; can be defined as:

. T. X[XC
GAIN; = Performance gam due to feature; = f; x 1: x c; (4.1.2)

IMP; = Performance improvement(%) due to feature; = [GAIN;- 1] x 100% (4.1.3)

The T and C terms in the above equations take implementation considerations into account

Therefore, the microarchitect must consider not just how the new feature (feature;) will affect I

Chapter 4: Microarchitectural Evaluation 89

(change from 10 to I;) but also how it will affect T (change from To toT;) and C (change from Co

to C;). The microarchitect must estimate the effect on T and C based on his experience~r by a

systematic approach discussed in Chapter 5. The effect on I can be obtained from the macroarchi

tect who runs benchmarks on the instruction level simulators for the enhanced (measure I;) and

base architecture (measure lo). Since architectural features are added to perform a specific func

tion more efficiently, another way to obtain the effect on I is to estimate it indirectly by using

Equation 4.1.4, derived below. Before I can explain Equation 4.1.4, I must define the following

terms:

10 = Number of instructions it takes to execute a benchmark without feature i,

I; = Number of instructions it takes to execute a benchmark with feature i,

U; = Number of times feature i is used in the benchmark,

F; = Frequency of feature i in the benchmark = ~·

Mo = Number of instructions needed to perform the desired function without I eature;, and

M; = Number of instructions needed to perform the desired function with I eature;.

Most architectural features are added to reduce the number of instructions to perform cer-

tain function. In such cases, Mo > M;. The number of instructions it takes to execute a benchmark

withoutleature; (lo) can now be written in terms of I;, M;, M 0 andF;:

/ 0 = /; -F;xl;xM; +F;xl;xM0 =/;X [1 +F;x(M0 -M;)]

Substituting Equation 4.1.4 into 4.1.2 and 4.1.3, we have:

GAIN; = * x g: x [1 + F;x(Mo- M;)J

IMP1 = [*X g; x [l +F1x(M. -M1)J-t] X !00%

(4.1.4)

(4.1.5)

(4.1.6)

Figure 4-1-1(a) is a plot of Equation 4.1.6 where Mo = 3 and M; = 1. This is the case where

adding the new feature enables one instruction to perform the same function that used to be per

formed by three instructions. The p factor in Figure 4-1-1 is defined as the product of the cycle

time ratio [{f-] and average number of cycles per instruction ratio [g;] . Notice that as the p

Chapter 4: Microarchitectural Evaluation

0.3 0.4 05 0.6 R

-40 (b)

Figure 4-1-1 Performance Graphs

Each line in (a) shows the performance improvement as a function ofF; for Mo = 3, M; = 1, and
constant p factor. (b) shows the case where the p factor is a decreasing function ofF; and p = 1
when F; is small. In this case the performance improvement will follow the solid curve that is
close to p = 1 line when F; is small. As F; increases, the curve level off and follows the lines
with smaller p factor.

90

factor gets smaller, the advantage of the new feature is reduced in two directions: (1) the line is

shifted down and, (2) the slope of the line decreases. For example, if the new feature has no

effect on the cycle time (T; = T0) nor on the average number of cycles per instruction (C; = T0),

then p = 1 and there is a 60% performance gain if the new feature is used 30% of the time. How-

ever, if this feature increases the cycle time and the average number of cycles per instruction by

10% (T; =1.1XT0 and C1 =l.lxCo), thenp =0.82 and the performance gain is only 32%.

Figure 4-1-1(b) shows the performance improvement as a function of F1 when the p factor

is a decreasing function of F1• This is the case if the feature you added is a new instruction that

takes longer than the original average number of cycles (Co) to execute. This is more complicated

because the new average number of cycles per instruction (Ci) goes up when the new feature (the

new instruction) is used more frequently (as F1 increases). When the frequency of this instruction

Chapter 4: Microarchitectural Evaluation 91

is small (Fi = 0), the new average will still be close to the original average (Ci =Co). However, as

the frequency of this instruction increases, the new average becomes bigger than the original

average (C, >c.) and the p factor [P- {;-x g;] decreases. In this case, even if the cycle time is

not affected by the new feature (Ti =To), you can enjoy the perfonnance improvement of p=l

only when Fi is small.

4.2. LISP Support Evaluation

The SPUR CPU supports LISP by storing the type and generation infonnation in the 8-bit

tag field of the register (Figure 2-1-2) and perfonning tag checking in parallel with the execution

of the following instructions (see Appendix A for a detailed discussion of the instruction set):

Add, Sub, And, Or, Xor, Sll, Sra, and Sri:

The CPU checks both operands to ensure both operands are 32-bit integers (Fixnum).

Store 40:

The CPU checks the generations of the operands to ensure the generation boundary is not

crossed.

Cxr and Cxr ro:

The CPU checks the pointer of the operand to make sure it is either a Cons or Nil.

Cmp_branch and Cmp_trap:

If the branch condition requires comparing the lower 32-bit of the two operands, the CPU

checks to make sure either both operands are Fixnum or both operands are Character.

The impact of hardware tag checking on LISP program perfonnance, resources allocation,

and complexity are evaluated in Section 4.2.1, Section 4.2.2, and Section 4.2.3, respectively. The

results are summarized in Section 4.2.4.

Chapter 4: Microarchitectural Evaluation 92

4.2.1. LISP Support-Impact on Performance

In this section, I will use the performance model developed in Section 4.1 to evaluate the

impact of hardware tag checking on performance by comparing the performance of the SPUR

CPU against an imaginary stripped down SPUR CPU that does not support tag checking. I will

use the subscript "i" for the SPUR CPU (Tj, Cj, and Mi) and subscript "o" for the stripped down

CPU (To, Co, and Mo). In order to give the stripped down CPU the benefit of the doubt, I assume

the stripped down CPU stores the type and generation information at some easy to access location

such that the worlc it take to store and retrieve this information is the same as reading and writing

the tag in the SPUR CPU. Furthermore, I assume that if a type or generation violation occurs,

both the CPU and the stripped down CPU will handle the unusual cases similarly. Consequently,

0.2 0.3 0.4 O.S Fi
(a)

Figure 4-2-1 Performance Improvement due to Tag Checking

1..!!.. • ...9!..
Ti a

0.3 p

(a) shows the performance gain due to hardware tag checking as a function of F;. The best,

(Mo = 7, Fi = 0.34) median, (Mo = 5, Fi = 0.23), and the worst arguments (Mo = 3, F; = 0.12)

for having explicit tag checking are marked in this diagram. (a) assumes T; = To and Ci = Co.

(b) shows the effect if hardware tag checking increases the cycle time (T; > To), or the average

number of cycles to execute a instruction (Ci > C0), or both.

Chapter 4: Microarchitectural Evaluation 93

the only difference is that the SPUR CPU checks the type and generation information implicitly

in parallel with the execution of certain instructions while programs written for the stripped down

CPU must have explicit instructions to do the type and generation checking. When violations

occur, the SPUR CPU will trap to the unusual cases handlers while the stripped down CPU will

branch to the unusual cases handlers. Since the SPUR CPU checks the tag implicitly whenever

the special instructions are executed, the SPUR CPU takes one instruction to perform tag check-

ing:

(4.2.1)

According to the SPUR LISP group [Zor89], LISP programs for the stripped down CPU take

between three to seven instructions to do the type or generation checking explicitly:

3 S M0 S 7 => Median M0 = 5 (4.2.2)

Since the SPUR CPU checks the tag in parallel with the instruction's execution, the average

number of cycles to execute each instructions is NOT affected by adding the feature:

(4.2.3)

The performance improvement, assuming hardware tag checking has no effect on the cycle

time [{;--=~,can be estimated using the perfonnance model (Equation 4.1.6) and the values

given by Equation 4.2.1, 4.2.2, and 4.2.3. Figure 4-2-1(a) is a plot of the performance improve-

ment as a function ofF; for Mo = 3, Mo = 5, and M0 = 7. According to George Taylor [Tay86], the

percentage of instructions that require type and generation checking is between 12% and 34%:

12% SF; s 34% => Median F; = 23% (4.2.4)

Based on Equation 4.2.2 and Equation 4.2.4, we have

Median argument for having implicit tag checking: Mo = 5, F; = 0.23

Best argument for having implicit tag checking: Mo = 7, F; = 0.34

Worst argument for having implicit tag checking: Mo = 3, F; = 0.12

Chapter 4: Microarchitectural Evaluation 94

The performance improvement, assuming hardware tag checking has no effect on the cycle

time [} = 1] nor on the average number of cycles per instruction [E -1] is predicted in Fig

ure 4-2-l(a) to be 204%, 92%, and 24%, respectively. If having hardware tag checking increases

the cycle time (T; > T0), or the average number of cycles to execute a instruction (C > C0), or

both. then Figure 4-2-l(b) predicts the performance improvement to be less than the improvement

predicted in Figure 4-2-l(a). For example, the 24% performance gain predicted by the worst

argument will be completely nullified if adding hardware tag checking caused an increase in the

cycle time such that f- :::: 0.8. As will be explained at the end of Section 4.2.3, the point p = 0.4

can be considered as the place where MIPS-X resides based on Steenkiste 's LISP analysis

[StH88].

The horizontal axis of Figure 4-2-l(b) is not labeled simply as if although I have argued

g; = 1 in Equation 4.2.3. It is still labeled as p = * x g; to emphasis the fact although

hardware tag checking does not affect the average number of cycles per instruction directly

(Equation 4.2.3), it may still change the average indirectly. For example, if we do not implement

hardware tag checking and somehow can transfer the effort to improve the on-chip instruction

cache, this better instruction cache may reduce the average number of cycles per instruction form

1.8 to 1.5. We can then still achieve p=0.8 even if the cycle time is not changed [¥,-1]:

I have defined the critical p factor (pcritical) as the value of p at which performance improve-

ment of the SPUR CPU over the stripped down CPU is zero. As shown in Figure 4-2-l(b), the

critical p factor for the best case is Pcritical = 0.33, the median case is Pcritical = 0.53, and the worst

cases is Pcritical = 0.81. Let us give the stripped down CPU the benefit of the doubt and assume the

effort we saved in not implementing hardware tag checking can be used to improve the cycle time

and average number of cycles per instruction each by 5%:

Chapter 4: Microarchitectural Evaluation 95

p = i- X -§- = 0.95 X 0.95 = 0.90

The perfonnance improvement due to LISP support is reduced to 173% for the best case, 73% for

the median case; and 12% for the worst case.

4.2.2. LISP Support-Impact on Resources

The hardware tag checking that supports LISP requires six special instructions, eight extra

tag bits in the lower datapath, six extra branch conditions and four extra trap conditions. The six

special instructions are (see Table A-3-1 and Table A-3-2 in appendix A for a more detail discus-

sion of these instructions and Cache Operations):

(1) LD _ 40- Load the 32-bit data and 8-bit tag field of the 40-bit register simultaneously.

(2) LD _ 40_RO- Similar toLD_ 40 except it sends a special Cache Operation to the Cache

Controller for multiprocessing.

Six Extra Eight Extra Branch Extra Trap
Total

Instructions Tag Bits Conditions Conditions

Control PLA
4/54 7% 0/54 0% 0/54 0% 0/54 0% 7%

Outputs
Control PLA

2.2/84 3% 0/84 0% 0/84 0% 0/54 0% 3%
Products

Chip Area
0/57 0% 2.7/57 4.7% 0.1/57 0.2% 1.1/57 1.9% 7%

(mmx mm)

Transistors
0/115 0% 8.7/115 7.6% 0.1/115 0.1% 1.1/115 0.9% 9%

(x 1000)

Number of
0/156 0% 8/156 5% 0/156 0% 0/156 0% 5%

Signal Pins

Table 4-2-1 Resources Metrics for Hardware Tag Checking

Each column lists the absolute and percentage impact of each sub-feature on the different
resources metrics. The percentage impact is calculated by dividing the absolute impact by the to
tal value of that metric in the SPUR CPU. The total impact of these sub-features, that is the im
pact due to hardware tag checking, is the sum of four columns and is shown in the right most
column.

Chapter 4: Microarchitectural Evaluation 96

(3) CXR - Special LD _ 40 instruction that perfonn LISP pointer type checking in parallel.

(4) CXR_RO- Similar to CXR except it sends a special Cache Operation to the Cache Con-

troller for multiprocessing.

(5) RD _TAG- Read the 8-bit tag field of the register.

(6) WR_TAG- Write the 8-bit tag field of the register.

The six extra branch conditions (Table A-3-9, Appendix A) check the 6-bit type tag (Figure 2-1-

2) of the operands:

(1) EQ_ TAG -Checks whether the 6-bit type tags of the two operands are equal.

(2) NE _TAG - Checks whether the 6-bit type tags of the two operands are not equal.

(3) EQ_38- Checks whether the 32-bit data and the 6-bits type tags of the two operands are

equal.

(4) NE_38- Checks whether the 32-bit data and the 6-bits type tags of the two operands are

not equal.

(5) EQ TC - Checks whether the 6-bit type tag of the first operand equals a six-bit constant. - .

(6) NE _ TC - Checks whether the 6-bit type tag of the first operand equals a six-bit constant.

The four extra trap conditions are (Table A-3-8, Appendix A):

(1) LISP Pointer Type Violation -The pointer is neither a CONS nor a NIL.

(2) LISP Data Type 1 Violation -Either operand is not a FIXNUM.

(3) LISP Data Type 2 Violation - Both operands are not FIXNUM or both operands are not

CHARACfER

(4) Generation Violation - Generation of the second operand is greater than the first

operand.

The six extra instructions, the eight extra tag bits, the six extra branch conditions, and the

four extra trap conditions have different impact on resource allocation. Their different impact

Chapter 4: Microarchitectural Evaluation 97

must be measured by different resources metrics. The left most column of Table 4-2-1 shows the

resources metrics I selected. Since each metric's absolute value has different dimension, compar

ing different metrics' absolute values is like comparing apple and oranges. Therefore, I find it

more useful to look at the dimensionless percentage impact on each metric. The percentage

impact is calculated by dividing the absolute impact by the total number of that metric in the

SPUR CPU chip. For example, the eight extra tag bits increase the area by 8.7mm 2 (absolute

impact). Since the total active chip area in the SPUR CPU is 57mm2, the percentage impact is

.W::7.6%.

The first row of Table 4-2-1 shows that the SPUR CPU master control PLA has a total 54

outputs. Four of these 54 outputs (7%) are used to control the six extra instructions. Since all

other sub-features does not affect the number of outputs in master control PLA, this 7% is the

total impact due to hardware tag checking. Similarly, the rightmost column of the second, third,

fourth, and fifth row show that tag checking for LISP support are responsible for 3% of the master

control PLA product terms, consumes 7% of the total active area, 9% of the total transistors, and

5% of the total signal pins. Notice that the six extra instructions' impact on resource (Column 1)

is mainly at the Control PLAs. Their impact on chip area and transistors count are minimum. On

the other hand, the eight extra tag bits (Column 2) have minimum impact of the Control PLAs but

affect the chip area, transistors count, and the number of signal pins. Finally, the extra branch

and trap conditions' impact (Column 3 and 4) is mainly on the chip area and transistors count

4.2.3. LISP Support-Impact on Complexity

The complexity due to the LISP supporting features can be quantified by the effort to verify

their correctness by simulation. The LISP supporting features of the SPUR CPU are simulated at

both the behavioral and switch level. The diagnostics we used for switch level simulation are:

(1) cmp-tag_insts- This diagnostic takes 470 cycles to verify that cmp_branch instructions

that use branch conditions involving tag comparison.

Chapter 4: Microarchitectural Evaluation

Absolute Impact Percentaj!e Imoact

Cycles of 4,665 4,665/55,516 8%
Diagnostics =

Man-Month 0.5 0.5(3.5 14%
of Effort =

Table 4-2-2 Complexity Metrics for Hardware Tag Checking

The first column lists the absolute impact on the complexity metrics due to hardware tag check

ing. The second column lists the percentage impact. The percentage impact is calculated by di

viding the absolute impact by the total value of that metric in the SPUR CPU.

98

(1) fixnum-trap -This diagnostic takes 1086 cycles to verify that all LISP data type viola-

tions will cause a trap.

(2) fast-reg-tags- This diagnostic takes 1169 cycles to verify that the CPU can read and

write the tag field of all the registers.

(3) gen-traps- This diagnostic takes 509 cycles to verify that all generation violation will

cause a trap.

(4) cxr-traps - This diagnostic takes 1159 cycles to verify that all LISP pointer type viola-

tion will cause a trap.

(5) trap-psw - This diagnostic takes 272 cycles to verify that all traps set the processor

status work (Kpsw and Upsw) correctly.

The total number of cycles and the man-months of simulation effort are two complexity

metrics we can extract from this set of diagnostics. Column 1 of Table 4-2-2 is the absolute value

of these two metrics. As I explained in previous section, I found it more useful to look at the

dimensionless percentage impact. The percentage impact of each metric is calculated in Column

2. The total number of cycles of diagnostics we run for the SPUR CPU's switch level simulation

is 55,516 cycles. The total switch level simulation effort is 3.5 man month. These two numbers

Chapter 4: Microarchitectural Evaluation

Pessimistic View Realistic View Optimistic View

Performance Worst Median Best

Impact 11% 73% 174%

Resources Biggest Median Smallest

Impact 9% 6% 3%

Complexity Biggest Median Smallest

Impact 14% 11% 8%

Table 4-2-3 Three Different Views of the Tradeoffs

The pessimistic view uses the smallest performance impact and the biggest resource and com

plexity impact. The realistic view uses the median performance impact. median resource impact,

and median complexity impact. The optimistic view uses the biggest performance impact and the

smallest resources and complexity impact

are used in Column 2 to calculate the percentage of the total effort

4.2.4. LISP Support-Impact Summary

99

The impact of hardware tag checking on LISP program performance, resources allocation,

and complexity are illustrated in Figure 4-2-1, Table 4-2-1, and Table 4-2-2, respectively. The

results of these figure and tables are summarized in Table 4-2-3, giving three different views of

the performance, resources, and complexity tradeoffs. These three views of the tradeoffs are

shown graphically in Figure 4-2-2. The median and optimistic views both seems to indicate the

hardware tag checking is a good feature because the percentage improvement in performance is

big while the percentage increases in resources and complexity are relatively small. Furthermore,

as illustrated in Figure 4-2-l(b), both the best and median performance improvement arguments

have a relatively small critical p factors (pcrilical=0.53 for the median case and PcriticaJ=0.33 for the

best case). In other words, even if the cycle time or the average number of cycles per instruction

or both are affected moderately by having hardware tag checking, the SPUR CPU having tag

checking will still come up a winner.

Chapter 4: Microarchitectural Evaluation

Performance Performance Performance

+174%

(b) Median (c) Optimistic

Figure 4-2-2 Three Different Views of the Tradeoffs

(a) shows the pessimistic view which uses the smallest perfonnance impact and the biggest

resources and complexity impact. (b) shows the median view which uses the median perfor

mance impact, median resources impact, and median complexity impact (c) shows the optimis

tic view which uses the biggest perfonnance impact and the smallest resources and complexity

impact. For clarity,logarithmic scale is used for the performance axis.

100

Finally, the perfonnance analysis shown in Figure 4-2-1 can also be used to compare the

LISP perfonnance between the SPUR CPU and the MIPS-X. Both the SPUR CPU and the

MIPS-X are RISC style load-store processors aim for single cycle execution. The MIPS-X, how-

ever, does not have hardware tag checking. The MIPS-X has a cycle time of SOns and its average

number of cycles per instruction is also lower than the SPUR CPU mainly due to its higher inter-

nal instruction cache hit rate. Therefore for a first order approximation, MIPS-X can be con-

sidered as a stripped down SPUR CPU that does not have hardware tag checking but have a faster

cycle time and lower number of cycles per instruction. More specificly, assuming the MIPS-X

cycle time is SOns and the average number of cycle per instruction is 1.2 (80% better than the

SPUR CPU), we have:

Chapter 4: Microarchitectural Evaluation 101

The performance improvement due to LISP support is now reduced to 22% for the best case,

-23% for the median case, and -50% for the worst case. In other words, for the best case (SPUR

CPU's point of view), the MIPS-X performance is only 82% (1/1.22) of the SPUR CPU's perfor

mance. However, for the median and worst case, the MIPS-X is 30% (1/0.77) and 100% (1/0.5)

faster. Incidently, these numbers agrees with Steenkiste's analysis [StH88].

These numbers, however, should not be used to draw the conclusion that hardware tag

checking is a bad idea. It will be unfair because hardware tag checking should not be blamed for

the SPUR CPU's relatively slow cycle time (lOOns) and small internal instruction cache (128

instructions). The SPUR CPU cycle time is limited by system considerations, conservative circuit

design, and the conservative 4-phase non-overlap clocking scheme. The main reason why the

SPUR CPU has a small internal instruction cache is that we try to be conservative and build the

instruction cache using the relatively large static RAM cells that were used in the register file. A

better conclusion is that the MIPS-X designers, who are willing to take more risks, used more

aggressive circuit designs to lower the cycle time and increase the size of the internal instruction

cache. Under most circumstance, these improvements are enough to offset the SPUR CPU's

hardware tag checking.

4.3. FPU Support Evaluation

The SPUR CPU supports floating point arithmetic by a coprocessor-the Floating Point Unit

(FPU). The FPU is connected to the SPUR CPU via a parallel coprocessor interface [HaK86].

Detailed discussions of coprocessor interface and FPU design can be found in (Han88] and

[Bos88], respectively. The floating point instructions supported by the FPU are:

(1) F _ADD- Floating point add.

(2) F _SUB -Floating point subtract

(3) F _ MUL -Floating point multiply.

Chapter 4: Microarchitectural Evaluation

(4) F _DIV- Floating point divide.

(5) F _ CMP - Floating point compare.

(6) F _MOV- Floating point move.

(7) F _ABS - Find the absolute value of a floating point number.

(8) F _NEG -Negate a floating point number.

(9) CVTS - Convert a double precision number to single precision.

(10) CVTD- Convert a single precision number to double precision.

(11) SYN- Synchronize the CPU and the FPU.

102

The CPU treat all these instructions as NOOP when the FPU is disabled and treat them as

illegal instructions when FPU is enabled. F _ADD, F _SUB, F _CMP, F _MUL, and F _DIV can be

considered as major FPU instruction because it is the FPU's goal to provide the ADD, SUB,

MUL, DIVIDE and CMP operations. The other FPU instructions can be considered as supporting

instructions because these instructions are provided to make the FPU operate more efficiently.

Section 4.3.1 will focus on the performance impact of the major FPU instructions. Section 4.3.2,

and Section 4.3.3 discuss FPU support's impact on resources and complexity in the SPUR CPU's

perspective. Section 4.3.4 summarizes the results.

4.3.1. FPU Support-Impact on Performance

This section I will use the performance model developed in Section 4.1 to evaluate the

impact of FPU support on floating point intensive program's performance by comparing the

SPUR CPU to an imaginary stripped down SPUR CPU that does not support floating point opera

tion. As before, I use the subscript "i" for the SPUR CPU (Ti, Ci, and Mi) and subscript "o" for

the stripped down CPU (T0 , Co. and M0). As far as the SPUR CPU is concerned, each floating

point operation is supported by a floating point instruction to be executed by the FPU, therefore:

Chapter 4: Microarchitectural Evaluation 103

Precision
Execution Number of Approx. Number

Time (us) Cydes (NRtsc) of Instruction (MRJSc)

Add/Sub
s 63 472.5 80

D 83 622.5 100

Multiply
s llO 825 140

D 680 5100 850

Divide
s 191 1432.5 240

D 712 5340 900

Table 4-3-1 RISC I Floating Point Operations Measurements

Column 2 are the execution time of the various floating point operations. Using the numbers in

Column 2 and Equation 4.3.2, we can calculate the numbers in Column 3. Then using the

numbers in Column 3 and Equation 4.3.3, we can calculate the numbers in Column 4.

(4.3.1)

On the other hand, in the stripped down CPU, the floating point operations must be per-

formed by floating point routines. The execution time of various floating point routines on a

RISC I simulator running at (7.5/4)MHz were measured by Sippel [Sip82]. I have divided the

7.5MHz quoted in Sippel's report by four because RISC I has a four-phase clock and 7.5 MHz is

the frequency between phases. Since we know the average number of cycles per instruction for

RISC I is approximately 1.5 (CR1sc = 1.5), we can calculate the approximate number of instruc-

tions RISC I takes to emulate the various floating point operations (MRIScl) by using Equation

4.3.2 and 4.3.3. The results are summarized in Table 4-3-1:

NRISC = ETRISC X ..,....!- = ETRISC x ¥MHz
lRJSC <+

(4.3.2)

(4.3.3)

where

NR1sc = Number of cycles to execute the floating point operation in RISC I

ETRISC = Execution time of the floating point operation in RISC I

Chapter 4: Microarchitectural Evaluation 104

4
T RJSC = Cycle time of RISC I simulator = 7 .5MHz

MRISC = Number of instructions to execute the floating point operation in RISC I

CRJsc = Average number of cycles per instruction in RISC I = 1.5

Assume the number of instructions to execute the various floating operations in the stripped

down CPU are similar to those in RISC I and the number of operations to execute a floating point

compare is similar to that of floating point subtract, we have:

80 ~ Mo (Add/Sub/Cmp) ~ 100

140 ~ M 0 (Multiply)~ 850

240 ~ Mo (Divide) ~ 900

The coprocessor interface that connects the SPUR CPU and the FPU allows them to operate

together in two different modes:

Sequential Mode

After issuing a FPU instruction, the CPU must wait until the FPU finishes before continuing

its operation. Since it takes the FPU longer to execute any FPU instruction than the CPU

takes to execute an integer instruction, the average number of cycles per instruction will

increase when a FPU instruction is executed (Ci > C0).

Parallel Mode

After issuing a FPU instruction, the CPU continues to execute integer instructions and will

stall only if it encounters another FPU instruction and the FPU is still busy from a previous

FPU instruction. For the best scenario, there are enough integer instructions in between FPU

instructions and the average number of cycles per instruction will NOT increase when FPU

instruction is executed (Ci = C0).

In order to derive the equation that relates Ci and Co for the sequential and parallel mode, I need

to define the following tenns:

Ei = Number of cycles to execute instruction type j

Chapter 4: Microarchitectural Evaluation 105

Fi = Frequency of instruction type j

Assume we have N types of CPU (integer) instructions and P type of floating point instructions,

then the average number of cycles per instruction for the SPUR CPU operating in sequential

mode with the FPU is C; :

(4.3.4)

For the stripped down CPU that does not support floating point instructions, the average number

of cycles per instruction is Co :

(4.3.5)

The term Fi (j=l,2,3 ... N) is used in Equation 4.3.5 to emphasis the fact that the frequency

of the integer instructions may change when floating point instructions are eliminated. Let us

assume the changes in frequencies are small then:

Fi
Ei

Fi xEi Mi Fi*Mi
Min Max Min Max Min Max Min Max

FADD 2.4% 3.3% 4 0.096 0.132 80 100 1.92 3.30

FSUB 1.7% 2.4% 4 0.068 0.096 80 100 1.36 2.40

FCMP 1.4% 1.9% 4 0.056 0.076 80 100 1.12 1.90

FMUL 3.2% 4.5% 7 0.224 0.315 140 850 4.48 38.25

FDIV 1.3% 1.9% 19 0.247 0.361 240 900 3.12 17.10

Total 10.0% 14.0% - 0.691 0.980 - - 12.0 62.95

Table 4-3-2 Impact of FPU Support on Performance

Every colwnn, except Column Ei, is divided into two sub-columns that corresponds to the

minimum and maximum values of that column. The minimum sub-column of Column Fi x Ei is

calculated from (Min Fi) x Ei. The maximum sub-column of Column Fj x Ej is calculated from

(MaxFj)xEi. The minimum sub-column of Column Fi xMi is calculated from

(Min Fi) x (Min Mi). The maximum sub-column of Column Fi x Mi is calculated from

(Max Fi) X (Max Mj).

Chapter 4: Microarchitectural Evaluation 106

(4.3.6)

Consequently, by combining Equation 4.3.4, 4.3.5, and 4.3.6, we have for sequential mode:

(4.3.7)

Similarly for parallel mode:

(4.3.8)

where

PORpar = Portion of FPU operations in parallel with CPU operations

Table 4-3-2 summarized the typical values for the frequency of various floating point

operations-F1 [Pat89] [Tay89], the number of cycles it takes the SPRU FPU to execute these

operations-E1 [Bos88], and the number of instructions the stripped down CPU takes to emulate

6000

5000

IMP(%)

.ll.- 1 n
Co•l.S

6000

~·~ac
1000 ~,--... --.:.--::·::--~~ _,_1

PO

0 0.2 0.4 0.6 0.8 1.0
(a)

IMP(%)

.I2.- 1
Ti

Mo=4SO
Fi=O.l4

MOz2BS
4000

Fi..O.l2
__ J. .. -·-· 3000

----------------· :
.................... ----+--~~?C 2000

--·-= - - - - - - - - - - _,_1
I

IMP(%)

Figure 4-3-1 Performance Improvement due to FPU Support

0.7..!2.0.6
Ti

(a) and (b) show the performance improvement as a function of the frequency of the coprocessor
(FPU) instructions (Fi) and the portion of FPU instructions that can be executed in parallel with
CPU instructions (PORpar). I have assumed the average number of cycles per CPU instruction to
be 1.5 for (a) and 2.0 for (b). (c) shows the effect on the best and worst case if supporting the
FPU degrades the CPU cycle time (Ti > T0).

Chapter 4: Microarchitectural Evaluation 107

these operations-Mi (Table 4-3-1). The products Fi xEi and Fi xMi are also calculated in this

table. The numbers in Table 4-3-2 can be used to calculate the numbers needed by the perfor-

mance model (Equation 4.1.6) using the following formulas:

=> 10% ~ F; ~ 14% => Median F; = 12% (4.3.9)

=> 120 ~ M0 ~ 450 => Median M0 = 285 (4.3.10)

=> 0.691 ~ 'f. Fj x Ei ~ 0.980 => Median 'f. Fix Ej = 0.836 (4.3.11)

In the formulas above, the summation indexes j = N + 1 and j = N +P are dropped for clarity.

The values given by Equation 4.3.11 are used in Equation 4.3.8 to calculate the effective C; in

terms of Co. These numbers can then be used with the performance model (Equation 4.1.6) to cal-

culate the performance improvement due to the FPU supporting features. This is shown in Figure

4-3-1 as a function of the frequency ofFPU instructions (F;), the portion.ofFPU instructions that

can be executed in parallel with CPU instructions (POR,..), and the cycle time ratio [+,].
Each line in Figure 4-3-1(a) and (b) assume a fixed frequency of FPU instructions (10%,

12% and 14%) and a fixed average number of cycles per CPU instruction-1.5 in (a) and 2.0 in

(b). Notice that Figure 4-3-1(a) and Figure 4-3-1(b) predict the same amount of performance

improvements when PORpar = 1.0 because all FPU instructions are executed in parallel with the

CPU instructions. Consequently, g; = 1 at PORpor = 1 for both graphs (a) and (b). Assume the

portion of FPU instructions that can be executed in parallel with the CPU integer instructions is

between 40% and 80%, we have the following best and worst case scenarios:

Worst Case:

Frequency of FPU instruction is only 10% (F; = 0.10), the average number of instructions

the stripped down CPU takes to emulate the FPU operations is 120 (Mo = 120), and the

Chapter 4: Microarchitectural Evaluation 108

average number of cycles per CPU instruction is 1.5 (Co = 1.5).

Best Case:

Frequency of FPU instruction is 14% (Fi = 0.14), the average number of instructions the

stripped down CPU takes to emulate the FPU operations is 450 (Mo = 450), and the average

number of cycles per CPU instruction is 2.0 (Co= 2.0).

Figure 4-3-1(a) predicts even at the worst case, the FPU support improves the floating point

performance by 900%-the SPUR CPU is 10 times faster than the stripped down CPU. Figure 4-

4-1(b) predicts at the best case, the FPU support improves the floating point performance by

5700%-the SPUR CPU is 58 times faster than the stripped down CPU. Both these two cases

have asswned the FPU support has no effect on the CPU cycle time. However, as shown in Fig

ure 4-3-1(c), even if the cycle time is degraded by 10%, the performance improvement is still

respectable: 5100% for the best case and 700% for the worst case.

4.3.2. FPU Support-Impact on CPU Resources

In addition to the 11 floating point instructions listed in the beginning of this section, the

FPU support capabilities also requires eight load instructions, four store instructions, a coproces

sor interface, two extra branch conditions, and one trap condition. As far as the SPUR CPU is

concerned, these extra FPU load and store instructions are similar to the CPU load and store

instructions except that the FPU will receive or provide the data. The SPUR CPU is still responsi

ble for generating the effective address and send the proper Cache Operation code to the Cache

Controller. The two extra branch conditions are:

(1) FPU _TRUE- Branch if the floating point compare instruction results in a true condition.

(2) FPU_FALSE- Branch if the floating point compare instruction results in a false condi

tion.

The extra trap condition is:

Chapter 4: Microarchitectural Evaluation

FPU Coprocessor Total
Instructions Interfaces

Control PLA
3/54 6% 0/54 0% 6%

Outputs
Control PLA

4/84 5% 0/84 0% 5%
Products

Chip Area
0/57 0% 6/57 10% 10%

(nun xmm)
Transistors 0!115 0% 0.4/115 0% 0%

(x 1000)
Number of

32/156 21% 5/156 3% 24%
Signal Pins

Table 4-3-3 Resources Metrics for FPU Support

Each column lists the absolute and percentage impact of each sub-feature on the different

resources metrics. The percentage impact is calculated by dividing the absolute impact by the to

tal value of that metric in the SPUR CPU. The total impact of these sub-features, that is the im

pact due to FPU support, is summarized in the right most column.

(1) FPU_EX- FPU exception.

109

The impact of FPU support on resources are quantified into several resources metrics in

Table 4-3-3. The impact of the two extra branch conditions and the one extra trap condition on

resources is so small that it is not listed in the table. The number of transistors consumed by the

FPU support is also negligible. Area consumption is mainly due to the coprocessor interface

which include suspension logic in the master control, a special register FpuPC, and routing the

instruction bus! onto the output pads. FPU support also consumes 37 of the total 156 signal pads.

The SPUR CPU must broadcast the instruction currently being fetched via 32 of these pads. This

is the only way the FPU can find out the current instruction because the internal instruction

caches makes the instruction currently being fetched invisible to the outside world.

4.3.3. FPU Support-Impact on CPU Complexity

The complexity due to the FPU supporting features can be quantified by the simulation

Chapter 4: Microarchitectural Evaluation

Absolute Impact Percenta2:e Impact

Cycles of 1,543 1,543/55,516 3%
Diagnostics =
Man-Month 0.5 0.5/3.5 14%

of Effort =

Table 4-3-4 Complexity Metrics for FPU Support

The first column lists the absolute impact on the complexity metrics due to FPU support. The

second column lists the percentage impact The percentage impact is calculated by dividing the

absolute impact by the total value of that metric in the SPUR CPU.

effort. The diagnostics we used for switch level simulation are:

110

(1) fpu-fpu_busy- This diagnostic takes 190 cycles to verify that the CPU will stall suspend

the pipeline when the FPU is busy and the CPU wants to issue a new FPU instruction.

(2) fpu-enable_fpop- This diagnostic takes 142 cycles to verify that the CPU will treat FPU

operations instructions as illegal instruction when the FPU is disabled and treat them as

FPU instructions when the FPU is enabled.

(3) fpu-enable ld- This diagnostic takes 144 cycles to verify that the CPU will treat FPU

load and store instructions as illegal instruction when the FPU is disabled and treat them

as FPU instructions when the FPU is enabled.

(4) fpu-fpc - This diagnostic takes 148 cycles to verify that the address of the last FPU

instruction issued by the CPU is stored in the special register FpuPC.

(5) fpu-serial -This diagnostic takes 173 cycles to verify that the CPU and FPU can operate

in sequential mode.

(6) fpu-sync- This diagnostic takes 142 cycles to verify that the CPU and FPU operations

can be synchronized by the SYNC instruction.

Chapter 4: Microarchitectural Evaluation 111

(7) fpu-cpu_trap -This diagnostic takes 153 cycles to verify that the FPU operation can

survive a CPU trap.

(8) fpu-fpu_trap -This diagnostic takes 144 cycles to verify that the FPU operation can

interrupt the CPU operation via a FPU exception.

(9) fpu-cmp- This diagnostic takes 146 cycles to verify that the CPU can correctly execute

a cmp_branch that uses the FPU branch conditions.

(10) fpu-allopcodes- This diagnostic takes 161 cycles to verify that the CPU can correctly

identify all FPU instructions.

The total number of cycles and the man-month of simulation effort are two complexity

metrics we can extracted from this set of diagnostics. These are summarized in Table 4-3-4.

4.3.4. FPU Support-Impact Summary

Performance Performance

Figure 4-3-2 Three Different Views of the Tradeoff's

(a) shows the pessimistic view which uses the smallest performance impact and the biggest

resources and complexity impact. (b) shows the median view which uses the median perfor

mance impact, median resources impact, and median complexity impact (c) shows the optimis

tic view which uses the biggest performance impact and the smallest resources and complexity
impact. For clarity, the performance axis is on a logarithmic scale.

Chapter 4: Microarchitectural Evaluation 112

The FPU support's impact on performance (Figure 4-3-1), resources (Table 4-3-1), and

complexity (Table 4-3-2) can be summarized in the following inequalities:

700% ~Performance Impact~ 5100% => Median Performance Impact= 2900%

5% ~Resources Impact~ 24% => Median Resource Impact= 14.5%

3% ~Complexity Impact~ 14% => Median Complexity Impact= 8.5%

In Table 4-3-3, the FPU support's impact on transistors is 0%. For conservative analysis,

this is not used as the minimum resources impact. Instead, the next smallest increase (5%) is

used. These numbers indicate the use of the coprocessor FPU via a coprocessor interface to sup

port floating point operations is a good idea because the FPU support only increases the resource

and complexity by a small amount but improves floating point intensive programs drastically.

This is of course only the CPU's perspective. A lot of resources and complexity not included in

this tradeoffs analysis are involved in the design and implementation of the coprocessor FPU

[Bos88] and the coprocessor interface. Furthermore, the performance improvement is for floating

point intensive programs only. If a program does not have any floating point operations, the

coprocessor interface and the FPU will not improve the program's performance.

4.4. Extra Pipeline Stage Evaluation

The only difference between the SPUR CPU pipeline and the RISC II pipeline is shown in

Figure 4-4-1. The SPUR CPU pipeline has an extra memory access stage (Mem) that allows the

SPUR CPU to execute LOAD without suspending the pipeline. The extra pipeline stage's impact

on performance, resources, and complexity are evaluated in Section 4.4.1, 4.4.2, and 4.4.3 respec

tively. The results are summarized in Section 4.4.4.

4.4.1. Extra Pipe Stage-Impact on Performance

This section evaluates the extra pipeline stage's impact on performance by comparing the

performance of the SPUR CPU against an imaginary stripped down SPUR CPU that uses the

RISC II three stage pipeline. I will use subscript "i" (T;, C;, M;) for the SPUR CPU and the

Chapter 4: Microarchitectural Evaluation

Load It
Ill Uet !Exec I

12[llii]

~dto
l2Y!:.Jaccess data

lExec I Wr I
13l Ifet I Exec f(

Risen pipeline

Load
nl Ifet !Exec lMeml Wr I

I2l Ifet !Exec IMeml Wr I
131 Ifet !Exec lMeml?

SPUR CPU pipeline

Figure 4-4-1 RISC II Pipeline vs. SPUR CPU Pipeline

This figure assumed the external cache will provide the data within one cycle. Under this as

swnption, the SPUR CPU 4-stage pipeline will execute LOAD without pipeline suspension.

However, since the execution stage (Exec) of the instruction following the LOAD (12) overlaps

the memory access stage (Mem) of the LOAD, 12 cannot use the LOAD's destination register.

We call LOAD a delay instruction and 12 the delay slot On the other hand, the RISC II pipeline

is suspended for one cycle whenever LOAD is executed. Due to this one cycle suspension, the

execute stage (Exec) of 12 is delayed until after the data access phase of the LOAD and 12 can

uses the LOAD's destination register.

113

subscript "o" (T0 , Co. M0) for the stripped down CPU. In the SPUR CPU 4-stage pipeline, the

instruction after the LOAD (12 in Figure 4-4-1) cannot use the destination register of the LOAD.

This delay slot must be filled by a NOOP unless we can find a instruction that does not use the the

destination register of the LOAD. Therefore in the worst case, the load function is perfonned by

two instructions-the LOAD and the NOOP in the delay slot:

M; = 2- PORtal (4.4.1)

PORt;u = Portion of the delay slot is filled by an useful instruction

On the other hand, in the 3-stage pipeline, the instruction immediately after the LOAD can

use the destination register of the LOAD. Therefore, the number of instructions it takes to per-

fonn the load function is just one-the LOAD instruction:

M0 = 1 (4.4.2)

The average number of cycles per instruction for the SPUR CPU (C;) is different from the

average number of cycles per instruction for the stripped down CPU (Co) because the 3-stage

pipeline must be suspended for data access whenever a LOAD is executed. In order to look at this

Chapter 4: Microarchitectural Evaluation

difference quantitatively, I define the following terms:

N~otMJ_ 4 = Average number of cycles to execute LOAD in the 4-stage pipeline,

N~oad_ 3 = Average number of cycles to execute LOAD in the 3-stage pipeline,

NotA.r = Average number of cycles to execute other instructions in either pipeline,

U~oad = Number of LOAD instruction in the benchmark,

I; = Number of instructions it takes the SPUR CPU to execute the benchmark,

114

/ 0 = Number of instructions it takes the stripped down CPU to execute the benchmark,

F; = Frequency of LOAD instructions in the SPUR CPU = Ul~. and

F~oad = Frequency of LOAD instructions in the stripped down CPU = U'iad •

I assume the number of LOAD instructions (U~oad) and the average number of cycles to exe

cute instructions other than LOAD (NotJur) to be the same for programs that are written for either

pipeline. Since the SPUR CPU can execute LOAD without pipeline suspension and I assume the

external memory can provide data within a cycle (if not. it will affect either pipeline equally), the

average number of cycles to execute LOAD in the SPUR CPU 4-stage pipeline is the same as all

other instructions:

Nlot>d_4 = NotMr => C; = NotMr (4.4.3)

Since the RISC II 3-stage pipeline always suspend the pipeline for one cycle whenever

LOAD is executed, the average number of cycles to execute LOAD is just one more cycles than

the average for other instructions:

Nload_3 = NotMr + 1

Co = F~oadxN/oad_3+(1-Fioad)xNotJur = Noth.r +Float!. (4.4.4)

Combining Equation 4.4.3 and Equation 4.4.4, we have:

(4.4.5)

In general, the frequency of LOAD in the stripped down CPU (F~oatJ.) will be slightly bigger

than the frequency of LOAD in the SPUR CPU (F;) because programs written for the SPUR CPU

Chapter 4: Microarchitectural Evaluation 115

will have some extra NOOPs in the delay slots of LOAD. These extra NOOPs increase the total

number of instructions to execute the benchmark (h) and since the number of LOAD (Uload) is

constant, the frequency is lower. The number ofNOOPs in the LOAD's delay slots is Urroop:

The number of instruction it takes the stripped down CPU to execute a benchmark can be

calculated by subtracting the extra NOOPs in the LOAD's delay slot from the number of instruc-

tion it takes the SPUR CPU to execute the same benchmark:

10 =I;- UNJOp =I; x [1-F; x (1-PORJill)]

The frequency of LOAD in the stripped down CPU can now be calculated as:

(4.4.6)

Before we go any further, let us perform couple sanity checks on Equation 4.4.6. Assume

POR1ill = 1, Equation 4.4.6 gives Fload =F;. This makes sense because this is the case when all

LOAD delay slots are filled with useful instructions in the SPUR CPU. As a second check,

assume POR1;u = 0. The maximum F; possible for the SPUR CPU 4-stage pipeline with

PORt;u = 0 is 0.5 because there must be a NOOP for every LOAD-half of the instructions are

NOOP. Using POR1ill = 0 and F; = 0.5, Equation 4.4.6 predicts F load = 1. This again makes sense

because in the stripped down CPU, LOAD does not have to be separated by NOOP. Therefore

our two checks show Equation 4.4.6 to be "sane".

Combining Equation 4.4.5 and Equation 4.4.6, we have:

F;
Co = C; + 1-F; X (1-PORJ;u)

Co _ 1 + F;
c:; - C; X (1- F; X (1- PORJill))

(4.4.7)

Conventional wisdom says that longer pipeline usually has shorter cycle time because

longer pipeline usually means there will be less thing to do in each pipe stage [Kog81]. This,

however, is not the case when we add one more stage to the RISC II 3-stage pipeline to form the

Chapter 4: Microarchitectural Evaluation 116

SPUR CPU 4-stage pipeline because:

(1) The increase in the number of stages is not a result of dividing the tasks into smaller

pieces. The original task (Ifet, Exec, and Wr) are the same for both pipelines.

(2) The extra Mem stage is a delay stage for all instructions other than LOAD. This extra

pipe stage increases the complexity of the datapath and control logic.

Since (1) states that the orginal tasks are not getting any simplier and (2) states that the extra task

increases the complexity, the cycle time of the SPUR 4-stage pipeline (Ti) is likely to be bigger

than the cycle time of the RISC II 3-stage pipeline (To):

To < l
T;- (4.4.8)

The performance improvement of the SPUR CPU 4-stage pipeline over the stripped down

3-stage pipeline is plotted in Figure 4-4-2 as a function of the portion of the delay slot being filled

-15

PORmJ
1.0

T~ = 1 Ci= 1.5
T1 (a)

1
Critical PORfill • O.SO

To= 1 Ci=2.0
Ti (b)

I
Critic:ol Tcfli..0.9l

(c)

Figure 4-4-2 Performance Improvement due to the Extra Pipe Stage

(a) and (b) show the perfonnance improvement as a function of the portion of the LOAD delay

slot being filled (POR fill) by useful instructions and the frequency of the LOAD (Fi). I have as

sumed the average number of cycles per non-LOAD instruction to be 1.5 for (a) and 2.0 for (b).

(a) and (b) assume the pipeline with the extra pipe stage has the same cycle time as the shorter

pipeline (Ti =To). (c) shows the effect if the longer pipeline has a longer cycle time (Ti > To).

Chapter 4: Microarchitectural Evaluation 117

by useful instructions (PORfiu). frequency of LOAD (F;), and the cycle time ratio [-¥,-]. This is

the result of applying Equation 4.4.1, 4.4.2, 4.4.7, and 4.4.8 to the performance model (Equation

4.1.6). Each line in Figure 4-4-2(a) and (b) assume a fixed frequency of LOAD (10%, 20% and

30%) and a fixed average number of cycles per instruction for all non-LOAD instructions-1.5 in

(a) and 2.0 in (b). There are two things worth noticing:

(1) The performance improvement is negative when POR1;u is 0 because the 3-stage pipeline

only requires the pipeline to suspend for one cycle while the 4-stage pipeline will waste

C; cycles (C; > 1) to execute the NOOP in the delay slot due to misses in the internal

instruction cache.

(2) The portion of the delay slot that must be filled (the critical POR1m) in order for for the

4-stage pipeline to have the same performance as the 3-stage pipeline (IMP;= 0%) is a

function of the average number of cycles per non-LOAD instructions (C;) only. The

breakeven point depends on POR1m and not on the LOAD frequency (F;) because the

number of cycles the SPUR CPU wasted whenever a LOAD is executed (SPUR...,asu) is:

SPURwasu = C; x [1- PORtm]

At the critical PORtill, the number of cycles the SPRU CPU wasted equals to the number of

cycles the 3-stage pipeline must be suspended whenever a LOAD is executed. In the RISC II 3-

stage pipeline, this number of cycles is one. Therefore:

C; x [1 - (Critical POR fill)] = 1

Critical PORt;u = 1- -t- (4.4.9)

Using Equation 4.4.9, we have:

Critical PORt;u (C;=l.5) = 0.33 Critical PORtill (C;=2.0) = 0.50

In the discussions above, we have assumed the only reason why non-LOAD instructions

take more than one cycle to execute is due to misses in the internal instruction cache. This is true

for the SPUR CPU in which the average number of cycles per non-LOAD instruction (C;) is

Chapter 4: Microarchitectural Evaluation 118

estimated to be somewhere between 1.5 and 2.0. Furthennore, let us give the 4-stage pipeline the

benefit of the doubt and assume:

(1) The pipeline with the extra pipe stage has the same cycle time as the shorter pipeline.

(2) The frequency of LOAD is 30% (F, = 0.3).

(3) The LOAD delay slot is filled by useful instruction 80% of the time (POR 1w = 0.8).

The perfonnance improvement, as shown in Figure 4-4-2(a) and (b), is still only between

9% and 14%. However, as discussed earlier (Inequality 4.4.8), the SPUR CPU cycle time is likely

to be bigger than that for the stripped down CPU. As shown in Figure 4-4-2(c), the cycle time of

the stripped down CPU only has to be approximately 10% smaller than the SPUR CPU cycle

time (between 1- 0.92 = 8% and 1-0.88 = 12% to be exact) to neutralize out all the perfonnance

advantage of the SPUR CPU 4-stage pipeline.

4.4.2. Extra Pipe Stage-Impact on Resources

The resources impact of the extra pipe stage can be estimated by comparing the resources

needed to implement the SPUR CPU 4-stage pipeline to the resources needed to implement the

RISC II 3-stage. Relative to the resources needed to implement the RISC II 3-stage pipeline, the

Extra Temp. Extra Extra Extra Control
Total

Re2ister PC Comparators Stage

Chip Area
1.1/57 2.0% 0.2/57 0.3% 0.1/57 0.2% 0.3/57 0.5% 3%

(mmxmm)

Transistors
1.8/115 1.6% 0.4/115 0.3% 0.2/115 0.2% 0.4/115 0.3% 2%

(x 1000)

Table 4-4-1 Resources Metrics for the Extra Pipe Stage

Each column lists the absolute and percentage impact of each components on the different

resources metrics. The percentage impact is calculated by dividing the absolute impact by the to

tal value of that metric in the SPUR CPU. The total impact of these sub-features, that is the im

pact due to the extra pipe stage, is summarized in the right most column.

Chapter 4: Microarchitectural Evaluation 119

extra pipe stage requires:

(1) One extra temporary register (Dst2) in the lower datapath (Figure 2-3-1).

(2) One extra program counter register (MemPC) in the upper datapath (Figure 2-3-2).

(3) Two extra comparators for the internal forwarding logic. Internal forwarding is discussed

in Figure 2-1-6.

(4) One extra stage (MemCtrBuf) in the Sequencer of the Master Control (Figure 2-4-3).

All these components increase the area and transistors count of the SPUR CPU. Their

impacts are summarized in Table 4-4-1. Their impacts on control PLA's output, control PLA's

product terms, and output signal pins, however, are either none or negligible. In order to keep the

table simple, these negligible impacts are not shown.

4.4.3. Extra Pipe Stage-Impact on Complexity

Simulation effort cannot be used directly as complexity metric for the extra pipe stage

because we do not have a separate set of diagnostics designated just to test the extra pipe stage.

However, every SPUR CPU diagnostic checks this extra stage implicitly. I estimated that 15% of

all the diagnostics cycles were spent in checking this stage. Furthermore, I also believed that this

Absolute Imoact Percentat!e lmoact

Cycles of - - 15%
Dia2nostics -
Man-Month 1 1/3.5 29%

ofEfTort -

Table 4-4-2 Complexity Metrics for the Extra Pipe Stage

The first column lists the absolute impact on the complexity metrics due to the extra pipe stage.

The second column lists the percentage impact The percentage impact is calculated by dividing

the absolute impact by the total value of that metric in the SPUR CPU. In Row 1, I do not have

the exact values of the Absolute Impact but I can estimate the Percentage ImpacL

Chapter 4: Microarchitectural Evaluation 120

extra pipe stage makes all diagnostics more complex and increase the simulation effort by one

man-month-29%. These two numbers are summarized in Table 4-4-3.

4.4.4. Extra Pipe Stage-Impact Summary

The extra pipe stage's impact on perfonnance (Figure 4-4-1), resources (Table 4-4-1), and

complexity (Table 4-4-2) can be summarized in the following inequalities:

9% ~ Perfonnance Impact~ 14% => Median Perfonnance Impact= 11.5%

2% ~Resources Impact~ 3% => Median Resource Impact= 2.5%

15% ~Complexity Impact:::; 29% => Median Complexity Impact= 22%

The 4-stage pipeline does not use up that many resources but it does increases the complex-

ity. Notice that the best perfonnance improvement is estimated to be only around 14%. This is

assuming the SPUR CPU pipeline with the extra stage will have the same cycle time as the

stripped down CPU's 3-stage pipeline. As we can see from Figure 4-4-2(c), this performance

improvement will disappear quickly if the cycle time of the SPUR CPU is only slightly bigger

than the cycle time of the stripped down CPU. Consequently, I do not think the SPUR CPU 4-

Performance Performance

+9% +11.5%

Performance

+14%

Resources Complexity

(c) Optimistic

Figure 4-4-3 Three Different Views of the TradeofTs

(a) shows the pessimistic view which uses the smallest perfonnance impact and the biggest

resources and complexity impact. (b) shows the realistic view which uses the median perfor

mance impact and median resources and complexity impact. (c) shows the optimistic view

which uses the biggest perfonnance impact and the smallest resources and complexity impact.

Chapter 4: Microarchitectural Evaluation 121

stage pipeline is a winning feature.

In general, I think designer should be very careful whenever they add "delay" stages in the

pipeline to avoid pipeline suspension due to structural conflicts [Kog81] because the perfonnance

improvement may be relatively small. There are two reasons for this caution:

(1) Due to data or branch hazard, adding a delay stage in the pipeline is likely to end up

creating a delay instruction and the delay slot must be filled for the longer pipeline to be

an advantage.

(2) Adding a delay stage increases the length and thus the complexity of the pipeline without

finer division of the original task. This may result in a longer cycle time.

4.5. On-Chip Instruction Cache Evaluation

The design and implementation of on-chip instruction cache are discussed in detail by

[Hi187a] and [Dun86], respectively. Section 4.5.1, 4.5.2, and 4.5.3 discuss on-chip instruction

cache's impact on perfonnance, resources, and complexity of the SPUR CPU. Section 4.5.4 sum

marizes the results.

4.5.1. On-Chip Instruction Cache-Impact on Performance

This section evaluates the on-chip instruction cache's impact on perfonnance by comparing

the perfonnance of the SPUR CPU against an imaginary stripped down SPUR CPU that does not

have an internal instruction cache. I will use subscript "i" (Tj, Cj, Mi) for the SPUR CPU and the

subscript "o" (To, Co, Mo) for the stripped down CPU. The on-chip instruction cache does not

affect the number of instruction to perfonn any function directly. However, without the on-chip

instruction cache, instruction fetch and data access cannot occur in parallel and it becomes impos

sible to implement the SPUR CPU 4-stage pipeline. Therefore the stripped down CPU must use

the shorter RISC II 3-stage pipeline. Based on the discussion in Section 4.4, we have:

Chapter 4: Microarchitectural Evaluation 122

M; = 2- PORtm (4.5.1)

PORt;u = Portion of the LOAD delay slot is filled by an useful instruction

M0 = 1 (4.5.2)

The stripped down CPU's average number of cycles per instruction or its cycle time must

be bigger than the CPU because it does not have an on-chip instruction cache and must fetch

every instruction from the slower external cache. Let us assume:

Assumption 1

The external cache is so big that the instruction miss rate is negligible. It always takes one

cycle to fetch an instruction unless instruction fetch is blocked by data access. In other

words, the stripped down CPU without an on-chip instruction cache runs slower so that it

can fetch and execute one instruction per cycle under most situations.

However, no matter how slow the stripped down CPU runs, it still cannot fetch and execute one

instruction every cycle because its 3-stage pipeline must be suspended whenever a LOAD or

STORE instruction is executed to avoid data access and instruction fetch conflict. Based on the

discussion in Section 4.4 that results in Equation 4.4.5, we get the following equation for stripped

down CPU's average number of cycles per instruction (Co):

Co = C; + Fload + F non (4.5.3)

C; = C; if the SPUR CPU has a perfect on-chip instruction cache

F lotMl = Frequency of LOAD instructions in the stripped down CPU

F non = Frequency of STORE instructions in the stripped down CPU

The term C; is used instead of C; in Equation 4.5.3 because of Assumption 1. Assume the exter-

nal cache miss rate is low, the term C; can be expressed as:

C; = C; - (1 - HIT icaclw) X PEN icaclw

HIT icaclw = Hit rate of the SPUR CPU on-chip I -cache

PENicaclw = Miss penality of the SPUR CPU on-chip I -cache

(4.5.4)

Chapter 4: Microarchitectural Evaluation 123

In order to simply the derivation, I will write the frequency of the STORE instruction as a func-

tion of the LOAD instruction:

(4.5.5)

Applying Equation 4.5.4 and Equation 4.5.5 to Equation 4.5.3, we have:

(4.5.6)

As shown previously in Equation 4.4.6, frequency of LOAD in programs written for the

stripped down CPU (F~oad) can be expressed in tenns of the frequency of LOAD in programs

written for the SPUR CPU (Fj). Consequently, Equation 4.5.6 can be written as:

IMP(%)
30

PORfill = 0.7
Beta=0.7
PEN=2.0

To = 1
Ti

(a)

PORfill = 0.7
Beta=0.7
PEN=2.5

(b)

.Th.- 1
Ti -

(4.5.7)

To
Ti

(c)

Figure 4-5-1 Performance Improvement due to the On-Chip Instruction Cache

(a) and (b) show the performance improvement as a function of the instruction cache hit rate

(Hicoch4) and the frequency of the LOAD (Fi). I have assumed the on-chip instruction cache miss

penalty to be 2.0 for (a) and 2.5 for (b). (a) and (b) assume the on-chip instruction cache has no

effect on the cycle time. The effect of reduction of cycle time (Ti <To) due to the on-chip instruc

tion cache is shown in (c).

Chapter 4: Microarchitectural Evaluation 124

The perfonnance improvement of the SPRU CPU over the stripped down CPU that does not

have an on-chip instruction cache is plotted in Figure 4-5-1 as a function of the probability of the

!-cache hit rate (}/"~"), frequency of LOAD (F;), and the cycle time ratio [{;-l· This is the

result of applying equations 4.5.1, 4.5.2, and 4.5.7 to the perfonnance model (Equation 4.1.6). In

order to reduce the number of variables in the graph, I have assumed:

(1) 70% of the LOAD delay slot are filled by useful instruction (POR1;zz = 0.7) for Equation

4.5.1.

(2) The frequency of STORE is 70% of the LOAD frequency@= 0.7) for Equation 4.5.7.

Each line in Figure 4-5-1(a) and (b) assume a fixed frequency ofLOAD(20% and 30%) and

a fixed instruction cache miss penalty-2.0 in (a) and 2.5 in (b). The lower limit of !-cache miss

penalty is two cycles. This limit (PENALTY = 2.0) can only be achieved if the external cache can

supply the missing instruction within a cycle. Therefore in Figure 4-5-1(b), where the !-cache

miss penalty is two and half cycles (PENALTY= 2.5), the extra half cycle can be considered as

miss penalty of the SPUR CPU external cache. Therefore Figure 4-5-1(b) is biased against the

SPUR CPU (worst case) because it assumes the SPUR CPU has to pay an external cache miss

penalty while this penalty is assumed to be negligible for the stripped down CPU (see Assump

tion 1). Notice that Figure 4-5-1(a) and (b) predict the same amount of performance improve

ment when H;ct~CM = 1 because neither case has to pay the the !-cache miss penalty when the hit

rate is 100%.

Assumption 1 essentially states that all things being equal, the SPUR CPU average number

of cycles per instruction will always be higher than the stripped down CPU unless the SPUR CPU

has a perfect instruction cache (100% hit rate). Therefore, Figure 4-5-1(a) and (b), which neglect

the on-chip instruction cache's effect on cycle time [{;- = 1] , should predict the performance

improvement to be negative for all cases where Hicac~a. <1. This is not the case because "all things

are not equal" for the SPUR CPU and the stripped down CPU. Besides reducing the cycle time,

Chapter 4: Microarchitectural Evaluation 125

the internal instruction cache also enable the SPUR CPU to execute LOAD and STORE without

suspending the pipeline. This is the only advantage of the on-chip instruction cache when its

effect on cycle time is neglected. However, this advantage disappear quickly as the hit rate

(Hicacl!.) decreases.

Figure 4-5-1(c) shows the on-chip instruction cache's impact on performance when the

cache's effect on cycle time is taken into account. We believe the on-chip instruction cache

improve the SPUR CPU cycle time by 50% [{r = 15]. Mark Hill estimated the instruction

cache hit rate to be 75% [Hi187b]. George Taylor [Tay86] estimated the frequency of LOAD to

be between 20% and 30%. Based on these numbers, we have:

Best Case

30% LOAD, 0.7 x 30% = 24% STORE, two cycles miss penalty.

Worst Case

20% LOAD, 0.7 x 20% = 14% STORE, two and half cycles miss. penalty.

As shown in Figure 4-5-l(c), the performance improvement of these two cases are 41% and 19%

respectively if the on-chip instruction cache can improve the cycle time by 50%.

4.5.2. On-Chip Instruction Cache-Impact on Resources

The on-chip instruction cache in the SPUR CPU is organized into an Instruction Unit (Sec

tion 2.2) that can be divided into two parts: (1) datapath, and (2) controller. Table 4-5-1 shows the

resources impact of the on-chip instruction cache can be estimated by counting the area and

transistors consumed by the Instruction Unit. Table 4-5-1 has three columns: Column 1 shows

resources consumed by the datapath of the Instruction Unit. Column 2 shows resources consumed

by the controller of the Instruction Unit, and Column 3 shows the total resources consumed by

the Instruction Unit

Chapter 4: Microarchitectural Evaluation

1-Unit 1-Unit Total
Data path Controller

Chip Area
16.7/57 29% 2/57 4% 33%

(mm xmm)

Transistors
36.4/115 32% 1.2/115 1% 33%

(x 1000)

Table 4-S-1 Resources Metrics for the On-Chip Instruction Cache

Each column lists the absolute and percentage impact of each components on the different

resources metrics. The percentage impact is calculated by dividing the absolute impact by the to

tal value of that metric in the SPUR CPU. The total impact of the datapath and the controller is

the impact due to the on-chip instruction cache and is summarized in the right most column.

126

The datapath of the Instruction Unit, which consists of the cache and tag array, consumes

32% of the number of transistors but only 29% of the chip area. This is a result of the regularity

of the cache and tag arrays. On the other hand, the controller of the instruction cache is not as

regular. Consequently, it consumes 4% of the chip area although it only represents 1% of the

number of transistors. Neither the controller nor the datapath of the Instruction Unit has any

significant impact on the PLA's output nor product terms. This indicates the Instruction Unit is

relatively independent from the Execution Unit. In order to keep the Table 4-5-1 simple, these

negligible impacts are not shown.

4.5.3. On-Chip Instruction Cache-Impact on Complexity

The complexity due to the on-chip instruction cache can be quantified by the simulation

effort. The on-chip instruction cache of the SPUR CPU is simulated at both the behavioral and

switch level. The diagnostics we used for switch level simulation are:

(1) cc-IB_disabled- This diagnostic takes 364 cycles to verify that the SPUR CPU can at

least run with the Instruction Unit disabled.

Chapter 4: Microarchitectural Evaluation

Absolute Impact Percenta2e Impact

Cycles of
4,994 4,994/55,516 9%

Diagnostics =
Man-Month

0.25 0.25/3.5 7%
of Effort =

Table 4-5-2 Complexity Metrics for the On-Chip Instruction Cache

The first column lists the absolute impact on the complexity metrics due to the on-chip instruc
tion cache. The second column lists the percentage impact The percentage impact is calculated
by dividing the absolute impact by the total value of that metric in the SPUR CPU.

127

(2) cc-IB _fetch- This diagnostic takes 356 cycles to verify that the SPUR CPU can run with

the Instruction Unit enabled but prefetching disabled.

(3) cc-IB _fetch- This diagnostic takes 261 cycles to verify that the SPUR CPU can run with

the Instruction Unit and prefetching enabled.

(4) cc-IB_stuck -This diagnostic takes 4013 cycles to verify that there is no "stuck-at"

errors in the Instruction Unit

The total number of cycles and the man-month of simulation effort are two complexity

metrics we can extracted from this set of diagnostics. Column 1 of Table 4-5-2 is the absolute

value of these two metrics. The percentage impact of each metric is calculated in Column 2.

Notice that the increase in complexity due to the Instruction Unit is relatively small.

4.5.4. On-Chip Instruction Cache-Impact Summary

The impact of the on-chip instruction cache on performance, resources allocation, and com-

plexity are illustrated in Figure 4-5-1, Table 4-5-1, and Table 4-5-2 respectively. The results of

these figure and tables can be summarized as:

19% :5> Performance Impact :5> 41% => Median Performance Impact= 30%

33% :5> Resources Impact :5> 33% => Median Resources Impact= 33%

Chapter 4: Microarchitectural Evaluation

Performance

+30%

Figure 4-5-2 Three Different Views of the Tradeoff's

Performance
+41%

(a) shows the pessimistic view which uses the smallest performance impact and the biggest
resources and complexity impact. (b) shows the median view which uses the median perfor
mance impact and median resources and complexity impact. (c) shows the optimistic view
which uses the biggest performance impact and the smallest resources and complexity impact.

7% ~Complexity Impact~ 9% => Median Complexity Impact= 8%

128

These ranges of impact numbers can be used to formulate the optimistic, median, and pes-

simistic views of the performance, resources, and complexity tradeoffs. These three views are

shown graphically in Figure 4-5-2. Notice that although the Instruction Unit consumes a large

amount of resources, its impact on complexity is relatively small.

4.6. Multiprocessing Support Evaluation

The SPUR CPU supports multiprocessing by communicating with the Cache Controller

Chip· [Woo86] via a specialized coprocessor interface [WEG87]. The performance model

developed in Section 4.1 cannot be used here because it is developed for uniprocessor perfor-

mance analysis only. Uniprocessor's performance is a function of cycle time, instruction count,

and average number of cycles per instruction. These factors are not as significant in a multipro-

cessor environment where many processors work in parallel. Consequently, multiprocessor's per-

formance depends more on the number of processors [Kat85], bus traffic [Gib87], and cache

behavior [EgK88]. Since all these factors are outside the scope of this thesis, the multiprocessing

Chapter 4: Microarchitectural Evaluation 129

support's impact on perfonnance will not be studied here. Instead, we will concentrate on mul-

tiprocessing support's impact on resources in Section 4.6.1, and complexity in Section 4.6.2. The

results is summarized in Section 4.6.3.

4.6.1. Multiprocessing Support-Impact on Resources

Instructions
Cache Controller Total

Interfaces
Control PLA

6/54 11% 0/54 0% 11% Outputs
Control PLA

2/84 2% 0/84 0% 2% Products
Chip Area

0/57 0% 2.2/57 4% 4% (mm xmm)
Transistors

0/115 0% 0.8/115 1% 1% (x 1000)
Number of

0/156 0% 15/156 10% 10% Signal Pins

Table 4-6-1 Resources Metrics for Multiprocessing Support
Each column lists the absolute and percentage impact of each sub-feature on the different
resources metrics. The percentage impact is calculated by dividing the absolute impact by the to
tal value of that metric in the SPUR CPU. The total impact of these sub-features, that is the im
pact due to multiprocessing support, is summarized in the right most column.

The multiprocessing support requires seven load instructions, three store instructions, and a

Cache Controller Interface. Although all load or store instructions are alike internally, the CPU

must request different cache operations for different load or store instructions via the cache con-

troller interface. The impact of multiprocessing support on resources are quantified into several

resources metrics in Table 4-6-1. The instruction's impact are mainly on the number of control

PLA outputs. On the other hand, the Cache Controller Interface's major impact is on the number

of signal pins. The number of transistors and active chip area consumed by the multiprocessing

support are relatively small.

Chapter 4: Microarchitectural Evaluation 130

4.6.2. Multiprocessing Support-Impact on Complexity

The complexity due to the multiprocessing support can be quantified by the simulation

effort. The cooperation of the SPUR CPU and the Cache Controller is simulated in both the

behavioral and switch level. The diagnostics we used for switch level simulation are:

(1) cc-epromLd32- This diagnostic takes 260 cycles to verify that the SPUR CPU can work

together with the Cache Controller to load 32-bit data from the external word.

(2) cc-ldSt40- This diagnostic takes 1184 cycles to verify that the SPUR CPU can work

together with the Cache Controller to load and store 40-bit data from and to the external

world.

(3) cc-short_hit- This diagnostic takes 2131 cycles to verify that the SPUR CPU can work

together with the Cache Controller to handle a cache hit situation.

(4) cc-shortMissPF- This diagnostic takes 1392 cycles to verify that the SPUR CPU can

work together with the Cache Controller to handle a cache miss that results in a page

fault.

(5) cc-ptetMissPF -This diagnostic takes 1585 cycles to verify that the SPUR CPU can

work together with the Cache Controller to handle a cache miss that results in a page fault

Absolute Impact Percentage Impact

Cycles of 13,875 13,875/55,516 25%
Diagnostics =
Man-Month 1.0 1.0/3.5 29%

of Effort =

Table 4-6-2 Complexity Metrics for Multiprocessing Support

The first column lists the absolute impact on the complexity metrics due to hardware tag check

ing. The second column lists the percentage impact. The percentage impact is calculated by di
viding the absolute impact by the total value of that metric in the SPUR CPU.

Chapter 4: Microarchitectural Evaluation 131

and the page table entry is not in the cache.

(6) cc-short_si- This diagnostic takes 1805 cycles to verify that the SPUR CPU can work

together with the Cache Controller to handle an interrupt

(7) catch-fault- This diagnostic takes 5518 cycles to verify that the SPUR CPU can work

together with the Cache Controller to handle page faults that caused by store operations.

The total number of cycles and the man-month of simulation effort are two complexity

metrics we can extracted from this set of diagnostics. The metrics are summarized in Table 4-6-

2. Notice that the increase in complexity due to multiprocessing support is relatively big.

4.6.3. Multiprocessing Support-Impact Summary

The impact of the on-chip instruction cache on resources allocation and complexity are

illustrated in Table 4-6-1 and Table 4-6-2 respectively. The results of these figure and tables can

be summarized as:

Resources

+11%

+29%

Complexity

(a) Pessimistic

Resources

Complexity

(b) Median

Resources

+1% +25%
'1

Complexity

(c) Optimistic

Figure 4-6-1 Three Different Views of the Tradeoff's

(a) shows the pessimistic view which causes the biggest resources and complexity impact. (b)

shows the median view which causes the median resources and complexity impact. (c) shows the

optimistic view which causes the smallest resources and complexity impact.

Chapter 4: Microarchitectural Evaluation

1% ~ Resources Impact ~ 11% => Median Resources Impact= 6%

25% ~ Complexity Impact~ 29% => Median Complexity Impact= 27%

132

These ranges of impact numbers can be used to formulate the optimistic, median, and pes-

simistic views of the resources and complexity impact. These three views are shown graphically

in Figure 4-6-2. Notice that while the multiprocessing support does not consume a large amount

of resources, its impact on complexity is large.

4.7. Microarchitectural Evaluation Summary

The performance model introduced in Section 4.1 allows us to study performance quantita

tively. Section 4.7.1 summarizes how this simple model was used to study the performance

improvement caused by different SPUR CPU features. Section 4.7.2 gives a quantitative argu

ment for keeping the cycle time and average number of cycles per instruction low. Finally, Sec

tion 4. 7.3 discusses a systematic approach to the performance, resources, and complexity trade

offs.

4.7.1. Versatility of the Performance Model

The performance model introduced in Section 4.1 allows us to study different microarchi

tectural features• impact on performance by comparing the performance of the advanced microar

chitecture with that feature against a stripped down microarchitecture without that feature. This

performance model has only five parameters:

(1) M;: The number of instruction it takes to perform a certain function with the architectural

feature under consideration.

(2) Mo: The number of instruction it takes to perform a certain function without the architec

tural feature under consideration.

(3) F;: The frequency of the architectural feature being used.

Chapter 4: Microarchitectural Evaluation 133

(4) if: The cycle time ratio.

(5) g: :The average number of cycles per instruction ratio.

This simple performance model is versatile enough to let us evaluate the performance

impact of different SPUR CPU features although they affect the performance very differently. All

we have to do is find the proper values or, in more complex cases, find the proper expression for

the five parameters. For example, in Section 4.4 the number of instructions it takes to execute a

LOAD (Mi) is expressed in terms of the proportion of the LOAD delay slot being filled by useful

instruction PROJiU· Below is a summary of how the different features of the SPUR CPU affect

these five parameters. In all cases, I have used the subscript "i" for the SPUR CPU (Ti, Cj, Mi)

and subscript "o" for the stripped down CPU (To, Co, Mo).

LISP Support:

Mi = 1. Mo > 1 and depends on the number of instructions it takes to do the explicit tag

checking. Fi is the frequency of the instructions that requires tag checking. Finally, g:

and if are not affected directly.

FPU Support:

Mi = 1. M0 > 1 and depends on the number of instructions it takes to emulate the floating

point operations. Fi is the frequency of the floating point operations. g: < 1 because even

with the FPU coprocessor, the number of cycles it takes the CPU-FPU combination to exe

cute a floating point operation is still bigger than the average number of cycles per CPU

instruction. Finally, if is not affected directly.

Extra Pipeline Stage:

Mo = 1. Mi > 1 and depends on the proportion of the LOAD delay slot being filled by useful

instruction. Fi is the frequency of the LOAD. g; > 1 because the stripped down CPU

Chapter 4: Microarchitectural Evaluation 134

must suspend the pipeline for one cycle whenever LOAD is executed. Finally, * is not

affected directly.

On-Chip Instruction Cache:

Mo = 1. M; > 1 and depends on the proportion of the LOAD delay slot being filled by useful

instruction. Fi is the frequency of the LOAD and STORE. -§- > 1 because the stripped

down CPU must suspend the pipeline for one cycle whenever LOAD and STORE is exe

cuted Finally, if-> 1 because the on-chip instruction cache eliminate the need for going

off-chip to fetch every instruction.

I must point out that the performance improvement due to LISP and FPU support are very

program dependent The FPU support will not benefit any program that does not contain any

floating point operation. Similarly, the LISP support feature will not benefit any program that is

not written in LISP.

4.7.2. The Need for Speed

Figure 4-5-l(c) shows that the performance improvement predicted by the best argument

for having on-chip instruction cache increases 47% (from -6% to 41%) while the worst argument

increases only 40% (from -21% to 19%) when the cycle time is improved by 50%. In general, the

best argument for having a particular feature improves faster than the worst argument when the

cycle time, the average number of cycles per instruction, or both are improved by that feature.

From the opposite viewpoint, the best argument for having a particular feature degrades faster

than the worst argument when the cycle time, or the average number of cycles per instruction or

both are degraded by that feature. This is illustrated in Figure 4-2-l(b), Figure 4-3-l(c), and Fig

ure 4-4-2(c). For example, in Figure 4-2-l(b) when the p factor (the product of the cycle time

ratio and the average number of cycles per cycle ratio) is reduced from 1.0 to 0.9, the best argu

ment for having tag checking drops 30% (from 204% to 174%), the median argument only drops

Chapter 4: Microarchitectural Evaluation

IMPi= [~ - 1] = 2.04 =

IMPi = [~ - 1 J = 0.24 =

0%

IMPi=-1009':

Figure 4-7-1 The Effect of Degrading P Factor

This is a simplified version of Figure 4-2-1(b) which shows how the performance improvement

due to hardware tag checking is affected by degrading cycle time or average number of cycles

per instruction or both. The p factor is defined as the product of the cycle time ratio and the

average number of cycles per cycle ratio. Notice that asp decreases, the performance improve

ment predicted by the best argument (top line) drops off faster than the median argument (mid

dle) which drops faster than the worst argument (bottom). This make sense mathematically be

cause all these lines must merge at minus 100% when p = 0.

135

19% (from 92% to 73%), while the worst argument drops even less, only 13% (from 24% to

11%). As illustrated in Figure 4-7-1, this make sense mathematically. However as engineers, we

were taught not to believe the mathematics unless it makes sense physically!

In order to understand why the top line drops faster than the bottom line (Figure 4-7-1), we

have to look at the case p = 1. When p = 1, we are ignoring the effects of the new feature on

cycle time and the average number of cycles per instruction. A big performance improvement at

p = 1 (top line) means adding that feature can reduce the number of instructions (I) by a large

amount Seen another way, it means getting rid of the feature will increase the number of instruc-

tions by a large amount. In our LISP example Figure 4-7-1(b), the best argument for having tag

checking (top line) therefore predicts an increase of 204 instructions for every 100 instructions if

tag checking is removed. The worst argument predicts only an increase of 24 extra instructions

for every 100 instruction.

Chapter 4: Microarchitectural Evaluation 136

At p=l, the gap between the best and worst arguments represents this difference in number

of instructions (204- 24 = 180) because we are neglecting hardware tag checking's effect on cycle

time and average number of cycles per instruction. On the other hand, at p <l, the gap between

the best and worst arguments represents the time the stripped down CPU takes to execute the

extra 180 instructions. Ifby getting rid of hardware tag checking we can reduce the cycle time or

the average number of cycles per instruction or both (smaller p), the time it takes the stripped

down CPU to execute the extra instructions is reduced. Consequently as we move towards the

p=O point, the gap between the best and worst arguments gets smaller and smaller. Finally, at

p=O, the stripped down CPU's cycle time and average number of cycles per instruction is so

much faster than the SPUR CPU that the time to execute the extra instructions is negligible-the

gap disappears. As a matter of fact, at p=O, the time the stripped down CPU takes to execute the

benchmark is practically zero compare to the execution time of the SPUR CPU. The performance

improvement is therefore -100%.

In my opinion, this is a good quantitative argument for keeping the cycle time and average

number of cycles per instruction low at all cost because they benefit all instructions-not just one

particular instruction. However, I must also point out that when I say reduce the cycle time, it

does not mean just reduce the CPU cycle time. The environment surrounding the CPU-such as

the memory system and the 1/0 devices-must also speed up. Otherwise the extra wait states will

lower the performance improvement This, of course, is one version of Amdahl's law [Amd67]

which states that the speed of any computation is limited by its slowest part.

4.7.3. Performance Resources and Complexity TradeotTs

Resources and complexity are two separate ways we can pay for performance. As we can

see from our analysis, resources and complexity are quite independent For example, the on-chip

instruction cache has a large impact on resources but only a small impact on complexity. On the

other hand, the multiprocessing support has large impact on complexity but only a small impact

on resources. The microarchitect has many options to achieve the desired performance by

Chapter 4: Microarchitectural Evaluation

Option 1

resources
available

Figure 4-7-2 Performance Resources and Complexity TradeotTs

The options, which correspond to different features that can be included in the microarchitecture,

are placed in increasing complexity on the vertical axis. The performance and resources needed

for these options are plotted on the horizontal axes. Each module has its own minimum perfor

mance requirement which is a direct result of the overall performance goal. This performance re

quirement place an "acceptable performance" bound on the Performance axis.

137

selecting different features for the microarchitecture. All options involve tradeoffs between per-

formance, resources, and complexity.

This type of tradeoff is shown graphically in Figure 4-7-2. Since we are considering what

features to be included in the CPU, Option 1 could be a basic CPU that has minimum features. It

is simple in complexity, low cost in resources, and low performance. Option 2 could be a CPU

similar to Option 1 but the microarchitect uses resources to pay for more performance by adding

a very large instruction cache. This large instruction cache increases the resources a lot but only

increases the complexity slightly. Option 3 could be a CPU similar to Option 1 but the microar-

chitect uses complexity to pay for more performance by using a very long pipeline. This long

pipeline increases the complexity a lot but only increases the resources slightly. Option 4 could

be a combination of Option 2 and Option 3. The microarchitect uses both resources and complex-

ity to pay for more performance by using a moderate size instruction cache and a moderate length

pipeline. The interaction between the pipeline and the instruction cache further increases the

complexity. However, since the cache is much smaller than the cache in Option 2, the resources it

Chapter 4: Microarchitectural Evaluation 138

consumes is less. Finally, Option N could be a machine that is so complex that its performance is

less than a simple machine that uses far fewer resources.

The performance requirement for the CPU places an "acceptable performance" bound on

the performance axis (Figure 4-7-2). Given this performance requirement, the microarchitect

must include enough features in the microarchitecture such that the performance requirement is

met while at the same time stay within the resources and complexity constraints. Here is the

recommended approach:

(1) Make an educated guess on how many resources you are willing to spend or are available

to the CPU. This places a "resource available" bound on resources axis in Figure 4-7-2.

(2) Within this bound, pick the simplest option available.

(3) If this option's performance is within the acceptable range, then mission accomplished.

Otherwise, go to Step 4.

(4) If there are any other options within the resource bound, pick the next more complex

option and go back to Step 3. Otherwise go to Step 5.

(5) If possible, go to Step 1 and increase the resources available bound. Otherwise, you may

need to reduce the performance expectation.

Using Figure 4-7-2 as an example, Step 2 of this procedure will pick Option 1. However, in

Step 3, we will find out Option 1 's performance is below the acceptable range. In Step 4, Option

2 will not be considered because it is beyond the resources available bound. Option 3 will be

chosen because it is less complex than Option 4. Unfortunately, in Step 3, we will again find out

Option 3's performance is not acceptable. This will lead us back to Step 4 and select Option 4.

This time, when we get back to Step 3, we will find out Option 4 's performance is acceptable.

This kind of tradeoff should always be in a microarchitect's mind and I see absolutely no

reason why we can build CAD tools to place and route million of gates but cannot build tools to

help designer to make tradeoffs in this fashion. In this chapter, the performance resources and

Chapter 4: Microarchitectural Evaluation 139

complexity tradeoffs are done on the complete CPU. In chapter 5, I will show how this tradeoffs

can be extended into lower level modules that form the CPU. There are two things I want to

point out:

(1) We always pick the simplest option because a complex option requires the most expen

sive resource-the human designer. The simplest solution can also make use of the newest

technology. When technology is improving fast it can negate the performance advantage

of complex solution that takes longer to implement and debug.

(2) We do not pick the highest performance option because any option within the perfor

mance specification is as acceptable as the highest performance option. The reason is that

the increase in CPU performance alone will not improve the system performance drasti

cally unless you speed up all components of the system. This is another version of

Amdahl's law [Amd67].

In this chapter, we performed the performance resources and complexity tradeoffs analysis

after the SPUR CPU was built. This is educational, but may be too late unless we are willing to

build multiple prototype to correct our mistakes. Next chapter, I will show a systematic approach

that will perform this type of analysis earlier in the design process.

Chapter 4: Microarchitectural Evaluation 140

4.8. REFERENCES

[Amd67] G. Amdahl, "Validity of the Single Processor Approach to Achieving Large Scale

Computing Capabilities", Proceedings AFIPS 1967 Spring Joint Computer

Conference 30, Atlantic City, New Jersy, April, 1967.

[Bos88] B. K. Bose, VLSI Design Techniques for Floating-Point Computation, Doctoral

Dissertation, Computer Science Division, EECS Department, University of

California, Berkeley, November 1988.

[Dun86] R. R. Duncombe, The SPUR Instruction Unit: An On-Chip Instruction Cache

Memory for a High Performance VLSI Multiprocessor, Master· Report, EECS

Department, University of California, Berkeley, CA 94720, August, 1986.

[EgK88] S. Eggers and R. Katz, ''A Characterization of Sharing in Parallel Programs and its

Application to Coherency Protocol Evaluation", The 15th Annual International

Symposium on Computer Architecture, Honolulu, Hawaii, May 30-June 2, 1988.

[Gib87] G. Gibson, "Estimating Performance of Single Bus, Shared Memory

Multiprocessors", Report No. UCB/Computer Science Dpt 87/355, Computer

Science Division, EECS Department, University of California, Berkeley, May 1987.

[HaK86] P. Hansen and S. Kong, "SPUR Coprocessor Interface Description", Report No.

UCB/Computer Science Opt 87/308, Computer Science Division, EECS

Department, University of California, Berkeley, October 1986.

[Han88] P. M. Hansen, Coprocessor Architectures for VLSI, Doctoral Dissertation, Computer

Science Division, EECS Department, University of California, Berkeley, November

1988.

[Hen85] J. Hennessy, "VLSI RISC Processor", VLSI Systems Design VI, 10 (October 1985).

[Hil87a] M. D. Hill, Aspects of Cache Memory and Instruction Buffer Performance, Doctoral

Dissertation, Computer Science Division, EECS Department University of

California, Berkeley, Fal11987.

[Hi187b] M. Hill, Private Communication Computer Science Division, EECS Department,

University of California, Berkeley, CA 94720, December, 1987.

[Hil88] M. Hill, "A Case for Direct-Mapped Caches", Computer 21, 12 (December 1988).

[Kat85] R. Katz, et al., ''Memory Hierarchy Aspects of a Multiprocessor RISC: Cache and

Bus Analyses", Report No. UCB/Computer Science Opt. 85/221, Computer Science

Division, EECS Department, University of California, Berkeley, January 1985.

[Kog81] P. M. Kogge, The Architecture of Pipelined Computers, McGraw-Hill Book

Company, 1981.

[Pat89] D. Patterson, Private Communication Computer Science Division, EECS

Department, University of California, Berkeley, CA 94720, January, 1989.

[Sip82] T. N. Sippel, Floating RISC: Implementation and Analysis of Floating Point on

RISC I, Master Report, Computer Science Division, EECS Department, University of

California, Berkeley, CA 94720, August, 1982.

[StH88] P. Steenkiste and J. Hennessy, "Lisp on a Reduced-Instruction-Set Processor:

Characterization and Optimization", Computer 21, 7 (July 1988).

[Tay89] G. Taylor, Private Communication Computer Science Division, EECS Department,

University of California, Berkeley, CA 94720, January, 1989.

[Tay86] G. Tayloret al., Evaluation of the SPUR Lisp Architecture, The 13th Annual

International Symposium on Computer Architecture, Tokyo, Japan, June 2-5, 1986.

Chapter 4: Microarchitectural Evaluation 141

[WEG87] D. Wood, S. Eggers and G. Gibson, "SPUR Memory System Architecture", Report

No. UCB/Computer Science Dpt. 87/394, Computer Science Division, EECS

Department, University of California, Berkeley, December 1987.

[Woo86] D. A. Wood et al., "An In-Cache Address Translation Mechanism", The 13th

Annual International Symposium on Computer Architecture, Tokyo, Japan, June 2-5,

1986.

[Zor89] B. Zorn, Private Communication Computer Science Division, EECS Department,

University of California, Berkeley, CA 94720, January, 1989.

Chapter 5: A Systematic Approach

Chapter 5

A SYSTEMATIC APPROACH TO

MICROARCHITECTURAL DESIGN

I shall never believe the God plays dice with the world.

Albert Einstein, 194 7

142

The goal of this thesis, as stated in Chapter 1, is to provide a quantitative way to evaluate

microarchitectures and a systematic way to design them. In Chapter 4, I have used the SPUR

CPU as an example to show how microarchitecture can be evaluated quantitatively. In this

chapter, I show how to approach the microarchitectural design problem systematically.

5.1. The Microarchitectural Design Problem

This section discusses the microarchitectural design problem. Section 5.1.1 formally defines

the term microarchitecture and then the phrase "microarchitectural design." Section 5.1.2 intro

duces a set of important issues that are important to microarchitectural design. Section 5.1.3

shows a systematic approach to these microarchitectural issues.

5.1.1. Microarchitectural Design-The Definition

The term microarchitecture was defined informally in Chapter 1 as the specification of how

the macroarchitecture is implemented in a given technology. More formally, the term microarchi

tecture can be defined with respect to Gajski 's tripartite representation [Gaj85] as all the informa

tion the designer knows about the design at its microarchitecturallevel. As shown in Figure 5-1-

-t. the microarchitectural level is one of the five possible design levels in Gajski's tripartite

Chapter 5: A Systematic Approach

Physical Domain

Figure 5-1-1 The Tripartite Representation of a Design

In Gajski tripartite representation, a design can be described in three separate domains:

behavioral, structural, and physical. Each domain is represented by one of the three axes that

form theY chart. Within each domain, there are five design levels. I have added concentric cir

cles to Gajsk.i original tripartite representation to show the five design levels graphically. The

design levels can be viewed as different levels of abstraction and each design level represents all

the informations known about the design at some point in the design process.

143

representation. Since each design level is shown in Figure 5-1-1 to span all three domains, the

term microarchitectural design refer to the step at which the designer specifies all the microarchi-

tecturallevel features in the behavioral, structural, and physical domains.

The microarchitectural design step of the SPUR CPU is shown as an example in Figure 5-

1-2. This figure shows the SPUR CPU design processing discussed in Section 3.2 (Figure 3-2-1)

with respect to the tripartite representation. This representation idealizes the SPUR CPU design

process into a purely sequential process that starts in the performance specification in the

behavioral domain and spirals toward the final product-the layout at the physical domain. This is

Chapter 5: A Systematic Approach

I
/

----• Specification

- -+ Macroarchitecture Design

- Microarchitecture Design
-cP"u: CC, and FPU

---+ Implementation Physical Domain

Figure 5-1-2 The Tripartite Representation of the SPUR CPU Design Process

The four major steps in the SPUR design process-Specification, Macroarchitectural Design, Mi

croarchitectural Design, and Implementation-are shown here with respect to the tripartite

representation. The three products of the microarchitectural design step are the behavioral

description in the behavioral domain, a set of micro-modules (specifies in block diagrams) in the

structural domain, and a floor plan in the physical domain. The ALU and Shifter are examples of

micro-modules. On the other hand, the Operand Supplier and Functional Unit are examples of

macro-modules.

144

an idealized picture because, in practice, the sub-steps and products within the four major steps

cannot be defined as clearly as shown.

5.1.2. Microarchitectural Design Issues

The most general approach for handling the microarchitectural design problem involves two

steps:

(1) Design the datapath, and

Chapter 5: A Systematic Approach 145

(2) Design a controller that controls the datapath.

This procedure, however, is so general that telling it to an inexperienced designer is about as

helpful as telling someone who is afraid of flying that the only danger in aviation is hitting the

ground. There are just too many tasks in these two steps. Fortunately, I can give more direct

advice: All the tasks involve making decisions concerning certain issues. The designer can

approach these two complex steps systematically by asking himself what the important issues are

and finding solutions to them. Based on the SPUR CPU design experience, I think these are the

six important issues affecting microarchitectural design:

(1) Off-chip Communication

Off-chip communication has always been a bottleneck due to the limited number of pins

and it is worse for output ports because of power considerations [PaS80]. This problem is

more severe for modem microprocessors which communicate not only with memory but

also have to communicate with coprocessors, memory management units, and other

microprocessors in a multiprocessor system.

(2) Pipeline and Clocking

A longer pipeline usually leads to a shorter cycle time. The performance gain from a shorter

cycle time, however, may be lost due to the increased cost in branches and data hazards.

Alternatively, a shorter pipeline is easier to control and the penalties are smaller for

branches and data hazards. But a shorter pipeline usually requires more clock phases per

cycle, leading to a more complicated clock distribution network, a more severe clock skew

problem, and ultimately a longer cycle time.

(3) Micro-Modules Selection

The microarchitect must select a set of micro-modules to implement the instruction set and

other macroarchitectural features specified by the macroarchitect.

(4) Resources Allocation

On-chip storage trade-offs such as the size of register file versus the size of the instruction

Chapter 5: A Systematic Approach 146

cache is a very interesting problem by itself [GoH86]. This problem can be generalized to

include the process of allocating resources to the set of micro-modules.

(5) On-chip Interaction

A clean microarchitectural design can restrict most on-chip interactions to internal busses.

Certain functions such as trap handling, inherently involve many on-chip components and

interaction is unavoidable. Certain instructions also have the tendency to involve many on

chip components and these instructions should be avoided.

(6) Floor Planning

The microarchitecture must eventually be implemented on the limited area of a silicon chip.

The microarchitect must decide how to place the set of macro-modules according to their

sizes, aspect ratios, and connections between the macro-modules.

I call these issues the microarchitectural issues. They can be grouped into three groups with

respect to the three domains in Gajski tripartite representation.

Behavioral Issues

Off-chip communication, and pipeline and clocking are behavioral issues.

Structural Issues

Micro-modules selection, on-chip interaction, and resources allocation are structural issues.

Physical Issue

Floor planning is a physical issue.

A microarchitect must answer some tough questions concerning these issues when he

designs the datapath and the controller. His decisions on these issues will have a direct effect on

the performance, resources, and complexity tradeoffs.

5.1.3. A Systematic Approach to Microarchitectural Issues

A systematic approach to microarchitectural design must begin with a systematic approach

to the microarchitectural issues. Ideally, the microarchitect would like to tackle one

Chapter 5: A Systematic Approach 147

microarchitectural issue at a time. Unfortunately, all microarchitectural issues are interrelated.

Decisions concerning one issue usually lead to (or restrict) decisions concerning the others issues.

A systematic approach to these issues must take these interrelations into account. Here is a sys

tematic approach I recommended:

Before making any important decisions concerning any microarchitectural issue or issues,

the microarchitect should:

(1) List all the unanswered questions concerning each issue.

(2) Construct a model that can isolate the issue or issues.

(3) Use the model to conduct quantitative experiments to answer the questions.

The modeling language does not have to be a hardware description language. The goal is to

isolate certain aspects of the microarchitectural design at a time. The model the microarchitect

constructs and the experiments he conducts must take into account the characteristics of the

underlying teclmology and implementation considerations. There are a couple of interesting ques

tions concerning this approach:

• How can the microarchitecture be modeled such that the microarchitect can examine a sub

set of the microarchitectural issues at a time?

• What are the important parameters to be measured in the experiments such that the microar

chitect can make quantitative decisions concerning the issue?

Before I try to answer these questions, I review background studies on systematic approaches to

the general design problem.

5.2. Background Studies

Hardware description languages and silicon compilers are two areas to look for ideas that

can help us in developing a systematic approach to microarchitectural design, because microar

chitecture is just one possible representation of the hardware to be implemented in silicon. Sill-

Chapter 5: A Systematic Approach 148

con compiler research can be considered as an extension of hardware description language

research because once the hardware is described in a machine readable form, you probably want

to generate the silicon automatically-the goal of silicon compiler research. Hardware description

language research, on the other hand, does not limit its focus to integrated circuit. Hardware

description language research must also study hardware at board and system levels. Furthermore,

hardware description language must also investigate problems such as formal verification, com-

pilation facilities, access to program libraries, version control, and standardization. Therefore

with respect to the scope of their research, silicon compiler research can also be considered as a

subset of the hardware description language research.

5.2.1. Hardware Description Languages

Hardware description languages can be defined as computer languages for describing, docu-

menting, simulating, and synthesizing digital systems with the aid of a computer [Su77]. Accord-

ing to Chu [Chu74], describing digital system in computer language is nothing new:

The use of computer languages to describe digital system designs can be traced back to

Shannon's work on switching circuit in 1939, Aiken's work on switching theory at Harvard in

the 1940's, the logic diagrams at MIT and the National Bureau of Standards in the late 1940's,

the flipflop equations in the 1950's, and the register languages in the 1960's.

Yaohan Chu, Why Do We Need Computer Hardware Description Languages?
Computer, December 1974, Page 18

Hardware description languages' application, however, was not wide spread until the early 1970s

when researchers started using them as documentation, simulation, and teaching tools. By the late

1970s [Su77] hardware description languages were well established as documentation and simu-

lation tools. There was also an attempt to use hardware description language to describe a new

invention at that time-the microprocessor [Lip75]. Two interesting research topics in hardware

description languages emerged in the late 1970s are:

Digital System Analysis and Evaluation

The goal was to find ways to evaluate the effectiveness and prove the correctness of a pro-

Chapter 5: A Systematic Approach 149

posed digital system by simply analyzing the system's description in a hardware description

language. This would eliminate the need for time consuming simulation.

Structured Design of Digital System

A digital system described in a well designed hardware description language should be easy

to partition into modules that are easy to build and design. This will encourage designer to

use relatively independent modules.

Physical Domain

Figure 5-2-1 Classification of Hardware Description Languages

At each domain, there are certain design levels where no formal hardware description language

exists. These levels are usually described informally and the informal ways to describe them are

shown inside parenthesis. The behavioral domain is the domain most covered by hardware

description languages. As a matter of fact, most so call hardware description languages are

languages that describe the microarchitecturallevel of the the behavioral domain.

Chapter 5: A Systematic Approach 150

These two topics remain important driving forces in hardware description language research

in the 1980s. Furthermore, the trend of the 1980s is more formal applications of hardware

description languages and synthesis of hardware from formal machine description. A standard

ized universal hardware description language was a goal since the early 1970s but was never real

ized. I think the goal of having a standardized universal hardware description language is hard to

achieve because there are different requirements for different applications. This is illustrated in

Figure 5-2-2, where I have borrowed Gajsk.i's ideas (Figure5-1-1) and classified hardware

description languages into five levels and three domains.

In the behavior domain, the system level behavior is usually specified informally in textual

form as performance specification. The macroarchitectural level behavior can be modeled by an

instruction level simulator written in a high level programming languages such as C. The

microarchitectural level behavioral can be described by register transfer languages such as ISP'.

Logic level behavior can be described by Boolean equations. Finally, the SPICE input deck can

be used to describe the circuit level behavior.

In the physical domain, circuit and logic levels are probably the only levels need to be

described in machine readable form. CIF is the most common language for describing physical

characteristics at the circuit level-layout (see Figure 5-1-1). On the other hand, procedural design

languages such as ICL and DPL are common languages for describing physical characteristics at

the logic level. All other levels are usually described informally in floor plans that have different

levels of details.

In the structural domain, PMS at the system level is the only well known hardware descrip

tion language. All other levels are described informally by diagrams and netlists. Here are three

reasons for this lack of hardware description languages in the structural domain:

• Most hardware description languages are modeled after high level programming languages.

They are good at capturing a design's behavior, but contain little structural information.

Chapter 5: A Systematic Approach

Performance Specification

Physical Domain

Figure 5-2-2 Pure Top Down Design Methodology

The steps of the pure top down design methodology form an inward spiral. For simplicity, feed
back paths between each step are not shown. However, these feedback paths are the reasons why
iteration is necessary. The pure bottom up design methodology is exactly opposite-an outward
spiral. The reader can get a mental picture of the pure bottom up design methodology by revers
ing the arrow heads.

151

• Diagrams consisting of black boxes and connections are natural ways to describe structure.

These diagrams may have different levels of detail at different design levels but are similar

structurally. Therefore it is conceivable to use PMS for all levels in the structural domain.

• Most current custom design methodologies require the designer to work in the structural

domain. The graphical CAD tools they use then capture the structural infonnation impli-

citly and eliminate the need for explicit description of the structure using fonnal description

languages. For example, the Magic .ext files [SMH85] can be considered as an implicit

hardware description languages that describe the netlist

Chapter 5: A Systematic Approach 152

Human designers prefer to work in the behavioral domain, but their work in the behavioral

domain must eventually be transformed to the physical domain. Since work in the physical

domain is tedious (but necessary), designers prefer this transformation to be done automatically.

This transformation, however, will not be efficient unless important structural information is pro

vided because the structural domain is the bridge between the behavioral and the physical

domain. Unfortunately, the lack of hardware description languages in the structural domain

makes it hard to express structural information in machine readable form. Consequently,

designers end up doing more work in the structural and physical domains than they prefer. In

order to reduce the manual labor in the structural and physical domains, researchers must pay

more attention to structural information representation.

5.2.2. Silicon Compilers

The term silicon compiler was first used by Dave Johannsen of Caltech back in 1981

[Joh81]. The silicon compiler concept was inspired by the pure top-down design methodology. In

Figure 5-2-2 above, I have drawn my view of the pure top-down design methodology with respect

to Gajski's tripartite representation (Figure 5-1-1). In this view, the steps of the pure top down

design methodology form an inward spiral that starts at the system level of the behavioral domain

(performance specification) and ends at the circuit level of the physical domain Qayout). The ulti

mate goal of silicon compiler is to carry out this inward spiral automatically.

Early silicon compilers were proposed to carry out the entire synthesis process. In order to

simplify this complex task, a target technology was usually assumed and a fixed floor plan was

chosen by human designers. In fact, as illustrated in Figure 5-2-3, the highest level input the

early primitive silicon compilers could accept was the logic level description in the behavioral

domain. Notice that the human designer must carry out all the design steps manually up to the

logic level. According to Newton and Sangiovanni-Vincentelli [NeS86], the most important con

tributions of the early silicon compiler research is the development of the Procedural Design

Languages-hardware description language in the physical domain (see Figure 5-2-1).

Chapter 5: A Systematic Approach

s~~tem 4_v!_l
,.,. -- -......... ,

"' "' Macroarchitectural '
"' '

Structural Domain/"' "' - - G~C - - ' ', Behavioral Domain

Processors, Memory, Switches

Hardware Modules

,. "' Microarchitectrual '
"' - [e;er - , Performance Specification

"' ' ,. "' Logic Level ' ,tJgorithms,lnstruction Set

Registar Transfers

-~ -s
X

I .
ALUs, MU((s, regiSters

Gate$, Flip-flops, €ells

T~sistots, con<acu,

I I I

I I
I
I

\ \
\ \

\
\

\
\ \

\ ' Manual step \ '
' Automated step ' '

Produced by user

Generated automatically

'

' \
Booleal\ Equa¥ons

Timin\ \ 'I
I I I
I I I

....

Physical Domain

I
I

1 1 I Highest level language

1 1 accepted by early
I

1
silicon compilers

I

I
I

Figure 5-2-3 Primitive Silicon Compilers

Logic level description was the usual input to the early silicon compilers. This description can be

in the behavioral domain for the most powerful compilers, in the structural domain for the less

powerful compilers, or in the physical domain for the least powerful compilers. In this figure, I

have shown the most powerful compilers that can accept inputs from the behavioral domain. In
this case, the designer must carry out all the steps and generate all the products manually up to

the Boolean equations.

153

The current goal of most silicon compiler research is no longer to carry out the entire syn-

thesis process by one single program. The current emphasis is to create a "silicon compiler design

environment." This environment is illustrated in Figure 5-2-4 in which the synthesis process is

divided into stages. CAD tools are then developed to optimize resource allocation and perfor-

mance at each stage, and to automate the transformation from one stage to the other. The com-

mon input of a modem silicon compiler design environment is the register transfer description.

The Yorktown Silicon Compiler at IBM [Cam87] is one example. Other more ambitious projects,

such as the Design Automation Assistant (DAA) at AT&T Bell Laboratories [Kow85], accept

input at the macroarchitecturallevel of the behavioral domain-algorithmic description.

Chapter 5: A Systematic Approach

System l.eYd.
----- -S_tepl

~- -,
, ,' Macroarchitectural ',

Structural Domain/" ' ' Behavioral Domain
Processors, Mc:mory, Switches Performance Specification

_ _.

-
~

X

Hardwue Mallules Algorithms, Insuuction Set

ALUs, MtJX•· registezs 0 Reg~ Transfers

Ga\e5, Flipiflops, Boolean Equatlona "1
Thnsis~. co Timin \ \ I

: 1 I 1 The most common level

su:pz\ s\ ;6 ;su:pJ ::'!':~:.;:!,!';il.,.

' \
\

' ' Manual step ' ' Automated step '
Produced by UJCr

Generated automatically

' ' '

....

Physical Domain

I

I
I

I
I

Figure 5-2-4 Modern Silicon Compiler Design Environment

The key words here are "design environment" In the silicon compiler design environment, a set
of CAD tools are available to optimize and automate each step of the synthesis process. Most
modern silicon compiler design environment can accept inputs at the microarchitectural level of
the behavioral domain and generate layout automatically. For some applications such as digital
signal processing, and some ambitious silicon compiler projects, they can even accept inputs at
the macroarchitecturallevel of the behavioral domain.

154

The translation from the algorithmic description to the register transfer description (Step 4,

5, and 6 in Figure 5-2-4) is not a trivial task except for some very specific application such as

digital signal processing. For more complex applications such as CPU design, this translation

usually requires the use of some knowledge-based expert system programming techniques. New-

ton and and Sangiovanni-Vincentelli [NeS86] said that in the future, procedural design systems

and knowledge-based expert systems are crucial for the development of future synthesis system.

They also believe that the major components of a synthesis system are:

(1) Procedural Design and Module Generation-Step 7, Step 8, and Step 9 in Figure 5-2-4.

Chapter 5: A Systematic Approach 155

(2) Logic synthesis-Step 10, Step 11, and Step 12 in Figure 5-2-4.

(3) Physical synthesis-Step 13 and Step 14 in Figure 5-2-4.

5.2.3. Meet in the Middle Approach

There is one major philosophical difference between the goal of this chapter and research in

hardware description languages and silicon compilers which is based strongly on computer sci-

ence theory. Their goal is to introduce a new theory-based approach to the design process and

ultimately automate it. This chapter, on the other hand, is based on the design process that was

used to create the SPUR CPU. I will look at ways to make this process more systematic and

Processors, Memory, Switches

- Top down path

---.. Bottom up path

$ Rendezvous point
Physical Domain

Figure 5-2-5 Meet In The Middle Approach

In the meet in the middle approach, system designers start at the performance specification in the

behavioral domain and work their way down. At the same time, logic and circuit designers start

at the layout in the physical domain and work their way up. They meet at the microarchitecture

level of the physical domain.

Chapter 5: A Systematic Approach 156

efficient based on the lessons I learned. Furthem10re, the goal of most hardware description

language and silicon compiler research is to develop CAD tools that can automate the top-down

design methodology. However, as many custom VLSI chip designers have learned, the top-down

design methodology is not as practical as the "meet-in-the-middle" approach. My view of the

"meet-in-the-middle" approach is shown in Figure 5-2-5.

Cathedral [DRS86] is a silicon compiler for digital signal processing chips that is based on

the meet at the middle approach. The user of Cathedral must provide "structural hints" to the

compiler to aid the behavioral to physical compilation. Furthennore, instead of using a module

generator to generate the layout, Cathedral's compilation is based on "silicon modules" that are

are designed by layout designer and are composed of functional building blocks. For example, if

the SPUR CPU is to be compiled by a Cathedral type compilers, the Operand Supplier and the

Functional Unit (see Figure 2-3-1) are two of the silicon modules. The set of silicon modules

available to Cathedral was carefully restricted. According to the authors, this restriction was the

key of Cathedral's success. The authors also believed in order to develop a Cathedral type com

piler, one must follow a series of five steps:

(1) Define a wide, but concise class of system design applications.

(2) Define a target architecture and its associated layout style.

(3) Define a design strategy.

(4) Define the behavioral language that models the microarchitecture and silicon modules.

(5) Then and only then develop the CAD tools.

In our SPUR CPU example, the result of Step 1 is the specification of a general purpose

CPU with LISP support. In Step 2, the target architecture is a RISC-style processor that does not

use microcode, and the layout style is the Mead & Conway style. Step 3, Step 4, and Step 5 are

the major steps toward a a systematic approach to the microarchitectural design problem. They

are discussed in Section 5.3 in more detail.

Chapter 5: A Systematic Approach 157

5.3. Steps Toward a Systematic Approach to Microarchitectural Design

The major steps toward a systematic approach to microarchitectural design were discussed

briefly at the end of Section 5.2. I have added some of my own ideas and restated them as:

(1) Propose a general design strategy.

(2) Develop models that can capture the microarchitecture's behavioral, structural, and physi

cal features.

(3) Build or propose CAD tools that can aid the last two steps.

(4) Refine the general design strategy proposed in Step 1 and iterate again.

The first three steps are based on the discussion at the end of Section 5.2. I added the last

step to introduce feedback into the approach. These steps are discussed in Section 5.3.1, Section

5.3.2, Section 5.3.3, and Section 5.3.4, respectively. In order to limit the scope of my research, I

will focus the discussion on RISC-style processors that do not use microcode. The discussion are

based on the the following observations:

(1) For a RISC-style processor, just looking at the instruction set can tell you a great deal

about the microarchitecture.

(2) The model or models for the microarchitecture must be abstract enough for making high

level design decisions and detailed enough for logic specification and simulation.

(3) We must reduce the time we spent for verification in order to improve the efficiency of

the design process.

(4) We must document all the important design decisions and the assumptions or facts on

which these decisions are based.

5.3.1. The Design Strategy

In the most general term, the microarchitectural design problem can be divided into two

tasks: (1) design the datapath, and (2) design a controller that controls the datapath. This is shown

Chapter 5: A Systematic Approach

Abstract Model

~_j __ ~
1 Macro
l Mod~~..,
I
l..

Expanded Model

'------------------------------- ----

Figure 5-3-1 Design Strategy

The microarchitectural design problem can be divided into two tasks: datapath design and con

troller design. The datapath can be further divided into macro-modules and then micro-modules.

The controller can be further divided into two parts: one controls instruction execution and anoth

er controls unusual conditions. The handling of unusual conditions, however, can be integrated

into the part that controls instruction execution via the use of internal instructions (see Section

2.3.3 and Section 2.4.3).

158

graphically in Figure 5-3-1. The design of the datapath is straightforward. First, the microarchi-

teet must select a set of macro-modules needed to implement the instruction set. Examples of

macro-modules in the SPUR CPU are the Operand Supplier and the Functional Unit. After the

microarchitect is satisfied with the behavior of these macro-modules, he can expand the macro-

modules into micro-modules. Examples of micro-modules in the SPUR CPU are ALU and the

Shifter.

The controller of a RISC machine can be divided into two relatively independent com-

ponents (see Section 2.4.3): the major component that controls instruction execution and a sup-

porting component that controls unusual internal and external conditions. In this design strategy,

unusual conditions are considered as secondary effects and they will be examined in terms of how

they will affect the primary event-instruction execution. Furthermore, as discussed in Section

Chapter 5: A Systematic Approach 159

2.4.3, unusual condition handling as well as many other control sequences can be reduced to

sequences of internal instructions that are similar to the regular instructions in the instruction set

Therefore, the microarchitect can and should concentrate initially only on the primary

event-instruction execution, and temporarily ignore the unusual conditions and other complex

control sequences.

The microarchitect can build the abstract model of the microarchitecture (see Figure 5-3-1)

according to the instruction set by concentrating only on instruction execution. All he has to do is

to select a set of macro-modules that are needed by the instruction set and then design the Instruc-

tion Execution Controller that controls the macro-modules. After the microarchitect is satisfied

with the behavior of this abstract model, he can then tum the abstract model into the expanded

model (see Figure 5-3-1) by expanding macro-modules into micro-modules and by taking

unusual conditions detection into account The abstract and expanded models are discussed in

Section 5.3.2. Notice that I have changed the definitions of macro and micro-modules slightly in

Instructioo Set

Figure 5-3-2 The Abstract Model

The microarchitect constructs this model to study possible instruction execution schemes. The

microarchitect begins the construction by first selecting a set of high level macro-modules ac

cording to the execution scheme on his mind. He then design a simple controller to translate the

instruction set into a set of high level control signals to control the high level macro-modules. Ex

amples of macro-modules in the SPUR CPU are Cache Controller Interface and Operand Sup

plier.

Chapter 5: A Systematic Approach 160

this section. Instead of using them to describe components in both the datapath and the controller,

I have used them exclusively for components in the datapath. These definitions will be followed

for the rest of the discussion.

5.3.2. Different Models for Different Issues

The instruction set, the external interface, and performance requirements are usually fixed at

the microarchitectural level. Therefore, the first task of the microarchitect is to develop an

instruction execution scheme that can fulfill the external interface and performance requirements.

The type of model the microarchitect needs at this stage is the abstract model shown in Figure 5-

3-2. He will use this model to verify that the external interface and performance requirements are

indeed met. Furthermore, he will also use this model to answer questions concerning the

microarchitectural issues: (1) off-chip communications, and (2) pipeline and clocking.

Instruction Set Unusual Conditions

l !
Master Control Unusual Conditions

Handler Logic

1 • • • High Level Control Signals • • • J
Local Decoding Logic 1 • • • Local Decoding Logic Q

Low Level Low Level
Control Signals Control Signals

-- Micro Micro
I-- -- Micro Micro

~

• • • • •
• Module • • • Module Module • • • Module •
• 1-1 1-M N-1 N-P • - - - -

Figure 5-3-3 The Expanded Model

In the expanded model, the macro-modules in abstract model (Figure 5-3-2) are expanded into

low level micro-modules. The controller in abstract model is expanded into master control, local

decoding logic blocks, and the unusual conditions detection logic. ALU and SHIFfER are ex

amples of micro-modules in the SPUR CPU.

Chapter 5: A Systematic Approach 161

The microarchitect must keep the abstract model as simple as possible so that the effects of

his design decisions can be identified more directly. This can be accomplished by ignoring details

that have little effects on the microarchitectural issues that are being investigated. Since pipeline

and clocking and off-chip communication are the two microarchitectural issues to be investigated

by the abstract model, second order effects such as unusual conditions handling can be ignored.

In order to simplify the investigation further, the microarchitect may also want to group instruc

tions into types and examine how the abstract model will execute each type of instruction instead

of examining individual instructions. In this simple abstract model, where second order effects

are being ignored, the set of high level control signals is a good indication of the controller com

plexity. Similarly, the set of macro-modules is a good indication of datapath complexity.

Once the microarchitect has verified the external interface and performance requirements

have been met, he must move onto microarchitectural issues such as on-chip interaction, micro

modules selection, and resource allocation. Since these microarchitectural issues require a more

detailed model, he must expand the abstract model into the expanded model shown in Figure 5-

3-3. In this model, the macro-modules are expanded into micro-modules and logic is added to

detect all the unusual conditions. Furthermore, in order to get a better understanding of the

micro-modules, the microarchitect must examine how the expanded model executes each instruc

tion instead of how it executes each type of instruction. Finally, if the instruction is not provided

directly by the external world, an instruction supplier must be added to this model. This is not

shown in Figure 5-3-3 in order to keep this figure simple.

The microarchitect should be able to learn enough about the microarchitecture from the

abstract and expanded models that he can draw out a detailed floor plan The floor plan can be

considered as a physical model. Table 5-3-1 summarize the various models I proposed and the

microarchitectural issues each model investigates. The abstract model (Figure 5-3-2) is used

mainly to investigate behavioral issues. However, structural information is implied in the

abstract model by the macro-modules connection scheme. Similarly, although the expanded

Chapter 5: A Systematic Approach

Behavioral Issues Structural Issues

Off-Chip Pipeline
On-Chip

Micro-
Resources

Communi- and Modules

cation Clockinl! Interaction Selection Allocation

Abstract
MAJOR MAJOR minor - -

Model

Expanded - - MAJOR MAJOR MAJOR
Model

Physical - - minor - -
Model

Table 5-3-1 The Microarchitectural Models and Issues

"MAJOR" means that issue is a major concern of that model.
"minor" means that issue is a minor concern of that model.
"-" means that issue is a not a concern of that model.

162

Physical Issues

Floor

Planninl!

-

-

MAJOR

model (Figure 5-3-3) is used mainly to investigate structural issues, the microarchitect is provid-

ing behavioral information when he describes the behavior of the micro-modules.

Either the abstract or the expanded model can be used to estimate the average number of

cycles per instruction (C) for the performance model (see Section 4.1). This can be accomplished

by counting the number of cycles either model takes to execute a set of instructions with the

proper mix of instructions. Both models can also be used to estimate the cycle time T for the per-

formance model. This can be accomplished in two different ways:

(1) A simulator for the model should be able to perform simple timing analysis if explicit

timing information is provided for each module.

(2) A simulator should be able trace all the sequential events within each clock cycle and the

microarchitect can estimate the cycle time based on these lists of events.

In the first approach, there is always the danger of looking at the wrong critical path within a

module and subsequently assigning the wrong timing information to the module. In the second

approach, the trace information must be interpreted and this can be cumbersome. The best chance

Chapter 5: A Systematic Approach 163

of success is to use Approach 1, with Approach 2 acting as a check.

5.3.3. CAD Tools Considerations

The CAD tools needed to make the design process more systematic will be discussed in

more details in Section 5.3.4, Section 5.3.5, and Section 5.3.6 when the SPUR CPU is used as an

example to illustrate different stages of the systematic approach. In this section, I make some

general observations concerning CAD tools.

5.3.3.1. Unifying Different Levels of Verification

In the SPUR CPU design process (Figure 3-2-1), the macroarchitecture, microarchitecture,

and the layout were verified sequentially and independently by instruction level, behavioral level,

and switch level simulations, respectively. The results of these simulations must be studied

independently by the macroarchitect, microarchitect, and the logic designer. One important

observation, stated in Section 3.2.4, was that this independent verification strategy required a lot

of human interaction time. In order to reduce verification time, the redundancy between different

levels of verification must be reduced. In the current SPUR CPU design process, behavioral simu

lation results were verified by comparing them with the instruction level simulation results. Simi

larly switch level simulation results were verified by comparing them with the behavioral level

simulation results. This approach, however, still requires a lot of human interaction and format

conversions (see Figure 3-2-4). Mixed-level simulation is a better approach.

Ideally, we would like to have a mixed-level simulator that will accept modules of different

levels of abstraction during various stage of the design process. Initially, only high level macro

modules should be used such that high level design decisions can be made. These high level deci

sions create a rough specification of each macro-module and enable each of them to be replaced

by a set of low level micro-modules. In order to verify that this set of micro-modules can indeed

replace the high level macro-module, they must be simulated together with other high level

macro-modules.

Chapter 5: A Systematic Approach 164

The macro/micro modules substitution, however, should be a two-way street. During

mixed-level simulation, the designer should be able to extract important parameters from the set

of low level micro-modules being simulated. These parameters can then be used to update and

modify the corresponding high level macro-module. After the important parameters are extracted,

the set of low level micro-models can then be replaced by the updated, more accurate, high-level

macro-model to reduce simulation time when we simulate other low level micro-modules.

5.3.3.2. Timing Verification

The SPUR CPU timing was verified at the circuit and switch levels. At the circuit level, the

circuit designer verified the timing of critical circuits by SPICE even before starting the layout.

After the layout of these circuits was completed, the circuit designer measured the parasitic capa

citance and resistance such that the SPICE models could be updated for a more accurate timing

analysis. In the switch level, the timing of the entire CPU was verified by Crystal [SMH85] which

extracted the critical paths from the switch level description. The exact delay of these critical

paths are then again verified by SPICE in the circuit level.

One drawback of the SPUR CPU approach is that timing verification is done at the low

level only, and working at the low level is tedious. Working at the high level is possible here

because the timing requirements at the low level are direct results of high level decisions. In order

to take advantage of this possibility, we need a mixed-level timing verifier. A mixed-level timing

verifier will enable the designer to use the high level work to drive the low level timing

verification. For example, if at the high level the designer decides that the Functional Unit must

have a critical delay less than M during phase N, then any micro-modules that are part of the

Functional Unit (Example: ALU, SHIFfER) must all fulfill this same requirement. The "Abstract

Timing Verifier" by Dave Wallace [WaS86] is an example of mixed-level timing verifier.

Another drawback of the SPUR CPU approach is that timing verification is done com

pletely independent of logic simulation. Like most timing analyzers, Crystal does not care nor

know anything about logic. Consequently, to prevent the timing analyzer from chasing false

Chapter 5: A Systematic Approach 165

critical paths, the user must place "flow control" attributes on certain transistors [SMH85]. This

takes a lot of time and can also be unreliable. The switch level simulator should be able to help

the designer in placing these "flow control" attributes because the switch level simulator knows

the direction each signal propagates during switch level simulation.

One point worth noticing is that timing analyzers such as Crystal were designed at a time

when computer time was relatively expensive. They were specialized tools designed intentionally

to ignore the logic aspect of the circuit such they can run rapidly in a relatively slow computing

environment. The price to pay was human preparation time. In current computing environment,

computer time is relatively cheap. It is more desirable to have tools that require less human

preparation time although it may consume much more computer time.

5.3.3.3. Documenting the Design Decisions

Most practical VLSI projects are so complex that nobody can specify it accurately until

some work has been done on it Informality is a powerful strategy for dealing with complexity

because it allows the designer to describe the big picture without worrying about the details.

Therefore, an imprecise but brief specification, for the lack of a better word, is good at the begin

ning of an VLSI project Instead of demanding an complete precise specification from the start, a

good design process or system should help the user to specify and refine the specifications con

tinuously. This is accomplished by continuously demanding the designer to answer the following

types of questions:

• Given a number of interacting design objectives and goals, how should I prioritize them?

• Given a number of alternative choices, which alternatives should I pick?

Unfortunately, due to the imprecise specification, making these decisions are not always easy.

Consequently, a design decision is frequently nothing but an educated guess and the design pro

cess is an evolution process. At each stage, the design is a proposal whose correctness and effec

tiveness must be proved. The proof can be performed either by formal mathematical techniques

Chapter 5: A Systematic Approach 166

or experiments. Mathematical techniques, however, are for mathematicians-engineers should

always answer their doubts by experiments!

Since the design at any stage is only a proposal that must be evaluated by experiments,

design decisions that led to that design must be documented systematically. The above observa

tion is the basis for the development of the theory of plausibility design [HAD88]. Since the

underlying philosophy of this thesis is to keep things simple and practical, we will not go into the

details of the theory of plausibility design. But I do want to point out the two things the theory of

plausible design tries to address:

(1) The sequences of design decisions and the cause-effect relationships between the design

decisions.

(2) The assumptions or the evidence used by the designer to justify his design decisions.

In other words, we must find a systematic way to document not just the decisions but also the

assumptions and evidences behind all the decisions. However, in order to keep the procedure

simple, the designer should only document the important decisions and decisions that are based

on questionable assumptions.

5.3.4. Stages of the Systematic Approach

Based on the above discussions, I believe a systematic approach to microarchitectural

design should have three stages: the abstract stage, the expansion stage, and the floor planning

stage.

The Abstract Stage

Construct the abstract model (Figure 5-3-2) and then use it to conduct primary studies on

microarchitectural issues: (1) off-chip communication, and (2) pipeline and clocking.

The Expansion Stage

Construct the expanded model (Figure 5-3-3) by expanding the macro-modules and the con

troller in the abstract modeL The microarchitectural issues to be studied here are: (1)

Chapter 5: A Systematic Approach 167

micro-modules selection, (2) resources allocation, and (3) on-chip interaction.

The Floor Planning Stage

Based on the infonnation we learned from the abstract and expanded model, construct a

detailed floor plan for the microarchitecture.

The abstract stage and the expansion stage should be repeated for alternative microarchitec

tures until satisfactory solutions are found for all microarchitectural issues. Mixed-level simula

tion that uses a mixture of macro-modules and micro-modules can be used. During simulation, all

important and questionable design decisions must be documented systematically. Instead of using

toy examples to illustrate this procedure, I will use the SPUR CPU to illustrate the details of this

procedure in Section 5.4, Section 5.5, and Section 5.6.

5.4. The Abstract Stage of Microarchitectural Design

In the beginning, the macroarchitect created the instruction set and the interface

specifications. The microarchitect must then find a pipeline and clocking scheme that can execute

the instruction set and derive an off-chip communication strategy that can satisfy the interface

specifications. As I will explain later, the pipeline and clocking and off-chip communication

issues are closely related.

5.4.1. Off-Chip Communication

The general off-chip communication problem for a microprocessor is shown in Figure 5-4-1

to be a three-port problem. Most modem microprocessors include the Instruction Supplier on

chip. The microprocessor then only has to communicate off chip with the Data Supplier and the

Coprocessor(s). No matter what the situation, the microarchitect must design the Data Supplier

port, the Coprocessor port, and (if necessary) the Instruction Supplier port such that the perfor

mance goal is met and the resources and complexity requirements are still within the constraints.

Chapter 5: A Systematic Approach

I

I

I
I

' Instruction
', ... Supplier ... ____ .,

Figure 5-4-1 Off-Chip Communication

The microprocessor off-chip communication is a three-port problem. The instruction execution

engine must communicate with the data supplier, the instruction supplier, and the coprocessor(s).

Many modem microprocessors have an internal instruction cache which eliminates the instruc

tion supplier interface. Some processor even include complex functions such as floating point

operations on-chip to eliminate the coprocessor interface. This option may run into trouble in the

future when more complex functions are desired and the only way to provide them is via copro

cessors.

168

The performance specified by the macroarchitect is usually in terms of clock cycles. The

microarchitect must decide when to drive or receive the interface signals within a given cycle.

The two limiting resources are the number of pins available and the power to drive the output

pins. As far as the number of pins is concerned, the sum of input (Nu.). output (Nolll), bidirec-

tiona! (Nb;), and power pins (2xNvdd) must be smaller than or equal to the total number of pins

available (Navailabl.).

(5.4.1)

The number of power pins (2xNvdd) is twice the number of V dd pins (Nvdd) because a GND pin is

needed for each Vdd pin. In the old days, one pair of Vdd and GND was be sufficient. But today,

due to high switching frequency and pin inductance, the number of power pins needed is a func-

tion of the switching frequency (F swirch), the number of output pin (Nolll), and the number of

bidirectional pin (Nbi):

Chapter 5: A Systematic Approach 169

(5.4.2)

John Keller [Kel85] suggested that for a given switching frequency, a simple solution is to assign

a pair of power pins (one V dd and one GND pin) for each group of M output or bidirectional pins.

This implies the number of V dd pins can be written as:

(5.4.3)

If one just look at Equation 5.4.3, one may think that it is possible to reduce the number of power

pins (2xNvdd) by time multiplexing. This is not the case. Although time multiplexing will reduce

Nout or Nb; or both, it also increases the switching frequency (F switch). According to Equation

5.4.2, this increase in switch frequency will negate the effects of the reduction in Nolll or Nb;. In

order to rewrite Equation 5.4.3 to take this consideration into account, I define the term logical

output Lolli:

Lolll = The number of signals the microprocessor must send to the outside world

By definition, the number of logical outputs (Lolll) will not change by time multiplexing. It is the

sum of Nout and Nlli only if time multiplexing is never used to multiplex more than one output sig-

nal onto one output or bidirectional pin. In other words:

If time multiplexing is not used: Lout = Nolll + Nlli

If time multiplexing is used: Lolll > N o111 + N bi

Using this term logical output (Lolll), I can rewrite Equation 5.4.3 as:

N Lolli
Vdd = 7Yr (5.4.4)

The number of logical outputs Lolll is used in Equation 5.4.4 to emphasize the fact that the

number of power pins needed (2xNvdd) will not change by time multiplexing. The SPUR CPU has

approximately 120 logical outputs. After careful considerations of the pin inductance, switching

frequency, and worst case loading, the SPUR circuit designers [Jeo88] decided that M = 6 is

sufficient. The SPUR CPU therefore has 20 pairs of v dd and GND pins.

Chapter 5: A Systematic Approach 170

The reason why the number of power pins needed cannot be reduced by time multiplexing

also applies when considering the power required to drive the output pins (Powerouz_pu.). Since

Power0111ft cannot be reduced by time multiplexing, PoweroUl_pil& in general is not a function of

(N0111 + Nbi). The power required to drive the output pins is also a function of the number oflogi-

cal outputs Lo~~~:

(5.4.5)

In conclusion. while time multiplexing can reduce the number of physical pins (Nu., Nouz,

Nbi), it does not reduce the number of power and ground pins. It also does not reduce the power

required to drive the output pins. Furthermore, time multiplexing also increases the complexity of

the chip.

Figure 5-4-2 shows the simple SPUR CPU off-chip communication strategy that does not

involve time multiplexing. In pursuing this simplest solution, a dedicated set of 32 pins is allo-

cated to the coprocessor interface even though the coprocessor instruction only occurs rarely.

SPUR CPU

Pins (40)

Figure 5-4-2 SPUR CPU Off-Chip Communication

The SPUR CPU designer took the easist way out and pick the simplest solution. This solution al

locate a separate set of pins for data, address, and the coprocessor interface. The coprocessor in

terface broadcasts every instruction the SPUR CPU receives from its internal instruction cache to

the coprocessor.

Chapter 5: A Systematic Approach 171

Before accepting any solution, the microarchitect must make sure the solution meets the perfor

mance requirements and are within the resources and complexity constraint. Answering questions

such as these below helps make the decision:

• Are there enough pins for this solution?

• How much power does it take to drive all the output and bidirectional pins?

• What kind of performance does this solution will give?

• How complex is it to debug and implement this solution?

• Is this the most efficient way to use the limited pin resource?

While you can give quantitative answers to the first two questions, it is hard to give absolute

answers to the last three questions. It is much easier give relative answers by comparing different

solutions. Furthermore, in order to answer all these questions, you must make some assumptions

about clocking.

5.4.2. Pipeline and Clocking

Clocking schemes must be studied together with pipelining because the longer the

pipeline-that is more pipe stages for each instruction-the shorter the potential clock cycle. Most

useful work is done during the high time of the clock in MOS technology. Therefore the number

of clock phases per cycle together with the number of pipeline stages for each instruction deter

mine the number of time slots in which useful work can be done. This is illustrated in Figure 5-

4-3, where the SPUR CPU pipeline and clocking scheme are used as an example. In general, the

more explicit time slots the easier it is to design dynamic logic [Kon85]. Unfortunately, more

explicit time slots also means that more time will be wasted between time slots because explicit

non-overlap dead time must be placed between phases to guard against clock skew problems (see

Figure 2-3-3).

There is a subtle difference between designing a traditional pipeline and a RISC-style pipe

line that handles integer instructions only. In designing a traditional pipeline, the main concern is

Chapter 5: A Systematic Approach

The SPUR CPU 4-Stage Pipeline:

I Ifet I Exec IMeml Wr I
I Ifet I Exec I Mem I Wr

The SPUR CPU 4-Phase Clock:

N on-overlap tune L Phase hil r
phi2 I

ohi3
phi4

C cle y

The SPUR CPU pipeline has 16 time slots:

Figure 5-4-3 Pipeline and Clocking

The SPUR CPU uses a 4-stage (Ifet, Exec , Mem, Wr) pipeline-each instruction takes four cycles

to finish. The SPUR CPU also uses a 4-phase clock-each cycle is divided into four phases. The

4-stage pipeline together with the 4-phase clock provide 16 time slots to do useful work.

172

how to schedule the issue of instructions such that there will not be any structural conflict

[Kog81]. An example of structural conflict is two instructions trying to use the ALU during the

same cycle. On the other hand, a RISC processor that only supports integer operations can exe-

cute the simple instructions in a very uniform manner. This makes structural conflicts very easy

to detect and eliminate. Therefore, the main concern in designing a RISC-style pipeline is not

instruction scheduling-the main concern is what kind of resources are needed to eliminate all

structural conflict such that instruction can be issued every cycle. Since most if not all structural

conflicts can be eliminated from a RISC-style pipeline, the are only two things left that can

degrade a RISC-style pipeline's efficiency: branching and data dependency. Important questions

the microarchitectural must keep in mind when he designs a RISC-style pipeline are:

• The cost of branching-how many cycles are wasted?

Chapter 5: A Systematic Approach

I Stage 1j 2 I (?I M-1

I Stage 11 ((1 M-2

At any cycle, there are M
e • instructions in the pipelin

Each instruction can be
any one of the N types

I Stage 1

Complexity = N**M

Stage M

M-1

•
•
•

2

Stage 1

Figure 5-4-4 M-Stage Pipeline

Stage mJ

3 I?
2 ll

This is an ideal M-stage pipeline where any one of the N types of instructions can be issued at

every cycle. At any given cycle, this pipeline can be in any one of the Nrypc M,..,. possible states.

All these states must be controlled properly. Therefore, for the same number of instruction types,
longer pipeline also need more complex control which may offset the advantage of longer pipe

line.

• The cost of data dependency-how many cycles will an instruction have to wait for data?

• For a given pipeline length, which clocking scheme achieves the best cycle time?

173

• What are the type and complexity of the macro-modules are needed to implement a pipeline

that will allow any instruction to be issued at every cycle?

The first two questions are Computer Science problems and a lot of work has been done on

them [Kog81] [McH86]. The last two problems are Electrical Engineering problems and not

much work has been done. I think the best way to answer these last two questions is to follow the

following procedure:

(1) Divide the instruction set into N types of instructions. Register-register operations

(Reg_Reg) and load operations (Load) are two examples of instructions types in the

SPUR CPU.

Chapter 5: A Systematic Approach

Reg_Re '8

Load

Cmp_B

Ifet

1-Unit : Read

PC Logic : Inc.
1-Unit : Fetch

If~

1-Unit :Read

PC Logic : Inc.

1-Unit :Fetch

1-Unit : Read

1-Unit : Fetch

Exec .
~peitd : Read

upp er

Functional Unit
: Ojl"rate

Exec

~nd:Read
upp er

Functional Unit
: Eff. Address

Functiooal Unit
:Condition

PC Logic:
Tar etA a dress

Mem Wr

Operand w.
Supplier : nle

M""' Wr

CC Intc:d'ace :
Operand w. Send Addtess Supplier : nte

Detect hit/miss

Figure 5-4-5 Operations for Several SPUR Instruction Types

The operations for Rcg_Reg, Load, and Cmp_Branch type instructions are listed in the (macro

module : task) format All instructions within a type must require the same macro-module to per

form the same task during the same stage of the pipeline. For example, for all Reg_Reg instruc

tions, during the Exec stage, the Operand Supplier must supply the operands and the Functional

Unit must operate on the operands.

174

(2) List the steps it takes to execute each type of instruction. This will give the microarchitect

ideas about what pipe stages are needed to execute all types of instructions uniformly.

(3) Construct an uniform M-stage pipeline that has the potential to execute one instruction

per cycle (Figure 5-4-4). Examples of pipe stages in the SPUR CPU are: Instruction fetch

(Ifet), register read and execution (Exec), memory access (Mem), and register write (Wr).

(4) For each type of instruction, list the operations for each stage of the pipeline. They may

be given informally at first but eventually the designer must specify the operation in

terms of what macro-module is needed to perform what task in the (macro-module : task)

format. Figure 5-4-5 shows several examples.

(5) Based on the results of Step 4, construct the list of necessary macro-modules. For exam-

ple, by examining Figure 5-4-5, one can construct this list of macro-modules for

Reg_Reg, Load, and Cmp_Branch: I-Unit, PC-Logic, CC_Interface, Operand Supplier,

Chapter 5: A Systematic Approach 175

and Functional Unit.

(6) Construct the list of operations each macro-module must provide by using the result of

Step 4 and examining the Nrypc M_. possible pipeline states. For example, Figure 5-4-6

shows the Operand Supplier must provide Read and Write operations every cycle.

(7) After careful examination of each macro-module's list of operations, propose a clocking

scheme. For example, since the easiest way to implement a large register file in CMOS is

to precharge the bit lines before read and write, the Operand Supplier must perform (1)

read, (2) precharge for write, (3) write, and (4) precharge for read within a cycle. The 4-

phase clock is a natural clocking scheme for these four distinct events.

In the above procedure, all instructions of the same type will end up having the same execu-

tion model (Figure 5-4-5) and make the same contributions to the list of macro-modules and their

Ifet

Load I I

Don't Care(

tes that have: Allsta
Loa

R
d's Exec and
eg_Reg'sWr

Exec

I
Ifet

l
Reg_Regl

Mem Wr
Op. Supplior:

WritD

Exec Mem

Ifet Exec
Op. Supplior:

Read

Ifet

Don't Care

Figure 5-4-6 Potential Structural Conflict

Wr

I
Mem

11
Exec

ll

This is a generic diagram for all the pipeline states that has Reg_Reg's Exec stage and Load's Wr

stage. Load's Exec Stage requires the (Operand Supplier: Read) operation and Reg_Reg's Wr

stage requires the (Operand Supplier : Write). The Operand Supplier must be able to perform

Read and Write within a cycle in order to prevent structural conflict. For simplicity, only

relevant operations are shown in this figure.

ChapterS: A Systematic Approach 176

lists of operations. Since the set macro-modules and their lists of operations define the level of

abstraction, the division of instructions into types (Step 1) will determine the level of abstraction

the microarchitect looks at the proposed microarchitecture. For example, if in Step 1 we divide

the instructions into high level types such as Reg_Reg, then we will be listing the operations for

macro-modules such as Functional Unit in Step 4. On the other hand, if in Step 1 we divide the

instructions into low level types such as Add and Shift, then we will be listing the operations for

micro-modules such as ALU and Shifter in Step 4.

At the lowest level, every instruction is a separate type because each instruction must

behave differently in some way from the others. This low level of detail is probably not neces

sary if one only wants to study pipeline and clocking alternatives. The microarchitect should

therefore pick a level of abstraction just low enough to show the characteristics of different pipe

line and clocking alternatives but not so low that it requires a large number of modules each with

a list of very specific operations. The only way to find out the proper level of abstraction by

iterating Step 1 through Step 6 of this section. Another reason why iteration may be necessary is

that the microarchitect may find out in Step 6 that the list of operations for a macro-module is too

long and thus the macro-module is too complex. He may then have to go back to Step 4 and

either assign some of its operations to other existing modules or create some new macro-modules.

Since this is an iteration process and at each iteration the designer may have to examine as many

as Nryp• M_ states, CAD tools must be developed to ease the designer's task.

5.4.3. The Abstract Model of the Microarchitecture

The procedure described in last section will not only create a pipeline and clocking scheme

but will also select a set of macro-modules (Step 4). For example, if this procedure is used for

the SPUR CPU, the set of macro-modules selected at this point will be: !-Unit, Operand Supplier,

Functional Unit, CC_Interface, PC-Logic, and Special Registers. In order to complete the abstract

model of the proposed microarchitecture, these macro-modules must be connected. A systematic

way to propose a connection scheme is to examine the interaction between the macro-modules

Chapter 5: A Systematic Approach

Figure 5-4-7 On-Chip Interaction

Each node in this graph represents a macro-module. Each arc in this graph represents a set of sig

nals that must be sent from one macro-module to the others. The number associated with each arc

is the number of signals in the set and the name of the bus assigned to the arc(s) is in parentheses.

This graph is constructed by looking at one macro-module at a time and consider to which

macro-module must it send its output.

graphically.

177

Figure 5-4-7 is a directed graph that shows the interaction between the various macro-

modules of the SPUR CPU. The simplest connection scheme can be derived from this graph by

assigning a signal bus to each arc. Such a scheme, however, will also be very expensive in terms

of resources. A better approach is to group some of the arcs together and assign them a single bus.

For example, in Figure 5-4-7, busResult is assigned to all output arcs of the Functional Unit and

some input arcs to the Operand Supplier. Furthermore, busL is assigned to both arcs connecting

to the Data Pins. Figure 5-4-7 is the logical bus structure. The physical bus structure, which is

shown in Figure 5-4-8, is slightly different.

Chapter 5: A Systematic Approach

Data
Pins

Instruction

bus PC
Controller

bus I

!high level control signals

busL
(to all modules)

1 jbusD T
bus A

PC
Logic

1
T

Operands Functional
Supplier busB Unit

-

Special

Address
Pins r.;.;

Registers

1 T
busS 1

cc r-t
Interface ...

Figure 5-4-8 SPUR CPU Abstract Model

In Figure 5-4-7, busResull is assigned to all output arcs of the Functional Unit and some input

arcs to the Operand Supplier. When implementation is taken into account, busResult is broken

into busS and busD to reduce the bus capacitance that each module has to drive. PC Logic and

Special Registers must first send the values onto busS which then drives busD. In general, asking

one bus to drive another can cause a lot of delay. It is acceptable here because PC Logic and Spe

cial Registers put values onto busS during $2 and busD does not have to be driven until the fol

lowing cp4-not in the same phase.

178

Figure 5-4-8 is the block diagram of the abstract model of microarchitecture we have pro-

posed thus far. In order to verify and evaluate this proposed microarchitecture, it must be

modeled by hardware description language. This is called the abstract model and the major issues

this model will be used to study are: (1) off-chip communication, and (2) pipeline and clocking.

In modeling, it is utmost important to keep in mind the things one wants the model to examine

and keep the model just complex enough to do the job. Therefore, the Instruction Unit is not

included in this model and instruction types instead of individual instructions are used. Ideally,

for each proposed microarchitecture at the abstract level, the microarchitect should use an

abstract model such as Figure 5-4-8 to answer all the unanswered questions before moving on to

the detail level of the microarchitecture. Figure 5-4-9 reviews how the abstract model is con-

structed.

Chapter 5: A Systematic Approach

Interface Specification

Off-Chip
Communication

Figure 5-4-9 Building the Abstract Model

This is a flow chart on the construction of the abstract model (Figure 5-4-8). In the beginning,

there are the instruction set and the interface specification. A pipeline scheme is proposed by

looking at the instruction set. The execution model for each type of instruction with respect to the

pipeline gives a list of the macro-modules required and their operations. The list of operations for

each module can then be used to determine the clocking scheme. The clocking scheme then to

gether with the interface specification will determine the off-chip communication strategy. Final

ly, on-chip interaction must be taken into account in order to connect the set of macro-modules

together.

5.5. The Expansion Stage of Microarchitectural Design

179

The previous section shows how to create, specify, and examine a microarchitecture at the

abstract level. The resulting abstract model consists of a set of macro-modules controlled by a

high level controller. The goal of the expansion stage is to obtain a detailed specification of the

microarchitecture by expanding the macro-modules and the high level controller.

5.5.1. Micro-Modules Selection and Resources Allocation

The functionality of the macro-modules are defined during the abstract stage. The microar-

chitect has many options to achieve this functionality by selecting different sets of micro-

modules. For example, Figure 5-5-1 is one possible option the microarchitect may use to expand

the macro-module Functional Unit. Another option is to use a 32-bit barrel shifter instead of the

EXT_INS and SHIFfER. The microarchitect must evaluate the performance, resources, and com-

plexity tradeoffs quantitatively when he considers his options. This is similar to the problem

Chapter 5: A Systematic Approach 180

studied in Chapter 4 where the microarchitect has many options in what features to include in the

CPU. The systematic approach shown in Section 4.7.3, which was based on the performance

resources and complexity tradeoffs, can be applied here.

Figure 5-5-2 illustrates graphically the performance, resources, complexity tradeoffs. This is

similar to Figure 4-7-2 except that in Figure 4-7-2, the options on the vertical axis corresponds to

different features that can be included in the CPU. Here in Figure 5-5-2, the options on the verti-

cal axis corresponds to different ways a macro-module can be expanded. For example, suppose

we are considering the tradeoffs in building the macro-module Instruction Unit Option 1 could

be a simple (low in complexity), low cost in resource, and low perfmmance direct-mapped cache.

Option 2 is similar but with bigger cache size (more resources). Option 3 can be a cache with pre-

fetching (more complex) such that the cache size can be smaller (fewer resources) and still

achieve the same performance as Option 2. Option 4 can be considered as a set associative cache

with prefetch which gives higher performance than Option 3 but also require more resources and

higher degree of complexity.

FW1ctional

Unit

busS
<31:0>

Figure 5-5-1 Micro-Modules Selection for the SPUR CPU Functional Unit

busS
<31.

In this example, the macro-modules Functional Unit is expanded into micro-modules EXT_INS

(byte extractor insertor), SHIFTER, ALU, BRANCH COND, and BUSSTOD.

Chapter 5: A Systematic Approach

resources
available

Figure 5-5-2 Performance Resources and Complexity Tradeoffs

The options, which correspond to different ways the macro-modules can be expanded, are placed

in increasing complexity on the vertical axis. The performance and resources needed for these

options are plotted on the horizontal axes. The performance requirement and resources available

for each macro-module place the "acceptable performance" bound on the performance axis and

the "resource available" bound on the resources axis.

181

Each macro-module has is own minimum performance requirement. This requirement is a

direct result of the overall performance goal and can be obtained during simulation at the abstract

stage. The performance requirement for each macro-module places an "acceptable performance"

bound on the performance axis in Figure 5-5-2. Given this performance requirement, the microar-

chitect must allocate enough resources such that an option that has acceptable performance and

complexity can be built. Below is an example on how we can apply the systematic approach dis-

cussed in Section 4.7.3 to select an option to expand the macro-modules. This is very similar to

the example shown in Section 4.7.3 except there the options are what features to be included in

the SPUR CPU.

(1) Make an educated guess on how many resources you are willing to spend on this macro-

module. This places a "resource available" bound on resources axis in Figure 5-5-2.

(2) Within this bound, pick the simplest option available.

(3) If this option's performance is within the acceptable range, then mission accomplished.

Otherwise. go to Step 4.

Chapter 5: A Systematic Approach 182

(4) If there are any other options within the resource bound, pick the next more complex

option and go back to Step 3. Otherwise go to Step 1 and increase the resources available

bound.

Using Figure 5-5-2 as an example, Step 2 of this procedure will pick Option 1. However, in

Step 3, we will find out Option 1 's performance is below the acceptable range. In Step 4, Option

2 is not chosen in Step 4 because it uses more resources than available. Option 3 will be chosen

because it is less complex than Option 4. Finally, when we get back to Step 3, we will find out

Option 3's performance is acceptable.

5.5.2. On-Chip Interaction and Second Order Effects

At the abstract stage of the design, on-chip interaction concerns with the interaction among

various macro-modules. Section 5.4 showed how this problem can be solved by connecting the

macro-modules via signal busses embedded in the datapath. At the expansion stage, on-chip

1-Unit
Controller

Internal Unusual Conditions

External

Conditions

r---11---+ Low level
E-Unit • Instruction to be

executed by
theE-Unit

control signals

Controller 1---·- for the datapath

Figure 5-5-3 The SPUR CPU Control Strategy

The SPUR CPU is controlled by three modules: Trap Logic detects all internal and external

unusual conditions, 1-Unit Controller controls the instruction unit that delivers instruction, and

E-Unit Controller decodes every instruction it receives into control signals. Whenever the Trap

Logic detects an unusual condition, all it has to do is to send a signal (trapRequest) to the 1-Unit

Controller. The !-Unit Controller then delivers the proper internal instructions that can handle the

trap to theE-Unit Controller.

Chapter 5: A Systematic Approach 183

interaction concerns the control of the micro-modules. We must also take into account second

order effects-such as trap detection-that are ignored during the abstract. Second order effects are

very important to the controller design during the expansion stage. A systematic approach to this

problem can be summarized in three words: isolation, specialization, and optimization.

Isolation

Isolate different aspects of the control function into sub-functions that have minimum

interaction among them.

Specialization

Design specialized modules for the sub-functions.

Optimization

Finally, optimize the specialized modules.

In order to illustrate this three-step approach, I will use the SPUR CPU as an example. The

SPUR CPU control strategy is shown in Figure 5-5-3. The control function of the SPUR CPU can

be isolated into three sub-functions. These three sub-functions and their respective specialized

modules are:

• The control of the Instruction Unit (I-Unit) that delivers the instruction. This is handled by

the !-Unit Controller.

• The control of the Execution Unit (E-Unit) that executes the instruction. This is handled by

theE-Unit Controller.

• The detection of internal and external unusual conditions. This is handled by the Trap

Logic.

One major optimization we performed in the SPUR CPU is the use of internal instructions

to further reduce the on-chip interaction. As illustrated in Figure 5-5-3, the Trap Logic asserts the

trapRequest signal whenever it detects any unusual condition. Upon receiving the trapRequest

signal, the !-Unit Controller will deliver the internal instructions that handle trap to the E-Unit

Chapter 5: A Systematic Approach 184

controller. This optimization therefore reduces the interaction between the Trap Logic and the I-

Unit Controller to one signal-trapRequest. This optimization also limited the interaction between

the !-Unit Controller and theE-Unit Controller to normal and internal instructions only.

The !-Unit Controller consists of two finite state machines (Figure 2-2-1) and the Trap

Logic consists of five random logic blocks (Figure 2-4-1). Their designs are simple finite state

machines and random logic design problems and were discussed earlier in Section 2.2 and Sec-

tion 2.4, respectively. Neither the !-Unit Controller nor the Trap logic involve further on-chip

interaction consideration. The E-Unit Controller, on the other hand, must distribute the control

information it generates to the micro-modules in the datapath. The E-Unit Controller does not

have to distinguish internal instructions from normal instructions. It simply generates a set of

control signals for each instruction it receives. The E-Unit Controller is therefore just a combina-

tiona! logic block. The rest of this section will discuss strategies that can be used to reduce the

interaction between theE-Unit Controller and the datapath.

Instruction

Figure 5-5-4 The E-Unit Controller Bus Structure

The Master Control is divided into M stages where M is the length of the pipeline. Each stage

generates one set of high level control signals that controls one stage of the pipeline. High level

control signals are distributed via the high level control signal bus. The local decoding logic

blocks then generates the low level control signals that control the datapath.

Chapter 5: A Systematic Approach

• .
• High Level Control Signals Busses •

• • T
Intermediate

Buffer

------+-~~~~S~r-p-le_c_o_m_b;m-a-tio_n_al_Lo __ g+~--------+-----~

Oock
Bus

-+----+-~~L-~r-----~r---~~------~+---~~

Figure 5-5-5 Distribution of Control Information

Buffer
Stige

The high level control signals are decoded into low level control signals by very simple combina

tional logic. Most outputs of the combinational logic must be ANDed with one of the clock

phases (1, 2, 3, or 4) before being used by the datapath. For those outputs that do not have to be

ANDed with any clock phase, they are buffered (0). Furthermore, in order to reduce the load on

the clock generator, the clock signals are also buffered (5 and 6) before they are fed into the data

path.

185

Signal busses are used during the abstract stage to reduce the interactions among various

macro-modules. Similarly, signal busses can also be used here to reduce the interaction between

E-Unit Controller and the datapath. This is illustrated in Figure 5-5-4. The E-Unit Controller is

divided into two parts: the Master Control and Local Decoding Logic. The master control is

located far away from the datapath but the local decoding logic blocks are placed right next to the

datapath. A signal bus is used to distribute the high level control signals generated by the master

control to the local decoding logic blocks. This simplifies the on-chip interaction because the

number of high level control signals are relatively small compare to the number of low level con-

trol signals. This reduction in number is due to sharing-each high level signal is used by more

than one local decoding logic block.

Chapter 5: A Systematic Approach 186

The master control consists of M stages, where M is the length of the pipeline (see Figure

5-5-4). The first stage decodes the instruction (mainly the opcode) into the first set of high level

control signals. The other stages uses the outputs of their previous stage as inputs. The major

function of these latter stages is to delay the control signals by one cycle. One may also put some

simple logic in the latter stages to combine some of their inputs. This is especially useful when

instructions require different control signals at early stages of the pipeline but require the same

control signal at latter stages.

The local decoding logic block consists of a block of simple combinational logic, a clock

signals bus, and some AND, NOT, and BUF gates between the clock bus and the datapath. This is

illustrated in Figure 5-5-5. Since CMOS logic gates can also serve as buffers, the simple combi

national logic block also serves as the intermediate stage of the multi-stage control information

distribution network between theE-Unit Controller and the datapath. Similarly, the AND, NOT,

and BUF gates between the clock bus and the datapath serves as the final stage. The sizes of the

buffers at the final stage should be selected according to the RC loading of the low level control

signals and clock wires such that all the buffers will drive their outputs within approximately the

same delay.

The control strategy shown in Figure 5-5-3, Figure 5-5-4, and Figure 5-5-5, was used in the

SPUR CPU. This strategy resulted in a much more compact controller for the SPUR CPU (see

Figure 1-4-3) than the controller for SOAR (see Figure 1-4-2). One important question concern

ing this strategy is that how the designer should divide the high and low level decoding. There

must be a good balance between the number of high level control signals and the complexity of

the local decoding logic. I do not have a satisfactory answer, but the SPUR CPU implementation

do provide us some insights to this question. In the SPUR CPU, the combinational logic in the

local decoding logic are single level logic and are mostly OR gates. This indicates that this is a

generalized PLA problem with the the local decoding logic as the OR plane and the high level

control signals as the product terms. In a more general view, one may also consider this as a mul-

Chapter 5: A Systematic Approach 187

tiple level logic optimization problem with the local decoding logic as the last logic level. This,

however, is a more challenging problem for the CAD tools designer than the nonnal multiple

level logic optimization problem for the following reasons:

• The area available for the combinational logic within the local decoding logic block are res-

tricted by the spacing between the low level control signals.

• The optimum size of the simple combinational logic gates and the final buffers (see Figure

5-5-5) depends on the RC loading of the low level control signals.

5.5.3. The Expanded Model of the Microarchitecture

The expansion stage of the microarchitectural design process takes into account the micro-

modules selection, resource allocation, and on-chip interaction. The result is the expanded model

of the proposed microarchitecture. This is illustrated in Figure 5-5-6. The SPUR CPU behavioral

Abstract Model I L Unusual Conditions

I Expanded Model

I Resources Allocation J

1 r On-Chip Interaction I
I Micro-Modules Selection I

l Control Strategy I

Figure 5-5-6 Building the Expanded Model

This is a flow chart on the construction of the expanded model. At this stage of the design, the
microarchitect has an abstract model of the microarchitecture. He must also consider all the
unusual conditions that can affect the normal operation of the microarchitecture. Macro-modules
in the abstract model are then expanded into micro-modules according to the resource available
and the functionality of the macro-modules. The microarchitect must also consider on-chip in
teraction carefully in order to derive a control strategy that controls the micro-modules and han
dles all the unusual conditions.

Chapter 5: A Systematic Approach 188

model (Figure 3-2-2) can be considered as the expanded model of the SPUR CPU. A complete

expanded model is time consuming to build. Therefore, the microarchitect should not start build

ing the expanded model until he has done enough primary investigation using the abstract model.

The expanded model, however, can provide much better insights into the performance, resources,

and complexity tradeoffs of the proposed microarchitecture than the abstract model.

5.5.3.1. Using the Expanded Model for Performance Estimation

In Chapter 4, I have shown that the performance of a microarchitecture should be measured

in terms of the TxlxC product. The expanded model of the CPU can be used to estimate the

C-the average number of cycles per instruction, and the T-the cycle time more accurately than

using the abstract model.

For example, in the N.2 environment where the expanded model of the SPUR CPU is simu

lated, test programs can be compiled and loaded into simulated memory. The SPUR CPU

expanded model can then be simulated using the test programs that reside in the simulated

memory. Since the expanded model models the details of the microarchitecture, it can be used to

measure the number of cycles the CPU takes to execute certain test programs (/xC) accurately.

Unfortunately, the simulator for the expanded model can be relatively slow. For example, the

SPUR CPU expanded model takes an average of 2 SUN3/160 CPU seconds to simulate each

instruction! This will severely limit the size of test programs that can be simulated. However, if

the test programs have the proper mix of instructions, the microarchitect can still calculate the

average number of cycles per instruction (C) accurately by dividing the cycle count (/xC) he

measured by the number of instructions (I) in the test program.

In the N.2 environment, the SPUR CPU expanded model can be used to estimate the

microarchitccture's cycle time in two different ways:

• The N.2 simulator can perform simple timing analysis if explicit timing information is pro

vided for each micro-module, and

Chapter 5: A Systematic Approach 189

• The N.2 simulator can trace the significant sequential events within each clock phase. This

list of events will give the microarchitect some insights on the duration of each clock phase.

Once the microarchitect has estimated the cycle time (T), and has calculated the average number

of cycles per instruction (C), the last thing he has to do before he can predict the CPU's perfor

mance accurately is to get an estimate of the number of instructions the CPU takes to execute cer

tain large benchmarks (1). This, of course, can be measured from the instruction level simulator.

5.5.3.2. Using the Expanded Model for Resources Estimation

As discussed in Section 3.2.1, the SPUR CPU behavioral model (the expanded model) is a

composite module that consists of many modules connected by a top level topology file. The

dimensions of each module can be estimated either based on previous experience or better yet

based on the results of resource allocation analysis illustrated in Figure 5-5-2. The dimensions of

each module can then be added to the topology file as comments. These dimensions together with

the connection information in the topology file can be used by a designer assisted by CAD tools

to create a tentative floor plan that gives a rough estimate of chip area. Floor plarming is dis

cussed in more details in Section 5.5.6.

The expanded model can also be used for power estimation. In CMOS where static power

consumption is low, most of the power will be consumed in driving busses and off-chip output

pads. All busses and output pads are simply internal and external connections in the top level

topology file that describes the expanded model. Furthermore, if power consumption of certain

modules is significant compared to busses and pads, this information can also be added to the

topology file as comments. Therefore, power consumption can also be extracted easily from the

expanded model.

5.5.3.3. Using the Expanded Model for Complexity Estimation

In Chapter 4, I have shown that the complexity of a microarchitecture can be measured in

terms of the number of cycles of diagnostics and the human effort it takes to verify the

Chapter 5: A Systematic Approach 190

microarchitecture. The expanded model is tested by test programs. The size of these test pro

grams and the human effort involve in preparing and running these tests are therefore good meas

ures of the microarchitecture's complexity. These, however, only measure one aspect of complex

ity which I called the functional complexity. Functional complexity measures the degree of

difficulty in analysis, design, and testing of the microprocessor.

Implementation complexity is another aspect of complexity. Implementation complexity

measures the degree of difficulty in implementing the microprocessor. The total number of

micro-modules in the expanded model, the size of the micro-modules' description, the number of

low level control signals that control the micro-modules, and the number of high level control

signals generated by the master control are all important metrics for the implementation complex

ity.

5.6. The Floor Planning Stage of Microarchitectural Design

As the name implies, the goal of the floor planning stage is to produce a floor plan for the

proposed microarchitecture. There are two important considerations in designing the floor plan:

• The interaction between the macro-modules.

• The relative dimensions of the macro-modules.

The macro-modules are the products of the abstract stage. The interaction between the macro

modules are also studied during the abstract stage. The relative dimensions of the macro

modules, however, depends on how they are expanded into micro-modules during the expansion

stage. The floor planning stage of microarchitectural design can therefore be considered as the

stage that summarizes the results from the abstract and expansion stage.

The interaction between the macro-modules and their relative dimensions can both be sum

marized in a graph. This is done in Figure 5-6-1 for the SPUR CPU as an example. Notice that

Figure 5-6-1 is similar to Figure 5-4-7 except that I have added the relative dimensions

(height x width) for each macro-module. The goal here is to place the macro-modules that have a

Chapter 5: A Systematic Approach

Figure 5-6-1 Important Information for Floor Planning

Each node in this graph represents a macro-module. The number within each node is the macro

module's relative dimensions (height x width). Each arc in this graph represents a set of signals

that must be sent from one macro-module to the others. The number associated with each arc is

the number of signals in the set

191

large number of of connections between them close to each other while at the same time try to

maintain the overall shape as rectangular as possible.

For example, based on the dimensions shown in Figure 5-6-1, we decided to place the

Instruction Unit on top of the Operand Supplier because they are the biggest and longest. On the

other hand, based on the interactions shown in Figure 5-6-1, we decided to place the PC Logic

adjacent to the Instruction Unit and the Functional Unit adjacent to the Operand Supplier. After

careful consideration of the rest of Figure 5-6-1, we selected the floor plan shown in Figure 5-6-2

for the SPUR CPU.

Chapter 5: A Systematic Approach

bus PC
PC Special

Instruction Logic busS Registers A
busL

Unit
bus! d D _(_2 X 3)_ (2 X 2)

a (3 X 5) d

t r

a Controller cc e
Interface

(2 X 3) (2 X 2) +-
s

p s

i
Operand bus A Functional p n

busL Supplier Unit i s
(4 X 5) busD J. I busS

n
s

(T X 1)
busB (3 X 5) (T X 1)

Figure 5-6-2 The SPUR CPU Floor Plan

This is the floor plan of the SPUR CPU. The relative dimensions of each macro-module are

shown in parentheses. Relative dimensions are used instead of absolute dimensions such that a

tentative floor plan can be produced even before the exact technology is known.

5.7. Conclusion

192

In this chapter, I first defined the tenn microarchitecture and the phrase "microarchitectural

design." Based on my experiences in SPUR, I believed that the important issues concerning

microarchitectural design are: (1) off-chip communication, (2) pipeline and clocking, (3) micro-

modules selection, (4) resources allocation, (5) on-chip interaction, and (6) floor planning. Off-

chip communication, and pipeline and clocking are behavioral issues. Micro-modules selection,

on-chip interaction, and resources allocation are structural issues. Finally, floor planning is a phy-

sical issue.

A systematic approach to microarchitectural design must begin with a systematic approach

to these microarchitectural issues. More specificly, a systematic approach to microarchitectural

Chapter 5: A Systematic Approach 193

design consists of three stages:

(1) The Abstract Stage

Construct the abstract model (Figure 5-3-2) and then use it to conduct studies on microar

chitectural issues: (a) off-chip communication, and (b) pipeline and clocking.

(2) The Expansion Stage

Construct the expanded model (Figure 5-3-3) by expanding the macro-modules and the con

troller in the abstract model. The microarchitectural issues to be studied here are: (a)

micro-modules selection, (b) resources allocation, and (c) on-chip interaction.

(3) The Floor Planning Stage

Based on the information we learned from the abstract and expanded model, construct a

detail floor plan for the microarchitecture.

These three stages are illustrated in Section 5.7.4, Section 5.7.5, and Section 5.7.6 using the

SPUR CPU as an example.

Chapter 5: A Systematic Approach 194

5.8. REFERENCES

[Cam87] R. Camposano, "Structural Synthesis in the Yorktown Silicon Compiler", VIS/ 87,

1987.

[Chu74] Y. Chu, "Why Do We Need Computer Hardare Description Language", Computer

7, 12 (December 1974).

[DRS86] H. DeMan, J. Rabaey, P. Six and L. Oaesen, "Cathedral-11: A Silicon Compiler for

Digital Signal Processing", IEEE Design & Test of Computers, December 1986.

[Gaj85] D. D. Gajski, "Silicon Compilation", VIS/ Systems Design, VI, 11 (November

1985).

[GoH86] J. R. Goodman and W. C. Hsu, "On the Use of Registers vs. Cache to Minimize

Memory Traffic", The 13th Annual International Symposium on Computer

Architecture, Tokyo, Japan, June 2-5, 1986.

[HAD88] A. Hooton, U. Aguero and S. Dasgupta, "An Exercise in Plausibility-Driven

Design", Computer 21,7 (July 1988).

[Jeo88] D. K. Jeong, Private Communication EECS Department, University of California,

Berkeley, CA 94720, July, 1988.

[Joh81] D. L. Johannsen, Silicon Compilation, Doctoral Dissertation, Department of

Computer Science, California Institute of Technology, Pasadena, California, 1981.

[Kel85] J. Keller, Power and Ground Requirements for a High-speed 32 Bit Computer Chip

Set, Master Report, EECS Department, University of California, Berkeley, CA

94720, August, 1985.

[Kog81] P. M. Kogge, The Architecture of Pipelined Computers, McGraw-Hill Book

Company, 1981.

[Kon85] S. Kong, Some Design Techniques for High-Performance MOS Circuits, Master

Report, EECS Department, University of California, Berkeley, CA 94720, January

1985.

[Kow85] T. Kowalski, An Artificial Intelligence Approach to VLSI Design, Kluwer Academic

Publishers, 1985.

[Lip75] G. J. Lipovski, "On Gray Box Description of Microprocessors", Proceedings

International Symposium on CHDL' sand Their Applications, 1975, 184-186.

[McH86] S. McFarling and J. Hennessy, "Reducing the Cost of Branches", The 13th Annual

International Symposium on Computer Architecture, Tokyo, Japan, June 2-5, 1986.

[NeS86] A. R. Newton and A. L. Sangiovanni-Vincentelli, "Computer-Aided Design for

VLSI Circuits", Computer 19, 4 (Apri11986).

[PaS80] D. A. Patterson and C. H. Sequin, "Design Considerations for Single-Chip

Computers of the Future", IEEE Journal of Solid-State Circuits SC-15, 1 (February

1980).

[SMH85] W. Scott, R. Mayo, G. Hamachi and J. Ousterhout, editors. '' 1986 VLSI Tools: Still

More Works by the Original Artists", Report No. UCB/Computer Science Opt

86/272, Computer Science Division, EECS Department University of California,

Berkeley, CA 94720, December 1985.

[Su77] S. Su, "Hardware Description Language Applications: An Introduction and

Prognosis", Computer 10, 6 (June 1977).

[WaS86] D. E. Wallace and C. H. Sequin, "Plug-In Timing Models for An Abstract Timing

Verifier", 23rd Design Automation Conference, Las Vegas, Nevada, 1986.

Chapter 6: Summary and Future Trends 195

Chapter 6

SUMMARY AND FUTURE TRENDS

I never think of the future. It comes soon enough.

Albert Einstein, 1930

This chapter first summarizes this thesis and the SPUR project in Section 6.1. In Section

6.2, I discuss what I think will be the future trends based on the lessons I learned.

6.1. Summary

Section 6.1.1 summarizes this thesis. Section 6.1.2 reviews the history of the SPUR project

in the SPUR CPU's perspective. Section 6.1. 3 discusses the organization of the SPUR project

6.1.1. Thesis Summary

In Chapter 1 and Chapter 2, I gave a brief history of VLSI projects at U.C. Berkeley, an

overview of the SPUR project, and an overview of the SPUR CPU microarchitecture. One of the

most important difference between the SPUR CPU and the previous two generations of Berkeley

RISC projects is that the goal of the SPUR project is not just to build a CPU. The SPUR project's

goal is to build a system in which the SPUR CPU is just one of the three custom VLSI chips.

In Chapter 3, I first talked about how we used proven ideas from the two previous genera

tions of Berkeley RISC machines to design the SPUR CPU microarchitecture. Just because we

used proven ideas does not mean our job of building a chip for a system is easy. We still have to

deal with many problems that are not as important when one just wants to build a CPU. Two

Chapter 6: Summary and Future Trends 196

specific examples are:

(1) We must implement some system features that require a lot of work, and

(2) We must do many extra simulations.

One important lesson I learned in dealing with all these problems is that we must make the pro

cess of designing microprocessor more like a science than an art.

In Chapter 4, I stated that the designer can make the process of designing microprocessor

more like a science than an art by putting more emphasis on quantitative evaluation of the perfor

mance, resources, and complexity tradeoffs. I also showed a simple performance model and then

performed tradeoffs evaluation for LISP support, floating point support, 4-stage pipeline, on-chip

instruction cache, and multiprocessing support. One major conclusion from Chapter 4 is that the

designer must keep the cycle time and the average number of cycles per instruction as low as pos

sible.

Finally in Chapter 5, I introduced a systematic approach to microarchitectural design that

consists of three stages: (1) the abstract stage, (2) the expansion stage, and (3) the floor planning

stage. During the abstract stage, we build the abstract model of the microarchitecture to study the

off-chip communication, and pipeline and clocking issues. During the expansion stage, the

abstract model is expanded. The major issues to be studied during the expansion stage are micro

modules selection, resources allocation, and on-chip interaction. Finally, during the floor plan

ning stage, we applied what we learned from the abstract and expansion stage and design a floor

plan for the microarchitecture.

6.1.2. The History of the SPUR Project

The SPUR project is probably one of the most ambitious computer projects ever accom

plished in the university environment The history of the SPUR project is described below with

respect to the SPUR CPU development.

Chapter 6: Summary and Future Trends 197

Spring 1985

The SPUR CPU basic microarchitecture was conceived in the CS292i class taught by Pro

fessor Randy Katz [Kat85].

Summer 1985

The CPU's external interfaces to the cache controller (CC), the coprocessor (FPU), and the

processor board were defined.

Fall1985

We began the datapath layout and started writing the behavioral description that models the

microarchitecture.

Spring 1986

The layout of the data path was completed.

Summer 1986

We began the layout of the control unit

Fall1986

The layout of instruction unit was completed. At the same time, we also completed the

behavioral description.

Spring 1987

Logic simulation and timing analysis of individual modules was carried out

Summer 1987

Global simulation was completed. The SPUR CPU was submitted for fabrication on August

25. It came back in December 1987.

Spring 1988

We tested and debugged the SPUR CPU. The second version of the CPU was submitted for

fabrication in April. It came back in June 1988.

Chapter 6: Summary and Future Trends 198

Summer 1988

We tested and debugged the SPUR processor board. The Spirte [0CD88] operating system

was running on SPUR hardware by the end of the summer.

Fall1988

We concentrated our effort in multiprocessor testing and debugging.

Spring 1989

On January 9, 1989, a SPUR multiprocessor running Spirte operating system and LISP

software was presented at U.C. Berkeley.

This ambitious four-year project involve a large group of professors and graduate students.

Section 6.1.3 shows the organization of the SPUR project

6.1.3. The Organization of the SPUR Project

Professor Dave Patterson was the principal investigator of the SPUR project The SPUR

project was organized into three groups: (1) the hardware group, (2) the operating system group,

and (3) the programming language group.

The Hardware Group. Professor Randy Katz and Professor David Hodges were in charge

of the hardware group with Professor Randy Katz on architectural design and Professor David

Hodges on circuit design. The hardware group was furthered divided into four groups:

The CPU Group

Mark Hill and George Taylor were responsible for the macroarchitecture of the CPU. I was

responsible for the microarchitecture. Dave Lee, with the help of Rich Duncombe (initial

implementation of the Instruction Unit) and Wook Koh (initial implementation of the Upper

Data path) were responsible for the circuit design and layout

The Cache Controller Group

David Wood, Garth Gibson, and Susan Eggers were responsible for the macroarchitecture

and microarchitecture of the Cache Controller. O.K. Jeong was responsible for the circuit

Chapter 6: Summary and Future Trends 199

design and layout.

The Floating Point Unit Group

B.K. Bose, Paul Hansen, and Corina Lee were were responsible for all aspects of the Aoat

ing Point Unit design.

The Processor Board Group

Our staff engineer Ken Lutz with the help of Kathy Armstrong were responsible for the

design and implementation of the SPUR processor board.

The hardware group also got very valuable help form Joan Pendleton during initial stage of the

SPUR project and Doug Johnson-an engineer from Texas Instruments-during the final stage of

the project. The U.C. Berkeley CAD research community also gave us constant support.

The Operating System Group. Professor John Ousterhout was in charge of developing

the operating system Spirte for the SPUR multiprocessor. The graduate students who worked in

the operating system group were Michael Nelson, Brent Welch, Fred Douglis, Andrew Cheren

son, and Mendel Resenblum.

The Programming Language Group. Professor Paul Hillfinger was in charge of develop

ing the LISP system [Tay86] [ZHH88] for the SPUR multiprocessor. The graduate students who

worked in the programming language group were Jim Larus and Ben Zorn.

6.2. Future Trends

In this section, I want to say a few words about what I think the future trends are in the

architectural, technology, and CAD support areas. In my performance evaluation, I have shown

quantitatively in Section 4.7.2 that a simple architecture can surpass the performance of a more

complex architecture by keeping the average number of cycles per instruction and the cycle time

low. Therefore, I think the architectural trend is to reduce the average number of cycles per

instruction and the technology trend is to lower cycle time. Both of these can be accomplished

more easily if CAD support is readily available.

Chapter 6: Summary and Future Trends 200

6.2.1. Architectural Trends

The architectural trend is to reduce the average number of cycles per instruction. The aver

age number of cycles can be reduced by the following methods:

(1) Improve the hit rate of the on-chip instruction cache. Mark Hill [Hil87] has studied better

instruction cache design and implementation ideas.

(2) When more on-chip transistors are available, I think on-chip data cache is more desirable

than complex functions. In Chapter 4, I have shown that it is more cost effective to sup

port complex functions via a coprocessor.

(3) Reduce the branch penalty. Branch folding in CRISP [BDM87] is one example where in

the best scenario, a branch is executed implicitly with other instructions. This reduces

branch penalty to zero.

(4) Finally one may try to put multiple functional units on chip such that multiple instruc

tions can be executed per cycle.

The first two methods, even in the best scenario, can only reduce the average number of

cycles per instruction to one. The third and fouth methods, on the other hand, can reduce the aver

age number of cycles per instruction to less than one.

6.2.2. Technology Trends

The technology trend is to reduce the cycle time. The cycle time can be reduced by:

(1) Scaling down the CMOS technology. Common belief is that device width of 0.25J.lffi is

the practical limit and it will be reached in the 1990s [MYH86].

(2) ECL is faster than CMOS but it also has lower density and uses more power.

(3) BICOMS takes advantages of both bipolar and CMOS circuits on the same chip and

looks very promising.

Chapter 6: Summary and Future Trends 201

(4) GaAs is very fast, uses less power than ECL, but it is very expensive in terms of wafer

cost, yield, and density.

One thing I want to point out is that although ECL logic gates use more power than GaAs

and CMOS logic gates, this may become less important in the future. I believe in the future most

of the power will not be consumed in the logic gates. Most of the power will be consumed in

driving the internal busses and off-chip pads. For example in the SPUR CPU, we estimated that

60% of the total power consumption is spent in driving the off-chip pads and 20% is spent in

driving the on-chip busses already. These numbers are going to get worst when the feature size

gets smaller and when the CPU runs at higher clock rate because:

• As feature sizes gets smaller, the capacitance of the on-chip busses gets relatively

bigger-more power is needed to drive them at high speed.

• As the CPU runs faster, the off-chip communication channel must also run faster-more

power is needed to drive the off-chip pads.

GaAs uses field effect transistors that are similar to MOS transistors use in CMOS.

Although Seymour Cray suggested that GaAs discrete component has low capacitance [Cra88],

this unfortunately may not apply to VLSI application. In VLSI, capacitance of the multi-level

interconnect network is the dominant factor. This multi-layer interconnect capacitance depends

on the materials that separates the interconnect layers and does not depend on the substrate

material. Therefore GaAs is likely to have similar power consumption problems as CMOS. ECL,

on the other hand, uses bipolar transistors that have much bigger current driving capability and

smaller voltage swings than field effect transistors. Consequently, ECL will have less problem

driving highly capacitive internal busses and off chip pads. Finally, one should realize that a fast

CPU must run in a fast environment. The power consumption of this fast environment can make

the power consumption of the CPU negligible.

Chapter 6: Summary and Future Trends 202

6.2.3. CAD Support Trends

I believe CAD researchers will continue their emphasis in building automatic layout

generators-silicon compilers. Although silicon compliers are useful, I do not think they will solve

all the problems because the designer still have to define the microarchitecture as inputs to the sil-

icon compiler. My experience in SPUR has convinced me the following:

• Defining a microarchitecture is not a simple task. Therefore, we need more high level

design tools that can help designer make quantitative tradeoffs decisions.

• Moving to the future means back to the basic! Mead and Conway design style is not

enough. Building a high performance VLSI chip is still an electrical engineer's job. We

need electrical rules checkers that understand resistance, capacitance, and inductance.

• I think VLSI designers can do CAD tool designers a big favor by building simple tools. No

matter how simple the tool is, I think it is still the best way to define the problem formally.

As I stated in Section 3.5, I do not believe CAD tools are there to replace VLSI designer.

However, I do believe the future of VLSI design depends strongly on CAD support. One con-

trasting view is from Nick Tredennick [Tre87]:

This book is partly in response to the growing presumption that computers are an essential part of

logic design. They are not ... I think of computers as an expensive and awkward alternative to

pencil and paper.

Nick Tredennick, Microprocessor Logic Design, Page 4

This may be true for a talented VLSI artist such as Nick. However, for an average VLSI engineer

like myself, CAD tools are essential. As a matter of fact, I and my colleagues in SPUR have

promised ourselves not to design another VLSI chip unless we have more CAD support for all

aspects of the design. I think the introduction of CAD support to VLSI design is analogous to the

introduction of jet engine to aviation at the end of World War II.

CAD support enable VLSI designer moves much faster but it also takes some of the art out

of VLSI design. Similarly, a jet engine enables aircraft to fly faster but it also takes some of the

Chapter 6: Summary and Future Trends 203

art out of aviation. In many ways, a jet aircraft is easier to fly than a propeller driven aircraft

because a spinning propeller creates many mysterious effects that are handled by pilots more like

an art than a science. Furthermore, jet engine also enables aircraft to fly much higher to avoid

most bad weather. Consequently, when the jet engine was first introduced, many "real aviators"

insisted flying propeller driven aircraft was still the only true art of aviation. They may be right.

After all, how can you argue with an artist? However, most people probably prefer getting to their

destination in one hour-in a jet aircraft piloted by just an average pilot-than getting to their desti

nation in four hours in a propeller driven aircraft, piloted by a "real aviator."

Chapter 6: Summary and Future Trends 204

6.3. REFERENCES

[BDM87] A. D. Berenbaum, D. R. Ditzel and H. R. McLellan, "Architectural Innovations in

the CRISP Microprocessor ", COMPCON 87, San Francisco, California, February

23-27, 1987.

[Cra88] S. Cray, "What's All These Fuss About Gallium Arsenide", Keynote Address, Super

Computing, Orlando, florida, November, 1988.

[Hi187] M. D. Hill, Aspects of Cache Memory and Instruction Buffer Performance, Doctoral

Dissertation, Computer Science Division, EECS Department University of

California, Berkeley, Fall1987.

[Kat85] in Proceedings of CS 292i: Implementation of Vl.SI Systems, R. Katz (editor),

Computer Science Division, EECS Department, University of California, Berkeley,

September 1985.

[MYH86] G. J. Myers, A. Y. C. Yu and D. L. House, "Microprocessor Technology Trends",

Proceedings of the IEEE 74, 12 (December 1986).

[OCD88]

[Tay86]

[Tre87]

[ZHH88]

J. Ousterhout, A. Cherenson, F. Douglis, M. Nelson and B. Welch, "The Sprite

Network Operating System", Computer 21,2 (February 1988).

G. Taylor et al., Evaluation of the SPUR Lisp Architecture, The 13th Annual

International Symposium on Computer Architecture, Tokyo, Japan, June 2-5, 1986.

N. Tredennick, Microprocessor Logic Design, Digital Press, 1987.

B. Zorn, P. Hillfinger, K. Ho, J. Larus and L. Semcnzato, "Features for

Multiprocessing in SPUR LISP", Report No. UCB/Computer Science Opt. 88/406,

Computer Science Division, EECS Department, University of California, Berkeley,

March 1988.

Appendix A: Detailed Microarchitecture

Appendix A

DETAILED DESCRIPTION OF THE

SPUR CPU MICROARCHITECTURE

Architecture is the art of how to waste space.

Philip Johnson, 1964

A.l. The SPUR CPU Block Diagram

205

Figure A-1-1 is the detailed SPUR CPU block diagram. This block diagram shows the rela

tive position of each block in the layout. The following naming conventions are used in this block

diagram:

• Register names start with an upper case letter and the rest are lower case except to improve

readability. Examples: Dst1 and IfetPC.

• Functional block names are in upper case letters only. Example: ALU and EXT_INS.

• Signal names start with a lower case letter and the rest are lower case except to improve rea

dability. Examples: busA and trapType.

The CPU can be divided into two units: (1) the Instruction Unit (!-Unit) at the upper left

corner and (2) the Execution Unit (E-Unit) at the rest of the area. The Instruction Unit (see Sec

tion 2.2) is a 512-byte direct-mapped instruction cache. The Execution Unit (see Section 2.3)

consists of 4 parts:

(1) The lower data path performs all the register-to-register operations.

(2) The upper datapath performs all the program control operations.

Appendix A: Detailed Microarchitecture 206

e
e
.
.
.
D

A

T

A

p

A

D
s

.

.

.
§}-

e

131 INSTitUCfiON PADS 10 . . .
2 r"j'"

T ~ ~ T
rz rz rz 2 rz 2 T

~ 0

""1. bus! T ["""' C Sn&t B I E M p

<27:0> r • <8: A u f L, I X t. 0
u K

I_UNfT c s p

a I 0> D ~ s • 0 p p
w w 2

N m u

~ p I D t c I I

'I busPC p p p '1. p '1. E p '1. p h. Ch, ph, p p

<31:2> v w w

c c c c c c c
31 .!.. .ll. ..ll. r..ll. .ll. .ll. .ll. 4-~ ..ll .ll. ~ ..ll. .

<31:30> <31:30> 1 .
J.UNfT

h. trapT ypo<7:4>
bu.S<31:2>

.
CONTROL

1--1 A

SPUR O'U Block D

Diagram, Venion1.2
CAOIE D

IP_LOGIC

REGIS'IF.R. (lntemal CONTROL UNfT CO!'.IROILER R
Shin& lp Kane, 4113189

Pc:_;~& IN'IF.R.P ACE E
DECODERS

bull s
&DRIVERS <14:0>

<24:20> s

J. bu•A r !!§' r~ 139 r-:::' r--
~~ 39 J. busA2 39 r'

~9:j:l> L, <39:32>l,
p

D D M B
1-- BRANOI TRAP A

busL ["""' I I r-- b u bu1D 1. D

<39:32> t lo----l <39:32> COND LOGIC
t r M s

r -
s

EXT_INS

J. buss r 2 r 1 ..r-... u B "'l bus82
.

32
<39:32>

4t ~
L,

4f
L, X L, u <39:32> .

31
(Bym .

I "'J. bu1A f" r- r' P "'lbusA2 r' rfll t 'l <31:0> <31:0>

~ REGISTER D D M A H A U
I--- Extractor

h I '"1. L llr- S
I

PU..B busL _r I I .~ b "' .l>usD
<31:0> t o----l <31:0> t' t r B

p T Mai<D>

"'J. busB f" 2 I L, J. bus82
lmc:rtor)

T h 0.,
<31:0> "L 0 L,l...Q. L.-

<31:0> L.., -~ AD
0 ...!!.. ...ll.. 0 ...ll.. <31:0> .i

Figure A-1-1 The SPUR CPU Block Diagram

The datapath is split into two parts (see Section 2.3): The upper datapath at the top and the lower

datapath at the bottom. The CONTROL UNIT and the CACHE CONTROLLER INTERFACE

are in the middle. The upper and lower datapaths are connected by busS. There are three major

sets of 10 pads: The DATA PADS on the left, the ADDRESS PADS on the right. and the IN

STRUCTION PADS on the top. The INSTRUCTION PADS are part of the coprocessor inter

face. The coprocessor (FPU) must monitor these pads continuously to detect any instruction it

has to execute.

(3) The cache controller interface communicates with the cache controller chip.

(4) And the control unit controls the Execution Unit.

The lower datapath contains a 138 word-register file, some temporary registers, and several

functional units. It is 40 bits wide because 8 of the bits are used for tags. The upper datapath con-

tains some special registers and the program counters logic. It is 30 bits wide because all

Appendix A: Detailed Microarchitecture 207

instructions are word addressed. The CPU chip resides inside a 208-pad pad frame. The CPU

only needs about 180 pads but the same pad-frame is used by all three SPUR custom chips.

A.2. The SPUR CPU Register Set

8 Windows, I28 Registers

39 -~=7,R26;C~=O,Rl0

Cwp=7, Out; Cwp=O, In

39 Cwp=O,RI6

Cwp=O, Local

39 Cwp=O,R25
39 Cwp=O, R26; Cwp=I, RIO

Cwp=O, Out ; Cwp=I, In

39 Cwp=I,RI6

Cwp= 1, Local

39 Cwp=I,R25

39 Cwp= 1, R26 ; Cwp=2, RIO

•
~ ~ •

•
39 Cwp=6,R3I;Cwp=7,RI5

39 Cwp=7,R16

Cwp= 7, Local

39 Cwp_=7,R25

0- Window
7

0

0
0

0

0
0

~

0
0

0

Window
0

-

Window
1

~

Window
7

39

39

10 Global Registers

Global Registers 0

. . .
Global Register R9 0

Special Register Number

6 Special Regi~
131 UQSW 2lso

Cwp[:J]SI

j31 Swp 31 S2

131 ExecPC ~read onl:r2 2ls3

131 FQuPC ~read only) 2ls4

131 KQSW 21

Ins[]

Figure A-2-1 The SPUR CPU Registers Set

Each register window has ten local registers, six input registers, and six output registers. The in

put and output registers of adjacent windows overlap and are used for parameters passing. Spe

cial register numbers are used by instructions RD_SPECIAL and WR_SPECIAL to specify the

source (Ssi) and destination (Sd) special registers, respectively. Kpsw and Ins do not have any

special register number because they are not manipulated by the RD_SPECIAL nor the

WR_SPECIAL instruction.

Appendix A: Detailed Microarchitecture 208

The SPUR CPU register set (Figure A-2-1) consists of 138 general purpose registers and

seven special registers. The 138 general purpose registers are organized into 10 global registers

and eight overlapping register windows. The seven special registers are:

Cwp<4:2>

Swp<31:3>

Current register window pointer. Points to the register window that is currently

in use.

Save register window pointer. Points to the memory location where the last

overflow register window (points to by Swp<9:7>) is saved.

Kpsw<31:2> Kernel processor status word.

Upsw<31:2> User processor status word.

lns<l:O> Insert byte count register.

ExecPC<31:2> Program counter contains the address of the instruction currently being exe

cuted. This is a read only register.

FpuPC<31 :2> Program counter contains the address of the last floating point instruction send

to the FPU coprocessor. This is a read only register.

Whenever a CALL instruction is executed, Cwp is incremented by one and a new window

is opened. Conversely, whenever a RETURN instruction is executed, Cwp is decremented by one

and the window is closed. When window overflow occurs, register windows are saved to

memory. Swp contains the memory address at which the last register window is saved. The

status of the SPUR CPU is stored in the two processor status words: Kpsw and Upsw. Both the

Kpsw and the Upsw are 30 bits wide. However, as shown in Figure A-2-2, only a small number

of these 60 bits are used by the hardware. The rest of the bits are used by software to store

relevant process information. The Ins register is used by the INSERT instruction to decide where

within a word should the byte be inserted. Special registers ExecPC and FpuPC are read only and

writing to them are the same as NOOP.

Appendix A: Detailed Microarchitecture

Kernel Processor Status Word- Kpsw:

Enable Enable User Virtual Enable
Error Interrupt Mode Mode for Prefetch

Data Access

Enable Enable Previous Mode Virtual Mode Enable
All Traps Fault Before Trap for I. Fetch !-Unit

Enable
FPU

Enable
Tag Trap

Enable Integer
Overflow Trap

FPU Enable FPU Enable
Parallel Mode Exception Generation Trap

Figure A-2-2 Upsw and Kpsw Bit Assignments

Each bit's definition specified in this figure is the meaning of the bit when it is equal to 1. As

shown in Figure A-2-1, Upsw<31:2> and Kpsw<31:2> are 30 bits wide. This figure only shows

the bits that are used by the hardware. Bits that are not used by the hardware can be read and

written by software.

A.3. The SPUR CPU Instruction Set

209

The SPUR CPU instruction set [Tay85] can be divided into seven types of instructions: (1)

Load, (2) Register-Register, (3) Jump-Register and Return, (4) Read and Write Special Registers

(5) Store, (6) Compare-Branch, and (7) Call-Jump. These instructions are summarized in Tables

A-3-1 through A-3-7. Floating point instructions are not discussed in this section and can be

found in [Bos88]. As mentioned in Section 2.4.1, unusual conditions can arise during instruction

execution and may cause a trap. These unusual conditions are listed in Table A-3-8. Finally,

Table A-3-9 shows all the branch conditions for all the Compare-Branch instructions.

Load, Jump-Register and Return, and Read and Write Special Registers instructions all

have the same format as Register-Register instructions. The Ri field of Register-Register

Appendix A: Detailed Microarchitecture 210

Load Instructions

Cache
Unusual

Instruction Operands Action Conditions

Ooerations _{]'_able A-3-81

LD_40
Rd, Rsl, Ri

RD64
Rd<39:0> <- Mem[Rsl+Ri] None

LD 40 RO RF064

CXR Rd,Rsl, Ri
RD64 Rd<39:0> <- Mem[Rsl+Ri] D

CXR RO RF064 LISP pointer check

LD_32
RD32

Rd<31:0> <- Mem[Rsl+Ri]
PR32

LD_32_RO
Rd,Rsl,Ri

R032
None

LD 32 RI RA32
Rd<39:32> <- OxOO

TEST_&_SET Rd,Rsl,Ri TS32
Rd<31:0> <- Mem[Rsl+Ri] None
Rd<39:32> <- OxOO

LD_ Rd, Rsl, Ri
RD_ Rd<31:0> <- CC Reg[Rsl+Ri]

E
EXTERNAL CACHE Rd<39:32> <- OxOO

Table A-3-1 Load Instructions

instructions can either be a register specified by the Rs2 field or the sign extension of the 14-bit

immediate field (see Figure 2-1-1). In order to support the Berkeley Ownership cache con-

sistency protocol [KEW85], most Load instructions have two favors-simple read or read for own-

ership (opcode_RO). LD_32 has one more favor-the RI favor. LD_32_RI tells the Cache Con-

troller to ignore any page fault it may cause and provide the data to the CPU anyway. LD_32 is

also the only Load that can access data in physical mode. Therefore LD_32's Cache Operations

can either be RD32 (virtual mode) or PR32 (physical mode). TEST_&_SET and

LD_EXTERNAL are similar to LD_32 as far as the CPU is concerned. The only difference is

their Cache Operations which will be handled differently by the Cache Controller. A complete

explanation of all the Cache Operations is given in [WEG87].

The Store instructions do not have the same fonnat as the Register-Register instructions. Its

immediate field (Imm) is the sign extension of the 14-bit immediate filed fonned by concatenat-

ing the High Imm and Low Imm fields of the instructions (see Figure 2-1-1). Since ST_32 is the

Appendix A: Detailed Microarchitecture 211

Re!!ister-Rel!ister Instructions

Instruction Operands Action
Unusual Conditions

lTable A-3-8)

ADD_NT Rd, Rsl, Ri
Rd<31:0> <- Rsl + Ri None
Rd<39:32> <- Rs1<39:32>

ADD Rd, Rsl,Ri
Rd<31:0> <- Rsl + Ri F &I
Rd<39:32> <- Rs1<39:32>

SUB Rd, Rsl,Ri
Rd<31:0> <- Rsl- Ri F&I
Rd<39:32> <- Rs1<39:32>

AND
Rd, Rsl,Ri Rd<31:0> <- Rsl and Ri F

Rd<39:32> <- Rsl<39:32>

OR
Rd, Rsl, Ri Rd<31:0> <- Rsl or Ri F

Rd<39:32> <- Rs1<39:32>

XOR
Rd,Rsl,Ri Rd<31:0> <- Rsl xor Ri F

Rd<39:32> <- Rs1<39:32>

Rd<31:0> <- Rs1<31:0> shift

SLL Rd, Rsl, Ri left by Ri<l:O> bits F

Rd<39:32> <- Rs1<39:32>

Rd<31:0> <- Rs1<31:0> arithmetic

SRA Rd, Rsl, Ri shift right by Ri<O> bit F

Rd<39:32> <- Rs1<39:32>

Rd, Rsl, Ri
Rd<31:0> <- Rs1<31:0> logic

SRL shift right by Ri<O> bit F

Rd<39:32> <- Rs1<39:32>

RD_TAG Rd,Rsl
Rd<31:8> <- 0 None
Rd<7:0> <- Rs1<39:32>

EXTRACf Rd, Rsl, Ri
Rd<31:8> <- 0 None
Rd<7:0> <- Rsl[byte Ri<l:O>]

WR_TAG Rd, Rsl, Ri
Rd<31:0> <- Rs1<31:0> None
Rd<39:32> <- Ri<7:0>

INSERT Rd,Rsl,Ri Rd[byte Ins<l:O>] <-Ri<7:0> None

Table A-3-2 Register-Register Instructions

only instruction that can perform store in physical mode, ST _32's Cache Operations can either be

WR32 (virtual mode) or PW32 (physical mode).

Compare-Trap is a special case of Compare-Branch in which the "branch" is taken as a

trap. Compare Branch or Compare Trap's 3rd operand can either be Rc, Rs2, or Tag Imm

depending on the Cond filed. The Rc option means the operand can either be a register specified

Appendix A: Detailed Microarchitecture

Jump-Register and Return Instructions
Unusual

Instruction Operands Action Conditions
JTable A-3-8_}_

JUMP_REG Rsl, Ri PC<-Rsl +RC None

RETURN Rs1,Ri
PC<- Rs1 + Ri B
Pop to previous window: Cwp <- Cwp - 1

RETURN_ PC <-Rs1 + Ri

1RAP
Rsl, Ri Pop to previous window: Cwp <- Cwp - 1 B

Enable all traps: Kpsw<AllEn> <- 1

Table A-3-3 Jump-Register and Return Instructions

by the Rs2 field or zero extension of the 5-bit Short Immediate field (see Figure 2-1-1).

Read and Write Special Registers Instructions
Unusual

Instruction Operands Action Conditions
(Table A-3-~

RD_SPECIAL Rd, Ss1
Rd<31:0> <- Ss1

None
Rd<39:32> <- OxOO

RD_INSERT Rd
Rd<31:0> <-Ins

None
Rd<39:32> <- OxOO

RD_KPSW Rd
Rd<31:0> <- Kpsw None
Rd<39:32> <- OxOO

WR SPECIAL Sd, Rsl, Ri Sd<-Rsl +Ri None

WR INSERT Ri Ins<- Ri<1:0> None

WR KPSW Rsl Ri Kpsw <- Rs1 + Ri E

INVALID_m
Invalidate all entries in the

None
on-chiQ_ instruction cache

Table A-3-4 Read and Write Special Registers Instructions

Ssl and Sd are specifiers that specify the special registers to be read or written.

212

Appendix A: Detailed Microarchitecture 213

Store Instructions
Cache Unusual

Instruction Operands
Operations

Action Conditions
(Table A-3-8)

ST_40
Rs2,Rsl,

WR64
Mem[Rsl+lmm] <- Rs2<39:0>

H
Imm Generation Check

ST_32
Rs2,Rsl, WR32

Mem[Rsl+lmm] <- Rs2<31:0> None
Imm PW32

ST_ Rs2,Rsl, WR_
CC Reg[Rsl+lmm] <- Rs2<31:0> E

EXTERNAL Imm CACHE

Table A-3-5 Store Instructions

Comoare-Branch Instructions

Cond Field
Unusual

Instruction Operands Action Conditions

(fable A-3-9) (Table A-3-8)

always, ge, ne,
Cond, Rsl, if (Cond=TRUE)

CMP_BRANCH
gt, never, It, G
eq, le, uge,

Rc, Offset PC <-PC + signExt(Offset)
ugt, ult, ule

CMP_BRANCH
eq_tag, eq_38, Cond, Rsl, if (Cond=TRUE)

None
ne tag, ne 38 Rs2, Offset PC <- PC + signExt(Offset)

eq_tag_imm, Cond, Rsl, if (Cond=TRUE)

CMP_BRANCH
ne_tag_imm,

Tag Imm,
PC <- PC + signExt(Offset)

None

Offset

always, ge, ne,
Cond, Rsl, if (Cond=TRUE)

CMP_TRAP
gt, never, It, G,J
eq, le, uge,

Rc, Offset Take a trap!
ugt, ult, ule

• CMP_TRAP
eq_tag, eq_38, Cond, Rsl, if (Cond=TRUE)]
ne tag, ne 38 Rs2, Offset Take a trap!

eq_tag_imm, Cond, Rsl, if (Cond=TRUE)

CMP_TRAP
ne_tag_imm,

Tag Imm,
Take a trap!

]

Offset

Table A-3-6 Compare-Branch Instructions

Appendix A: Detailed Microarchitecture 214

Call-Jump Instructions
Unusual

Instruction Operands Action Conditions
{Table A-3-8)

JUMP Word Address PC<- PC<31:30> cat Word Address None

PC<- PC<31:30> cat Word Address

CALL Word Address Open new window: Cwp <- Cwp + 1 A
Save PC: RIO (new window)<- PC

Table A-3-7 Call-Jump Instructions

Unusual Definition and Condition
Conditions

A
Window Overflow:
Attempt to execute CALL when Cwp+l = Swp<9:7>

B
Window Underflow:
Attempt to execute RETURN or RETURN TRAP when Cwp-1 = Swp<9:7>

D
LISP Pointer Type Violation:

Rs1<37:32> !=CONS or NIL

E
Kernel Mode Violation:
Attempt to execute a privilege instruction when Kpsw<UserBit> = 1

F
LISP Data Type Violation:

Rs1<37:32> != FIXNUM or Rs2<39:32> != FIXNUM

LISP Data Type Violation:

G (Rs1<37:32> != FIXNUM or Rs2<39:32> != FIXNUM) and

(Rsl<37:32> !=CHARACTER or Rs2<39:32> !=CHARACTER)

H
Generation Violation:

Rs2<39:38> > Rs1<39:38>

I Integer Overflow

] Compare trap with valid condition

Table A-3-8 The SPUR CPU Unusual Conditions

Appendix A: Detailed Microarchitecture 215

Mnemonic Binary_ (Hex.) Branch Conditions Notes

ALWAYS 00 000 (00) Always Branch

GE 00 001 (01) Rs1<31:0> ~ Rc<31:0>

NE 00 010 (02) Rs1<31:0> 'i= Rc<31:0> 1,2

GT 00 011 (03) Rs1<31:0> > Rc<31:0>

NEVER 00 100 (04) Never Branch

LT 00 101 (05) Rs1<31:0> < Rc<31:0>

EQ 00 110 (06) Rs1<31:0> = Rc<31:0> 1,2

LE 00 Ill (07) Rs1<31:0> ~ Rc<31:0>

UGE 01 001 (09) Rs1<31:0> ~ Rc<31:0>

UGT 01 011 (OB) Rs1<31:0> > Rc<31:0>

ULT 01101 (OD) Rs1<31:0> Rc<31:0>
3

<

ULE 01 111 (OF) Rs1<31:0> ~ Rc<31:0>

FPU_TRUE 10 000 (10) fpuBrT_F _C4 = 1 4

EQ_TAG 10 001 (11) Rs1<37:32> = Rs2<37:32>

EQ_38 10 011 (13) Rs1<37:0> Rs2<37:0>
5

=
FPU_FALSE 10 100 (14) fpuBrT_F _C4 = 0 4

NE_TAG 10 101 (15) Rs1<37:32> 'i= Rs2<37:32>

NE_38 10 111 (17) Rs1<37:0> 'i= Rs2<37:0>

EQ_TC 11 001 (19) Rs1<37:32> Tag_Imm
5

=
NE_TC 11101 (1D) Rs1<37:32> 'i= Tag_lmm

Table A-3-9 The SPUR CPU Branch Conditions

Notes:
1. Ifbusl<14> = 0, Rc = Rs2. Otherwise, Rc =Zero Ext (Short Imm).

2. Rs1 and Rc are treated as 2's complement signed integers.

3. Rs1 and Rc are treated as unsigned integers.

4. fpuBrT_F _C4 is an external input coming from the FPU.

5. Only the type tag are checked. Generation numbers are ignored.

A.4. Special Cases of Register-Register Instructions

Load, Jump-Register and Return, Read Special Registers, and Write Special Registers

instructions can be considered as special cases of the Register-Register instructions. The timing

of Load operation is shown in Table A-4-1. It is similar to Register-Register operation except the

ALU output is sent out as effective address and the data from memory is written into the destina-

tion register. The timing of Jump-Register and Return operations is shown in Table A-4-2. In

this case, the ALU output is sent to the upper datapath and then the Instruction Unit as the target

Appendix A: Detailed Microarchitecture 216

address. The timing of Read and Write Special Registers operations are shown in Table A-4-3

and Table A-4-4 respectively. They are similar to Register-Register operation except special

registers are involved instead of general purpose registers.

Stage/Phase Actions

lfet Stage:
Phase 3 busl <- 1-UnitfbusPCl ·

Exec Stage:
busA <- REG_FILE[Rs1]. busB <-(not REG_FILE[Rs2]) ;

Phase 1
BUSBUFA <- busA,
if (busk14>=0) BUSBUFB <-(not busB)

else BUSBUFB <-Sign Extend (busk13:0>);

Phase 2
busA2 <- BUSBUFA, busB2 <- BUSBUFB;

Port A of ALU <- busA2, Port B of ALU <- busB2 ;

Phase4
busS<-ALU;
Address Pads <-busS ·

Mem Stage:

Phase 1
busPC <-INC ;
lfetPC <- busPC, 1-Unit <- busPC ;

Phase 3
busL <- Data Pads ;
Dst2 <- busL ·

Wr Stage:

Phase 3
busA <- Dst1, busB <-(not Dst2);

REG FILE[rd] <- (busA & (not busB))_;

Table A-4-1 Load Operation

Appendix A: Detailed Microarchitecture 217

Stae:e/Phase Actions

Ifet Stage:
Phase 3 busi <- I-Unit[busPC] ·

Exec Stage:
busA <- REG_FILE[Rs1]. busB <-(not REG_FILE[Rs2]) ;

Phase 1
BUSBUFA <- busA,
if (busk14>=0) BUSBUFB <-(not busB)
else BUSBUFB <-Sign Extend (busi<13:0>);

if (opcode =RETURN) Cwp <- Cwp- 1,

Phase2 busA2 <- BUSBUFA, busB2 <- BUSBUFB;

Port A of ALU <- busA2, Port B of ALU <- busB2 ;

Phase4
busS <-ALU;
BUSS2PC <-busS·

Mem Stage:

Phase 1
busPC <- BUSS2PC ;
IfetPC <- busPC,I-Unit <- busPC ·

Wr Stage:
Phase 3 if (opcode =RETURN) Update Backup Copy of Cwp ;

Table A-4-2 Jump-Register and Return Operations

Staj!e/Phase Actions

Iret Stage:
Phase 3 busi <- I-UnitfbusPCl ·

Exec Stage:

Phase2
busS <- (Cwp, Swp, Upsw, or Kpsw) ;

BUSSTOD <-busS ;

Phase4
busD <- BUSSTOD ;
Dst1 <- busD _;_

Mem Stage:

Phase 1
busPC <-INC;
IfetPC <- busPC, I-Unit <- busPC ;

Phase 3 Dst2 <- Dst1 ;

Wr Stage:

Phase 3
busA <- Dst1, busB <-(not Dst2);
REG FILE[rd] <- (busA &_{not busB));

Table A-4-3 Read Special Registers Operation

Appendix A: Detailed Microarchitecture 218

Stat!e/Phase Actions

Ifet Stage:
Phase 3 busi <- 1-Unit[busPC] ·

Exec Stage:
busA <- REG_FILE[Rsl], busB <-(not REG_FILE[Rs2]) ;

Phase I
BUSBUFA<- busA,
if (busl<14>=0) BUSBUFB <-(not busB)

else BUSBUFB <-Sign Extend (busl<13:0>);

Phase 2
busA2 <- BUSBUFA, busB2 <- BUSBUFB;

Port A of ALU <- busA2, Port B of ALU <- busB2 ;

Phase4
busS<-ALU;
<C~,Swp~ Upsw or Kpsw1 <-busS;

Mem Stage:

Phase 1
busPC <-INC ;
IfetPC <- busPC I-Unit<- busPC

Wr Stage:
Phase 3 Update Backup Copy of (Cwp, Swp, Upsw, or Kpsw);

Table A-4-4 Write Special Registers Operation

Appendix A: Detailed Microarchitecture 219

A.S. REFERENCES

[Bos88] B. K. Bose, VLSI Design Techniques for Floating-Point Computation, Doctoral

Dissertation, Computer Science Division, EECS Department, University of

California, Berkeley, November 1988.

[KEW85] R. Katz, S. Eggers, D. Wood, C. Perkins and R. Sheldon, "Implementing A Cache

Consistency Protocol", The 12th Annual International Symposium on Computer

Architecture, Boston, Massachusetts, June 17-19, 1985.

[Tay85] G. S. Taylor, "SPUR Instruction Set Architecture", in Proceedings of CS292i:

Implementation of VLSI Systems, R. Katz (editor), Computer Science Division,

EECS Department, University of California, Berkeley, September 1985.

[WEG87] D. Wood, S. Eggers and G. Gibson, "SPUR Memory System Architecture", Report

No. UCB/Computer Science Dpt. 87/394, Computer Science Division, EECS

Department, University of California, Berkeley, December 1987.

Appendix B: SPUR CPU Problems Report

Appendix B

THE SPUR CPU PROBLEMS REPORT

The great liability of the engineer compared to men of other professions

is that his works are out in the open where all can see them

If his works do not work, he is damned.
Hebert Hoover, 1916

220

This appendix lists all the known SPUR CPU problems. Unless otherwise specified, all

these problems can still be found in the second version of the SPUR CPU. The solutions to these

problems are also listed. The SPUR CPU problems can be classified into three groups: (1)

microarchitectural problems, (2) electrical problems, and (3) implementation problems.

B.l. Microarchitectural Problems

The CPU chip is doing exactly what the microarchitect designed it to do although it is not

doing what the microarchitect wanted it to do. The microarchitect has designed it wrong! These

problems can be simulated in behavioral and switch level simulation. They were not detected dur-

ing simulation because we did not cover all possible cases or we did not realize they were prob-

lems. The SPUR CPU microarchitectural problems are:

(1) The SPUR CPU does not allow two consecutive instructions to modify the the same spe-

cial register (special registers are listed in Appendix A.2). The problem is that the SPUR

CPU cannot recover the special register if the second instruction is trapped. The software

solution is to avoid writing code that will modify the same special register in two con-

secutive instructions. The hardware solution is to add one more temporary latch between

the special register and its backup copy (see Figure 3-3-1).

Appendix B: SPUR CPU Problems Report 221

(2) The SPUR CPU cannot recover from an intenupt if the second instruction that is being

killed is a CALL or RETURN instruction. This problem and its software solution are dis

cussed in Section 3.3.1. The same hardware solution that can solve Microarchitectural

Problem 1 above can also solve this problem.

(3) The SPUR CPU treats the internal instructions just like any other normal instructions.

The user can, therefore, use the internal instructions in his program to crash the system.

This is a security hole and we did not have any software solution for it. The hardware

solution is to change the SPUR CPU instruction decoder such that it treats all internal

instructions as privilege instructions. Whenever a user program attempts to execute an

internal instruction, the SPUR CPU should take a mode violation trap.

(4) The CPU and the Cache Controller assume different meanings for the cacheBusy signal.

The CPU assumes it will stay asserted during the entire cache operation. The Cache Con

troller, on the other hand, assumes it can disassert it in the middle of a cache operation as

long as the dataValid signal remains disasserted. Consequently, when the Cache Con

troller disasserts cacheBusy momentarily in the middle the TEST_AND_SET operation,

the SPUR CPU is confused and starts prefetching instruction erroneously if the !-Unit is

enabled. We did not have any software solution for this problem. The easiest hardware

solution is to put some "glue" logic on the processor board.

B.2. Electrical Problems

The CPU chip is not doing what the microarchitect nor the logic designer designed it to do

due to unexpected electrical problems. These problems cannot be simulated in behavioral nor

switch level simulation. Careful and in-depth circuit simulation is the only way to detect these

problems. These problems exist because the switch level simulation is not low level enough and

it is not practical to run circuit simulation for the entire chip. The SPUR CPU electrical problems

are:

Appendix B: SPUR CPU Problems Report 222

(1) A hazardous circuit caused the CALL instruction not able to save the return address prop

erly in the first version of the SPUR CPU. This problem and its solutions are discussed in

Section 3. 3.2.1.

(2) Misplaced well and substrate contacts resulted in stuck at "0" and stuck at "1" problems

in the first version of the SPUR CPU. This problem and its solutions are discussed in Sec

tion 3.3.2.2.

(3) There is small gap in one of the wires in instruction unit. We solved this problem by per

forming micro-surgery on the chip to connect the broken wire using the "Focused Ion

Beam IC Development System" available from Seiko Instrument Inc. This problem was

introduced when we were fixing problems from the first version.

(4) The SPUR CPU is not ignoring interrupts during global pipeline suspension causes by

external cache miss. This problem is caused by a race condition in the trap logic. The

easiest hardware solution is to put some "glue" logic on the processor board.

B.3. Implementation Problems

Implementation problems occur when the CPU chip is doing exactly what the logic or cir

cuit designer designed it to do although it is not doing what the microarchitect want it to do. ·The

logic or circuit designer implement something differently than what the microarchitect has in

mind! These problems may be detected by comparing the switch level simulation results against

behavioral level simulation results if both the switch level and behavioral level descriptions have

the proper level of details. These problems exist because of miscommunication between the

microarchitect and the logic or circuit designer. The SPUR CPU only has one implementation

problem:

(1) The backup copy of all special registers were implemented as dynamic registers. They

should be static or pseudo static registers. This problem and its solution is discussed in

Section 3.3.3.

