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Abstract 

VLSI design in general-microprocessor design in panicular-has been treated more like an an 

than a science in the past. The goal of this thesis is to explain the science of VLSI design to 

someone who wants to build a microprocessor. This can be accomplished by providing a quanti-

tative way to evaluate, and a systematic approach to design, a microprocessor. Resources and 

complexity are two separate ways a microprocessor designer can pay for performance. The mi-

croprocessor designer must evaluate the performance, resources, and complexity tradeoffs quanti-

tatively. In this thesis, the SPUR (SPUR stands for Symbolic Processing Using RISC Machines) 

CPU microarchitecure is used as example to show how performance, resources, complexity trade-

offs can be evaluated quantitatively. A systematic approach to microarchitectural design is then 

developed based on the SPUR CPU design experience. The SPUR CPU is implemented in 

l.6f.i.m, double layer metal, CMOS technology. It consists of 115,000 transistors, runs at lOOns, 

and consumes 0.8\V of power. Imponant features of the SPUR CPU are: an internal instruction 

cache; a four-stage pipeline; support for LISP; a cache controller interface for multiprocessing 

and virtual memory suppon; and a parallel coprocessor interface for lloating point arithmetic sup-

port. All tl1cse features make the SPUR CPU significantly different and more complex than previ-

ous generations of Berkeley RISC machines. 
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Chapter 1: Introduction 

Chapter 1 

INTRODUCTION 

What is hard to get across is the tremendous speed at which 
things are changing in this business. 

Dave Patterson, New York Times, 1988 

1.1. The Berkeley Tradition 

1 

The history of VLSI chip projects at Berkeley is shown in Table I -1-I. This table also illus-

trates the evolution of VLSI projects in the research environment because what happened in 

Berkeley was very typical. In the early I 980s~ the Mead and Conway design style enabled us to 

build 40,000+ transistor (large for the time) NMOS VLSI microprocessors such as RISC I 

[Pat82], RISC II [Kat83], and SOAR [Ung84]. Fueled by these successes and further advances in 

teclmology, we started the SPUR project in 1985 after we completed the SOAR project. The 

SPUR project's ambitious goal is to build a multiprocessor workstation system [Hil86]. 

SPUR stands for Symbolic Processing Using RISC machines. Figure I-1-1(a) is a block 

diagram of the SPUR multiprocessor. SPUR is a shared-bus multiprocessor consists of 6 to 12 

identical high-performance processors. These processors are connected to each other, to standard 

shared memory, and to input/output devices with a modified Tl Nu-Bus which we called the 

SPUR Bus [Gib87]. Figure 1-1-I(b) is an expanded view of the SPUR processor board. Each 

SPUR processor contains a 128K-bytc cache to reduce the bandwidth required from the bus and 

the shared memory. Each SPUR processor is implemented on a single board with about 200 stan-

dard chips and three custom CMOS chips: the Cache Controller (CC), the Floating Point Unit 
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Cycle Transistor Process Pin Design Effort 
Generation 

Project Time (ns) Count (Urn) Count (man vear) 

1981 800 44K 4-NMOS 62 2.3 
RISCI 

1983 RISC II 1st 

Chip A 500 41K 
4-NMOS 62 2.8 

ChipB 330 3-NMOS 

1985 400 36K 4-NMOS 84 3.3 2nd 
SOAR 

1988 SPUR 
CPU 120K 

cc 100 68K 1.6-CMOS 208 4.5 3rd 

FPU lOOK 

Table 1-1-1 The Berkeley Tradition 

(FPU), and the Central Processing Unit (CPU). 

The Cache Controller handles cache accesses, performs address translation [Woo86], 

accesses shared memory over the shared bus, and maintains cache consistency [KEW85]. The 

Floating Point Unit [BPT87] supports the IEEE standard for binary floating-point arithmetic. 

Finally, the CPU is based on the Berkeley RISC architecture. The SPUR CPU, however, is dif-

ferent from RISC n because it has a 512-byte internal instruction cache, a longer pipeline, a 

coprocessor interface, and support for LISP. These three custom VLSI chips are implemented in a 

l.6J.U11 double layer metal CMOS technology and each consists of approximately 100,000 transis-

tors. 

1.2. Research Motivation 

The research reported in this thesis is motivated by the design of the SPUR CPU. Micropro-

cessor design is influenced by many different issues, and their effects were studied by Katevenis 

in 1983 [Kat83]. Since then, however, many old design issues have changed and many new 

design issues have emerged due to influences from four areas: 
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SHARED 
MEMORY 

... 6tol2 ... 

(a) SPUR Workstation Basic Architecture (b) SPUR Processor Board 

Figure 1-1-1 The SPUR Workstation 

The SPUR multiprocessor workstation is a shared-bus multiprocessor which consists of 6 to 12 

identical high-performance custom processors. Each processor contains three custom VLSI 

CMOS chips: the CPU, the CC, and the FPU. These three chips are connected by a 38-bit address 

bus, a 64-bit data bus, and the CPU and FPU are connected by a parallel coprocessor interface. 

The CPU only uses the lower 32 bits of the address bus and the lower 40 bits of the data bus. 

System 

3 

There is demand for more support for coprocessors, memory management, multiple proces-

sors, and operating systems. 

Software 

There is demand for more support for specialized languages. Better compiler technology is 

also available for better hardware-software trade-offs. 

Simulation 

The higher demands in the system and software areas increase the popularity of multiple 

chip projects such as Berkeley's SPUR, XEROX's Dragon [MoS85], DEC's Firefly 

[TSJ88], and HP's Spectrum project [BiW86]. A project spanning multiple chip designs 

requires significantly more detailed behavioral simulation to resolve communication and 

interaction problems among the chips. The need for detailed simulation is especially true 

with respect to exceptional conditions such as interrupts and traps. 
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Technology 

CMOS with higher speed and lower power ccnsurnption is replacing NMOS. As devices 

scale to smaller geometries and as the chip area increases, many electrical problems, such as 

inductance, can no longer be ignored. Furthermore as more functions can be placed on-chip, 

on-chip interactions become more ccmplex while off-chip ccmmunication remains a major 

bottleneck. 

We believe the problems we faced in designing the SPUR CPU were a preview of what the 

rest of the research community will need to confront in the near future. There are two terms that I 

will use often in this thesis. Before going any further, let me clarify my definitions to avoid ceo

fusion latter. 

Macroarchitecture 

The term macroarchitecture can be defined as the machine language programmer's view of 

the processor, generally found in the machine language programmer's manual. For a 

microprocessor, however, a machine language programmer's manual really does not tell the 

whole story. The macroarchitecture of a microprocessor should also include a interface 

specification for the board designer. 

Microarchitecture 

The term microarchitecture will be defined formally in Chapter 5. In the meantime, it is 

defined informally as the specification of how the macroarchitecture is implemented in a 

given technology. The microarchitecture may have some impact on the macroarchitecture. 

This feedback path is one of the main tenets of the original RISC argument 

1.3. Contemporary RISC Processors 

This section looks at several RISC processors that were introduced at approximately the 

same time when the SPUR CPU was being built. I have selected two research projects and three 

commercial projects. In my opinion, each of the selected processors has its own significant 

feature or features that make the processor deserve a place in the short but brilliant history of 
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RISC processors. The two research processors I selected are MIPS-X and CRISP: 

MIPS-X 

MIPS-X [ChH87] [Hor87b] [Hor87a] was designed at Stanford University. It was imple

mented in 2J.UI1, double-layer metal, CMOS technology. It contains 150K transistors in an 

8mm x 8.5mm die and has 84 signal pins and 24 power pins. The peak operating frequency 

is 20MHz and the chip dissipates less than 1 W. MIPS-X has a 32-word register file, a 512-

word direct-mapped (32 blocks of 16 words) on-chip instruction cache, and uses a five-stage 

pipeline. The five stages are: (1) Instruction Fetch, (2) Register Read, (3) Execute, (4) 

Memory Access, and (5) Write Back of registers. The execution unit contains a 64-bit to 

32-bit funnel shifter, a 32-bit ALU, and a special register MD that is used by the 

multiplication-step and division-step instructions. Branches are delayed for two cycles. In 

order to help the compiler to fill these two delay slots, MIPS-X has the option to change 

these delay instructions into NOOP on the fly ("squash" the instructions). The MIPS-X 

coprocessor interface treats coprocessor instructions as a form of memory operation and 

uses the address lines to transmit the coprocessor instructions to the coprocessor(s). The 

most significant feature of MIPS-X is its fast cycle time. Unlike the SPUR designers who 

took the conservative approach to increase the chance of getting a reliable CPU, the MIPS

X circuit designer used very aggressive circuit designs to lower the cycle time. 

CRISP 

CRISP [BDM87] [DiM87] [Bcr87] was designed at AT&T Bell Laboratories. It was imple

mented in I.75l!m. single-layer metal, double-layer polysilicon, CMOS technology. It con

tains 170K transistors in an 10.35mm x 12.23mm die and has 95 signal pins, 20 power pins, 

19 ground pins, and 6 test pins. The peak operating frequency is 16MHz and the chip dissi

pates 500mW. CRISP can be divided into six functional blocks: (1) Input/Output, (2) Pre

fetch Buffer, (3) Prcfetch and Decode Unit, (4) Decoded Instruction Cache, (5) Execution 

Unit, and (6) Stack Cache. The prefetch buffer is a 512-byte direct-mapped cache organized 

into 32 blocks. The decoded instruction cache is a direct-mapped cache with 32 192-bit 
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entries. Each entry is fully decoded instruction. The Execution Unit uses a three-stage pipe

line: (1) Operand fetch, (2) ALU operation, and (3) register writeback. The stack cache is 

implemented with two 32-word byte-addressable register files. Branches can be "folded" 

into other instruction and is executed implicitly as part of other instructions. The most 

significant features of CRISP are its architectural innovations: stack cache and branch fold

ing. According to the CRISP designers, stack cache access time is as fast as register but has 

the advantage of software transparency. Branch folding enable CRISP to execute branch in 

parallel with other useful instructions. This makes CRISP the first microprocessor that can 

execute multiple instructions per cycle. 

The three commercial processors I selected are R3000, SPARC SF9010IU, and MC88000. 

Information concerning the detailed microarchitecture of the commercial processors is not as 

readily available as it is for the research processors. However, there are still enough information 

for me to judge why these commercial processors deserve special attention. 

R3000 

R3000 [Kan88] was designed at MIPS Computer. It is implemented in l.2J.Lffi CMOS tech

nology and resides in a 172 pins PGA. The peak. operating frequency is 25MHz. R3000 has 

a 32-word register file. There is no on-chip instruction nor data cache. Integer multiplica

tion is supported by hardware but integer division is supported by software only. Branches 

are delayed for one cycle. The most significant feature of R3000 is its speed-the 25MHz 

clock rate probably makes the R3000 the fastest RISC CPU when it was introduced. 

SPARC SF9010IU 

SPARC SF9010IU [NaA88] is the first implementation of Sun Microsystem's Scalable Pro

cessor Architecture (SPARC) [Gar88]. It was implemented in Fujitsu's high speed 20K 

gate, 1.5J..Lm, 256-pin (156 of them are signal pins) gate-array. The peak operating fre

quency is 16.67MHz. SF9010IU has a 120-word register file organized into eight global 

registers and seven overlapped windows, an dual-instruction buffer, and uses a four-stage 
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pipeline. The four stages are: (1) Instruction Fetch, (2) Decode, (3) Execute, and (4) Write. 

Integer multiplication step is supported by hardware but integer division is supported by 

software only. Branches are delayed for one cycle and the delay instruction can be 

"squashed" depending on the branch outcome. The most significant feature of SP ARC 

SF9010IU is its simplicity. It is so simple that it was implemented in single gate array in a 

relatively short period of time. 

MC88000 

MC88000 [DRN88] was designed at Motorola. It was implemented in 1.5!1m CMOS tech

nology and resides in a 181 pins PGA. The peak operating frequency is 20MHz. MC88000 

has a 32-word register file but there is no on-chip instruction nor data cache. Integer multi

plication, integer division, as well as floating point arithmetics are all supported by 

hardware. The most significant feature of MC88000 is that it follows a supercomputer 

model that employs a scoreboard similar to the CDC 7600. The centerpiece of the architec

ture is a set of multiple pipclined functional units that can execute independently and con

currently. The usage of these functional units are controlled via scoreboarding. MC88000 is 

one of the few RISC processors that uses on-chip resources for floating point hardware 

instead of for instruction cache. 

1.4. Research Goal and Thesis Organization 

The goal of this thesis is not to formulate the theory of VLSI design but to explain the sci

ence of VLSI design to someone who wants to build a microprocessor. This can be accomplished 

by providing a quantitative way to evaluate and a systematic way to design microarchitecture. 

Since this research is based on the SPRU CPU design experience, the SPUR CPU microarchitec

ture and the lessons I learned must be introduced first. This thesis is organized as follows: 

Chapter 2 Describes the SPUR CPU microarchitccture. 

Chapter 3 Discusses the lessons I learned in designing the SPUR CPU. 
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Chapter 4 Develops a quantitative way to evaluate a microprocessor's microarchitecture. Dif

ferent features of the SPUR CPU microarchitecture are then evaluated as examples. 

Chapter 5 Develops a systematic approach to design a microprocessor's microarchitecture. I 

illustrate this approach by using it to recreate the SPUR CPU microarchitecture. 

Chapter 6 Summarizes the thesis. I also say a few words about what I think the future will be 

like based on my experience in SPUR, 
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Figure 1-4-1 The First Generation Berkeley RISC Machine: RISC I 



Chapter 1: Introduction 10 

Figure 1-4-2 The Second Generation Berkeley RISC Machine: SOAR 
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Figure 1-4-3 The Third Generation Berkeley RISC Machine: SPUR CPU 
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Chapter 2 

THE SPUR CPU 

MICRO ARCHITECTURE 

If things are too complex, I can't understand them. 

Seymour Cray, 1976 

14 

This chapter describes the microarchitecture of the SPUR CPU. Section 2.1 gives an over

view and covers all the important features. The SPUR CPU can be divided into two units: the 

Instruction Unit and the Execution Unit. Section 2.2 describes the Instruction Unit and Section 

2.3 describes the Execution Uriit. Finally, Section 2.4 describes the controller that controls the 

SPUR CPU. The following naming conventions are used in describing the microarchitecture: 

• Register names start with an upper case letter and the rest are lower case except to improve 

readability. Examples are Dstl and IfetPC. 

• Functional block names are in upper case letters only. Examples are ALU and EXT_INS. 

• Signal names start with a lower case letter and the rest are lower case except to improve rea

dability. Examples are busA and trapType. 

The goal of this chapter is to give an overall picture of the SPUR CPU microarchitecture, so 

I can use the SPUR CPU as an example in latter chapters. Please refer to Appendix A for a 

detailed discussion of the microarchi tecture. 

2.1. The SPUR CPU Microprocessor 

The SPRU CPU is a third generation Berkeley RISC microprocessor, and this section 

describes the important features of the SPUR CPU microarchitecture. 
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2.1.1. Overview of the SPUR CPU 

The SPUR CPU is similar to RISC II that it has a reduced instruction set and a 138-register 

register file organized into 10 global registers and eight overlapped register windows (see Appen-

dix A). However, unlike RISC II, the SPUR CPU also has a 512-byte on-chip instruction cache, a 

four-stage pipeline, a cache controller interface, and a parallel coprocessor interface. Internally, 

I opcode 1 Rd 1 Rsl : o: Rs2 

Register-Register: Rd, Rsl, Rs2 
unused 

31 24 19 14 8 0 

Register-Register: Rd. Rsl, Immediate 

I opcod I Rd 1 Rs 1 1 11 Immediate • e I t 1 

31 24 19 14 0 

Swre: Rs2, Rsl, Immediate 
Lowlmm 

31 24 19 14 8 0 

I Cond I Rs1 lol 
• 

Rs2 I Branch Offset 

31 24 19 14 8 0 

I Cond I Rs1 1 I 1Short Imm1 Branch Offset 

24 19 14 8 0 

are-Branch: Rsl Ta Imm 
I Cond I Rs1 I Taglmm I Branch Offset 

24 19 14 8 0 

:Word Address 
Word address within currect segment 

0 

Figure 2-1-1 SPUR Instruction Formats 

Register-Register instructions use the Rsl-Rs2 or Rsl-Immediate pair to specify the source 
operands and the result is stored into the register specified by Rd. For Store instructions, Rs2 con
tains the value to be stored and the effective address is formed by adding Rsl to the concatena
tion of the High Imm and Low Imm fields. Compare-Branch instructions' formats arc selected by 
the Cond field. The three formats are: (I) Rsi-Rs2 format--;;ompare the two registers' contents, 
the two registers' type-tags, or both contents and tags; (2) Short Imm format--<:ompare the zero 
extension of the Short Imm field with Rsl's contents; (3) Tag Imm format--<:ompare the 6-bit Tag 
Imm with Rsl's type-tag. 
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the SPUR CPU uses a combination of a byte extractor!insertor and a shifter instead of the more 

complicated barrel shifter. It also uses an extra adder to calculate the branch address to support 

the 1-cycle Compare-Branch instructions. Finally, eight extra tag bits are attached to each 32-bit 

register to support LISP. This makes SPUR CPU register 40 bits wide (see Figure 2-1-2). The 

SPUR CPU was fabricated in l.6J.lm, double layer metal, CMOS technology. The die size is 

1.15cm x 1.15cm and is packaged in a 208 pin pin grid array. 

The SPUR CPU is a register-to-register machine in which load and store are the only type 

of instructions that access memory. The effective address ofload and store instructions can either 

be the sum of two registers or the sum of one register and an immediate constant. The SPUR 

memory system does not support byte addressing and the two least significant bits of the 32-bit 

address are always ignored by the memory system. 

The SPUR CPU modes of operation can be divided into two orthogonal sets: (1) User vs. 

Kernel and (2) Virtual vs. Physical. Only when the SPUR CPU is in kernel mode can privileged 

instructions be executed. In virtual mode, data and instruction addresses generated by the SPUR 

CPU are interpreted by the SPUR memory system as virtual addresses. In physical mode, 

addresses are interpretated as physical address, which is useful in debugging and bootstrapping 

the system. The mode of operation is controlled by writing different bit patterns into the Kernel 

Processor Status Word-Kpsw (see Appendix A). 

2.1.2. Instruction Formats 

SPUR CPU instruction set [Tay85] (see Appendix A-3) can be grouped into four genetic 

instruction types: Register-Register, Store, Compare-Branch, and Call-Jump. The fonnats of 

these genetic types are shown in Figure 2-1-1. 

Load and Return type instructions are special cases of Register-Register in which (Rs1 + 

Rs2) or (Rsl +Immediate) are used as the the effective address. The Rd field specifies the regis

ter to be loaded for the Load type instruction and is not used for Return type instruction. In order 

to modify any special register, its contents must first be read into a general purpose register and 
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address or data (Fixnum or Character) 

2 bits 6 bits 32 bits 

Figure 2-1-2 SPUR Pointer 

A SPUR pointer is a 40-bit word composed of a 32-bit address, a 6-bit type tag, and a 2-bit gen
eration number. These three parts are logically independent The 6-bit type tag allows up to 64 
possible types. The SPUR CPU hardware only recognizes two data types: Fixnum, which is an 
integer that fits in a 32-bit word, and Character. In SPUR, Fixnum and Character are not refer
enced indirectly through pointers but are represented as immediate data in the 32-bit 
"address"field. Besides these two immediate data types, the SPUR CPU hardware also recog
nizes two pointer types: Cons and Nil. 

then written back to the special register after the modification. 

2.1.3. LISP Support 
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The SPUR CPU supports LISP by three types of tag checking [Tay86] [ZHH88]: data type 

checking for general operations, pointer type checking for list operations, and generation check-

ing for garbage collection. 

Data Type Checking. In a runtime typing system such as LISP, the type of a variable is 

not known at compile time and can change during the course of execution. Therefore, every 

object's type must be stored within the object itself or in all the pointers that point to it SPUR 

stores the type in the pointer because the type information is then available before the memory 

reference. Figure 2-1-2 shows the SPUR pointer which can be stored in a 40-bit CPU general pur-

pose register. The SPUR CPU instructions can be divided into two groups with respect to data-

type checking: 

(1) Data-type checking is not performed and the tag field is ignored. LOAD is an example. 

(2) Data-type checking is done in parallel with the data operation and traps conditionally. For 

example, ADD will trap if either operand is not a Fixnum. 
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SPUR CONS Cell: 
2 bits 6 bits 32bits 

CAR t~iiif type 

CDR Sfgcif;_ type 

address or data (Fixnum or Otaracter) m 

address (Cons or Nil) or data m+l 

Example: 
SPUR List Representation: (33 12 (18 5)) 

R5 ~tfGJf,; f?3'j::; m Fi:utUm 12 '"I Coo• 

/~ R6 ~~5. ! ""-!:: m+ll Cons - n+1J Nil 

c R_CD ' Funum I 1s 1 Fixnum 5 

[>+1 CoM I -f <+1 Nil 1/ v 
CXR := Load + Type Ceck for Cons or Nil 

Figure 2-1-3 Pointer-Type Checking 

Fixnums 33, 12, 18, and 5 are stored as immediate data. Assume the shaded CONS cell is al
ready in the CPU registers R5 and R6 and all other CONS cells are still in memory. More 
specificly, assume the dotted CONS cell is in memory location nand n + 1, then the operation: 

CAR R6 <=> CXR (R6) =>Load at location m (data Fixnum 12); 
CDR R6 <=> CXR (R6+ I) =>Load at location m+ 1 (pointer Cons n); 
CAR R5 <=> CXR (R5) => Trap because R5 is a Fixnum. 

In order to simplify the figure. this example does not show the generation portion of the tag. 
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Pointer Type Checking. Figure 2-1-3 shows how SPUR represents a LISP list element by 

a pair of consecutive storage elements called a CONS cell-{)nc represents the CAR pointer and 

the other represents the CDR pointer. Since the SPUR CPU is a load-store machine, CAR and 

CDR operations are similar to the load operation. However, CAR and CDR operations are 

defined in Common LISP to work only for a Cons pointer (points to another CONS cell) or Nil 

pointer (points to nothing). The SPUR CPU supports this feature by a special load instruction: the 

CXR instruction performs the load in parallel with the pointer-type checking for Cons or Nil. 

Generation Checking. SPUR uses the generation scavenging garbage collection algorithm 

[Ung84] [LiH83]. This is based on t11c observation that the longer an object has been in use, fue 

more likely it is to continue to be in use. In SPUR, objects arc separated dynamically into three 

generations. Each object's generation is recorded in its two generation bits. For simplicity, Figure 
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Remembered 
List 

Memo 

Old 

Figure 2-1-4 Generation Checking 

In this simplified drawing, objects are separated into two generations. New objects are allocated 

in the younger generation and move to the older generation if they survive a garbage collection. 

The garbage collector restricts its attention to the younger generations as much as possible. In 

order to identify new objects that are currently in use, a "Remembered List" is used to keep track 

of all the older objects that contain pointers to the younger generation. 
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2-1-4 only shows two generations. The SPUR CPU has a special store instruction which com-

pares the generation number of the operands in parallel with the store and traps to a routine that 

updates the "Remembered List" whenever necessary. 

2.1.4. The Basic Ingredients-Blocks, Clocking, and Pipeline 

Block Diagram. Figure 2-1-5 can be considered as an abstract floor plan which shows the 

relative position of each block within the SPUR CPU. The dimension of each block, however, is 

not drawn in scale. 

Clocking. The SPUR CPU uses a four-phase non-overlap clock, that is each cycle consists 

of four phases. Each phase has an nominal duration of 18 ns and there are 7 ns nominal non-

overlap time between each phase. This makes the SPUR CPU cycle time 100 ns. 

Pipeline. The SPUR CPU uses a unifonn four-stage pipeline (Figure 2-1-6). Each pipe 

stage corresponds to one clock cycle and all instructions take four cycles to finish. The four stages 

are: 
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Figure 2-1-5 The SPUR CPU Abstract Block Diagram 

The SPUR CPU can be divided into two units: Instruction Unit and the Execution Unit. The Exe

cution Unit can be further divided into four parts: the Cache Controller Interface, which is out of 

the scope of this chapter, the Lower Datapath that handles all the data manipulating operations, 

the Upper Datapath that handles all the the program control operations, and the Control Unit that 

controls the Upper Datapath and Lower Datapath. 

lfet Instruction fetch. The instruction is delivered to the Execution Unit. 
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Exec Register read and instruction execution for register-to-register instructions or register 

read and effective-address calculation for memory access instructions. 

Mem Memory access for all memory access instructions. 

Wr Register write. Write results back to the register file. 

Unlike the RISC II 3-stage pipeline, the extra Mem stage in the SPUR CPU pipeline eliminates 

the need to stall the pipeline whenever a load instruction is executed. This was considered to be 

an important at the beginning of the project because the frequency of Loads was expected to be 

higher in LISP than C. Similar to RISC II, a branch conflict in the SPUR CPU pipeline is 

resolved by a delay branch with one instruction in the delay slot. Delay branch with the option to 

cancel the instruction in the delay slot was considered but not implemented due to the 
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Figure 2-1-6 The SPUR CPU Pipeline 

Register-to-Register instruction (!2) always finishes its execution at the end of its Exec stage. 
However, to avoid register write conflicts with possible previous Load instructions (!0, Jl), !2' s 
result is not written into the register file until its Wr stage. Because of this delay, two temporary 
registers, Dstl and Dst2, are needed to store the result at the end of its Exec and Mem stage 
respectively. Instructions J3 and !4, will not be able to read !2' s result from the register file but 
the result can be read directly from Dstl and Dst2. This is referred to as internal forwarding. 

21 

complexities involving interactions of internal forwarding, pipeline suspension, and the coproces-

sor interface. 

As illustrated in Figure 2-1-6, data conflicts in the SPUR CPU pipeline are resolved by 

intema1 forwarding in which operands are supplied by temporary registers Dstl or Dst2. For the 

Load instruction (JO in Figure 2-1-6) the value to be loaded comes from the extemal data bus at 

the end of the Mem stage and goes directly into temporary register Dst2. Intemal forwarding via 

Dstl is therefore impossible for the instruction immediately following the Load. In order to sim-

plify the intemal forwarding logic, the destination register of the Load instruction is defined to 

have an unknown value for the instmction immediately following the Load. 
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2.2. Instruction Unit 

The Instruction Unit provides the SPUR CPU a 512-byte direct-mapped on-chip instruction 

cache. The Instruction Unit's organization, control, and operation are discussed in Section 2.2.1, 

Section 2.2.2, and Section 2.2.3 respectively. The implementation of the Instruction Unit is 

described in Rich Duncombe's Master of Science report [Dun86]. 

2.2.1. Instruction Unit Organization 

16 Blocks Internal Instructions 
1 Block= (trap_call, rd_pc, 
8 Instructions 
\\ 

and miss) 

-
0 " 0 

+---4 16 

M Address 

-'r---t 
Tags 

<31:9> 
bus I ... . .. u 

-'1:..-...t 
and 

Tag 

X Comparison 

2.!.. 2.!.. Logic 

wv 
'' 

wv ......_ 
\\ <31:9~ <8:2> bus PC 

Decoden I I FET_FSM I <31:2> 

PF ... FSM 
_\\ 

'' 

Figure 2-2-1 Instruction Unit Block Diagram 

The 512-byte direct-mapped instruction cache is organized into sixteen blocks with eight instruc

tions per block. The Execution Unit requests an instruction by placing an address onto busPC and 

the Instruction Unit delivers the instruction via busl. Since all SPUR instructions are 4 bytes 

long, only the upper 30 bits of busPC are used to access this cache. The Instruction Unit is con

trolled by two finite state machines: the Fetch Finite State Machine (FET_FSM) and the Prefetch 

Finite State Machine (PF _FSM). Besides acting as an internal instruction cache, the Instruction 

Unit also provides internal instructions to simply the control of the Execution UniL 
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The Instruction Unit, as shown in Figure 2-2-1, contains a 512-byte direct-mapped on-chip 

instruction cache [Hi187]. This cache is different from a regular cache that during a cache miss, 

only the missing instruction rather than the full eight-instruction cache block is brought immedi

ately into the cache from the next higher level of memory. After the Execution Unit has received 

this missing instruction and has resumed its normal operation, the Instruction Unit will try to pre

fetch the rest of the block into the cache one instruction per cycle starting at the instruction 

immediately after the missing instruction. In other words, each eight-instruction block in Figure 

2-2-1 is divided into eight one-instruction sub-blocks. On a cache miss, the requested sub-block is 

brought into the cache immediately and a prefetching process is triggered to bring the rest of the 

sub-blocks into the cache. Under ideal conditions, prefetching is fast enough that after the first 

miss in a block, there will not be any more cache misses within that block as long as the Execu

tion Unit is executing sequential code. 

Prefetching has the lowest priority among all cache access because the instruction being 

prefetched may not be needed by the Execution Unit at all. Therefore, prefetching is interrupted 

whenever the Execution Unit performs a data access (load or store) or whenever there is a new 

miss in the Instruction Unit. Furthermore, if the instruction being pre fetched is not in the external 

cache, it will not cause an external cache miss. The prefetcher simply move onto the next 

instruction. Since prefetching is not always successful, each instruction must have a "Word Valid 

Bit" (WV) to indicate its validity. 

The Instruction Unit also plays a role in simplifying the control of the Execution Unit by 

providing internal instructions to "fool" the Execution Unit pipeline. For example, the internal 

instructions trap_call and rdyc are used to simplify trap handing. This will be explained in Sec

tion 2.3.3. The miss internal instruction is used whenever the Execution Unit requests an instruc

tion that is not currently in the Instruction Unit. This case is discussed in Section 2.2.3. 
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Fetch Finite State Machine Prefetch Finite State Machine 

Figure 2-2-2 Simplified State Diagrams 

The diagram on the left is the state diagram for the Fetch Finite State Machine and the one on the 
right is for the Prcfetch Finite State Machine. In the Fetch Finite State Machine, the input signal 
star/Fetch is a composite signal: 

startFctch; notSuspend & notWrKpsw & (ibMiss or flush) 
Outputs of theso machines are not shown here for simplicity. All but one outputs are used to con
trol the datapath of the Instruction Unit. The exception is startPF. It is an output of the Fetch 
Finite State Machine and it triggers the Prefetch Finite State Machine: 

stanPF; l\1EM_BUSY or (NORMAL and notSuspend and (ibMiss or flush)) 

2.2.2. Instruction Unit Control 

Initially, we envisioned a single finite state machine controlling the entire Instruction Unit. 

This turned out to be a difftcult design task and the result was so hard to understand that we had 

little confidence in its correctness. Further investigation revealed that prefctching should occur in· 

parallel with other Instruction Unit operations and is quite autonomous. This gave us the idea of 

delegating the control to two independent finite state machines: one for prefetching, the Prefetch 

Finite State Machine, and one for the rest of the operations. For the lack of a better name, it is 
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Outputs valid during Phil, 2, 3, or 4 respectively 

Figure 2-2-3 Generic Structure of the 1-Unit Finite State Machines 

The state of the finite state machine is determined by the contents of the Present State Register 
(shaded in this figure). Since the output of the Present State Register is updated every <1>4 and is 
stable by <1>1, a state begins in <1>1. The state informations state_cl must be used to generate out
puts that are valid during <1>4 to prevent race condition. Similarly, state_c4 must be used to gen

erate outputs that are valid during <1>1. For outputs that are valid during <1>2 and $3, either state_cl 

or state c4 can be used Output of this finite state machine is a function of the Present State and 
any inputs that are valid during <I>N (N=1, 2, or 3) can affect outputs that are valid during <I>N+l 
of the same cycle. For example, outputs that are valid during <1>4 can be a function of inputs that 

are valid during $1, <1>2, and $3. 
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called the Fetch Finite State Machine. The simplified state diagrams of these two finite state 

machines are shown in Figure 2-2-2. 

Both finite state machines only have a small number of states and are implemented by the 

generic structure shown in Figure 2-2-3. The State Logic and Output Logic blocks are imple-

mented by PLAs. There are two reasons why they not combined into one single block (Figure 2-

2-4) as suggested by most "classical" VLSI text books. First, separating them makes the 

designer's job easier. More importantly, in this arrangement the outputs depend on the Present 

State and any inputs that are valid during phase N (N= 1, 2, or 3) can affect outputs that are valid 
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Outpu!S valid during Phil, 2, 3, or 4 respectively 

Figure 2-2-4 Classical Implementation of Finite State Machine 

In this classical implementation, the State & Output Logic evaluates the next state and output 

during $4. Since the output and next state are evaluated together and the results are latched into 

the Output & Present State Register at the end of $4, the outputs can only be affect by the previ

ous state and inputs from the previous cycle. In contrast, the outputs of the organization in Figure 

2-2-:3 are functions of the present state and inputs from any previous phase of the current cycle. 

Notice that a latch must be placed between the Output register and the output signals that are 

valid during $4 to prevent race condition. 
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during phase N+ 1 of the same cycle. On the other hand, if we combine the Output Logic and 

State Logic as tradition dictates (Figure 2-2-4), the output signals can only depend on the previ-

ous state and the inputs from the previous cycle rather than the current state and the inputs from 

the previous clock phase. This will increase the latency of the Instruction Unit 

Since we did not implement the single finite state machine version of the control, it is hard 

to judge the advantages of separating the control into two finite state machines in terms of imple-

mentation metrics such as area, power consumption, and number of logic gates. However, this 

separation greatly simplifies the design and verification effort by allowing us to focus our atten-

tion on one thing at a time. This illustrates an important point in VLSI design: logic optimization 

is important as long as you are still trying to meet implementation constraints. Once these con-

straints are met, continuing optimization can be counterproductive not only because the design 
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Figure 2-2-5 Fetch and Prefctch-Execution Unit's Perspective 

Assume instructions !0, II, !2, and !3 are in consecutive word addresses (octal) 06, 07, IO, and II 
and only IO is currently (Cycle TO) in the Instruction Unit cache array. Under ideal conditions 
(most of the time), the Instruction Unit will be able to prcfetch Il in time. However, when the 
Execution Unit requests !2, the block boundary is crossed and a miss occurs. Instead of suspend
ing everything in the Execution Unit's Pipeline, the Instruction Unit inserts internal instruction 
miss into the pipeline such that both IO and II can proceed while !2 is being fetched. For the In
struction Unit's Perspective, please refer to Table 2-2-1. 

time could be spent on something else, but also because it may make the design harder to under-

stand and thus harder to verify and modify. 

2.2.3. Instruction Unit Operation 

Figure 2-2-5 shows Execution Unit's view of how a miss in the Instruction Unit cache array 

is handled under ideal conditions. After the Execution Unit is fooled by the internal miss instruc-

tions duting cycles T2 and T3, the Instruction Unit tries to fetch !2 and prefetch instructions in 

the same block as 12 from the external cache during cycles T4 and T5. This is further illustrated 

in Table 2-2-1. Notice that in Figure 2-2-5 during Cycle T2 and T3, instruction !0 and ll are 

allowed to proceed. This is necessary to prevent deadlock since instructions !0 or II could be a 

Load or Store type instruction which would start accessing the external cache at tl1c end of their 
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Cycle Fetch Finite State Machine Prefetch Finite State Machine 

Fi!!ure 2-2-5 State & Actions State & Actions 

NORMAL: PREFETCH: 

TO Deliver 10 (06) Prefetch (00) 
Receive and write 11 (07) into cache 

NORMAL: PREFETCH: 

Tl Deliver 11 (07) Prefetch (01) 
Instruction j_OO)is not written _lli"ote !l 

NORMAL: PREFETCH: 

T2 Deliver "miss" opcode Prefetch is blocked by Fetch 

Fetch 12 (10) from external cache 

MEMPEND: (Note 2) WAITING: 

T3 Deliver "miss" opcode As soon as 12 is received, 

Receive and write 12 (10) (Note 3) _Qrefetch 12 (11) 

INSVALID: PREFETCH: 

T4 Deliver 12 (10) (Note 4) Prefetch (12) 
Receive and writes 13 (11) 

NORMAL: PREFETCH: 

T5 Deliver 12 (10) Prefetch (13) 
Receive and Write (12) 

Table 2-2-1 Fetch and Prefetch-Instruction Unit's Perspective 

Notice that prefetching does not cross block boundary. This is illustrated by Cycle TO in which 

the prefetcher has already "wrap" around and start prefctching instruction at word address 00 in

stead of instruction at word address 010 (octal). 
Notes: 

1. Assume instruction (00) is already in the cache - no need to write. 

2. Assume the external cache is not busy. 
Otherwise, it will go to MEM_BUSY and wait 

3. Assume the external cache can deliver the instruction in one cycle. 

Otherwise, it will stay in MEMPEND until it receives /2. 
4. 12 is not received until phi3 of Cycle T3. Therefore it cannot 

be delivered to the Execution Unit until Cycle T4. 
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Exec stage. If their already started cache access are not allowed to finish, the 1-Unit cannot start 

the fetch for 12 because the external cache in SPUR is not separated into data and instruction 

caches. A deadlock would have occured because the Execution Unit would wait for 12 but the 

Instruction Unit could not fetch 12 until the cache is free. 

Figure 2-2-5 and Table 2-2-1 show the ideal case in which the cache miss is handled in two 

cycles and the prefetch of 13 is successful. In practice, either 10 or II can block off the cache 
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access path and the Fetch machine must first go into MEMBUSY state during T3 and wait for 

cache to be free before starting the fetch of 12 and entering the MEMPEND state. Once in the 

MEMPEND state, the external cache may not be able to deliver the /2 within one cycle and the 

Fetch machine must stay there until/2 is received. In other words, the Instruction Unit may take 

more than two cycles to recover from the miss and more than two miss instructions must be 

inserted. 

The prefetching can be turned off by setting a bit in the Kernel Processor Status Word. In 

that case, the Prefetch Finite State machine will remain in the IDLE state and will not prefetch 

any instructions. Furthermore, the whole Instruction Unit can be disabled and none of the instruc

tions will be cached. If the Instruction Unit is disabled, the Prefetch Finite State machine will 

remain in the IDLE state and the Fetch Finite State machine will continuously cycle between 

NORMAL, MEM_PENDING (or MEM_BUSY), and INS_ VALID states. In other words, 

Instruction Unit disabled is just a special case in which every access to the Instruction Unit 

results in a miss. 

2.3. Execution Unit 

The Execution Unit executes the instructions delivered by the Instruction Unit. The Execu

tion Unit's datapath organization is discussed in Section 2.3.1. The Execution Unit's operation 

under normal and adverse conditions are discussed in Section 2.3.2 and Section 2.3.3, respec

tively. The implementation of the Execution Unit's datapath is described by Dave Lee [Lee86]. 

2.3.1. Execution Unit Datapath 

The Execution Unit datapath can be divided into two parts: the Lower Datapath and the 

Upper Datapath. The Lower Datapath performs all the register-to-register operations and can be 

further divided into an Operand Supplier and a Functional Unit. Here is a brief description of 

each block in the Lower Data path, from left to right as shown in Figure 2-3-1 (please refer to the 

naming conventions described in the beginning of Chapter 2, P.14): 
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Figure 2-3-1 The SPUR CPU Lower Data path 

The SPUR CPU Lower Datapath is 40 bits wide-the upper eight bits (39-32) are for tags. BUS
BUFA & B serves as operands buffers. Everything to its left can be considered as the Operand 
Supplier and everything to its right as the Functional Unit. BusA, busB, busA2, and busB2 route 
operands from the Operand Supplier to the Functional Unit. The result of the computation is 
routed back to the Operand Supplier via busD. BusL connects the Lower Datapath to the data 
pads and busS connects the Lower Datapath to the Upper Datapath and the Memory Address 
Latches-Mals. 

REGISTER FILE is a 138-word, 40-bit, dual-port read, but single-port write register file. 

It is organized into ten global registers and eight overlapping register windows (see Appen-

dix A). Register RO is hardwired to zero. 

Dst2<39:0> is the second temporary register for the 4-stage pipeline. The result of every 

instruction that requires writing to the register file is saved here at the end of the Mcm stage. 

Dstl<39:0> is the first temporary register for the 4-stage pipeline. The result of every 

instruction that requires writing to the register f1le (except Load) is saved here at the end of 

the Exec stage. 
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IF _LOGIC detects data hazards and instructs Dstl or Dst2 or both to override the REGIS-

TER FILE and supply the operand or operands. 

Mbr<39:0> is the memory buffer register. It stores the data to be written to external 

memory. 

MUXs route immediate constants into the datapath as operands. 

BUSBUFA & B<39:0> latch in busA and busB, respectively during $1 and drive busA2 

and busB2 during $2. They serve as buffers between the Operand Supplier (items listed 

above) and the Functional Unit (items listed below). 

EXT_ INS<39:0> is the byte extractor and inserter. The SPUR CPU uses this together with 

the SHIFTER to replace the more traditional 32-bit barrel shifter. 

SlllFTER<31:0> is a maximum of 3-bit left shift and 1-bit arithmetic and logic right shift. 

~ ~ T T ~ r'2 T T T T T T 2 2 3 

bus I T r c c SnExt B I E M F 

<27:0:> r a <8: A u f ~ ~ 
u K 

c s I X e p 

a 1 0:> D s e e p p 
w w N m u 

p 1 D 2 t c s I 

bus PC p p p l. p l. E p 1. p h. c h. p h. p p 

<31:2> '-t 
w w 
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r 4 dL .1!.. r 1!. 1.l J.L 1L 3rl.~ .11 1L 1L4- 31 4-- ........ 

<31:30:> <31:30:> 
trapType<7:4> 

busS<31:2> 

To Lower Datapath & Mals 

Figure 2-3-2 The SPUR CPU Upper Datapath 

The SPUR CPU Upper Datapath is 30 bits wide because its main function is to provide instruc
tion address whose two LSBs are always ignored by the word addressing SPUR memory system. 
Bus!, which contains the instruction, provides the immediate offsets for all the Call, Jump, and 
Compare-Branch type instructions. BusPC contains the instruction address to be sent to the In
struction Unit. BusS, as explained before, connects the Lower Datapath, the Upper Datapath, and 
the Memory Address Latches-Mals. 



Chapter 2: The SPUR CPU Microarchitecture 32 

ALU<31:0> performs A+ B, A- B, A XOR B, A AND B, and A ORB functions. 

BRANCH COND evaluates the branch conditions for all the Compare-Branch type instruc-

tions. 

BUSSTOD<31:0> is a buffer between the Upper Datapath and the Lower Datapath. The 

Upper Datapath deposits values into it via busS during <j>2 and it is one of the potential busD 

drivers during <!14. 

The Upper Datapath, where all the special registers reside, performs all the program control 

related operations. Below is a brief description of each block in the Upper Datapath, from left to 

Stage/Phase Actions 

Ifet Stage: 
Phase 3 busl <- 1-Unit[busPCl· 

Exec Stage: 
busA <- REG_FILE[Rsl], busB <-(not REG_FILE[Rs2]); 

Phase 1 
BUSBUFA <- busA, 
if (busl<14>=0) BUSBUFB <-(not busB) 
else BUSBUFB <-Sign Extend (busl<l3:0>); 

busA2 <- BUSBUFA, busB2 <- BUSBUFB; 

Phase 2 Port A of (ALU, SHIFIER, or EXT_INS) <- busA2, 

Port B of (ALU, SHIFfER, or EXT INS)<- busB2; 

Phase4 
busD <-Output Port of (ALU, SHIFfER, or EXT_INS); 

Dstl <- busD · 

Mem Stage: 

Phase 1 
busPC <- INC ; 
IfetPC <- busPC, I-Unit<- busPC; 

Phase 3 Dst2 <- Dstl ; 

Wr Stage: 

Phase 3 
busA <- Dstl, busB <-(not Dst2); 
REG FILE[rd] <- (busA & (not busB)); (Note 1) 

Table 2-3-1 Register-Register Operation 

Load, Return, Read Special, and Write Special type instructions are special cases of Register

Register. Their operations are shown in Appendix A. 
Note: 

1. To write a register, the true and compliment values are put onto 

busA and busB respectively. 
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right as shown in Figure 2-3-2: 

Cwp<4:2> is the Current window pointer that points to the register window that is currently 

in use. 

Swp<31:3> is the saved window pointer that points to the memory location where the last 

overflow register window (pointed to by Swp<9:7>) is saved. 

TrapPC<31:2> holds the word address of the trap vector. Whenever a trap occurs, the 

hardware loads the upper 30 bits of the byte address (hex) OOOOlOTO into TrapPC<31:2> 

where Tis a function of the trap type. 

CallPC<31 :2> holds the target address for Can and Jump type instructions. This address is 

formed by concatenating the 2 MSBs of ExecPC and a 28-bit value provided by the instruc-

tion. 

ADDER<31:2> calculates the target address for all the Compare-Branch type instructions 

while the ALU is doing the comparison. The 8-bit offset is first sign extended before adding 

Stage/Phase Actions 
Ifet Stage: 
Phase 3 bus! <-1-Unit[busPCl· 
Exec Stage: 

busA <- REG_FILE[Rsl], busB <-(not REG_FILE[Rs2]); 
Phase 1 Mbr <-(not busB), BUSBUFA <- busA, 

BUSBUFB <-Sign Extend (busl<24:20> cat busl<8:0>); 

Phase 2 
busA2 <- BUSBUFA, busB2 <- BUSBUFB; 
Port A of ALU <- busA2, Port B of ALU <- busB2; 

Phase 4 busS<- ALU ·Address Pads<- busS 
Mem Stage: 

busPC <-INC, busL <- Mbr; 
Phase I lfetPC <- busPC, 1-Unit <- busPC, 

Data Pads<- busL; 

Table 2-3-2 Store Operation 
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to the ExecPC. 

BUSS2PC<31:2> receives values from the Lower Datapath via busS during <l>4 and drives 

bus! during cpl for Jump_Register or Return type instructions. 

IfetPC<31:2> normally holds the addresses of the instructions currently in the !Jet stage. If 

the instruction currently in the !Jet stage is not in the Instruction Unit, IfetPC must hold 

onto the next instruction's address until the miss is serviced. 

INC<31:2> is the incrementor. It evaluates the next instruction's address for sequential 

operation. 

ExecPC<31:2> and MemPC<31:2> hold the addresses of the instructions currently in the 

Exec and Mem stages of the pipeline respectively. This chain of PCs is needed for trap 

Sta2e/Phase Actions 

Uet Stage: 
Phase 3 busi <- I-Unit[h_usPC]· 

Exec Stage: 
busA <- REG_FILE[Rsl], busB <- (not REG_FILE[Rs2]) ; 

BUSBUFA <- busA, 

Phase 1 
if ((Cond = eq_tc) or (Cond = neq_tc)) (Note 1) 
BUSBUFB<39:32> <- busi<14:9> 
else if (busi<l4> = 0) BUSBUFB <-Zero Extend (busi<l3:9>) 
else BUSBUFB <- busB ; 

busA2 <- BUSBUFA, busB2 <- BUSBUFB ; 
Phase2 Port A of (ALU, BRANCH_COND) <- busA2, 

Port B of_(ALU BRANCH CONDl <- busB2; 

Mem Stage: 
if (BRANCH_COND =valid) 

Phase 1 
busPC <- ExecPC +Sign Extend (busl<8:0>) 
else busPC <- INC ; 
IfetPC <- busPC, 1-Unit <- busPC; 

Table 2-3-3 Compare-Branch Operation 

Notes: 
1. Cond is the conditional field of the instruction (Figure 2-1-1). eq tc and 

neq tc are two possible branch conditions (see Appendix A). -
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handling (see Section 2.3.3). 

FpuPC<31:2> holds the address of the last FPU (coprocessor) instruction that was send to 

the FPU. This is needed for parallel operation between the FPU and CPU [HaK86]. 

Upsw<31:2> is the user processor status word (see Appendix A). 

Kpsw<31:2> is the kernel processor status word (see Appendix A). 

In order to get a better idea on how each block in the datapaths is being used during each of 

the four phases at different pipeline stages, you must understand the operation of the Execution 

Unit. The operations of the Execution Unit under normal conditions and adverse conditions are 

discussed in Section 2.3.2 and Section 2.3.3, respectively. 

2.3.2. Execution Unit Operation-Normal Conditions 

Staee/Phase Actions 

Ifet Stage: 

Phase 3 
busl <- 1-Unit[busPC] ; 
Call PC<- ExecPC<31 :30> cat busk27:0> · 

Exec Stage: 
if (opcode =CALL) Cwp <- Cwp + 1, 

Phase 2 busS <- ExecPC ; 
BUSSTOD <-busS ; 

Phase4 
busD <- BUSSTOD ; 
Dstl <- busD · 

Mem Stage: 

Phase 1 
busPC <- CallPC ; 
lfetPC <- busPC, 1-Unit <- busPC; 

Phase 3 Dst2 <- Dst1 · 

Wr Stage: 
if (opcode = CALL) { 

Phase 3 
Update Backup Copy of Cwp, 
busA <- Dstl, busB <- (not Dst2) ; 

REG Fll..E[rd] <- (busA & (not busB))} ; 

Table 2-3-4 Call-Jump Operation 
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In Table 2-3-1 through Table 2-3-4, the four generic instruction types-Register-Register, 

Store, Compare-Branch, and Call-Jump-are used to show the Execution Unit operation under 

normal conditions. Similar tables for the rest of the instruction types are presented in Appendix 

A. In these tables, different phases are separated by a single horizontal line and different pipeline 

stages are separated by the double horizontal lines. Within a phase, all operations are in parallel 

unless they are separated by semicolon. 

The general timing of the SPUR CPU is summarized in Figure 2-3-2. The SPUR CPU uses 

a four-phase non-overlap clock [JBH87]. The duration of each phase is 18ns and the non-overlap 

time is 7ns. The critical paths within each phase must be shorter than the phase duration (18ns) 

because because all latches in the SPUR CPU latch in data during the falling clock edge. Figure 

2-3-2 shows that the critical paths for the register file, the functional unit, the instruction unit, and 

the external cache all have at least 4ns safety margin. This is probably why most of the CPUs we 

phi 1 (18) phi 2 (18) phi 3 (18) phi 4 (18) c 
~(6) od Reg. Write I (12) ~(6) od 
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(6) (12) ALUDrives (14) Sum onto bu.~S 
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r"m'l C.cho Criti"l Timing : 

: 
I 

Cache Access (75) Address (10) Om 
I 

""' 25 .. 50n. 75 .. lOOn< 

Figure 2-3-3 The SPUR CPU Timing 

Each block represents a time interval and the number inside the parentheses is the duration of that 
time interval in ns. The bit lines for both the register file and the instruction cache array are 
prechargcd to high before read and write. For the register file, they arc prechargcd during <j>2 and 
<j>4. For the instruction cache, they arc precharged during ¢I and <j>3. Notice that almost all actions 
arc triggered by the the clock. There is no self lime circuit in the SPUR CPU. 
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received can run at SOns cycle time. Figure 2-3-2 also illustrates one big drawback of multi-phase 

clocking-there is a lot of dead time (horizontal white space between the boxes). Notice that not 

only do we waste time during the non-overlap time, we also waste the time at the end of each 

phase due to the requirement for a safety margin. 

2.3.3. Execution Unit Operation-Adverse Conditions 

Trap Request Handling. A trap request is caused by unusual conditions that arise at run 

time. Trap request handling refers to the handling of these unusual run time conditions. The 

detection of these conditions will be discussed in next section. This section explains how the 

SPUR CPU handles trap requests. A trap request is handled in three steps: (1) branch to a loca-

tion defined by the trap type, (2) open a new register window, and (3) save the addresses of the 

instructions that are affected. As illustrated in Figure 2-3-4, all these can be accomplished by the 

IO I Ifet I Ex I Mem I Wr I trap request 

nl Ifet I Ex ,t:i==] "Killed" 

121 Ifet I Ex IMeml-1 "Killed" 

Figure 2-3-4 Pipeline During Trap 

In this example, trap request, which is asserted in the Mem stage of I1, can only due to either ll 

or some external asynchronous unusual condition that happens to kill/1. Obviously, /1' s address 

must be saved but /2' s address must also be saved because /0 may be a delay branch. Due to the 

assertion of trap request, instructions 13 and 14' s positions in the pipeline are replaced by two 

internally generated instructions: trap_call, and readyc. Trap_call branches to the trap location, 

opens a new window, and saves Il' s address in R 10 of the new window. Read PC saves 12 's ad-

dress in R16 of the new window. -
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internal instruction sequence trap_call followed by rd_yc. Internal instructions are generated by 

the Instruction Unit (see Figure 2-2-1). As far as the Execution Unit is concerned, rd_yc is the 

same as "rd_special rl6, ExecPC" and the only difference between trap _call and the regular call 

is that TrapPC is used as the target address instead of CallPC (Figure 2-3-2). Douglas Johnson 

has evaluated the effectiveness of the SPUR CPU trap architecture [Joh88]. 

Pipeline Suspension. In theory, the SPUR CPU pipeline can be suspended for an infinite 

number of cycles as illustrated in Figure 2-3-5. Notice that every instruction in the pipeline is 

suspended unlike the situation shown in Figure 2-2-5, in which only the issue of new instruction 

is suspended. Therefore, we refer to the pipeline suspension in Figure 2-3-5 as Global Pipeline 

Suspension and the situation shown earlier in Figure 2-2-5 Partial Pipeline Suspension. Global 

Pipeline Suspension is used to handle external cache miss and coprocessor busy conditions. Par-

tial Pipeline Suspension is used to handle internal instruction cache miss because as explained in 

Section 2.2.3-Global Pipeline Suspension cannot be used due to potential deadlock condition. 

r Global Pi~line i Suspension 

ml Ifet I Ex IMemiMeml ((_ IMeml Wr 

I I 
nl Ifet I Ex I Ex ((_ Ex IMeml ? 

I I 
121 Ifet I lfet ((_ Ifet I Ex ? 

Bl Ifet I ? 

Figure 2-3-5 Global Pipeline Suspension 

The SPUR CPU pipeline can be suspended for two reasons: coprocessor (FPU) busy, or cache 

miss. The first reason is out of the scope of this chapter and is explained in [HaK86]. The second 

reason can be explained using this figure by assuming 10 as a Load or Store type instruction. If 

10 causes an external cache miss, then the SPUR CPU pipeline will be suspended until the data is 

valid. 
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2.4. The SPUR CPU Controller 

The major design theme behind the SPUR CPU controller is decentralization. As described 

in Section 2.2 above, the Instruction Unit and Execution Unit have their own controllers. Further-

more, using internal instructions miss, trap_ call, and read _yc, the Instruction Unit simplifies the 

control of the Execution Unit by reducing complex control functions such as instruction miss and 

trap handling into simple instruction sequences that can be executed uniformly by the Execution 

Unit's four-stage pipeline. Within the Execution Unit, the control responsibility is further 

delegated to three independent parts: 

Priori tv Trap Type Vector (Hex) Side Effects Description 
0 (highest) RESET (0) 1000 kpei power-on initiation 

1 ERROR(!) 1010 kpei bus fault or hardware error 

2 
WIN_OV (2) 1020 window overflow 
WIN UN (3) 1030 window underflow 

3 FAU IN (4) 1040 k page fault or interrupt 
4 FPU EX (5) 1050 FPU exception 

Run time software errors: 

5 RUN_ER(6) 1060 
illegal opcode 
kernel mode violation 
LISP pointer type violation 
Run time tag violation: 

6 TAG_TR (7) 1070 generation trap 
LISP data type violation 

7 (lowest) IN OV (8) 1080 Integer overlow 
7 (lowest) CMP TR(9) 1090 k cmp_ trap instruction 

Table 2-4-1 The SPUR CPU Trap Types 
In the table above, illegal opcode includes all the FPU opcodes whenever the the FPU is disabled. 
LISP pointer type violation occurs when tag fails the "CONS or NIL" test. LISP data type viola
tion occurs when the tags fail the "Both operands are FIXNUM"' or "'Both operands are FIXNUM 
or CHAR"' test. 

Side Effects: 
k - changes to kernel mode 
p - changes to physical mode 

e- turn off ERROR detection 
i- disable the Instruction Unit 
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Cache Controller Interface 

This module communicates with the Cache Controller and is out of the scope of this 

chapter. The cache controller interface is described in [WEG87]. 

Trap Logic 

This module detects the unusual conditions (fable 2-4-1), prioritizes them, and determines 

which trap type to take. The Trap Logic is discussed in Section 2.4.1. 

Control Unit 

This module controls the Execution Unit' Upper Datapath and Lower Datapath. The Con

trol Unit is discussed in Section 2.4.2. 

2.4.1. Trap Logic 

The Trap Logic block must be able to detect thirteen different trap conditions (refer to 

column "Description" of Table 2-4-1 ). Once these conditions are detected, they are grouped into 

ten different trap types that are prioritized into eight priority levels. Each trap type has its own 4-

bit trap number which is fed into TrapPC<7:4> (Figure 2-2-2) to form an unique trap vector. The 

SPUR CPU can be programmed to selectively ignore most of these unusual conditions by writing 

to the Upsw and the Kpsw (see Appendix A). In fact, whenever the CPU takes a trap, the 

hardware disables any further traps by turning off the AllEn bit in the Kpsw. 

Figure 2-4-1 shows that these enabling, detection, prioritizing, and grouping functions are 

implement by five logic blocks separated by latches. Trap Enable and Trap Type are the only 

logic blocks implemented by PLAs. Trap Enable updates the on/off status of the various traps 

according to the contents of Kpsw and Upsw. Trap Type groups all the detected unusual condi

tions into trap types and decides which trap type to take according to the priority shown in Table 

2-4-1. The three Trap Request blocks are implemented in random logic and together they gen

erate the trap request (assert the signal trap Request) whenever one or more unusual conditions are 

detected. Pre-Trap Request docs the initial set up, Trap Request (AND) and Trap Request (OR) 

are analogous to the AND and OR plane of a PLA. The reasons why they are not combined into 
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trapRequest 

Figure 2-4-1 Trap Logic Block Diagram 

The pipeline diagram shows how the Trap Logic operates at different time points with respect to 

any instruction that may trap. Each pipe stage (clock cycle) consists of four phases and the falling 

clock edge of these phases are used by the latches to latch in the intermediate results. This is a 

simplified view because in the real hardware, the clock phases are sometimes "ANDed" with 

some other control signals before being used by these latches as trigger signals. Out of the five 

combinational blocks, only the two shaded blocks are implemented by PLA's. Others are custom 

logic due to timing or area constraints or both. 
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one logic block are the same as the reasons for not combining the Output and State logic blocks 

in Figure 2-2-3-it makes the design easier to understand and reduces the input-output latency. 

2.4.2. Control Unit 

The Execution Unit's Control Unit (Figure 2-4-2) is divided into two parts: the Master Con-

trol and the Local Decoding Logic. Master Control decodes and buffers the opcode into high 

level control signals. The Local Decoding Logic then decodes these high level control signals 

into low level control signals that control the datapath. The coprocessor interface is part of the 

Master Control but will not be discused here. In a simplified view, the Master Control consists of 

two parts: 
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Low Level Control Signals 

Local Decoding Logic 

OPOJDE I ve ontro tgn KghLe !C !S' a!s 

Master Control 

HOpcode~ 
PLA 40 Exec Mem Wr 

Ctr r- Ctr r- Ctr 

Y:Fas',p 
Logic r Buf Buf Buf 

3 50 ~ ' 
r-------~Lo~cal~D,ecodinrg~Lo-g~i_c ________ _, 

Register Control Func. Unit Control 

Low Level Control Signals 
(fer l.<!wc::- Dataps.th) 

Figure 2-4-2 The Control Unit Block Diagram 

The Control Unit can be divided into two parts: Master Control and Local Decoding Logic. In the 
layout, the Master Control resides in the center of the chip while the Local Decoding Logic 
blocks are scattered along the Upper Datapath and Lower Datapath close to where the low level 
control signals are needed. 

Opcode PLA and Fast Logic 

These modules decode the opcode into high level control signals. 

Sequencer 
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11lis module sequences the high level signals. Exec-Ctr-Buf, Mem-Ctr-Buf, and Wr-Ctr-

Buf, which contain latches and simple logic, together combine and buffer the high level sig-

nals into three sets that are responsible for the control of the pipeline stages: Exec, Mem , 

and Wr, respectively. 

There arc only three high level signals for the !Jet stage of the pipeline. However, these 

must be provided by fast logic because the opcodc arrives at the Control Unit dUiing <!>3 of the !Jet 

stage and !l1csc three high level control signals must be valid during the next clock phase (<1>4) of 

the same stage. TI1e Exec stage is <he busiest, which is reflected by the large number of high level 

control signals (50) needed to control it. The M em stage is a null stage except for memory access 
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instructions and requires only seven high level control signals. Finally, the Wr stage operation is 

not that much different for different instructions and it requires only eight high level control sig-

nals. 

The local decoding logic is organized into four blocks, each of which is specialized in con-

trolling one local area of the datapath. The four blocks, as shown earlier in Figure 2-4-2, are: 

Register Control 

This block controls the register file and temporary registers: Dstl, Dst2, and Mbr. 

Functional Unit Control 

This block controls the functional units: Byte Extractor Inserter, the Shifter, and the ALU. 

High Level Control Signals 

• 

Simple Combinational Logic 

Figure 2-4-3 Local Decoding Logic 

The Simple Combinational Logic blocks are located close to the datapath where the low level 

control signals are needed. Each of these logic block generally consists of single level of random 

logic and it also serves as a buffer between the high level and low level control signals. 
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Special Control 

This block controls the special registers: Cwp, Swp, Ins, Kpsw, and Upsw. 

PC Control 

This block controls the program counter generation logic: ADDER, INC, and the various 

PCs. 

These four blocks are implemented in the generic structure shown in Figure 2-4-3 in which 

the high level control signals are decoded by the Simple Combinational Logic into low level con-

trol signals. There are never more than two levels of logic in the Simple Combinational Logic 

and its outputs are then either used directly by the datapath or "ANDed" with one of the four 

phases before they are used. 

2.4.3. Controller Design Insights 

Product Logic Implementation 

Parts Inputs Outputs Terms Gates Effort (man-month) 

Trap Logic: 
Trap Enable 23 12 14 - 0.25 

Trap Type 11 9 11 - 0.25 

Pre Trap Req. 14 6 - 24 0.50 

Trap Req. (AND) 24 16 - 18 0.50 

Trap Req. (OR) 16 10 - 19 0.50 

Control Unit: 
Opcode PLA 8 40 68 - 0.50 

Fast Logic 18 14 16 - 0.50 

Reg_ Or 10 9 - 26 0.50 

Func Ctr 19 13 - 26 0.50 

Pc Ctr 17 14 - 41 0.50 

Spec Ctr 27 19 - 23 0.50 

Total - - 109 177 5.00 

Table 2-4-2 The Execution Unit Controller Design Metrics 
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The implementation metrics of the Trap Logic and the Control Unit are summarized in 

Table 2-4-2. The implementation of the SPUR CPU Controller can be considered as an experi

ment which shows that by using internal instructions (Example: trap _cal[) and some satellite 

logic blocks (Example: Trap Logic), the main control engine that controls the datapath (Example: 

Control Unit) can be reduced to a simple N-Stage sequential logic structure (Figure 2-4-2) where 

N is the pipeline length of the machine (Example: N=4 for the SPUR CPU). The term "N-Stage 

sequential" is used because the outputs depend on the inputs of the previous N cycles only. There 

is no feedback in this structure and therefore it is not a state machine. This N-Stage sequential 

logic block has well defined inputs-the instruction set and internal instructions (mainly the 

opcode)-and outputs-data path control signals. 

While reducing control functions into internal instruction sequences and designing the satel

lite logic blocks may still require some human ingenuity, CAD designers should be able to pro

vide CAD tools that can generate the N-Stage sequential logic automatically. Ideally, a VLSI 

designer would like to have a set of CAD tools that can partition this N-Stage sequential logic 

into Master Control and Local Decoding Logic, generate them automatically, and route the con

nections between the two. An optimum solution is hard to define here but as most VLSI 

designers can tell you, the optimum solution is not necessary as long as the Master Control, the 

Local Decoding Logic, and the routing between them meet the area, timing, and power con

straints. 

One final point is that reducing complex control functions by internal instructions gives 

similar benefits to those found in microprogramming. However, in microprogramming, every 

instruction (no matter how simple) is turned into a sequence of microinstructions. On the other 

hand, in the internal instruction approach, only complex control functions are turned into 

sequences of internal instructions. Tncse internal instruction sequence can be quite short because 

only the most Ciitical steps need to be implemented. The rest of the steps can easily be coded as 

software routine using the regular RISC-style instructions that are similar to traditional microin

stiuctions. In other words, unlike microprograming, internal instructions allows RISC-style 
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machine to handle complex situation without introducing an overhead on all other instructions. 

Furthermore, internal instructions will not greatly increase the complexity of the instruction 

decoding unit because they are similar (if not the same) to those already exist in the RISC-style 

instruction set For example, in the SPUR CPU, internal instruction trap_ call is similar to the reg

ular instruction call and rd _pc is the same as regular instruction rd _special ExecPC. 
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Chapter 3 

THE SPUR CPU EXPERIENCE 

The biggest performance enhancement is achieved when going 

from a non-working system to a working system. 

John Ousterhout, 1988 
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In this chapter, I will talk about the SPUR CPU experience. The lessons I learned from this 

experience is the foundation of my view on the systematic approach to microarchitectural design 

(Chapter 5) and the future trends (Chapter 6). 

3.1. From Chip to System 

SPUR's mission is not only to build a VLSI chip but to build a system around three custom 

VLSI chips. As far as the CPU is concerned, the implications of this ambitious mission are: 

• The CPU specifications do not come from expert VLSI designers whose goal is to build the 

fastest and the most innovative CPU. The specifications come from the system goals. 

• We must increase our chance of having a working chip by using as much proven "techno!-

ogy" as possible. 

• Instead of experimenting with architectural ideas, we must implement certain features that 
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building block for the SPUR system. 

The first implication is partly responsible for our relatively slow cycle time of lOOns. We 

did not set the SPUR CPU cycle time goal any faster than 1 OOns because the SPUR memory sys-

tern [WEG87] and the SPUR bus [Gib87] cannot run any faster. In the following sections, I will 

explain the other implications in more details. 

3.1.1. The Russian Approach 

The phase "use proven technology" means we tried to build the CPU based on previous 

experience. I called this the "Russian approach" because the Soviet space program is a good 

example of not feeling ashamed of using old but proven technology. Since our project goal is to 

build a system based on the SPUR CPU chip, we decided to increase our chances of having a 

worldng chip by using as many proven ideas as possible from the two previous generations 

Berkeley RISC processors: RISC I [Pat82] and RISC II [Kat83], and SOAR [Ung84b]. As men-

tioned in Chapter 2, the SPUR CPU differs in these five aspects: 

Internal Instruction Cache 

The SPUR CPU has an on-chip 512-byte direct-mapped instruction cache organized into 

~Suspndto 
~ LWr access data 

~ lExecl Wr I 
llfet JExecll 

RISCIT pipeline + Mem stage => 

Load 
l Ifet !ExeclMem I Wr I 

llfet IExeciMeml Wr J 

llfet IExeciMemll 
SPUR CPU pipeline 

Figure 3-3-1 RISC ll Pipeline vs. SPUR CPU Pipeline 

Both pipelines consist of instruction fetch (Ifet), execution (Exec), and register write \Wr). The 

SPUR CPU internal instruction cache allows Ifet in parallel with data access (Mem). Data 

conflicts in both pipelines are resolved by internal forwarding and branch conflicts are resolved 

by a single cycle delay branch. The SPUR CPU, however, requires two internal forwarding paths 

(RISC II and SOAR only require one) due to the extra pipe stage. 
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sixteen blocks with eight instructions per block. 

Four-Stage Pipeline 

RISC II and SOAR use the same three-stage pipeline that is shown in Figure 3-1-1. The 

internal instruction cache essentially provides the SPUR CPU an extra port to memory and 

enables us to add a memory access stage (Mem) to the RISC II pipeline. This results in the 

SPUR CPU 4-stage pipeline that does not have to be suspended for LOAD. 

Support for LISP 

The SPUR CPU supports LISP by three types of hardware tag checking [Tay86]: data type 

checking for general operations, pointer type checking for list operations, and generation 

checking for garbage collection [Ung84a] [ZHH88]. 

Cache Controller Interface 

In order to support multiprocessing, the SPUR CPU must communicate constantly with the 

Cache Controller chip via a cache controller interface [WEG87]. 

Parallel Coprocessor (FPU) Interface 

The SPUR CPU supports a coprocessor interface which allows the FPU to operate in 

Feature i 
Extra Pipeline On Chip LISP Floating Pt. 
Stae:e (Mem) 1-Cache Support Support 

SPUR CPU vs. 
1.12 1.30 1.73 30.0 

SPUR CPU - Feature i 
Performance 

12% 30% 73% 2900% 
Improvement(%) 

Table 3-1-1 Contributions to Performance 

The performance improvement due to each feature (Row 2) is estimated by comparing the per
formance of the SPUR CPU against the performance of an imaginary, stripped down, SPUR CPU 

(Row 1 ). The details of this analysis can be found in Chapter 4. All numbers are only approxima

tions because they are sensitive to the frequencies of different instructions and the quality of the 

compiler. 
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parallel with the CPU [HaK86]. 

These features' contributions to performance are evaluated in Chapter 4. The results are 

summarized here in Table 3-1-1. The stripped down CPU for Column 1 uses the RISC II 3-stage 

pipeline. The stripped down CPU for Column 2 does not have an on-chip instruction cache. Since 

it is difficult to implement the SPUR 4-stage pipeline without the instruction cache, this stripped 

down CPU also uses the RISC II 3-stage pipeline. The stripped down CPU for Column 3 does not 

support hardware tag checldng. Similarly, the stripped down CPU for Column 5 does not support 

the FPU interface. For example in Column 3, we estimate the SPUR CPU to run LISP programs 

1.73 times (73%) faster than a similar CPU without hardware tag checldng. The performance 

improvement due to the multiprocessing support features is not included because we believe mul-

tiprocessing performance depends more on the shared bus utilization and cache performance 

[Kat85] [EgK88] than the features in the CPU. 

3.1.2. SPUR CPU System Features 

reg_ file bu$AB ext _ 
_ int ins shifter 

Figure 3-1-2 Impact of the System Features-Graphical 

This illustrates qualitatively which portion of which module is affected by the system features. 
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The SPUR CPU system features are essential to the SPUR system's functionality and per-

formance. The SPUR CPU system features come from three sources [Tay85]: 

Multiprocessing and Cache Consistency Support 

This requires seven load instructions, three store instructions, and a cache controller inter-

face. Although all load or store instructions are alike internally, the CPU must request dif-

ferent cache operations [KEW85] [WEG87] via the cache controller interface. 

LISP Support 

This requires four special load instructions, one read tag instruction, one write tag instruc-

tion, and eight extra tag bits in the datapath. This tag architecture also adds six branch and 

five trap conditions. 

Multiprocessine LISP Floatin_e Point Total 

Control PLA 
6/54 11% 4/54 7% 3/54 6% 24% 

Outputs 

Control PLA 
2/84 2% 2.2/84 3% 4/84 5% 10% 

Products 

Chip Area 
2.2/57 4% 4/57 7% 6/57 10% 21% 

(mm xmm) 

Transistors 
0.8/115 1% 9.9/115 9% 0.4/115 0% 10% 

(x 1000) 

Number of 
15/156 10% 8/156 5% 37/156 24% 39% 

Signal Pins 

Table 3-1-2 Impact of the System Features-Quantitative 

The first row shows that the master control PLA has 54 outputs. Six of these 54 outputs (11%) 

are used to control the multiprocessing supporting features, four outputs (7%) are used to control 

the LISP supporting features, and three outputs (6%) are used to control the FPU supporting 

features. The total is that 24% of the master control PLA outputs are used to control the system 

features. Similarly, the second, third, fourth, and fifth row show that the system features are 

responsible for 10% of the master control PLA product tenns, consume 21% of the total active 

area, 10% of the total transistors, and 39% of the total signal pins. 
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Floating Point Support 

This requires eight load instructions, four store instructions, and a coprocessor interface. 

The coprocessor FPU also adds two branch conditions and one trap condition. 

The end results are 19 load instructions, seven store instructions, and a 40-bit non-standard 

(not 32-bit) datapath. Furthermore, the CPU must be able to handle 20 branch conditions, nine 

trap conditions, and support two non-trivial off-chip interfaces. The impact of these features on 

resources are evaluated quantitatively in Chapter 4. The results are illustrated graphically in Fig-

ure 3-1-2 and summarized quantitatively in Table 3-1-2. The complexity of these features is not 

additive, it is multiplicative! These features must be simulated at the behavioral level to ensure 

they are implemented correctly. Since the complexity of these features is multiplicative, their 

simulation effort is also multiplicative. 

3.1.3. Simulation Strategy 

Verified by 
test vectors 

Verified ,by 
CPU diagnostics 

CPU Behavioral Model 

r;:J 
~· .. 

Figure 3-1-3 Behavioral Simulation Strategy 

. . . 

The behavioral model of the SPUR system was built from bottom up. The lowest level modules, 

for example the ALU, were first modeled and a set of test vectors was written to verify its func

tionality. Once these lowest level modules were verified, they were grouped together to form 

higher level composite modules following the hardware's hierarchical organization. This "verify 

and merge" process was repeated until we had the composite module of the SPUR multiprocessor 

workstation. 
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At the behavioral level, the complete SPUR system is described in the ISP' hardware 

description language [KWG87]. As shown in Figure 3-1-3, behavioral simulation is divided into 

two categories: chip simulation and system simulation. The SPUR CPU behavioral model, which 

is discussed in more details in Section 3.2, is not only used for chip level simulation but also used 

as a building block for the processor board behavioral model for system level simulation. This is 

necessary because not only do we need to verify each individual chip, we also need to verify the 

interactions among the chips on the processor board and eventually the interactions among pro-

cessor boards in the multiprocessor. If our mission was just to build a CPU chip-the missions of 

RISC I, RISC II, and SOAR-the chip simulation would have been sufficient Since our mission is 

to build a system, however, we must also complete the system simulation. After the behavioral 

simulation is completed, the behavioral test vectors for the lowest level modules are converted to 

switch level vectors to simulate the corresponding layout modules. The layout modules are then 

merged to form the layout of the CPU which is verified by the same diagnostic programs used for 

behavioral simulation. 

Table 3-1-3 summarizes the switch level simulation we performed. If we just wanted to 

prove that we knew how to build a CPU chip, the first column is probably all the switch simula-

General Cache Controller Tags& FPU Bootstrap 
Total 

CPU Interface Traps Interface Pro2rams 

Cycles of 13,113 13,875 8,675 1,543 18,310 55,516 
Diagnostics (24%) (25%) (16%) (3%) (33%) (100%) 

Man-Month 0.5 !.0 0.5 0.5 !.0 3.5 

of Effort (14%) (29%) (14%) (14%) (29%) (100%) 

Table 3-1-3 Switch Level Simulation Summary 

The first column verifies the basic function of the CPU. 111c next three columns verify the utility 
features. Boot programs arc simple bootstrap routines that are used to bootstrap the SPUR pro
cessor board. 
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tion we would have needed. Columns 2 through 5, which constitute 76% of the cycles and 86% 

of the effort, represent the extra simulation we have to do in order to build a chip to be used in a 

system. This seems to indicate that it is three to six times the effort to build a system like SPUR 

than just a chip like RISC II and SOAR. Despite the large amount of effort we spent on simula-

tion, simulation is only the tip of an iceberg-the rest of the iceberg is the design process dis-

cussed in the following section. 

3.2. The SPUR CPU Design Process 

Testing 
R=l"' 

Figure 3-2-1 The SPUR CPU Design Process 

In this figure, rectangular boxes represent steps in the design process while hexagonal boxes 
represent products of the design steps. This is a simplified view because we do not show all the 
interactions between different steps that make iterations necessary. The behavioral description 
and the layout arc the two most important products from the microarchitecture design and imple
mentation steps respectively. 
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A simplified view of the SPUR CPU design process is shown in Figure 3-2-1. The major 

steps are: Specification, Macroarchitectural Design, Microarchitectural Design, and Implementa

tion. 

Specification 

We studied multiprocessor issues and the tradeoffs between different multiprocessor 

configurations and selected the shared bus configuration (Figure 1-1-1(a)) to fulfill our ini

tial performance goal. Each SPUR processor node was then partitioned into a large cache 

memory and three custom VLSI chips: CPU, CC, and the FPU (Figure 1-1-1(b)). This 

Specification step created a textual soecification of the requirements for the SPUR CPU 

chip. 

Macroarchitecture Design 

We translated the textual specification into the instruction set, interfaces specifications, and 

algorithms for the Cache Controller, the Floating Point Unit, and the CPU chips. In order to 

specify each chip in more detail, we further divided each chip into modules which I called 

the macro-modules. The Instruction Unit and the Execution Unit are examples of macro

modules in the SPUR CPU. As far as the CPU is concerned, this step created a machine 

readable architectural description which enabled us to perform instruction level simulation 

to evaluate the effectiveness and verify the correctness of this macro architecture. 

Microarchitecture Design 

The microarchitect studied the interactions among the macro-modules and described the 

interactions in an behavioral description of the SPUR CPU. In describing the SPUR CPU 

behavior, the microarchitect also expanded the macro-modules into smaller modules which 

I call micro-modules and produced a block level design and a floor plan. The behavioral 

description, which is the SPUR CPU behavioral model shown earlier in Figure 3-1-3, 

models the microarchitecture and must be verified by behavioral level simulation. 
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Implementation. 

The behavioral description was translated into logic modules either automatically by CAD 

tools (PLA) or by the logic designers (gates and latches). The circuit designer then imple-

mented these logic modules by transistors and wires that were eventually translated into 

layout. The layout was then extracted by a circuit extractor to produce the switch level 

description that can be verified by switch level simulation. 

Strictly speaking, fabrication and testing are not part of the design process. They are 

included in Figure 3-2-1 for the sake of completeness. Furthermore, in practice the SPUR CPU 

design process is not a pure sequential process. A lot of work-especially among the microarchi-

tecture design and the implementation steps-can be and were done in parallel. Consequently, the 

total nine man years required by these four steps were accomplished in approximately four years 

by five graduate students.t The initial SPUR study was done in the Fall1983 and the first version 

ofthe SPUR CPU was fabricated in the Fall1987. 

The macroarchitectural design and implementation steps of the SPUR CPU design process 

are discussed in more details in [Tay86] and [Lee86]. This thesis will focus on the microarchitec-

ture design step. The most important product of the microarchitectural design step is the machine 

readable behavioral description of the CPU. This behavioral description models the microarchi-

. 
tecture and was shown earlier as the SPRU CPU Behavioral Model in Figure 3-1-3 in relation to 

the behavioral model of the SPUR system. Section 3.2.1 will discuss the construction of this 

behavioral model. Section 3.2.2 discusses how this behavioral model can be used as a formal 

specification for logic and circuit designers. Section 3.2.3 discuss how this behavioral model can 

be used for layout verification. Finally, Section 3.2.4 summarizes some important observations 

from the SPRU CPU design process. 

t George Taylor is the macroarchitect, Shing Kong is the microarchitect, and Dave Lee is the chief 

circuit designer. Wook Koh and Rich Duncombe are part time logic and circuit designers and Mark Hill is 

our macroarchitecture consultant 
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3.2.1. The Construction of the SPUR CPU Behavioral Model 

The SPUR CPU behavioral model [Kon89] was developed using the N.2 hardware model-

ing package [EEE85]. In the N.2 environment, a piece of hardware can be modeled in two dif-

ferent ways (see Figure 3-2-2): 

(1) As a primitive module that is described in ISP', or 

cwp_swp 

busAB 
_int 

ext_ 
ins 

upsw_kpsw 

trap_logic 

func_ctr 

branch_cond 

shifter 

alu 

pc_logic 

pc_ctr 

cache_int 

Figure 3-2-2 The Structure of the SPUR CPU Behavioral Model 

The three shaded blocks: i_unit, reg_file, and mastcr_ctr arc composite modules. All other blocks 
arc primitive modules. Primitive module is a hardware description written in ISP'. Composite 
module is a collection of primitive modules connected together by a topology file. The CPU 
behavioral model [Kon89] is by definition a high level composite modules which consists ofboth 
composite and primitive modules. 
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(2) As a composite module that consists two or more primitive modules connected together 

by a topology file. 

The ISP' hardware description language provides the designer a way to model the behavior while 

the topology file facility provides the designer a way to model the structure. 

The SPUR CPU behavioral model was built using the "meet-at-the-middle" approach. The 

desired behavior of the microarchitecture was first determined informally and then it was decided 

how this behavior can be implemented structurally. The next step was to divide the conceived 

structure hierarchically into modules. Once the modules were defined, the SPUR CPU behavioral 

model was built from bottom-up. The lowest level modules were described by the ISP' hardware 

description language as primitive modules and a set of test vectors was written to test each 

module's functionality. Once these lowest level modules were tested, they were grouped together 

to form higher level composite modules following the hardware's hierarchical organization. This 

test and merge process was repeated until the CPU composite module was built. Consequently, 

this CPU composite module actually models both the behavioral and structural characteristics of 

the SPUR CPU microarchitecture although it is only called the CPU behavioral model 

The structure of the SPUR CPU behavioral model is shown in Figure 3-2-2. The only com

posite modules are: reg _file, master_ ctr, and i _unit, which model the register file and temporary 

registers, the master control, and the instruction unit, respectively. Most of the modules in the 

SPUR CPU behavioral model are primitive modules because we try to ease the behavioral model 

to silicon transformation by keeping a one-to-one correspondence between the behavioral 

modules and the prospective layout modules. Consequently, most of the behavioral modules are 

therefore simple components-ALU, SHIFfER and so on-whose behavior is well understood and 

can be described easily in single ISP' primitive module. 



Chapter 3: The SPUR CPU Experience 60 

3.2.2. Behavioral Model-Formal Specification for Logic and Circuit Designers 

The behavioral model of the SPUR CPU was not only used for CPU chip and SPUR system 

verification (Section 3.1.3), but was also used as a "formal" specification for logic and circuit 

designers. This is illustrated by the example in Figure 3-2-3. The microarchitect prepared a block 

diagram that showed the input output interfaces and the logic at register transfer level for each 

module in the behavioral model. Furthermore, as mentioned earlier in Section 3.2.3, a set of test 

vectors was created for each module to exercise its functionality during the construction of the 

Behavioral Model 

wait (phil :trail) ; 

if (selectBusA eq 1) 

REGl =busA 

else 

REGl =busB; 

Test Vectors 

set selectBusA 

set bus A 

set busB 

set phil 

verify REGl 
• 
• 
• 

Hl 

Hffffffff 

HOOOOOOOO 

Hl 

Hffffffff 

Block Dia m 

bus A 
<31:0> 

busB 
<31:0> 

"Formal" 

Specifications 

for the Logic & 

Circuit Designers 

Figure 3-2-3 Formal Specification for Logic and Circuit Design Example 

In this simple example, there are two 32-bit busses (busA and busB), a two by one multipler 

(MUX), and a 32-bit register (REG 1). The signal phil is a clock signal and selectBusA is a con

trol signal. Register REG 1 will latch in the value on either busA or busB during every phil. This 

behavior is described textually by the behavioral model, illustrated graphically by the block di

agram, and verified by the test vectors. 
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behavioral model. The behavioral model of module, the block diagram, and the test vectors 

together form the specification of the module to be implemented by the logic and circuit 

designers. 

Ideally, we would like to have CAD tools to generate the block diagram automatically from 

the behavioral model, or vice versa. We would also like to have another tool to generate the test 

vectors automatically from either the behavioral model or the block diagram. Finally, we would 

like to have some module generators to generate the layout for us automatically from this formal 

specification. Alas, such ideal CAD tools were not available for SPUR. The block diagram, the 

test vectors, and most of the logic design, circuit design, and layout had to be done by hand. The 

only layout that can be generated automatically from the behavioral description was simple con

trol blocks from the PLA generators. 

3.2.3. Behavioral Model-An Aid for Switch Level Simulation 

The layout created by hand must be verified by switch level simulation to ensure it is func

tionally correct. The verification process shown in Figure 3-2-4 ensures the layout behaves the 

same as specified in the behavioral model. As discussed earlier, there is a one-to-one correspon

dence between the behavioral module and the layout module and every behavioral module has its 

own set of test vectors. By running this set of test vectors through the behavioral simulator, we 

can trace the results, and do a simple fonnat conversion to obtain the switch level test vectors for 

the layout of that module. After the layout of all the modules was tested individually, they were 

merged to fonn the CPU chip. 

The behavioral model of the CPU is not verified by test vectors. It is verified by diagnostic 

programs written in SPUR assembly language. Since the N.2 behavioral simulator supports 

simulated memories, all we had to do was to generate a memory image using tl-Ie SPUR assem

bler and linker, load this image into the simulated memory, and start the execution. This simu

lated execution was traced and the trace informations was then coverted to switch level test vec

tors for global switch level simulation of the CPU chip. 
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Behavioral 
(N .2) Description 

Extracted 
Layout 

Figure 3-2-4 The Verification Process 

The behavioral description on the right can be the description of a primitive module, or a compo

site module, or even the description of the CPU. The behavioral description is tested by the 

behavioral simulator. Behavioral simulation guidance can be provided in two different ways. 

Source 1: Test vectors are used to test the primitive and composite modules' functionality. 

Source 2: Diagnostic programs that are assembled into a memory image are used to test the 

description of the complete CPU. 

3.2.4. Important Observations 
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Three important observations can be derived from the SPUR CPU design experience. These 

three observations will become important considerations as I try to develop a more analytical 

approach to microarchitectural design in Chapter 5 and predict the future trends in Chapter 6. The 

three observations are: 

(1) A CAD tool that can transform the behavioral model directly to the layout-a silicon 

compiler-will be extremely useful, but still will not solve all the problems. As illustrated 

in the SPUR design process (Figure 3-2-1), such a CAD tool will only simplify the 
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Figure 3-2-5 Conflicting Requirements of the Behavioral Model 

The behavioral model can be a good tool to evaluate the effectiveness of alternative microarchi

tecture if it can be build rapidly. This require the description to be more abstract- higher level. 

On the other hand, if one want to be able to transform the behavioral description into layout easi

ly or even automatically, it has to be less abstract- low level. Furthermore, if one wants to use 

the behavioral verification results to drive the switch level simulation effectively, the one-to-one 

mapping between the Behavioral description and the layout must be carry on to a relatively low 

leveL 
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implementation step. The microarchitectural design step is still a major task by itself. 

You may argue that if the same microarchitecture is to be implemented in different tech-

nology as different products, then the microarchitectural development cost can be divided 

among different products. Practical experience showed that to get the highest perfor-

mance from technology, however, the microarchitecture has to be customized to a tech-

nology [Pat89]. Finally, if the microarchitectural design is poor, it will be impossible for 

any silicon compiler to generate a good implementation from it. 

(2) Verification is time consuming-it requires a lot of human interaction time because: (a) 

the designer has to create all the test cases either directly in the form of test vectors or 

indirectly via diagnostic programs, and (b) the designer has to interpret the verification 

result. To make matter worse, verification is usually done repeatedly at different levels. 

For example, in the SPUR CPU design process (Figure 3-2-1), verification is done after 
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each major steps by Instruction Level Simulation, Behavioral Level Simulation, and 

Switch Level Simulation. In order to speed up the design process, the human interaction 

time needed for verification must be reduced. The options are: (a) reduce the time it takes 

to generate the test cases, or (b) reduce the redundant verifications among different levels. 

(3) There are two conflicting requirements for the description that models the microarchitec

ture (Figure 3-2-5). The SPUR CPU behavioral model [Kon89] is more towards the low 

level for two reasons. First of all, we want to use the verification results of the behavioral 

model to drive our switch level simulation. Secondly, we started writing the behavioral 

model late-we had already committed on most of the microarchitectural features. Conse

quently, instead of being a microarchitecture test bed, the behavioral model was used 

mainly as a specification for logic and circuit designers. Ideally, we would like to model 

as many alternative microarchitectures as possible such that we can evaluate the effec

tiveness of each alternative quantitatively. Due to the time we spent in modeling the 

SPUR CPU at low level, we could not afford major alteration in the SPUR CPU microar

chitecture by the time we completed the first SPUR CPU model. In the future, I think 

VLSI designers should work on a high-level behavioral model earlier as a test bed for 

microarchitcctural ideas. Once the high-level description is completed-hopefully with 

extensive CAD tools support-the designer can transform it into a low-level description 

for layout generation and switch level simulation. 

3.3. The SPUR CPU Problems 

All known SPUR CPU problems and their solutions are listed in Appendix B. TI1is section 

discusses the more "educational" problems-problems that taught us some valuable lessons. The 

CPU problems can be classified into three groups: 

(l) ;vticroarchitcctural Problems 

The CPU chip is doing exactly what the microarchitcct designed it to do although it is not 
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doing what the microarchitect wanted it to do. The microarchitect has designed it wrong! 

These problems can be simulated in behavioral and switch level simulation. They were not 

detected during simulation because we did not cover all possible cases or we did not realize 

they were problems. 

(2) Electrical Problems 

The CPU chip is not doing what the microarchitect nor the logic designer designed it to do 

due to unexpected electrical problems. These problems cannot be simulated in behavioral 

nor switch level simulation. Careful and in-depth circuit simulation is the only way to 

detect these problems. These problems exist because the switch level simulation is not low 

level enough and it is not practical to run circuit simulation for the entire chip. 

(3) Implementation Problems 

The CPU chip is doing exactly what the logic or circuit designer designed it to do although 

it is not doing what the microarchitect want it to do. The logic or circuit designer imple

mented something differently than what the microarchitect had in mind! These problems 

may be detected by comparing the switch level simulation results against behavioral level 

simulation results if both the switch level and behavioral level descriptions have the proper 

level of detail. These problems exist because of miscommunication between the microarchi

tect and the logic or circuit designer. 

3.3.1. Microarchitectural Problems 

The most educational microarchitectural problem for SPUR is in the design of special regis

ters. The SPUR CPU special registers that have potential problems are: 

Cwp Current register window pointer. 

Swp Save register window pointer. 

Kpsw Kernel processor status word. 
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Figure 3-3-1 Structure and Timing of the Special Registers 

The structure of Cwp is shown in (a). All special registers are similar in that they all consist of 

two parts: Current and Backup. Any instruction that modifies the special register changes the 

Current part during either $4 of its Exec stage (for Cwp, it can also be changed during <j>2 instead 

of $4) and updates the the Backup during <j>3 of its Wr stage. (b) shows how the SPRU CPU can 

recover the special register to its old value during $4 of the Mem stage if the instruction is killed 

by a trap. 

Upsw User processor status word. 

Ins Insert byte count register. 
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These special registers are described in details in Appendix A. Figure 3-3-1 shows the struc-

ture and the timing of the special register Cwp. Cwp is the most complex special register because 

it can be loaded from four different sources (see Figure 3-3-1 (a)): 

(1) Load from busS during $4 for WR_SPECIAL instruction. 

(2) Load from its Backup Copy during $4 when there is a trap. 

(3) Load from its plus-one copy during <j>2 for CALL instruction. 

(4) Load from its minus-one copy during <!>2 for RETURN instruction. 

All other special registers have similar structure and timing as the Cwp but they can only be 

loaded during $4 from two sources: busS or the Backup copy. I have simplified Figure 3-3-l(a) 

by showing all storage nodes as dynamic latches-a simple pass transistor follow by a buffer. In 

the SPRU CPU, the Current and Backup have to be pseudo-static registers. Furthermore all pass 
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gates in the SPUR CPU are composite pass gates formed by connecting NMOS and PMOS 

transistors in parallel. 

The philosophy behind the special register design is that the Current part is changed as soon 

as possible such that the next instruction can use the new value. The Backup part is needed to 

recover the old value if the instruction that changes the special register is "killed" by a trap. This 

is illustrated in Figure 3-3-1 (b) which shows that even if the instruction is "killed" in the last pos-

sible time (during ¢2 of its Mem stage-see Figure 2-3-4), the SPRU CPU can still recover the 

special register to its old value during <1>4 of the Mem stage. 

The first mistake I made in designing the special register can be traced to Figure 3-3-l(b). In 

the regular register case, if any instruction that modifies regular registers is killed by a trap, its Wr 

stage is disabled and its destination register is not modified. In the special register case, if any 

instruction that modifies any special registers is killed by trap, Figure 3-3-l(b) seems to indicate 

trapRcquesc:s 1 

3: Cwp=Q 4~ Temp--Q 6: Backup=Q 
Cwp=N+l Temp=N+l Backup=N+l 

(a) Protential Problem (b) SPUR CPU Problem Assume originally Cwp=N 

Figure 3-3-2 Problems with the Special Registers 

(a) shows the potential problem with the special registers when two consecutive instructions try 
to modify the same special registers. Since the second instruction (12) changes the Temp during 
¢1 of its Mem stage (Step 4) before the first instruction (II) updates the Backup (Step 5), Backup 
will get the latest value from Temp one cycle too early (in Step 5 instead of Step 6). (b) shows 
how this potential problem turn into real problem in the SPUR CPU when a Call or Return in
struction is killed by a trap during its Exec stage. Since the internal instruction Trap_call uses the 
Backup copy of the Cwp to decide where to save the return address during <1>2 of its write stage, 
the return address is saved in tl1e new window (N+ I) instead of the desired old window (N). 
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that writing the Backup copy does not change anything-the Backup remains equal to OLD. Sum

marizing this error: 

Mistake 1 

Instead of treating special registers the same way as I treated regular registers, I did not dis

able the Wr stage (did not set writex$3 in Figure 3-3-l(a) to 0) of instructions that modify 

special registers even if it is killed by a trap. I had too much confidence in Figure 3-3-l(b). 

The structure shown in Figure 3-3-l(a) has another potential problem. It will not allow two 

consecutive instructions to modify the same special register. This is illustrated in Figure 3-3-2(a) 

where the first instruction wants to set the Cwp to P while the second instruction wants to set the 

Cwp to Q. Due to the timing and the limitation of the structure, the Backup copy has the wrong 

value (Q) instead of the correct value (P) during the time period Tcritical: 

$3 of 11 's Wr stage < Tcritical < $3 of I2's Wr stage 

If the second instruction (!2) need to use the Backup during Tcritical, it will get the wrong value. I 

discovered this problem very early in the design process. I also noticed that this problem can be 

fixed easily by adding one more temporary latch between the Current and its Backup. Unfor

tunately, this was not done because I made my second and third mistakes: 

Mistake 2 

I thought the only time the second instruction used the Backup is when it is trapped in its 

Mem stage as shown in Figure 3-3-l(b). 

Mistake 3 

I thought nobody in his right mind will try to change the same register in two consecutive 

instructions as in Figure 3-3-2(a) because the first instruction can be replaced by an NOOP. 

These two mistakes lead me to my fourth mistake: 

Mistake4 

Instead of fixing the problem in hardware, I established a software restriction forbidding 
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instruction sequence that has consecutive instructions modify the same special register. 

Needless to say, I was very surprised when the potential problem shown in Figure 3-3-2(a) 

tum into a real problem in the SPUR CPU shown in Figure 3-3-2(b). The two surprises are: 

Surprise 1 

The discovery of Mistake 3. Two consecutive instruction modifying the same register can 

happen implicitly when a Call or Return is killed by a trap during its Exec stage. This is 

shown in Figure 3-3-2(b). The internal instruction Trap_call, which are placed in the pipe

line by the trapRequest signal (see Figure 2-3-4), modifies the special register Cwp the 

same way as the regular Call. 

Surprise 2 

The discovery of Mistake 2. The second instruction, in the case of Figure 3-3-2(b), the 

internal instruction Trap_call will use the Backup during Tcrirical even it is not trapped. Simi

lar to the regular Call, the Trap_call use the Backup copy to decide which register window 

to save the return address. 

Despite these two surprises, the potential problem shown in Figure 3-3-2(a) still would not 

have turned into a real problem in the SPUR CPU shown in Figure 3-3-2(b) if I had not made 

Mistake 1. If I did not make Mistake 1, the Wr stage of Call or Return in Figure 3-3-2(b) would 

have been disabled by the trapRequest and the Backup would not have been clobbered. Tom 

Wolfe, in his book "The Right Stuff', observed that many military pilots believed a pilot was 

never killed by a single mistake. Well, in this case, I sure made enough mistakes to get the CPU 

into serious trouble! 

Fortunately, the case shown in Figure 3-3-2(a) is a very unusual case and it will never hap

pen when the on-chip instruction cache is disabled. Unfortunately, it is so unusual that it was 

never tested in behavioral simulation and we did not detect this error until we have brought up the 

operating system and decided to tum on the on-chip instruction cache to increase the speed. As a 

matter of fact, this is the only reason why we have problem turning on the on-chip instruction 
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cache. The rumor about the on-chip instruction cache's problem has been greatly exaggerated! 

Notice that the problem shown in Figure 3-3-2(b) is only a transient error because the 

Backup Cwp simply has the "correct" value at the wrong time (one cycle too early). Once the 

Trap_call finishes its execution, it becomes perfectly legal for the Backup to have this latest 

value. However, this is bad enough to cause the Trap_call to save the return address in R26 of 

the new register window instead of R26 of the old register window. This problem does have a 

simple software solution. If by software convention, all procedures and trap handlers must set its 

R26 to zero before returning to its return address, then the SPUR CPU can check R26 of the new 

window whenever it takes a trap. If it is not zero, the case shown in Figure 3-3-2(b) must have 

occurred. The software can then find out what the return address is by reading and saving this 

register. 

One big lesson we learned here is: Keep it regular! Whenever you make an exception (Mis

take I and 4), there is likely to be some unexpected cases to get you in the most unexpected way. 

Another lesson is that there may be many cases you may never thought of during simulation 

(Mistake 2 and 3) and one must find some easy way to cover more cases in simulation. This is 

discussed further in Section 3.4.1. 

3.3.2. Electrical Problems 

The microarchitect is not the only person in SPUR that makes multiple mistakes. The cir

cuit designer also made multiple mistakes at the electrical level that resulted in an electrical prob

lem in t11e SPUR CPU. This is discussed in Section 3.3.2.1. After discussing all these problems 

caused by multiple mistakes, Section 3.3.2.2 shows how one single mistake can ruin your whole 

day! 

3.3.2.1. A Hazardous Circuit 

The circuit shown in Figure 3-3-3(a) is hazardous because the clock signal clock is gated 

with other inputs in a way that it is forced to pass through two different paths before it is merged 
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Figure 3-3-3 A Hazardous Circuit 

The case we are interested is when Input= 5V and clock goes from OV to 5V. When clock 

equals to OV, Node ExecRd is charged to 5V. When clock switches from OV to 5V, we want Ex

ecRd to stay at 5V. The only hazard that may discharge ExecRd is that there may be glitches on 

the ldRd_L and ldRd signals. Our SPICE circuit simulation showed this hazard can occur only if 

C2>3xC 1• However, as shown in (b), even if there are glitches on ldRd_L and ldRd, ExecRd is 

still not destroyed. 
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again into another signal (ldRd_L). This hazard, however, cannot be detected by a switch level 

simulator that does not have a good capacitance model. When the effect of the parasitic capaci-

tors C1 and C2 are ignored, the bottom path in Figure 3-3-3(a) has one less gate delay and will go 

0 before the top path goes to 5V. There will not be any glitch on the control lines ldRd_L and 

ldRd. 

Mistake 1 

We believed our switch level simulation and kept a hazardous circuit in our design that 

combines clock signal with other signals at a place other than at the control point. 

This hazard can be detected by careful circuit level simulation using SPICE. If C2 > 3xC1, 

the top path in Figure 3-3-3(a) will go to 5V before the bottom path go to OV. There will be 

glitches on the control lines ldRd_L and ldRd. However, if this is the only problem, Figure 3-3-

3(b) shows that ExecRd still will not be discharged unintentionally because the glitches on the 

control lines ldRd_L and ldRd are not big enough. But then again, as the great philosopher Mur-
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(a) Clock Line as a LC Network (b) SPICE Simulation with Clock Glitch 

Figure 3-3-4 Problems of the Hazardous Circuit 

The SPUR CPU clock line is modeled as an LC network in (a). This simulation indicates that 

there will be some ringing in the clock signal clock. (b) shows how the glitches on ldRd_L and 

ldRd. which were insignificant in Figure 3-3-3(b), are now amplified by the glitches in the clock 

signal. These larger glitches are big enough to discharge ExecRd accidently. 
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phy had predicted, things usually get worse before getting any better. We made our second mis-

take: 

Mistake 2 

Instead of placing the clock generator and clock line drivers in the middle of the chip, they 

were placed on the left hand side. This resulted in long and unbuffered clock wires. 

In the first version of the CPU, the clock line is approximately 8mm long. We estimated it 

to have one Ohm of resistance, lOnH of inductance, and 14.6pF of capacitance. Although the 

resistance is relatively small, the inductance and capacitance are big enough to cause some ring-

ing in clock line (Figure 3-3-4(a)). While the ringing in the real clock line will die down due to 

resistance, Figure 3-3-4(b) shows that the initial ringing on the clock line clock are enough to 

amplify the glitches on the control lines ldRd_L and ldRd such that ExecRd will be discharged 

unintentionally. 
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Vdd 
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(a) Misplaced Well Contact 
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(b) Misplaced Substrate Contact 

Figure 3-3-5 Misplaced Well and Substrate Contacts 

Instead of placing the well and substrate contacts on the right side of the transistor and connects 
to the power supply V dd and GND respectively (the dotted line), they are placed incorrectly on 
the left side and connected to the busses. These misplaced contacts form diodes between the V dd 
and GND that will prevent busS in (a) to go below 4.3V and busD in (b) to go above 0.7V. 

73 

This problem caused the Call instruction unable to save the return address. It was first 

solved in software by emulating the Call instruction. The hardware is fixed in the second version 

of the CPU chip where the hazardous circuit is redesigned and the clock generator is moved to the 

center of the chip to reduce the length of the clock wire. The important lessons here is that one 

should never trust the CAD tools blindly and use any marginal design just because the CAD tools 

predict it will work. There are just too many second order effects you and the CAD tools may 

have neglected. 

Careful design is still necessary! Despite all rumors, there is still no good substitution for a 

good electrical engineer knowing what he is doing and working very carefully. 

3.3.2.2. Well Problems 

The last two problems discussed in Section 3.3.1 and 3.3.2.1 are both caused by multiple 

mistakes. In this section, I want to show how one single mistake can cause serious problem. One 

of the supposingly good features of the Magic Layout System [SMH85] we used is that the 

CMOS layout artists do not have to worry about well placement-Magic will generate the wells 

automatically. Unfortunately, this simplifying assumption also means the Magic Layout System 
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does not extract the well from the layout when it generates the switch level and circuit level 

description. Thus any layout verification tools based on the Magic Layout System cannot check 

the well either. One of the first things most circuit designers will warn you about this approach is 

that you may end up with floating wells. However, one of the most painful lesson we learned in 

SPUR is that floating well is not the only possible problem in this approach. 

One problem in the SPUR CPU is the misplaced well and subtract contacts shown in Figure 

3-3-5. In theN-well process used by SPUR, a misplaced well contact will cause a node to stuck 

at one (Figure 3-3-S(a)) and a misplaced substrate contact will cause a node to stuck at zero (Fig-

ure 3-3-S(b)). In the SPUR CPU, we are fortunate that all misplaced well contacts are at redun-

dant precharge transistors in the lower datapath. As illustrated in Figure 3-3-6, this enabled us to 

solve the stuck at 1 problem by cutting off the power supply to these precharge devices. The 

stuck at 0 problem, however, cannot be solved by laser cutting and we were forced to do most 

primary testing using a crippled 8-bit CPU until the problem was fixed in the second version of 

Vdd 

Cut off by laser beam 

+---~=7';-,-,-~?Vdd • 
To maJor 

power bus 

Lower data ath 

busS 

Figure 3-3-6 A Quick Hardware Fix for Misplaced Well Contacts 

The misplaced well contacts are all at the redundant precharge PMOS transistors at the lower da

tapath. These precharge transistors are redundant because busS is also prechargcd by transistors 

at the upper datapath. Furthermore, the V dd lines that supply power to these redundant transistors 

are connected to major power busses on either side. Therefore, by using the laser cutting system 

at Information Science Institute [Par87] to cut off the V dd supply on both sides, we can isolate 

these precharging device without affecting the CPU function. 



Chapter 3: The SPUR CPU Experience 75 

the SPUR CPU. 

The floating well is not a problem in the SPUR CPU but it is a problem in the Cache Con-

troller chip. The Cache Controller floating well problem is discussed here because it is quite dif-

ferent from what most people expected from floating well. The first problem come to most 

people's mind concerning floating wells is latch up. In the Cache Controller case, however, we 

learned that floating well can also be a problem if there is any dynamic storage node inside the 

floating well. This is illustrated in Figure 3-3-7. This is ironic because a common technique to 

build dynamic storage node is to use a pair of pass transistors and the well for one of these 

transistors is likely to be a floating well because it is usually hard to place a well contact in this 

congested area. As shown in Figure 3-3-7, if the PMOS pass transistor is in a floating well, the 

dynamic register will retain its value correctly only if the well is above 4.3V. 

One thing we learned after we discoved all the well problems is that all these problems can 

be detected by Magic if we do some tricks to the Magic technology file. In order to detect these 

cl,d Well Dsave 

ov X Din 

sv :>=4.3V Dsave(t-1) 

Din Well sv <4.3V Din (Oh Boy!) 

ov Well (t-1) 
P-Substnte sv 4.3V 

(a) Dynamic Register (b) PNPTransistor (c) Equivalent Circuit 

Figure 3-3-7 Floating Well Problem 

(a) shows a dynamic storage device in which data is stored dynamically in the node Ds~) 

shows how a PNP transistor is formed if the PMOS transistor whose gate is connected to clock is 

in a floating well. (c) shows the equivalent circuit. When clock is asserted (OV), the dynamic re

gister latches in the data Du. correctly. Unfortunately, when clock is disasserted (5V), this 

dynamic register holds the value correctly only if the Well node is above 4.3V. Since the Well 

node is charged to to 4.3V whenever Du. is 5V and will stay there until leakage current discharge 

it. this dynamic register will operate correctly most of the time. 
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errors in Magic, the designer must request Magic to display the wells explicitly. Therefore I con

cluded that as far as the Magic Layout System is concerned, well-independent design style can be 

dangerous, although it may seem attractive in theory. 

3.3.3. Implementation Problems 

The only implementation problem we have is that the backup copies of all special registers 

(Figure 3-3-l(a)) were implemented incorrectly in dynamic registers instead of static or pseudo

static registers. Since the current copy loads from its backup whenever a trap occurs, the backup 

copy must retain the correct value at all time. This fact was so obvious to me, the microarchitect, 

that I did not even bother to specify it explicitly in the documentation. The circuit designer on the 

other hand did not have the same understanding of the operation and thought a dynamic register 

was sufficient. 

This problem is not detected during switch level simulation because the switch simulation 

do not simulate leakage current in the dynamic node. Furthermore, since all our test programs 

have short run time (relative to the real work load), the leakage current is not a problem either. 

This problem was not discovered until we started debugging the operating system. It was fixed in 

software by interrupting the CPU regularly to refresh (read and write back) the special registers. 

The lesson here is that the microarchitect should specify everything explicitly because what is 

obvious to him may not be obvious to the logic and circuit designers who are looking at the 

design at a much lower and local level. 

3.4. The SPUR CPU Technical Lessons 

The SPUR CPU design process and all the problems taught us some valuable lessons. The 

technical lessons are summarized in this section. The philosophical lessons are summarized Sec

tion 3.5. 
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3.4.1. Simulation and Testing Lessons 

The SPUR CPU simulation process consists of two levels: behavioral level and switch 

level. They have already been discussed in Section 3.1.3 and Section 3.2.3, respectively. The 

SPUR CPU chip testing process shown in Figure 3-4-1 also consists of two levels: chip test and 

board test. The switch level simulation vectors were used for initial chip testing. For chip debug-

ging, we found out we must be able to write a new test, run it, and verify the results rapidly. This 

is accomplished by automating the five-step chip testing process. 

The behavioral level diagnostics for the SPUR processor board (see Processor Behavioral 

Model, Figure 3-1-3) were used for initial board test. In order to debug the processor board, we 

must also write new tests. Although the board test for SPUR is much more extensive than that 

for RISC II and SOAR, it is still not the ultimate test. One important lesson we learned is that the 

ultimate test came when we tried to bring up the operating system [OCD88]. This is the time 

when we discovered most of the problems. It is interesting to note that the operating system in its 

first 5ms of operation requires the SPUR CPU to execute more instructions than the total number 

Chip Test ·Cpu or CC Diagnostics 
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Figure 3-4-1 SPUR CPU Testing Strategy 

The chip test is a five-step process: (1) Generate test vectors on the SUN work station by running 

behavioral diagnostics. (2) Down load the vectors onto the DAS. (3) DAS drives the test board 

and collects output vectors. (4) DAS sends output vectors back to the SUN. (5) Verify output 

vectors on the SUN. After the CPU and Cache Controller chips have been tested independently, 

they are tested together on the SPUR processor board. Uniprocessor diagnostics are loaded onto 

the memory board and the DAS is used for debugging. 
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of instructions the switch level simulator has simulated (fable 3-1-3). This is unavoidable 

because real machines must run much faster than the simulator. It is not a major problem if the 

diagnostics are well chosen. There were, however, a couple of important lessons we learned con

cerning simulation and testing. 

3.4.1.1. Lesson 1: One Size Does Not Fit All 

The switch level simulator is twenty times slower than the behavioral simulator (60 

sec/cycle versus 3 sec/cycle). Therefore only a subset of the behavioral diagnostics are used in 

switch level simulation. Initially, we envisioned that the following process could be fully 

automated: 

(1) Run the diagnostics in the behavioral simulator and trace the input/output ports of the 

CPU. 

(2) Convert the traces into switch level test vectors for switch level simulation. 

(3) Convert switch level test vectors to logic analyzer vectors for chip testing. 

We encountered two problems in automating this process. First, the behavioral simulator, 

switch level simulator, and the logic analyzer all have different input/output formats. More 

importantly, each initializes the chip differently and propagates "don't care" conditions dif

ferently. Consequently, we must edit some automatically generated test vectors and examine 

whether reported errors are real errors. Both tasks are time consuming and error prone. The 

designers of different simulators and the logic analyzer must work together to avoid this problem. 

Second, behavioral diagnostics and switch level diagnostics have different requirements. 

Behavioral diagnostics are verification diagnostics and you want them to be long and general. 

Switch level and chip testing diagnostics, on the other hand, are debugging diagnostics-you want 

them to be short and specific. We solved this problem by building long verification diagnostics 

from short self-testing debugging diagnostics. 
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3.4.1.2. Lesson 2: The Danger of Simulation 

In our simulation world, diagnostics are executed one at a time: Start a diagnostic, finish it, 

then start the next diagnostic. This is not realistic because in the real world, programs seldom run 

from start to finish without being interrupted. As a matter of fact, the special registers problem 

discussed in Section 3.3.1 is one case where the SPUR CPU cannot recover from an interrupt. In 

order to make behavioral simulation more realistic, we must ensure that each diagnostic can run 

successfully even if its execution is interrupted randomly. An interesting approach is shown in 

Figure 3-4-2 where the execution of one diagnostic is interrupted constantly by another diagnos-

tic. 

This approach has several advantages. One major reason for multiplicative complexity is 

the random interaction of different architectural features. This random interaction is caused by 

Dianostic B 

. . . 

Figure 3-4-2 Random Simulation Algorithm 

This example limits the number of active diagnostics to two: A and B. The software manager be

gins the simulation by randomly starting a diagnostic, say diagnostic N. After a random period of 

time, the manager interrupts diagnostic N's execution by starting another randomly selected diag

nostic, say diagnostic M. The manager then switches between the two diagnostics until one of 

the diagnostic is completed. The manager then randomly selects another diagnostic: diagnostic P. 

Each diagnostic must be self checking and the manager should terminate the simulation as soon 

as any error is detected. 
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random events such as traps and interrupts and can create a large number of CPU states. It is very 

time consuming (it may not even be possible) for the designer to visualize all the possible states 

and write diagnostics to cover them. However, by letting diagnostics interrupt each other ran-

domly, we can explore a large number of CPU states by using only a relatively small set of diag-

nostics. Furthermore, due to random interaction, each time a new diagnostic is added to the set, 

the increase in CPU states that can be tested goes beyond the checks in the new diagnostics. 

3.4.2. The Nature of Microarchitectural Design 

The simulation and testing lessons we learned are only part of the story. The root of the 

problem is a gap in the computer engineering education. The term microarchitecture, as defined 

in Chapter 1, is the specification of how the macro architecture is implemented in a given technol-

ogy. Microarchitectural design has been treated more like an art than science. This is unfor-

tunate because you can teach science but you cannot teach art! Consequently, the art ofmicroar-

chitectural design is not well taught and, as shown in Figure 3-4-3, there is a gap in the computer 

Microarchitectural Design 

Mead & Conway Style VLSI Design 

Figure 3-4-3 The Gap in Computer Engineering Education 

At the highest level, Computer Science classes are available for computer architecture. At the 

lowest level, Electrical Engineering classes are available for digital circuit design. There is a big 

gap between these two levels. In my opinion Mead & Conway style VLSI design class only 

bridges the gap between these two levels because it is a only a digital circuit design class in in 

Computer Science perspective. 
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engineering education. This gap is not as apparent in the past in the academic world because most 

universities' VLSI projects are either driven from the top-implement architectural innovations, or 

driven from the bottom-try out fast circuit technology. The only way to close this gap is to make 

the microarchitectural design process more a science than art by developing a more systematic 

approach to microarchitectural design. 

In my opinion, the key of making the microarchitectural design process into a science is to 

put more emphasis on the tradeoffs between performance, resources, and complexity. As will be 

discussed in Section 4.1, one way to measure performance is the T xI x C product where T is 

cycle time, I is the number of instructions it takes to execute certain benchmark programs, and C 

is the average number of cycle per instruction. Chip area and transistors count are two examples 

Performance Performance 
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(a) (b) 

Performance 

Complexity 

(c) 

Figure 3-4-4 Performance as a Function of Resources and Complexity 

(a) is a three dimensional plot of performance as a function of resources and complexity. (b) and 

(c) are the two-dimensional projections of this design surface onto the resources and complexity 

axes respectively. (b) shows that for a fixed amount of complexity, increase the amount of 

resources will increase the performance. Similarly, as shown in (c), for a fixed amount of 

resources, increase the amount of complexity will increase the performance. In either case, the 

rule of diminishing return applies. The RISC argument carries one step further than the rule of di

minishing return. RISC proponents suggest that as the complexity gets too high, the performance 

actually goes down. 
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of resources metrics. The complexity of a design can be considered qualitatively as a measure of 

how hard it is to specify and implement that design. The number of cycles of diagnostics and the 

simulation effort are examples of quantitative complexity metrics. 

Performance, resources, and complexity can be considered as three independent dimensions 

in a multidimensional design space. With other variables such as technology and designer's abil

ity in this multi-dimensional design space being constant, alternative microarchitectures are res

tricted to points on a three-dimensional design surface shown in Figure 3-4-4(a). Without a 

high-level design automation system, a designer must go through the process of pruning this 

design space by making trade-offs. The most systematical way to make these trade-offs is to per

form experiments that gives quantitative estimates in the performance, resources, and complexity 

dimensions. A designer would like to get these estimates with minimal effort and as early as pos

sible in the design process such that more alternative microarchitectures can be evaluated. 

Figure 3-4-4(a) is a simplified view of the design space because, in reality, resources and 

complexity are not completely independent. However, they are not as dependent as most people 

think either. If resources are measured in terms of area and complexity is defined as the degree of 

difficulty in understanding the operation of a module, then resource and complexity can be quite 

independent. For example, a module may be small but its operation can still be very difficult to 

understand. In Chapter 4, I will evaluate the different SPUR CPU features in terms of the perfor

mance, resources, and complexity tradeoffs. Before I move on to the next chapter, I like to list the 

philosophical lessons I learned. 

3.5. The SPUR CPU Philosophical Lessons 

In this section, we will summarize some of the philosophical lessons we learned in design

ing the SPUR CPU. Our experience has shown that these apparently trivial lessons may easily be 

forgotten. 
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Keep it Simple. The simplest solution that works is also the most elegant solution because: 

(1) unless you are willing and able to use the highest performance solutions for all components, 

the overall performance gain from the improvement of a single component is limited, (2) simple 

solutions require less design and implementation time and thus can make use of newer technol

ogy that may negate many performance advantages of the complex solution, and (3) the simplest 

solution requires the least human designer time which in a sense is the most limited and expen

sive resource. Consequently, as long as the simplest solution meets the performance goal and is 

within the resources available range, the designer should accept the solution and move onto other 

problems waiting for him to solve. For example, the SPUR CPU uses a simple 4-phase clocking 

scheme that places a lower limit on the CPU cycle time (approximately lOOns). This is acceptable 

because the external bus and the memory system cannot run any faster than 1 OOns. 

A Working Whole is Better than a Working Part. A designer should spend his time 

solving unsolved problems instead of trying to find a better solution for an already solved prob

lem. Professor John Ousterhout at Berkeley once said: "The biggest performance enhancement is 

achieved when going from a non-working system to a working system." This may sound trivial 

but whenever a designer is not making any progress in solving a new problem it can be very 

tempting for him to go back to something he already understands and try to optimize it. For 

example, we did not attempt to reduce the size of the CPU's master control PLA any further 

because it can already fit nicely into its assigned space. 

The A in CAD Means Aided. The CAD tools are there to help the designer, not to replace 

him. The result can be catastrophic if the designer does not think nor work carefully and expects 

the CAD tools to do all his work and catch all his foolish mistakes. For example, switch level 

simulators or even electrical rules checkers cannot detect many electrical problems such as cou

pling, charge sharing, and race conditions. They can only be avoided by careful design. Further

more a VLSI designer should realize that building his own simple tools is the best way to define 

his problems for CAD tool designers. No matter how simple the tool he build is, it is probably 
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still the best way to define the problem. Once the problem is better defined, it can be explained to 

CAD tools designers who can then develop tools that are more general, have more features, and 

more efficient for the problem. 

The Rubik's Cube Analogy. One of the most interesting features of the Rubik's Cube 

puzzle is that each step in solving the puzzle usually has the horrendous effect of destroying some 

results of previous steps. Similarly the designer must be willing to throw away some of his work 

that does not perform in order to finish the design project. More importantly, if the designer is 

unwilling to throw away any of his work, he probably will be unwilling to start until he has all 

the answers. Unfortunately, in most if not all cases, one will never get all the answers unless one 

starts. For example, in the beginning of the SPUR project, we did some layout to estimate the 

relative sizes of various modules. None of this layout was used in the final CPU. 

Keep it Regular. The designer must always try to follow the same regular pattern. Our 

experience in SPUR is that whenever we make an exception to save area, power, or just being 

lazy, we usually regret it later. For example, in SPUR, everything in the behavioral level is 

modeled in N.2 [EEE85] except the FPU, which is modeled in SLANG [Van82]. Although the 

reasons for using SLANG have long been forgotten, none of us forget the grief it caused when we 

tried to simulate the FPU with the rest of the system. 
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This chapter evaluates various features of the SPUR CPU in terms of their impact on perfor-

mance, resources, and complexity. Resources and complexity are quantified by sets of metrics. 

Since each feature has different impact on resources and complexity, the metrics used to quantify 

the impact may be different. Therefore, I will talk about the metrics for each feature separately 

when I discuss each feature. On the other hand, in order to study the performance impact quanti-

tatively, I must develop a performance model. This is done in Section 4.1. This performance 

model can then be used to evaluate the performance improvement due to each feature by compar-

ing the performance of the SPUR CPU against the performance of an imaginary stripped down 

SPUR CPU that does not have that feature. The SPUR CPU features to be evaluated in this 

chapter are: LISP support in Section 4.2, FPU support in Section 4.3, longer pipeline in Section 

4.4, on-chip instruction cache Section 4.5, and multiprocessing support in Section 4.6. Insights 

base on this evaluation are summarized in Section 4.7. 

4.1. The Performance Model 

Performance of a microarchitecture can be measured independent of implementation con-

siderations by measuring the number of instructions it takes to execute some benchmarks (I): 
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Performance = f 
However, just as cache perfom1ance cannot be measured in terms of hit rate alone [Hi187a] 

[Hil88], ignoring implementation considerations can be misleading. In order to include imple-

mentation considerations, microarchitectural perfonnance can be measured in tenns of the TIC 

product [Hen85]: 

Performance 1 
= TxlxC (4.1.1) 

where 

T = Cycle time 

I = Number of instructions it takes to execute a benchmark 

C = Average number of cycles per instruction 

Clearly T xI x C :F. I. Therefore, perfonnance is not simply a function of instruction count 

During the design process, the microarchitect must make decisions constantly concerning 

whether to include certain features in the microarchitecture. In order to make these decisions 

quantitatively, the microarchitect wants to be able to use the perfonnance model" to predict the 

perfonnance improvement due to each feature under consideration. This can be accomplished by 

comparing the perfonnance of a base microarchitecture without the feature under consideration 

against the perfonnance of the enhanced microarchitecture with the feature. 

In the following discussion, I will refer to the feature under consideration as feature; . I will 

also use subscript "o" for the base microarchitecture without feature; (T0 , Io, and Co) and sub-

script "i" for the enhanced microarchitecture with feature; (T;, I;, and C;). Using this notation, 

the performance gain and percentage performance improvement due to feature; can be defined as: 

. T. X[ XC 
GAIN; = Performance gam due to feature; = f; x 1: x c; (4.1.2) 

IMP; = Performance improvement(%) due to feature; = [GAIN;- 1] x 100% (4.1.3) 

The T and C terms in the above equations take implementation considerations into account 

Therefore, the microarchitect must consider not just how the new feature (feature;) will affect I 
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(change from 10 to I;) but also how it will affect T (change from To toT;) and C (change from Co 

to C; ). The microarchitect must estimate the effect on T and C based on his experience~r by a 

systematic approach discussed in Chapter 5. The effect on I can be obtained from the macroarchi

tect who runs benchmarks on the instruction level simulators for the enhanced (measure I;) and 

base architecture (measure lo ). Since architectural features are added to perform a specific func

tion more efficiently, another way to obtain the effect on I is to estimate it indirectly by using 

Equation 4.1.4, derived below. Before I can explain Equation 4.1.4, I must define the following 

terms: 

10 = Number of instructions it takes to execute a benchmark without feature i, 

I; = Number of instructions it takes to execute a benchmark with feature i, 

U; = Number of times feature i is used in the benchmark, 

F; = Frequency of feature i in the benchmark = ~· 

Mo = Number of instructions needed to perform the desired function without I eature;, and 

M; = Number of instructions needed to perform the desired function with I eature;. 

Most architectural features are added to reduce the number of instructions to perform cer-

tain function. In such cases, Mo > M;. The number of instructions it takes to execute a benchmark 

withoutleature; (lo) can now be written in terms of I;, M;, M 0 andF;: 

/ 0 = /; -F;xl;xM; +F;xl;xM0 =/;X [ 1 +F;x(M0 -M;)] 

Substituting Equation 4.1.4 into 4.1.2 and 4.1.3, we have: 

GAIN; = * x g: x [ 1 + F;x(Mo- M;)J 

IMP1 = [*X g; x [ l +F1x(M. -M1)J-t] X !00% 

(4.1.4) 

(4.1.5) 

(4.1.6) 

Figure 4-1-1(a) is a plot of Equation 4.1.6 where Mo = 3 and M; = 1. This is the case where 

adding the new feature enables one instruction to perform the same function that used to be per

formed by three instructions. The p factor in Figure 4-1-1 is defined as the product of the cycle 

time ratio [ {f-] and average number of cycles per instruction ratio [ g; ] . Notice that as the p 
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Figure 4-1-1 Performance Graphs 

Each line in (a) shows the performance improvement as a function ofF; for Mo = 3, M; = 1, and 
constant p factor. (b) shows the case where the p factor is a decreasing function ofF; and p = 1 
when F; is small. In this case the performance improvement will follow the solid curve that is 
close to p = 1 line when F; is small. As F; increases, the curve level off and follows the lines 
with smaller p factor. 

90 

factor gets smaller, the advantage of the new feature is reduced in two directions: (1) the line is 

shifted down and, (2) the slope of the line decreases. For example, if the new feature has no 

effect on the cycle time (T; = T0 ) nor on the average number of cycles per instruction (C; = T0 ), 

then p = 1 and there is a 60% performance gain if the new feature is used 30% of the time. How-

ever, if this feature increases the cycle time and the average number of cycles per instruction by 

10% (T; =1.1XT0 and C1 =l.lxCo), thenp =0.82 and the performance gain is only 32%. 

Figure 4-1-1(b) shows the performance improvement as a function of F1 when the p factor 

is a decreasing function of F1• This is the case if the feature you added is a new instruction that 

takes longer than the original average number of cycles (Co) to execute. This is more complicated 

because the new average number of cycles per instruction (Ci) goes up when the new feature (the 

new instruction) is used more frequently (as F1 increases). When the frequency of this instruction 
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is small (Fi = 0), the new average will still be close to the original average (Ci =Co). However, as 

the frequency of this instruction increases, the new average becomes bigger than the original 

average (C, >c.) and the p factor [P- {;-x g;] decreases. In this case, even if the cycle time is 

not affected by the new feature (Ti =To), you can enjoy the perfonnance improvement of p=l 

only when Fi is small. 

4.2. LISP Support Evaluation 

The SPUR CPU supports LISP by storing the type and generation infonnation in the 8-bit 

tag field of the register (Figure 2-1-2) and perfonning tag checking in parallel with the execution 

of the following instructions (see Appendix A for a detailed discussion of the instruction set): 

Add, Sub, And, Or, Xor, Sll, Sra, and Sri: 

The CPU checks both operands to ensure both operands are 32-bit integers (Fixnum). 

Store 40: 

The CPU checks the generations of the operands to ensure the generation boundary is not 

crossed. 

Cxr and Cxr ro: 

The CPU checks the pointer of the operand to make sure it is either a Cons or Nil. 

Cmp_branch and Cmp_trap: 

If the branch condition requires comparing the lower 32-bit of the two operands, the CPU 

checks to make sure either both operands are Fixnum or both operands are Character. 

The impact of hardware tag checking on LISP program perfonnance, resources allocation, 

and complexity are evaluated in Section 4.2.1, Section 4.2.2, and Section 4.2.3, respectively. The 

results are summarized in Section 4.2.4. 
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4.2.1. LISP Support-Impact on Performance 

In this section, I will use the performance model developed in Section 4.1 to evaluate the 

impact of hardware tag checking on performance by comparing the performance of the SPUR 

CPU against an imaginary stripped down SPUR CPU that does not support tag checking. I will 

use the subscript "i" for the SPUR CPU (Tj, Cj, and Mi) and subscript "o" for the stripped down 

CPU (To, Co, and Mo ). In order to give the stripped down CPU the benefit of the doubt, I assume 

the stripped down CPU stores the type and generation information at some easy to access location 

such that the worlc it take to store and retrieve this information is the same as reading and writing 

the tag in the SPUR CPU. Furthermore, I assume that if a type or generation violation occurs, 

both the CPU and the stripped down CPU will handle the unusual cases similarly. Consequently, 

0.2 0.3 0.4 O.S Fi 
(a) 

Figure 4-2-1 Performance Improvement due to Tag Checking 

1..!!.. • ...9!.. 
Ti a 

0.3 p 

(a) shows the performance gain due to hardware tag checking as a function of F;. The best, 

(Mo = 7, Fi = 0.34) median, (Mo = 5, Fi = 0.23), and the worst arguments (Mo = 3, F; = 0.12) 

for having explicit tag checking are marked in this diagram. (a) assumes T; = To and Ci = Co. 

(b) shows the effect if hardware tag checking increases the cycle time (T; > To), or the average 

number of cycles to execute a instruction (Ci > C0 ), or both. 
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the only difference is that the SPUR CPU checks the type and generation information implicitly 

in parallel with the execution of certain instructions while programs written for the stripped down 

CPU must have explicit instructions to do the type and generation checking. When violations 

occur, the SPUR CPU will trap to the unusual cases handlers while the stripped down CPU will 

branch to the unusual cases handlers. Since the SPUR CPU checks the tag implicitly whenever 

the special instructions are executed, the SPUR CPU takes one instruction to perform tag check-

ing: 

(4.2.1) 

According to the SPUR LISP group [Zor89], LISP programs for the stripped down CPU take 

between three to seven instructions to do the type or generation checking explicitly: 

3 S M0 S 7 => Median M0 = 5 (4.2.2) 

Since the SPUR CPU checks the tag in parallel with the instruction's execution, the average 

number of cycles to execute each instructions is NOT affected by adding the feature: 

(4.2.3) 

The performance improvement, assuming hardware tag checking has no effect on the cycle 

time [{;--=~,can be estimated using the perfonnance model (Equation 4.1.6) and the values 

given by Equation 4.2.1, 4.2.2, and 4.2.3. Figure 4-2-1(a) is a plot of the performance improve-

ment as a function ofF; for Mo = 3, Mo = 5, and M0 = 7. According to George Taylor [Tay86], the 

percentage of instructions that require type and generation checking is between 12% and 34%: 

12% SF; s 34% => Median F; = 23% (4.2.4) 

Based on Equation 4.2.2 and Equation 4.2.4, we have 

Median argument for having implicit tag checking: Mo = 5, F; = 0.23 

Best argument for having implicit tag checking: Mo = 7, F; = 0.34 

Worst argument for having implicit tag checking: Mo = 3, F; = 0.12 
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The performance improvement, assuming hardware tag checking has no effect on the cycle 

time [} = 1] nor on the average number of cycles per instruction [ E -1] is predicted in Fig

ure 4-2-l(a) to be 204%, 92%, and 24%, respectively. If having hardware tag checking increases 

the cycle time (T; > T0 ), or the average number of cycles to execute a instruction (C > C0 ), or 

both. then Figure 4-2-l(b) predicts the performance improvement to be less than the improvement 

predicted in Figure 4-2-l(a). For example, the 24% performance gain predicted by the worst 

argument will be completely nullified if adding hardware tag checking caused an increase in the 

cycle time such that f- :::: 0.8. As will be explained at the end of Section 4.2.3, the point p = 0.4 

can be considered as the place where MIPS-X resides based on Steenkiste 's LISP analysis 

[StH88]. 

The horizontal axis of Figure 4-2-l(b) is not labeled simply as if although I have argued 

g; = 1 in Equation 4.2.3. It is still labeled as p = * x g; to emphasis the fact although 

hardware tag checking does not affect the average number of cycles per instruction directly 

(Equation 4.2.3), it may still change the average indirectly. For example, if we do not implement 

hardware tag checking and somehow can transfer the effort to improve the on-chip instruction 

cache, this better instruction cache may reduce the average number of cycles per instruction form 

1.8 to 1.5. We can then still achieve p=0.8 even if the cycle time is not changed [ ¥,-1]: 

I have defined the critical p factor (pcritical) as the value of p at which performance improve-

ment of the SPUR CPU over the stripped down CPU is zero. As shown in Figure 4-2-l(b), the 

critical p factor for the best case is Pcritical = 0.33, the median case is Pcritical = 0.53, and the worst 

cases is Pcritical = 0.81. Let us give the stripped down CPU the benefit of the doubt and assume the 

effort we saved in not implementing hardware tag checking can be used to improve the cycle time 

and average number of cycles per instruction each by 5%: 
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p = i- X -§- = 0.95 X 0.95 = 0.90 

The perfonnance improvement due to LISP support is reduced to 173% for the best case, 73% for 

the median case; and 12% for the worst case. 

4.2.2. LISP Support-Impact on Resources 

The hardware tag checking that supports LISP requires six special instructions, eight extra 

tag bits in the lower datapath, six extra branch conditions and four extra trap conditions. The six 

special instructions are (see Table A-3-1 and Table A-3-2 in appendix A for a more detail discus-

sion of these instructions and Cache Operations): 

(1) LD _ 40- Load the 32-bit data and 8-bit tag field of the 40-bit register simultaneously. 

(2) LD _ 40_RO- Similar toLD_ 40 except it sends a special Cache Operation to the Cache 

Controller for multiprocessing. 

Six Extra Eight Extra Branch Extra Trap 
Total 

Instructions Tag Bits Conditions Conditions 

Control PLA 
4/54 7% 0/54 0% 0/54 0% 0/54 0% 7% 

Outputs 
Control PLA 

2.2/84 3% 0/84 0% 0/84 0% 0/54 0% 3% 
Products 

Chip Area 
0/57 0% 2.7/57 4.7% 0.1/57 0.2% 1.1/57 1.9% 7% 

(mmx mm) 

Transistors 
0/115 0% 8.7/115 7.6% 0.1/115 0.1% 1.1/115 0.9% 9% 

(x 1000) 

Number of 
0/156 0% 8/156 5% 0/156 0% 0/156 0% 5% 

Signal Pins 

Table 4-2-1 Resources Metrics for Hardware Tag Checking 

Each column lists the absolute and percentage impact of each sub-feature on the different 
resources metrics. The percentage impact is calculated by dividing the absolute impact by the to
tal value of that metric in the SPUR CPU. The total impact of these sub-features, that is the im
pact due to hardware tag checking, is the sum of four columns and is shown in the right most 
column. 
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(3) CXR - Special LD _ 40 instruction that perfonn LISP pointer type checking in parallel. 

(4) CXR_RO- Similar to CXR except it sends a special Cache Operation to the Cache Con-

troller for multiprocessing. 

(5) RD _TAG- Read the 8-bit tag field of the register. 

(6) WR_TAG- Write the 8-bit tag field of the register. 

The six extra branch conditions (Table A-3-9, Appendix A) check the 6-bit type tag (Figure 2-1-

2) of the operands: 

(1) EQ_ TAG -Checks whether the 6-bit type tags of the two operands are equal. 

(2) NE _TAG - Checks whether the 6-bit type tags of the two operands are not equal. 

(3) EQ_38- Checks whether the 32-bit data and the 6-bits type tags of the two operands are 

equal. 

(4) NE_38- Checks whether the 32-bit data and the 6-bits type tags of the two operands are 

not equal. 

(5) EQ TC - Checks whether the 6-bit type tag of the first operand equals a six-bit constant. - . 

(6) NE _ TC - Checks whether the 6-bit type tag of the first operand equals a six-bit constant. 

The four extra trap conditions are (Table A-3-8, Appendix A): 

(1) LISP Pointer Type Violation -The pointer is neither a CONS nor a NIL. 

(2) LISP Data Type 1 Violation -Either operand is not a FIXNUM. 

(3) LISP Data Type 2 Violation - Both operands are not FIXNUM or both operands are not 

CHARACfER 

(4) Generation Violation - Generation of the second operand is greater than the first 

operand. 

The six extra instructions, the eight extra tag bits, the six extra branch conditions, and the 

four extra trap conditions have different impact on resource allocation. Their different impact 
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must be measured by different resources metrics. The left most column of Table 4-2-1 shows the 

resources metrics I selected. Since each metric's absolute value has different dimension, compar

ing different metrics' absolute values is like comparing apple and oranges. Therefore, I find it 

more useful to look at the dimensionless percentage impact on each metric. The percentage 

impact is calculated by dividing the absolute impact by the total number of that metric in the 

SPUR CPU chip. For example, the eight extra tag bits increase the area by 8.7mm 2 (absolute 

impact). Since the total active chip area in the SPUR CPU is 57mm2, the percentage impact is 

.W::7.6%. 

The first row of Table 4-2-1 shows that the SPUR CPU master control PLA has a total 54 

outputs. Four of these 54 outputs (7%) are used to control the six extra instructions. Since all 

other sub-features does not affect the number of outputs in master control PLA, this 7% is the 

total impact due to hardware tag checking. Similarly, the rightmost column of the second, third, 

fourth, and fifth row show that tag checking for LISP support are responsible for 3% of the master 

control PLA product terms, consumes 7% of the total active area, 9% of the total transistors, and 

5% of the total signal pins. Notice that the six extra instructions' impact on resource (Column 1) 

is mainly at the Control PLAs. Their impact on chip area and transistors count are minimum. On 

the other hand, the eight extra tag bits (Column 2) have minimum impact of the Control PLAs but 

affect the chip area, transistors count, and the number of signal pins. Finally, the extra branch 

and trap conditions' impact (Column 3 and 4) is mainly on the chip area and transistors count 

4.2.3. LISP Support-Impact on Complexity 

The complexity due to the LISP supporting features can be quantified by the effort to verify 

their correctness by simulation. The LISP supporting features of the SPUR CPU are simulated at 

both the behavioral and switch level. The diagnostics we used for switch level simulation are: 

(1) cmp-tag_insts- This diagnostic takes 470 cycles to verify that cmp_branch instructions 

that use branch conditions involving tag comparison. 
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Absolute Impact Percentaj!e Imoact 

Cycles of 4,665 4,665/55,516 8% 
Diagnostics = 

Man-Month 0.5 0.5(3.5 14% 
of Effort = 

Table 4-2-2 Complexity Metrics for Hardware Tag Checking 

The first column lists the absolute impact on the complexity metrics due to hardware tag check

ing. The second column lists the percentage impact. The percentage impact is calculated by di

viding the absolute impact by the total value of that metric in the SPUR CPU. 
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(1) fixnum-trap -This diagnostic takes 1086 cycles to verify that all LISP data type viola-

tions will cause a trap. 

(2) fast-reg-tags- This diagnostic takes 1169 cycles to verify that the CPU can read and 

write the tag field of all the registers. 

(3) gen-traps- This diagnostic takes 509 cycles to verify that all generation violation will 

cause a trap. 

(4) cxr-traps - This diagnostic takes 1159 cycles to verify that all LISP pointer type viola-

tion will cause a trap. 

(5) trap-psw - This diagnostic takes 272 cycles to verify that all traps set the processor 

status work (Kpsw and Upsw) correctly. 

The total number of cycles and the man-months of simulation effort are two complexity 

metrics we can extract from this set of diagnostics. Column 1 of Table 4-2-2 is the absolute value 

of these two metrics. As I explained in previous section, I found it more useful to look at the 

dimensionless percentage impact. The percentage impact of each metric is calculated in Column 

2. The total number of cycles of diagnostics we run for the SPUR CPU's switch level simulation 

is 55,516 cycles. The total switch level simulation effort is 3.5 man month. These two numbers 
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Pessimistic View Realistic View Optimistic View 

Performance Worst Median Best 

Impact 11% 73% 174% 

Resources Biggest Median Smallest 

Impact 9% 6% 3% 

Complexity Biggest Median Smallest 

Impact 14% 11% 8% 

Table 4-2-3 Three Different Views of the Tradeoffs 

The pessimistic view uses the smallest performance impact and the biggest resource and com

plexity impact. The realistic view uses the median performance impact. median resource impact, 

and median complexity impact. The optimistic view uses the biggest performance impact and the 

smallest resources and complexity impact 

are used in Column 2 to calculate the percentage of the total effort 

4.2.4. LISP Support-Impact Summary 
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The impact of hardware tag checking on LISP program performance, resources allocation, 

and complexity are illustrated in Figure 4-2-1, Table 4-2-1, and Table 4-2-2, respectively. The 

results of these figure and tables are summarized in Table 4-2-3, giving three different views of 

the performance, resources, and complexity tradeoffs. These three views of the tradeoffs are 

shown graphically in Figure 4-2-2. The median and optimistic views both seems to indicate the 

hardware tag checking is a good feature because the percentage improvement in performance is 

big while the percentage increases in resources and complexity are relatively small. Furthermore, 

as illustrated in Figure 4-2-l(b), both the best and median performance improvement arguments 

have a relatively small critical p factors (pcrilical=0.53 for the median case and PcriticaJ=0.33 for the 

best case). In other words, even if the cycle time or the average number of cycles per instruction 

or both are affected moderately by having hardware tag checking, the SPUR CPU having tag 

checking will still come up a winner. 
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Performance Performance Performance 

+174% 

(b) Median (c) Optimistic 

Figure 4-2-2 Three Different Views of the Tradeoffs 

(a) shows the pessimistic view which uses the smallest perfonnance impact and the biggest 

resources and complexity impact. (b) shows the median view which uses the median perfor

mance impact, median resources impact, and median complexity impact (c) shows the optimis

tic view which uses the biggest perfonnance impact and the smallest resources and complexity 

impact. For clarity,logarithmic scale is used for the performance axis. 
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Finally, the perfonnance analysis shown in Figure 4-2-1 can also be used to compare the 

LISP perfonnance between the SPUR CPU and the MIPS-X. Both the SPUR CPU and the 

MIPS-X are RISC style load-store processors aim for single cycle execution. The MIPS-X, how-

ever, does not have hardware tag checking. The MIPS-X has a cycle time of SOns and its average 

number of cycles per instruction is also lower than the SPUR CPU mainly due to its higher inter-

nal instruction cache hit rate. Therefore for a first order approximation, MIPS-X can be con-

sidered as a stripped down SPUR CPU that does not have hardware tag checking but have a faster 

cycle time and lower number of cycles per instruction. More specificly, assuming the MIPS-X 

cycle time is SOns and the average number of cycle per instruction is 1.2 (80% better than the 

SPUR CPU), we have: 
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The performance improvement due to LISP support is now reduced to 22% for the best case, 

-23% for the median case, and -50% for the worst case. In other words, for the best case (SPUR 

CPU's point of view), the MIPS-X performance is only 82% (1/1.22) of the SPUR CPU's perfor

mance. However, for the median and worst case, the MIPS-X is 30% (1/0.77) and 100% (1/0.5) 

faster. Incidently, these numbers agrees with Steenkiste's analysis [StH88]. 

These numbers, however, should not be used to draw the conclusion that hardware tag 

checking is a bad idea. It will be unfair because hardware tag checking should not be blamed for 

the SPUR CPU's relatively slow cycle time (lOOns) and small internal instruction cache (128 

instructions). The SPUR CPU cycle time is limited by system considerations, conservative circuit 

design, and the conservative 4-phase non-overlap clocking scheme. The main reason why the 

SPUR CPU has a small internal instruction cache is that we try to be conservative and build the 

instruction cache using the relatively large static RAM cells that were used in the register file. A 

better conclusion is that the MIPS-X designers, who are willing to take more risks, used more 

aggressive circuit designs to lower the cycle time and increase the size of the internal instruction 

cache. Under most circumstance, these improvements are enough to offset the SPUR CPU's 

hardware tag checking. 

4.3. FPU Support Evaluation 

The SPUR CPU supports floating point arithmetic by a coprocessor-the Floating Point Unit 

(FPU). The FPU is connected to the SPUR CPU via a parallel coprocessor interface [HaK86]. 

Detailed discussions of coprocessor interface and FPU design can be found in (Han88] and 

[Bos88], respectively. The floating point instructions supported by the FPU are: 

(1) F _ADD- Floating point add. 

(2) F _SUB -Floating point subtract 

(3) F _ MUL -Floating point multiply. 
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(4) F _DIV- Floating point divide. 

(5) F _ CMP - Floating point compare. 

(6) F _MOV- Floating point move. 

(7) F _ABS - Find the absolute value of a floating point number. 

(8) F _NEG -Negate a floating point number. 

(9) CVTS - Convert a double precision number to single precision. 

(10) CVTD- Convert a single precision number to double precision. 

(11) SYN- Synchronize the CPU and the FPU. 
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The CPU treat all these instructions as NOOP when the FPU is disabled and treat them as 

illegal instructions when FPU is enabled. F _ADD, F _SUB, F _CMP, F _MUL, and F _DIV can be 

considered as major FPU instruction because it is the FPU's goal to provide the ADD, SUB, 

MUL, DIVIDE and CMP operations. The other FPU instructions can be considered as supporting 

instructions because these instructions are provided to make the FPU operate more efficiently. 

Section 4.3.1 will focus on the performance impact of the major FPU instructions. Section 4.3.2, 

and Section 4.3.3 discuss FPU support's impact on resources and complexity in the SPUR CPU's 

perspective. Section 4.3.4 summarizes the results. 

4.3.1. FPU Support-Impact on Performance 

This section I will use the performance model developed in Section 4.1 to evaluate the 

impact of FPU support on floating point intensive program's performance by comparing the 

SPUR CPU to an imaginary stripped down SPUR CPU that does not support floating point opera

tion. As before, I use the subscript "i" for the SPUR CPU (Ti, Ci, and Mi) and subscript "o" for 

the stripped down CPU (T0 , Co. and M0 ). As far as the SPUR CPU is concerned, each floating 

point operation is supported by a floating point instruction to be executed by the FPU, therefore: 
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Precision 
Execution Number of Approx. Number 

Time (us) Cydes (NRtsc) of Instruction (MRJSc) 

Add/Sub 
s 63 472.5 80 

D 83 622.5 100 

Multiply 
s llO 825 140 

D 680 5100 850 

Divide 
s 191 1432.5 240 

D 712 5340 900 

Table 4-3-1 RISC I Floating Point Operations Measurements 

Column 2 are the execution time of the various floating point operations. Using the numbers in 

Column 2 and Equation 4.3.2, we can calculate the numbers in Column 3. Then using the 

numbers in Column 3 and Equation 4.3.3, we can calculate the numbers in Column 4. 

(4.3.1) 

On the other hand, in the stripped down CPU, the floating point operations must be per-

formed by floating point routines. The execution time of various floating point routines on a 

RISC I simulator running at (7.5/4)MHz were measured by Sippel [Sip82]. I have divided the 

7.5MHz quoted in Sippel's report by four because RISC I has a four-phase clock and 7.5 MHz is 

the frequency between phases. Since we know the average number of cycles per instruction for 

RISC I is approximately 1.5 (CR1sc = 1.5), we can calculate the approximate number of instruc-

tions RISC I takes to emulate the various floating point operations (MRIScl) by using Equation 

4.3.2 and 4.3.3. The results are summarized in Table 4-3-1: 

NRISC = ETRISC X ..,....!- = ETRISC x ¥MHz 
lRJSC <+ 

(4.3.2) 

(4.3.3) 

where 

NR1sc = Number of cycles to execute the floating point operation in RISC I 

ETRISC = Execution time of the floating point operation in RISC I 
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4 
T RJSC = Cycle time of RISC I simulator = 7 .5MHz 

MRISC = Number of instructions to execute the floating point operation in RISC I 

CRJsc = Average number of cycles per instruction in RISC I = 1.5 

Assume the number of instructions to execute the various floating operations in the stripped 

down CPU are similar to those in RISC I and the number of operations to execute a floating point 

compare is similar to that of floating point subtract, we have: 

80 ~ Mo (Add/Sub/Cmp) ~ 100 

140 ~ M 0 (Multiply)~ 850 

240 ~ Mo (Divide) ~ 900 

The coprocessor interface that connects the SPUR CPU and the FPU allows them to operate 

together in two different modes: 

Sequential Mode 

After issuing a FPU instruction, the CPU must wait until the FPU finishes before continuing 

its operation. Since it takes the FPU longer to execute any FPU instruction than the CPU 

takes to execute an integer instruction, the average number of cycles per instruction will 

increase when a FPU instruction is executed (Ci > C0 ). 

Parallel Mode 

After issuing a FPU instruction, the CPU continues to execute integer instructions and will 

stall only if it encounters another FPU instruction and the FPU is still busy from a previous 

FPU instruction. For the best scenario, there are enough integer instructions in between FPU 

instructions and the average number of cycles per instruction will NOT increase when FPU 

instruction is executed (Ci = C0 ). 

In order to derive the equation that relates Ci and Co for the sequential and parallel mode, I need 

to define the following tenns: 

Ei = Number of cycles to execute instruction type j 
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Fi = Frequency of instruction type j 

Assume we have N types of CPU (integer) instructions and P type of floating point instructions, 

then the average number of cycles per instruction for the SPUR CPU operating in sequential 

mode with the FPU is C; : 

(4.3.4) 

For the stripped down CPU that does not support floating point instructions, the average number 

of cycles per instruction is Co : 

(4.3.5) 

The term Fi (j=l,2,3 ... N) is used in Equation 4.3.5 to emphasis the fact that the frequency 

of the integer instructions may change when floating point instructions are eliminated. Let us 

assume the changes in frequencies are small then: 

Fi 
Ei 

Fi xEi Mi Fi*Mi 
Min Max Min Max Min Max Min Max 

FADD 2.4% 3.3% 4 0.096 0.132 80 100 1.92 3.30 

FSUB 1.7% 2.4% 4 0.068 0.096 80 100 1.36 2.40 

FCMP 1.4% 1.9% 4 0.056 0.076 80 100 1.12 1.90 

FMUL 3.2% 4.5% 7 0.224 0.315 140 850 4.48 38.25 

FDIV 1.3% 1.9% 19 0.247 0.361 240 900 3.12 17.10 

Total 10.0% 14.0% - 0.691 0.980 - - 12.0 62.95 

Table 4-3-2 Impact of FPU Support on Performance 

Every colwnn, except Column Ei, is divided into two sub-columns that corresponds to the 

minimum and maximum values of that column. The minimum sub-column of Column Fi x Ei is 

calculated from (Min Fi) x Ei. The maximum sub-column of Column Fj x Ej is calculated from 

(MaxFj)xEi. The minimum sub-column of Column Fi xMi is calculated from 

(Min Fi) x (Min Mi ). The maximum sub-column of Column Fi x Mi is calculated from 

(Max Fi) X (Max Mj). 
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(4.3.6) 

Consequently, by combining Equation 4.3.4, 4.3.5, and 4.3.6, we have for sequential mode: 

(4.3.7) 

Similarly for parallel mode: 

(4.3.8) 

where 

PORpar = Portion of FPU operations in parallel with CPU operations 

Table 4-3-2 summarized the typical values for the frequency of various floating point 

operations-F1 [Pat89] [Tay89], the number of cycles it takes the SPRU FPU to execute these 

operations-E1 [Bos88], and the number of instructions the stripped down CPU takes to emulate 
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Figure 4-3-1 Performance Improvement due to FPU Support 
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Ti 

(a) and (b) show the performance improvement as a function of the frequency of the coprocessor 
(FPU) instructions (Fi) and the portion of FPU instructions that can be executed in parallel with 
CPU instructions (PORpar ). I have assumed the average number of cycles per CPU instruction to 
be 1.5 for (a) and 2.0 for (b). (c) shows the effect on the best and worst case if supporting the 
FPU degrades the CPU cycle time (Ti > T0 ). 
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these operations-Mi (Table 4-3-1). The products Fi xEi and Fi xMi are also calculated in this 

table. The numbers in Table 4-3-2 can be used to calculate the numbers needed by the perfor-

mance model (Equation 4.1.6) using the following formulas: 

=> 10% ~ F; ~ 14% => Median F; = 12% (4.3.9) 

=> 120 ~ M0 ~ 450 => Median M0 = 285 (4.3.10) 

=> 0.691 ~ 'f. Fj x Ei ~ 0.980 => Median 'f. Fix Ej = 0.836 (4.3.11) 

In the formulas above, the summation indexes j = N + 1 and j = N +P are dropped for clarity. 

The values given by Equation 4.3.11 are used in Equation 4.3.8 to calculate the effective C; in 

terms of Co. These numbers can then be used with the performance model (Equation 4.1.6) to cal-

culate the performance improvement due to the FPU supporting features. This is shown in Figure 

4-3-1 as a function of the frequency ofFPU instructions (F;), the portion.ofFPU instructions that 

can be executed in parallel with CPU instructions (POR,..), and the cycle time ratio [ +,]. 
Each line in Figure 4-3-1(a) and (b) assume a fixed frequency of FPU instructions (10%, 

12% and 14%) and a fixed average number of cycles per CPU instruction-1.5 in (a) and 2.0 in 

(b). Notice that Figure 4-3-1(a) and Figure 4-3-1(b) predict the same amount of performance 

improvements when PORpar = 1.0 because all FPU instructions are executed in parallel with the 

CPU instructions. Consequently, g; = 1 at PORpor = 1 for both graphs (a) and (b). Assume the 

portion of FPU instructions that can be executed in parallel with the CPU integer instructions is 

between 40% and 80%, we have the following best and worst case scenarios: 

Worst Case: 

Frequency of FPU instruction is only 10% (F; = 0.10), the average number of instructions 

the stripped down CPU takes to emulate the FPU operations is 120 (Mo = 120), and the 
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average number of cycles per CPU instruction is 1.5 (Co = 1.5). 

Best Case: 

Frequency of FPU instruction is 14% (Fi = 0.14), the average number of instructions the 

stripped down CPU takes to emulate the FPU operations is 450 (Mo = 450), and the average 

number of cycles per CPU instruction is 2.0 (Co= 2.0). 

Figure 4-3-1(a) predicts even at the worst case, the FPU support improves the floating point 

performance by 900%-the SPUR CPU is 10 times faster than the stripped down CPU. Figure 4-

4-1(b) predicts at the best case, the FPU support improves the floating point performance by 

5700%-the SPUR CPU is 58 times faster than the stripped down CPU. Both these two cases 

have asswned the FPU support has no effect on the CPU cycle time. However, as shown in Fig

ure 4-3-1(c), even if the cycle time is degraded by 10%, the performance improvement is still 

respectable: 5100% for the best case and 700% for the worst case. 

4.3.2. FPU Support-Impact on CPU Resources 

In addition to the 11 floating point instructions listed in the beginning of this section, the 

FPU support capabilities also requires eight load instructions, four store instructions, a coproces

sor interface, two extra branch conditions, and one trap condition. As far as the SPUR CPU is 

concerned, these extra FPU load and store instructions are similar to the CPU load and store 

instructions except that the FPU will receive or provide the data. The SPUR CPU is still responsi

ble for generating the effective address and send the proper Cache Operation code to the Cache 

Controller. The two extra branch conditions are: 

(1) FPU _TRUE- Branch if the floating point compare instruction results in a true condition. 

(2) FPU_FALSE- Branch if the floating point compare instruction results in a false condi

tion. 

The extra trap condition is: 
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FPU Coprocessor Total 
Instructions Interfaces 

Control PLA 
3/54 6% 0/54 0% 6% 

Outputs 
Control PLA 

4/84 5% 0/84 0% 5% 
Products 

Chip Area 
0/57 0% 6/57 10% 10% 

(nun xmm) 
Transistors 0!115 0% 0.4/115 0% 0% 

(x 1000) 
Number of 

32/156 21% 5/156 3% 24% 
Signal Pins 

Table 4-3-3 Resources Metrics for FPU Support 

Each column lists the absolute and percentage impact of each sub-feature on the different 

resources metrics. The percentage impact is calculated by dividing the absolute impact by the to

tal value of that metric in the SPUR CPU. The total impact of these sub-features, that is the im

pact due to FPU support, is summarized in the right most column. 

(1) FPU_EX- FPU exception. 
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The impact of FPU support on resources are quantified into several resources metrics in 

Table 4-3-3. The impact of the two extra branch conditions and the one extra trap condition on 

resources is so small that it is not listed in the table. The number of transistors consumed by the 

FPU support is also negligible. Area consumption is mainly due to the coprocessor interface 

which include suspension logic in the master control, a special register FpuPC, and routing the 

instruction bus! onto the output pads. FPU support also consumes 37 of the total 156 signal pads. 

The SPUR CPU must broadcast the instruction currently being fetched via 32 of these pads. This 

is the only way the FPU can find out the current instruction because the internal instruction 

caches makes the instruction currently being fetched invisible to the outside world. 

4.3.3. FPU Support-Impact on CPU Complexity 

The complexity due to the FPU supporting features can be quantified by the simulation 
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Absolute Impact Percenta2:e Impact 

Cycles of 1,543 1,543/55,516 3% 
Diagnostics = 
Man-Month 0.5 0.5/3.5 14% 

of Effort = 

Table 4-3-4 Complexity Metrics for FPU Support 

The first column lists the absolute impact on the complexity metrics due to FPU support. The 

second column lists the percentage impact The percentage impact is calculated by dividing the 

absolute impact by the total value of that metric in the SPUR CPU. 

effort. The diagnostics we used for switch level simulation are: 
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(1) fpu-fpu_busy- This diagnostic takes 190 cycles to verify that the CPU will stall suspend 

the pipeline when the FPU is busy and the CPU wants to issue a new FPU instruction. 

(2) fpu-enable_fpop- This diagnostic takes 142 cycles to verify that the CPU will treat FPU 

operations instructions as illegal instruction when the FPU is disabled and treat them as 

FPU instructions when the FPU is enabled. 

(3) fpu-enable ld- This diagnostic takes 144 cycles to verify that the CPU will treat FPU 

load and store instructions as illegal instruction when the FPU is disabled and treat them 

as FPU instructions when the FPU is enabled. 

(4) fpu-fpc - This diagnostic takes 148 cycles to verify that the address of the last FPU 

instruction issued by the CPU is stored in the special register FpuPC. 

(5) fpu-serial -This diagnostic takes 173 cycles to verify that the CPU and FPU can operate 

in sequential mode. 

(6) fpu-sync- This diagnostic takes 142 cycles to verify that the CPU and FPU operations 

can be synchronized by the SYNC instruction. 



Chapter 4: Microarchitectural Evaluation 111 

(7) fpu-cpu_trap -This diagnostic takes 153 cycles to verify that the FPU operation can 

survive a CPU trap. 

(8) fpu-fpu_trap -This diagnostic takes 144 cycles to verify that the FPU operation can 

interrupt the CPU operation via a FPU exception. 

(9) fpu-cmp- This diagnostic takes 146 cycles to verify that the CPU can correctly execute 

a cmp_branch that uses the FPU branch conditions. 

(10) fpu-allopcodes- This diagnostic takes 161 cycles to verify that the CPU can correctly 

identify all FPU instructions. 

The total number of cycles and the man-month of simulation effort are two complexity 

metrics we can extracted from this set of diagnostics. These are summarized in Table 4-3-4. 

4.3.4. FPU Support-Impact Summary 

Performance Performance 

Figure 4-3-2 Three Different Views of the Tradeoff's 

(a) shows the pessimistic view which uses the smallest performance impact and the biggest 

resources and complexity impact. (b) shows the median view which uses the median perfor

mance impact, median resources impact, and median complexity impact (c) shows the optimis

tic view which uses the biggest performance impact and the smallest resources and complexity 
impact. For clarity, the performance axis is on a logarithmic scale. 
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The FPU support's impact on performance (Figure 4-3-1), resources (Table 4-3-1), and 

complexity (Table 4-3-2) can be summarized in the following inequalities: 

700% ~Performance Impact~ 5100% => Median Performance Impact= 2900% 

5% ~Resources Impact~ 24% => Median Resource Impact= 14.5% 

3% ~Complexity Impact~ 14% => Median Complexity Impact= 8.5% 

In Table 4-3-3, the FPU support's impact on transistors is 0%. For conservative analysis, 

this is not used as the minimum resources impact. Instead, the next smallest increase (5%) is 

used. These numbers indicate the use of the coprocessor FPU via a coprocessor interface to sup

port floating point operations is a good idea because the FPU support only increases the resource 

and complexity by a small amount but improves floating point intensive programs drastically. 

This is of course only the CPU's perspective. A lot of resources and complexity not included in 

this tradeoffs analysis are involved in the design and implementation of the coprocessor FPU 

[Bos88] and the coprocessor interface. Furthermore, the performance improvement is for floating 

point intensive programs only. If a program does not have any floating point operations, the 

coprocessor interface and the FPU will not improve the program's performance. 

4.4. Extra Pipeline Stage Evaluation 

The only difference between the SPUR CPU pipeline and the RISC II pipeline is shown in 

Figure 4-4-1. The SPUR CPU pipeline has an extra memory access stage (Mem) that allows the 

SPUR CPU to execute LOAD without suspending the pipeline. The extra pipeline stage's impact 

on performance, resources, and complexity are evaluated in Section 4.4.1, 4.4.2, and 4.4.3 respec

tively. The results are summarized in Section 4.4.4. 

4.4.1. Extra Pipe Stage-Impact on Performance 

This section evaluates the extra pipeline stage's impact on performance by comparing the 

performance of the SPUR CPU against an imaginary stripped down SPUR CPU that uses the 

RISC II three stage pipeline. I will use subscript "i" (T;, C;, M;) for the SPUR CPU and the 
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SPUR CPU pipeline 

Figure 4-4-1 RISC II Pipeline vs. SPUR CPU Pipeline 

This figure assumed the external cache will provide the data within one cycle. Under this as

swnption, the SPUR CPU 4-stage pipeline will execute LOAD without pipeline suspension. 

However, since the execution stage (Exec) of the instruction following the LOAD (12) overlaps 

the memory access stage (Mem) of the LOAD, 12 cannot use the LOAD's destination register. 

We call LOAD a delay instruction and 12 the delay slot On the other hand, the RISC II pipeline 

is suspended for one cycle whenever LOAD is executed. Due to this one cycle suspension, the 

execute stage (Exec) of 12 is delayed until after the data access phase of the LOAD and 12 can 

uses the LOAD's destination register. 
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subscript "o" (T0 , Co. M0 ) for the stripped down CPU. In the SPUR CPU 4-stage pipeline, the 

instruction after the LOAD (12 in Figure 4-4-1) cannot use the destination register of the LOAD. 

This delay slot must be filled by a NOOP unless we can find a instruction that does not use the the 

destination register of the LOAD. Therefore in the worst case, the load function is perfonned by 

two instructions-the LOAD and the NOOP in the delay slot: 

M; = 2- PORtal (4.4.1) 

PORt;u = Portion of the delay slot is filled by an useful instruction 

On the other hand, in the 3-stage pipeline, the instruction immediately after the LOAD can 

use the destination register of the LOAD. Therefore, the number of instructions it takes to per-

fonn the load function is just one-the LOAD instruction: 

M0 = 1 (4.4.2) 

The average number of cycles per instruction for the SPUR CPU (C;) is different from the 

average number of cycles per instruction for the stripped down CPU (Co) because the 3-stage 

pipeline must be suspended for data access whenever a LOAD is executed. In order to look at this 
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difference quantitatively, I define the following terms: 

N~otMJ_ 4 = Average number of cycles to execute LOAD in the 4-stage pipeline, 

N~oad_ 3 = Average number of cycles to execute LOAD in the 3-stage pipeline, 

NotA.r = Average number of cycles to execute other instructions in either pipeline, 

U~oad = Number of LOAD instruction in the benchmark, 

I; = Number of instructions it takes the SPUR CPU to execute the benchmark, 
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/ 0 = Number of instructions it takes the stripped down CPU to execute the benchmark, 

F; = Frequency of LOAD instructions in the SPUR CPU = Ul~. and 

F~oad = Frequency of LOAD instructions in the stripped down CPU = U'iad • 

I assume the number of LOAD instructions (U~oad) and the average number of cycles to exe

cute instructions other than LOAD (NotJur) to be the same for programs that are written for either 

pipeline. Since the SPUR CPU can execute LOAD without pipeline suspension and I assume the 

external memory can provide data within a cycle (if not. it will affect either pipeline equally), the 

average number of cycles to execute LOAD in the SPUR CPU 4-stage pipeline is the same as all 

other instructions: 

Nlot>d_4 = NotMr => C; = NotMr (4.4.3) 

Since the RISC II 3-stage pipeline always suspend the pipeline for one cycle whenever 

LOAD is executed, the average number of cycles to execute LOAD is just one more cycles than 

the average for other instructions: 

Nload_3 = NotMr + 1 

Co = F~oadxN/oad_3+(1-Fioad)xNotJur = Noth.r +Float!. (4.4.4) 

Combining Equation 4.4.3 and Equation 4.4.4, we have: 

(4.4.5) 

In general, the frequency of LOAD in the stripped down CPU (F~oatJ.) will be slightly bigger 

than the frequency of LOAD in the SPUR CPU (F;) because programs written for the SPUR CPU 
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will have some extra NOOPs in the delay slots of LOAD. These extra NOOPs increase the total 

number of instructions to execute the benchmark (h) and since the number of LOAD (Uload) is 

constant, the frequency is lower. The number ofNOOPs in the LOAD's delay slots is Urroop: 

The number of instruction it takes the stripped down CPU to execute a benchmark can be 

calculated by subtracting the extra NOOPs in the LOAD's delay slot from the number of instruc-

tion it takes the SPUR CPU to execute the same benchmark: 

10 =I;- UNJOp =I; x [ 1-F; x (1-PORJill)] 

The frequency of LOAD in the stripped down CPU can now be calculated as: 

(4.4.6) 

Before we go any further, let us perform couple sanity checks on Equation 4.4.6. Assume 

POR1ill = 1, Equation 4.4.6 gives Fload =F;. This makes sense because this is the case when all 

LOAD delay slots are filled with useful instructions in the SPUR CPU. As a second check, 

assume POR1;u = 0. The maximum F; possible for the SPUR CPU 4-stage pipeline with 

PORt;u = 0 is 0.5 because there must be a NOOP for every LOAD-half of the instructions are 

NOOP. Using POR1ill = 0 and F; = 0.5, Equation 4.4.6 predicts F load = 1. This again makes sense 

because in the stripped down CPU, LOAD does not have to be separated by NOOP. Therefore 

our two checks show Equation 4.4.6 to be "sane". 

Combining Equation 4.4.5 and Equation 4.4.6, we have: 

F; 
Co = C; + 1-F; X (1-PORJ;u) 

Co _ 1 + F; 
c:; - C; X (1- F; X (1- PORJill)) 

(4.4.7) 

Conventional wisdom says that longer pipeline usually has shorter cycle time because 

longer pipeline usually means there will be less thing to do in each pipe stage [Kog81]. This, 

however, is not the case when we add one more stage to the RISC II 3-stage pipeline to form the 
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SPUR CPU 4-stage pipeline because: 

(1) The increase in the number of stages is not a result of dividing the tasks into smaller 

pieces. The original task (Ifet, Exec, and Wr) are the same for both pipelines. 

(2) The extra Mem stage is a delay stage for all instructions other than LOAD. This extra 

pipe stage increases the complexity of the datapath and control logic. 

Since (1) states that the orginal tasks are not getting any simplier and (2) states that the extra task 

increases the complexity, the cycle time of the SPUR 4-stage pipeline (Ti) is likely to be bigger 

than the cycle time of the RISC II 3-stage pipeline (To): 

To < l 
T;- (4.4.8) 

The performance improvement of the SPUR CPU 4-stage pipeline over the stripped down 

3-stage pipeline is plotted in Figure 4-4-2 as a function of the portion of the delay slot being filled 

-15 

PORmJ 
1.0 

T~ = 1 Ci= 1.5 
T1 (a) 

1
Critical PORfill • O.SO 

To= 1 Ci=2.0 
Ti (b) 

I 
Critic:ol Tcfli..0.9l 

(c) 

Figure 4-4-2 Performance Improvement due to the Extra Pipe Stage 

(a) and (b) show the perfonnance improvement as a function of the portion of the LOAD delay 

slot being filled (POR fill) by useful instructions and the frequency of the LOAD (Fi ). I have as

sumed the average number of cycles per non-LOAD instruction to be 1.5 for (a) and 2.0 for (b). 

(a) and (b) assume the pipeline with the extra pipe stage has the same cycle time as the shorter 

pipeline (Ti =To). (c) shows the effect if the longer pipeline has a longer cycle time (Ti > To). 
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by useful instructions (PORfiu). frequency of LOAD (F;), and the cycle time ratio [ -¥,-]. This is 

the result of applying Equation 4.4.1, 4.4.2, 4.4.7, and 4.4.8 to the performance model (Equation 

4.1.6). Each line in Figure 4-4-2(a) and (b) assume a fixed frequency of LOAD (10%, 20% and 

30%) and a fixed average number of cycles per instruction for all non-LOAD instructions-1.5 in 

(a) and 2.0 in (b). There are two things worth noticing: 

(1) The performance improvement is negative when POR1;u is 0 because the 3-stage pipeline 

only requires the pipeline to suspend for one cycle while the 4-stage pipeline will waste 

C; cycles (C; > 1) to execute the NOOP in the delay slot due to misses in the internal 

instruction cache. 

(2) The portion of the delay slot that must be filled (the critical POR1m) in order for for the 

4-stage pipeline to have the same performance as the 3-stage pipeline (IMP;= 0%) is a 

function of the average number of cycles per non-LOAD instructions (C;) only. The 

breakeven point depends on POR1m and not on the LOAD frequency (F;) because the 

number of cycles the SPUR CPU wasted whenever a LOAD is executed (SPUR...,asu) is: 

SPURwasu = C; x [ 1- PORtm] 

At the critical PORtill, the number of cycles the SPRU CPU wasted equals to the number of 

cycles the 3-stage pipeline must be suspended whenever a LOAD is executed. In the RISC II 3-

stage pipeline, this number of cycles is one. Therefore: 

C; x [ 1 - (Critical POR fill)] = 1 

Critical PORt;u = 1- -t- (4.4.9) 

Using Equation 4.4.9, we have: 

Critical PORt;u (C;=l.5) = 0.33 Critical PORtill (C;=2.0) = 0.50 

In the discussions above, we have assumed the only reason why non-LOAD instructions 

take more than one cycle to execute is due to misses in the internal instruction cache. This is true 

for the SPUR CPU in which the average number of cycles per non-LOAD instruction (C;) is 
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estimated to be somewhere between 1.5 and 2.0. Furthennore, let us give the 4-stage pipeline the 

benefit of the doubt and assume: 

(1) The pipeline with the extra pipe stage has the same cycle time as the shorter pipeline. 

(2) The frequency of LOAD is 30% (F, = 0.3). 

(3) The LOAD delay slot is filled by useful instruction 80% of the time (POR 1w = 0.8). 

The perfonnance improvement, as shown in Figure 4-4-2(a) and (b), is still only between 

9% and 14%. However, as discussed earlier (Inequality 4.4.8), the SPUR CPU cycle time is likely 

to be bigger than that for the stripped down CPU. As shown in Figure 4-4-2(c), the cycle time of 

the stripped down CPU only has to be approximately 10% smaller than the SPUR CPU cycle 

time (between 1- 0.92 = 8% and 1-0.88 = 12% to be exact) to neutralize out all the perfonnance 

advantage of the SPUR CPU 4-stage pipeline. 

4.4.2. Extra Pipe Stage-Impact on Resources 

The resources impact of the extra pipe stage can be estimated by comparing the resources 

needed to implement the SPUR CPU 4-stage pipeline to the resources needed to implement the 

RISC II 3-stage. Relative to the resources needed to implement the RISC II 3-stage pipeline, the 

Extra Temp. Extra Extra Extra Control 
Total 

Re2ister PC Comparators Stage 

Chip Area 
1.1/57 2.0% 0.2/57 0.3% 0.1/57 0.2% 0.3/57 0.5% 3% 

(mmxmm) 

Transistors 
1.8/115 1.6% 0.4/115 0.3% 0.2/115 0.2% 0.4/115 0.3% 2% 

(x 1000) 

Table 4-4-1 Resources Metrics for the Extra Pipe Stage 

Each column lists the absolute and percentage impact of each components on the different 

resources metrics. The percentage impact is calculated by dividing the absolute impact by the to

tal value of that metric in the SPUR CPU. The total impact of these sub-features, that is the im

pact due to the extra pipe stage, is summarized in the right most column. 
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extra pipe stage requires: 

(1) One extra temporary register (Dst2) in the lower datapath (Figure 2-3-1). 

(2) One extra program counter register (MemPC) in the upper datapath (Figure 2-3-2). 

(3) Two extra comparators for the internal forwarding logic. Internal forwarding is discussed 

in Figure 2-1-6. 

(4) One extra stage (MemCtrBuf) in the Sequencer of the Master Control (Figure 2-4-3). 

All these components increase the area and transistors count of the SPUR CPU. Their 

impacts are summarized in Table 4-4-1. Their impacts on control PLA's output, control PLA's 

product terms, and output signal pins, however, are either none or negligible. In order to keep the 

table simple, these negligible impacts are not shown. 

4.4.3. Extra Pipe Stage-Impact on Complexity 

Simulation effort cannot be used directly as complexity metric for the extra pipe stage 

because we do not have a separate set of diagnostics designated just to test the extra pipe stage. 

However, every SPUR CPU diagnostic checks this extra stage implicitly. I estimated that 15% of 

all the diagnostics cycles were spent in checking this stage. Furthermore, I also believed that this 

Absolute Imoact Percentat!e lmoact 

Cycles of - - 15% 
Dia2nostics -
Man-Month 1 1/3.5 29% 

ofEfTort -

Table 4-4-2 Complexity Metrics for the Extra Pipe Stage 

The first column lists the absolute impact on the complexity metrics due to the extra pipe stage. 

The second column lists the percentage impact The percentage impact is calculated by dividing 

the absolute impact by the total value of that metric in the SPUR CPU. In Row 1, I do not have 

the exact values of the Absolute Impact but I can estimate the Percentage ImpacL 
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extra pipe stage makes all diagnostics more complex and increase the simulation effort by one 

man-month-29%. These two numbers are summarized in Table 4-4-3. 

4.4.4. Extra Pipe Stage-Impact Summary 

The extra pipe stage's impact on perfonnance (Figure 4-4-1), resources (Table 4-4-1), and 

complexity (Table 4-4-2) can be summarized in the following inequalities: 

9% ~ Perfonnance Impact~ 14% => Median Perfonnance Impact= 11.5% 

2% ~Resources Impact~ 3% => Median Resource Impact= 2.5% 

15% ~Complexity Impact:::; 29% => Median Complexity Impact= 22% 

The 4-stage pipeline does not use up that many resources but it does increases the complex-

ity. Notice that the best perfonnance improvement is estimated to be only around 14%. This is 

assuming the SPUR CPU pipeline with the extra stage will have the same cycle time as the 

stripped down CPU's 3-stage pipeline. As we can see from Figure 4-4-2(c), this performance 

improvement will disappear quickly if the cycle time of the SPUR CPU is only slightly bigger 

than the cycle time of the stripped down CPU. Consequently, I do not think the SPUR CPU 4-

Performance Performance 

+9% +11.5% 

Performance 

+14% 

Resources Complexity 

(c) Optimistic 

Figure 4-4-3 Three Different Views of the TradeofTs 

(a) shows the pessimistic view which uses the smallest perfonnance impact and the biggest 

resources and complexity impact. (b) shows the realistic view which uses the median perfor

mance impact and median resources and complexity impact. (c) shows the optimistic view 

which uses the biggest perfonnance impact and the smallest resources and complexity impact. 
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stage pipeline is a winning feature. 

In general, I think designer should be very careful whenever they add "delay" stages in the 

pipeline to avoid pipeline suspension due to structural conflicts [Kog81] because the perfonnance 

improvement may be relatively small. There are two reasons for this caution: 

(1) Due to data or branch hazard, adding a delay stage in the pipeline is likely to end up 

creating a delay instruction and the delay slot must be filled for the longer pipeline to be 

an advantage. 

(2) Adding a delay stage increases the length and thus the complexity of the pipeline without 

finer division of the original task. This may result in a longer cycle time. 

4.5. On-Chip Instruction Cache Evaluation 

The design and implementation of on-chip instruction cache are discussed in detail by 

[Hi187a] and [Dun86], respectively. Section 4.5.1, 4.5.2, and 4.5.3 discuss on-chip instruction 

cache's impact on perfonnance, resources, and complexity of the SPUR CPU. Section 4.5.4 sum

marizes the results. 

4.5.1. On-Chip Instruction Cache-Impact on Performance 

This section evaluates the on-chip instruction cache's impact on perfonnance by comparing 

the perfonnance of the SPUR CPU against an imaginary stripped down SPUR CPU that does not 

have an internal instruction cache. I will use subscript "i" (Tj, Cj, Mi) for the SPUR CPU and the 

subscript "o" (To, Co, Mo) for the stripped down CPU. The on-chip instruction cache does not 

affect the number of instruction to perfonn any function directly. However, without the on-chip 

instruction cache, instruction fetch and data access cannot occur in parallel and it becomes impos

sible to implement the SPUR CPU 4-stage pipeline. Therefore the stripped down CPU must use 

the shorter RISC II 3-stage pipeline. Based on the discussion in Section 4.4, we have: 
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M; = 2- PORtm (4.5.1) 

PORt;u = Portion of the LOAD delay slot is filled by an useful instruction 

M0 = 1 (4.5.2) 

The stripped down CPU's average number of cycles per instruction or its cycle time must 

be bigger than the CPU because it does not have an on-chip instruction cache and must fetch 

every instruction from the slower external cache. Let us assume: 

Assumption 1 

The external cache is so big that the instruction miss rate is negligible. It always takes one 

cycle to fetch an instruction unless instruction fetch is blocked by data access. In other 

words, the stripped down CPU without an on-chip instruction cache runs slower so that it 

can fetch and execute one instruction per cycle under most situations. 

However, no matter how slow the stripped down CPU runs, it still cannot fetch and execute one 

instruction every cycle because its 3-stage pipeline must be suspended whenever a LOAD or 

STORE instruction is executed to avoid data access and instruction fetch conflict. Based on the 

discussion in Section 4.4 that results in Equation 4.4.5, we get the following equation for stripped 

down CPU's average number of cycles per instruction (Co): 

Co = C; + Fload + F non (4.5.3) 

C; = C; if the SPUR CPU has a perfect on-chip instruction cache 

F lotMl = Frequency of LOAD instructions in the stripped down CPU 

F non = Frequency of STORE instructions in the stripped down CPU 

The term C; is used instead of C; in Equation 4.5.3 because of Assumption 1. Assume the exter-

nal cache miss rate is low, the term C; can be expressed as: 

C; = C; - (1 - HIT icaclw) X PEN icaclw 

HIT icaclw = Hit rate of the SPUR CPU on-chip I -cache 

PENicaclw = Miss penality of the SPUR CPU on-chip I -cache 

(4.5.4) 
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In order to simply the derivation, I will write the frequency of the STORE instruction as a func-

tion of the LOAD instruction: 

(4.5.5) 

Applying Equation 4.5.4 and Equation 4.5.5 to Equation 4.5.3, we have: 

(4.5.6) 

As shown previously in Equation 4.4.6, frequency of LOAD in programs written for the 

stripped down CPU (F~oad) can be expressed in tenns of the frequency of LOAD in programs 

written for the SPUR CPU (Fj). Consequently, Equation 4.5.6 can be written as: 

IMP(%) 
30 

PORfill = 0.7 
Beta=0.7 
PEN=2.0 

To = 1 
Ti 

(a) 

PORfill = 0.7 
Beta=0.7 
PEN=2.5 

(b) 

.Th.- 1 
Ti -

(4.5.7) 

To 
Ti 

(c) 

Figure 4-5-1 Performance Improvement due to the On-Chip Instruction Cache 

(a) and (b) show the performance improvement as a function of the instruction cache hit rate 

(Hicoch4) and the frequency of the LOAD (Fi ). I have assumed the on-chip instruction cache miss 

penalty to be 2.0 for (a) and 2.5 for (b). (a) and (b) assume the on-chip instruction cache has no 

effect on the cycle time. The effect of reduction of cycle time (Ti <To) due to the on-chip instruc

tion cache is shown in (c). 
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The perfonnance improvement of the SPRU CPU over the stripped down CPU that does not 

have an on-chip instruction cache is plotted in Figure 4-5-1 as a function of the probability of the 

!-cache hit rate (}/"~" ), frequency of LOAD (F; ), and the cycle time ratio [ {;-l· This is the 

result of applying equations 4.5.1, 4.5.2, and 4.5.7 to the perfonnance model (Equation 4.1.6). In 

order to reduce the number of variables in the graph, I have assumed: 

(1) 70% of the LOAD delay slot are filled by useful instruction (POR1;zz = 0.7) for Equation 

4.5.1. 

(2) The frequency of STORE is 70% of the LOAD frequency@= 0.7) for Equation 4.5.7. 

Each line in Figure 4-5-1(a) and (b) assume a fixed frequency ofLOAD(20% and 30%) and 

a fixed instruction cache miss penalty-2.0 in (a) and 2.5 in (b). The lower limit of !-cache miss 

penalty is two cycles. This limit (PENALTY = 2.0) can only be achieved if the external cache can 

supply the missing instruction within a cycle. Therefore in Figure 4-5-1(b), where the !-cache 

miss penalty is two and half cycles (PENALTY= 2.5), the extra half cycle can be considered as 

miss penalty of the SPUR CPU external cache. Therefore Figure 4-5-1(b) is biased against the 

SPUR CPU (worst case) because it assumes the SPUR CPU has to pay an external cache miss 

penalty while this penalty is assumed to be negligible for the stripped down CPU (see Assump

tion 1). Notice that Figure 4-5-1(a) and (b) predict the same amount of performance improve

ment when H;ct~CM = 1 because neither case has to pay the the !-cache miss penalty when the hit 

rate is 100%. 

Assumption 1 essentially states that all things being equal, the SPUR CPU average number 

of cycles per instruction will always be higher than the stripped down CPU unless the SPUR CPU 

has a perfect instruction cache (100% hit rate). Therefore, Figure 4-5-1(a) and (b), which neglect 

the on-chip instruction cache's effect on cycle time [ {;- = 1] , should predict the performance 

improvement to be negative for all cases where Hicac~a. <1. This is not the case because "all things 

are not equal" for the SPUR CPU and the stripped down CPU. Besides reducing the cycle time, 
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the internal instruction cache also enable the SPUR CPU to execute LOAD and STORE without 

suspending the pipeline. This is the only advantage of the on-chip instruction cache when its 

effect on cycle time is neglected. However, this advantage disappear quickly as the hit rate 

(Hicacl!.) decreases. 

Figure 4-5-1(c) shows the on-chip instruction cache's impact on performance when the 

cache's effect on cycle time is taken into account. We believe the on-chip instruction cache 

improve the SPUR CPU cycle time by 50% [ {r = 15]. Mark Hill estimated the instruction 

cache hit rate to be 75% [Hi187b]. George Taylor [Tay86] estimated the frequency of LOAD to 

be between 20% and 30%. Based on these numbers, we have: 

Best Case 

30% LOAD, 0.7 x 30% = 24% STORE, two cycles miss penalty. 

Worst Case 

20% LOAD, 0.7 x 20% = 14% STORE, two and half cycles miss. penalty. 

As shown in Figure 4-5-l(c), the performance improvement of these two cases are 41% and 19% 

respectively if the on-chip instruction cache can improve the cycle time by 50%. 

4.5.2. On-Chip Instruction Cache-Impact on Resources 

The on-chip instruction cache in the SPUR CPU is organized into an Instruction Unit (Sec

tion 2.2) that can be divided into two parts: (1) datapath, and (2) controller. Table 4-5-1 shows the 

resources impact of the on-chip instruction cache can be estimated by counting the area and 

transistors consumed by the Instruction Unit. Table 4-5-1 has three columns: Column 1 shows 

resources consumed by the datapath of the Instruction Unit. Column 2 shows resources consumed 

by the controller of the Instruction Unit, and Column 3 shows the total resources consumed by 

the Instruction Unit 
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1-Unit 1-Unit Total 
Data path Controller 

Chip Area 
16.7/57 29% 2/57 4% 33% 

(mm xmm) 

Transistors 
36.4/115 32% 1.2/115 1% 33% 

(x 1000) 

Table 4-S-1 Resources Metrics for the On-Chip Instruction Cache 

Each column lists the absolute and percentage impact of each components on the different 

resources metrics. The percentage impact is calculated by dividing the absolute impact by the to

tal value of that metric in the SPUR CPU. The total impact of the datapath and the controller is 

the impact due to the on-chip instruction cache and is summarized in the right most column. 
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The datapath of the Instruction Unit, which consists of the cache and tag array, consumes 

32% of the number of transistors but only 29% of the chip area. This is a result of the regularity 

of the cache and tag arrays. On the other hand, the controller of the instruction cache is not as 

regular. Consequently, it consumes 4% of the chip area although it only represents 1% of the 

number of transistors. Neither the controller nor the datapath of the Instruction Unit has any 

significant impact on the PLA's output nor product terms. This indicates the Instruction Unit is 

relatively independent from the Execution Unit. In order to keep the Table 4-5-1 simple, these 

negligible impacts are not shown. 

4.5.3. On-Chip Instruction Cache-Impact on Complexity 

The complexity due to the on-chip instruction cache can be quantified by the simulation 

effort. The on-chip instruction cache of the SPUR CPU is simulated at both the behavioral and 

switch level. The diagnostics we used for switch level simulation are: 

(1) cc-IB_disabled- This diagnostic takes 364 cycles to verify that the SPUR CPU can at 

least run with the Instruction Unit disabled. 



Chapter 4: Microarchitectural Evaluation 

Absolute Impact Percenta2e Impact 

Cycles of 
4,994 4,994/55,516 9% 

Diagnostics = 
Man-Month 

0.25 0.25/3.5 7% 
of Effort = 

Table 4-5-2 Complexity Metrics for the On-Chip Instruction Cache 

The first column lists the absolute impact on the complexity metrics due to the on-chip instruc
tion cache. The second column lists the percentage impact The percentage impact is calculated 
by dividing the absolute impact by the total value of that metric in the SPUR CPU. 
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(2) cc-IB _fetch- This diagnostic takes 356 cycles to verify that the SPUR CPU can run with 

the Instruction Unit enabled but prefetching disabled. 

(3) cc-IB _fetch- This diagnostic takes 261 cycles to verify that the SPUR CPU can run with 

the Instruction Unit and prefetching enabled. 

(4) cc-IB_stuck -This diagnostic takes 4013 cycles to verify that there is no "stuck-at" 

errors in the Instruction Unit 

The total number of cycles and the man-month of simulation effort are two complexity 

metrics we can extracted from this set of diagnostics. Column 1 of Table 4-5-2 is the absolute 

value of these two metrics. The percentage impact of each metric is calculated in Column 2. 

Notice that the increase in complexity due to the Instruction Unit is relatively small. 

4.5.4. On-Chip Instruction Cache-Impact Summary 

The impact of the on-chip instruction cache on performance, resources allocation, and com-

plexity are illustrated in Figure 4-5-1, Table 4-5-1, and Table 4-5-2 respectively. The results of 

these figure and tables can be summarized as: 

19% :5> Performance Impact :5> 41% => Median Performance Impact= 30% 

33% :5> Resources Impact :5> 33% => Median Resources Impact= 33% 
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Performance 

+30% 

Figure 4-5-2 Three Different Views of the Tradeoff's 

Performance 
+41% 

(a) shows the pessimistic view which uses the smallest performance impact and the biggest 
resources and complexity impact. (b) shows the median view which uses the median perfor
mance impact and median resources and complexity impact. (c) shows the optimistic view 
which uses the biggest performance impact and the smallest resources and complexity impact. 

7% ~Complexity Impact~ 9% => Median Complexity Impact= 8% 
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These ranges of impact numbers can be used to formulate the optimistic, median, and pes-

simistic views of the performance, resources, and complexity tradeoffs. These three views are 

shown graphically in Figure 4-5-2. Notice that although the Instruction Unit consumes a large 

amount of resources, its impact on complexity is relatively small. 

4.6. Multiprocessing Support Evaluation 

The SPUR CPU supports multiprocessing by communicating with the Cache Controller 

Chip· [Woo86] via a specialized coprocessor interface [WEG87]. The performance model 

developed in Section 4.1 cannot be used here because it is developed for uniprocessor perfor-

mance analysis only. Uniprocessor's performance is a function of cycle time, instruction count, 

and average number of cycles per instruction. These factors are not as significant in a multipro-

cessor environment where many processors work in parallel. Consequently, multiprocessor's per-

formance depends more on the number of processors [Kat85], bus traffic [Gib87], and cache 

behavior [EgK88]. Since all these factors are outside the scope of this thesis, the multiprocessing 
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support's impact on perfonnance will not be studied here. Instead, we will concentrate on mul-

tiprocessing support's impact on resources in Section 4.6.1, and complexity in Section 4.6.2. The 

results is summarized in Section 4.6.3. 

4.6.1. Multiprocessing Support-Impact on Resources 

Instructions 
Cache Controller Total 

Interfaces 
Control PLA 

6/54 11% 0/54 0% 11% Outputs 
Control PLA 

2/84 2% 0/84 0% 2% Products 
Chip Area 

0/57 0% 2.2/57 4% 4% (mm xmm) 
Transistors 

0/115 0% 0.8/115 1% 1% (x 1000) 
Number of 

0/156 0% 15/156 10% 10% Signal Pins 

Table 4-6-1 Resources Metrics for Multiprocessing Support 
Each column lists the absolute and percentage impact of each sub-feature on the different 
resources metrics. The percentage impact is calculated by dividing the absolute impact by the to
tal value of that metric in the SPUR CPU. The total impact of these sub-features, that is the im
pact due to multiprocessing support, is summarized in the right most column. 

The multiprocessing support requires seven load instructions, three store instructions, and a 

Cache Controller Interface. Although all load or store instructions are alike internally, the CPU 

must request different cache operations for different load or store instructions via the cache con-

troller interface. The impact of multiprocessing support on resources are quantified into several 

resources metrics in Table 4-6-1. The instruction's impact are mainly on the number of control 

PLA outputs. On the other hand, the Cache Controller Interface's major impact is on the number 

of signal pins. The number of transistors and active chip area consumed by the multiprocessing 

support are relatively small. 
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4.6.2. Multiprocessing Support-Impact on Complexity 

The complexity due to the multiprocessing support can be quantified by the simulation 

effort. The cooperation of the SPUR CPU and the Cache Controller is simulated in both the 

behavioral and switch level. The diagnostics we used for switch level simulation are: 

(1) cc-epromLd32- This diagnostic takes 260 cycles to verify that the SPUR CPU can work 

together with the Cache Controller to load 32-bit data from the external word. 

(2) cc-ldSt40- This diagnostic takes 1184 cycles to verify that the SPUR CPU can work 

together with the Cache Controller to load and store 40-bit data from and to the external 

world. 

(3) cc-short_hit- This diagnostic takes 2131 cycles to verify that the SPUR CPU can work 

together with the Cache Controller to handle a cache hit situation. 

(4) cc-shortMissPF- This diagnostic takes 1392 cycles to verify that the SPUR CPU can 

work together with the Cache Controller to handle a cache miss that results in a page 

fault. 

(5) cc-ptetMissPF -This diagnostic takes 1585 cycles to verify that the SPUR CPU can 

work together with the Cache Controller to handle a cache miss that results in a page fault 

Absolute Impact Percentage Impact 

Cycles of 13,875 13,875/55,516 25% 
Diagnostics = 
Man-Month 1.0 1.0/3.5 29% 

of Effort = 

Table 4-6-2 Complexity Metrics for Multiprocessing Support 

The first column lists the absolute impact on the complexity metrics due to hardware tag check

ing. The second column lists the percentage impact. The percentage impact is calculated by di
viding the absolute impact by the total value of that metric in the SPUR CPU. 
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and the page table entry is not in the cache. 

(6) cc-short_si- This diagnostic takes 1805 cycles to verify that the SPUR CPU can work 

together with the Cache Controller to handle an interrupt 

(7) catch-fault- This diagnostic takes 5518 cycles to verify that the SPUR CPU can work 

together with the Cache Controller to handle page faults that caused by store operations. 

The total number of cycles and the man-month of simulation effort are two complexity 

metrics we can extracted from this set of diagnostics. The metrics are summarized in Table 4-6-

2. Notice that the increase in complexity due to multiprocessing support is relatively big. 

4.6.3. Multiprocessing Support-Impact Summary 

The impact of the on-chip instruction cache on resources allocation and complexity are 

illustrated in Table 4-6-1 and Table 4-6-2 respectively. The results of these figure and tables can 

be summarized as: 

Resources 

+11% 

+29% 

Complexity 

(a) Pessimistic 

Resources 

Complexity 

(b) Median 

Resources 

+1% +25% 
' ... ..1 

Complexity 

(c) Optimistic 

Figure 4-6-1 Three Different Views of the Tradeoff's 

(a) shows the pessimistic view which causes the biggest resources and complexity impact. (b) 

shows the median view which causes the median resources and complexity impact. (c) shows the 

optimistic view which causes the smallest resources and complexity impact. 
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1% ~ Resources Impact ~ 11% => Median Resources Impact= 6% 

25% ~ Complexity Impact~ 29% => Median Complexity Impact= 27% 
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These ranges of impact numbers can be used to formulate the optimistic, median, and pes-

simistic views of the resources and complexity impact. These three views are shown graphically 

in Figure 4-6-2. Notice that while the multiprocessing support does not consume a large amount 

of resources, its impact on complexity is large. 

4.7. Microarchitectural Evaluation Summary 

The performance model introduced in Section 4.1 allows us to study performance quantita

tively. Section 4.7.1 summarizes how this simple model was used to study the performance 

improvement caused by different SPUR CPU features. Section 4.7.2 gives a quantitative argu

ment for keeping the cycle time and average number of cycles per instruction low. Finally, Sec

tion 4. 7.3 discusses a systematic approach to the performance, resources, and complexity trade

offs. 

4.7.1. Versatility of the Performance Model 

The performance model introduced in Section 4.1 allows us to study different microarchi

tectural features• impact on performance by comparing the performance of the advanced microar

chitecture with that feature against a stripped down microarchitecture without that feature. This 

performance model has only five parameters: 

(1) M;: The number of instruction it takes to perform a certain function with the architectural 

feature under consideration. 

(2) Mo: The number of instruction it takes to perform a certain function without the architec

tural feature under consideration. 

(3) F;: The frequency of the architectural feature being used. 
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(4) if: The cycle time ratio. 

(5) g: :The average number of cycles per instruction ratio. 

This simple performance model is versatile enough to let us evaluate the performance 

impact of different SPUR CPU features although they affect the performance very differently. All 

we have to do is find the proper values or, in more complex cases, find the proper expression for 

the five parameters. For example, in Section 4.4 the number of instructions it takes to execute a 

LOAD (Mi) is expressed in terms of the proportion of the LOAD delay slot being filled by useful 

instruction PROJiU· Below is a summary of how the different features of the SPUR CPU affect 

these five parameters. In all cases, I have used the subscript "i" for the SPUR CPU (Ti, Cj, Mi) 

and subscript "o" for the stripped down CPU (To, Co, Mo ). 

LISP Support: 

Mi = 1. Mo > 1 and depends on the number of instructions it takes to do the explicit tag 

checking. Fi is the frequency of the instructions that requires tag checking. Finally, g: 

and if are not affected directly. 

FPU Support: 

Mi = 1. M0 > 1 and depends on the number of instructions it takes to emulate the floating 

point operations. Fi is the frequency of the floating point operations. g: < 1 because even 

with the FPU coprocessor, the number of cycles it takes the CPU-FPU combination to exe

cute a floating point operation is still bigger than the average number of cycles per CPU 

instruction. Finally, if is not affected directly. 

Extra Pipeline Stage: 

Mo = 1. Mi > 1 and depends on the proportion of the LOAD delay slot being filled by useful 

instruction. Fi is the frequency of the LOAD. g; > 1 because the stripped down CPU 
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must suspend the pipeline for one cycle whenever LOAD is executed. Finally, * is not 

affected directly. 

On-Chip Instruction Cache: 

Mo = 1. M; > 1 and depends on the proportion of the LOAD delay slot being filled by useful 

instruction. Fi is the frequency of the LOAD and STORE. -§- > 1 because the stripped 

down CPU must suspend the pipeline for one cycle whenever LOAD and STORE is exe

cuted Finally, if-> 1 because the on-chip instruction cache eliminate the need for going 

off-chip to fetch every instruction. 

I must point out that the performance improvement due to LISP and FPU support are very 

program dependent The FPU support will not benefit any program that does not contain any 

floating point operation. Similarly, the LISP support feature will not benefit any program that is 

not written in LISP. 

4.7.2. The Need for Speed 

Figure 4-5-l(c) shows that the performance improvement predicted by the best argument 

for having on-chip instruction cache increases 47% (from -6% to 41%) while the worst argument 

increases only 40% (from -21% to 19%) when the cycle time is improved by 50%. In general, the 

best argument for having a particular feature improves faster than the worst argument when the 

cycle time, the average number of cycles per instruction, or both are improved by that feature. 

From the opposite viewpoint, the best argument for having a particular feature degrades faster 

than the worst argument when the cycle time, or the average number of cycles per instruction or 

both are degraded by that feature. This is illustrated in Figure 4-2-l(b), Figure 4-3-l(c), and Fig

ure 4-4-2(c). For example, in Figure 4-2-l(b) when the p factor (the product of the cycle time 

ratio and the average number of cycles per cycle ratio) is reduced from 1.0 to 0.9, the best argu

ment for having tag checking drops 30% (from 204% to 174%), the median argument only drops 



Chapter 4: Microarchitectural Evaluation 

IMPi= [ ~ - 1] = 2.04 = 

IMPi = [ ~ - 1 J = 0.24 = 

0% 

IMPi=-1009': 

Figure 4-7-1 The Effect of Degrading P Factor 

This is a simplified version of Figure 4-2-1(b) which shows how the performance improvement 

due to hardware tag checking is affected by degrading cycle time or average number of cycles 

per instruction or both. The p factor is defined as the product of the cycle time ratio and the 

average number of cycles per cycle ratio. Notice that asp decreases, the performance improve

ment predicted by the best argument (top line) drops off faster than the median argument (mid

dle) which drops faster than the worst argument (bottom). This make sense mathematically be

cause all these lines must merge at minus 100% when p = 0. 
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19% (from 92% to 73%), while the worst argument drops even less, only 13% (from 24% to 

11%). As illustrated in Figure 4-7-1, this make sense mathematically. However as engineers, we 

were taught not to believe the mathematics unless it makes sense physically! 

In order to understand why the top line drops faster than the bottom line (Figure 4-7-1), we 

have to look at the case p = 1. When p = 1, we are ignoring the effects of the new feature on 

cycle time and the average number of cycles per instruction. A big performance improvement at 

p = 1 (top line) means adding that feature can reduce the number of instructions (I) by a large 

amount Seen another way, it means getting rid of the feature will increase the number of instruc-

tions by a large amount. In our LISP example Figure 4-7-1(b), the best argument for having tag 

checking (top line) therefore predicts an increase of 204 instructions for every 100 instructions if 

tag checking is removed. The worst argument predicts only an increase of 24 extra instructions 

for every 100 instruction. 
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At p=l, the gap between the best and worst arguments represents this difference in number 

of instructions (204- 24 = 180) because we are neglecting hardware tag checking's effect on cycle 

time and average number of cycles per instruction. On the other hand, at p <l, the gap between 

the best and worst arguments represents the time the stripped down CPU takes to execute the 

extra 180 instructions. Ifby getting rid of hardware tag checking we can reduce the cycle time or 

the average number of cycles per instruction or both (smaller p ), the time it takes the stripped 

down CPU to execute the extra instructions is reduced. Consequently as we move towards the 

p=O point, the gap between the best and worst arguments gets smaller and smaller. Finally, at 

p=O, the stripped down CPU's cycle time and average number of cycles per instruction is so 

much faster than the SPUR CPU that the time to execute the extra instructions is negligible-the 

gap disappears. As a matter of fact, at p=O, the time the stripped down CPU takes to execute the 

benchmark is practically zero compare to the execution time of the SPUR CPU. The performance 

improvement is therefore -100%. 

In my opinion, this is a good quantitative argument for keeping the cycle time and average 

number of cycles per instruction low at all cost because they benefit all instructions-not just one 

particular instruction. However, I must also point out that when I say reduce the cycle time, it 

does not mean just reduce the CPU cycle time. The environment surrounding the CPU-such as 

the memory system and the 1/0 devices-must also speed up. Otherwise the extra wait states will 

lower the performance improvement This, of course, is one version of Amdahl's law [Amd67] 

which states that the speed of any computation is limited by its slowest part. 

4.7.3. Performance Resources and Complexity TradeotTs 

Resources and complexity are two separate ways we can pay for performance. As we can 

see from our analysis, resources and complexity are quite independent For example, the on-chip 

instruction cache has a large impact on resources but only a small impact on complexity. On the 

other hand, the multiprocessing support has large impact on complexity but only a small impact 

on resources. The microarchitect has many options to achieve the desired performance by 
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Option 1 

resources 
available 

Figure 4-7-2 Performance Resources and Complexity TradeotTs 

The options, which correspond to different features that can be included in the microarchitecture, 

are placed in increasing complexity on the vertical axis. The performance and resources needed 

for these options are plotted on the horizontal axes. Each module has its own minimum perfor

mance requirement which is a direct result of the overall performance goal. This performance re

quirement place an "acceptable performance" bound on the Performance axis. 

137 

selecting different features for the microarchitecture. All options involve tradeoffs between per-

formance, resources, and complexity. 

This type of tradeoff is shown graphically in Figure 4-7-2. Since we are considering what 

features to be included in the CPU, Option 1 could be a basic CPU that has minimum features. It 

is simple in complexity, low cost in resources, and low performance. Option 2 could be a CPU 

similar to Option 1 but the microarchitect uses resources to pay for more performance by adding 

a very large instruction cache. This large instruction cache increases the resources a lot but only 

increases the complexity slightly. Option 3 could be a CPU similar to Option 1 but the microar-

chitect uses complexity to pay for more performance by using a very long pipeline. This long 

pipeline increases the complexity a lot but only increases the resources slightly. Option 4 could 

be a combination of Option 2 and Option 3. The microarchitect uses both resources and complex-

ity to pay for more performance by using a moderate size instruction cache and a moderate length 

pipeline. The interaction between the pipeline and the instruction cache further increases the 

complexity. However, since the cache is much smaller than the cache in Option 2, the resources it 
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consumes is less. Finally, Option N could be a machine that is so complex that its performance is 

less than a simple machine that uses far fewer resources. 

The performance requirement for the CPU places an "acceptable performance" bound on 

the performance axis (Figure 4-7-2). Given this performance requirement, the microarchitect 

must include enough features in the microarchitecture such that the performance requirement is 

met while at the same time stay within the resources and complexity constraints. Here is the 

recommended approach: 

(1) Make an educated guess on how many resources you are willing to spend or are available 

to the CPU. This places a "resource available" bound on resources axis in Figure 4-7-2. 

(2) Within this bound, pick the simplest option available. 

(3) If this option's performance is within the acceptable range, then mission accomplished. 

Otherwise, go to Step 4. 

(4) If there are any other options within the resource bound, pick the next more complex 

option and go back to Step 3. Otherwise go to Step 5. 

(5) If possible, go to Step 1 and increase the resources available bound. Otherwise, you may 

need to reduce the performance expectation. 

Using Figure 4-7-2 as an example, Step 2 of this procedure will pick Option 1. However, in 

Step 3, we will find out Option 1 's performance is below the acceptable range. In Step 4, Option 

2 will not be considered because it is beyond the resources available bound. Option 3 will be 

chosen because it is less complex than Option 4. Unfortunately, in Step 3, we will again find out 

Option 3's performance is not acceptable. This will lead us back to Step 4 and select Option 4. 

This time, when we get back to Step 3, we will find out Option 4 's performance is acceptable. 

This kind of tradeoff should always be in a microarchitect's mind and I see absolutely no 

reason why we can build CAD tools to place and route million of gates but cannot build tools to 

help designer to make tradeoffs in this fashion. In this chapter, the performance resources and 
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complexity tradeoffs are done on the complete CPU. In chapter 5, I will show how this tradeoffs 

can be extended into lower level modules that form the CPU. There are two things I want to 

point out: 

(1) We always pick the simplest option because a complex option requires the most expen

sive resource-the human designer. The simplest solution can also make use of the newest 

technology. When technology is improving fast it can negate the performance advantage 

of complex solution that takes longer to implement and debug. 

(2) We do not pick the highest performance option because any option within the perfor

mance specification is as acceptable as the highest performance option. The reason is that 

the increase in CPU performance alone will not improve the system performance drasti

cally unless you speed up all components of the system. This is another version of 

Amdahl's law [Amd67]. 

In this chapter, we performed the performance resources and complexity tradeoffs analysis 

after the SPUR CPU was built. This is educational, but may be too late unless we are willing to 

build multiple prototype to correct our mistakes. Next chapter, I will show a systematic approach 

that will perform this type of analysis earlier in the design process. 
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Chapter 5 

A SYSTEMATIC APPROACH TO 

MICROARCHITECTURAL DESIGN 

I shall never believe the God plays dice with the world. 

Albert Einstein, 194 7 
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The goal of this thesis, as stated in Chapter 1, is to provide a quantitative way to evaluate 

microarchitectures and a systematic way to design them. In Chapter 4, I have used the SPUR 

CPU as an example to show how microarchitecture can be evaluated quantitatively. In this 

chapter, I show how to approach the microarchitectural design problem systematically. 

5.1. The Microarchitectural Design Problem 

This section discusses the microarchitectural design problem. Section 5.1.1 formally defines 

the term microarchitecture and then the phrase "microarchitectural design." Section 5.1.2 intro

duces a set of important issues that are important to microarchitectural design. Section 5.1.3 

shows a systematic approach to these microarchitectural issues. 

5.1.1. Microarchitectural Design-The Definition 

The term microarchitecture was defined informally in Chapter 1 as the specification of how 

the macroarchitecture is implemented in a given technology. More formally, the term microarchi

tecture can be defined with respect to Gajski 's tripartite representation [Gaj85] as all the informa

tion the designer knows about the design at its microarchitecturallevel. As shown in Figure 5-1-

-t. the microarchitectural level is one of the five possible design levels in Gajski's tripartite 



Chapter 5: A Systematic Approach 

Physical Domain 

Figure 5-1-1 The Tripartite Representation of a Design 

In Gajski tripartite representation, a design can be described in three separate domains: 

behavioral, structural, and physical. Each domain is represented by one of the three axes that 

form theY chart. Within each domain, there are five design levels. I have added concentric cir

cles to Gajsk.i original tripartite representation to show the five design levels graphically. The 

design levels can be viewed as different levels of abstraction and each design level represents all 

the informations known about the design at some point in the design process. 
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representation. Since each design level is shown in Figure 5-1-1 to span all three domains, the 

term microarchitectural design refer to the step at which the designer specifies all the microarchi-

tecturallevel features in the behavioral, structural, and physical domains. 

The microarchitectural design step of the SPUR CPU is shown as an example in Figure 5-

1-2. This figure shows the SPUR CPU design processing discussed in Section 3.2 (Figure 3-2-1) 

with respect to the tripartite representation. This representation idealizes the SPUR CPU design 

process into a purely sequential process that starts in the performance specification in the 

behavioral domain and spirals toward the final product-the layout at the physical domain. This is 
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I 
/ 

----• Specification 

- -+ Macroarchitecture Design 

- Microarchitecture Design 
-cP"u: CC, and FPU 

---+ Implementation Physical Domain 

Figure 5-1-2 The Tripartite Representation of the SPUR CPU Design Process 

The four major steps in the SPUR design process-Specification, Macroarchitectural Design, Mi

croarchitectural Design, and Implementation-are shown here with respect to the tripartite 

representation. The three products of the microarchitectural design step are the behavioral 

description in the behavioral domain, a set of micro-modules (specifies in block diagrams) in the 

structural domain, and a floor plan in the physical domain. The ALU and Shifter are examples of 

micro-modules. On the other hand, the Operand Supplier and Functional Unit are examples of 

macro-modules. 
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an idealized picture because, in practice, the sub-steps and products within the four major steps 

cannot be defined as clearly as shown. 

5.1.2. Microarchitectural Design Issues 

The most general approach for handling the microarchitectural design problem involves two 

steps: 

(1) Design the datapath, and 
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(2) Design a controller that controls the datapath. 

This procedure, however, is so general that telling it to an inexperienced designer is about as 

helpful as telling someone who is afraid of flying that the only danger in aviation is hitting the 

ground. There are just too many tasks in these two steps. Fortunately, I can give more direct 

advice: All the tasks involve making decisions concerning certain issues. The designer can 

approach these two complex steps systematically by asking himself what the important issues are 

and finding solutions to them. Based on the SPUR CPU design experience, I think these are the 

six important issues affecting microarchitectural design: 

(1) Off-chip Communication 

Off-chip communication has always been a bottleneck due to the limited number of pins 

and it is worse for output ports because of power considerations [PaS80]. This problem is 

more severe for modem microprocessors which communicate not only with memory but 

also have to communicate with coprocessors, memory management units, and other 

microprocessors in a multiprocessor system. 

(2) Pipeline and Clocking 

A longer pipeline usually leads to a shorter cycle time. The performance gain from a shorter 

cycle time, however, may be lost due to the increased cost in branches and data hazards. 

Alternatively, a shorter pipeline is easier to control and the penalties are smaller for 

branches and data hazards. But a shorter pipeline usually requires more clock phases per 

cycle, leading to a more complicated clock distribution network, a more severe clock skew 

problem, and ultimately a longer cycle time. 

(3) Micro-Modules Selection 

The microarchitect must select a set of micro-modules to implement the instruction set and 

other macroarchitectural features specified by the macroarchitect. 

(4) Resources Allocation 

On-chip storage trade-offs such as the size of register file versus the size of the instruction 
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cache is a very interesting problem by itself [GoH86]. This problem can be generalized to 

include the process of allocating resources to the set of micro-modules. 

(5) On-chip Interaction 

A clean microarchitectural design can restrict most on-chip interactions to internal busses. 

Certain functions such as trap handling, inherently involve many on-chip components and 

interaction is unavoidable. Certain instructions also have the tendency to involve many on

chip components and these instructions should be avoided. 

(6) Floor Planning 

The microarchitecture must eventually be implemented on the limited area of a silicon chip. 

The microarchitect must decide how to place the set of macro-modules according to their 

sizes, aspect ratios, and connections between the macro-modules. 

I call these issues the microarchitectural issues. They can be grouped into three groups with 

respect to the three domains in Gajski tripartite representation. 

Behavioral Issues 

Off-chip communication, and pipeline and clocking are behavioral issues. 

Structural Issues 

Micro-modules selection, on-chip interaction, and resources allocation are structural issues. 

Physical Issue 

Floor planning is a physical issue. 

A microarchitect must answer some tough questions concerning these issues when he 

designs the datapath and the controller. His decisions on these issues will have a direct effect on 

the performance, resources, and complexity tradeoffs. 

5.1.3. A Systematic Approach to Microarchitectural Issues 

A systematic approach to microarchitectural design must begin with a systematic approach 

to the microarchitectural issues. Ideally, the microarchitect would like to tackle one 
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microarchitectural issue at a time. Unfortunately, all microarchitectural issues are interrelated. 

Decisions concerning one issue usually lead to (or restrict) decisions concerning the others issues. 

A systematic approach to these issues must take these interrelations into account. Here is a sys

tematic approach I recommended: 

Before making any important decisions concerning any microarchitectural issue or issues, 

the microarchitect should: 

(1) List all the unanswered questions concerning each issue. 

(2) Construct a model that can isolate the issue or issues. 

(3) Use the model to conduct quantitative experiments to answer the questions. 

The modeling language does not have to be a hardware description language. The goal is to 

isolate certain aspects of the microarchitectural design at a time. The model the microarchitect 

constructs and the experiments he conducts must take into account the characteristics of the 

underlying teclmology and implementation considerations. There are a couple of interesting ques

tions concerning this approach: 

• How can the microarchitecture be modeled such that the microarchitect can examine a sub

set of the microarchitectural issues at a time? 

• What are the important parameters to be measured in the experiments such that the microar

chitect can make quantitative decisions concerning the issue? 

Before I try to answer these questions, I review background studies on systematic approaches to 

the general design problem. 

5.2. Background Studies 

Hardware description languages and silicon compilers are two areas to look for ideas that 

can help us in developing a systematic approach to microarchitectural design, because microar

chitecture is just one possible representation of the hardware to be implemented in silicon. Sill-
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con compiler research can be considered as an extension of hardware description language 

research because once the hardware is described in a machine readable form, you probably want 

to generate the silicon automatically-the goal of silicon compiler research. Hardware description 

language research, on the other hand, does not limit its focus to integrated circuit. Hardware 

description language research must also study hardware at board and system levels. Furthermore, 

hardware description language must also investigate problems such as formal verification, com-

pilation facilities, access to program libraries, version control, and standardization. Therefore 

with respect to the scope of their research, silicon compiler research can also be considered as a 

subset of the hardware description language research. 

5.2.1. Hardware Description Languages 

Hardware description languages can be defined as computer languages for describing, docu-

menting, simulating, and synthesizing digital systems with the aid of a computer [Su77]. Accord-

ing to Chu [Chu74], describing digital system in computer language is nothing new: 

The use of computer languages to describe digital system designs can be traced back to 

Shannon's work on switching circuit in 1939, Aiken's work on switching theory at Harvard in 

the 1940's, the logic diagrams at MIT and the National Bureau of Standards in the late 1940's, 

the flipflop equations in the 1950's, and the register languages in the 1960's. 

Yaohan Chu, Why Do We Need Computer Hardware Description Languages? 
Computer, December 1974, Page 18 

Hardware description languages' application, however, was not wide spread until the early 1970s 

when researchers started using them as documentation, simulation, and teaching tools. By the late 

1970s [Su77] hardware description languages were well established as documentation and simu-

lation tools. There was also an attempt to use hardware description language to describe a new 

invention at that time-the microprocessor [Lip75]. Two interesting research topics in hardware 

description languages emerged in the late 1970s are: 

Digital System Analysis and Evaluation 

The goal was to find ways to evaluate the effectiveness and prove the correctness of a pro-
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posed digital system by simply analyzing the system's description in a hardware description 

language. This would eliminate the need for time consuming simulation. 

Structured Design of Digital System 

A digital system described in a well designed hardware description language should be easy 

to partition into modules that are easy to build and design. This will encourage designer to 

use relatively independent modules. 

Physical Domain 

Figure 5-2-1 Classification of Hardware Description Languages 

At each domain, there are certain design levels where no formal hardware description language 

exists. These levels are usually described informally and the informal ways to describe them are 

shown inside parenthesis. The behavioral domain is the domain most covered by hardware 

description languages. As a matter of fact, most so call hardware description languages are 

languages that describe the microarchitecturallevel of the the behavioral domain. 
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These two topics remain important driving forces in hardware description language research 

in the 1980s. Furthermore, the trend of the 1980s is more formal applications of hardware 

description languages and synthesis of hardware from formal machine description. A standard

ized universal hardware description language was a goal since the early 1970s but was never real

ized. I think the goal of having a standardized universal hardware description language is hard to 

achieve because there are different requirements for different applications. This is illustrated in 

Figure 5-2-2, where I have borrowed Gajsk.i's ideas (Figure5-1-1) and classified hardware 

description languages into five levels and three domains. 

In the behavior domain, the system level behavior is usually specified informally in textual 

form as performance specification. The macroarchitectural level behavior can be modeled by an 

instruction level simulator written in a high level programming languages such as C. The 

microarchitectural level behavioral can be described by register transfer languages such as ISP'. 

Logic level behavior can be described by Boolean equations. Finally, the SPICE input deck can 

be used to describe the circuit level behavior. 

In the physical domain, circuit and logic levels are probably the only levels need to be 

described in machine readable form. CIF is the most common language for describing physical 

characteristics at the circuit level-layout (see Figure 5-1-1). On the other hand, procedural design 

languages such as ICL and DPL are common languages for describing physical characteristics at 

the logic level. All other levels are usually described informally in floor plans that have different 

levels of details. 

In the structural domain, PMS at the system level is the only well known hardware descrip

tion language. All other levels are described informally by diagrams and netlists. Here are three 

reasons for this lack of hardware description languages in the structural domain: 

• Most hardware description languages are modeled after high level programming languages. 

They are good at capturing a design's behavior, but contain little structural information. 
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Performance Specification 

Physical Domain 

Figure 5-2-2 Pure Top Down Design Methodology 

The steps of the pure top down design methodology form an inward spiral. For simplicity, feed
back paths between each step are not shown. However, these feedback paths are the reasons why 
iteration is necessary. The pure bottom up design methodology is exactly opposite-an outward 
spiral. The reader can get a mental picture of the pure bottom up design methodology by revers
ing the arrow heads. 
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• Diagrams consisting of black boxes and connections are natural ways to describe structure. 

These diagrams may have different levels of detail at different design levels but are similar 

structurally. Therefore it is conceivable to use PMS for all levels in the structural domain. 

• Most current custom design methodologies require the designer to work in the structural 

domain. The graphical CAD tools they use then capture the structural infonnation impli-

citly and eliminate the need for explicit description of the structure using fonnal description 

languages. For example, the Magic .ext files [SMH85] can be considered as an implicit 

hardware description languages that describe the netlist 
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Human designers prefer to work in the behavioral domain, but their work in the behavioral 

domain must eventually be transformed to the physical domain. Since work in the physical 

domain is tedious (but necessary), designers prefer this transformation to be done automatically. 

This transformation, however, will not be efficient unless important structural information is pro

vided because the structural domain is the bridge between the behavioral and the physical 

domain. Unfortunately, the lack of hardware description languages in the structural domain 

makes it hard to express structural information in machine readable form. Consequently, 

designers end up doing more work in the structural and physical domains than they prefer. In 

order to reduce the manual labor in the structural and physical domains, researchers must pay 

more attention to structural information representation. 

5.2.2. Silicon Compilers 

The term silicon compiler was first used by Dave Johannsen of Caltech back in 1981 

[Joh81]. The silicon compiler concept was inspired by the pure top-down design methodology. In 

Figure 5-2-2 above, I have drawn my view of the pure top-down design methodology with respect 

to Gajski's tripartite representation (Figure 5-1-1). In this view, the steps of the pure top down 

design methodology form an inward spiral that starts at the system level of the behavioral domain 

(performance specification) and ends at the circuit level of the physical domain Qayout). The ulti

mate goal of silicon compiler is to carry out this inward spiral automatically. 

Early silicon compilers were proposed to carry out the entire synthesis process. In order to 

simplify this complex task, a target technology was usually assumed and a fixed floor plan was 

chosen by human designers. In fact, as illustrated in Figure 5-2-3, the highest level input the 

early primitive silicon compilers could accept was the logic level description in the behavioral 

domain. Notice that the human designer must carry out all the design steps manually up to the 

logic level. According to Newton and Sangiovanni-Vincentelli [NeS86], the most important con

tributions of the early silicon compiler research is the development of the Procedural Design 

Languages-hardware description language in the physical domain (see Figure 5-2-1). 
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Figure 5-2-3 Primitive Silicon Compilers 

Logic level description was the usual input to the early silicon compilers. This description can be 

in the behavioral domain for the most powerful compilers, in the structural domain for the less 

powerful compilers, or in the physical domain for the least powerful compilers. In this figure, I 

have shown the most powerful compilers that can accept inputs from the behavioral domain. In 
this case, the designer must carry out all the steps and generate all the products manually up to 

the Boolean equations. 
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The current goal of most silicon compiler research is no longer to carry out the entire syn-

thesis process by one single program. The current emphasis is to create a "silicon compiler design 

environment." This environment is illustrated in Figure 5-2-4 in which the synthesis process is 

divided into stages. CAD tools are then developed to optimize resource allocation and perfor-

mance at each stage, and to automate the transformation from one stage to the other. The com-

mon input of a modem silicon compiler design environment is the register transfer description. 

The Yorktown Silicon Compiler at IBM [Cam87] is one example. Other more ambitious projects, 

such as the Design Automation Assistant (DAA) at AT&T Bell Laboratories [Kow85], accept 

input at the macroarchitecturallevel of the behavioral domain-algorithmic description. 
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Figure 5-2-4 Modern Silicon Compiler Design Environment 

The key words here are "design environment" In the silicon compiler design environment, a set 
of CAD tools are available to optimize and automate each step of the synthesis process. Most 
modern silicon compiler design environment can accept inputs at the microarchitectural level of 
the behavioral domain and generate layout automatically. For some applications such as digital 
signal processing, and some ambitious silicon compiler projects, they can even accept inputs at 
the macroarchitecturallevel of the behavioral domain. 
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The translation from the algorithmic description to the register transfer description (Step 4, 

5, and 6 in Figure 5-2-4) is not a trivial task except for some very specific application such as 

digital signal processing. For more complex applications such as CPU design, this translation 

usually requires the use of some knowledge-based expert system programming techniques. New-

ton and and Sangiovanni-Vincentelli [NeS86] said that in the future, procedural design systems 

and knowledge-based expert systems are crucial for the development of future synthesis system. 

They also believe that the major components of a synthesis system are: 

(1) Procedural Design and Module Generation-Step 7, Step 8, and Step 9 in Figure 5-2-4. 
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(2) Logic synthesis-Step 10, Step 11, and Step 12 in Figure 5-2-4. 

(3) Physical synthesis-Step 13 and Step 14 in Figure 5-2-4. 

5.2.3. Meet in the Middle Approach 

There is one major philosophical difference between the goal of this chapter and research in 

hardware description languages and silicon compilers which is based strongly on computer sci-

ence theory. Their goal is to introduce a new theory-based approach to the design process and 

ultimately automate it. This chapter, on the other hand, is based on the design process that was 

used to create the SPUR CPU. I will look at ways to make this process more systematic and 

Processors, Memory, Switches 

- Top down path 

---.. Bottom up path 

$ Rendezvous point 
Physical Domain 

Figure 5-2-5 Meet In The Middle Approach 

In the meet in the middle approach, system designers start at the performance specification in the 

behavioral domain and work their way down. At the same time, logic and circuit designers start 

at the layout in the physical domain and work their way up. They meet at the microarchitecture 

level of the physical domain. 
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efficient based on the lessons I learned. Furthem10re, the goal of most hardware description 

language and silicon compiler research is to develop CAD tools that can automate the top-down 

design methodology. However, as many custom VLSI chip designers have learned, the top-down 

design methodology is not as practical as the "meet-in-the-middle" approach. My view of the 

"meet-in-the-middle" approach is shown in Figure 5-2-5. 

Cathedral [DRS86] is a silicon compiler for digital signal processing chips that is based on 

the meet at the middle approach. The user of Cathedral must provide "structural hints" to the 

compiler to aid the behavioral to physical compilation. Furthennore, instead of using a module 

generator to generate the layout, Cathedral's compilation is based on "silicon modules" that are 

are designed by layout designer and are composed of functional building blocks. For example, if 

the SPUR CPU is to be compiled by a Cathedral type compilers, the Operand Supplier and the 

Functional Unit (see Figure 2-3-1) are two of the silicon modules. The set of silicon modules 

available to Cathedral was carefully restricted. According to the authors, this restriction was the 

key of Cathedral's success. The authors also believed in order to develop a Cathedral type com

piler, one must follow a series of five steps: 

(1) Define a wide, but concise class of system design applications. 

(2) Define a target architecture and its associated layout style. 

(3) Define a design strategy. 

(4) Define the behavioral language that models the microarchitecture and silicon modules. 

(5) Then and only then develop the CAD tools. 

In our SPUR CPU example, the result of Step 1 is the specification of a general purpose 

CPU with LISP support. In Step 2, the target architecture is a RISC-style processor that does not 

use microcode, and the layout style is the Mead & Conway style. Step 3, Step 4, and Step 5 are 

the major steps toward a a systematic approach to the microarchitectural design problem. They 

are discussed in Section 5.3 in more detail. 
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5.3. Steps Toward a Systematic Approach to Microarchitectural Design 

The major steps toward a systematic approach to microarchitectural design were discussed 

briefly at the end of Section 5.2. I have added some of my own ideas and restated them as: 

(1) Propose a general design strategy. 

(2) Develop models that can capture the microarchitecture's behavioral, structural, and physi

cal features. 

(3) Build or propose CAD tools that can aid the last two steps. 

(4) Refine the general design strategy proposed in Step 1 and iterate again. 

The first three steps are based on the discussion at the end of Section 5.2. I added the last 

step to introduce feedback into the approach. These steps are discussed in Section 5.3.1, Section 

5.3.2, Section 5.3.3, and Section 5.3.4, respectively. In order to limit the scope of my research, I 

will focus the discussion on RISC-style processors that do not use microcode. The discussion are 

based on the the following observations: 

(1) For a RISC-style processor, just looking at the instruction set can tell you a great deal 

about the microarchitecture. 

(2) The model or models for the microarchitecture must be abstract enough for making high 

level design decisions and detailed enough for logic specification and simulation. 

(3) We must reduce the time we spent for verification in order to improve the efficiency of 

the design process. 

(4) We must document all the important design decisions and the assumptions or facts on 

which these decisions are based. 

5.3.1. The Design Strategy 

In the most general term, the microarchitectural design problem can be divided into two 

tasks: (1) design the datapath, and (2) design a controller that controls the datapath. This is shown 
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Figure 5-3-1 Design Strategy 

The microarchitectural design problem can be divided into two tasks: datapath design and con

troller design. The datapath can be further divided into macro-modules and then micro-modules. 

The controller can be further divided into two parts: one controls instruction execution and anoth

er controls unusual conditions. The handling of unusual conditions, however, can be integrated 

into the part that controls instruction execution via the use of internal instructions (see Section 

2.3.3 and Section 2.4.3). 
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graphically in Figure 5-3-1. The design of the datapath is straightforward. First, the microarchi-

teet must select a set of macro-modules needed to implement the instruction set. Examples of 

macro-modules in the SPUR CPU are the Operand Supplier and the Functional Unit. After the 

microarchitect is satisfied with the behavior of these macro-modules, he can expand the macro-

modules into micro-modules. Examples of micro-modules in the SPUR CPU are ALU and the 

Shifter. 

The controller of a RISC machine can be divided into two relatively independent com-

ponents (see Section 2.4.3): the major component that controls instruction execution and a sup-

porting component that controls unusual internal and external conditions. In this design strategy, 

unusual conditions are considered as secondary effects and they will be examined in terms of how 

they will affect the primary event-instruction execution. Furthermore, as discussed in Section 
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2.4.3, unusual condition handling as well as many other control sequences can be reduced to 

sequences of internal instructions that are similar to the regular instructions in the instruction set 

Therefore, the microarchitect can and should concentrate initially only on the primary 

event-instruction execution, and temporarily ignore the unusual conditions and other complex 

control sequences. 

The microarchitect can build the abstract model of the microarchitecture (see Figure 5-3-1) 

according to the instruction set by concentrating only on instruction execution. All he has to do is 

to select a set of macro-modules that are needed by the instruction set and then design the Instruc-

tion Execution Controller that controls the macro-modules. After the microarchitect is satisfied 

with the behavior of this abstract model, he can then tum the abstract model into the expanded 

model (see Figure 5-3-1) by expanding macro-modules into micro-modules and by taking 

unusual conditions detection into account The abstract and expanded models are discussed in 

Section 5.3.2. Notice that I have changed the definitions of macro and micro-modules slightly in 

Instructioo Set 

Figure 5-3-2 The Abstract Model 

The microarchitect constructs this model to study possible instruction execution schemes. The 

microarchitect begins the construction by first selecting a set of high level macro-modules ac

cording to the execution scheme on his mind. He then design a simple controller to translate the 

instruction set into a set of high level control signals to control the high level macro-modules. Ex

amples of macro-modules in the SPUR CPU are Cache Controller Interface and Operand Sup

plier. 
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this section. Instead of using them to describe components in both the datapath and the controller, 

I have used them exclusively for components in the datapath. These definitions will be followed 

for the rest of the discussion. 

5.3.2. Different Models for Different Issues 

The instruction set, the external interface, and performance requirements are usually fixed at 

the microarchitectural level. Therefore, the first task of the microarchitect is to develop an 

instruction execution scheme that can fulfill the external interface and performance requirements. 

The type of model the microarchitect needs at this stage is the abstract model shown in Figure 5-

3-2. He will use this model to verify that the external interface and performance requirements are 

indeed met. Furthermore, he will also use this model to answer questions concerning the 

microarchitectural issues: (1) off-chip communications, and (2) pipeline and clocking. 

Instruction Set Unusual Conditions 

l ! 
Master Control Unusual Conditions 

Handler Logic 

1 • • • High Level Control Signals • • • J 
Local Decoding Logic 1 • • • Local Decoding Logic Q 

Low Level Low Level 
Control Signals Control Signals 

-- Micro Micro 
I-- -- Micro Micro 

~ 

• • • • • 
• Module • • • Module Module • • • Module • 
• 1-1 1-M N-1 N-P • - - - -

Figure 5-3-3 The Expanded Model 

In the expanded model, the macro-modules in abstract model (Figure 5-3-2) are expanded into 

low level micro-modules. The controller in abstract model is expanded into master control, local 

decoding logic blocks, and the unusual conditions detection logic. ALU and SHIFfER are ex

amples of micro-modules in the SPUR CPU. 



Chapter 5: A Systematic Approach 161 

The microarchitect must keep the abstract model as simple as possible so that the effects of 

his design decisions can be identified more directly. This can be accomplished by ignoring details 

that have little effects on the microarchitectural issues that are being investigated. Since pipeline 

and clocking and off-chip communication are the two microarchitectural issues to be investigated 

by the abstract model, second order effects such as unusual conditions handling can be ignored. 

In order to simplify the investigation further, the microarchitect may also want to group instruc

tions into types and examine how the abstract model will execute each type of instruction instead 

of examining individual instructions. In this simple abstract model, where second order effects 

are being ignored, the set of high level control signals is a good indication of the controller com

plexity. Similarly, the set of macro-modules is a good indication of datapath complexity. 

Once the microarchitect has verified the external interface and performance requirements 

have been met, he must move onto microarchitectural issues such as on-chip interaction, micro

modules selection, and resource allocation. Since these microarchitectural issues require a more 

detailed model, he must expand the abstract model into the expanded model shown in Figure 5-

3-3. In this model, the macro-modules are expanded into micro-modules and logic is added to 

detect all the unusual conditions. Furthermore, in order to get a better understanding of the 

micro-modules, the microarchitect must examine how the expanded model executes each instruc

tion instead of how it executes each type of instruction. Finally, if the instruction is not provided 

directly by the external world, an instruction supplier must be added to this model. This is not 

shown in Figure 5-3-3 in order to keep this figure simple. 

The microarchitect should be able to learn enough about the microarchitecture from the 

abstract and expanded models that he can draw out a detailed floor plan The floor plan can be 

considered as a physical model. Table 5-3-1 summarize the various models I proposed and the 

microarchitectural issues each model investigates. The abstract model (Figure 5-3-2) is used 

mainly to investigate behavioral issues. However, structural information is implied in the 

abstract model by the macro-modules connection scheme. Similarly, although the expanded 
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Behavioral Issues Structural Issues 

Off-Chip Pipeline 
On-Chip 

Micro-
Resources 

Communi- and Modules 

cation Clockinl! Interaction Selection Allocation 

Abstract 
MAJOR MAJOR minor - -

Model 

Expanded - - MAJOR MAJOR MAJOR 
Model 

Physical - - minor - -
Model 

Table 5-3-1 The Microarchitectural Models and Issues 

"MAJOR" means that issue is a major concern of that model. 
"minor" means that issue is a minor concern of that model. 
"-" means that issue is a not a concern of that model. 
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Physical Issues 

Floor 

Planninl! 

-

-

MAJOR 

model (Figure 5-3-3) is used mainly to investigate structural issues, the microarchitect is provid-

ing behavioral information when he describes the behavior of the micro-modules. 

Either the abstract or the expanded model can be used to estimate the average number of 

cycles per instruction (C) for the performance model (see Section 4.1). This can be accomplished 

by counting the number of cycles either model takes to execute a set of instructions with the 

proper mix of instructions. Both models can also be used to estimate the cycle time T for the per-

formance model. This can be accomplished in two different ways: 

(1) A simulator for the model should be able to perform simple timing analysis if explicit 

timing information is provided for each module. 

(2) A simulator should be able trace all the sequential events within each clock cycle and the 

microarchitect can estimate the cycle time based on these lists of events. 

In the first approach, there is always the danger of looking at the wrong critical path within a 

module and subsequently assigning the wrong timing information to the module. In the second 

approach, the trace information must be interpreted and this can be cumbersome. The best chance 
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of success is to use Approach 1, with Approach 2 acting as a check. 

5.3.3. CAD Tools Considerations 

The CAD tools needed to make the design process more systematic will be discussed in 

more details in Section 5.3.4, Section 5.3.5, and Section 5.3.6 when the SPUR CPU is used as an 

example to illustrate different stages of the systematic approach. In this section, I make some 

general observations concerning CAD tools. 

5.3.3.1. Unifying Different Levels of Verification 

In the SPUR CPU design process (Figure 3-2-1), the macroarchitecture, microarchitecture, 

and the layout were verified sequentially and independently by instruction level, behavioral level, 

and switch level simulations, respectively. The results of these simulations must be studied 

independently by the macroarchitect, microarchitect, and the logic designer. One important 

observation, stated in Section 3.2.4, was that this independent verification strategy required a lot 

of human interaction time. In order to reduce verification time, the redundancy between different 

levels of verification must be reduced. In the current SPUR CPU design process, behavioral simu

lation results were verified by comparing them with the instruction level simulation results. Simi

larly switch level simulation results were verified by comparing them with the behavioral level 

simulation results. This approach, however, still requires a lot of human interaction and format 

conversions (see Figure 3-2-4). Mixed-level simulation is a better approach. 

Ideally, we would like to have a mixed-level simulator that will accept modules of different 

levels of abstraction during various stage of the design process. Initially, only high level macro

modules should be used such that high level design decisions can be made. These high level deci

sions create a rough specification of each macro-module and enable each of them to be replaced 

by a set of low level micro-modules. In order to verify that this set of micro-modules can indeed 

replace the high level macro-module, they must be simulated together with other high level 

macro-modules. 
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The macro/micro modules substitution, however, should be a two-way street. During 

mixed-level simulation, the designer should be able to extract important parameters from the set 

of low level micro-modules being simulated. These parameters can then be used to update and 

modify the corresponding high level macro-module. After the important parameters are extracted, 

the set of low level micro-models can then be replaced by the updated, more accurate, high-level 

macro-model to reduce simulation time when we simulate other low level micro-modules. 

5.3.3.2. Timing Verification 

The SPUR CPU timing was verified at the circuit and switch levels. At the circuit level, the 

circuit designer verified the timing of critical circuits by SPICE even before starting the layout. 

After the layout of these circuits was completed, the circuit designer measured the parasitic capa

citance and resistance such that the SPICE models could be updated for a more accurate timing 

analysis. In the switch level, the timing of the entire CPU was verified by Crystal [SMH85] which 

extracted the critical paths from the switch level description. The exact delay of these critical 

paths are then again verified by SPICE in the circuit level. 

One drawback of the SPUR CPU approach is that timing verification is done at the low 

level only, and working at the low level is tedious. Working at the high level is possible here 

because the timing requirements at the low level are direct results of high level decisions. In order 

to take advantage of this possibility, we need a mixed-level timing verifier. A mixed-level timing 

verifier will enable the designer to use the high level work to drive the low level timing 

verification. For example, if at the high level the designer decides that the Functional Unit must 

have a critical delay less than M during phase N, then any micro-modules that are part of the 

Functional Unit (Example: ALU, SHIFfER) must all fulfill this same requirement. The "Abstract 

Timing Verifier" by Dave Wallace [WaS86] is an example of mixed-level timing verifier. 

Another drawback of the SPUR CPU approach is that timing verification is done com

pletely independent of logic simulation. Like most timing analyzers, Crystal does not care nor 

know anything about logic. Consequently, to prevent the timing analyzer from chasing false 
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critical paths, the user must place "flow control" attributes on certain transistors [SMH85]. This 

takes a lot of time and can also be unreliable. The switch level simulator should be able to help 

the designer in placing these "flow control" attributes because the switch level simulator knows 

the direction each signal propagates during switch level simulation. 

One point worth noticing is that timing analyzers such as Crystal were designed at a time 

when computer time was relatively expensive. They were specialized tools designed intentionally 

to ignore the logic aspect of the circuit such they can run rapidly in a relatively slow computing 

environment. The price to pay was human preparation time. In current computing environment, 

computer time is relatively cheap. It is more desirable to have tools that require less human 

preparation time although it may consume much more computer time. 

5.3.3.3. Documenting the Design Decisions 

Most practical VLSI projects are so complex that nobody can specify it accurately until 

some work has been done on it Informality is a powerful strategy for dealing with complexity 

because it allows the designer to describe the big picture without worrying about the details. 

Therefore, an imprecise but brief specification, for the lack of a better word, is good at the begin

ning of an VLSI project Instead of demanding an complete precise specification from the start, a 

good design process or system should help the user to specify and refine the specifications con

tinuously. This is accomplished by continuously demanding the designer to answer the following 

types of questions: 

• Given a number of interacting design objectives and goals, how should I prioritize them? 

• Given a number of alternative choices, which alternatives should I pick? 

Unfortunately, due to the imprecise specification, making these decisions are not always easy. 

Consequently, a design decision is frequently nothing but an educated guess and the design pro

cess is an evolution process. At each stage, the design is a proposal whose correctness and effec

tiveness must be proved. The proof can be performed either by formal mathematical techniques 
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or experiments. Mathematical techniques, however, are for mathematicians-engineers should 

always answer their doubts by experiments! 

Since the design at any stage is only a proposal that must be evaluated by experiments, 

design decisions that led to that design must be documented systematically. The above observa

tion is the basis for the development of the theory of plausibility design [HAD88]. Since the 

underlying philosophy of this thesis is to keep things simple and practical, we will not go into the 

details of the theory of plausibility design. But I do want to point out the two things the theory of 

plausible design tries to address: 

(1) The sequences of design decisions and the cause-effect relationships between the design 

decisions. 

(2) The assumptions or the evidence used by the designer to justify his design decisions. 

In other words, we must find a systematic way to document not just the decisions but also the 

assumptions and evidences behind all the decisions. However, in order to keep the procedure 

simple, the designer should only document the important decisions and decisions that are based 

on questionable assumptions. 

5.3.4. Stages of the Systematic Approach 

Based on the above discussions, I believe a systematic approach to microarchitectural 

design should have three stages: the abstract stage, the expansion stage, and the floor planning 

stage. 

The Abstract Stage 

Construct the abstract model (Figure 5-3-2) and then use it to conduct primary studies on 

microarchitectural issues: (1) off-chip communication, and (2) pipeline and clocking. 

The Expansion Stage 

Construct the expanded model (Figure 5-3-3) by expanding the macro-modules and the con

troller in the abstract modeL The microarchitectural issues to be studied here are: (1) 
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micro-modules selection, (2) resources allocation, and (3) on-chip interaction. 

The Floor Planning Stage 

Based on the infonnation we learned from the abstract and expanded model, construct a 

detailed floor plan for the microarchitecture. 

The abstract stage and the expansion stage should be repeated for alternative microarchitec

tures until satisfactory solutions are found for all microarchitectural issues. Mixed-level simula

tion that uses a mixture of macro-modules and micro-modules can be used. During simulation, all 

important and questionable design decisions must be documented systematically. Instead of using 

toy examples to illustrate this procedure, I will use the SPUR CPU to illustrate the details of this 

procedure in Section 5.4, Section 5.5, and Section 5.6. 

5.4. The Abstract Stage of Microarchitectural Design 

In the beginning, the macroarchitect created the instruction set and the interface 

specifications. The microarchitect must then find a pipeline and clocking scheme that can execute 

the instruction set and derive an off-chip communication strategy that can satisfy the interface 

specifications. As I will explain later, the pipeline and clocking and off-chip communication 

issues are closely related. 

5.4.1. Off-Chip Communication 

The general off-chip communication problem for a microprocessor is shown in Figure 5-4-1 

to be a three-port problem. Most modem microprocessors include the Instruction Supplier on 

chip. The microprocessor then only has to communicate off chip with the Data Supplier and the 

Coprocessor(s). No matter what the situation, the microarchitect must design the Data Supplier 

port, the Coprocessor port, and (if necessary) the Instruction Supplier port such that the perfor

mance goal is met and the resources and complexity requirements are still within the constraints. 
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Figure 5-4-1 Off-Chip Communication 

The microprocessor off-chip communication is a three-port problem. The instruction execution 

engine must communicate with the data supplier, the instruction supplier, and the coprocessor(s). 

Many modem microprocessors have an internal instruction cache which eliminates the instruc

tion supplier interface. Some processor even include complex functions such as floating point 

operations on-chip to eliminate the coprocessor interface. This option may run into trouble in the 

future when more complex functions are desired and the only way to provide them is via copro

cessors. 

168 

The performance specified by the macroarchitect is usually in terms of clock cycles. The 

microarchitect must decide when to drive or receive the interface signals within a given cycle. 

The two limiting resources are the number of pins available and the power to drive the output 

pins. As far as the number of pins is concerned, the sum of input (Nu.). output (Nolll), bidirec-

tiona! (Nb;), and power pins (2xNvdd) must be smaller than or equal to the total number of pins 

available (Navailabl. ). 

(5.4.1) 

The number of power pins (2xNvdd) is twice the number of V dd pins (Nvdd) because a GND pin is 

needed for each Vdd pin. In the old days, one pair of Vdd and GND was be sufficient. But today, 

due to high switching frequency and pin inductance, the number of power pins needed is a func-

tion of the switching frequency (F swirch ), the number of output pin (Nolll ), and the number of 

bidirectional pin (Nbi): 
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(5.4.2) 

John Keller [Kel85] suggested that for a given switching frequency, a simple solution is to assign 

a pair of power pins (one V dd and one GND pin) for each group of M output or bidirectional pins. 

This implies the number of V dd pins can be written as: 

(5.4.3) 

If one just look at Equation 5.4.3, one may think that it is possible to reduce the number of power 

pins (2xNvdd) by time multiplexing. This is not the case. Although time multiplexing will reduce 

Nout or Nb; or both, it also increases the switching frequency (F switch). According to Equation 

5.4.2, this increase in switch frequency will negate the effects of the reduction in Nolll or Nb;. In 

order to rewrite Equation 5.4.3 to take this consideration into account, I define the term logical 

output Lolli: 

Lolll = The number of signals the microprocessor must send to the outside world 

By definition, the number of logical outputs (Lolll) will not change by time multiplexing. It is the 

sum of Nout and Nlli only if time multiplexing is never used to multiplex more than one output sig-

nal onto one output or bidirectional pin. In other words: 

If time multiplexing is not used: Lout = Nolll + Nlli 

If time multiplexing is used: Lolll > N o111 + N bi 

Using this term logical output (Lolll), I can rewrite Equation 5.4.3 as: 

N Lolli 
Vdd = 7Yr (5.4.4) 

The number of logical outputs Lolll is used in Equation 5.4.4 to emphasize the fact that the 

number of power pins needed (2xNvdd) will not change by time multiplexing. The SPUR CPU has 

approximately 120 logical outputs. After careful considerations of the pin inductance, switching 

frequency, and worst case loading, the SPUR circuit designers [Jeo88] decided that M = 6 is 

sufficient. The SPUR CPU therefore has 20 pairs of v dd and GND pins. 
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The reason why the number of power pins needed cannot be reduced by time multiplexing 

also applies when considering the power required to drive the output pins (Powerouz_pu.). Since 

Power0111ft cannot be reduced by time multiplexing, PoweroUl_pil& in general is not a function of 

(N0111 + Nbi ). The power required to drive the output pins is also a function of the number oflogi-

cal outputs Lo~~~: 

(5.4.5) 

In conclusion. while time multiplexing can reduce the number of physical pins (Nu., Nouz, 

Nbi ), it does not reduce the number of power and ground pins. It also does not reduce the power 

required to drive the output pins. Furthermore, time multiplexing also increases the complexity of 

the chip. 

Figure 5-4-2 shows the simple SPUR CPU off-chip communication strategy that does not 

involve time multiplexing. In pursuing this simplest solution, a dedicated set of 32 pins is allo-

cated to the coprocessor interface even though the coprocessor instruction only occurs rarely. 

SPUR CPU 

Pins (40) 

Figure 5-4-2 SPUR CPU Off-Chip Communication 

The SPUR CPU designer took the easist way out and pick the simplest solution. This solution al

locate a separate set of pins for data, address, and the coprocessor interface. The coprocessor in

terface broadcasts every instruction the SPUR CPU receives from its internal instruction cache to 

the coprocessor. 
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Before accepting any solution, the microarchitect must make sure the solution meets the perfor

mance requirements and are within the resources and complexity constraint. Answering questions 

such as these below helps make the decision: 

• Are there enough pins for this solution? 

• How much power does it take to drive all the output and bidirectional pins? 

• What kind of performance does this solution will give? 

• How complex is it to debug and implement this solution? 

• Is this the most efficient way to use the limited pin resource? 

While you can give quantitative answers to the first two questions, it is hard to give absolute 

answers to the last three questions. It is much easier give relative answers by comparing different 

solutions. Furthermore, in order to answer all these questions, you must make some assumptions 

about clocking. 

5.4.2. Pipeline and Clocking 

Clocking schemes must be studied together with pipelining because the longer the 

pipeline-that is more pipe stages for each instruction-the shorter the potential clock cycle. Most 

useful work is done during the high time of the clock in MOS technology. Therefore the number 

of clock phases per cycle together with the number of pipeline stages for each instruction deter

mine the number of time slots in which useful work can be done. This is illustrated in Figure 5-

4-3, where the SPUR CPU pipeline and clocking scheme are used as an example. In general, the 

more explicit time slots the easier it is to design dynamic logic [Kon85]. Unfortunately, more 

explicit time slots also means that more time will be wasted between time slots because explicit 

non-overlap dead time must be placed between phases to guard against clock skew problems (see 

Figure 2-3-3). 

There is a subtle difference between designing a traditional pipeline and a RISC-style pipe

line that handles integer instructions only. In designing a traditional pipeline, the main concern is 
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The SPUR CPU pipeline has 16 time slots: 

Figure 5-4-3 Pipeline and Clocking 

The SPUR CPU uses a 4-stage (Ifet, Exec , Mem, Wr) pipeline-each instruction takes four cycles 

to finish. The SPUR CPU also uses a 4-phase clock-each cycle is divided into four phases. The 

4-stage pipeline together with the 4-phase clock provide 16 time slots to do useful work. 
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how to schedule the issue of instructions such that there will not be any structural conflict 

[Kog81]. An example of structural conflict is two instructions trying to use the ALU during the 

same cycle. On the other hand, a RISC processor that only supports integer operations can exe-

cute the simple instructions in a very uniform manner. This makes structural conflicts very easy 

to detect and eliminate. Therefore, the main concern in designing a RISC-style pipeline is not 

instruction scheduling-the main concern is what kind of resources are needed to eliminate all 

structural conflict such that instruction can be issued every cycle. Since most if not all structural 

conflicts can be eliminated from a RISC-style pipeline, the are only two things left that can 

degrade a RISC-style pipeline's efficiency: branching and data dependency. Important questions 

the microarchitectural must keep in mind when he designs a RISC-style pipeline are: 

• The cost of branching-how many cycles are wasted? 
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This is an ideal M-stage pipeline where any one of the N types of instructions can be issued at 

every cycle. At any given cycle, this pipeline can be in any one of the Nrypc M,..,. possible states. 

All these states must be controlled properly. Therefore, for the same number of instruction types, 
longer pipeline also need more complex control which may offset the advantage of longer pipe

line. 

• The cost of data dependency-how many cycles will an instruction have to wait for data? 

• For a given pipeline length, which clocking scheme achieves the best cycle time? 
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• What are the type and complexity of the macro-modules are needed to implement a pipeline 

that will allow any instruction to be issued at every cycle? 

The first two questions are Computer Science problems and a lot of work has been done on 

them [Kog81] [McH86]. The last two problems are Electrical Engineering problems and not 

much work has been done. I think the best way to answer these last two questions is to follow the 

following procedure: 

(1) Divide the instruction set into N types of instructions. Register-register operations 

(Reg_Reg) and load operations (Load) are two examples of instructions types in the 

SPUR CPU. 
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Figure 5-4-5 Operations for Several SPUR Instruction Types 

The operations for Rcg_Reg, Load, and Cmp_Branch type instructions are listed in the (macro

module : task) format All instructions within a type must require the same macro-module to per

form the same task during the same stage of the pipeline. For example, for all Reg_Reg instruc

tions, during the Exec stage, the Operand Supplier must supply the operands and the Functional 

Unit must operate on the operands. 
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(2) List the steps it takes to execute each type of instruction. This will give the microarchitect 

ideas about what pipe stages are needed to execute all types of instructions uniformly. 

(3) Construct an uniform M-stage pipeline that has the potential to execute one instruction 

per cycle (Figure 5-4-4). Examples of pipe stages in the SPUR CPU are: Instruction fetch 

(Ifet), register read and execution (Exec), memory access (Mem), and register write (Wr). 

(4) For each type of instruction, list the operations for each stage of the pipeline. They may 

be given informally at first but eventually the designer must specify the operation in 

terms of what macro-module is needed to perform what task in the (macro-module : task) 

format. Figure 5-4-5 shows several examples. 

(5) Based on the results of Step 4, construct the list of necessary macro-modules. For exam-

ple, by examining Figure 5-4-5, one can construct this list of macro-modules for 

Reg_Reg, Load, and Cmp_Branch: I-Unit, PC-Logic, CC_Interface, Operand Supplier, 
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and Functional Unit. 

(6) Construct the list of operations each macro-module must provide by using the result of 

Step 4 and examining the Nrypc M_. possible pipeline states. For example, Figure 5-4-6 

shows the Operand Supplier must provide Read and Write operations every cycle. 

(7) After careful examination of each macro-module's list of operations, propose a clocking 

scheme. For example, since the easiest way to implement a large register file in CMOS is 

to precharge the bit lines before read and write, the Operand Supplier must perform (1) 

read, (2) precharge for write, (3) write, and (4) precharge for read within a cycle. The 4-

phase clock is a natural clocking scheme for these four distinct events. 

In the above procedure, all instructions of the same type will end up having the same execu-

tion model (Figure 5-4-5) and make the same contributions to the list of macro-modules and their 
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This is a generic diagram for all the pipeline states that has Reg_Reg's Exec stage and Load's Wr 

stage. Load's Exec Stage requires the (Operand Supplier: Read) operation and Reg_Reg's Wr 

stage requires the (Operand Supplier : Write). The Operand Supplier must be able to perform 

Read and Write within a cycle in order to prevent structural conflict. For simplicity, only 

relevant operations are shown in this figure. 
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lists of operations. Since the set macro-modules and their lists of operations define the level of 

abstraction, the division of instructions into types (Step 1) will determine the level of abstraction 

the microarchitect looks at the proposed microarchitecture. For example, if in Step 1 we divide 

the instructions into high level types such as Reg_Reg, then we will be listing the operations for 

macro-modules such as Functional Unit in Step 4. On the other hand, if in Step 1 we divide the 

instructions into low level types such as Add and Shift, then we will be listing the operations for 

micro-modules such as ALU and Shifter in Step 4. 

At the lowest level, every instruction is a separate type because each instruction must 

behave differently in some way from the others. This low level of detail is probably not neces

sary if one only wants to study pipeline and clocking alternatives. The microarchitect should 

therefore pick a level of abstraction just low enough to show the characteristics of different pipe

line and clocking alternatives but not so low that it requires a large number of modules each with 

a list of very specific operations. The only way to find out the proper level of abstraction by 

iterating Step 1 through Step 6 of this section. Another reason why iteration may be necessary is 

that the microarchitect may find out in Step 6 that the list of operations for a macro-module is too 

long and thus the macro-module is too complex. He may then have to go back to Step 4 and 

either assign some of its operations to other existing modules or create some new macro-modules. 

Since this is an iteration process and at each iteration the designer may have to examine as many 

as Nryp• M_ states, CAD tools must be developed to ease the designer's task. 

5.4.3. The Abstract Model of the Microarchitecture 

The procedure described in last section will not only create a pipeline and clocking scheme 

but will also select a set of macro-modules (Step 4). For example, if this procedure is used for 

the SPUR CPU, the set of macro-modules selected at this point will be: !-Unit, Operand Supplier, 

Functional Unit, CC_Interface, PC-Logic, and Special Registers. In order to complete the abstract 

model of the proposed microarchitecture, these macro-modules must be connected. A systematic 

way to propose a connection scheme is to examine the interaction between the macro-modules 
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Figure 5-4-7 On-Chip Interaction 

Each node in this graph represents a macro-module. Each arc in this graph represents a set of sig

nals that must be sent from one macro-module to the others. The number associated with each arc 

is the number of signals in the set and the name of the bus assigned to the arc(s) is in parentheses. 

This graph is constructed by looking at one macro-module at a time and consider to which 

macro-module must it send its output. 

graphically. 
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Figure 5-4-7 is a directed graph that shows the interaction between the various macro-

modules of the SPUR CPU. The simplest connection scheme can be derived from this graph by 

assigning a signal bus to each arc. Such a scheme, however, will also be very expensive in terms 

of resources. A better approach is to group some of the arcs together and assign them a single bus. 

For example, in Figure 5-4-7, busResult is assigned to all output arcs of the Functional Unit and 

some input arcs to the Operand Supplier. Furthermore, busL is assigned to both arcs connecting 

to the Data Pins. Figure 5-4-7 is the logical bus structure. The physical bus structure, which is 

shown in Figure 5-4-8, is slightly different. 
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Figure 5-4-8 SPUR CPU Abstract Model 

In Figure 5-4-7, busResull is assigned to all output arcs of the Functional Unit and some input 

arcs to the Operand Supplier. When implementation is taken into account, busResult is broken 

into busS and busD to reduce the bus capacitance that each module has to drive. PC Logic and 

Special Registers must first send the values onto busS which then drives busD. In general, asking 

one bus to drive another can cause a lot of delay. It is acceptable here because PC Logic and Spe

cial Registers put values onto busS during $2 and busD does not have to be driven until the fol

lowing cp4-not in the same phase. 
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Figure 5-4-8 is the block diagram of the abstract model of microarchitecture we have pro-

posed thus far. In order to verify and evaluate this proposed microarchitecture, it must be 

modeled by hardware description language. This is called the abstract model and the major issues 

this model will be used to study are: (1) off-chip communication, and (2) pipeline and clocking. 

In modeling, it is utmost important to keep in mind the things one wants the model to examine 

and keep the model just complex enough to do the job. Therefore, the Instruction Unit is not 

included in this model and instruction types instead of individual instructions are used. Ideally, 

for each proposed microarchitecture at the abstract level, the microarchitect should use an 

abstract model such as Figure 5-4-8 to answer all the unanswered questions before moving on to 

the detail level of the microarchitecture. Figure 5-4-9 reviews how the abstract model is con-

structed. 
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Off-Chip 
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Figure 5-4-9 Building the Abstract Model 

This is a flow chart on the construction of the abstract model (Figure 5-4-8). In the beginning, 

there are the instruction set and the interface specification. A pipeline scheme is proposed by 

looking at the instruction set. The execution model for each type of instruction with respect to the 

pipeline gives a list of the macro-modules required and their operations. The list of operations for 

each module can then be used to determine the clocking scheme. The clocking scheme then to

gether with the interface specification will determine the off-chip communication strategy. Final

ly, on-chip interaction must be taken into account in order to connect the set of macro-modules 

together. 

5.5. The Expansion Stage of Microarchitectural Design 
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The previous section shows how to create, specify, and examine a microarchitecture at the 

abstract level. The resulting abstract model consists of a set of macro-modules controlled by a 

high level controller. The goal of the expansion stage is to obtain a detailed specification of the 

microarchitecture by expanding the macro-modules and the high level controller. 

5.5.1. Micro-Modules Selection and Resources Allocation 

The functionality of the macro-modules are defined during the abstract stage. The microar-

chitect has many options to achieve this functionality by selecting different sets of micro-

modules. For example, Figure 5-5-1 is one possible option the microarchitect may use to expand 

the macro-module Functional Unit. Another option is to use a 32-bit barrel shifter instead of the 

EXT_INS and SHIFfER. The microarchitect must evaluate the performance, resources, and com-

plexity tradeoffs quantitatively when he considers his options. This is similar to the problem 
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studied in Chapter 4 where the microarchitect has many options in what features to include in the 

CPU. The systematic approach shown in Section 4.7.3, which was based on the performance 

resources and complexity tradeoffs, can be applied here. 

Figure 5-5-2 illustrates graphically the performance, resources, complexity tradeoffs. This is 

similar to Figure 4-7-2 except that in Figure 4-7-2, the options on the vertical axis corresponds to 

different features that can be included in the CPU. Here in Figure 5-5-2, the options on the verti-

cal axis corresponds to different ways a macro-module can be expanded. For example, suppose 

we are considering the tradeoffs in building the macro-module Instruction Unit Option 1 could 

be a simple (low in complexity), low cost in resource, and low perfmmance direct-mapped cache. 

Option 2 is similar but with bigger cache size (more resources). Option 3 can be a cache with pre-

fetching (more complex) such that the cache size can be smaller (fewer resources) and still 

achieve the same performance as Option 2. Option 4 can be considered as a set associative cache 

with prefetch which gives higher performance than Option 3 but also require more resources and 

higher degree of complexity. 

FW1ctional 

Unit 

busS 
<31:0> 

Figure 5-5-1 Micro-Modules Selection for the SPUR CPU Functional Unit 

busS 
<31. 

In this example, the macro-modules Functional Unit is expanded into micro-modules EXT_INS 

(byte extractor insertor), SHIFTER, ALU, BRANCH COND, and BUSSTOD. 
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resources 
available 

Figure 5-5-2 Performance Resources and Complexity Tradeoffs 

The options, which correspond to different ways the macro-modules can be expanded, are placed 

in increasing complexity on the vertical axis. The performance and resources needed for these 

options are plotted on the horizontal axes. The performance requirement and resources available 

for each macro-module place the "acceptable performance" bound on the performance axis and 

the "resource available" bound on the resources axis. 
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Each macro-module has is own minimum performance requirement. This requirement is a 

direct result of the overall performance goal and can be obtained during simulation at the abstract 

stage. The performance requirement for each macro-module places an "acceptable performance" 

bound on the performance axis in Figure 5-5-2. Given this performance requirement, the microar-

chitect must allocate enough resources such that an option that has acceptable performance and 

complexity can be built. Below is an example on how we can apply the systematic approach dis-

cussed in Section 4.7.3 to select an option to expand the macro-modules. This is very similar to 

the example shown in Section 4.7.3 except there the options are what features to be included in 

the SPUR CPU. 

(1) Make an educated guess on how many resources you are willing to spend on this macro-

module. This places a "resource available" bound on resources axis in Figure 5-5-2. 

(2) Within this bound, pick the simplest option available. 

(3) If this option's performance is within the acceptable range, then mission accomplished. 

Otherwise. go to Step 4. 
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(4) If there are any other options within the resource bound, pick the next more complex 

option and go back to Step 3. Otherwise go to Step 1 and increase the resources available 

bound. 

Using Figure 5-5-2 as an example, Step 2 of this procedure will pick Option 1. However, in 

Step 3, we will find out Option 1 's performance is below the acceptable range. In Step 4, Option 

2 is not chosen in Step 4 because it uses more resources than available. Option 3 will be chosen 

because it is less complex than Option 4. Finally, when we get back to Step 3, we will find out 

Option 3's performance is acceptable. 

5.5.2. On-Chip Interaction and Second Order Effects 

At the abstract stage of the design, on-chip interaction concerns with the interaction among 

various macro-modules. Section 5.4 showed how this problem can be solved by connecting the 

macro-modules via signal busses embedded in the datapath. At the expansion stage, on-chip 

1-Unit 
Controller 

Internal Unusual Conditions 

External 

Conditions 

r---11---+ Low level 
E-Unit • Instruction to be 

executed by 
theE-Unit 

control signals 

Controller 1---·- for the datapath 

Figure 5-5-3 The SPUR CPU Control Strategy 

The SPUR CPU is controlled by three modules: Trap Logic detects all internal and external 

unusual conditions, 1-Unit Controller controls the instruction unit that delivers instruction, and 

E-Unit Controller decodes every instruction it receives into control signals. Whenever the Trap 

Logic detects an unusual condition, all it has to do is to send a signal (trapRequest) to the 1-Unit 

Controller. The !-Unit Controller then delivers the proper internal instructions that can handle the 

trap to theE-Unit Controller. 
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interaction concerns the control of the micro-modules. We must also take into account second 

order effects-such as trap detection-that are ignored during the abstract. Second order effects are 

very important to the controller design during the expansion stage. A systematic approach to this 

problem can be summarized in three words: isolation, specialization, and optimization. 

Isolation 

Isolate different aspects of the control function into sub-functions that have minimum 

interaction among them. 

Specialization 

Design specialized modules for the sub-functions. 

Optimization 

Finally, optimize the specialized modules. 

In order to illustrate this three-step approach, I will use the SPUR CPU as an example. The 

SPUR CPU control strategy is shown in Figure 5-5-3. The control function of the SPUR CPU can 

be isolated into three sub-functions. These three sub-functions and their respective specialized 

modules are: 

• The control of the Instruction Unit (I-Unit) that delivers the instruction. This is handled by 

the !-Unit Controller. 

• The control of the Execution Unit (E-Unit) that executes the instruction. This is handled by 

theE-Unit Controller. 

• The detection of internal and external unusual conditions. This is handled by the Trap 

Logic. 

One major optimization we performed in the SPUR CPU is the use of internal instructions 

to further reduce the on-chip interaction. As illustrated in Figure 5-5-3, the Trap Logic asserts the 

trapRequest signal whenever it detects any unusual condition. Upon receiving the trapRequest 

signal, the !-Unit Controller will deliver the internal instructions that handle trap to the E-Unit 
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controller. This optimization therefore reduces the interaction between the Trap Logic and the I-

Unit Controller to one signal-trapRequest. This optimization also limited the interaction between 

the !-Unit Controller and theE-Unit Controller to normal and internal instructions only. 

The !-Unit Controller consists of two finite state machines (Figure 2-2-1) and the Trap 

Logic consists of five random logic blocks (Figure 2-4-1). Their designs are simple finite state 

machines and random logic design problems and were discussed earlier in Section 2.2 and Sec-

tion 2.4, respectively. Neither the !-Unit Controller nor the Trap logic involve further on-chip 

interaction consideration. The E-Unit Controller, on the other hand, must distribute the control 

information it generates to the micro-modules in the datapath. The E-Unit Controller does not 

have to distinguish internal instructions from normal instructions. It simply generates a set of 

control signals for each instruction it receives. The E-Unit Controller is therefore just a combina-

tiona! logic block. The rest of this section will discuss strategies that can be used to reduce the 

interaction between theE-Unit Controller and the datapath. 

Instruction 

Figure 5-5-4 The E-Unit Controller Bus Structure 

The Master Control is divided into M stages where M is the length of the pipeline. Each stage 

generates one set of high level control signals that controls one stage of the pipeline. High level 

control signals are distributed via the high level control signal bus. The local decoding logic 

blocks then generates the low level control signals that control the datapath. 
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The high level control signals are decoded into low level control signals by very simple combina

tional logic. Most outputs of the combinational logic must be ANDed with one of the clock 

phases (1, 2, 3, or 4) before being used by the datapath. For those outputs that do not have to be 

ANDed with any clock phase, they are buffered (0). Furthermore, in order to reduce the load on 

the clock generator, the clock signals are also buffered (5 and 6) before they are fed into the data

path. 
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Signal busses are used during the abstract stage to reduce the interactions among various 

macro-modules. Similarly, signal busses can also be used here to reduce the interaction between 

E-Unit Controller and the datapath. This is illustrated in Figure 5-5-4. The E-Unit Controller is 

divided into two parts: the Master Control and Local Decoding Logic. The master control is 

located far away from the datapath but the local decoding logic blocks are placed right next to the 

datapath. A signal bus is used to distribute the high level control signals generated by the master 

control to the local decoding logic blocks. This simplifies the on-chip interaction because the 

number of high level control signals are relatively small compare to the number of low level con-

trol signals. This reduction in number is due to sharing-each high level signal is used by more 

than one local decoding logic block. 
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The master control consists of M stages, where M is the length of the pipeline (see Figure 

5-5-4). The first stage decodes the instruction (mainly the opcode) into the first set of high level 

control signals. The other stages uses the outputs of their previous stage as inputs. The major 

function of these latter stages is to delay the control signals by one cycle. One may also put some 

simple logic in the latter stages to combine some of their inputs. This is especially useful when 

instructions require different control signals at early stages of the pipeline but require the same 

control signal at latter stages. 

The local decoding logic block consists of a block of simple combinational logic, a clock 

signals bus, and some AND, NOT, and BUF gates between the clock bus and the datapath. This is 

illustrated in Figure 5-5-5. Since CMOS logic gates can also serve as buffers, the simple combi

national logic block also serves as the intermediate stage of the multi-stage control information 

distribution network between theE-Unit Controller and the datapath. Similarly, the AND, NOT, 

and BUF gates between the clock bus and the datapath serves as the final stage. The sizes of the 

buffers at the final stage should be selected according to the RC loading of the low level control 

signals and clock wires such that all the buffers will drive their outputs within approximately the 

same delay. 

The control strategy shown in Figure 5-5-3, Figure 5-5-4, and Figure 5-5-5, was used in the 

SPUR CPU. This strategy resulted in a much more compact controller for the SPUR CPU (see 

Figure 1-4-3) than the controller for SOAR (see Figure 1-4-2). One important question concern

ing this strategy is that how the designer should divide the high and low level decoding. There 

must be a good balance between the number of high level control signals and the complexity of 

the local decoding logic. I do not have a satisfactory answer, but the SPUR CPU implementation 

do provide us some insights to this question. In the SPUR CPU, the combinational logic in the 

local decoding logic are single level logic and are mostly OR gates. This indicates that this is a 

generalized PLA problem with the the local decoding logic as the OR plane and the high level 

control signals as the product terms. In a more general view, one may also consider this as a mul-



Chapter 5: A Systematic Approach 187 

tiple level logic optimization problem with the local decoding logic as the last logic level. This, 

however, is a more challenging problem for the CAD tools designer than the nonnal multiple 

level logic optimization problem for the following reasons: 

• The area available for the combinational logic within the local decoding logic block are res-

tricted by the spacing between the low level control signals. 

• The optimum size of the simple combinational logic gates and the final buffers (see Figure 

5-5-5) depends on the RC loading of the low level control signals. 

5.5.3. The Expanded Model of the Microarchitecture 

The expansion stage of the microarchitectural design process takes into account the micro-

modules selection, resource allocation, and on-chip interaction. The result is the expanded model 

of the proposed microarchitecture. This is illustrated in Figure 5-5-6. The SPUR CPU behavioral 

Abstract Model I L Unusual Conditions 

I Expanded Model 

I Resources Allocation J 

1 r On-Chip Interaction I 
I Micro-Modules Selection I 

l Control Strategy I 

Figure 5-5-6 Building the Expanded Model 

This is a flow chart on the construction of the expanded model. At this stage of the design, the 
microarchitect has an abstract model of the microarchitecture. He must also consider all the 
unusual conditions that can affect the normal operation of the microarchitecture. Macro-modules 
in the abstract model are then expanded into micro-modules according to the resource available 
and the functionality of the macro-modules. The microarchitect must also consider on-chip in
teraction carefully in order to derive a control strategy that controls the micro-modules and han
dles all the unusual conditions. 



Chapter 5: A Systematic Approach 188 

model (Figure 3-2-2) can be considered as the expanded model of the SPUR CPU. A complete 

expanded model is time consuming to build. Therefore, the microarchitect should not start build

ing the expanded model until he has done enough primary investigation using the abstract model. 

The expanded model, however, can provide much better insights into the performance, resources, 

and complexity tradeoffs of the proposed microarchitecture than the abstract model. 

5.5.3.1. Using the Expanded Model for Performance Estimation 

In Chapter 4, I have shown that the performance of a microarchitecture should be measured 

in terms of the TxlxC product. The expanded model of the CPU can be used to estimate the 

C-the average number of cycles per instruction, and the T-the cycle time more accurately than 

using the abstract model. 

For example, in the N.2 environment where the expanded model of the SPUR CPU is simu

lated, test programs can be compiled and loaded into simulated memory. The SPUR CPU 

expanded model can then be simulated using the test programs that reside in the simulated 

memory. Since the expanded model models the details of the microarchitecture, it can be used to 

measure the number of cycles the CPU takes to execute certain test programs (/xC) accurately. 

Unfortunately, the simulator for the expanded model can be relatively slow. For example, the 

SPUR CPU expanded model takes an average of 2 SUN3/160 CPU seconds to simulate each 

instruction! This will severely limit the size of test programs that can be simulated. However, if 

the test programs have the proper mix of instructions, the microarchitect can still calculate the 

average number of cycles per instruction (C) accurately by dividing the cycle count (/xC) he 

measured by the number of instructions (I) in the test program. 

In the N.2 environment, the SPUR CPU expanded model can be used to estimate the 

microarchitccture's cycle time in two different ways: 

• The N.2 simulator can perform simple timing analysis if explicit timing information is pro

vided for each micro-module, and 
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• The N.2 simulator can trace the significant sequential events within each clock phase. This 

list of events will give the microarchitect some insights on the duration of each clock phase. 

Once the microarchitect has estimated the cycle time (T), and has calculated the average number 

of cycles per instruction (C), the last thing he has to do before he can predict the CPU's perfor

mance accurately is to get an estimate of the number of instructions the CPU takes to execute cer

tain large benchmarks (1). This, of course, can be measured from the instruction level simulator. 

5.5.3.2. Using the Expanded Model for Resources Estimation 

As discussed in Section 3.2.1, the SPUR CPU behavioral model (the expanded model) is a 

composite module that consists of many modules connected by a top level topology file. The 

dimensions of each module can be estimated either based on previous experience or better yet 

based on the results of resource allocation analysis illustrated in Figure 5-5-2. The dimensions of 

each module can then be added to the topology file as comments. These dimensions together with 

the connection information in the topology file can be used by a designer assisted by CAD tools 

to create a tentative floor plan that gives a rough estimate of chip area. Floor plarming is dis

cussed in more details in Section 5.5.6. 

The expanded model can also be used for power estimation. In CMOS where static power 

consumption is low, most of the power will be consumed in driving busses and off-chip output 

pads. All busses and output pads are simply internal and external connections in the top level 

topology file that describes the expanded model. Furthermore, if power consumption of certain 

modules is significant compared to busses and pads, this information can also be added to the 

topology file as comments. Therefore, power consumption can also be extracted easily from the 

expanded model. 

5.5.3.3. Using the Expanded Model for Complexity Estimation 

In Chapter 4, I have shown that the complexity of a microarchitecture can be measured in 

terms of the number of cycles of diagnostics and the human effort it takes to verify the 
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microarchitecture. The expanded model is tested by test programs. The size of these test pro

grams and the human effort involve in preparing and running these tests are therefore good meas

ures of the microarchitecture's complexity. These, however, only measure one aspect of complex

ity which I called the functional complexity. Functional complexity measures the degree of 

difficulty in analysis, design, and testing of the microprocessor. 

Implementation complexity is another aspect of complexity. Implementation complexity 

measures the degree of difficulty in implementing the microprocessor. The total number of 

micro-modules in the expanded model, the size of the micro-modules' description, the number of 

low level control signals that control the micro-modules, and the number of high level control 

signals generated by the master control are all important metrics for the implementation complex

ity. 

5.6. The Floor Planning Stage of Microarchitectural Design 

As the name implies, the goal of the floor planning stage is to produce a floor plan for the 

proposed microarchitecture. There are two important considerations in designing the floor plan: 

• The interaction between the macro-modules. 

• The relative dimensions of the macro-modules. 

The macro-modules are the products of the abstract stage. The interaction between the macro

modules are also studied during the abstract stage. The relative dimensions of the macro

modules, however, depends on how they are expanded into micro-modules during the expansion 

stage. The floor planning stage of microarchitectural design can therefore be considered as the 

stage that summarizes the results from the abstract and expansion stage. 

The interaction between the macro-modules and their relative dimensions can both be sum

marized in a graph. This is done in Figure 5-6-1 for the SPUR CPU as an example. Notice that 

Figure 5-6-1 is similar to Figure 5-4-7 except that I have added the relative dimensions 

(height x width) for each macro-module. The goal here is to place the macro-modules that have a 
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Figure 5-6-1 Important Information for Floor Planning 

Each node in this graph represents a macro-module. The number within each node is the macro

module's relative dimensions (height x width). Each arc in this graph represents a set of signals 

that must be sent from one macro-module to the others. The number associated with each arc is 

the number of signals in the set 
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large number of of connections between them close to each other while at the same time try to 

maintain the overall shape as rectangular as possible. 

For example, based on the dimensions shown in Figure 5-6-1, we decided to place the 

Instruction Unit on top of the Operand Supplier because they are the biggest and longest. On the 

other hand, based on the interactions shown in Figure 5-6-1, we decided to place the PC Logic 

adjacent to the Instruction Unit and the Functional Unit adjacent to the Operand Supplier. After 

careful consideration of the rest of Figure 5-6-1, we selected the floor plan shown in Figure 5-6-2 

for the SPUR CPU. 
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Figure 5-6-2 The SPUR CPU Floor Plan 

This is the floor plan of the SPUR CPU. The relative dimensions of each macro-module are 

shown in parentheses. Relative dimensions are used instead of absolute dimensions such that a 

tentative floor plan can be produced even before the exact technology is known. 

5.7. Conclusion 
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In this chapter, I first defined the tenn microarchitecture and the phrase "microarchitectural 

design." Based on my experiences in SPUR, I believed that the important issues concerning 

microarchitectural design are: (1) off-chip communication, (2) pipeline and clocking, (3) micro-

modules selection, (4) resources allocation, (5) on-chip interaction, and (6) floor planning. Off-

chip communication, and pipeline and clocking are behavioral issues. Micro-modules selection, 

on-chip interaction, and resources allocation are structural issues. Finally, floor planning is a phy-

sical issue. 

A systematic approach to microarchitectural design must begin with a systematic approach 

to these microarchitectural issues. More specificly, a systematic approach to microarchitectural 
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design consists of three stages: 

(1) The Abstract Stage 

Construct the abstract model (Figure 5-3-2) and then use it to conduct studies on microar

chitectural issues: (a) off-chip communication, and (b) pipeline and clocking. 

(2) The Expansion Stage 

Construct the expanded model (Figure 5-3-3) by expanding the macro-modules and the con

troller in the abstract model. The microarchitectural issues to be studied here are: (a) 

micro-modules selection, (b) resources allocation, and (c) on-chip interaction. 

(3) The Floor Planning Stage 

Based on the information we learned from the abstract and expanded model, construct a 

detail floor plan for the microarchitecture. 

These three stages are illustrated in Section 5.7.4, Section 5.7.5, and Section 5.7.6 using the 

SPUR CPU as an example. 
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Chapter 6 

SUMMARY AND FUTURE TRENDS 

I never think of the future. It comes soon enough. 

Albert Einstein, 1930 

This chapter first summarizes this thesis and the SPUR project in Section 6.1. In Section 

6.2, I discuss what I think will be the future trends based on the lessons I learned. 

6.1. Summary 

Section 6.1.1 summarizes this thesis. Section 6.1.2 reviews the history of the SPUR project 

in the SPUR CPU's perspective. Section 6.1. 3 discusses the organization of the SPUR project 

6.1.1. Thesis Summary 

In Chapter 1 and Chapter 2, I gave a brief history of VLSI projects at U.C. Berkeley, an 

overview of the SPUR project, and an overview of the SPUR CPU microarchitecture. One of the 

most important difference between the SPUR CPU and the previous two generations of Berkeley 

RISC projects is that the goal of the SPUR project is not just to build a CPU. The SPUR project's 

goal is to build a system in which the SPUR CPU is just one of the three custom VLSI chips. 

In Chapter 3, I first talked about how we used proven ideas from the two previous genera

tions of Berkeley RISC machines to design the SPUR CPU microarchitecture. Just because we 

used proven ideas does not mean our job of building a chip for a system is easy. We still have to 

deal with many problems that are not as important when one just wants to build a CPU. Two 
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specific examples are: 

(1) We must implement some system features that require a lot of work, and 

(2) We must do many extra simulations. 

One important lesson I learned in dealing with all these problems is that we must make the pro

cess of designing microprocessor more like a science than an art. 

In Chapter 4, I stated that the designer can make the process of designing microprocessor 

more like a science than an art by putting more emphasis on quantitative evaluation of the perfor

mance, resources, and complexity tradeoffs. I also showed a simple performance model and then 

performed tradeoffs evaluation for LISP support, floating point support, 4-stage pipeline, on-chip 

instruction cache, and multiprocessing support. One major conclusion from Chapter 4 is that the 

designer must keep the cycle time and the average number of cycles per instruction as low as pos

sible. 

Finally in Chapter 5, I introduced a systematic approach to microarchitectural design that 

consists of three stages: (1) the abstract stage, (2) the expansion stage, and (3) the floor planning 

stage. During the abstract stage, we build the abstract model of the microarchitecture to study the 

off-chip communication, and pipeline and clocking issues. During the expansion stage, the 

abstract model is expanded. The major issues to be studied during the expansion stage are micro

modules selection, resources allocation, and on-chip interaction. Finally, during the floor plan

ning stage, we applied what we learned from the abstract and expansion stage and design a floor 

plan for the microarchitecture. 

6.1.2. The History of the SPUR Project 

The SPUR project is probably one of the most ambitious computer projects ever accom

plished in the university environment The history of the SPUR project is described below with 

respect to the SPUR CPU development. 
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Spring 1985 

The SPUR CPU basic microarchitecture was conceived in the CS292i class taught by Pro

fessor Randy Katz [Kat85]. 

Summer 1985 

The CPU's external interfaces to the cache controller (CC), the coprocessor (FPU), and the 

processor board were defined. 

Fall1985 

We began the datapath layout and started writing the behavioral description that models the 

microarchitecture. 

Spring 1986 

The layout of the data path was completed. 

Summer 1986 

We began the layout of the control unit 

Fall1986 

The layout of instruction unit was completed. At the same time, we also completed the 

behavioral description. 

Spring 1987 

Logic simulation and timing analysis of individual modules was carried out 

Summer 1987 

Global simulation was completed. The SPUR CPU was submitted for fabrication on August 

25. It came back in December 1987. 

Spring 1988 

We tested and debugged the SPUR CPU. The second version of the CPU was submitted for 

fabrication in April. It came back in June 1988. 
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Summer 1988 

We tested and debugged the SPUR processor board. The Spirte [0CD88] operating system 

was running on SPUR hardware by the end of the summer. 

Fall1988 

We concentrated our effort in multiprocessor testing and debugging. 

Spring 1989 

On January 9, 1989, a SPUR multiprocessor running Spirte operating system and LISP 

software was presented at U.C. Berkeley. 

This ambitious four-year project involve a large group of professors and graduate students. 

Section 6.1.3 shows the organization of the SPUR project 

6.1.3. The Organization of the SPUR Project 

Professor Dave Patterson was the principal investigator of the SPUR project The SPUR 

project was organized into three groups: (1) the hardware group, (2) the operating system group, 

and (3) the programming language group. 

The Hardware Group. Professor Randy Katz and Professor David Hodges were in charge 

of the hardware group with Professor Randy Katz on architectural design and Professor David 

Hodges on circuit design. The hardware group was furthered divided into four groups: 

The CPU Group 

Mark Hill and George Taylor were responsible for the macroarchitecture of the CPU. I was 

responsible for the microarchitecture. Dave Lee, with the help of Rich Duncombe (initial 

implementation of the Instruction Unit) and Wook Koh (initial implementation of the Upper 

Data path) were responsible for the circuit design and layout 

The Cache Controller Group 

David Wood, Garth Gibson, and Susan Eggers were responsible for the macroarchitecture 

and microarchitecture of the Cache Controller. O.K. Jeong was responsible for the circuit 
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design and layout. 

The Floating Point Unit Group 

B.K. Bose, Paul Hansen, and Corina Lee were were responsible for all aspects of the Aoat

ing Point Unit design. 

The Processor Board Group 

Our staff engineer Ken Lutz with the help of Kathy Armstrong were responsible for the 

design and implementation of the SPUR processor board. 

The hardware group also got very valuable help form Joan Pendleton during initial stage of the 

SPUR project and Doug Johnson-an engineer from Texas Instruments-during the final stage of 

the project. The U.C. Berkeley CAD research community also gave us constant support. 

The Operating System Group. Professor John Ousterhout was in charge of developing 

the operating system Spirte for the SPUR multiprocessor. The graduate students who worked in 

the operating system group were Michael Nelson, Brent Welch, Fred Douglis, Andrew Cheren

son, and Mendel Resenblum. 

The Programming Language Group. Professor Paul Hillfinger was in charge of develop

ing the LISP system [Tay86] [ZHH88] for the SPUR multiprocessor. The graduate students who 

worked in the programming language group were Jim Larus and Ben Zorn. 

6.2. Future Trends 

In this section, I want to say a few words about what I think the future trends are in the 

architectural, technology, and CAD support areas. In my performance evaluation, I have shown 

quantitatively in Section 4.7.2 that a simple architecture can surpass the performance of a more 

complex architecture by keeping the average number of cycles per instruction and the cycle time 

low. Therefore, I think the architectural trend is to reduce the average number of cycles per 

instruction and the technology trend is to lower cycle time. Both of these can be accomplished 

more easily if CAD support is readily available. 
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6.2.1. Architectural Trends 

The architectural trend is to reduce the average number of cycles per instruction. The aver

age number of cycles can be reduced by the following methods: 

(1) Improve the hit rate of the on-chip instruction cache. Mark Hill [Hil87] has studied better 

instruction cache design and implementation ideas. 

(2) When more on-chip transistors are available, I think on-chip data cache is more desirable 

than complex functions. In Chapter 4, I have shown that it is more cost effective to sup

port complex functions via a coprocessor. 

(3) Reduce the branch penalty. Branch folding in CRISP [BDM87] is one example where in 

the best scenario, a branch is executed implicitly with other instructions. This reduces 

branch penalty to zero. 

(4) Finally one may try to put multiple functional units on chip such that multiple instruc

tions can be executed per cycle. 

The first two methods, even in the best scenario, can only reduce the average number of 

cycles per instruction to one. The third and fouth methods, on the other hand, can reduce the aver

age number of cycles per instruction to less than one. 

6.2.2. Technology Trends 

The technology trend is to reduce the cycle time. The cycle time can be reduced by: 

(1) Scaling down the CMOS technology. Common belief is that device width of 0.25J.lffi is 

the practical limit and it will be reached in the 1990s [MYH86]. 

(2) ECL is faster than CMOS but it also has lower density and uses more power. 

(3) BICOMS takes advantages of both bipolar and CMOS circuits on the same chip and 

looks very promising. 
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(4) GaAs is very fast, uses less power than ECL, but it is very expensive in terms of wafer 

cost, yield, and density. 

One thing I want to point out is that although ECL logic gates use more power than GaAs 

and CMOS logic gates, this may become less important in the future. I believe in the future most 

of the power will not be consumed in the logic gates. Most of the power will be consumed in 

driving the internal busses and off-chip pads. For example in the SPUR CPU, we estimated that 

60% of the total power consumption is spent in driving the off-chip pads and 20% is spent in 

driving the on-chip busses already. These numbers are going to get worst when the feature size 

gets smaller and when the CPU runs at higher clock rate because: 

• As feature sizes gets smaller, the capacitance of the on-chip busses gets relatively 

bigger-more power is needed to drive them at high speed. 

• As the CPU runs faster, the off-chip communication channel must also run faster-more 

power is needed to drive the off-chip pads. 

GaAs uses field effect transistors that are similar to MOS transistors use in CMOS. 

Although Seymour Cray suggested that GaAs discrete component has low capacitance [Cra88], 

this unfortunately may not apply to VLSI application. In VLSI, capacitance of the multi-level 

interconnect network is the dominant factor. This multi-layer interconnect capacitance depends 

on the materials that separates the interconnect layers and does not depend on the substrate 

material. Therefore GaAs is likely to have similar power consumption problems as CMOS. ECL, 

on the other hand, uses bipolar transistors that have much bigger current driving capability and 

smaller voltage swings than field effect transistors. Consequently, ECL will have less problem 

driving highly capacitive internal busses and off chip pads. Finally, one should realize that a fast 

CPU must run in a fast environment. The power consumption of this fast environment can make 

the power consumption of the CPU negligible. 
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6.2.3. CAD Support Trends 

I believe CAD researchers will continue their emphasis in building automatic layout 

generators-silicon compilers. Although silicon compliers are useful, I do not think they will solve 

all the problems because the designer still have to define the microarchitecture as inputs to the sil-

icon compiler. My experience in SPUR has convinced me the following: 

• Defining a microarchitecture is not a simple task. Therefore, we need more high level 

design tools that can help designer make quantitative tradeoffs decisions. 

• Moving to the future means back to the basic! Mead and Conway design style is not 

enough. Building a high performance VLSI chip is still an electrical engineer's job. We 

need electrical rules checkers that understand resistance, capacitance, and inductance. 

• I think VLSI designers can do CAD tool designers a big favor by building simple tools. No 

matter how simple the tool is, I think it is still the best way to define the problem formally. 

As I stated in Section 3.5, I do not believe CAD tools are there to replace VLSI designer. 

However, I do believe the future of VLSI design depends strongly on CAD support. One con-

trasting view is from Nick Tredennick [Tre87]: 

This book is partly in response to the growing presumption that computers are an essential part of 

logic design. They are not ... I think of computers as an expensive and awkward alternative to 

pencil and paper. 

Nick Tredennick, Microprocessor Logic Design, Page 4 

This may be true for a talented VLSI artist such as Nick. However, for an average VLSI engineer 

like myself, CAD tools are essential. As a matter of fact, I and my colleagues in SPUR have 

promised ourselves not to design another VLSI chip unless we have more CAD support for all 

aspects of the design. I think the introduction of CAD support to VLSI design is analogous to the 

introduction of jet engine to aviation at the end of World War II. 

CAD support enable VLSI designer moves much faster but it also takes some of the art out 

of VLSI design. Similarly, a jet engine enables aircraft to fly faster but it also takes some of the 
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art out of aviation. In many ways, a jet aircraft is easier to fly than a propeller driven aircraft 

because a spinning propeller creates many mysterious effects that are handled by pilots more like 

an art than a science. Furthermore, jet engine also enables aircraft to fly much higher to avoid 

most bad weather. Consequently, when the jet engine was first introduced, many "real aviators" 

insisted flying propeller driven aircraft was still the only true art of aviation. They may be right. 

After all, how can you argue with an artist? However, most people probably prefer getting to their 

destination in one hour-in a jet aircraft piloted by just an average pilot-than getting to their desti

nation in four hours in a propeller driven aircraft, piloted by a "real aviator." 
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Appendix A 

DETAILED DESCRIPTION OF THE 

SPUR CPU MICROARCHITECTURE 

Architecture is the art of how to waste space. 

Philip Johnson, 1964 

A.l. The SPUR CPU Block Diagram 

205 

Figure A-1-1 is the detailed SPUR CPU block diagram. This block diagram shows the rela

tive position of each block in the layout. The following naming conventions are used in this block 

diagram: 

• Register names start with an upper case letter and the rest are lower case except to improve 

readability. Examples: Dst1 and IfetPC. 

• Functional block names are in upper case letters only. Example: ALU and EXT_INS. 

• Signal names start with a lower case letter and the rest are lower case except to improve rea

dability. Examples: busA and trapType. 

The CPU can be divided into two units: (1) the Instruction Unit (!-Unit) at the upper left 

corner and (2) the Execution Unit (E-Unit) at the rest of the area. The Instruction Unit (see Sec

tion 2.2) is a 512-byte direct-mapped instruction cache. The Execution Unit (see Section 2.3) 

consists of 4 parts: 

(1) The lower data path performs all the register-to-register operations. 

(2) The upper datapath performs all the program control operations. 
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Figure A-1-1 The SPUR CPU Block Diagram 

The datapath is split into two parts (see Section 2.3): The upper datapath at the top and the lower 

datapath at the bottom. The CONTROL UNIT and the CACHE CONTROLLER INTERFACE 

are in the middle. The upper and lower datapaths are connected by busS. There are three major 

sets of 10 pads: The DATA PADS on the left, the ADDRESS PADS on the right. and the IN

STRUCTION PADS on the top. The INSTRUCTION PADS are part of the coprocessor inter

face. The coprocessor (FPU) must monitor these pads continuously to detect any instruction it 

has to execute. 

(3) The cache controller interface communicates with the cache controller chip. 

(4) And the control unit controls the Execution Unit. 

The lower datapath contains a 138 word-register file, some temporary registers, and several 

functional units. It is 40 bits wide because 8 of the bits are used for tags. The upper datapath con-

tains some special registers and the program counters logic. It is 30 bits wide because all 
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instructions are word addressed. The CPU chip resides inside a 208-pad pad frame. The CPU 

only needs about 180 pads but the same pad-frame is used by all three SPUR custom chips. 

A.2. The SPUR CPU Register Set 
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Figure A-2-1 The SPUR CPU Registers Set 

Each register window has ten local registers, six input registers, and six output registers. The in

put and output registers of adjacent windows overlap and are used for parameters passing. Spe

cial register numbers are used by instructions RD_SPECIAL and WR_SPECIAL to specify the 

source (Ssi) and destination (Sd) special registers, respectively. Kpsw and Ins do not have any 

special register number because they are not manipulated by the RD_SPECIAL nor the 

WR_SPECIAL instruction. 
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The SPUR CPU register set (Figure A-2-1) consists of 138 general purpose registers and 

seven special registers. The 138 general purpose registers are organized into 10 global registers 

and eight overlapping register windows. The seven special registers are: 

Cwp<4:2> 

Swp<31:3> 

Current register window pointer. Points to the register window that is currently 

in use. 

Save register window pointer. Points to the memory location where the last 

overflow register window (points to by Swp<9:7>) is saved. 

Kpsw<31:2> Kernel processor status word. 

Upsw<31:2> User processor status word. 

lns<l:O> Insert byte count register. 

ExecPC<31:2> Program counter contains the address of the instruction currently being exe

cuted. This is a read only register. 

FpuPC<31 :2> Program counter contains the address of the last floating point instruction send 

to the FPU coprocessor. This is a read only register. 

Whenever a CALL instruction is executed, Cwp is incremented by one and a new window 

is opened. Conversely, whenever a RETURN instruction is executed, Cwp is decremented by one 

and the window is closed. When window overflow occurs, register windows are saved to 

memory. Swp contains the memory address at which the last register window is saved. The 

status of the SPUR CPU is stored in the two processor status words: Kpsw and Upsw. Both the 

Kpsw and the Upsw are 30 bits wide. However, as shown in Figure A-2-2, only a small number 

of these 60 bits are used by the hardware. The rest of the bits are used by software to store 

relevant process information. The Ins register is used by the INSERT instruction to decide where 

within a word should the byte be inserted. Special registers ExecPC and FpuPC are read only and 

writing to them are the same as NOOP. 
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Kernel Processor Status Word- Kpsw: 

Enable Enable User Virtual Enable 
Error Interrupt Mode Mode for Prefetch 

Data Access 

Enable Enable Previous Mode Virtual Mode Enable 
All Traps Fault Before Trap for I. Fetch !-Unit 

Enable 
FPU 

Enable 
Tag Trap 

Enable Integer 
Overflow Trap 

FPU Enable FPU Enable 
Parallel Mode Exception Generation Trap 

Figure A-2-2 Upsw and Kpsw Bit Assignments 

Each bit's definition specified in this figure is the meaning of the bit when it is equal to 1. As 

shown in Figure A-2-1, Upsw<31:2> and Kpsw<31:2> are 30 bits wide. This figure only shows 

the bits that are used by the hardware. Bits that are not used by the hardware can be read and 

written by software. 

A.3. The SPUR CPU Instruction Set 
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The SPUR CPU instruction set [Tay85] can be divided into seven types of instructions: (1) 

Load, (2) Register-Register, (3) Jump-Register and Return, (4) Read and Write Special Registers 

(5) Store, (6) Compare-Branch, and (7) Call-Jump. These instructions are summarized in Tables 

A-3-1 through A-3-7. Floating point instructions are not discussed in this section and can be 

found in [Bos88]. As mentioned in Section 2.4.1, unusual conditions can arise during instruction 

execution and may cause a trap. These unusual conditions are listed in Table A-3-8. Finally, 

Table A-3-9 shows all the branch conditions for all the Compare-Branch instructions. 

Load, Jump-Register and Return, and Read and Write Special Registers instructions all 

have the same format as Register-Register instructions. The Ri field of Register-Register 
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Load Instructions 

Cache 
Unusual 

Instruction Operands Action Conditions 

Ooerations _{]'_able A-3-81 

LD_40 
Rd, Rsl, Ri 

RD64 
Rd<39:0> <- Mem[Rsl+Ri] None 

LD 40 RO RF064 

CXR Rd,Rsl, Ri 
RD64 Rd<39:0> <- Mem[Rsl+Ri] D 

CXR RO RF064 LISP pointer check 

LD_32 
RD32 

Rd<31:0> <- Mem[Rsl+Ri] 
PR32 

LD_32_RO 
Rd,Rsl,Ri 

R032 
None 

LD 32 RI RA32 
Rd<39:32> <- OxOO 

TEST_&_SET Rd,Rsl,Ri TS32 
Rd<31:0> <- Mem[Rsl+Ri] None 
Rd<39:32> <- OxOO 

LD_ Rd, Rsl, Ri 
RD_ Rd<31:0> <- CC Reg[Rsl+Ri] 

E 
EXTERNAL CACHE Rd<39:32> <- OxOO 

Table A-3-1 Load Instructions 

instructions can either be a register specified by the Rs2 field or the sign extension of the 14-bit 

immediate field (see Figure 2-1-1). In order to support the Berkeley Ownership cache con-

sistency protocol [KEW85], most Load instructions have two favors-simple read or read for own-

ership (opcode_RO). LD_32 has one more favor-the RI favor. LD_32_RI tells the Cache Con-

troller to ignore any page fault it may cause and provide the data to the CPU anyway. LD_32 is 

also the only Load that can access data in physical mode. Therefore LD_32's Cache Operations 

can either be RD32 (virtual mode) or PR32 (physical mode). TEST_&_SET and 

LD_EXTERNAL are similar to LD_32 as far as the CPU is concerned. The only difference is 

their Cache Operations which will be handled differently by the Cache Controller. A complete 

explanation of all the Cache Operations is given in [WEG87]. 

The Store instructions do not have the same fonnat as the Register-Register instructions. Its 

immediate field (Imm) is the sign extension of the 14-bit immediate filed fonned by concatenat-

ing the High Imm and Low Imm fields of the instructions (see Figure 2-1-1). Since ST_32 is the 
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Re!!ister-Rel!ister Instructions 

Instruction Operands Action 
Unusual Conditions 

lTable A-3-8) 

ADD_NT Rd, Rsl, Ri 
Rd<31:0> <- Rsl + Ri None 
Rd<39:32> <- Rs1<39:32> 

ADD Rd, Rsl,Ri 
Rd<31:0> <- Rsl + Ri F &I 
Rd<39:32> <- Rs1<39:32> 

SUB Rd, Rsl,Ri 
Rd<31:0> <- Rsl- Ri F&I 
Rd<39:32> <- Rs1<39:32> 

AND 
Rd, Rsl,Ri Rd<31:0> <- Rsl and Ri F 

Rd<39:32> <- Rsl<39:32> 

OR 
Rd, Rsl, Ri Rd<31:0> <- Rsl or Ri F 

Rd<39:32> <- Rs1<39:32> 

XOR 
Rd,Rsl,Ri Rd<31:0> <- Rsl xor Ri F 

Rd<39:32> <- Rs1<39:32> 

Rd<31:0> <- Rs1<31:0> shift 

SLL Rd, Rsl, Ri left by Ri<l:O> bits F 

Rd<39:32> <- Rs1<39:32> 

Rd<31:0> <- Rs1<31:0> arithmetic 

SRA Rd, Rsl, Ri shift right by Ri<O> bit F 

Rd<39:32> <- Rs1<39:32> 

Rd, Rsl, Ri 
Rd<31:0> <- Rs1<31:0> logic 

SRL shift right by Ri<O> bit F 

Rd<39:32> <- Rs1<39:32> 

RD_TAG Rd,Rsl 
Rd<31:8> <- 0 None 
Rd<7:0> <- Rs1<39:32> 

EXTRACf Rd, Rsl, Ri 
Rd<31:8> <- 0 None 
Rd<7:0> <- Rsl[byte Ri<l:O>] 

WR_TAG Rd, Rsl, Ri 
Rd<31:0> <- Rs1<31:0> None 
Rd<39:32> <- Ri<7:0> 

INSERT Rd,Rsl,Ri Rd[byte Ins<l:O>] <-Ri<7:0> None 

Table A-3-2 Register-Register Instructions 

only instruction that can perform store in physical mode, ST _32's Cache Operations can either be 

WR32 (virtual mode) or PW32 (physical mode). 

Compare-Trap is a special case of Compare-Branch in which the "branch" is taken as a 

trap. Compare Branch or Compare Trap's 3rd operand can either be Rc, Rs2, or Tag Imm 

depending on the Cond filed. The Rc option means the operand can either be a register specified 
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Jump-Register and Return Instructions 
Unusual 

Instruction Operands Action Conditions 
JTable A-3-8_}_ 

JUMP_REG Rsl, Ri PC<-Rsl +RC None 

RETURN Rs1,Ri 
PC<- Rs1 + Ri B 
Pop to previous window: Cwp <- Cwp - 1 

RETURN_ PC <-Rs1 + Ri 

1RAP 
Rsl, Ri Pop to previous window: Cwp <- Cwp - 1 B 

Enable all traps: Kpsw<AllEn> <- 1 

Table A-3-3 Jump-Register and Return Instructions 

by the Rs2 field or zero extension of the 5-bit Short Immediate field (see Figure 2-1-1). 

Read and Write Special Registers Instructions 
Unusual 

Instruction Operands Action Conditions 
(Table A-3-~ 

RD_SPECIAL Rd, Ss1 
Rd<31:0> <- Ss1 

None 
Rd<39:32> <- OxOO 

RD_INSERT Rd 
Rd<31:0> <-Ins 

None 
Rd<39:32> <- OxOO 

RD_KPSW Rd 
Rd<31:0> <- Kpsw None 
Rd<39:32> <- OxOO 

WR SPECIAL Sd, Rsl, Ri Sd<-Rsl +Ri None 

WR INSERT Ri Ins<- Ri<1:0> None 

WR KPSW Rsl Ri Kpsw <- Rs1 + Ri E 

INVALID_m 
Invalidate all entries in the 

None 
on-chiQ_ instruction cache 

Table A-3-4 Read and Write Special Registers Instructions 

Ssl and Sd are specifiers that specify the special registers to be read or written. 

212 
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Store Instructions 
Cache Unusual 

Instruction Operands 
Operations 

Action Conditions 
(Table A-3-8) 

ST_40 
Rs2,Rsl, 

WR64 
Mem[Rsl+lmm] <- Rs2<39:0> 

H 
Imm Generation Check 

ST_32 
Rs2,Rsl, WR32 

Mem[Rsl+lmm] <- Rs2<31:0> None 
Imm PW32 

ST_ Rs2,Rsl, WR_ 
CC Reg[Rsl+lmm] <- Rs2<31:0> E 

EXTERNAL Imm CACHE 

Table A-3-5 Store Instructions 

Comoare-Branch Instructions 

Cond Field 
Unusual 

Instruction Operands Action Conditions 

(fable A-3-9) (Table A-3-8) 

always, ge, ne, 
Cond, Rsl, if (Cond=TRUE) 

CMP_BRANCH 
gt, never, It, G 
eq, le, uge, 

Rc, Offset PC <-PC + signExt(Offset) 
ugt, ult, ule 

CMP_BRANCH 
eq_tag, eq_38, Cond, Rsl, if (Cond=TRUE) 

None 
ne tag, ne 38 Rs2, Offset PC <- PC + signExt(Offset) 

eq_tag_imm, Cond, Rsl, if (Cond=TRUE) 

CMP_BRANCH 
ne_tag_imm, 

Tag Imm, 
PC <- PC + signExt(Offset) 

None 

Offset 

always, ge, ne, 
Cond, Rsl, if (Cond=TRUE) 

CMP_TRAP 
gt, never, It, G,J 
eq, le, uge, 

Rc, Offset Take a trap! 
ugt, ult, ule 

• CMP_TRAP 
eq_tag, eq_38, Cond, Rsl, if (Cond=TRUE) ] 
ne tag, ne 38 Rs2, Offset Take a trap! 

eq_tag_imm, Cond, Rsl, if (Cond=TRUE) 

CMP_TRAP 
ne_tag_imm, 

Tag Imm, 
Take a trap! 

] 

Offset 

Table A-3-6 Compare-Branch Instructions 
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Call-Jump Instructions 
Unusual 

Instruction Operands Action Conditions 
{Table A-3-8) 

JUMP Word Address PC<- PC<31:30> cat Word Address None 

PC<- PC<31:30> cat Word Address 

CALL Word Address Open new window: Cwp <- Cwp + 1 A 
Save PC: RIO (new window)<- PC 

Table A-3-7 Call-Jump Instructions 

Unusual Definition and Condition 
Conditions 

A 
Window Overflow: 
Attempt to execute CALL when Cwp+l = Swp<9:7> 

B 
Window Underflow: 
Attempt to execute RETURN or RETURN TRAP when Cwp-1 = Swp<9:7> 

D 
LISP Pointer Type Violation: 

Rs1<37:32> !=CONS or NIL 

E 
Kernel Mode Violation: 
Attempt to execute a privilege instruction when Kpsw<UserBit> = 1 

F 
LISP Data Type Violation: 

Rs1<37:32> != FIXNUM or Rs2<39:32> != FIXNUM 

LISP Data Type Violation: 

G (Rs1<37:32> != FIXNUM or Rs2<39:32> != FIXNUM) and 

(Rsl<37:32> !=CHARACTER or Rs2<39:32> !=CHARACTER) 

H 
Generation Violation: 

Rs2<39:38> > Rs1<39:38> 

I Integer Overflow 

] Compare trap with valid condition 

Table A-3-8 The SPUR CPU Unusual Conditions 
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Mnemonic Binary_ (Hex.) Branch Conditions Notes 

ALWAYS 00 000 (00) Always Branch 

GE 00 001 (01) Rs1<31:0> ~ Rc<31:0> 

NE 00 010 (02) Rs1<31:0> 'i= Rc<31:0> 1,2 

GT 00 011 (03) Rs1<31:0> > Rc<31:0> 

NEVER 00 100 (04) Never Branch 

LT 00 101 (05) Rs1<31:0> < Rc<31:0> 

EQ 00 110 (06) Rs1<31:0> = Rc<31:0> 1,2 

LE 00 Ill (07) Rs1<31:0> ~ Rc<31:0> 

UGE 01 001 (09) Rs1<31:0> ~ Rc<31:0> 

UGT 01 011 (OB) Rs1<31:0> > Rc<31:0> 

ULT 01101 (OD) Rs1<31:0> Rc<31:0> 
3 

< 

ULE 01 111 (OF) Rs1<31:0> ~ Rc<31:0> 

FPU_TRUE 10 000 (10) fpuBrT_F _C4 = 1 4 

EQ_TAG 10 001 (11) Rs1<37:32> = Rs2<37:32> 

EQ_38 10 011 (13) Rs1<37:0> Rs2<37:0> 
5 

= 
FPU_FALSE 10 100 (14) fpuBrT_F _C4 = 0 4 

NE_TAG 10 101 (15) Rs1<37:32> 'i= Rs2<37:32> 

NE_38 10 111 (17) Rs1<37:0> 'i= Rs2<37:0> 

EQ_TC 11 001 (19) Rs1<37:32> Tag_Imm 
5 

= 
NE_TC 11101 (1D) Rs1<37:32> 'i= Tag_lmm 

Table A-3-9 The SPUR CPU Branch Conditions 

Notes: 
1. Ifbusl<14> = 0, Rc = Rs2. Otherwise, Rc =Zero Ext (Short Imm). 

2. Rs1 and Rc are treated as 2's complement signed integers. 

3. Rs1 and Rc are treated as unsigned integers. 

4. fpuBrT_F _C4 is an external input coming from the FPU. 

5. Only the type tag are checked. Generation numbers are ignored. 

A.4. Special Cases of Register-Register Instructions 

Load, Jump-Register and Return, Read Special Registers, and Write Special Registers 

instructions can be considered as special cases of the Register-Register instructions. The timing 

of Load operation is shown in Table A-4-1. It is similar to Register-Register operation except the 

ALU output is sent out as effective address and the data from memory is written into the destina-

tion register. The timing of Jump-Register and Return operations is shown in Table A-4-2. In 

this case, the ALU output is sent to the upper datapath and then the Instruction Unit as the target 
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address. The timing of Read and Write Special Registers operations are shown in Table A-4-3 

and Table A-4-4 respectively. They are similar to Register-Register operation except special 

registers are involved instead of general purpose registers. 

Stage/Phase Actions 

lfet Stage: 
Phase 3 busl <- 1-UnitfbusPCl · 

Exec Stage: 
busA <- REG_FILE[Rs1]. busB <-(not REG_FILE[Rs2]) ; 

Phase 1 
BUSBUFA <- busA, 
if (busk14>=0) BUSBUFB <-(not busB) 

else BUSBUFB <-Sign Extend (busk13:0>); 

Phase 2 
busA2 <- BUSBUFA, busB2 <- BUSBUFB; 

Port A of ALU <- busA2, Port B of ALU <- busB2 ; 

Phase4 
busS<-ALU; 
Address Pads <-busS · 

Mem Stage: 

Phase 1 
busPC <-INC ; 
lfetPC <- busPC, 1-Unit <- busPC ; 

Phase 3 
busL <- Data Pads ; 
Dst2 <- busL · 

Wr Stage: 

Phase 3 
busA <- Dst1, busB <-(not Dst2); 

REG FILE[rd] <- (busA & (not busB))_; 

Table A-4-1 Load Operation 
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Stae:e/Phase Actions 

Ifet Stage: 
Phase 3 busi <- I-Unit[busPC] · 

Exec Stage: 
busA <- REG_FILE[Rs1]. busB <-(not REG_FILE[Rs2]) ; 

Phase 1 
BUSBUFA <- busA, 
if (busk14>=0) BUSBUFB <-(not busB) 
else BUSBUFB <-Sign Extend (busi<13:0>); 

if (opcode =RETURN) Cwp <- Cwp- 1, 

Phase2 busA2 <- BUSBUFA, busB2 <- BUSBUFB; 

Port A of ALU <- busA2, Port B of ALU <- busB2 ; 

Phase4 
busS <-ALU; 
BUSS2PC <-busS· 

Mem Stage: 

Phase 1 
busPC <- BUSS2PC ; 
IfetPC <- busPC,I-Unit <- busPC · 

Wr Stage: 
Phase 3 if (opcode =RETURN) Update Backup Copy of Cwp ; 

Table A-4-2 Jump-Register and Return Operations 

Staj!e/Phase Actions 

Iret Stage: 
Phase 3 busi <- I-UnitfbusPCl · 

Exec Stage: 

Phase2 
busS <- (Cwp, Swp, Upsw, or Kpsw) ; 

BUSSTOD <-busS ; 

Phase4 
busD <- BUSSTOD ; 
Dst1 <- busD _;_ 

Mem Stage: 

Phase 1 
busPC <-INC; 
IfetPC <- busPC, I-Unit <- busPC ; 

Phase 3 Dst2 <- Dst1 ; 

Wr Stage: 

Phase 3 
busA <- Dst1, busB <-(not Dst2); 
REG FILE[rd] <- (busA &_{not busB)); 

Table A-4-3 Read Special Registers Operation 
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Stat!e/Phase Actions 

Ifet Stage: 
Phase 3 busi <- 1-Unit[busPC] · 

Exec Stage: 
busA <- REG_FILE[Rsl], busB <-(not REG_FILE[Rs2]) ; 

Phase I 
BUSBUFA<- busA, 
if (busl<14>=0) BUSBUFB <-(not busB) 

else BUSBUFB <-Sign Extend (busl<13:0>); 

Phase 2 
busA2 <- BUSBUFA, busB2 <- BUSBUFB; 

Port A of ALU <- busA2, Port B of ALU <- busB2 ; 

Phase4 
busS<-ALU; 
<C~,Swp~ Upsw or Kpsw1 <-busS; 

Mem Stage: 

Phase 1 
busPC <-INC ; 
IfetPC <- busPC I-Unit<- busPC 

Wr Stage: 
Phase 3 Update Backup Copy of (Cwp, Swp, Upsw, or Kpsw); 

Table A-4-4 Write Special Registers Operation 
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Appendix B 

THE SPUR CPU PROBLEMS REPORT 

The great liability of the engineer compared to men of other professions 

is that his works are out in the open where all can see them .... 

If his works do not work, he is damned. 
Hebert Hoover, 1916 
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This appendix lists all the known SPUR CPU problems. Unless otherwise specified, all 

these problems can still be found in the second version of the SPUR CPU. The solutions to these 

problems are also listed. The SPUR CPU problems can be classified into three groups: (1) 

microarchitectural problems, (2) electrical problems, and (3) implementation problems. 

B.l. Microarchitectural Problems 

The CPU chip is doing exactly what the microarchitect designed it to do although it is not 

doing what the microarchitect wanted it to do. The microarchitect has designed it wrong! These 

problems can be simulated in behavioral and switch level simulation. They were not detected dur-

ing simulation because we did not cover all possible cases or we did not realize they were prob-

lems. The SPUR CPU microarchitectural problems are: 

(1) The SPUR CPU does not allow two consecutive instructions to modify the the same spe-

cial register (special registers are listed in Appendix A.2). The problem is that the SPUR 

CPU cannot recover the special register if the second instruction is trapped. The software 

solution is to avoid writing code that will modify the same special register in two con-

secutive instructions. The hardware solution is to add one more temporary latch between 

the special register and its backup copy (see Figure 3-3-1). 
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(2) The SPUR CPU cannot recover from an intenupt if the second instruction that is being 

killed is a CALL or RETURN instruction. This problem and its software solution are dis

cussed in Section 3.3.1. The same hardware solution that can solve Microarchitectural 

Problem 1 above can also solve this problem. 

(3) The SPUR CPU treats the internal instructions just like any other normal instructions. 

The user can, therefore, use the internal instructions in his program to crash the system. 

This is a security hole and we did not have any software solution for it. The hardware 

solution is to change the SPUR CPU instruction decoder such that it treats all internal 

instructions as privilege instructions. Whenever a user program attempts to execute an 

internal instruction, the SPUR CPU should take a mode violation trap. 

(4) The CPU and the Cache Controller assume different meanings for the cacheBusy signal. 

The CPU assumes it will stay asserted during the entire cache operation. The Cache Con

troller, on the other hand, assumes it can disassert it in the middle of a cache operation as 

long as the dataValid signal remains disasserted. Consequently, when the Cache Con

troller disasserts cacheBusy momentarily in the middle the TEST_AND_SET operation, 

the SPUR CPU is confused and starts prefetching instruction erroneously if the !-Unit is 

enabled. We did not have any software solution for this problem. The easiest hardware 

solution is to put some "glue" logic on the processor board. 

B.2. Electrical Problems 

The CPU chip is not doing what the microarchitect nor the logic designer designed it to do 

due to unexpected electrical problems. These problems cannot be simulated in behavioral nor 

switch level simulation. Careful and in-depth circuit simulation is the only way to detect these 

problems. These problems exist because the switch level simulation is not low level enough and 

it is not practical to run circuit simulation for the entire chip. The SPUR CPU electrical problems 

are: 
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(1) A hazardous circuit caused the CALL instruction not able to save the return address prop

erly in the first version of the SPUR CPU. This problem and its solutions are discussed in 

Section 3. 3.2.1. 

(2) Misplaced well and substrate contacts resulted in stuck at "0" and stuck at "1" problems 

in the first version of the SPUR CPU. This problem and its solutions are discussed in Sec

tion 3.3.2.2. 

(3) There is small gap in one of the wires in instruction unit. We solved this problem by per

forming micro-surgery on the chip to connect the broken wire using the "Focused Ion 

Beam IC Development System" available from Seiko Instrument Inc. This problem was 

introduced when we were fixing problems from the first version. 

(4) The SPUR CPU is not ignoring interrupts during global pipeline suspension causes by 

external cache miss. This problem is caused by a race condition in the trap logic. The 

easiest hardware solution is to put some "glue" logic on the processor board. 

B.3. Implementation Problems 

Implementation problems occur when the CPU chip is doing exactly what the logic or cir

cuit designer designed it to do although it is not doing what the microarchitect want it to do. ·The 

logic or circuit designer implement something differently than what the microarchitect has in 

mind! These problems may be detected by comparing the switch level simulation results against 

behavioral level simulation results if both the switch level and behavioral level descriptions have 

the proper level of details. These problems exist because of miscommunication between the 

microarchitect and the logic or circuit designer. The SPUR CPU only has one implementation 

problem: 

(1) The backup copy of all special registers were implemented as dynamic registers. They 

should be static or pseudo static registers. This problem and its solution is discussed in 

Section 3.3.3. 


