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Abstract

We introduce eigenfunctions of the Reed-Muller trans-
form. Eigenfunctions are functions whose canonical sum-
of-products expression and PPRM (positive polarity Reed-
Muller expression) are isomorphic. In the case of symmet-
ric functions, the eigenfunction can be viewed as a function
whose reduced truth vector is identical to the reduced Reed-
Muller spectrum. We show that the number of symmetric
(ordinary) eigenfunctions on �-variables is ��

���

�
�(��

���

).
We identify three special symmetric functions that corre-
spond to the most complicated minimal fixed polarity Reed-
Muller (FPRM) form. We show how the transeunt triangle
can be used to convert between the reduced (ordinary) truth
vector and the reduced (ordinary) Reed-Muller spectrum.
We derive the number of products in the FPRM for these
symmetric functions: this shows that they have the most
complicated minimal FPRM among all �-variable func-
tions.

1 AND-EXOR Expressions

In this part, we define some classes of AND-EXOR ex-
pressions.

Theorem 1.1 An arbitrary logic function
����� ��� � � � � ��� can be expanded as

����� ��� � � � � ��� � �� � ���� (1.1)

����� ��� � � � � ��� � ����� � �� (1.2)

����� ��� � � � � ��� � ����� � ����� (1.3)

where �� � ���� ��� � � � � ���, �� � ���� ��� � � � � ���, and
�� � �� � ��.

(1.1)–(1.3) are the positive Davio expansion, the negative
Davio expansion, and the Shannon expansion, respec-
tively.

Definition 1.1 By expanding the function � using (1.1) re-
cursively, we have a logical expression with only uncomple-
mented literals:

�� � ���� � � � � � ���� � ������� � ������� � � � �

������������� � � � � � ����������� � � ����

This is a positive polarity Reed-Muller expression
(PPRM).

The minimization problem is the problem of finding an
expression with the fewest products. For any logic function,
the PPRM is unique and is, therefore, minimal. The average
number of products in PPRMs for �-variable functions is
���� [20].

Example 1.1 Represent � � ��������� by a PPRM. By sub-
stituting ��� � �� � �, ��� � �� � �, ��� � �� � �, we
have

� � ��� � ����� � ����� � ��

� �� �� � �� � �� � ���� � ���� � ���� � �������

Note that this expression uses uncomplemented literals only,
and is therefore a PPRM. (End of Example)

In general, ������ � � � ��� requires �� products in a PPRM.
Note that this is the most complicated function to realize
using a PPRM.

Definition 1.2 By expanding the function � using (1.2) re-
cursively, we have a logical expression with only comple-
mented literals:

�� � ����� � � � � � ����� � ��������� � ��������� � � � �

��������������� � � � � � ������������� � � � ����

This is a negative polarity Reed-Muller expression
(NPRM).
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Definition 1.3 By applying the positive Davio expansion
or the negative Davio expansion to the given function � ,
we have a logical expression that has a form similar to a
PPRM. In this case, assume that we can use either uncom-
plemented literals or complemented literals but not both for
each variable. Such a logical expression is a fixed polarity
Reed-Muller expression (FPRM).

For an �-variable function, there are �� different FPRMs
corresponding to �� ways to complement � variables. The
minimization problem is to find one with the fewest prod-
ucts among all �� possible FPRMs.

Definition 1.4 A minimum FPRM (MFPRM) of a func-
tion � is an FPRM of � with the fewest products.

Example 1.2 Represent the function � � �������� �
������������ by an FPRM. Since the two products are disjoint,
� can be represented as � � ���������������������. By ap-
plying the positive Davio expansion to �� and ��, and the
negative Davio expansion to �� and ��, we have an expres-
sion where �� and �� appear as uncomplemented literals,
and �� and �� appear as complemented literals. Thus, by
substituting ��� � �� � �, ��� � �� � �, �� � ��� � �, and
�� � ��� � � into � , we have

� � �������� � ������ � ��� ��� � ����� � ��������

� ������� ��� � ��� � �������

���� �� � �� � �����������

� ���� � ������� � ������� � ������ � ��������

����������

Note that the last expression is an FPRM. By deriving
all FPRMs, it can be shown that this is an MFPRM.

(End of Example)

In general, ���� � � ��� � ������ � � � ��� �� � ��� requires
���� � � products in an MFPRM (See p.291 of [18]). This
is a symmetric function. It is tempting to believe that this
function has the largest MFPRM among all symmetric func-
tions on � variables. However, as discussed later, this is not
the case.

2 Reed-Muller Transformation

In this part, we define the Reed-Muller spectrum and the
Reed-Muller transformation matrix [21].

Definition 2.1 Let

���� �

�
� �
� �

�
�

and

���� �

�
���� �� �
���� �� ���� ��

�
�

���� is the Reed-Muller transformation matrix of �
variables.

Note that the calculations are done in GF(2). The inverse
of a Reed-Muller transformation matrix ���� is ����, i.e.,
���� is self-inverse.

Example 2.1 The Reed-Muller transformation matrix of
two variables R(2) is

���� �

�
���
� � � �
� � � �
� � � �
� � � �

�
��� �

(End of Example)

Definition 2.2 Let �� � ���� ��� � � � � ������ be the truth
vector of an �-variable logic function � , and let �	 �
�
�� 
�� � � � � 
����� be the Reed-Muller spectrum of � .
Then, two relations �	 � ������ � and �� � �����	� hold,
where � denotes transpose of the vector. In this case, 
� is a
Reed-Muller coefficient of � , where � � ��� �� � � � � �����.

Example 2.2 Consider the function � � �����������. Note
that �� � ���� ��� ��� ��� � ��� �� �� ��. The Reed-Muller
spectrum is computed as

�
���
� � � �
� � � �
� � � �
� � � �

�
���

�
���
�
�
�
�

�
��� �

�
���
�
�
�
�

�
��� �

Thus, we have the spectrum �	 � �
�� 
�� 
�� 
�� �
��� �� �� ��. Note that the first element corresponds to the
constant function 1; the second element corresponds to the
function ��; the third element corresponds to the function
��; and the last element corresponds to the function ����.
This means that the function is represented by � � �����.

(End of Example)

3 Eigenfunction of the Reed-Muller Trans-
form

In linear algebra, �� is an eigenvector of a matrix 
 if
there exists a constant � such that 
�� � ���. In the Reed-
Muller transform, the computations are done in GF(2), and
1 is the only non-zero value of �. Thus, we have

Definition 3.1 Let �� be a binary vector of �� elements,
and ���� be the Reed-Muller transformation matrix of n
variables. Then, a vector �� satisfying ���� �� � �� is an
eigenvector of Reed-Muller transformation. The function
corresponding to the eigenvector is an eigenfunction of the
Reed-Muller transform.



For an eigenfunction, the canonical sum-of-products ex-
pression and the PPRM are isomorphic, and have the same
number of products.

Example 3.1 Consider the EXOR function � � ����� �
�����. As shown in Example 2.2, �� � ���� ��� ��� ��� �

��� �� �� ��, and �	 � �
�� 
�� 
�� 
�� � ��� �� �� �� . Thus,
��� �� �� �� is an eigenvector of ����. In fact, � � ����� �
����� and � � � � �� � �� � � are isomorphic: the comple-
mented literals in the first expression correspond to constant
1’s in the second expression. In a similar way, we can show
that ��� �� �� �� is also an eigenvector. (End of Example)

One can solve for an eigenvector as follows. Since eigen-
vector �� satisfies ������ � �� , it follows that ���� �� �

��� � ������ ���� � ������ ���� � ��. This yields �� si-
multaneous equations that can be solved for the components
of �� .

Example 3.2 Solve for the eigenvectors of ����. From the
observation above, we have

�
���

�
���
� � � �
� � � �
� � � �
� � � �

�
����

�
���
� � � �
� � � �
� � � �
� � � �

�
���

�
���

�
���
��
��
��
��

�
��� �

�
���
�
�
�
�

�
��� �

�
���
� � � �
� � � �
� � � �
� � � �

�
���

�
���
��
��
��
��

�
��� �

�
���
�
�
�
�

�
��� �

From this, we obtain four simultaneous equations

� � �

�� � �

�� � �

�� � �� � �� � �

From these equations, it follows that there are four
eigenvectors ��� � ��� �� �� ��, ��� � ��� �� �� ��, ��� �

��� �� �� ��, and ��� � ��� �� �� ��. Thus, for two-variable
cases, the constant 0, the AND, the EXOR, and the OR func-
tions are eigenfunctions. (End of Example)

Note that, the truth vector of an eigenfunction is identical
to the Reed-Muller spectrum of that function. Thus, from
the canonical SOP, the PPRM is obtained by removing all
the complemented literals from all product terms and by re-
placing the OR by the Exclusive OR. Eigenfunctions are
interesting because among them, we can find the functions
with the largest MFPRMs.

4 Symmetric Functions

Functions used in arithmetic circuits often have sym-
metries. Symmetric functions are interesting because they
contain the functions with the largest MFPRMs.

Definition 4.1 A function � is a (totally) symmetric func-
tion if any permutation of the variables in � leaves the func-
tion unchanged.

Definition 4.2 The elementary symmetric functions of �
variables are

	�
� � ������ � � � ����

	�
� � ����� � � � ��� � �������� � � � ��� � � � �

������� � � � ��������

� � �

	�
� � ���� � � ����

	�
� =1 iff exactly � of � variables are 1.

Theorem 4.1 An arbitrary symmetric function ���� is
uniquely represented as follows:

���� �

��
���

��	
�
� �

Definition 4.3 �� � ���� ��� � � � � ��� is the reduced truth
vector of the symmetric function.

Note that any symmetric function on � variables can be
uniquely represented by a reduced truth vector of ��� bits.

Example 4.1 ����� ��� ��� � �������������������������
�������� is a totally symmetric function. � � � when all the
variables are 1, or when only one variable is 1. Thus, � can
be represented by the reduced truth vector �� � ��� �� �� ��.

(End of Example)

Since each of the � � � elements of the reduced truth ta-
ble can be chosen in two ways, there are ���� symmetric
functions on � variables.

Definition 4.4 An elementary symmetric EXOR func-
tion of � variables is an �-variable function represented by
the EXOR sum of all the products consisting of � positive
literals:

��
� � ��

��
� �

	
����

��
� �

	
�

�����

���� �

��
� �

	
�

�������

�������

� � �

��
� � ���� � � ����



Theorem 4.2 An arbitrary symmetric function ���� is
uniquely represented as follows:

���� �

�	
�

���

���
�
� �

Definition 4.5 �� � ���� ��� � � � � ��� is the reduced Reed-
Muller spectrum of the symmetric function.

Note that any symmetric function can be uniquely repre-
sented by its reduced Reed-Muller spectrum.

Example 4.2 ����� ��� ��� � �������������������������
�������� � �� � �� � �� � ��

�. Thus, � can be represented
by the reduced Reed-Muller spectrum �� � ��� �� �� ��.

(End of Example)

The following theorems show the relation between the re-
duced truth vector and the reduced Reed-Muller spectrum
for each of three symmetric functions.

Theorem 4.3

��
��� 	 �����mod ��

	�
� �

�	
�

��� 	 �����mod ��

��
� �

Example 4.3 	�
� �	

�
� � ��

����
�. The reduced truth table

is �� � ��� �� �� ��, and the reduced Reed-Muller spectrum
is �� � ��� �� �� ��. This class of functions is quite interest-
ing, since the expressions are isomorphic in both represen-
tations. In other words, the truth vector is invariant with
the Reed-Muller transformation. In other words, they are
eigenfunctions. (End of Example)

Theorem 4.4

��
��� 	 �����mod ��

	�
� �

�	
�

��� 	 �����mod ��

��
� �

Example 4.4 	�
� �	

�
� �	

�
� � ��

����
����

� . The reduced
truth table is �� � ��� �� �� ��, and the reduced Reed-Muller
spectrum is�� � ��� �� �� ��. (End of Example)

Theorem 4.5

��
��� 	 �����mod ��

	�
� �

�	
�

��� 	 �����mod ��

��
� �

Example 4.5 	�
� �	

�
� �	

�
� � ��

����
����

�. The reduced
truth table is �� � ��� �� �� ��, and the reduced Reed-Muller
spectrum is�� � ��� �� �� ��. (End of Example)
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Figure 5.1. Transeunt triangle for each of
three 3-variable symmetric functions.

5 Transeunt Triangle

Up to this point, we have discussed relations between the
canonical sum-of-products expressions (canonical SOPs)
and the positive polarity Reed-Muller expressions (PPRMs)
of some symmetric functions. For these symmetric func-
tions, the number of products in the canonical SOP and the
number of products in the PPRM are the same and they are
approximately ������, when � is large, since about one-
third of the truth table entries are 0’s. Peryazev [12] has
shown that these functions have the most products in their
MFPRM. Pogossova and Egiazarian [13] also discuss sym-
metric functions realized as Reed-Muller expressions.

We consider the transeunt triangle discussed in Butler et
al [1, 2] and Dueck et al [5], which had its origin in Suprun
[24]. The transeunt triangle is related to a method to convert
a truth table to a Reed-Muller spectrum by Green [8]. The
transeunt triangle is a triangle of 0’s and 1’s representing
the coefficients in the reduced truth table and the reduced
Reed-Muller spectrum. For example, the function whose
reduced truth table is �� � ��� �� �� ��, and whose reduced
Reed-Muller spectrum is �� � ��� �� �� �� is shown in Fig.
5.1 (a).

This transeunt triangle is created as follows. Make the
bottom row the reduced truth table. Specifically, the bottom
row should be �� � ���� ��� � � � � ���, where �� is the �-th
coefficient in the reduced truth table of the given function
���� �


�

��� ��	
�
� . Form the second row above the row

associated with the reduced truth table, as the exclusive OR



of adjacent elements in the first row. That is, the second
row is ��� � ��� �� � ��� � � � � ���� � ���. Form the third
row above the second row as the exclusive OR of adjacent
elements in the second row. Continue in this way and stop
after forming the apex of the triangle consisting of one 0 or
one 1.

It is known [1, 24] that the left edge is ��, the reduced
Reed-Muller spectrum of a symmetric function. Thus, the
reduced Reed-Muller spectrum can be derived from the re-
duced truth table. Note that the transeunt triangle can be
produced starting from the reduced Reed-Muller spectrum.
This is because the Reed-Muller transform is self-inverse.
Thus, the reduced truth table can be derived from the re-
duced Reed-Muller spectrum.

Fig. 5.1 (b) and (c) show the transeunt triangles for the
other two functions discussed above, namely the functions
whose reduced truth table is ��� �� �� �� and ��� �� �� ��, re-
spectively. From the three transeunt triangles, it can be seen
that the three functions are related. Note that, for all three
triangles, a ���Æ rotation leaves the triangle unchanged.

In preparation for the discussion on counting the number
of eigenvectors, we state the following

Lemma 5.1 [23] In the transeunt triangle of a symmetric
function � , where the base is the reduced truth vector of � ,
the left side is the PPRM or the spectrum of � , while the
right side is the NPRM of � .

This was proven by Suprun [23]. As far as we know, no
English version has been published.

First, consider symmetric functions. An eigenvector in a
transeunt triangle has the property that two sides are iden-
tical. For example, Fig. 5.2 shows a transeunt triangle of
a 7-variable symmetric function whose reduced truth table,
represented by the base of the triangle, is identical to its re-
duced spectrum, represented by the left side. It follows that
the function represented is an eigenvector.

Definition 5.1 The NPRM side of the transeunt triangle
corresponds to the negative polarity Reed-Muller vector[1].
By convention, we choose it to be the right side. The PPRM
side corresponds to the positive polarity Reed-Muller vec-
tor, and, by convention, is the left side. The truth table side
corresponds to the truth table, and, by convention, is the
base.

Note that the right side vector is a palindrome. This ex-
ample is a specific instance of the following general state-
ment.

Lemma 5.2 In the transeunt triangle of a symmetric func-
tion � , the NPRM side is a palindrome iff � is an eigenfunc-
tion.

(Proof) (only if) Let the NPRM side be a palindrome. As-
sume, on the contrary, that the function is not an eigenfunc-
tion. Therefore, the PPRM side and the truth table side are

�

� �

� � �
� � � �

� � � � �

� � � � � �
� � � � � � �

� � � � � � � �

Figure 5.2. Example transeunt triangle of an
eigenvector.

different. As observed in [1], the entire transeunt triangle
can be uniquely generated by the NPRM side by forming
the exclusive OR of adjacent elements in the same way the
entire triangle is generated from the truth table. Since the
palindrome is the same rotated about its center point and the
generated triangles is unique, the PPRM side and the truth
table side must be identical, contradicting the assumption
there are different. Therefore, the function is an eigenfunc-
tion.

(if) Let the function � associated with the transeunt tri-
angle be an eigenfunction. It follows that the PPRM side
and the truth table side are identical vectors. The transeunt
triangle is uniquely generated from each side. The triangles
must be the same and they must be invariant to a flip about
a line bisecting the angle between the PPRM side and the
truth table side. From this, it follows that the triangle’s base
(i.e. the NPRM side) must be invariant to the flip. It must
be a palindrome. ��������
From this, we can count the eigenvectors.

Theorem 5.1 The number �
�� 
��
���� of symmetric
eigenfunctions on �-variable is

�
�� 
��
���� � ��
���

�
�� (5.1)

(Proof) From Lemma 5.2, to count symmetric eigenfunc-
tions, we can enumerate palindromes. Each side of the
transeunt triangle of an �-variable symmetric function is a
binary �� �-tuple. If that tuple is a palindrome, then there
are ����� � pairs of elements except for one middle element
in the case of even �, each of which can be chosen in two
ways, � or �, for a total of ��

���

�
� ways. ��������

Note that the transeunt triangle in Fig. 5.2 corresponds
to a PPRM whose minimal FPRM is the most complicated
among all �-variable functions. The 1’s in the triangle form
an interconnected hexagonal pattern.

Next, consider general functions. Fig. 5.2 shows how
the transeunt triangle can be used in the case of general
functions. That is, if the bottom vector is viewed as the
truth vector of a function, then the left side is the PPRM
of that function. In this example, the bottom vector is
���� �� �� � ����� � ����� � ����� � ���� ����. The left side is



the PPRM of this function, ���� �� �� � ������������.
The right side is the NPRM side, since it represents the neg-
ative Reed-Muller vector. In general, we can state

Lemma 5.3 In the transeunt triangle of a general function
� , the NPRM side is a palindrome iff � is an eigenfunction.

From this, we can count the number of eigenvectors.

Theorem 5.2 The number ��
� 
��
���� of eigenfunctions
on �-variable is

��
� 
��
���� � ��
���

� (5.2)

(Proof). From Lemma 5.3, to count symmetric functions
that are eigenvectors, we can enumerate palindromes. Each
side of the transeunt triangle of an �-variable symmetric
function is a binary ��-tuple. If that tuple is a palindrome,
then there are ���� pairs of elements, each of which can
be chosen in two ways, � or �, for a total of ��

���

ways.
��������

6 Number of Products in a PPRM

In Section 4, we identified three symmetric function
having special properties. We now consider the number
of products needed to represent such symmetric functions
using positive polarity Reed-Muller expressions (PPRMs).
Note that a function � that has the largest number of prod-
ucts in its MFPRM among all �-variable functions, can be
converted to another function � whose PPRM is � ’s MF-
PRM with all complemented variables converted to uncom-
plemented variables. Therefore, it is possible to view an
MPPRM as a PPRM with the largest number of products,
such that all FPRM’s of this function have the same or fewer
products. We consider MPPRM’s in this section.

We define two types of �-variable symmetric functions,
whose Reed-Muller spectrum has a special characteristic.
In the case of the first type, every third element is 1 and
the other two elements are 0. Conversely, in the case of
the second type, every third element is 0 and the other two
elements are 1.

Specifically, let �
	��� (��	���), for � � ��� �� ��, be the
reduced Reed-Muller spectrum, �� � ���� ��� � � � � ���, of a
symmetric function that has the property �� � � (�� � �)
if � � � �	
� �� and �� � � (�� � �), otherwise. For
example, if � � �, then

�
���� � ��� �� �� �� �� � �� ��������

�
���� � ��� �� �� �� �� � �� � �� � ����

�
���� � ��� �� �� �� �� � ���� � ���� � ������

������ � ��� �� �� �� �� � �� � �� � �� � ����

����� � ������

������ � ��� �� �� �� �� � �� ���� � ���� � ����

� ��������

������ � ��� �� �� �� �� � �� �� � �� � �� � ��������

When � is large, approximately one-third of the elements in
the spectrum of �
	 are 1 and approximately one-third of the
elements in the spectrum of ��	 are 0, for � � ��� �� ��. Let
�	��� be the number of products in �
	���, and let Æ	���
be the number of products in ��	���, for � � ��� �� ��. For
example,
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From Pascal’s rule�
�

�

�
�

�
�� �

�� �

�
�

�
�� �

�

�
�

we can write

����� � Æ���� ��� ����� Æ���� � �� �
� (6.1)

����� � Æ���� ��� ����� Æ���� � �� �
� (6.2)

����� � Æ���� ��� ����� Æ���� � �� (6.3)

By direct observation, we can write

Æ���� � ����� � ����� � Æ���� �� � Æ���� ��� (6.4)

Æ���� � ����� � ����� � Æ���� �� � Æ���� ��� (6.5)

Æ���� � ����� � ����� � Æ���� �� � Æ���� ��� (6.6)

Here, the rightmost expressions of (6.4, 6.5, 6.6) were ob-
tained from (6.1, 6.2, 6.3). Each expressions of Æ	���
represents an infinite series of numbers that can be repre-
sented by generating functions�	��� � Æ	���� Æ	�����
Æ	����

� � � �� Æ	����
� � � � �, related as follows.

����� � ������ � ������ � �� �
�

����� � ������ � ������ � �� �
�

����� � ������ � ������ � ���



Solving for �	��� yields

����� �
������ � �

�� �
� �
�

����� �
������ � �

�� �
� �
�

����� �
������ � ��

�� �
�

Note, for example, that ����� is expressed as a function of
�����, which, in turn, is expressed as a function of �����,
which, in turn, is expressed as a function of �����. There-
fore, by a process of repeated substitutions, we can express
����� as a function of ����� only. Then, we can solve
explicitly for �����. Similarly, we can solve explicitly for
����� and �����. This process proves the following.

Theorem 6.1 The generating functions for the number of
products in the functions ������, ������, and ������ are

����� �
�

��� ������ �� ���
� �
�

����� �
���� �� ����

��� ������ �� ���
� �
�

����� �
���� ��� ����

��� ������ �� ���
�

The result is shown in the first row of Table 6.1. Rows
below the first show the number of products in the three
symmetric functions as a function of �, the number of
variables. That is, these are coefficients of various pow-
ers of � for the three generating functions, �����, �����,
and �����. For example, the third column shows that
����� �



����
����
�
�� � ��������������������

��������� ������������� � � �, where the coefficient
of �� is the number of products in the symmetric function
������. We seek the minimum, ���� of the number of prod-

ucts in �����, �����, and �����. This is ���� �


����

�

�
.

It is interesting that the number of products in the func-
tion with the most products in its MFPRM, expressed as
a binary number, is uniquely the binary numbers with no
adjacent pair of bits the same. For example, ��� � ��,
��� � ���, ��� � ����, ���� � �����, ���� � ������,
���� � �������, ���� � ��������, ����� � ���������,
and ����� � ����������.

7 Conclusions

In this paper, we

	 introduced eigenfunctions of Reed-Muller transforma-
tion, where the canonical sum-of-products expression
and the PPRM are isomorphic.

	 identified three symmetric functions having special
properties.

	 showed that among eigenfunctions, we can find the
above symmetric functions.

	 showed that the number of eigenfunctions on � vari-
ables is ��

���

.

	 showed that the number of symmetric eigenfunction on
� variables is ��

���

�
�.

	 showed that the number of products in PPRMs for such
symmetric functions is 
������� and this corresponds
to the MPPRM.
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