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When are Overcomplete Representations Identifiable?

Uniqueness of Tensor Decompositions Under Expansion Constraints

Animashree Anandkumar, Daniel Hsu, Majid Janzamin and Sham Kakade ∗

June 16, 2013

Abstract

Overcomplete latent representations have been very popular for unsupervised feature learn-
ing in recent years. In this paper, we specify which overcomplete models can be identified given
observable moments of a certain order. We consider probabilistic admixture or topic models
in the overcomplete regime. While general overcomplete admixtures are not identifiable, we
establish generic identifiability under a constraint, referred to as topic persistence. Our suffi-
cient conditions for identifiability involve a novel set of expansion conditions on the population
structure (i.e. the topic-word matrix) of the persistent topic model. Specifically, we require the
existence of a perfect matching from hidden variables to higher order observed variables, and
can thus, incorporate overcomplete models. In particular, we establish that random models are
identifiable w.h.p. in the overcomplete regime. Moreover, our analysis allows for general (non-
degenerate) distributions for modeling the topic proportions. Our proof techniques incorporate
a novel class of tensor decompositions which fall in between the well-known candecomp/parafac
(CP) and Tucker decompositions, and provide novel conditions for unique tensor decomposition.

Keywords: Overcomplete representation, admixture models, generic identifiability, tensor decom-
position.

1 Introduction

The performance of many machine learning methods is hugely dependent on the choice of data
representations or features. Overcomplete representations, where the number of features can be
greater than the dimensionality of the input data, have been extensively employed, and are ar-
guably critical in a number of applications such as speech and computer vision [1]. Overcomplete
representations are known to be more robust to noise, and can provide greater flexibility in mod-
eling [2]. Unsupervised estimation of overcomplete representations has been hugely popular due to
the availability of large-scale unlabeled samples in many applications.

A probabilistic framework for incorporating features often posits latent or hidden variables that
can provide a good explanation to the observed data. Overcomplete probabilistic models can have

∗A. Anandkumar and M. Janzamin are with the Center for Pervasive Communications and Computing,
Electrical Engineering and Computer Science Dept., University of California, Irvine, USA 92697. Email:
a.anandkumar@uci.edu,mjanzami@uci.edu. Daniel Hsu and Sham Kakade are with Microsoft Research New England,
1 Memorial Drive, Cambridge, MA 02142. Email: dahsu@microsoft.com, skakade@microsoft.com
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a latent space dimensionality, which can be far exceed the observed dimensionality. In this paper,
we characterize the conditions under which overcomplete latent variable models can be identified
from their observed moments.

For any parametric statistical model, identifiability is a fundamental question of whether the model
parameters can be uniquely recovered given the observed statistics. Identifiability is crucial in a
number of applications where the latent variables are the quantities of interest, e.g. inferring dis-
eases (latent variables) through symptoms (observations), inferring communities (latent variables)
via the interactions of the actors in a social networks (observations), and so on. Moreover, identifia-
bility can be relevant even in predictive settings, where feature learning is employed for some higher
level task such as classification. For instance, non-identifiability can lead to the presence of non-
isolated local optima for optimization-based learning methods, which can affect their convergence
properties, e.g. see [3].

In this paper, we characterize identifiability for a popular class of latent variable models, known
as the admixture or topic models [4, 5]. These are hierarchical mixture models, which incorporate
the presence of multiple latent states (i.e. topics) in documents consisting of a tuple of observed
variables (i.e. words). In this paper, we characterize conditions under which the topic models are
identified through their observed moments in the overcomplete regime. To this end, we introduce
an additional constraint on the model, referred to as topic persistence. Intuitively, this captures
the “locality” effect among the observed words, and goes beyond the usual “bag-of-words” or
exchangeable topic models. Such local dependencies among observations abound in applications
such as text, images and speech, and can lead to more faithful representation. In addition, we
establish that the presence of topic persistence is central to obtaining model identifiability in the
overcomplete regime, and we provide an in-depth analysis of this phenomenon in this paper.

1.1 Summary of results

In this paper, we provide conditions for generic1 model identifiability of overcomplete topic models
given observable moments of a certain order (i.e., a certain number of words in each document). We
introduce a novel constraint, referred to as topic persistence, and analyze its effect on identifiability.
We establish identifiability in the presence of a novel combinatorial object, referred to as perfect
n-gram matching, in the bipartite graph from topics to words (observed variables). Finally, we
prove that random models satisfy these criteria, and are thus identifiable in the overcomplete
regime.

We first introduce the n-persistent topic model, where the parameter n determines the so-called
persistence level of a common topic in a sequence of n successive words, as seen in Figure 1. The
n-persistent model reduces to the popular “bag-of-words” model, when n = 1, and to the single
topic model (i.e. only one topic in each document) when n → ∞. Intuitively, topic persistence aids
identifiability since we have multiple views of the common hidden topic generating a sequence of
successive words. We establish that the bag-of-words model (with n = 1) is too non-informative
about the topics to be identifiable in the overcomplete regime. On the other hand, n-persistent over-
complete topic models with n ≥ 2 are generically identifiable, and we provide a set of transparent

1A model is generically identifiable, if all the parameters in the parameter space are identifiable, almost surely.
Refer to Definition 1 for more discussion.
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x1 xn xn+1 x2n x(2r−1)n+1 x2rn

Figure 1: Hierarchical structure of the n-persistent topic model. 2rn number of words (views) are
shown for some integer r ≥ 1. A single topic yj , j ∈ [2r], is chosen for each n successive views
{x(j−1)n+1, . . . , x(j−1)n+n}.

conditions for identifiability.

Our sufficient conditions for identifiability are in the form of expansion conditions from the latent
topic space to the observed word space. In the overcomplete regime, there are more topics than
words, and thus it is impossible to have expansion from topics to words. Instead, we impose a novel
expansion constraint from topics to “higher order” words, which allows us to handle overcomplete
models. We establish that this condition translates to the presence of a novel combinatorial object,
referred to as perfect n-gram matching, on the bipartite graph from topics to words, which encodes
the sparsity pattern of the topic-word matrix. Intuitively, this condition implies “diversity” of the
word support for different topics which leads to identifiability. In addition, we present trade-offs
between the topic and word space dimensionality, topic persistence level, the order of the observed
moments at hand, the maximum degree of any topic in the bipartite graph, and the Kruskal rank [6]
of the topic-word matrix, for identifiability to hold. We also show that `1-based optimization can
efficiently recover the model under some additional conditions.

We then explicitly characterize the regime of identifiability for the random case, where each topic
is randomly supported on a set of d words, i.e. the bipartite graph is a random d-regular graph.
For this d-random model with q topics, p-dimensional word vocabulary, and topic persistence level
n, when q = O(pn) and Θ(log p) ≤ d ≤ Θ(p1/n), the topic-word matrix is identifiable from 2nth

order observed moments with high probability. Furthermore, we establish that the size condition
q = O(pn) is tight for identifiability. Thus, we prove that random-structured topic models are
identifiable in the overcomplete regime.

To the best of our knowledge, this is the first work to provide expansion-based conditions for
characterizing identifiability of overcomplete admixture models. We prove these results by charac-
terizing the tensor algebra underlying the observed moments of the topic model. We establish that
model identifiability for persistent topic models reduces to establishing uniqueness for a new class
of tensor decompositions. For the special case of the bag-of-words model (with persistence level
1), this tensor decomposition reduces to the Tucker decomposition [7], while for the single topic
model (with infinite persistence), it reduces to the candecomp/parafac (CP) decomposition. Thus,
our in-depth analysis provides novel identifiability results for overcomplete tensor decomposition
under expansion conditions.
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1.2 Related works

Identifiability, learning and applications of overcomplete latent representations: Many
recent works employ unsupervised estimation of overcomplete features for higher level tasks such
classification, e.g. [1,8–10], and record huge gains over other approaches in a number of applications
such as speech recognition and computer vision. However, theoretical understanding regarding
learnability or identifiability of overcomplete representations is far more limited.

Overcomplete latent representations have been analyzed in the context of the independent com-
ponents analysis (ICA), where the sources are assumed to be independent, and the mixing matrix
is unknown. In the overcomplete or under-determined regime of the ICA, there are more sources
than sensors. Identifiability and learning of the overcomplete ICA (through the analysis of the
resulting overcomplete CP tensor decomposition) has been considered in [11–14]. However, their
results are not directly applicable to ad-mixture models since they result in tensor decompositions
which are more general than the CP decomposition used in these works. Moreover, we explicitly
characterize the effect of the sparsity pattern of the mixing matrix (i.e., the topic-word matrix) on
model identifiability, while the above works assume fully dense (generic) mixing matrices.

There are a number of works which analyze conditions for generic identifiability of a variety of
overcomplete latent variable models such as the phylogenetic tree models [15, 16]. These results
provide conditions for strict identifiability of the model, and here, the dimensionality of the latent
space has to be of the same order as the observed space dimensionality. In contrast, we use the
weaker notion of generic identifiability and can therefore, allow for the latent space dimensionality
to scale polynomially in the observed space dimensionality. The above works primarily utilize the
Kruskal’s result on uniqueness of tensor CP decompositions [6,17] to derive the identifiability results.
Recently, an extension of these identifiability results to the robust setting has been considered in [18].
A number of recent works also analyze generic identifiability of overcomplete tensors [19–21] by
utilizing tools from algebraic geometry. For a general overview of the algebraic geometry behind
tensor decompositions, see [7].

Identifiability and learning of undercomplete/over-determined latent representations:
Much of the theoretical results on identifiability and learning of the latent variable models are

limited to non-singular models, which prevents the latent space dimensionality from exceeding the
dimensionality of the observed space.

The works of Anandkumar et. al. [22–24] provide an efficient moment-based approach for learn-
ing topic models, under constraints on the distribution of the topic proportions, e.g. the single
topic model or the popular latent Dirichlet allocation (LDA). However, these works cannot handle
general admixture models, where the distribution of the topic proportions is not limited to these
classes. In addition, the approach can handle a variety of latent variable models such as Gaussian
mixtures, hidden Markov models (HMM) and community models [25]. The use of simultaneous
diagonalization based approaches for learning HMM’s has been considered in a number of earlier
works, e.g. [26, 27].

Our work is closely related to the work of Anandkumar et. al. [28] which considers identifiability
and learning of topic models under expansion conditions on the topic-word matrix. The work of
Spielman et. al [29] considers a similar model in the context of dictionary learning, but in addition
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assumes that the coefficient matrix is random. However,these works [28, 29] can handle only the
under-determined setting, where the number of topics is less than the dimensionality of the word
vocabulary. We extend these results to the overcomplete setting by proposing novel higher order
expansion conditions on the topic-word matrix.

Dictionary learning/sparse coding: Overcomplete representations have been very popular
in the context of dictionary learning or sparse coding. Here, the task is to jointly learn a dictionary
as well as a sparse selection of the dictionary atoms to fit the observed data. There have been
Bayesian as well as frequentist approaches for dictionary learning [2, 30, 31] However, the heuris-
tics employed in these works have no performance guarantees. The work of Spielman et. al [29]
considers learning undercomplete dictionaries and provide guaranteed learning under the assump-
tion that the coefficient matrix is random (distributed as Bernoulli-Gaussian variables). Recent
works [32, 33] provide generalization bounds for predictive sparse coding, where the goal of the
learned representation is to obtain good performance on some predictive task. This differs from
our framework since we do not consider predictive tasks here, but the question of recovering the
underlying latent representation.

2 Model

Notation: The set {1, 2, . . . , n} is denoted by [n] := {1, 2, . . . , n}. Given set X = {1, . . . , p}, set
X(n) denotes all ordered n-tuples generated from X. The cardinality of set S is denoted by |S|.
For any vector u (or matrix U), the support denoted by Supp(u) corresponds to the location of its
non-zero entries and the `0 norm denoted by ‖u‖0 corresponds to the number of non-zero entries
of u, i.e., ‖u‖0 := |Supp(u)|. For a vector u ∈ R

q, Diag(u) ∈ R
q×q is the diagonal matrix with u

on its main diagonal. The column space of a matrix A is denoted by Col(A). We refer to matrix
R ∈ R

m×r as a square root of matrix M ∈ R
m×m if RRT = M .

For A ∈ R
p×q and B ∈ R

m×n, the Kronecker product A⊗B ∈ R
pm×qn is defined as [34]

A⊗B =




a11B a12B · · · a1qB
a21B a22B · · · a2qB
...

...
. . .

...
ap1B ap2B · · · apqB


 ,

and for A = [a1|a2| · · · |ar] ∈ R
p×r and B = [b1|b2| · · · |br] ∈ R

m×r, the Khatri-Rao product A�B ∈
R
pm×r is defined as

A�B = [a1 ⊗ b1|a2 ⊗ b2| · · · |ar ⊗ br] .

2.1 Persistent topic model

In this section, the n-persistent topic model is introduced which imposes an additional constraint,
known as topic persistence on the popular admixture model [4,5,35]. The n-persistent topic model
reduces to the bag-of-words admixture model in the case of n = 1.
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An admixture model specifies a q-dimensional vector of topic proportions h ∈ ∆q−1 := {u ∈ R
q :

ui ≥ 0,
∑q

i=1 ui = 1} which generates the observed variables xl ∈ R
p through vectors a1, . . . , aq ∈

R
p. This collection of vectors ai, i ∈ [q], is referred to as the population structure or topic-word

matrix [35]. For instance, ai represents the conditional distribution of words given topic i. The
latent variable h is a q dimensional random vector h := [h1, . . . , hq]

T known as proportion vector. A
prior distribution P (h) over the probability simplex ∆q−1 characterizes the prior joint distribution
over the latent variables hi, i ∈ [q]. In the topic modeling, this is the prior distribution over the
distinct q topics.

The structure of the n-persistent topic model has a three-level multi-view hierarchy in Figure 1.
2rn number of words (views) are shown in the model for some integer r ≥ 1. In this model, a
common hidden topic is persistent for a sequence of n words {x(j−1)n+1, . . . , x(j−1)n+n}, j ∈ [2r].
Note that, the random observed variables (words) are exchangeable within groups with size n which
is the persistence level, but are not globally exchangeable.

We now describe a linear representation for the n-persistent topic model on lines of [24], but with
extensions to incorporate persistence. Each random variable yj, j ∈ [2r], is a discrete valued random
variable taking one of the q different possibilities {1, . . . , q}, i.e., yj ∈ [q] for j ∈ [2r]. In the topic
modeling, a single common topic is chosen for a sequence of n words {x(j−1)n+1, . . . , x(j−1)n+n}, j ∈
[2r]. For notational purposes, we equivalently assume that variables yj, j ∈ [2r], are encoded by
the basis vectors ei, i ∈ [q], where ei is the i-th basis vector in R

q with the i-th entry equal to 1
and all the others equal to zero. Thus, the variable yj, j ∈ [2r], can be interpreted as

yj = ei ∈ R
q ⇐⇒ the topic of j-th group of words is i.

Given proportion vector h, topics yj, j ∈ [2r], are independently drawn according to the conditional
expectation

E
[
yj|h

]
= h, j ∈ [2r],

or equivalently Pr
[
yj = ei|h

]
= hi, j ∈ [2r], i ∈ [q]. Note that for each sequence of n observed

variables, the same hidden variable yj is assumed in the n-persistent topic model, i.e., the topic is
persistent for n different views.

Finally, at the bottom layer, each observed variable xl for l ∈ [2rn], is a discrete-valued p-
dimensional random variable (word) where p is the size of vocabulary. Again, we assume that
variables xl, are encoded by the basis vectors ek, k ∈ [p], such as

xl = ek ∈ R
p ⇐⇒ the l-th word in the document is k.

Given the corresponding topic yj, j ∈ [2r], words xl, l ∈ [2rn], are independently drawn according
to the conditional expectation

E
[
x(j−1)n+k|yj = ei

]
= ai, i ∈ [q], j ∈ [2r], k ∈ [n], (1)

where vectors ai ∈ R
p, i ∈ [q], are the conditional probability distribution vectors. The matrix

A = [a1|a2| · · · |aq] ∈ R
p×q collecting these vectors is called population structure or topic-word

matrix.
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The (2rn)-th order moment of observed variables xl, l ∈ [2rn], for some integer r ≥ 1, is defined as
(in the matrix form) 2

M2rn(x) := E
[
(x1 ⊗ x2 ⊗ · · · ⊗ xrn)(xrn+1 ⊗ xrn+2 ⊗ · · · ⊗ x2rn)

T
]
∈ R

prn×prn . (2)

For the n-persistent topic model with 2rn number of observations (words) xl, l ∈ [2rn], the corre-

sponding moment is denoted by M
(n)
2rn(x).

The moment characterization of the n-persistent topic model is provided in Lemma 1 in Sec-

tion 4.1. Given M
(n)
2rn(x), what are the sufficient conditions under which the population structure

A = [a1|a2| · · · |aq] ∈ R
p×q is identifiable? This is answered in Section 3.

Remark 1. Note that, we can alternatively introduce the linear generative model xl = Ayj (more
precisely, x(j−1)n+k = Ayj , j ∈ [2r], k ∈ [n]) instead of the conditional probabilistic model proposed
above. In this new model, each column of matrix A does not need to be a valid probability distribu-
tion. Furthermore, the observed random variables xl, can be continuous while the hidden ones yj
should be still discrete. It is crucial to notice that the derivation of moments, mentioned later in
Section 4.1, still holds for this new model since each vector yj, j ∈ [2r], takes the basis vectors as
its values. Hence, the proposed identifiability results in Section 3 also hold.

3 Sufficient Conditions for Generic Identifiability

In this section, the identifiability result for the n-persistent topic model with access to (2rn)-th
order moment of words is provided. For a n-persistent topic model, it suffices to only have the
(2n)-th order moment (r = 1 case) of words in order to be able to uniquely recover population
structure A under proposed sufficient conditions.

The identifiability conditions and results under deterministic and random cases are provided in
this section. First, sufficient deterministic conditions on the population structure A are provided
which lead to identifiability result in Theorem 1. Next, according to the deterministic analysis, the
identifiability result for a random model is provided in Theorem 2 under reasonable size and degree
conditions on the bipartite graph which encodes sparsity pattern of A.

We make the notion of identifiability precise. As defined in literature, (strict) identifiability means
that the population structure A can be uniquely recovered up to permutation of the columns
for all valid A. Instead, we consider a more relaxed notion of identifiability, known as generic
identifiability.
Definition 1 (Generic identifiability, [16]). Assume that the population structure A is generic,
which means that the sparsity pattern of A is fixed and then the nonzero entries are drawn from
a distribution (over those entries) that is absolutely continuous with respect to Lebesgue measure 3.
The generic population structure (parameters) A is generically identifiable if all the non-identifiable
parameters form a set of Lebesgue measure zero.

The (2r)-th order moment of hidden variables h ∈ R
q, denoted by M2r(h) ∈ R

qr×qr , is defined

2Vector x is the vector generated by concatenating all vectors xl, l ∈ [2rn].
3As an equivalent definition, if the non-zero entries of an arbitrary matrix are randomly independently perturbed

(continuous perturbation) to generate matrix A, then A is called generic.
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as

M2r(h) := E

[( r times︷ ︸︸ ︷
h⊗ · · · ⊗ h

)( r times︷ ︸︸ ︷
h⊗ · · · ⊗ h

)T
]
∈ R

qr×qr . (3)

The following natural non-degeneracy condition is assumed.
Condition 1 (Non-degeneracy). The (2r)-th order moment of hidden variables h ∈ R

q, defined in
equation (3), is full rank (non-degeneracy of hidden nodes).

Note that there is no hope of distinguishing distinct hidden nodes without this non-degeneracy
assumption.

Furthermore, note that we can only hope to identify the population structure A up to scaling. This
is because the columns of A can be scaled by some arbitrary amount and, the hidden variables can
be also scaled appropriately such that the observed variables does not change. Therefore, we can
identify A up to some canonical form defined as:
Definition 2 (Canonical form). Population structure A is said to be in canonical form if all of its
columns have unit norm.

3.1 Deterministic conditions for generic identifiability

In this section, we consider a deterministic sparsity pattern on the population structure A and
establish generic identifiability, i.e., when non-zero entries are generically identifiable. Before pro-
viding the main result, a generalized notion of (perfect) matching for bipartite graphs is defined
and its properties are proposed. We need these notions to establish identifiability.

Generalized matching for bipartite graphs

A bipartite graph with two disjoint vertex sets Y and X and an edge set E between them is denoted
by G(Y,X;E). Given the bi-adjacency matrix A, the notation G(Y,X;A) is also used to denote
a bipartite graph. Here, the rows and columns of matrix A ∈ R

|X|×|Y | are respectively indexed
by X and Y vertex sets. Furthermore, for any subset S ⊆ Y , the set of neighbors of vertices in
S with respect to the edge matrix A is defined as NA(S) := {i ∈ X : Aij 6= 0 for some j ∈ S}.
Equivalently, it can be also defined by the corresponding edge set E as NE(S) := {i ∈ X : (j, i) ∈
E for some j ∈ S} with respect to the edge set E.

Here, we define a generalized version of matching for a bipartite graph and refer to it as n-gram
matching.
Definition 3 (n-gram Matching). A n-gram matching M for a bipartite graph G(Y,X;E) is a
subset of edges M ⊆ E for which each vertex j ∈ Y is at most the end-point of n edges in M and
for any pair of vertices in Y (j1, j2 ∈ Y, j1 6= j2), there exists at least one non-common neighbor
in set X for each of them (j1 and j2). More concretely, let NM (j) denote the set of neighbors of
vertex j ∈ Y according to the edge subset M ⊆ E. Then, the following conditions should be satisfied
in order to call M as a n-gram matching. First, for any j ∈ Y , we have |NM (j)| ≤ n. Second, for
any j1, j2 ∈ Y, j1 6= j2, we have min{|NM (j1)|, |NM (j2)|} > |NM (j1) ∩NM (j2)|.
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Y

X

Figure 2: A bipartite graph G(Y,X ;E) with |X | = 4 and |Y | = 6 where the edge set E itself is a perfect
2-gram matching.

The perfect n-gram matching is also defined as follows.
Definition 4 (Perfect n-gram Matching). A perfect n-gram matching or Y -saturating n-gram
matching for the bipartite graph G(Y,X;E) is a n-gram matching M for which each vertex in Y is
the end-point of exactly n edges in M .

As an example, a bipartite graph G(Y,X;E) with |X| = 4 and |Y | = 6 is shown in Figure 2 for
which the edge set E itself is a perfect 2-gram matching.
Remark 2. For special case n = 1, the (perfect) n-gram matching reduces to the regular (perfect)
matching for bipartite graphs.

In the following remark, which is proved in Appendix A.3, a deterministic necessary bound is
provided on the size of a bipartite graph which has a perfect n-gram matching.
Remark 3. For a bipartite graph G(Y,X;E) with |Y | = q and |X| = p which has a perfect n-gram
matching, we have necessarily q ≤

(p
n

)
.

Finally, note that the existence of perfect n-gram matching does not necessarily result in the
existence of perfect (n − 1)-gram matching or any other lower order matchings, e.g., the bipartite
graph G(Y,X;E) with |X| = 4 and |Y | =

(
4
2

)
= 6 constructed as explained in the proof of above

remark and sketched in Figure 2, have a perfect 2-gram matching, but obviously it does not have
perfect (1-gram) matching (since 6 > 4). But the reverse statement is true. If the degree of each
node (on matching side Y ) is at least n, then, the existence of perfect (n−1)-gram matching results
in the existence of perfect n-gram matching, which is easily seen from the definition.

Identifiability conditions based on existence of perfect n-gram matching in topic-word
graph

Now, we are ready to propose the identifiability conditions and result. The following identifiability
conditions impose some combinatorial structure on A.
Condition 2 (Perfect n-gram matching). The bipartite graph G(Vh, Vo;A) between hidden and
observed variables, has a perfect n-gram matching.

The above condition implies that the sparsity pattern of matrix A is appropriately scattered for
the mapping from hidden to observed variables to be identifiable. Intuitively, it means that every
hidden node can be distinguished from another hidden node by its unique set of neighbors under
the corresponding n-gram matching.
Furthermore, condition 2 is the key to be able to propose identifiability in the overcomplete regime.
As stated in the size bound in Remark 3, for n ≥ 2, the dimension of hidden variables can be more
than the dimension of observed variables and still have perfect n-gram matching in the deterministic
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case. It is seen later in Section 3.2 that this bound (in the order q = Θ(pn)) can be also achieved
in the random case. Note that this overcomplete regime is not identifiable for n = 1 which is also
further discussed in Remark 4.
Definition 5 (Kruskal rank, [17]). The Kruskal rank 4 or the krank of matrix A is defined as the
maximum number k such that every subset of k columns of A is linearly independent.
Condition 3 (Krank condition). The Kruskal rank of matrix A satisfies the bound krank(A) >
dmax(A)

n, where dmax(A) is the maximum node degree of any column of A.

In the overcomplete regime, it is not possible to have matrix A full column rank and krank is
necessarily less than |Vh| = q. However, note that a large enough krank ensures that appropriate
sized subsets of columns of A are linearly independent. For instance, when krank(A) > 1, any
two columns cannot be collinear. The above krank condition, imposes that krank is large enough
compared to the degree. Later, it is seen that the above krank condition can be also satisfied with
some sufficient random combinatorial conditions.

The main identifiability result under deterministic graph structures is stated in the following theo-
rem for n ≥ 2, where n is the topic persistence level. The identifiability result relies on having the
(2rn)-th order moment of observed variables xl, l ∈ [2rn], defined in equation (2) as

M2rn(x) := E
[
(x1 ⊗ x2 ⊗ · · · ⊗ xrn)(xrn+1 ⊗ xrn+2 ⊗ · · · ⊗ x2rn)

T
]
∈ R

prn×prn ,

for some integer r ≥ 1.

Theorem 1 (Generic identifiability under deterministic topic-word graph structure). Let M
(n)
2rn(x)

in equation (2) be the (2rn)-th order observed moment of the n-persistent topic model for some
integer r ≥ 1. If the model satisfies conditions 1, 2 and 3, then, for any n ≥ 2, all the columns of

population structure A are generically identifiable from M
(n)
2rn(x). Furthermore, the (2r)-th order

moment of the hidden variables, denoted by M2r(h), is also generically identifiable.

The theorem is proved in Appendix A. It is seen that the population structure A is identifiable,
given any observed moment of order at least 2n. Increasing the order of observed moment results
in identifying higher order moments of the hidden variables.
The above theorem does not cover the case of n = 1. This is the usual bag-of-words admixture
model. Identifiability of this model has been studied earlier [36] and we recall it below.
Remark 4 (Bag-of-words admixture model). Given (2r)-th order observed moments with r ≥ 1,
the structure of the popular bag-of-words admixture model and the (2r)-th order moment of hidden
variables are identifiable, when A is full column rank and the following expansion condition holds
[36]

|NA(S)| > |S|+ dmax(A), ∀S ⊆ Vh, |S| ≥ 2. (4)

Our result for n ≥ 2 in Theorem 1, provides identifiability in the overcomplete regime with weaker
matching condition 2 and krank condition 3. The matching condition 2 is weaker than the above
expansion condition which is based on the perfect matching and hence, does not allow overcomplete
models without imposing additional conditions. Furthermore, the result for the bag-of-words admix-
ture model requires full column rank of A for identifiability which is more stringent than our krank
condition 3.

4Note that, krank is different from the general notion of matrix rank and it is a lower bound for the matrix rank,
i.e., Rank(A) ≥ krank(A).
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3.2 Analysis under random topic-word graph structures

In this section, we specialize the identifiability result to the random case. This result is based on
more transparent conditions on the size and the degree of the random bipartite graph G(Vh, Vo;A).
We consider the random model where in the bipartite graph G(Vh, Vo;A), each node i ∈ Vh is
randomly connected to d different nodes in set Vo.
Condition 4 (Size condition). Random bipartite graph G(Vh, Vo;A) with |Vh| = q, |Vo| = p, and
A ∈ R

p×q, satisfies the size condition q ≤
(
c p
n

)n
for some constant 0 < c < 1.

This size condition is required to establish that the random bipartite graph has a perfect n-gram
matching (and hence satisfying deterministic condition 2). It is shown in Section 5.2 that the
necessary size constraint q = O(pn) proposed for the deterministic case in Remark 3, is achieved
in the random case. Thus, similar to the deterministic case, the above constraint allows for the
overcomplete regime where q � p for n ≥ 2.
Condition 5 (Degree condition). In the random bipartite graph G(Vh, Vo;A) with |Vh| = q, |Vo| = p,
and A ∈ R

p×q, the degree d satisfies the following lower and upper bounds:

• Lower bound: d ≥ max{α log p, 4 + β log p} for some constants α > n2/2, β > n− 1.

• Upper bound: d ≤ (1ep)
1
n .

Intuitively, the lower bound on the degree is required to show that the corresponding bipartite
graph G(Vh, Vo;A) has sufficient number of random edges to ensure that it has perfect n-gram
matching with high probability. The upper bound on the degree is mainly required to satisfy the
krank condition 3 where dmax(A)

n ≤ krank(A).

It is important to see that, for n ≥ 2, the above condition on degree d covers a range of models
from sparse to intermediate regimes and it is reasonable in a number of applications that each topic
does not generate a very large number of words.
Definition 6 (whp). A sequence of events Ep occurs with high probability (whp) if limp→∞Pr(Ep) =
1.

The main random identifiability result for the model described in Section 2 is stated in the following
theorem for n ≥ 2, while n = 1 case is addressed in Remark 5. The identifiability result relies on
having the (2rn)-th order moment of observed variables xl, l ∈ [2rn], defined in equation (2)
as

M2rn(x) := E
[
(x1 ⊗ x2 ⊗ · · · ⊗ xrn)(xrn+1 ⊗ xrn+2 ⊗ · · · ⊗ x2rn)

T
]
∈ R

prn×prn ,

for some integer r ≥ 1.

Theorem 2 (Random identifiability). Let M
(n)
2rn(x) in equation (2) be the (2rn)-th order observed

moment of the n-persistent topic model for some integer r ≥ 1. If the model with random pop-
ulation structure A satisfies conditions 1, 4 and 5, then whp, for any n ≥ 2, all the columns of

population structure A are identifiable from M
(n)
2rn(x). Furthermore, the (2r)-th order moment of

hidden variables, denoted by M2r(h), is also identifiable, whp.

The theorem is proved in Appendix B. Similar to the deterministic analysis, it is seen that the
population structure A is identifiable given any observed moment with order at least 2n. Increasing
the order of observed moment results in identifying higher order moments of the hidden variables.
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The above identifiability theorem only covers for n ≥ 2 and the n = 1 case is addressed in the
following remark.
Remark 5 (Bag-of-words admixture model). The identifiability result for the random bag-of-words
admixture model is comparable with the result in [37] which is about exact recovery of sparsely-used
dictionaries. They assume that Y = AX is given for some unknown arbitrary dictionary A and
unknown random sparse coefficient matrix X. They establish that if the random sparse coefficient
matrix X follows the Bernoulli-Subgaussian model with size constraint p > Cq log q and degree
constraint O(log q) < E[d] < O(q log q), then the model is identifiable, whp. Comparing the size
and degree constraints, our identifibility result for n ≥ 2 requires more stringent upper bound on the
degree, while more relaxed condition on the size which allows to identifiability in the overcomplete
regime.

3.3 Algorithm

According to the proof of identifiability result provided in Appendix A.1, columns of the n-gram
matrix A(n -gram), defined in Definition 7, are the sparsest and rank-1 (in the tensor form) vectors in

Col
(
M

(n)
2n (x)

)
. This identifiability result can be used to recover the columns of A by an exhaustive

search which is not efficient. More efficient algorithm provided in [36, 37] for the special case of
n = 1, can be used to recover population structure A with appropriate slight modifications. The
proposed algorithm is a convex optimization program which requires some sufficient conditions to
succeed in recovering A. In our setting, the proposed sufficient conditions for exact recovery needs
to be imposed on A(n -gram) instead of A. The main condition imposes that each column of A(n -gram)

contains at least one entry that has the maximum absolute value in its row. Then, it is shown that
under some additional sufficient conditions, the algorithm succeeds. See [36,37] for details.

4 Relationship to Tensor Decomposition

In this section, we first characterize the moments of the n-persistent topic model in terms of the
model parameters, i.e. the topic-word matrix A and the moment of hidden variables. Then, we
discuss the special cases of this model, viz., the single topic model (infinite-persistent topic model)
and the bag-of-words admixture model (1-persistent topic model). Then, we obtain tensor forms
for the moments of the topic model and discuss the relationship to the popular CP and Tucker
tensor decompositions.

4.1 Moment characterization of the persistent topic model

The n-gram matrix is defined as follows.
Definition 7 (n-gram Matrix). For any matrix A ∈ R

p×q, n-gram matrix A(n -gram) ∈ R
pn×q is

defined as the matrix whose ((i1, . . . , in), j)-th entry is given by

A(n -gram)((i1, . . . , in), j) := Ai1,jAi2,j · · ·Ain,j

for all (i1, . . . , in) ∈ [p]n and j ∈ [q].
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(infinite-persistent topic model)
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(b) Bag-of-words admixture model
(1-persistent topic model)

Figure 3: Hierarchical structure of the single topic model and bag-of-words admixture model shown for 2m
number of words (views).

That is, A(n -gram) is the column-wise n-th order Kronecker product (or the Khatri-Rao product) [34]
of n copies of A.

We now characterize the observed moments of a persistent topic model. Throughout this section,
the number of observed variables is fixed to 2m.
Lemma 1 (n-persistent topic model moment characterization). The (2m)-th order moment of
observed variables, defined in equation (2), for the n-persistent topic model is characterized as:

• if m = rn for some integer r ≥ 1, then

M
(n)
2m (x) =

( r times︷ ︸︸ ︷
A(n -gram) ⊗ · · · ⊗A(n -gram)

)
M2r(h)

( r times︷ ︸︸ ︷
A(n -gram) ⊗ · · · ⊗A(n -gram)

)T

, (5)

where M2r(h) ∈ R
qr×qr is the (2r)-th order moment of hidden variables h ∈ R

q, defined in
equation (3).

• If n ≥ 2m, then

M
(n)
2m (x) =

( m times︷ ︸︸ ︷
A� · · · �A

)
M1(h)

( m times︷ ︸︸ ︷
A� · · · �A

)T
(6)

where M1(h) := Diag(E[h]) ∈ R
q×q is the first order moment of hidden variables h ∈ R

q,
stacked in a diagonal matrix.

Comparison with single topic model and bag-of-words admixture model

In this section, the proposed n-persistent topic model in Section 2.1 is compared with the single
topic model (n → ∞) in Figure 3a and the bag-of-words admixture model (n = 1) in Figure 3b. In
order to have a fair comparison, the number of observed variables is fixed to 2m and the persistence
level is varied.

Single topic model (n → ∞): The moment of single topic model where n → ∞ is characterized
by equation (6). As expected, this moment form is more “structured” than the moment of n-
persistent topic model in equation (5). Note that the involved moment of hidden variables in the
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single topic model, is diagonal. Moreover, the observed moment of the single topic model only
involves Khatri-Rao products of the population structure A, while the observed moment of the n-
persistent topic model also involves Kronecker products of the n-gram matrix A(n -gram). Therefore,
the n-persistent topic model is more general than the single topic model, and is still identifiable in
the overcomplete regime, which is important.

Bag-of-words admixture model (n = 1): From Lemma 1, the (2m)-th order moment of
observed variables xl, l ∈ [2m], for the bag-of-words admixture model (1-persistent topic model)
shown in Figure 3b is given by

M
(1)
2m(x) =

( m times︷ ︸︸ ︷
A⊗ · · · ⊗A

)
M2m(h)

( m times︷ ︸︸ ︷
A⊗ · · · ⊗A

)T
, (7)

where M2m(h) ∈ R
qm×qm is the (2m)-th order moment of hidden variables h ∈ R

q, defined in (3).
Why persistence helps in identifiability of overcomplete models? Comparing equations
(7) and (5), it is seen that, the n-persistent topic model has a more succinct representation of
the (2m)-th order moment of the observed variables which is crucial for providing identifiability
in the overcomplete regime. More number of Kronecker products are involved in the bag-of-words
admixture model in contrast to the n-persistent topic model.

We now give a simple example to illustrate how persistence helps in providing identifiability in
the overcomplete regime. Consider the instances r = 1, n = 2, a 2-persistent topic model and
r = 2, n = 1, a bag-of-words admixture model. From equations (5) and (7), the moments of these
instances are respectively characterized as

M
(2)
4 (x) = (A�A)E

[
hhT

]
(A�A)T ,

M
(1)
4 (x) = (A⊗A)E

[
(h⊗ h)(h ⊗ h)T

]
(A⊗A)T .

In the 2-persistent model, by the Khatri-Rao product, the number of columns of the resulting matrix
A � A ∈ R

p2×q is the same as the number of columns of the original matrix A, while the number
of rows is increased. The columns of A � A are indexed by the first order hidden variables and
the rows are indexed by the second order observed variables. Therefore, the Khatri-Rao product
expands the effect of hidden variables to higher order observed variables. In general, it is done by
retaining the order of involved hidden variables (retaining the number of columns in the resulting
matrix A(n -gram)) while increasing the order of involved observed variables (increasing the number
of rows in the resulting matrix A(n -gram)). This kind of expansion on the higher order observed
variables in the persistent models is the key which helps to identify the model in the overcomplete
regime. In other words, the original overcomplete representation becomes determined by expanding
the effect of (retained order) hidden variables to higher order observed variables.
On the other hand, in the bag-of-words admixture model, this interesting expansion property does
not happen where the Kronecker product A ⊗ A ∈ R

p2×q2 is incorporated. Kronecker product
increases both the order of involved hidden variables and observed variables by the same amount.
Therefore, for the regular admixture model (with persistence level 1), it is not possible to identify
its population structure A in the overcomplete regime.

The above discussion can be also generalized to the general case of moments in equations (5) and
(7).
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4.2 Tensor representation of the model

In this section, we derive the tensor algebra of the moments derived in Section 4.1 for the persis-
tent topic model. We compare the tensor form with the well-known Tucker and CP decomposi-
tions.

Tensor algebra preliminaries

A real-valued order-n tensor A ∈
⊗n

i=1R
pi := R

p1×···×pn is a n dimensional array A(1 : p1, . . . , 1 :
pn) where the i-th mode is indexed from 1 to pi. In this paper, we restrict ourselves to the case
that p1 = · · · = pn = p, and simply write A ∈

⊗n
R
p. A fiber of a tensor A is a vector obtained by

fixing all indices of A except one, e.g., for A ∈
⊗4

R
3, the vector f = A(2, 1 : 3, 3, 1) is a fiber.

The tensor A ∈
⊗n

R
p, is stacked in a vector a ∈ R

pn by the vec(·) operator defined as

a = vec(A) ⇔ a
(
(i1 − 1)pn−1 + (i2 − 1)pn−2 + · · · + (in−1 − 1)p+ in)

)
= A(i1, i2, . . . , in).

The inverse of a = vec(A) operation is denoted by A = ten(a).
For vectors ai ∈ R

pi , i ∈ [n], the tensor outer product operator “◦” is defined as [34]

A = a1 ◦ a2 ◦ · · · ◦ an ∈
n⊗

i=1

R
pi ⇔ A(i1, i2, . . . , in) := a1(i1)a2(i2) · · · an(in). (8)

The above generated tensor is a rank-1 tensor. The tensor rank is the minimal number of rank-1
tensors into which a tensor can be decomposed 5.
In general, the outer product operation is a way to combine lower order tensors to construct higher
order tensors, e.g., for B ∈ R

p1×p2 , C ∈ R
p3×p4 , the 4-th order tensor A = B ◦ C ∈

⊗4
i=1 R

pi is
defined as A(i1, i2, i3, i4) := B(i1, i2)C(i3, i4).
According to above definitions, for any set of vectors ai ∈ R

pi, i ∈ [n], we have the following pair
of equalities:

vec(a1 ◦ a2 ◦ · · · ◦ an) = a1 ⊗ a2 ⊗ · · · ⊗ an,

ten(a1 ⊗ a2 ⊗ · · · ⊗ an) = a1 ◦ a2 ◦ · · · ◦ an.

For any vector a ∈ R
p, the power notations are also defined as

a⊗n :=

n times︷ ︸︸ ︷
a⊗ a⊗ · · · ⊗ a ∈ R

pn ,

a◦n := a ◦ a ◦ · · · ◦ a ∈
n⊗

R
p.

The second power is usually called the n-the order tensor power of vector a.
Finally, the CP (CANDECOMP/PARAFAC) and Tucker representations and the Kruskal form
notation are defined as follows [34].

5This type of rank is called CP (CANDECOMP/PARAFAC) tensor rank in the literature [34].
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Definition 8 (CP representation and Kruskal form). Given λ ∈ R
r, Ui ∈ R

pi×r, i ∈ [n], the n-th
order tensor A ∈

⊗n
i=1 R

pi is defined in the Kruskal form as

A = [[λ;U1, U2, . . . , Un]] :=

r∑

i=1

λiU1(:, i) ◦ U2(:, i) ◦ · · · ◦ Un(:, i), (9)

where Uj(:, i) denotes the i-th column of matrix Uj . The above representation of tensor A is called
the CP representation (decomposition) where the tensor A is written as a weighted sum of rank-1
tensors.

More generally, the Tucker representation is defined as follows.
Definition 9 (Tucker representation). Given a core tensor S ∈

⊗n
i=1R

ri and inverse factors
Ui ∈ R

pi×ri , i ∈ [n], the Tucker representation of n-th order tensor A ∈
⊗n

i=1 R
pi is

A =

r1∑

i1=1

r2∑

i2=1

· · ·
rn∑

in=1

S(i1, i2, . . . , in)U1(:, i1) ◦ U2(:, i2) ◦ · · · ◦ Un(:, in), (10)

where Uj(:, ij) denotes the ij-th column of matrix Uj. With a slight abuse of notation, the above
Tucker representation can be also denoted in the form A = [[S;U1, U2, . . . , Un]].

Note that the CP representation is a special case of the Tucker representation when the core tensor
S is square and diagonal.

Tensor representation of moments under topic model

The (2m)-th order moment of the words xl, l ∈ [2m], is defined as (in the tensor form)

T2m(x)(i1,i2,...,i2m) := E[x1(i1)x2(i2) · · · x2m(i2m)], i1, i2, . . . , i2m ∈ [p], (11)

where T2m(x) ∈
⊗2m

R
p. For the n-persistent topic model with 2m number of observations (words)

xl, l ∈ [2m], the corresponding moment is denoted by T
(n)
2m (x), which is the tensor form of moment

M
(n)
2m (x) characterized in Lemma 1. This tensor is characterized in the following lemma, proved in

Appendix A.2.
Lemma 2 (n-persistent topic model moment characterization in tensor form). The (2m)-th order
moment of words, defined in equation (11), for the n-persistent topic model is characterized as:

• if m = rn for some integer r ≥ 1, then

T
(n)
2m (x) =

q∑

i1=1

q∑

i2=1

· · ·

q∑

i2r=1

E[hi1hi2 · · · hi2r ]a
◦n
i1 ◦ a◦ni2 ◦ · · · ◦ a◦ni2r . (12)

• If n ≥ 2m, then

T
(n)
2m (x) =

∑

i∈[q]

E[hi]a
◦2m
i . (13)

The tensor representation (12) is a specific type of tensor decomposition which is a special case of
the Tucker representation, but more general than the CP representation.
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Comparison with single topic models and bag-of-words admixture model

The tensor representation of our model provided in equation (12) is a special case of the Tucker
representation but more general than the symmetric CP representation. In order to have a fair
comparison, the number of observed variables is fixed to 2m and the persistence level is varied.

CP representation of the single topic model: The (2m)-th order moment of the words for
the single topic model (infinite-persistent topic model) is provided in equation (13) as

T
(∞)
2m (x) =

∑

i∈[q]

E[hi]a
◦2m
i =

[[
E[h];

2m times︷ ︸︸ ︷
A,A, . . . , A

]]
,

where the Kruskal notation, defined in Definition 8, is used in the last equality. This representation

is exactly the symmetric CP representation (decomposition) of T
(∞)
2m (x) where λi = E[hi], i ∈ [q],

and Ui = A, i ∈ [2m].

Tucker representation of the bag-of-words admixture model: From Lemma 2, the tensor
form of the (2m)-th order moment of observed variables xl, l ∈ [2m], for the bag-of-words admixture
model (1-persistent topic model) is given by

T
(1)
2m(x) =

q∑

i1=1

q∑

i2=1

· · ·

q∑

i2m=1

E[hi1hi2 · · · hi2m ]ai1 ◦ ai2 ◦ · · · ◦ ai2m

=
[[
E
[
h◦(2m)

]
;

2m times︷ ︸︸ ︷
A,A, . . . , A

]]
,

where the Kruskal notation defined in Definition 9, is used in the last equality. This representation

is exactly Tucker representation (decomposition) of T
(1)
2m(x) where the core tensor S = E

[
h◦(2m)

]
is

the tensor form of the (2m)-th order hidden moment M2m(h), defined in equation (3). Furthermore,
the inverse factors Ui = A, i ∈ [2m], correspond to the population structure A.

On lines of discussion in Section 4.1, above general Tucker decomposition is not identifiable in the
overcomplete regime, while the proposed tensor decomposition in equation (12) is identifiable under
the sufficient conditions provided in Section 3.

5 Proof Techniques and Auxiliary Results

The main identifiability results are provided for both deterministic and random cases of topic-
word graph structure, in Sections 3.1 and 3.2 respectively. In this section, we first provide the
proof sketch of these results and then, we propose two auxiliary results on the existence of perfect
n-gram matching for random bipartite graphs and lower bound on the Kruskal rank of random
matrices.
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5.1 Proof sketch

The deterministic analysis is primarily based on conditions on the n-gram matrix A(n -gram); but
since these conditions (mainly expansion condition on A(n -gram), provided in condition 7) are
opaque, this analysis is postponed to Appendix A.1, where the identifiability result is stated in
Theorem 6. In the following, first, we provide a summary of the hierarchical relationships among
all of these identifiability results and the corresponding conditions. Then, according to this hierar-
chy, a proof sketch of each result is stated.

Summary of relationships among different conditions: To summarize, there exists a hier-
archy among the proposed conditions as follows. First, in the random analysis, the size and the
degree conditions 4 and 5 are sufficient for satisfying the perfect n-gram matching and the krank
conditions 2 and 3, shown by Theorems 4 and 5. Then, these conditions 2 and 3 ensure that the
rank and the expansion conditions 6 and 7 hold, shown by Lemma 5. And finally, these conditions
6 and 7 together with non-degeneracy condition 1 conclude the primary identifiability result in
Theorem 6. Note that, the genericity of A is also required for these results to hold.

Primary deterministic analysis in Theorem 6: The deterministic analysis in Theorem
6, is described here for the case when 2n number of words are available under the n-persistent
topic model. From equation (5), the (2n)-th order moment of the observed variables under the
n-persistent topic model can be written as

M
(n)
2n (x) =

(
A(n -gram)

)
E
[
hhT

](
A(n -gram)

)T
. (14)

The question is whether we can recover A, given the M
(n)
2n (x). Obviously, the matrix A is not

identifiable without any further conditions. First, non-degeneracy and rank conditions (conditions
1 and 6) are required. Without such non-degeneracy assumptions, there is no hope for identifiability.
Assuming these two conditions, we have from (14) that

Col
(
M

(n)
2n (x)

)
= Col

(
A(n -gram)

)
.

Therefore, the problem of recovering A fromM
(n)
2n (x) reduces to finding A(n -gram) in Col

(
A(n -gram)

)
.

Then, it is shown that under the following expansion condition on A(n -gram) and the genericity
property, matrix A is identifiable from Col

(
A(n -gram)

)
. The expansion condition (refer to con-

dition 7 for a more detailed statement), imposes the following property on the bipartite graph

G
(
Vh, V

(n)
o ;A(n -gram)

)
6,

∣∣∣N
A

(n -gram)
Rest.

(S)
∣∣∣ ≥ |S|+ dmax

(
A(n -gram)

)
, ∀S ⊆ Vh, |S| > krank(A), (15)

where dmax

(
A(n -gram)

)
is the maximum node degree in set Vh, and the restricted version of n-gram

matrix, denoted by A
(n -gram)
Rest. , is defined in Definition 10. The identifiability claim is proved by

showing that the columns of A(n -gram) are the sparsest and rank-1 (in the tensor form) vectors in
Col

(
A(n -gram)

)
under the sufficient expansion in (15) and genericity conditions. This finishes the

proof sketch for the deterministic identifiability result based on A(n -gram), proposed in Theorem

6V
(n)
o denotes all ordered n-tuples generated from set Vo := {1, . . . , p} which indexes the rows of A(n -gram).
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6. Note that the expansion condition (15) is a more relaxed condition compared to expansion
condition proposed in [36, 37] for identifiability in the undercomplete regime. For a more detailed
comparison, refer to Remark 8 in Appendix A.1.

Deterministic analysis in Theorem 1: Expansion and rank conditions in Theorem 6 are
imposed on the n-gram matrix A(n -gram). According to the generalized matching notions, defined
in Section 3.1, sufficient combinatorial conditions on matrix A (conditions 2 and 3) are introduced
which ensure that the expansion and rank conditions on A(n -gram) are satisfied. This is shown in
Lemma 5 using the observation in the following lemma.
In the following lemma which is proved in Appendix A.3, we state an interesting property which
relates the existence of a perfect matching in A(n -gram) to the existence of a perfect n-gram matching
in A.
Lemma 3. If G(Y,X;A) has a perfect n-gram matching, then G(Y,X(n);A(n -gram)) has a perfect
matching. In the other direction, if G(Y,X(n);A(n -gram)) has a perfect matching M (n -gram), then
G(Y,X;A) has a perfect n-gram matching under the following condition on M (n -gram). All the
matching edges (j, (i1, . . . , in)) ∈ M (n -gram) should satisfy i1 6= i2 6= · · · 6= in for all j ∈ Y . In
words, the matching edges should be connected to nodes in X(n), which are indexed by tuples of
distinct indices.

Using this lemma, condition 2 results that G(Y,X(n);A(n -gram)) has a perfect matching. Then, it is
straightforward to argue that the expansion and rank conditions on A(n -gram) are satisfied, which
is shown in Lemma 5 in Appendix A.4. This leads to the generic identifiability result stated in
Theorem 1.

Random analysis in Theorem 2: Finally, the identifiability result for a random matrix A is
provided in Theorem 2 in Section 3.2. Sufficient size and degree conditions 4 and 5 on the random
matrix A are proposed such that the deterministic combinatorial conditions 2 and 3 on A, are
satisfied. The details of these auxiliary results are provided in the following two subsequent sections.
In Section 5.2, it is proved in Theorem 4 that a random bipartite graph satisfying reasonable size
and degree constraints, has a perfect n-gram matching (condition 2), whp. Then, a lower bound on
the Kruskal rank of a random matrix A under size and degree constraints is provided in Theorem
5 in Section 5.3 which helps to satisfy krank condition 3. Intuitions on why such size and degree
conditions are required, are mentioned in Section 3.2 where these conditions are proposed.

5.2 Existence of perfect n-gram matching for random bipartite graphs

The result of this section is used in the proof of Theorem 2, but since the result is interesting
and useful by itself, we also propose it independently. In this section, it is shown that a random
bipartite graph satisfying reasonable size and degree constraints, proposed earlier in conditions 4
and 5, has a perfect n-gram matching whp.

In the proof of the necessary size condition for the existence of perfect n-gram matching proposed
in Remark 3, we provide an analysis which is also constructive, i.e., we provide a deterministic
greedy method to construct a bipartite graph which has a perfect n-gram matching when satisfying
q ≤

(
p
n

)
. Now, the question is under what conditions a random bipartite graph has a perfect n-gram

matching. In this section, this question is answered in Theorem 4, where it is seen that size bound
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q = O(pn) is also sufficient for the existence of perfect n-gram matching in a random bipartite
graph.

Before proposing our result on the existence of perfect n-gram matching in random bipartite graphs,
the existing results on the existence of perfect matching in random bipartite graphs are reviewed
[38–40]. Here, we recap the result of [39] ,which is used to prove the existence of perfect n-gram
matching in random bipartite graphs. Let z1 and c∗ satisfy [39]

z1 =
ez1 − 1

d− 1
,

c∗ =
z1

d(1− e−z1)d−1
, (16)

where each node i ∈ Y in the random bipartite graph G(Y,X;E), is randomly connected to d
different nodes in set X.
Theorem 3 (Existence of perfect matching for random bipartite graphs, [39]). Consider a random

bipartite graph G(Y,X;E) with node size ratio c := |Y |
|X| and d ≥ 3. If c ≤ c∗, then whp, there exists

a perfect matching in the random bipartite graph G(Y,X;E).
Theorem 4 (Existence of perfect n-gram matching for random bipartite graphs). Consider a
random bipartite graph G(Y,X;E) with |Y | = q nodes on the left side and |X| = p nodes on the
right side. Assume that it satisfies the size condition q ≤

(
c p
n

)n
(condition 4) for some constant

0 < c < 1 and the degree condition (degree of nodes in Y ) d ≥ α log p for some α > n2/2 (lower
bound in condition 5). Then, whp, there exists a perfect (Y -saturating) n-gram matching in the
bipartite graph G(Y,X;E).
Remark 6 (Necessity of the proposed size bound). It is crucial to see that the size bound q = O(pn)
in the proposed random result for the existence of perfect n-gram matching achieves the necessary
size bound q ≤

(p
n

)
= O(pn), proposed in Remark 3.

Remark 7 (Insufficiency of the union bound argument). It is easier to exploit the union bound
arguments to propose random bipartite graphs which have a perfect n-gram matching whp. It is
proved in Appendix B.1 that if d ≥ n and the size constraint |Y | = O(|X|

n
2
−δ) for some δ > 0 is

satisfied, then whp, the random bipartite graph has a perfect n-gram matching. Comparing this
result with ours in Theorem 4, the latter has a better size scaling while the former has a better
degree scaling. The size scaling limitation in the union bound argument makes it unattractive. In
order to identify the population structure A in the overcomplete regime where |Y | = O(|X|n), we
need to at least have (4n)-th order moment according to the union bound arguments, while it is only
required to know the (2n)-th order moment, according to our more involved arguments.

5.3 Lower bound on the Kruskal rank of random matrices

The result of this section is used in the proof of Theorem 2. In the following theorem, a lower bound
on the Kruskal rank of a random matrix A under dimension and degree constraints is provided,
which is proved in Appendix B.1.

Theorem 5 (Lower bound on the Kruskal rank of random matrices). Consider a random matrix
A ∈ R

p×q for which there exist d (which is called degree) number of random non-zero entries in
each column. Assume that it satisfies size condition q ≤

(
c p
n

)n
(condition 4) and degree condition
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d ≥ 4+β log p for some β > n−1 (lower bound in condition 5) and in addition A is generic. Then,
whp, krank(A) ≥ 1

ep.
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Appendix

A Proof of Deterministic Identifiability Result (Theorem 1)

First, we show the identifiability result under an alternative set of conditions on the n-gram matrix,
A(n -gram), and then, we show that the conditions of Theorem 1 are sufficient for this alternative
result.

A.1 Deterministic analysis based on A(n -gram)

In this section, the deterministic identifiability result based on conditions on the n-gram matrix,
A(n -gram), is provided.

In the n-gram matrix, A(n -gram) ∈ R
pn×q, redundant rows exist. Precisely, if some row of A(n -gram)

is indexed by n-tuple (i1, . . . , in), il ∈ [p], then another row indexed by any permutation of tuple
(i1, . . . , in) has exactly the same entries. In other words, since multiplication is commutative, the
number of distinct rows of A(n -gram) is at most the number of (potentially) different products
Ai1,jAi2,j · · ·Ain,j in a column j ∈ [q]. Therefore, the number of distinct rows of A(n -gram) is at
most

(p+n−1
n

)
. In the following definition, we define a non-redundant version of n-gram matrix

which is restricted to the (potentially) distinct rows.
Definition 10 (Restricted n-gram matrix). For any matrix A ∈ R

p×q, restricted n-gram matrix

A
(n -gram)
Rest. ∈ R

s×q, s =
(
p+n−1

n

)
, is defined as the restricted version of n-gram matrix A(n -gram) ∈

R
pn×q, where the redundant rows of A(n -gram) are removed, as explained above.

Condition 6 (Rank condition). The n-gram matrix A(n -gram) is full column rank.

Condition 7 (Graph expansion). Let G(Vh, V
(n)
o ;A(n -gram)) denote the bipartite graph with vertex

sets Vh corresponding to the hidden variables (indexing the columns of A(n -gram)) and V
(n)
o cor-

responding to the n-th order observed variables (indexing the rows of A(n -gram)) and edge matrix

A(n -gram) ∈ R
|V

(n)
o |×|Vh|. The bipartite graph G(Vh, V

(n)
o ;A(n -gram)) satisfies the following expansion

property on the restricted version specified by A
(n -gram)
Rest. ,

∣∣∣N
A

(n -gram)
Rest.

(S)
∣∣∣ > |S|+ dmax

(
A(n -gram)

)
, ∀S ⊆ Vh, |S| > krank(A), (17)
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where dmax

(
A(n -gram)

)
is the maximum node degree in set Vh.

Remark 8. The expansion condition for the bag-of-words admixture model is provided in (4),
introduced in [36]. The proposed expansion condition in (17) is inherited from (4), with two major
modifications. First, the condition is appropriately generalized for our model which involves a
graph with edges specified by the n-gram matrix, A(n -gram), as stated in (14). Second, the expansion
property (4), proposed in [36], needs to be satisfied for all subsets S with size |S| ≥ 2, which is a
much stricter condition than the one proposed here in (17), since we can have krank(A) � 2. Note
that because of the dmax term in the expansion property in (17), it is hard to satisfy (17) for small
sets.

The deterministic identifiability result for the model described in Section 2, based on the conditions
on A(n -gram), is stated in the following theorem for n ≥ 2, while n = 1 case is addressed in Remarks 4
and 8. This is actually the basic result from which the main deterministic and random identifiability
results respectively proposed in Theorems 1 and 2, are concluded. The identifiability result relies on
having the (2n)-th order moment of observed variables xl, l ∈ [2n], defined in equation (2) as

M2n(x) := E
[
(x1 ⊗ x2 ⊗ · · · ⊗ xn)(xn+1 ⊗ xn+2 ⊗ · · · ⊗ x2n)

T
]
∈ R

pn×pn .

Theorem 6 (Generic identifiability under deterministic conditions on A(n -gram)). Let M
(n)
2n (x)

(defined in equation (2)) be the (2n)-th order moment of the n-persistent topic model described in
Section 2. If the model satisfies conditions 1, 6 and 7, then, for any n ≥ 2, all the columns of

population structure A are generically identifiable from M
(n)
2n (x).

Proof: Define B := A(n -gram) ∈ R
pn×q. Then, the moment characterized in equation (14) can

be written as M
(n)
2n (x) = BE

[
hhT

]
BT . Since both matrices E

[
hhT

]
and B have full column

rank (from conditions 1 and 6), the rank of BE
[
hhT

]
BT is q where q = O(pn), and furthermore

Col(BE
[
hhT

]
BT ) = Col(B). Let U := {u1, . . . , uq} ∈ R

pn be any basis of Col(BE
[
hhT

]
BT )

satisfying the following two properties:

1) ui’s have the smallest `0 norms.

2) ui’s have q smallest (tensor) ranks in the n-th order tensor form, i.e., Ui := ten(ui), i ∈ [q],
have q smallest ranks.

Let the columns of matrix B be bi for i ∈ [q]. Since all the bi’s (which belong to Col(BE
[
hhT

]
BT ))

are rank-1 in the n-th order tensor form (since ten(bi) = a◦ni ) and the number of non-zero entries
in each of bi’s is at most dmax(B) = dmax(A)

n, we conclude that

max
i

Rank(ten(ui)) = 1 and max
i

‖ui‖0 ≤ dmax(B). (18)

The above bounds are concluded from the fact that bi ∈ Col(BE
[
hhT

]
BT ), i ∈ [q], and therefore

the `0 norm and the rank properties of bi’s are upper bounds for the corresponding properties of
basis vectors ui’s (according to the proposed conditions for ui’s).
Now, exploiting these observations and also the genericity of A and the expansion condition 7, we
show that the basis vectors ui’s are scaled columns of B. Since ui for i ∈ [q], is a vector in the
column space of B, it can be represented as ui = Bvi for some vector vi ∈ R

q. Equivalently, for
any i ∈ [q], ui =

∑q
j=1 vi(j)bj where bj = a⊗n

j is the j-th column of matrix B and vi(j) is a scalar
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which is the j-th entry of vector vi. Then, the tensor form of ui can be written as

ten(ui) =

q∑

j=1

vi(j) ten(bj) =

q∑

j=1

vi(j) ten(a
⊗n
j ) =

q∑

j=1

vi(j)a
◦n
j = [[vi;

n times︷ ︸︸ ︷
A, . . . , A]], (19)

where the last equality is based on the Kruskal form notation defined in Definition 8. We define
ṽi := [vi(j)]j:vi(j)6=0 as the vector which contains only the non-zero entries of vi, i.e., ṽi is the
restriction of vector vi to its support. Therefore, ṽi ∈ R

r where r := ‖vi‖0. Furthermore, the
matrix Ãi := {aj : vi(j) 6= 0} ∈ R

p×r is defined as the restriction of A to its columns corresponding

to the support of vi. Let (ãi)j denote the j-th column of Ãi. According to these definitions,
equation (19) reduces to

ten(ui) = [[ṽi;

n times︷ ︸︸ ︷
Ãi, . . . , Ãi]] =

r∑

j=1

ṽi(j)[(ãi)j ]
◦n, (20)

which is derived by removing columns of A corresponding to the zero entries in vi.
Next, we rule out the case that ‖vi‖0 ≥ 2 under two cases (2 ≤ ‖vi‖0 ≤ krank(A) and krank(A) <
‖vi‖0 ≤ q), for ui = Bvi equality to conclude that ui’s vectors are scaled columns of B.

Case 1: 2 ≤ ‖vi‖0 ≤ krank(A). Here, the number of columns of Ãi ∈ R
p×‖vi‖0 is less than or

equal to krank(A) and therefore it is full column rank. From Fact 1, rank-1 tensors [(ãi)j ]
◦n, j ∈ [r],

are linearly independent. Hence, for any n ≥ 2, 7 from equation (20), we have Rank(ten(ui)) =
r = ‖vi‖0 > 1, which contradicts the fact that maxiRank(ten(ui)) = 1 in (18).

Case 2: krank(A) < ‖vi‖0 ≤ q. Here, we first restrict the n-gram matrix B to distinct rows,
denoted by BRest., as defined in Definition 10. Let u′i = BRest.vi. Since u′i is the restricted version
of ui, we have

‖ui‖0 ≥ ‖u′i‖0 = ‖BRest.vi‖0

>
∣∣NBRest.

(Supp(vi))
∣∣− |Supp(vi)|

> dmax(B),

where the second inequality is from the genericity of A used in Lemma 4, and the third inequality
follows from the graph expansion property (condition 7). This result contradicts the fact that
maxi‖ui‖0 ≤ dmax(B) in (18).

From above contradictions, ‖vi‖0 = 1 and hence, columns of B := A(n -gram) are the scaled versions
of ui’s. 2

The following lemma is useful in the proof of Theorem 6. The result proposed in this lemma
is similar to the parameter genericity condition in [36], but generalized for the n-gram matrix,
A(n -gram). The lemma can be also proved on lines of the proof of Remark 2.2 in [36].

7Note that for n = 1, since the (tensor) rank of any vector is 1, this analysis does not work.
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Lemma 4. If A ∈ R
p×q is generic, then the n-gram matrix A(n -gram) ∈ R

pn×q satisfies the following
property with Lebesgue measure one. For any vector v ∈ R

q with ‖v‖0 ≥ 2, we have

∥∥∥A(n -gram)
Rest. v

∥∥∥
0
>

∣∣∣N
A

(n -gram)
Rest.

(Supp(v))
∣∣∣ − |Supp(v)|,

where for a set S ⊆ [q], NA(n -gram)(S) := {i ∈ [p]n : A(n -gram)(i, j) 6= 0 for some j ∈ S}.

Here, we prove the result for the case of n = 2. The proof can be easily generalized to larger
n.

Let A := M + Z be generic, where M is an arbitrary matrix, perturbed by random continuous
perturbations Z. Consider the 2-gram matrix B := A�A ∈ R

p2×q . It is shown that the restricted

version of B, denoted by B̃ := BRest. ∈ R
p(p+1)

2
×q, satisfies the above genericity condition. We first

establish some definitions.
Definition 11. We call a vector fully dense if all of its entries are non-zero.
Definition 12. We say a matrix has the Null Space Property (NSP) if its null space does not
contain any fully dense vector.
Claim 1. Fix any S ⊆ [q] with |S| ≥ 2, and set R := N

M
(2 -gram)
Rest.

(S). Let C̃ be a |S|× |S| submatrix

of B̃R,S. Then Pr(C̃ has the NSP) = 1.

Proof of Claim 1: First, note that B̃ can be expanded as

B̃ := (A�A)Rest. = (M �M)Rest. + (M � Z + Z �M)Rest. + (Z � Z)Rest.︸ ︷︷ ︸
:=U

.

Let s = |S| and let C̃ = [c̃1|c̃2| · · · |c̃s]
T , where c̃Ti is the i-th row of C̃. Also, let C := [c1|c2| · · · |cs]

T

and W := [w1|w2| · · · |ws]
T be the corresponding |S| × |S| submatrices of M

(2 -gram)
Rest. and U , respec-

tively. For each i ∈ [s], denote by Ni the null space of the matrix C̃i = [c̃1|c̃2| · · · |c̃i]
T . Finally let

N0 = R
s. Then, N0 ⊇ N1 ⊇ · · · ⊇ Ns. We need to show that, with probability one, Ns does not

contain any fully dense vector.

If one of Ni, i ∈ [s], does not contain any full dense vector, the result is proved. Suppose that

Ni contains some fully dense vector v. Since C is a submatrix of M
(2 -gram)
R,S , every row cTi+1 of C

contains at least one non-zero entry. Therefore,

vT c̃i+1 =
∑

j∈[s]

v(j)c̃i+1(j)

=
∑

j∈[s]:ci+1(j)6=0

v(j)(ci+1(j) + wi+1(j)),

where {wi+1(j) : j ∈ [s] s.t. ci+1(j) 6= 0} are independent random variables, and moreover, they are
independent of c̃1, . . . , c̃i and thus of v. By assumption on the distribution of the wi+1(j),

Pr

[
v ∈ Ni+1

∣∣∣∣c̃1, c̃2, . . . , c̃i

]
= Pr

[
∑

j∈[s]:ci+1(j)6=0

v(j)(ci+1(j) + wi+1(j)) = 0

∣∣∣∣c̃1, c̃2, . . . , c̃i

]
= 0. (21)
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Consequently,

Pr

[
dim(Ni+1) < dim(Ni)

∣∣∣∣c̃1, c̃2, . . . , c̃i
]
= 1 (22)

for all i = 0, . . . , s− 1. As a result, with probability one, dim(Ns) = 0. 2

Now, we are ready to prove Lemma 4.

Proof of Lemma 4: It follows from Claim 1 that, with probability one, the following event holds:
for every S ⊆ [q], |S| ≥ 2, and every |S| × |S| submatrix C̃ of B̃R,S where R := N

M
(2 -gram)
Rest.

(S), then

C̃ has the NSP.

Now fix v ∈ R
q with ‖v‖0 ≥ 2. Let S := Supp(v) and H := B̃R,S . Furthermore, let u ∈ (R \ {0})|S|

be the restriction of vector v to S; observe that u is fully dense. It is clear that ‖B̃v‖0 = ‖Hu‖0,
so we need to show that

‖Hu‖0 > |R| − |S|. (23)

For the sake of contradiction, suppose that Hu has at most |R| − |S| non-zero entries. Since
Hu ∈ R

|R|, there is a subset of |S| entries on which Hu is zero. This corresponds to a |S| × |S|
submatrix of H := B̃R,S which contains u in its null space. It means that this submatrix does
not have the NSP, which is a contradiction. Therefore we conclude that Hu must have more than
|R| − |S| non-zero entries, which finishes the proof. 2

A.2 Proof of moment characterization lemmata

Proof of Lemma 1: First, in order to simplify the notation, similar to tensor powers for vectors,
the tensor power for a matrix U ∈ R

p×q is defined as

U⊗r :=

r times︷ ︸︸ ︷
U ⊗ U ⊗ · · · ⊗ U ∈ R

pr×qr . (24)

First, consider the case m = rn for some integer r ≥ 1. One advantage of encoding yj, j ∈ [2r],
by basis vectors appears in characterizing the conditional moments. The first order conditional
moment of words xl, l ∈ [2m], in the n-persistent topic model can be written as

E
[
x(j−1)n+k|yj

]
= Ayj, j ∈ [2r], k ∈ [n],

where A = [a1|a2| · · · |aq] ∈ R
p×q. Next, the m-th order conditional moment of different views

xl, l ∈ [m], in the n-persistent topic model can be written as

E[x1 ⊗ x2 ⊗ · · · ⊗ xm|y1 = ei1 , y2 = ei2 , . . . , yr = eir ] = a⊗n
i1

⊗ a⊗n
i2

⊗ · · · ⊗ a⊗n
ir

,

which is derived from the conditional independence relationships among the observations xl, l ∈
[m], given topics yj, j ∈ [r]. Similar to the first order moments, since vectors yj, j ∈ [r], are
encoded by the basis vectors ei ∈ R

q, the above moment can be written as the following matrix
multiplication

E[x1 ⊗ x2 ⊗ · · · ⊗ xm|y1, y2, . . . , yr] =
(
A(n -gram)

)⊗r
(y1 ⊗ y2 ⊗ · · · ⊗ yr) , (25)
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where the (·)⊗r notation is defined in equation (24). Now for the (2m)-th order moment, we
have

M
(n)
2m (x) := E

[
(x1 ⊗ x2 ⊗ · · · ⊗ xm)(xm+1 ⊗ xm+2 ⊗ · · · ⊗ x2m)T

]

= E(y1,y2,...,y2r)

[
E
[
(x1 ⊗ · · · ⊗ xm)(xm+1 ⊗ · · · ⊗ x2m)T |y1, y2, . . . , y2r

]]

(a)
= E(y1,y2,...,y2r)

[
E
[
(x1 ⊗ · · · ⊗ xm)|y1, . . . , y2r

]
E
[
(xm+1 ⊗ · · · ⊗ x2m)T |y1, . . . , y2r

]]

(b)
= E(y1,y2,...,y2r)

[
E
[
(x1 ⊗ · · · ⊗ xm)|y1, . . . , yr

]
E
[
(xm+1 ⊗ · · · ⊗ x2m)T |yr+1, . . . , y2r

]]

(c)
= E(y1,y2,...,y2r)

[([
A(n -gram)

]⊗r
)
(y1 ⊗ · · · ⊗ yr) (yr+1 ⊗ · · · ⊗ y2r)

T

([
A(n -gram)

]⊗r
)T

]

=

([
A(n -gram)

]⊗r
)
E

[
(y1 ⊗ · · · ⊗ yr) (yr+1 ⊗ · · · ⊗ y2r)

T
]([

A(n -gram)
]⊗r

)T

(d)
=

([
A(n -gram)

]⊗r
)
M2r(y)

([
A(n -gram)

]⊗r
)T

, (26)

where (a) results from the independence of (x1, . . . , xm) and (xm+1, . . . , x2m) given (y1, y2, . . . , y2r)
and (b) is concluded from the independence of (x1, . . . , xm) and (yr+1, . . . , y2r) given (y1, . . . , yr)
and the independence of (xm+1, . . . , x2m) and (y1, . . . , yr) given (yr+1, . . . , y2r). Equation (25)
is used in (c) and finally, the (2r)-th order moment of (y1, . . . , y2r) is defined as M2r(y) :=

E

[
(y1 ⊗ · · · ⊗ yr) (yr+1 ⊗ · · · ⊗ y2r)

T
]
in (d).

On the other hand, for M2r(y), we have by the law of total expectation

M2r(y) := E
[
(y1 ⊗ · · · ⊗ yr) (yr+1 ⊗ · · · ⊗ y2r)

T ]

= Eh

[
E
[
(y1 ⊗ · · · ⊗ yr) (yr+1 ⊗ · · · ⊗ y2r)

T |h
]]

= Eh

[( r times︷ ︸︸ ︷
h⊗ · · · ⊗ h

)( r times︷ ︸︸ ︷
h⊗ · · · ⊗ h

)T
]

= M2r(h),

where the third equality is concluded from the conditional independence of variables yj, j ∈ [2r],
given h and the model assumption that E

[
yj|h

]
= h, j ∈ [2r]. Substituting this in equation (26),

finishes the proof for the n-persistent topic model. Similarly, the moment of single topic model
(infinite persistence) can be also derived. 2

Proof of Lemma 2: Defining Λ := M2r(h) ∈ R
qr×qr and B :=

[
A(n -gram)

]⊗r
∈ R

prn×qr , the (2rn)-

th order moment M
(n)
2rn(x) ∈ R

prn×prn of the n-persistent topic model proposed in equation (5) can
be written as

M
(n)
2rn(x) = BΛBT .

Let b(i1,...,ir) ∈ R
prn denote the corresponding column of B indexed by r-tuple (i1, . . . , ir), ik ∈
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[q], k ∈ [r]. Then, the above matrix equation can be expanded as

M
(n)
2rn(x) =

∑

i1,...,ir∈[q]
j1,...,jr∈[q]

Λ
(
(i1, . . . , ir), (j1, . . . , jr)

)
b(i1,...,ir)b

T
(j1,...,jr)

=
∑

i1,...,ir∈[q]
j1,...,jr∈[q]

Λ
(
(i1, . . . , ir), (j1, . . . , jr)

)
[a⊗n

i1
⊗ · · · ⊗ a⊗n

ir
][a⊗n

j1
⊗ · · · ⊗ a⊗n

jr
]T ,

where relation b(i1,...,ir) = a⊗n
i1

⊗· · ·⊗a⊗n
ir

, i1, . . . , ir ∈ [q], is used in the last equality. Let m
(n)
2rn(x) ∈

R
p2rn denote the vectorized form of (2rn)-th order moment M

(n)
2rn(x) ∈ R

prn×prn . Therefore, we
have

m
(n)
2rn(x) := vec

(
M

(n)
2rn(x)

)

=
∑

i1,...,ir∈[q]
j1,...,jr∈[q]

Λ
(
(i1, . . . , ir), (j1, . . . , jr)

)
a⊗n
i1

⊗ · · · ⊗ a⊗n
ir

⊗ a⊗n
j1

⊗ · · · ⊗ a⊗n
jr

.

Then, we have the following equivalent tensor form for the original model proposed in equation
(5)

T
(n)
2rn(x) := ten

(
m

(n)
2rn(x)

)

=
∑

i1,...,ir∈[q]
j1,...,jr∈[q]

Λ
(
(i1, . . . , ir), (j1, . . . , jr)

)
a◦ni1 ◦ · · · ◦ a◦nir ◦ a◦nj1 ◦ · · · ◦ a◦njr .

2

A.3 Proof of generalized matching properties

Proof of Lemma 3: We show that ifG(Y,X;A) has a perfect n-gram matching, thenG(Y,X(n);A(n -gram))
has a perfect matching. The reverse can be also immediately shown by reversing the discussion
and exploiting the additional condition stated in the lemma.
Let E(n -gram) denote the edge set of the bipartite graph G(Y,X(n);A(n -gram)). Assume G(Y,X;A)
has a perfect n-gram matching M ⊆ E. For any j ∈ Y , let set NM (j) denote the set of neigh-
bors of vertex j according to edge set M . Since M is a perfect n-gram matching, |NM (j)| = n
for all j ∈ Y . It can be immediately concluded from Definition 3 that sets NM (j) are all dis-
tinct, i.e., NM (j1) 6= NM (j2) for any j1, j2 ∈ Y, j1 6= j2. For any j ∈ Y , let N ′

M (j) denote
an arbitrary ordered n-tuple generated from the elements of set NM (j). From the definition of
n-gram matrix, we have A(n -gram)(N ′

M (j), j) 6= 0 for all j ∈ Y . Hence, (j,N ′
M (j)) ∈ E(n -gram)

for all j ∈ Y which together with the fact that all N ′
M (j)’s tuples are distinct, it results that

M (n -gram) := {(j,N ′
M (j))|j ∈ Y } ⊆ E(n -gram) is a perfect matching for G(Y,X(n);A(n -gram)).

2

Proof of Remark 3: In order to show this, we fix the dimension of vertex set X to p and see what
the maximum number of vertices in set Y could be such that the resulting bipartite graph still has
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a perfect n-gram matching. Therefore, assume we have p vertices in X and an empty vertex set
Y on the other side. We want to introduce vertices in set Y with degree n such that the resulting
bipartite graph has a perfect n-gram matching. In order to satisfy this property, for any subset of
vertices S ⊆ X with |S| = n, we introduce a new vertex in set Y to ensure it has a perfect n-gram
matching. Hence, we can introduce up to

(
p
n

)
vertices in Y . 2

A.4 Sufficient matching properties for satisfying rank and graph expansion con-
ditions

In the following lemma, it is shown that under having a perfect n-gram matching and additional
genericity and krank conditions, the rank and graph expansion conditions 6 and 7 on A(n -gram), are
satisfied.
Lemma 5. Assume that the bipartite graph G(Vh, Vo;A) has a perfect n-gram matching (condition
2 is satisfied). Then, the following results hold for the n-gram matrix A(n -gram):

1) If A is generic, A(n -gram) is full column rank (condition 6) with Lebesgue measure one (almost
surely).

2) If krank condition 3 holds, A(n -gram) satisfies the proposed expansion property in condition 7.

Proof: Let M indicate the perfect n-gram matching of the bipartite graph G(Vh, Vo;A). From

Lemma 3, there exists a perfect matching M (n -gram) for the bipartite graph G(Vh, V
(n)
o ;A(n -gram)).

Denote the corresponding bi-adjacency matrix to the edge set M as AM . Similarly, BM denotes
the corresponding bi-adjacency matrix to the edge set M (n -gram). Note that Supp(AM ) ⊆ Supp(A)
and Supp(BM ) ⊆ Supp(A(n -gram)).

Since BM is a perfect matching, it consists of q := |Vh| rows, each of which has only one non-zero
entry, and furthermore, the non-zero entries are in q different columns. Therefore, these rows form
q linearly independent vectors. Since the row rank and column rank of a matrix are equal, and the
number of columns of BM is q, the column rank of BM is q or in other words, BM is full column
rank. Since A is generic, from Lemma 6 (with a slight modification in the analysis 8), A(n -gram) is
also full column rank with Lebesgue measure one (almost surely). This completes the proof of part
1.

Next, the second part is proved. From krank definition, we have

|NA(S
′)| ≥ |S′| for S′ ⊆ Vh, |S

′| ≤ krank(A),

which is concluded from the fact that the corresponding submatrix of A specified by S′ should be
full column rank. From this inequality, we have

|NA(S
′)| ≥ krank(A) for S′ ⊆ Vh, |S

′| = krank(A). (27)

Then, we have

|NA(S)| ≥ |NA(S
′)| for S′ ⊂ S ⊆ Vh, |S| > krank(A), |S′| = krank(A),

8Lemma 6 result is about the column rank of A itself, but here it is about the column rank of A(n -gram) for which
the same analysis works. Note that the support of BM (which is full column rank here) is within the support of
A(n -gram) and therefore Lemma 6 can still be applied.
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≥ krank(A)

> dmax(A)
n, (28)

where (27) is used in the second inequality and the last inequality is from krank condition 3.

In the restricted n-gram matrix A
(n -gram)
Rest. , the number of neighbors for a set S ⊆ Vh, |S| > krank(A),

can be bounded as
∣∣∣N

A
(n -gram)
Rest.

(S)
∣∣∣ ≥ |NA(S)|+ |S|

> |S|+ dmax(A)
n for |S| > krank(A),

where the first inequality is concluded from the existence of a perfect n-gram matching in A, and
the bound (28) is used in the second inequality. Since dmax

(
A(n -gram)

)
= dmax(A)

n, the proof of
part 2 is also completed.

2

Remark 9. The second result of above lemma is similar to the necessity argument of (Hall’s)
Theorem 7 for the existence of perfect matching in a bipartite graph, but generalized to the case of
perfect n-gram matching and with additional krank condition which is expected since the expansion
condition proposed here is stricter than the one in Hall’s theorem.

A.5 (Auxiliary) lemmata and facts

Lemma 6. Consider matrix C ∈ R
m×r which is generic. Let C̃ ∈ R

m×r be such that Supp(C̃) ⊆
Supp(C) and the non-zero entries of C̃ are the same as the corresponding non-zero entries of C.
If C̃ is full column rank, then C is also full column rank, almost surely.

Proof: Since C̃ is full column rank, there exists a r × r submatrix of C̃, denoted by C̃S, with
non-zero determinant, i.e., det(C̃S) 6= 0. Let CS denote the corresponding submatrix of C indexed
by the same rows and columns as C̃S .
The determinant of CS is a polynomial in the entries of CS . Since C̃S can be derived from CS by
keeping the corresponding non-zero entries, det(CS) can be decomposed into two terms as

det(CS) = det(C̃S) + f(CS),

where the first term corresponds to the monomials for which all the variables (entries of CS) are
also in C̃S and the second term corresponds to the monomials for which at least one variable is
not in C̃S . The first term is non-zero as stated earlier. Since C is generic, the polynomial f(CS) is
non-trivial and therefore its roots have Lebesgue measure zero. It implies that det(CS) 6= 0 with
Lebesgue measure one (almost surely), and hence, it is full (column) rank. Thus, C is also full
column rank, almost surely. 2

Fact 1. If vectors wi ∈ R
p, i ∈ [r] are linearly independent, then the n-th order tensor powers

Wi := w◦n
i ∈

⊗n
R
p, i ∈ [r], are also linearly independent.
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Proof: For the sake of contradiction, let the tensors Wi, i ∈ [r], be linearly dependent. Therefore,
there exist coefficients αi ∈ R, i ∈ [r], not all zero, such that

r∑

i=1

αiWi = 0. (29)

Without loss of generality, assume that α1 6= 0. Since wi’s are linearly independent, we have wi 6= 0
for all i ∈ [r] and therefore, there exists some k ∈ [p] such that w1(k) 6= 0.
Consider the fibers fi := Wi(1 : p, k, k, . . . , k), i ∈ [r], corresponding to the vectors obtained by
fixing all but first indices of Wi’s. From tensor outer product definition in (8), we have fi = βiwi

where βi := wi(k)
n−1 ∈ R for all i ∈ [r]. Furthermore, according to the special selection of k

mentioned earlier we have β1 6= 0.
Restricting equality (29) to the subset indexed by (1 : p, k, k, , . . . , k), results

r∑

i=1

αifi =
r∑

i=1

γiwi = 0,

where γi := αiβi. Since at least one of the scalar coefficients γi, i ∈ [r], is non-zero (γ1 := α1β1 6= 0),
it is concluded from above equality that vectors wi, i ∈ [r], are linearly dependent. This contradicts
the assumption of lemma and completes the proof. 2

Finally, Theorem 1 is proved by combining the results of Theorem 6 and Lemma 5.

Proof of Theorem 1: Since conditions 2 and 3 hold and A is generic, Lemma 5 can be applied
which results that rank condition 6 is satisfied almost surely and expansion condition 7 also holds.
Therefore, all the required conditions for Theorem 6 are satisfied almost surely and this completes
the proof. 2

B Proof of Random Identifiability Result (Theorem 2)

According to the proof sketch provided in Section 5.1, the steps for the proof of Theorem 2 are
provided in the following subsections.

B.1 Proof of existence of perfect n-gram matching and Kruskal results

Proof of Theorem 4: Define J := c p
n . Divide set X randomly (uniform) into n different partitions

with (almost) equal size 9 denoted by X
(2)
l , l ∈ [n]. Define sets X

(1)
l := ∪l

i=1X
(2)
i , l ∈ [n]. Further-

more, divide set Y randomly (uniform) into O(pn−1) partitions with size at most J = c p
n . Applying

Lemma 8 and Theorem 3, whp, there exists a perfect matching from each of these partitions of Y

to set X
(1)
1 . Then, we combine every J number of these partitions (on Y side) creating O(pn−2)

new bipartite graphs. Therefore, Lemma 7 can be applied which results that whp, there exists a
perfect 2-gram matching from each of these combined partitions of Y (with size less than or equal

to J2 =
(
c p
n

)2
= O(p2)) to set X

(1)
2 . This combining procedure is performed iteratively; in step l,

9By almost, we mean the maximum difference in the size of partitions is 1 which is always possible.
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every J number of partitions on Y are combined to create O(pn−l) new bipartite graphs. Applying
Lemma 7, whp, there exists a perfect l-gram matching from corresponding partitions of Y (with

size less than or equal to J l =
(
c p
n

)l
= O(pl)) to set X

(1)
l . Finally at iteration n, whp, we have

a perfect n-gram matching from Y (with size less than or equal to Jn =
(
c p
n

)n
= O(pn)) to set

X
(1)
n = X.

Above discussion is the main part of the proof, but in order to complete the proof, it is required to
argue on the total number of times that perfect matching result proposed in Theorem 3 is used in
the above random discussion. In this way, we want to ensure that high probability rate proposed in
Theorem 3 still holds after several times of its exploitation. Let N (hp) denote the total number of
times that perfect matching result proposed in Theorem 3 is used in the above random discussion.

Similarly, let N
(hp)
l , l ∈ {2, . . . , n}, denote the total number of times that perfect matching result

proposed in Theorem 3 is used in step l to ensure that there exists a perfect l-gram matching from

corresponding partitions of Y to set X
(1)
l , whp (Note that is is done through Lemma 7 as explained

in the above discussion).

As mentioned in Lemma 7, let Pl−1

(
X

(1)
l−1

)
denote the set of all subsets of X

(1)
l−1 with cardinality

l − 1 with has the size

∣∣∣Pl−1

(
X

(1)
l−1

)∣∣∣ =
(∣∣X(1)

l−1

∣∣
l − 1

)
=

( l−1
n p

l − 1

)
.

According to the construction method of l-gram matching proposed in Lemma 7,
∣∣∣Pl−1

(
X

(1)
l−1

)∣∣∣
is the number of times Theorem 3 is used in order to ensure that there exists a perfect l-gram
matching for each partition on Y side. Since at most Jn−l number of such l-gram matchings are

proposed in step l, the number N
(hp)
l can be bounded as

N
(hp)
l ≤ Jn−l

∣∣∣Pl−1

(
X

(1)
l−1

)∣∣∣ = Jn−l

( l−1
n p

l − 1

)
. (30)

Since in the first step, Jn−1 number of perfect matchings needs to exist in the above discussion, we
have

N (hp) = Jn−1 +

n∑

l=2

N
(hp)
l

≤ Jn−1 +

n∑

l=2

Jn−l

( l−1
n p

l − 1

)

≤
(
c
p

n

)n−1
+

n∑

l=2

(
c
p

n

)n−l(
e
p

n

)l−1

≤ n
(
e
p

n

)n−1
,

where inequality (30) is used in the first inequality and J := c p
n and inequality

(n
k

)
≤

(
enk

)k
are

exploited in the second inequality. Therefore, N (hp) = O(pn−1) and Theorem 3 is used polynomial
number of times. 2
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Proof of Theorem 5: Let G(Y,X;A) denote the corresponding bipartite graph to matrix A where
node sets Y = [q] and X = [p] index the columns and rows of A respectively. Therefore, |Y | = q
and |X| = p.
Fix some S ⊆ Y . Then

Pr(|N(S)| ≤ |S|) ≤
∑

T⊆X:
|T |=|S|

Pr(N(S) ⊆ T ) ≤

(
p

|S|

)[(
|S|

d

)/(
p

d

)]|S|
≤

(
p

|S|

)(
|S|

p

)d|S|

,

where the bound
(|S|
d

)/(
p
d

)
≤

(
|S|
p

)d
is used in the last inequality.

Let E denote the event that for any subset S ⊆ Y with |S| ≤ r, we have |N(S)| ≥ |S|, i.e.,

E := “∀S ⊆ Y ∧ 1 ≤ |S| ≤ r : |N(S)| ≥ |S|”.

Then

Pr(Ec) = Pr(∃S ⊆ Y s. t. 1 ≤ |S| ≤ r ∧ |N(S)| < |S|) ≤
r∑

s=1

(
q

s

)(
p

s

)(
s

p

)ds

≤
r∑

s=1

(
e
q

s

)s(
e
p

s

)s(s

p

)ds

≤
r∑

s=1

(
e2qrd−2

pd−1

)s

,

where the bound
(
n
k

)
≤

(
enk

)k
is used in the second inequality.

For r := 1
ep , the above inequality reduces to

Pr(Ec) ≤
r∑

s=1

(
q/p

ed−4

)s

≤
r∑

s=1

(
q/p

pβ

)s

=

r∑

s=1

(
q

pβ+1

)s

≤
r∑

s=1

(
c′

pβ−n+1

)s

,

where the degree condition assumed in the theorem is used in the second inequality and the size
condition is exploited in the last inequality by defining c′ :=

(
c
n

)n
. Since c′, β and n are constants

and β − n+ 1 > 0 by the theorem assumption, it is concluded that

lim
p→∞

Pr(Ec) = 0,

which results that event E happens whp. Therefore, Lemma 9 can be applied concluding that
krank(A) ≥ r = 1

ep, whp. 2

Proof of Remark 7: Consider a random bipartite graph G(Y,X;E) where for each node i ∈
X:
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1. Neighbors N(i) ⊆ X is picked uniformly at random among all size d subsets of X.

2. Matching M(i) ⊆ N(i) is picked uniformly at random among all size n subsets of N(i).

Note that as long as n ≤ d, the distribution of M(i) is uniform over all size n subsets of X.
Fix some pair i, i′ ∈ Y . Then

Pr(M(i) = M(i′)) =

(
|X|

n

)−1

.

By the union bound,

Pr
(
∃i, i′ ∈ Y, i 6= i′ s. t.M(i) = M(i′)

)
≤

(
|Y |

2

)(
|X|

n

)−1

,

which is Θ(|Y |2/|X|n) when n is constant. Therefore, if d ≥ n and the size constraint |Y | = O(|X|s)
for some s < n

2 is satisfied, then whp, there is no pair of nodes in set Y with the same random
n-gram matching. This concludes that the random bipartite graph has a perfect n-gram matching
whp, under these size and degree conditions.

2

B.2 (Auxiliary) lemmata

Lemma 7. Consider a bipartite graph G(Y,X;E) with |Y | = r and |X| = s where r = O(sl) and
each node i ∈ Y is randomly connected to dl different nodes in set X. Divide the nodes in set Y
randomly (uniform) to Jl := csl partitions Y1, . . . , YJl with (almost) equal size for some constant
c < 1. In addition, divide the nodes in set X randomly (uniform) to two partitions X1 and X2 with
sizes |X1| =

l−1
l s and |X2| =

s
l . Next, create Jl different bipartite graphs Gi(Yi,X1;Ei), i ∈ [Jl], by

considering partitions Yi and X1 and the corresponding subset of edges Ei ⊂ E incident to them.
Refer to Figure 4a. Furthermore, assume that dl ≥ β log s for some β > l2/2. Then, if each of the
corresponding Jl bipartite graphs Gi(Yi,X1;Ei), i ∈ [Jl], has a perfect (l − 1)-gram matching, then
whp, the original bipartite graph G(Y,X;E) has a perfect l-gram matching.

Proof: Let us denote the corresponding perfect (l − 1)-gram matching of Gi(Yi,X1;Ei) by Mi.
Furthermore, the set of all subsets ofX1 with cardinality l−1 are denoted by Pl−1(X1), i.e., Pl−1(X1)
includes the sets with (l−1) elements in the power set 10 of X1. For each set S ∈ Pl−1(X1), take the
set of all nodes in Y which are connected to all members of S according to the union of matchings
∪Jl
i=1Mi. Call this set as the parents of S denoted by Pa(S). According to the definition of perfect

(l− 1)-gram matching, there is at most one node in each set Yi which is connected to all members
of S through the matching Mi and therefore |Pa(S)| ≤ Jl = csl . In addition, note that sets Pa(S)
impose a partitioning on set Y , i.e., each node j ∈ Y is exactly included in one set Pa(S) for some
S ∈ Pl−1(X1). This is because of the perfect (l− 1)-gram matchings considered for sets Yi, i ∈ [Jl].
Now, a perfect l-gram matching for the original bipartite graph is constructed as follows. For any
S ∈ Pl−1(X1), consider the set of parents Pa(S). Create the bipartite graph G(Pa(S),X2;ES)
where ES ⊂ E is the subset of edges incident to partitions Pa(S) ⊂ Y and X2 ⊂ X. Denote by

10The power set of any set S is the set of all subsets of S.
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Y

Y1 Y2 YJl

X

X1 X2

G1 G2 GJl

(a) Original partitioning of sets Y and
X proposed in Lemma 7.

Y

Pa(S1) Pa(S2) Pa(S3)

X

X1 X2

S1 S2 S3

perfect matchings from Pa(S) to X2

(b) Partitioning of set Y through perfect
(l − 1)-gram matchings Mi, i ∈ [Jl].

Figure 4: Auxiliary figures for proof of Lemma 7. (a) Original partitioning of sets Y and X proposed in
the lemma where set Y is partitioned to Jl := c s

l
partitions Y1, . . . , YJl

with (almost) equal size for some

constant c < 1. In addition, set X is partitioned to two partitions X1 and X2 with sizes |X1| =
l−1
l
s and

|X2| =
s
l
. The bipartite graphs Gi(Yi, X1;Ei), i ∈ [Jl], are also shown in the figure. (b) Set Y is partitioned

to subsets Pa(S), S ∈ Pl−1(X1), which is generated through perfect (l− 1)-gram matchings Mi, i ∈ [Jl]. S1,
S2 and S3 are three different sets in Pl−1(X1) shown as samples. In addition, the perfect matchings from
Pa(S), S ∈ Pl−1(X1), to X2 proposed in the proof are also pointed in the figure.

dS the minimum degree of nodes in set Pa(S) in the bipartite graph G(Pa(S),X2;ES). Applying
Lemma 8, it is concluded that 11

Pr[dS ≥ 3] ≥ 1− Jl exp

(
−

2

l2
(dl − 2l)2

dl

)
.

Furthermore, we have |Pa(S)| ≤ csl = c|X2|. Now, we can apply Theorem 3 concluding that whp
there exists a perfect matching from Pa(S) to X2 within the bipartite graph G(Pa(S),X2;ES).
Refer to Figure 4b for a schematic picture. The edges of this perfect matching are combined with
the corresponding edges of existing perfect (l−1)-gram matchings Mi, i ∈ [Jl], to provide l incident
edges to each node i ∈ Pa(S). It is easy to see that this proposes a perfect l-gram matching from
Pa(S) to X.
We perform the same steps for all sets S ∈ Pl−1(X1) to propose a perfect l-gram matching from
any Pa(S) to X. Finally, according to the construction, the union of all of these matchings is a
perfect l-gram matching from ∪S∈Pl−1(X1) Pa(S) = Y to X and the result is proved. 2

Lemma 8 (Degree concentration bound). Consider a random bipartite graph G(Y,X;E) with
|Y | = q and |X| = p where each node i ∈ Y is randomly connected to d different nodes in set
X. Let Y ′ ⊂ Y be any subset 12 of nodes in Y with size |Y ′| = q′ and X ′ ⊂ X be a random
(uniformly chosen) subset of nodes in X with size p′ := |X ′| = p/n. Create the new bipartite graph
G(Y ′,X ′;E′) where edge set E′ ⊂ E is the subset of edges in E incident to Y ′ and X ′. Denote the
degree of each node i ∈ Y ′ within this new bipartite graph by d′i. Define d′ := mini∈Y ′ d′i. Then, if

11Note that in the context of Theorem 4, this bound can be written as Pr[dS ≥ 3] ≥ 1− Jl exp
(

− 2
n2

(d−2n)2

d

)

. It

is concluded from the fact that when the application of this lemma in Theorem 4 is considered, we have s = l

n
p and

therefore |X2| =
p

n
.

12Note that Y ′ need not to be uniformly chosen and the result is valid for any subset of nodes Y ′ ⊂ Y .
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d > rn for a non-negative integer r, we have

Pr[d′ ≥ r + 1] ≥ 1− q′ exp

(
−

2

n2

(d− rn)2

d

)
.

Proof: For any i ∈ Y ′, we have

Pr[d′i ≤ r] =
r∑

j=0

(
p′

j

)(
p− p′

d− j

)/(
p

d

)
,

where the inner term of summation is a hypergeometric distribution with parameters p (population
size), p′ (number of success states in the population), d(number of draws) and j is the hypergeomet-
ric random variable denoting number of successes. The following tail bound for the hypergeometric
distribution is provided [41,42]

Pr[d′i ≤ r] ≤ exp(−2t2d),

for t > 0 given by r =
(p′
p − t

)
d. Note that assumption d > rn in the lemma is equivalent to having

t > 0. Substituting t from this equation gives the following bound

Pr[d′i ≤ r] ≤ exp

(
−

2

n2

(d− rn)2

d

)
. (31)

Finally, applying the union bound, we can prove the result as follows

Pr[d′ ≥ r + 1] =Pr[∩q′

i=1{d
′
i ≥ r + 1}]

=1− Pr
[
∩q′

i=1{d
′
i ≥ r + 1}

]

=1− Pr[∪q′

i=1{d
′
i ≤ r}]

≥1−

q′∑

i=1

Pr[d′i ≤ r]

≥1−

q′∑

i=1

exp

(
−

2

n2

(d− rn)2

d

)

=1− q′ exp

(
−

2

n2

(d− rn)2

d

)
, (32)

where the union bound is applied in the first inequality and the second inequality is concluded from
(31). 2

Note that more strict degree condition 5 proposed in Section 3.2, implies that the probability bound
proposed in the above lemma goes to one with the rate proportional to inverse polynomial function
of q. Therefore, the lower bound on degree in the above lemma holds with whp.

A lower bound on the Kruskal rank of matrix A based on a sufficient relaxed expansion property
on A is provided in the following lemma.
Lemma 9. If A is generic and the bipartite graph G(Y,X;A) satisfies the relaxed 13 expansion
property |N(S)| ≥ |S| for any subset S ⊆ Y with |S| ≤ r, then krank(A) ≥ r, almost surely.

13There is no dmax term in contrast to the expansion property proposed in condition 7.
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Before proposing the proof, we state the marriage or Hall’s theorem which gives an equivalent
condition for having a perfect matching in a bipartite graph.
Theorem 7 (Hall’s theorem, [43]). A bipartite graph G(Y,X;E) has Y -saturating matching if
and only if for every subset S ⊆ Y , the size of the neighbors of S is at least as large as S, i.e.,
|N(S)| ≥ |S|.

Proof of Lemma 9: Denote the submatrix AN(S),S by ÃS , i.e., ÃS := AN(S),S . Exploiting marriage

or Hall’s theorem, it is concluded that the bipartite graph G(S,N(S); ÃS ) has a perfect matching
MS for any subset S ⊆ Y such that |S| ≤ r. Denote by ÃMS

the corresponding matrix to this

perfect matching edge set MS , i.e., ÃMS
keeps the non-zero entries of ÃS on edge set MS and

everywhere else, it is zero. Note that the support of ÃMS
is within the support of ÃS . According

to the definition of perfect matching, the matrix ÃMS
is full column rank. From Lemma 6, it is

concluded that ÃS is also full column rank almost surely. This is true for any ÃS with S ⊆ Y and
|S| ≤ r, which directly results that krank(A) ≥ r, almost surely. 2

Finally, Theorem 2 is proved by exploiting the random results on the existence of perfect n-gram
matching and Kruskal rank, provided in Theorems 4 and 5.

Proof of Theorem 2: It is shown that if random conditions 4 and 5 are satisfied then deterministic
conditions 2 and 3 also hold. Then Theorem 1 can be applied and the proof is done.
According to the theorem assumptions, size and degree conditions required for Theorem 4 hold
and therefore by applying this theorem, the perfect n-gram matching condition 2 is satisfied whp.
The conditions required for Theorem 5 also hold and by applying this theorem we have the bound
krank(A) ≥ 1

ep, whp. Combining this inequality with the upper bound on degree d in condition
5, concludes that krank condition 3 is also satisfied whp. Hence, all the conditions required for
Theorem 1 are satisfied whp, and this completes the proof. 2
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