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ABSTRACT 

 Given a sequence of observations, has a change occurred in the underlying probability 

distribution with respect to observation order?  How well can such a change be detected if the 

sequence is being monitored in real-time?  The problem of detecting change, and detecting it 

with minimal delay, is an important one in a wide variety of real-world situations.  For example, 

one might monitor a complicated multivariate system (such as a military helicopter or a human 

being) with the goal of detecting subtle change in order to provide advance warning of system 

failure.  

 Change-point problems may be classified as “online” or “offline.”  In offline problems, 

all data under consideration are on-hand at the time of analysis and the goal is to determine if, 

and perhaps when, a change occurred in the observation sequence. This leads to problems if a 

fatal result is encountered in the middle of the process from which data is being collected 

because it is too late for detection to do any good. In online problems, data are collected in real-

time with the goal of identifying a change as soon as possible after it occurs and thus as far as 

possible in advance of death.   

This project explores nonparametric graph-theoretic approaches to solving online change-

point problems.  The foundation for our methodology is the Ensemble Sum of Pair-Maxima 

(ESPM) Test, a powerful offline test developed by Ruth and Koyak (2011).  Our work 

investigates the efficacy of the ESPM Test in a variety of offline settings, and ultimately extends 

that test to online settings through a novel modification of recently developed multiple testing 

procedures designed to control false discovery rate. When tested against simulated and pseudo 

real-world data, this modified procedure maintains the desired overall test level while achieving 

impressive power and useful advanced warning times in many scenarios. This method is not 

limited to the ESPM test and holds much promise for adapting other powerful offline techniques 

to online scenarios. 

 

KEYWORDS: Online change detection; Ensemble Sum of Pair-Maxima test (ESPM); 

Graph-theoretic procedure; Nonbipartite matching; Benjamini-Hochberg Procedure; False 

Discovery Rate 
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I. INTRODUCTION 

  

Life is all about making decisions. Many decisions are made as a result of observing 

change. A bus driver stops at a traffic light because it has turned from green to red; a stock 

broker decides to sell a majority of his positions due to a change in the markets; a child grabs a 

snack because he has become hungry; an alarm clock goes off to wake someone up because the 

correct amount of time has passed; a linguistics computer program awards credit to a student for 

correctly inflecting his voice. People (or things) that are better able to identify a change will be 

better equipped to make decisions. Humans are naturally good at recognizing changes limited in 

complexity which are of a large-scale and/or predictable like a traffic light. However in the real-

world, clear-cut situations like this are not common. The real-world is intricate and at times very 

ambiguous. The ability of humans to discern subtle change across a complex system with many 

variables and do so in advance of a negative result is very difficult and imperfect. This project 

seeks to further develop this foresight in complex real-world systems. 

 The ability to detect change in a stochastic process is a central problem in statistics that 

has great practical importance. Consequently, robust solutions to this problem are highly sought 

after and widely used throughout the world. For example, consider these four real-world 

situations where change detection is used to make better decisions starting with a simplified one-

variable situation: 

- Univariate Quality Control. A tire factory wants to ensure that the tires it produces are 

of the highest quality and will not degrade too quickly. Quality control supervisors measure 

the tread depths of tires rolling off the production line and apply change detection methods in 

order to prevent tires from being made improperly. They hope to detect subtle, yet significant, 

changes that foreshadow imminent problems with tread depth production quality so they can 

be prevented. 

- Multivariate Quality Control. Over time, the same tire factory wanting to improve upon 

its quality control method decides that tracking and analyzing tread depth measurements is 

insufficient to ensure quality tire production. Therefore, in addition to tread depth, features 

such as sidewall thickness, inner diameter, and aspect ratio are also measured. These four 

possibly-related numbers taken together may be compared to the measurements collected 
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from other tires produced. Now it may be possible to detect more subtle process deviations, 

based on individual values and relative values. 

- Multivariate Machine Health. The Marine Corps wants to ensure its helicopters are 

being maintained and repaired before accidents occur. During operation, a helicopter vibrates 

due to its mechanical design and aviation maintenance experts determine that the best way to 

track helicopter health is through tracking its operating vibration frequency. Aircraft 

maintainers record frequencies with respect to time during flight at various locations 

throughout the aircraft. When an aircraft returns from a flight, the recorded multivariate data 

is analyzed for subtle evidence of health degradation to determine if repairs are necessary to 

prevent future mechanical failure.  

- Multivariate Biosurveillance. Health officials want to anticipate (and possibly deter) 

disease outbreaks. These situations represent significant changes from the normal health of a 

population and so might seem easy to detect, but the complex world of human health is home 

to many subtle changes invisible to the naked eye. Doctors through the use of change 

detection methods are able to monitor many variables on public health at once and detect 

when subtle changes in certain measurements signal high risk of or even foretell an outbreak 

of contagious disease and vaccinate properly. 

 These few examples only provide a quick glimpse at a small portion of problems where 

change detection is important: others include image analysis, structural damage assessment, 

crime investigation, and environmental field analysis. Our work offers a new tool for change 

detection that can be employed in real-time in very general multivariate settings.  

 In the formal mathematical study of change detection, the problem of detecting a change 

in a stochastic process is known as a “change-point problem.”  Each observation,  , of this 

process is said to be drawn from an underlying probability distribution,  . The change point,   , 

where   {       } refers to the first point in a sequence of observations (          ) at 

which the underlying probability distribution for that observation    differs from that of prior 

observations(               ).  

 Within change-point problems, one may differentiate between offline and online 

problems. In offline problems, testing for change is done only at a predetermined point when the 

system is turned off; no new data are collected as change-testing occurs. Such an approach is 

inadequate if a fatal change occurs in the middle of a process. In online problems, testing for 
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change occurs as data are collected. Generally, multiple tests for change are conducted in 

sequence that as much data about system performance as possible is considered for each test and 

change is detected in time for the appropriate decisions to be made. 

 The nature of such changes may be quite general. For instance, change could occur as a 

jump in data distribution mean at one point in time as seen for a univariate example in Figure 1.  

 

But, change may also occur as a gradual drift in data distribution mean, or change may occur as a 

jump or gradual drift in other parameters of the underlying probability distribution such as 

variance, scale, shape, et cetera as seen for another univariate example in Figure 2. 

 

 Simplistic in nature, the previous examples consider only a single variable. Figure 3 

shows five dimensions of 200 sequential observations on some system.  Prior to a change-point 

Figure 1: Jump in distribution mean at point 101 of 200 

Figure 2: Drift in distribution variance at point 161 of 200 
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at 101, the observations (plotted in black) follow a particular multivariate distribution; after the 

change point, the observations (plotted in red) follow a different multivariate distribution.  This 

change is by no means obvious to the eye (in fact, a jump change in the distribution mean of 

magnitude 1 occurs at the change point); we seek a test that effectively detects such changes as 

soon as possible after they occur.  

  

 

The problem of change detection has a long history. In the relatively recent era of “big data,” 

multivariate methods are of great interest.  Most current approaches involve fairly strong 

assumptions about the distribution of the monitored observations. When the assumptions fail to 

be met, these approaches often suffer.  Also, many existing techniques test only for a specific 

type of change (such as an abrupt jump in distribution mean), or require the change-point to be 

pre-determined. Such constraints limit the extent to which these test may be applied to real-world 

situations. 

 In this project, we specifically consider the problem of detecting change in the underlying 

distribution of a sequence of observations based on monitoring the observations online, with the 

dual objectives of: 1) identifying correctly that a change has occurred, and 2) maximizing the 

time between when a change is detected and the time when a negative result will occur (i.e. 

machine death through mechanical failure) or a positive chance squandered (not buying stock 

Figure 3: Dimensional breakdown of 200 observations of 5-variate data 
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early enough to take advantage of a rise in the stock market). Detected change is only useful if it 

is detected in time to be useful in a decision-making process. 

 We are interested in finding a way to detect change –perhaps subtle change of a quite 

general nature – within multivariate data without any a priori assumptions about underlying 

probability distributions: that is, ours is a nonparametric test. Our approach is graph-theoretic 

and relies upon the idea of matching, which involves pairing observations together based on 

interpoint distances. As a starting point in this project, we extend a recently developed offline 

nonparametric change detection test formulated by Ruth and Koyak (2011) for use in online 

situations.  

 Our work towards these ends is organized as follows: In Section II, we classify sequential 

change-point problems into two categories, offline and online, with discussion on how each type 

of problem relates to real-world scenarios and is framed. Because our new test is an extension of 

the Ensemble Sum of Pair-Maxima (ESPM) test of Ruth and Koyak (2011), we then explore the 

theoretical underpinnings of that through a review of relevant key literature and the main tenets 

of graph-theoretic matching. In Section III, we investigate the change detection capabilities of 

the ESPM Test in multivariate offline settings by varying both the amount of data available for 

testing and the location of the change within the data. This section culminates with an extension 

of the ESPM test to multivariate online situations using multiple testing theory and the 

Benjamini-Hochberg Procedure for controlling the False Discovery Rate. Section IV 

demonstrates the performance of the “telescope” multiple testing format among various change 

locations through a simulation study built to mimic online scenarios. In Section V, we apply our 

test to the (simulated) real-world data from the 2008 Prognostics and Health Management 

Challenge (PHM) and speak to the characteristics and challenges of real-world data sets in 

regards to graph-theoretic tests. Of central importance is the introduction of “horizons” to extend 

the Benjamini-Hochberg Procedure to online situations. Section VI summarizes all our findings 

and highlights opportunities for further work within the field and on the ESPM test in particular. 
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II. PROBLEM BACKGROUND 

 

A. PROBLEM FORMULATION 

 Given a multivariate stochastic process can we detect departures from homogeneity in 

real time? In other terms, can we tell if the underlying probability distribution from which a 

sequence of multivariate observations is drawn has changed? Due to the widespread and 

unceasing nature of change, these same questions arise in many real-world applications and are 

commonly referred to as the “change-point problem” as previously stated. 

1. Change Points 

 In the field of change detection, the term change point may be defined as follows: Given 

a sequence of random vectors (          )     {     }, let    represent the probability 

distribution of   . The change point   {     } is the first point in the sequence starting from 

the left where        . In our setting, once the initial change occurs, there is no return to the 

original distribution. For example, the distribution change at   could be the result of an abrupt 

mean change, or “mean jump”, where                          . It is 

also possible that    varies with   for    : for instance, the distribution change beginning at   

could be a gradual mean change, or “mean drift”, that is implemented incrementally and 

described as       
      

  (     ) where    is the average value of    and each 

component of   is the rate at which the associated mean component changes. More complex 

forms for     , like those intrinsic to real-world scenarios, are allowed as well.  

 In a hypothesis-testing context, the general change-point problem with respect to 

observations            involves defining the null hypothesis 

(2.1)                      

against the alternative hypothesis 

(2.2)                             

and             {     } and     {     }. 
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As a result of its general nature, this alternative hypothesis fails to be inclusive of every possible 

change situation.  Its framework is suitable for many change situations, but does not cover brief 

departures from homogeneity such as: 

                                 , 

or periodic departures from homogeneity that cause there to be a cyclic pattern of change away 

from the original distribution for an interval of time and then change back to the original 

distribution for an interval of time. These scenarios can develop when performing image analysis 

to detect short-lived change like a car passing through an area or a brief hand command to a 

robot. Our new test is not designed to find change in these situations. It is designed to find 

change in situations where prior to the change point   all observations come from the same 

initial distribution and then once at the change point all observations come from distributions 

different from the initial one. 

2. Dichotomy of Change-Point Problems 

 Various possible taxonomies can be used when studying change-point problems. Our 

work naturally separates change-point problems into two main categories: online and offline. 

This system centers on the difference in how new observations are incorporated into testing. For 

online problems, data collection and testing occur concurrently. As new observations are added 

to the data set, the null hypotheses are tested repeatedly in the following manner: 

1) With     observations (            ) collected and available, add   . 

2) Test for a change-point   {     }  

a. If a change-point is detected, then take appropriate action. 

b. If not, then return to step (1) with (          ) available. 

Classic cases of online problems include the monitoring of operating mechanical systems, where 

system measurements believed to indicate system health are sampled while the system is 

operating and tested in sequence to identify if change has occurred in the process. The goal is to 

detect change in time to be useful in preventing a negative result (i.e. machine death) or a 

positive opportunity from being squandered (i.e. bullish stock market). Because there may be no 

limit to how large the set of observations will be if and when a change-point is detected though, 
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the set of observations has the potential to become prohibitively large and therefore difficult to 

work with depending on the specific scenario. 

Alternatively in offline problems, all data are collected in advance of any testing; that is, 

testing is conducted upon a finite sequence of observations whose length is known prior to 

testing. Observations are not collected during the testing period and vice versa. Offline problems 

can be further delineated into cases of Two Sample Tests or Simultaneous Tests. For a Two 

Sample Test, the change-point   {     } tested for in the sequence of multivariate 

observations (          ) is known or assumed. The sequence of observations is then split 

into two samples at this predetermined point, {         } and {       }, and then the 

analyst tests the null hypothesis                against the alternative hypothesis 

                              . A well-known Two Sample Test is the 

univariate Kolmogorov-Smirnov Test for Distributional Homogeneity, though it is not normally 

associated with change-point problems. This nonparametric test regularly used by scientists 

examines the maximum difference between the empirical distribution functions of associated 

data sets in order to determine if they are both drawn from the same distribution. An example of 

this problem type is seen in clinical trials where two groups of subjects are drawn from the 

general population. The first is designated a control group and given a placebo, while the other is 

designated a test group and administered a treatment. The groups are then studied to determine 

whether or not the treatment has had some kind of effect. As a whole, these tests are not well-

built for real-world use beyond scenarios where the change point is easily assumed. If the 

predetermined change-point chosen by the analyst unknowingly differs from the unknown actual 

change-point by a significant amount or by a couple crucial data points, the test could easily 

misidentify change when there is none or fail to detect when there actually is. In real-world 

situations, the actual change-point is often nearly impossible to identify. The need to make 

assumptions can cause the effectiveness of this test to suffer heavily. As a consequence, an 

extremely attractive feature of the ESPM test is its nonparametric nature. It does not require any 

limiting assumptions to be made concerning the underlying probability distribution of the data or 

the predetermination of a change point for it to be applied. This universality cements it as a 

strong foundation for solution approaches to numerous types of change-point problems including 

ours.  
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  For simultaneous tests, there is no predetermined change-point  . Instead, the test is 

performed upon the entire sequence of observations (          ) available; thus, all possible 

change-points are tested simultaneously. The null (2.1) and alternative (2.2) hypotheses tested in 

this problem are as stated in the previous subsection. From a utility standpoint, the absence of an 

assumption concerning change-point location makes these tests perfect candidates for application 

to such real-world situations, where change points are not known in advance. One example of 

such a test is environmental image analysis. The abuse natural vegetation sustains as a result of 

training activities is a significant issue on many military installations. Consider a large tract of 

land on a military base monitored a by satellite specially designed for ground-level imagery 

where each image taken of the land represents a multivariate observation and each pixel within 

an image represents a variable. Natural resource managers are unable to measure key statistics 

like land cover physically so they rely on innovative environmental management and monitoring 

tools to identify areas of land cover change through the use of satellite imagery during their 

periodic check. 

 As mentioned previously in Section I, the goal of this research is to extend the ESPM test 

developed by Ruth and Koyak (2011), which is offline, nonparametric, and simultaneous, for use 

in online problems. Consequently, our research has focused on conducting successful 

simultaneous testing in online situations. A survey of literature in the field of change detection 

reveals that there are few powerful nonparametric simultaneous tests for multivariate change-

point problems, particularly online problems. We now proceed to review various graph-theoretic 

approaches to change detection concluding with a discussion about how these approaches 

comprise the theoretical origin of the ESPM test. This will lay the foundation for the new online 

extension of the ESPM test in the next chapter. 

 

B. GRAPH-THEORETIC APPROACHES TO CHANGE DETECTION 

Graph-theoretic ideas provide an innovative approach to change-point problems. Of late, 

methods using graph-theoretic ideas such as minimum spanning trees, nearest-neighbor 

algorithms, and clustering methods have proved interesting to many due to advances in 

computational capacity which makes them realistic to implement. The ESPM test is itself based 
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heavily upon matching. To fully understand what matching is, one must know something about 

the basic definitions and background of graph theory, so that is where we begin. 

1. Graph Theory 

These definitions come from Chartrand and Zhang (2005).  A graph is an ordered pair 

  (   ) consisting of a finite nonempty set of vertices   connected by edges  , which are 

two-element unordered subsets of  . A graph     (     ) is called a subgraph of    (   ) 

if      and     ; if     , then    is a spanning subgraph of  . Two distinct vertices,    

and   , are adjacent vertices if they are joined by an edge {     }. Two distinct edges are 

adjacent edges if they share a vertex such as {     } and {     }. A complete graph is a graph 

in which all vertices are adjacent. An undirected graph is one in which the edges have no 

orientation- that is, edge {     } is identical to {     }; a directed graph is one in which edges 

have a direction associated with them making edge {     } distinct from edge {     }. Vertex 

   and edge {     } can be referred to as incident with each other, and the degree of vertex    

is the number of edges incident with   .  

A     walk in graph   is a sequence of vertices in   beginning with   and ending with 

  such that consecutive vertices within the sequence are adjacent; if    , then the walk is 

closed. A walk in which no edge is used more than once is called a     trail. A circuit is a 

closed trail that includes at least three distinct vertices; a circuit that repeats no vertex except the 

first and last is a cycle. If there is a     walk for every pair of vertices in graph  , then   is 

said to be connected.  

A graph   is called acyclic if it has no cycles and is a tree if it is both acyclic and 

connected. A spanning tree of   is a spanning subgraph that is also a tree. If a real number 

expressing some form of interpoint cost is assigned to each edge in  , then   becomes a 

Figure 4: Undirected complete graph on 5 vertices; 

subgraph highlighted in red is a spanning tree 
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weighted graph and the sum of all edge weights known as the weight of the graph. The 

spanning tree of weighted graph   whose weight is the least among all possible spanning trees is 

the minimum spanning tree (MST) of     Figures 4 and 5 illustrate some of these terms.  From 

this point forward, every graph discussed is a complete undirected graph. 

In a pioneering paper, Friedman and Rafsky (1979) considered various change-detection 

test statistics based on the relational information contained within MSTs in order to test if two 

samples came from the same distribution. They begin with two sets of observations,    and   , 

and define          . Next, an MST is constructed with respect to some interpoint cost 

function on  . They then remove each edge in the MST which connects a point in    to a point in 

  , and count the number of disjoint trees created as a result of edge removal. This count tends to 

be lower when    and    come from different distributions, although this test is not particularly 

powerful. 

2. Matching 

 To begin our review of matching-based approaches to change detection, we present a few 

additional definitions to help develop later ideas. A subset of edges      is independent if no 

two edges in    are adjacent. A matching in a graph   (   ) is an independent set of edges 

in  . The amount of possible matches in a graph depends upon its size. A maximum matching 

in   is a matching that has at least as many edges as any other potential matching in  . Since the 

ESPM test utilizes maximum matchings and our new test is an extension of it, all matchings 

discussed from this point forward in the paper are maximum matchings. A perfect matching in 

  is a matching that includes every vertex in  . Perfect matchings are inherently maximum 

matchings, although not vice versa; additionally, they are only possible if a graph has an even 

number of vertices. 

Figure 5: Directed graph with cycle 

(C,D,E,F) highlighted in blue 
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 Matching-based approaches have been used in a variety of problem areas such as organ 

donation and large-scale logistics. These methodologies commonly seek to find a matching 

which minimizes some contextually relevant interpoint cost function. In these problems, two 

main types of matching occur: bipartite, where the vertices of the graph are split into two unique 

subsets of observations,    and   , and each edge of the graph consists of a vertex from each 

subset (a vertex can only be paired with a vertex from the other subset), and nonbipartite, where 

matching does not depend on any previous partitioning of the vertices (a vertex can be paired 

with any vertex other than itself). Each type of matching has a different effect upon which edges 

make up the minimum-weight matching.  

 For this research, we take interest in minimum-weight, or minimum-cost, nonbipartite 

matchings (MNBMs). The general interpoint cost function used in change-point problems is 

defined by Ruth and Koyak (2011) as follows: Given sample space  ,        [   ) is a cost 

function if it satisfies 

(2.3)       (   )          

and 

(2.4)              (   )   (   )        . 

Let     denote the cost  (     ), or in more general terminology the weight of the edge 

connecting    and   . The function   will be referred to as a distance function if it satisfies the 

triangle inequality 

 (2.5)          (   )   (   )   (   )           

in addition to (2.3) and (2.4). This general definition gives the flexibility needed to accommodate 

all types of data (discrete and continuous, univariate and multivariate, etc.). However, this does 

not mean there is no need for adjustment. Interpoint cost functions should generally be tailored to 

the context of the problem and the pertinent data types. In nonbipartite minimum matching, the 

assignment of pairs relies entirely upon the choice of cost function. Context might clearly point 

towards one measure of cost over others; it might require the choice to become a matter of 

debate. Commonly used cost functions include computing interpoint Euclidean distance or 

 (2.6)       
   √(     )

 
 (     ), 

Mahalonobis distance, in order to account for measurement scale and correlation between data 

components 
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 (2.7)       
   √(     )

 
     (     ) 

where   is the covariance matrix, and Manhattan distance, but there are many others. 

Rosenbaum (2005) developed a test statistic derived from MNBMs to compare two 

multivariate distributions. Using simple interpoint distances to construct a MNBM of 

multivariate observations, his cross-match statistic is the number of pairs comprised of one 

observation from the first distribution and one observation from the second distribution. 

Distributions that are very different will cause few cross-matches, whereas distributions that are 

very similar will cause many cross-matches. Impressively, his cross-match statistic has a known 

exact distribution and is nonparametric. This test strongly motivated Ruth and Koyak (2011) in 

their development of the ESPM test. 

In other related work, Lu et al. (2001) demonstrate the ability to use optimal nonbipartite 

matching in a multivariate real-world scenario and achieve solid analysis of the problem in 

question. Through an observational study on the media campaign against drug use, optimal non-

bipartite matching was used to pair teenage subjects who were demographically similar but had 

extremely different levels of exposure to the media campaign. The stated intentions of the 

subjects in relation to illegal drug use were used to assess the effectiveness of the campaign.  

 Another successful application of optimal nonbipartite matching appears in Lu and 

Rosenbaum (2004) where they investigate if a localized minimum-wage increase is at all 

associated with depressed low-wage employment rates in the same area. Faced with the problem 

of needing to compare one test group to two control groups, they convert the natural tripartite 

problem into a nonbipartite matching problem and provide relevant analysis on the topic in 

question. 

 In the vein of minimizing global interpoint cost like Friedman and Rafsky’s (1979) MST 

test and Rosenbaum’s (2005) cross-match test, the cornerstone of the ESPM test is the 

computation of a MNBM to pair observations so as to minimize the sum of all distances between 

paired observations. Unlike the others though, the ESPM test computes many MNBMs. We 

elaborate in the following section.  
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3. Ensembles  

Intuition suggests that if a single MNBM contains information about distributional 

homogeneity in a sequence of observations, then additional information might be contained in 

additional matchings where each successive matching is the next-best matching independent of 

the first. This idea has been thoroughly explored by many people and found to be true. More 

specifically, the power of graph-theoretic tests is known to be enhanced by considering 

collections of orthogonal subgraphs called ensembles. Friedman and Rafsky (1979) originally 

suggest that ensembles of MSTs with       orthogonal matchings be used to refine the 

sensitivity of their multivariate runs test where   is the number of observations in the data set. In 

examining that same test, Friedman and Rafsky (1979) show it has higher power when used in 

higher dimensions, but more importantly augments general test power by computing their test 

statistic on an ensemble of orthogonal MSTs, where two MSTs are orthogonal if they do not 

share any edges in common.  

 Although the ESPM test makes use of a different type of subgraph (a matching), Ruth 

and Koyak (2011) make use of a similar idea in order to increase test power. To describe their 

adaptation, they define the term orthogonally successive optimal matchings (OSOMs) to refer to 

matchings constructed through the following process: compute an optimal nonbipartite matching, 

then find the next best matching that is orthogonal to the first, then the next best matching that is 

orthogonal to both the first and second, and so on until there are no more orthogonal matches left 

to be made. Figure 6 below displays OSOMs on     points. Each color represents a different 

Figure 6: Orthogonal, successive, optimal, non-bipartite, maximum matchings 

on 𝑵  𝟔 points. 
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matching where the best is blue, then red, green, purple, and black. Orthogonality is shown in the 

graph by how no edge is reused by two different colors. Given      observations and an 

associated interpoint cost function, the OSOM procedure guarantees that at least     matchings 

may be obtained from the data set.  

 At its core, the ESPM test centers on the idea that MNBMs (more than one) based on 

interpoint distances will tend to result in pairings that are closer in sequence order than would be 

the case if all observations came from the same distribution. Until now though, the application of 

this idea has been limited to offline problems. We now propose a new test that is simultaneous, 

multivariate, and distribution-free which will extend the methodology of the ESPM test for use 

in online situations. 
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III. TEST DISCUSSION 

 

We introduce a new change detection test for use in online change-point problems. As 

stated previously, this new test builds off the methodology of the powerful, nonparametric, 

multivariate, offline Ensemble Sum of Pair-Maxima (ESPM) test created by Ruth and Koyak 

(2011). Our online extension applies Multiple Testing Theory through a novel extension of the 

False Discovery Rate procedure of Benjamini-Hochberg (1995). 

For the purpose of presenting our test, assume a sequence of        observations 

ordered with respect to time. Our goal is to test if change occurs with respect to this ordering. For 

instance, change may be a jump or a drift in some distributional parameter at some unknown 

point in the sequence. The requirement that   be even is not strict, but it simplifies description of 

the test and we later describe how to handle odd   accordingly. For a simultaneous test where    

is the underlying probability distribution of the     observation (  ) within this sequence, the null 

hypothesis of distributional homogeneity asserts that           . The alternative 

hypothesis asserts that there exists a change point   {     } such that         

       . As in the case of the ESPM test, we compute a minimum nonbipartite matching of   

pairs,   {{        } {        }   {     
     }}, with respect to some cost function. The 

ordering of these pairs is arbitrary. We use Euclidean distance (2.6) unless otherwise specified. 

As in Ruth and Koyak (2011), let       
       and          be the sequence labels for the 

    pair {      
      }.  For example, if the second pair in   is {      }, then     and so 

      
          and               .  Now order each individual pair as (     ), 

where    and    are correspondingly the minimum and maximum value of the ordering variable: 

(3.1)        {      
     } and       {      

     }, where   {       }. 

Continuing the     example,      and     .  These ideas are illustrated in the context of 

successive matching in Figure 7 and Table 1 for a case with   = 6 points. With this foundation in 

place, we are now ready to discuss the test statistics which we will employ for sequential testing. 
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A. ENSEMBLE SUM OF PAIR-MAXIMA TEST 

The foremost job of any change detection test is to properly detect change regardless of 

other concerns. Thus, the decision of which test statistic to use as the determining factor of 

whether or not change has occurred is of paramount importance. A desirable test statistic is 

proportionally sensitive to the occurrence, or lack thereof, of change; bad ones are completely 

insensitive or overly sensitive to the change attempting to be detected. Our new test is powered 

by the three-level test statistic used in the ESPM test where each proceeding level is used to help 

determine the current level’s numeric value. 

1. The Sum of Pair-Maxima,     

 If the alternative hypothesis is true – that is some form of distributional change has 

occurred within a sequence of observations – it is expected that a minimum nonbipartite 

matching based on interpoint Euclidean distances would pair observations that are closer 

together in sequence than would be the case under the null hypothesis of no change. Drawing 

upon this, Ruth and Koyak (2011) devise a test statistic based on summing the differences 

 
Table 1: Maximum and minimum values of pairs from matchings shown in Figure 7 

First Matching (Blue) Second Matching (Red) Third Matching (Green) 

Pair 
  , 

Minimum 

  , 

Maximum 
Pair 

  , 

Minimum 

  , 

Maximum 
Pair 

  , 

Minimum 

  , 

Maximum 

(1,2) 1 2 (1,4) 1 4 (1,3) 1 3 

(3,5) 3 5 (2,3) 2 3 (2,6) 2 6 

(4,6) 4 6 (5,6) 5 6 (4,5) 4 5 

Figure 7: Three successive minimum nonbipartite matchings on 𝑵  𝟔 points. 
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      in each pair and rejecting the null hypothesis if the sum is less than some critical value. 

They consider,   , an equivalent test statistic labeled as the Sum of Pair-Maxima (SPM) test 

statistic built upon this sum: 

(3.2)         ∑   
 
   . 

This is equivalent to the sum of sequence label differences seen by the identity: 

(3.3)     ∑   
 
    

 

 
 (    )  

 

 
∑ (     )

 
   . 

The null hypothesis is rejected for small values of this sum.  

 The mean and variance of    are derived using Fristedt and Gray’s (2004) definition for 

exchangeable sequences of random variables. A sequence (          ) of random variables is 

exchangeable if for any permutation   of indices {       } the joint probability distributions of 

(          ) and (  ( )
   ( )

     ( )
). This definition is easily fit by the case of the null 

hypothesis since the ordering among the pairs in the matching is arbitrary. There are    possible 

permutations of sequence labels, all of which are equally probable, and the random variables 

(          ) are exchangeable. This leads to the mean of    being expressed as: 

(3.4)        [  ]     [  ]  
 (   )

 
 

and the variance as: 

(3.5)    
     [  ]       [  ]   (   )   [     ]  

 (   )(   )

   
. 

 Theorem 1 of Ruth and Koyak (2011) shows that    has a limiting normal distribution: 

(3.6)     (
     

  
  )    ( )         

where   represents all real numbers and   is the standard normal cumulative distribution 

function. It is important to note though that this is not done through the classical central limit 

theorems. Despite each     in    having identical marginal distributions because they are 

exchangeable, they are not independent; therefore (3.6) cannot be proved using classical central 

limit theorems. To overcome this, (3.6) is proved via a technique known as Stein’s method. 

Stein’s method (Stein, 1972, 1986) relies on a differential equation that describes the normal 

distribution and a process known as “coupling,” by which auxiliary random variables similar to 
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the variables being studied are constructed. The results establish bounds on the distance from 

normality for selected cases of dependency, including this case. Implementation of the method 

and proof of asymptomatic normality for    is seen in Section III of Ruth (2009). 

 The normal approximation for    is improved using an Edgeworth expansion to diminish 

error present in cases where   is small or moderately sized. This procedure approximates the 

distribution of interest by starting with a normal distribution and then adding in higher order 

corrections for non-zero moments of the third order or above. In Ruth (2009), the third central 

moment of     is shown to be: 

(3.7)   [(     )
 ]   [  

 ]       
    

  
  (   )(    )(    )

   
   . 

For all    ,     . Thus, it follows that    is negatively skewed for all cases of interest. The 

Edgeworth approximation is then given by: 

(3.8)    (
     

  
  )   ( )    

   

 √(   )(   )
(    )     ⁄  

where     
√  

   √  
     . A detailed derivation is found in Section III of Ruth (2009). 

 Many theoretical properties of interest for a test statistic have to do with its properties 

under the null hypothesis.  In contrast, a test statistic is said to be consistent if it has the property 

that its power approaches 1 as sample size increases without limit for any level of significance 

and any departure from the null hypothesis (no matter how small).  While the null properties of 

the tests such as SPM may be straightforward to establish, consistency is often difficult to prove. 

The consistency of the generalized runs test of Friedman and Rafsky (1979) that used minimum 

spanning trees was only proven by Henze and Penrose twenty years after the test was introduced. 

Rosenbaum’s cross-match test has only been proven consistent under less general conditions. 

Without specification of a change point, Ruth (2009) showed that the SPM test is consistent 

against general jump alternatives under the same conditions for which the cross-match test is 

consistent.  Simulations conducted during our research suggest that the SPM statistic is 

consistent across drift and other alternatives as well. 

We stated earlier that the requirement for   to be even was not strict. If the sample size is 

odd, nonbipartite matching will leave one observation unpaired. In order to overcome this 

problem without leaving out the last observation, Ruth and Koyak (2011) create a dummy 
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Figure 8: A minimum nonbipartite matching on N = 20 bivariate observations. 

observation which is assigned a distance zero from every other observation; this ensures that 

every observation will be part of a matching pair. These situations do not affect the 

asymptomatic normality discussed earlier, and the mean and variance are given by: 

(3.9)       [  ]  
(   )(   )

 
   

     [  ]  
 (   )(   )

   
. 

  We consider a short graphical example of the    test statistic for illustration purposes. 

Figure 8 below shows a randomly generated sample of   = 20 bivariate observations which are 

plotted by their sequence numbers and then summarized further below in Table 2. By design, we 

drew these observations from unequal distributions. From the SPM test, we calculate       . 

The null hypothesis tells us that the expected value and standard deviation of   , given by (3.4) 

and (3.5), are    
(  )(  )

 
    ,    √

(  )( )(  )

  
     . For an        level test, the 

critical value stemming from (3.8) is 129.            suggesting that the underlying 

probability distributions of the sequential observations displayed in Figure 8 have undergone 

some sort of change, as indeed is the case.  
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Table 2: SPM test 

calculations for data 

shown in Figure 5 

Pair 
  , 

Maximum 

(1,5) 5 

(2,9) 9 

(3,7) 7 

(4,8) 8 

(6,13) 13 

(10,11) 11 

(12,14) 14 

(15,17) 17 

(16,18) 18 

(19,20) 20 

   ∑  

 

   

 122 

 

2. Cumulative Sum of Pair-Maxima,      

 The power of the SPM test is significantly increased through the use of  a collection of 

orthogonal matchings, or “ensemble”. This relies upon the idea that if a single matching provides 

information about distributional homogeneity in a sequence of observations, then subsequent 

optimal pairwise orthogonal matchings on the same observations will provide additional 

information.  A k-ensemble of matchings is considered to be complete if       orthogonal 

matchings of the data are possible. Complete ensembles have many practical applications such as 

being solutions to round robin scheduling problems for a sports tournament.  

 Ruth and Koyak (2011) construct these ensembles recursively; that is they compute the 

first MNBM on the data, then compute the next best MNBM on the data that is pairwise 

orthogonal to the first, and so on until no more MNBMs are possible. This procedure can often 

fail to produce a complete ensemble of MNBMs, but Anderson (1972) shows that it will always 

yield at least a half ensemble (     ), which is sufficient for this test. 

Each of these matchings has a sum of pair-maxima statistic. Let      signify the sum of 

pair-maxima statistic for the     best successive orthogonal matching. The  -ensemble version of 

the SPM test is then expressed as: 
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(3.10)          ∑     
 
   . 

We define      as the cumulative sum of pair-maxima over the first   matchings. Just as    takes 

on lower values under the alternative hypothesis than under the null hypothesis,      is also 

expected to drop below its mean value when under alternative hypotheses. Theorem 2 of Ruth 

and Koyak (2011) shows that each      has identical univariate marginal distributions and 

moments up to the second order when under the null hypothesis of homogeneity. It is natural 

then that: 

(3.11)                  
  [    ]  ∑  [    ]

 
             

 (   )

 
, 

and 

       (         )  (
 

   
) (  

 

   
)   

   

where                 
   (   )(   )     .  An expression for the variance 

of      is desired in order to find its exact distribution, but hard to determine due to its 

dependence upon the covariance between     , which is also difficult to determine analytically. 

Simulation has suggested that    (         )     (         ) for all    , so for the sake of 

analysis this is assumed to be true. Under this assumption, it follows that: 

(3.12)         
     [    ]  

  (   )(     )

   
, 

where the underscore-tilde denotes that the equality depends upon the covariance assumption. 

3. Ensemble Sum of Pair-Maxima,    

The asymptotic normality of    suggests that      is also asymptotically normal. 

Furthermore, the covariance structure of      is the same as that of a Brownian bridge. This leads 

to a choice of test statistic: 

 (3.13)            (         ) (
           

  
), 

where from (3.11),    √  
  (   )√

 (   )

   
. 

The exact distribution of    is known for normal     ; Ruth and Koyak (2011) call this the 

Ensemble Sum of Pair-Maxima (ESPM) statistic. They demonstrate through simulation that      
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does not appear to be asymptomatically normal for low dimensions. As a result, the exact null 

distribution of    remains unknown and is an open problem. Fortunately, simulation-based 

critical values from Ruth and Koyak (2011) enable the use of    as a test statistic. 

 These approximated critical values for    are varied for  ,  , and the dimensionality of 

the observations being tested. They can be found in Table 2 of Ruth and Koyak (2011). 

4. ESPM Performance Characteristics 

 Part of our proposed work was to independently verify ESPM performance 

characteristics (Table 3) as published in Ruth (2009). The original simulations suggest this test is 

powerful against a wide-range of change-point alternatives. A total of 1000 samples were 

generated for each of 30 vignettes which vary by dimensionality (p = 5, 20), type of change 

(jump or linear drift), multivariate distribution type (normal, normal mixture, or Weibull), the 

parameter θ affected by change (mean vector, covariance matrix, or scale parameter), and lastly, 

the magnitude of change (Δ). In each vignette, the true change point is located at k = 101. For 

each vignette in which a mean-change takes place, all samples begin with a mean vector of zero 

and end with the mean vector having magnitude Δ, either as a jump or linear drift starting at the 

change point. For vignettes in which the covariance matrix or scale parameter changes, all 

samples start out with unit parameters and end with the parameter multiplied by a value of (1 + 

Δ), but only in the first variate. Multivariate normal mixtures generate observations with a zero 

mean and an identity covariance matrix with a probability 0.9, and observations with a zero 

mean and 16 times the identity covariance matrix with probability 0.1. Multivariate Weibull 

vectors are comprise of independent, univariate Weibulls with shape parameters = 1.5 and scale 

parameters = 1. All simulations were conducted with a nominal test level of α = 0.05; thus, 

power when Δ = 0 should be within simulation error of the nominal test level. Two-sided 

confidence intervals are computed as in Devore (2004). 

 Our results successfully recreate the published performance characteristics, and in some 

cases (highlighted in yellow), strongly suggest that the true power level of the ESPM test may be 

higher than previously thought. This reaffirms the impressive nature of graph-theoretic tests that 

use ensembles to elicit information from data and assigns great potential value to any effort 

seeking to bring these procedures into widespread usage in modern applications.  
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Table 3: Verification of simulated powers for ESPM test under different distributions 

and change scenarios based on a total of 1000 simulations, α = 0.05, N = 200, change 

point k = 101, p = dimensionality. All confidence tests are at 95% level. 

  

Jump Drift 

 

Δ   

R/K 

Value 

Tested 

Value 

Low 

CI 

High 

CI R/K Value 

Tested 

Value Low CI High CI   

     

    

    

    

Multivariate normal, θ = mean, p = 5 

   0 

 

0.04 0.057 0.044 0.073 0.06 0.064 0.050 0.081 

 0.5 

 

0.60 0.624 0.594 0.653 0.27 0.280 0.253 0.309 

 1 

 

1.00 0.999 0.994 1.000 0.84 0.853 0.830 0.874 

 

     

  

     

    

Multivariate normal, θ = mean, p = 20 

   0 

 

0.05 0.062 0.049 0.079 0.05 0.064 0.050 0.081 

 0.5 

 

0.33 0.352 0.323 0.382 0.13 0.135 0.115 0.158 

 1 

 

0.95 0.976 0.965 0.984 0.56 0.585 0.554 0.615 

 

     

  

     

   

Multivariate normal, θ = covariance matrix, p = 5 

  0 

 

0.05 0.062 0.049 0.079 0.05 0.057 0.044 0.073 

 0.5 

 

0.97 0.973 0.961 0.981 0.52 0.537 0.506 0.568 

 1 

 

1.00 1.000 0.996 1.000 1.00 0.999 0.994 1.000 

 

     

  

     

   

Multivariate normal mixture, θ = mean, p = 5 

  0 

 

0.04 0.064 0.050 0.081 0.06 0.057 0.044 0.073 

 0.5 

 

0.56 0.548 0.517 0.579 0.21 0.239 0.214 0.267 *** 

1 

 

0.99 0.997 0.991 0.999 0.76 0.783 0.756 0.807 *** 

     

  

     

   

Multivariate Weibull, θ = scale parameter, p = 5 

  0 

 

0.06 0.064 0.050 0.081 0.05 0.057 0.044 0.073 

 0.5 *** 0.70 0.771 0.744 0.796 0.35 0.426 0.396 0.457 *** 

1 

 

0.99 0.996 0.990 0.998 0.86 0.901 0.881 0.918 *** 

           
  

***Indicate situations simulated where power level exceeds published power levels with 

statistically significant difference.  

    

 With the ESPM test thoroughly explored, we now transition over to new work to extend 

the ESPM test for use in online situations. 
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B. MULTIPLE TESTING THEORY 

 In our Introduction, we stated that the goals behind our new test are to identify change 

correctly when it occurs and detect that change as quickly possible after it does occur. The first 

goal is one common to all change detection tests; the second though comes about as a result of 

our focus on online situations where testing occurs as data is acquired. To detect change as 

quickly as possible, we make use of multiple testing theory and seek to test every time new 

observations are added to the data instead of waiting for all observations to be collected. A 

sample of   observations allows for as many as     sequential tests in order to detect any 

possible change up until all   observations have been collected given that the ESPM test 

assumes there are at least four observations to start with when first testing. Although this extra 

testing allows for potential early warning, it raises two questions: 1) how do we maintain overall 

test level and control the Type I error rate and 2) what data ought to be included in each test as 

new observations arrive? 

 Depending on the size of  , this approach can obviously lead to a high number of 

hypothesis tests and a problematic increase in Type I Error as seen in Table 4. For example, the 

monitoring of a certain machine may result in performing 200 separate hypotheses tests to find 

change. Through the use of a standard test level α = 0.05, it is expected that 10 tests will be 

deemed “significant” and flag positive for change even when the null hypothesis,   , is actually 

true. In general form, there is probability α of a Type I error and complementarily probability 

(    )  that a false positive is avoided in any given test. It follows that if   independent 

hypothesis tests are performed, there is probability (    )   of no false positives in   tests.  

Table 4: Breakdown of possible outcomes in hypothesis 

and their respective probabilities of occurrence. 

Type I and II Errors 

Decision 

Actual Condition 

   True    False 

Do Not Reject    
Correct Decision 

(    ) 

Incorrect Decision 

Type II Error 

  

Do Reject    

Incorrect Decision 

Type I Error 

  

Correct Decision 

(    ) 

   (            ) and    (             ) 
 



29 

 

 

 

Thus, a probability   (    )   of making at least one Type I error exists when   

independent tests are performed. Figure 9 demonstrates how quickly the Type I error rate, or 

chance of encountering at least one false positive, rises as   is increased. 

 Table 5 summarizes the situation in a traditional form (see for example Benjamini and 

Hochberg (1995)). There are   hypotheses to be tested, of which    are true for the null 

hypothesis; R serves conversely as the number of hypotheses rejected. R is an observable 

random variable, whereas U, V, S, and T are unobservable random variables. V is the number of 

Type I errors. If each null hypothesis is tested individually at level  , then R increases as   

increases. Use of equivalent lower case letters is done to signify the realized values of the same 

variables. 

 

 

 

 

 

 
Declared 

non-significant 
Declared significant Total 

True null hypotheses U V    

Non-true null hypotheses T S m -    

 m - R R m 

Table 5: Number of errors committed when testing m hypotheses 

 

Table 3: Number of errors committed when testing m hypotheses 

Figure 9: Type I error rate as the number of independent hypotheses ( ) 

under test increases. 

 

Figure 9: Type I error rate as the number of hypotheses ( ) being tested 

increases. 
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 There are various methods for controlling the Type I error rate and maintaining overall 

test level. In terms of the random variables from Table 5, the per-comparison error rate (PCER) 

is the expected value of Type I errors to the number of tested hypotheses; that is, PCER  

 [ ]   . Testing each hypothesis individually at level     guarantees that  [ ]  ⁄    , 

which means that PCER attempts to minimize, but not eliminate Type I errors. The family-wise 

error rate (FWER) is the probability of at least one Type I error occurring during testing, where 

FWER   (   ). Testing each hypothesis individually at level   guarantees that (   )  

   . This method specifically seeks to guard against even one Type I error occurring. Lastly, the 

false discovery rate (FDR) is the expected proportion of Type I errors to the number of rejected 

hypotheses. Unlike many classical approaches which control FWER in the strong sense, our new 

test will use FDR to control the Type I error rate, which we will discuss in the following section. 

 In offline situations, testing is naturally done upon all the data collected as it would be 

detrimental to test efficacy to leave any observations out. In online situations, however, there is a 

decision to be made concerning which available data to include in each test. We investigated two 

techniques for applying multiple testing to online change detection situations before ultimately 

moving forward with one.  

 Consider a sample R of   d-dimensional observations. In overlap testing, the first test of 

the sequence is a subgroup of   observations spanning from indices 1 to  . For each subsequent 

test, both the front and back index shift by a value of   to incorporate the newest available data 

without the subgroup being tested growing beyond   observations in size. In telescope testing, 

the first test of the sequence is again a subgroup of size   spanning from indices 1 to  . In this 

case though, for each subsequent test only the larger index shifts by a value of   to incorporate 

the newest data causing the tested subgroup to grow by   observations with every test. The 

subgroup of the final test has a size of   and is equal to R. Our new test uses telescope testing. 

 The answers to both of the questions we posed at the beginning of this section directly 

affect the nature of our online extension to the ESPM test and, in turn, ultimately determine its 

viability. We will elaborate further on the theory and motivation behind these decisions. 
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1. False Discovery Rate 

 Here we follow the groundbreaking work of Benjamini and Hochberg (1995). FDR is the 

expected value of the proportion of rejected null hypotheses that are falsely rejected. This 

proportion may be expressed by the random variable Q = V / (V + S). When V + S = 0, we 

define Q = 0, as in false rejection cannot occur if no null hypothesis is rejected in the first place. 

Q is an unobserved random variable because it is impossible to exactly know the values of   and 

 , and therefore    (   )⁄ , even after all experimentation and data analysis is completed. 

The FDR is defined as the expected value of Q: 

(3.14)    FDR   [ ]   [   ]   [  (     )]. 

 There are many properties of this error rate, but two specific ones are particularly 

fundamental, and coincidentally easy to show. Consider again a situation where   hypotheses 

are being tested: 

1) If all null hypotheses are true, the FDR is equal to FWER. In this case,     and 

    if any tests are declared significant, so if     then Q = 0, and if     then 

Q = 1, which results in   (   )    [ ]. Thus, control of the FDR is also in fact 

control of the FWER in an indirect and less effective manner. 

2) In situations where     , the FDR is less than or equal to the FWER. In these 

cases, if     then      , and  (   )   [ ]. Therefore, any procedure that 

controls the FWER intrinsically controls the FDR. Yet, any procedure that controls 

the FDR only will likely be less stringent and, in turn, a gain in power will result. 

This becomes especially apparent the more non-true null hypotheses exist in the data. 

S tends to be larger and so does the difference between the error rates; ergo the 

potential for increases in power is larger the closer      is to 1.  

 To control the random variable Q at each hypothesis declared significant would be 

optimal. This is impossible though. If      and even a single null hypothesis is rejected, then 

      and Q cannot be controlled because every rejection is false. Adding in the extra 

condition (    ⁄      ) does not alleviate the problem, and neither does  [    ⁄      ]. 

Instead, FDR equally expressed as  [    ⁄      ]   (   ), which is possible to control. 
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 The dominant influence for the method by which we control FDR in our new test is the 

famous Benjamini-Hochberg Procedure (1995), which for independent test statistics and any 

arrangement of non-true null hypotheses impressively controls FDR at    via a linear adjustment 

of test levels. Consider testing   hypotheses (          ) with corresponding  -values 

(          ). Let  ( )   ( )     ( ) be the ordered  -values and  ( ) the null hypothesis 

corresponding to  ( ). They prove that the following Bonferroni-type multiple testing decision 

rule controls FDR at overall test level   : 

(3.15)    let   be the largest   for which  ( )  
 

 
  ; 

     then reject all  ( ) for   {       }. 

2. Extension of Benjamini-Hochberg Procedure to Online Scenarios 

 Although the Benjamini-Hochberg Procedure (1995) controls the FDR, it is designed for 

use in offline situations only. Three of its basic assumptions make it unable to work in online 

scenarios in its current form. First, the procedure assumes that all hypotheses have been tested 

and have corresponding  -values before its implementation. In an online problem, where testing 

is ongoing as new observations are collected, this caveat would force the user to wait until all 

data was collected. Second, the procedure as it stands requires the number of tested hypotheses 

to be determined prior to its use. Online scenarios, by contrast, involve ongoing processes for 

which the end is not explicitly known. For example, a mechanical system being observed might 

be a “lemon” and experience system failure soon after it starts being used and tested, or it could 

give a decade of faithful uninterrupted service and provide a lot of observations for testing. This 

makes it nearly impossible to determine how many tests are going to be conducted prior to use. 

Thirdly, Benjamini and Hochberg (1995) stipulate that each hypothesis must be independent 

from the others. It turns out that in many real-world applications, dependency exists among the 

tested hypotheses. We will now proceed to discuss our solutions to these problems before giving 

an exact definition of our procedure extending control of the FDR to online situations. 

 Because online problems involve incremental accumulation of data, one may only test 

some subset of all null hypotheses at any given time.  As a conservative approach, we treat all 

untested hypotheses as if they had been tested, with  -values all equal to 1.  Once pertinent data 

are available to test a yet-untested hypothesis, we replace the “placeholder”  -value of 1 with the 
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actual value and then order all the  -values.  The key to our procedure is the fact that the 

Benjamini-Hochberg Procedure evaluates ordered  -values, and our placeholding scheme 

simply ensures that that the  -values associated with untested hypotheses are guaranteed to be 

last in order.  We outline this procedure in detail shortly.  

 To combat the problem of uncertain endpoints, we choose an observation horizon to 

determine the correct linear adjustment of test levels prior to applying the procedure. Based on 

the typical operating profile of the system being studied, this horizon   is set at   observations 

and allows all observations less than or equal to   in sequence label to be available for testing. 

Any observation greater than   in sequence label goes untested as seen in Figure 10, where the 

horizon for a general mechanical system is set at 150 observations, but the machine lasts for 200 

observations causing the last 50 to go untested. In general,   ought to be set to include the entire 

range of interest for possible change detection, but not be excessively large (which can reduce 

test power). We discuss this  -selection issue more in our results section.  

 The solution for the problem of dependency among hypotheses comes from Benjamini and 

Yekutieli (2001). Realizing that dependent test statistics are encountered often when trying to 

control the FDR in practice, they develop a new procedure that controls the FDR for positively 

Figure 10: Horizon H set at 150 observations for a machine that happens to 

live for 200 observations. 
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dependent test statistics. For other cases of dependency, they prove that the same procedure can 

be easily modified to control the FDR, but the resulting procedure is more conservative. Since 

the exact distribution of     is not known, we are unable to formally prove that our test statistic 

meets the dependency conditions set forward by Benjamini and Yekutieli (2001) in order to use 

their procedure. But, the simulation study we conduct in Section IV points to the result that    

meets these conditions because test efficacy under the alternative hypothesis is not unreasonably 

suppressed compared to the efficacy of the original offline test whereas the opposite would be 

expected if    did not meet the conditions. With nothing suggesting so far that it violates these 

dependency conditions in any important way, we make use of the procedure in our new test. 

3. Online Extension Procedure 

 Consider testing   independent true null hypotheses (          ) with corresponding 

 -values (          ) on those observations.  Let  ( )   ( )     ( ) be the ordered  -

values and  ( ) the null hypothesis corresponding to  ( ) and let  ( )  ( ( )  ( )    ( )).  

Suppose these p-values are realized in sequence; that is, at step j only  -values    through    are 

known.  We propose the following on-line testing procedure for each step   {     } for m 

sequential observations: 

(3.16) 

(1) Let    be the desired overall test level, and let    (       ). 

(2) Let    (                  ) for        where             . 

(3) Let   ( )  ( ( )  ( )    ( )        ) were  ( ) is the i
th

 ordered value in   . 

- If there exists some     and some     such that     ( )  
 

 
  , then reject 

   and declare that some change has occurred in the distribution sequence. 

- If   ( )  
 

 
       , go back to step (2) with       until    . 

 

  That this procedure controls FWER at the desired level is established in the following result: 

Theorem:  For   independent test statistics and   independent true null hypotheses in online 

scenarios, the procedure (3.16) controls the FWER at level   .  

Proof: Let   be the number of Type I errors in the offline Benjamini-Hochberg test.  Let    be 

the number of Type I errors through step j.  By Benjamini and Hochberg (1995),  (   )    .  
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We must show that for any   {     },  (                       )    .  So, choose 

  {     } and notice that            is a monotone non-decreasing sequence.  Therefore, 

 (                       )   (    )   Next, observe that  

(3.17)     (    )   ( ( )  
  

 
      ( )  

   

 
         ( )  

   

 
)   

 Now recognize that  ( )   ( ) (where the “   relationship is taken element-wise), so  

 ( ( )  
  

 
      ( )  

   

 
       ( )  

   

 
        ( )  

   

 
) 

  ( ( )  
  

 
      ( )  

   

 
       ( )  

   

 
        ( )  

   

 
        ( )    ) 

(3.18)           (   )      

Therefore,  (    )     for all   {     }     

 Figure 11 illustrates a linear adjustment of test levels created using the online extension 

procedure for a scenario with five hypotheses and a desired overall test level    = 0.05. 

 

 

 

 

 

 

 

 

 

 

4. Hypothesis Selection Procedure 

 With more tests being conducted due to multiple testing, more thought must be put 

forward in regards to the structuring of the hypotheses being tested. A faulty hypothesis structure 

Figure 11: FWER Linear Adjustment for 5 Tests, 𝜶  𝟎 𝟎𝟓 

𝜶  𝟎 𝟎𝟓
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can rule ineffective any and all testing that is conducted. If tested subgroups are too small or skip 

over too much data, then detection power will suffer. Each pair of new observations added to a 

data set can substantially change the MNBMs computed in calculating   ; it is not necessary to 

wait for large groups of observations to be acquired in between tests. So we seek to reflect that in 

our chosen methodology. 

 Our new test selects hypotheses for testing through what we call telescope testing. We 

initially wait for a small group of observations to be available for the first test which utilizes all 

data present and then proceed to test on all available data each time observations are added to the 

data set. As a result, the testing region grows in size like a telescope with each subsequent 

hypothesis being tested including slightly more data than the previous hypothesis. For example, 

consider an online change-point problem with the horizon set at     observations where up to   

hypotheses (          ) may be tested. The initial hypothesis,   , is tested when there are 

   observations available and every ensuing hypothesis,     , is tested each time two 

observations are added to the data set, so hypothesis,  (   )  , is tested on       observations. 

The final hypothesis,     is tested upon     observations. This selection of hypotheses creates 

the need for      hypotheses to be considered and so the linear adjustment of the FDR is 

constructed to handle up to and including    tests as seen Figure 12.  

Figure 12: FDR Linear Adjustment for 91 Tests, 𝜶  𝟎 𝟎𝟓 

𝜶  𝟎 𝟎𝟓
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 With our new test fully explained, we will now proceed to demonstrate its performance 

through two studies. The first uses simulated data to investigate the power and advance warning 

capabilities of our test while varying the change-point, magnitude of change, and dimensionality. 

The other occurs on pseudo real-world data and allows us to see whether or not our test can 

potentially handle the rigors of powerfully detecting change, and detecting it early, in real-world 

scenarios. 
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IV. TEST PERFORMANCE 

 The new test presented in this paper is only useful if it detects change reasonably well-

ahead of when it would be detected in an offline situation. In this section, we present two 

different investigations into the performance characteristics of our test. The first is a simulation 

study that examines the power of our new test and its capability to detect change ahead of the 

ESPM test. The second is an application of our test to simulated real-world data from the 

International Conference on Prognostics and Health Management Data Challenge in 2008. 

 The two primary performance metrics that we use in both studies are detection power, 

where power is defined as the probability of rejecting the null hypothesis when it is false, and 

advanced warning, which is the number of observations prior to test detected change. Interpoint 

cost is determined by the Euclidean distance function given by (2.6). 

A. SIMULATION STUDY 

1. Methodology 

 Here we simulate a variety of change-point scenarios to quantify the power of this new 

test and its ability to provide advance warning of change unavailable in offline testing. Each 

power estimate in the tables and figures of this section is the fraction of times the new test 

detected change under the given conditions based on 1000 simulations. Each advanced warning 

estimate is the average of the number of observations prior to the simulated end of life at which 

change is detected. If no change is detected, advanced warning is zero for the purposes of 

computing the mean. In every case, total sample size is    200, the test significance level is 

   0.05, and sample space is   . The choice of    200 is based on the desire to directly 

compare the performance of our online test to the original offline form of the ESPM test, while 

concurrently avoiding extremely long computation times for larger optimal nonbipartite 

matchings. This is equivalent to setting a horizon at 200 observations.  

 Observations were simulated using RStudio each observation is drawn from a standard 

five-variate normal distribution with density function of the form: 

(4.1)       (     )  
 

(  )         
 

  

 
(   )    (   )         , 
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where      and        are the distribution mean and covariance matrix respectively. The 

pre-change-point data for this multivariate normal case have     and     , where    is the 

      identity matrix. The post-change-point data have a different mean or scale as specified later 

in this section. 

 We use three different formats to select the way in which tests are conducted. In the first, 

we wait until there are 20 observations to first test, and then proceed to test every time two 

additional observations are added to the data. So, we test at 20 observations, 22, 24, 26… all the 

way until 200 (“20-2”). Under this format, there is a possibility for up to 91 tests to be conducted 

contingent on if change is detected prior to the last test. The second format again begins testing 

at 20 observations and then tests every time an additional 20 observations are added to the data 

(“20-20”). So, we test at 20, 40, 60,…, 200. Here there can be up to 10 tests. The third and final 

format begins testing at 40 observations and tests for every 40 additional observations after that 

(“40-40”). So, we test at 40, 80, 120,…, 200 and there can be a total of 5 tests. By only testing 

when there is an even number of observations within all three formats, we maintain a situation 

conducive to nonbipartite matching without the need to create dummy points.  

 In this study, we consider various change-points. For our purposes, change location 

fraction    is defined as 
   

 
, where   is the change point as before. Notice that the value of the 

denominator is the sample size  , not the size of any specific tested subgroup. We examine 

values of 0.10, 0.25, 0.335, 0.50, 0.665, 0.75, and 0.90 for   , which corresponds to change at 

observations 21, 51, 67, 101, 133, 151, or 181. 

 For each of these values of   , we consider change magnitudes Δ of 0, 0.5, and 1.0. When 

Δ = 0, the null hypothesis is true and the power estimate is an estimate of the test’s Type I error 

rate. In ideal situations, the Type I error rate is equal to the chosen significance level. When Δ > 

0, Δ indicates the total magnitude of change. We only look at jump changes, where Δ is the 

magnitude of the abrupt change that occurs at the designated change point. 

 Our simulations only look at changes in distribution mean. Without loss of generality, 

this change is implemented in the first component of each observation only in the following form: 

(4.2)                   

       (         )           
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due to the rotational invariance of     . Thus, the post-change-point data for the multivariate 

normal case have   (         )  and     . 

2. Performance Results 

 Figures 13-15 and Tables 6-7 display power estimates for our new test at a significance 

level of       . The estimated realized significance level for the test with       is 

                giving credence to our new method’s ability to control the overall test level. 

Critical values for the   
  test statistic are determined from the simulations run by Ruth (2009).  

 As expected, we observe a distinct improvement in power from the Δ = 0.5 case to the Δ 

= 1 case. Also it is known that ESPM test power is degraded when the change point is in the tails 

of the tested subgroup (away from the middle) the test suffered somewhat, since fewer pre- or 

post-change data (depending on the location) are present to indicate a change. Our results again 

generally show this to be true. For the Δ = 1 case, the average powers corresponding to    values 

of 0.25, 0.335, 0.5, 0.665, and 0.75 are at or above 75% for all three testing formats whereas both 

tails fall below that. Comparing the two, power at the left tail where        exceeds that at the 

right tail where       . This is likely because when        the change point remains in the 

tested subgroup for nearly all tests conducted, while when        post-change data does not 

enter the tested subgroup until the last few tests making change difficult to detect.  For the 20-20 

and 40-40 formats, power at        and        is higher than seen in the 20-2 format. This 

effect appears to result from more stringent step-wise adjustment of critical values for the 20-2 

format. With the potential for up to 91 tests taking place, each step of the adjustment is smaller 

and so the threshold to declare significance against the first steps of this format (
  

  
 

   

  
 

   

  
  ) is more restrictive than for the  first steps of the other formats (20-20: 

  

  
 

   

  
 

   

  
   

and 40-40: 
  

 
 

   

 
 

   

 
  ). For the Δ = 0.5 case, the same general relationship exists between 

formats and values of    except power estimates are much lower with highs of 40-50% 

depending on the format. The highest power estimates from the new online test in the Δ = 1 

( 95-100%) case are essentially equivalent to offline power estimates for the ESPM test 

( 100%), but this similarity does not hold for the Δ = 0.5 case where the online test loses some 

power likely due to the use of step-wise adjusted significance levels (40%-50% for online test; 

 60% for ESPM test). 



41 

 

Figure 13: Average power for testing format of start 20, grow by 2, 

across values of 𝒄  

Figure 14: Average power for testing format of start 20, grow by 20, 

across values of 𝒄  
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Figure 15: Average power for testing format of start 40, grow by 40, 

across values of 𝒄  

 

 
 

Table 6: Average simulated power across different testing 

formats and values of    at change magnitude Δ = 0.5 

 
Multivariate Normal, Θ=mean, d=5, Δ = 0.5,N=H=200 

  
Start (Grow) 

  

  

20 (20) 40 (40) 20 (2) 
 

 

 
0.10 0.209 0.179 0.127 

  
 0.25 0.394 0.404 0.347 

  c* 0.335 0.487 0.465 0.411 
  

 
0.50 0.515 0.499 0.411 

  

 
0.665 0.307 0.360 0.248 

  

 
0.75 0.199 0.215 0.146 

  

 
0.90 0.080 0.083 0.034 

  

       ***Numbers in parentheses represent telescope growth value. 
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Table 7: Average simulated power across different testing 

formats and values of    at change magnitude Δ = 1.0 

 
Multivariate Normal, Θ=mean, d=5, Δ = 1.0, N=H=200 

  
Start (Grow) 

  

  

20 (20) 40 (40) 20 (2) 
 

 

 
0.10 0.635 0.628 0.499 

  

 
0.25 0.978 0.974 0.963 

  c* 0.335 0.995 0.994 0.984 
  

 
0.50 0.998 0.996 0.990 

  

 
0.665 0.974 0.975 0.956 

  

 
0.75 0.851 0.870 0.759 

  

 
0.90 0.160 0.190 0.085 

         ***Numbers in parentheses represent telescope growth value. 
 

 
 Figures 16-18 and Tables 8-9 present advance warning estimates. Each of the three 

formats displays similar ability to provide advanced warning. The only noticeable differences 

arise at the tails and are very minor other than the Δ = 1,         case which is a result of the 

reduced power of the 20-2 format in that situation. We attribute the minor differences to a 

combination of natural variation and dissimilarity between the step-wise growth and selection of 

hypotheses in each testing format. Each warning estimate is also slightly affected by the amount 

of warning they can provide based on the corresponding change location fraction, or   ; early 

change locations are inherently able to give more warning than later ones. This appears to 

override the increased power found at                       . In the Δ = 1 case, the 

warning estimate at         completely overshadows the warning estimates for        and 

        , and has a visually apparent difference over         . For the Δ = 0.5 case, these 

differences are far less pronounced, but still there. The best average advanced warning times of 

this case are about 30 observations for all formats, while in the right tail of all formats the 

estimates fall below 20 observations. Upon observation, the shape of the warning estimates 

demonstrates resemblance to the shape of the power estimates. This is not surprising because the 

more often that change is detected, the greater average advanced warning should be. Despite this 

similarity between the shapes of the power estimates and advanced warning estimates though, 

the maximum advance warning estimate is not found at       . All three formats provide the 

best advanced warning when the change point is near, not at, the middle of the first half of 
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observations, giving the advanced warning distribution a positive skew. Notice in particular that 

for        , corresponding to a change point at observation 51, all three formats provide 

approximately 100 observations of advanced warning. In other words, the online test provides 

indication that a change has occurred with only 100 observations available for testing, while the 

corresponding offline test has to “wait” for 200 observations to be available for testing. This 

example highlights the value added by our online test.  

 

 

 

 

 

 

 

 

 

 
 
 

Figure 16: Average advanced warning for testing format of start 20, grow by 2, 

across values of    and Δ 

 

Figure 16: Average advanced warning for testing format of start 20, grow by 2, 

across values of    and Δ 

Figure 17: Average advanced warning for testing format of start 20, grow by 20, 

across values of    and Δ 

 

Figure 17: Average advanced warning for testing format of start 20, grow by 20, 

across values of    and Δ 
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Table 8: Average advanced warning across different testing 

formats and values of    at change magnitude Δ = 0.5 

 
Multivariate Normal, Θ=mean, d=5, Δ = 0.5,N=H=200 

  
Start (Grow) 

  

  

20 (20) 40 (40) 20 (2) 
 

 

 
0.10 22.5 17.3 11.6 

  
 0.25 30.8 30.1 27.0 

  c* 0.335 31.6 27.9 26.5 
  

 
0.50 23.2 15.4 16.8 

  

 
0.665 9.0 8.0 6.5 

  

 
0.75 7.1 5.9 4.6 

  

 
0.90 7.5 5.5 2.3 

  

       ***Numbers in parentheses represent telescope growth value. 
 
 
 

 
 

       

 

Figure 18: Average advanced warning for testing format of start 40, grow by 40, 

across values of    and Δ 

 

Figure 18: Average advanced warning for testing format of start 40, grow by 40, 

across values of    and Δ 
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Table 9: Average advanced warning across different testing 

formats and values of    at change magnitude Δ = 1.0 

 
Multivariate Normal, Θ=mean, d=5, Δ = 1.0, N=H=200 

  
Start (Grow) 

  

  

20 (20) 40 (40) 20 (2) 
 

 

 
0.10 82.2 77.3 57.6 

  

 
0.25 105.4 97.6 101.5 

  c* 0.335 92.5 80.5 92.4 
  

 
0.50 60.3 49.2 62.1 

  

 
0.665 27.2 20.9 28.5 

  

 
0.75 15.9 7.5 14.3 

  

 
0.90 6.5 6.1 3.5 

  

       ***Numbers in parentheses represent telescope growth value. 

 

  
 

B. PHM DATA 

1. Methodology 

Having identified some of the strengths and weaknesses of our new test through 

simulation, we now turn our attention to performance in real-world scenarios. In such cases, data 

are usually not independent they rarely come from well-understood distributions, and change 

points are not inserted by hand at predetermined locations. To apply our test to real-world data, 

we use data from the International Conference on Prognostics and Health Management Data 

Challenge in 2008. The data set consists of 218 separate multivariate time series each from a 

different instance of the same complex engineering system, referred to as a “unit” (e.g., the data 

could be from a fleet of ships of the same type). Every unit starts with different degrees of initial 

wear and manufacturing variation which are unknown to the user. The wear and variation are 

considered typical, not part of a fault condition. There are three operational settings which have a 

substantial effect on unit performance. For every observation of each unit, there are three 

operational settings and 21 sensor measurements. As seen in the real-world, the data is 

contaminated with sensor noise.  

At the beginning of each time series, the unit is operating normally and then develops a 

fault at some point during the series. This fault grows in magnitude until system failure occurs at 

the last observation in the series. Our goal is to detect that a change has occurred and do so prior 
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to the last observation available for that unit. Some units have as few as 128 observations and 

some have as many as 357 observations. Each “power fraction” in the tables and figures of this 

section is the number of units for which change was detected prior to system failure. Advanced 

warning estimates are the average number of observations prior to the last one in the series when 

change is detected. Although some units have more observations than others and can provide 

more warning, we treat all equally when computing the mean advanced warning. 

Due to the real-world nature of this data, certain challenges arise when trying to apply our 

test. Control variables like the ones present in the PHM data cause multiple levels of normal 

operation as seen in Figure 19. The large differences between these levels can cause  

 

 

graph-theoretic tests and their respective cost functions to signal change caused by changes in 

operational setting: clearly it is undesirable to signal unwanted change in response to such 

expected changes in response variables. To overcome this challenge, one might may choose to 

center and/or scale the data based on control variable information. For our study, we choose to 

center, but not scale, the PHM data. We averaged the first ten observations at each setting of the 

first control variable within every unit as a typical baseline for normal operation. Then, the 

Figure 19: Subset of PHM data displaying various levels of 

normal operation corresponding to different control settings 

 

Figure 19: Subset of PHM data displaying various levels of 

normal operation corresponding to different control settings 
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baseline for each setting was subtracted from every observation with the corresponding 

operational setting.  

 Another potential problem is autocorrelation. In the independent and identically 

distributed case, the value of a current observation does not depend at all on previous 

observations. However, the real-world often fails to operate in this way. Observations made on 

the same system close in time to each other are naturally predisposed to be close to each other, 

and therefore in our test be paired with each other. For example, consider an area whose 

geographic location inclines it to experience many slowly developing and moving low pressure 

systems in the atmosphere, and these systems cause persistence to daily rainfall. The daily 

weather in this area is a result of the past behavior of these systems and foreshadows the next 

day’s weather as well.  

 In this study, we use only the 20-2 format to conduct tests as it is the format that most 

immediately processes newly available data. The 20-20 and 40-40 formats demonstrated slightly 

better performance characteristics than the 20-2 format in computer simulations, if the real-world 

application of interest can accommodate those lower resolution formats, then they should be 

considered for use as well. Because each unit has a different number of observations, each one 

has a different number of tests that can be conducted on it. As such, we set the horizon at a 

variety of levels consistent with possible machine lifespans in order to determine the proper step-

wise adjustment. 

 In contrast to our first study, we do not know the type of change being implemented upon 

the system, or even when it occurs. 

2. Performance Results 

 Figure 20 displays the power achieved when the overall test level,   , is fixed at 0.05 

with varied horizon settings and is representative of the graph seen for other values of   . The 

lowest power appears in the left tail where    125. From there, the graph sharply rises to a 

power fraction close to 1.0. This demonstrates that if the selected horizon is sufficiently long and 

within the typical operating profile of the machine, that is to say not overly long, then detection 

of change prior to system failure is virtually certain. If the selected horizon is too short, then 

change detection power is adversely affected. Figure 21 provides another perspective on the 

power fraction, where its values are shown for different horizon settings graphed and different 
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Figure 21: Average power fraction given by new test on PHM 

data when varying the alpha level for different horizon settings 

test levels. The perspective reinforces the property seen in Figure 20 that if the horizon setting is 

sufficiently long and within the typical operating profile of the machine, then the power fraction 

will remain near or at its maximum for all reasonable values of   .  

 

Figure 20: Fraction of units for which change is detected before 

failure by new test on PHM data for varying horizon settings  
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Figure 22: Average advance warning given by new test on PHM data 

when varying both the horizon setting and overall test level 

 Figure 22 presents a three-dimensional look at the advanced warning provided when both 

horizon settings and the overall test level is varied. It demonstrates that choosing a horizon 

setting that is too short will not only reduce power, but also severely cut down on advance 

warning regardless of the overall test level. Similar to graphs of the power fraction, a plateau 

appears as the horizon setting is increased, which further suggests that it is better to use an 

excessively long horizon within the operating profile rather than a short one. Within this plateau 

though, there is a distinct ridge which sits above all other horizon settings as    is varied. This 

suggests an optimal horizon setting for these machines and that similar analysis might be 

performed for other scenarios to determine appropriate optimal horizon settings for such cases.  

 

 As a whole, with the power fraction near or at 100% for optimal horizon settings 

regardless of    and advanced warning of at least 75 observations for the worst and 110 for the 
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best combination of    and horizon setting, this online extension shows great potential for 

successful application in real-world scenarios. 
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V. CONCLUSIONS & OPPORTUNITIES FOR FUTURE WORK 

  
 In this paper, we build upon the offline ESPM change-detection test of Ruth and Koyak 

(2011) and introduce a new multiple testing-based approach to online multidimensional change-

point problems. This approach results in an effective online change detection procedure and 

portends great promise for future real-world applications. Our review of the field of change 

detection shows this to be an active area of research with many potential applications and that 

multivariate nonparametric approaches, let alone online approaches, are few. Most existing 

approaches require restrictive distributional assumptions which often limit real-world 

applicability. 

 The online extension we propose satisfies two primary requirements of multiple testing: 1) 

maintaining overall test level across many true null hypotheses and 2) achieving reasonable 

power against false null hypotheses.  Assuming that the dependency conditions of Benjamini and 

Yekutieli (2001) are met, our test meets the first requirement by making use of the Benjamini-

Hochberg Procedure (1995) to set a step-wise adjustment of test levels based on the number of 

hypotheses being tested and the desired overall test level. This procedure is designed to control 

false discovery rate, although in the setting of our interest it also controls family-wise error rate. 

To address the second requirement, we employ an existing, powerful, offline test – the ESPM 

test – and introduce a method of ingesting and testing data incrementally which we refer to as 

‘telescope’ testing, where the testing region begins with an initial sequence of observations and 

then grows in size as new observations are added to the data set and incorporated into the testing 

region.  This approach demonstrates that our proposed test maintains the desired overall test 

level while achieving impressive power and useful advanced warning times in many scenarios.  

Furthermore, our method of extending offline tests to online is not limited to extensions of the 

ESPM test only, and so we believe this has promise for adapting other powerful offline 

techniques to online scenarios. 

 With this project coming to its conclusion, the body of work invites several possibilities 

for further exploration and extension. One opportunity consists of finding an exact null 

distribution for the ESPM test statistic,   . While our simulation study and PHM data study 

demonstrate the efficacy of this test, the absence of a known null distribution limits the 

widespread use of this statistic.  Two possible acceptable alternatives to finding an exact 
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distribution would be 1) finding a result which bounds tail distribution probabilities for   , or 2) 

finding permutation-test type results that could be applied to the ESPM test (and thus directly 

extended to our test). 

 Another opportunity lies in theoretical work in finding faster solutions to the optimal 

non-bipartite matching problem, which is an active area of optimization research.  For an 

ensemble test that requires     MNBMs to be computed, the problem of speed is very real. 

While MNBMs may be found in polynomial time, they are found far less efficiently than other 

minimum-weight subgraphs mentioned in this paper such MSTs and bipartite matchings. Ruth 

(2009) reports run times for MNBM ensembles created using Derigs’ (1998) algorithm on the 

order of   ; our experiences confirm this to be true. This is problematic for an online test like 

ours in cases where   is very large and data are sampled at a very high rate. More efficient, 

possibly even suboptimal, matching techniques would alleviate this issue; therefore, it would be 

useful to study possible benefits and costs of using computationally cheaper graph-theoretic 

approaches. 

 Also, our review of change detection methods briefly mentions the use of different cost 

functions.  Often the sample space of interest naturally suggests some appropriate dissimilarity 

metric and analysis proceeds. The ESPM test makes use of Euclidean distance as a measure of 

dissimilarity, but a different cost function will affect detection power against alternate 

hypotheses when using ensemble methods. For real-world applications, it is worth examining   

which cost functions lead to the most desirable power and advanced warning characteristics for 

the case on hand. 

  Finally, since our real-world-type scenario used PHM data from an international 

contest for statisticians and engineers in 2008, our results regarding choice of window size are 

only strictly applicable to units of the type in that contest (although broad observations from that 

study likely transfer to other scenarios).  It would be interesting and useful to apply our approach 

to other real-world scenarios.  Areas such as image analysis, machine health diagnosis and 

prognosis, biosurveillance, and quality control have readily available data and provide excellent 

opportunities for future work. 
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GLOSSARY 

Acyclic Graph – a graph that has no cycles. 

Adjacent Edges – two distinct edges that share a vertex such as {     } and {     }. 

Adjacent Vertices – two distinct vertices,    and   , that are joined by an edge {     }. 

Bipartite Matching – a matching where the vertices are split into two unique subsets,    and   , 

and each edge included must contain a vertex from each subset. 

Circuit – a closed trail that includes at least three distinct vertices. 

Closed Walk – a sequence of vertices in graph   beginning with   and ending with   such that 

consecutive vertices within the sequence are adjacent and    . 

Complete Graph – a graph   in which all vertices are adjacent. 

Connected Graph – a graph   in which there is a     walk for every pair of vertices. 

Cycle – a circuit that repeats no vertex except for the first one equaling the last. 

Degree – the number of edges incident with vertex   . 

Directed Graph – a graph   in which edges have a direction associated with them making edge 

{     } distinct from edge {     }. 

Graph – an ordered pair   (   ) consisting of a finite nonempty set of vertices   connected 

by edges  , which are two-element unordered subsets of  . 

Graph Weight – the sum of all edge weights in a weighted graph  . 

Incident – a vertex and an edge that meet such as vertex    and edge {     }. 

Independent Edges – a subset of edges      where no two edges are adjacent. 

Matching – an independent set of edges in a graph  . 

Maximum Matching – a matching that has at least as many edges as any other potential 

matching in  . 

Minimum Spanning Tree – the spanning tree of the weighted graph   whose weight is the least 

among all possible spanning trees. 

Nonbipartite Matching – a matching where each edge included does not depend on any 

previous partitioning of the vertices (a vertex can be paired with any vertex other than itself). 
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Perfect Matching – a matching that includes every vertex in  . 

Subgraph – a graph     (     ) of    (   ) if      and     . 

Spanning subgraph – a graph     (     ) of    (   ) if      and     . 

Spanning Tree – a spanning subgraph of a graph   that is also a tree. 

Trail – a walk in which no edge is used more than once. 

Tree – a graph   which is both acyclic and connected. 

Undirected Graph – a graph in which the edges have no orientation- that is, edge {     } is 

identical to {     } 

Walk – a sequence of vertices in graph   beginning with   and ending with   such that 

consecutive vertices within the sequence are adjacent. 

Weighted Graph – a graph   where there is a real number expressing some form of interpoint 

cost assigned to each edge in  . 
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