
 

 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing 
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-
4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 

05-09-2014 
2. REPORT TYPE 

 

3. DATES COVERED (From - To) 

  

4. TITLE AND SUBTITLE 

 

 

 

 

 

 

 

 

5a. CONTRACT NUMBER 

 

Next Generation Satellite Communications:  Automated Doppler Shift Compensation of 

PSK-31 Via Software-Defined Radio 

5b. GRANT NUMBER 

 

 

 

5c. PROGRAM ELEMENT NUMBER 

 

6. AUTHOR(S) 

Lanoue, Matthew James 

 

 

 

5d. PROJECT NUMBER 

 

 

 

 

 

5e. TASK NUMBER 

 

 

 

 

 

5f. WORK UNIT NUMBER 

 

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

 
AND ADDRESS(ES) 

8. PERFORMING ORGANIZATION REPORT   
    NUMBER 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

U.S. Naval Academy 

Annapolis, MD  2142 

  

Annapolis, MD  21402   

  11. SPONSOR/MONITOR’S REPORT  

        NUMBER(S) 

  Trident Scholar Report no. 429 (2014) 
12. DISTRIBUTION / AVAILABILITY STATEMENT 

 

This document has been approved for public release; its distribution is UNLIMITED. 
 

 

13. SUPPLEMENTARY NOTES 

 

14. ABSTRACT 

Software-defined radio (SDR) leverages the processing power of computers to create communications systems that run as flexible software 

applications, where the radio operating parameters can be set or altered by software.  SDR satellite communications systems developed 

today can run on future hardware platforms and update the applications already running on the satellite. GNU Radio, a framework for 

creating SDR applications, has recently become capable of developing satellite communications systems. One of the major issues with 

satellite communications is the Doppler shift experienced as the satellite passes overhead.  Demodulating signals affected by Doppler shift 

requires ground stations with circuits dedicated to track and synchronize with the satellite in order to compensate for the Doppler shift. For 

the PSK-31 waveform, a terrestrial narrowband form of multi-user amateur radio communications for text and simple data messaging, the 

amount of Doppler shift exhibited by the satellite would prevent communications using standard receivers. This project implemented PSK-

31 in GNU Radio as part of a regenerative satellite repeater.  Furthermore, the system estimates and pre-compensates for the Doppler shift 

generated by an orbiting satellite communicating with a ground station.  As a result, the Doppler shift observed at the ground station can be 

reduced from 10 kHz to less than 20 Hz – a level tolerable by most modern receivers. 

 

15. SUBJECT TERMS 

Software-defined radio, Doppler-shift, Satellite communications, PSK-31, GNU Radio 

 

16. SECURITY CLASSIFICATION OF: 
 

17. LIMITATION  
OF ABSTRACT 

18. NUMBER 
OF PAGES 

19a. NAME OF RESPONSIBLE PERSON 

 

a. REPORT 

 

b. ABSTRACT 

 

c. THIS PAGE 

 
 68 

 

19b. TELEPHONE NUMBER (include area 

code) 

 

  Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39.18 



 
 

U.S.N.A. --- Trident Scholar project report; no. 429 (2014) 
 
 

NEXT GENERATION SATELLITE COMMUNICATIONS:  AUTOMATED DOPPLER 
SHIFT COMPENSATION OF PSK-31 VIA SOFTWARD-DEFINED RADIO 

 
by 
 

Midshipman 1/C Matthew J. Lanoue 
United States Naval Academy 

Annapolis, Maryland 
 

_________________________________________ 
(signature) 

 
Certification of Adviser Approval 

 
Associate Professor Christopher R. Anderson 

Electrical and Computer Engineering Department 
 

_________________________________________ 
(signature) 

___________________________ 
(date) 

 
 

LCDR Jennie H.G. Wood, USN 
Electrical and Computer Engineering Department 

 
_________________________________________ 

(signature) 
___________________________ 

(date) 
 

 
Acceptance for the Trident Scholar Committee 

 
Professor Maria J. Schroeder 

Associate Director of Midshipman Research 
 

_________________________________________ 
(signature) 

___________________________ 
(date) 

 
USNA-1531-2 



1 
  

Abstract 
 
Satellite communication systems fall into two broad categories: Amplify and Forward (AF), and 
Regenerative.   AF systems operate as a “bent-pipe” where the information received at the 
satellite is simply amplified and retransmitted with no alteration of the original signal.  In a 
regenerative repeater, circuitry is designed to demodulate the signal, recover the original 
information, re-modulate the signal and transmit a new version.  Limitations exist in both of 
these categories: AF systems are unable to compensate for distortion and hardware-defined 
regenerative repeaters cannot be updated over time. 
 
Software-defined radio (SDR) leverages the processing power of computers to create 
communications systems that run as flexible software applications, where the radio operating 
parameters can be set or altered by software.  SDR satellite communications systems developed 
today can run on future hardware platforms and update the applications already running on the 
satellite.  GNU Radio, a framework for creating SDR applications, has recently become capable 
of developing satellite communications systems. 
 
One of the major issues with satellite communications is the Doppler shift experienced as the 
satellite passes overhead.  Demodulating signals affected by Doppler shift requires ground 
stations with circuits dedicated to track and synchronize with the satellite in order to compensate 
for the Doppler shift. For the PSK-31 waveform, a terrestrial narrowband form of multi-user 
amateur radio communications for text and simple data messaging, the amount of Doppler shift 
exhibited by the satellite would prevent communications using standard receivers. 
 
 This project implemented PSK-31 in GNU Radio as part of a regenerative satellite repeater.  
Furthermore, the system estimates and pre-compensates for the Doppler shift generated by an 
orbiting satellite communicating with a ground station.  As a result, the Doppler shift observed at 
the ground station can be reduced from 10 kHz to less than 20 Hz – a level tolerable by most 
modern receivers. 
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Chapter 1: Introduction 
 
1.1 Statement of Objectives 
 
The goal of this project was to design, implement and test the PSK-31 Amateur Radio 
communication standard on a satellite communications system using software-defined radio 
(SDR).  The SDR will pre-compensate for the Doppler shift experienced by the satellite while in 
orbit, eliminating the need for ground stations that track the satellite continuously. 
 
1.2 Brief History of Amateur Radio [1] 
 
Amateur radio began in 1831 when Michael Faraday demonstrated the principle of induction.  
Faraday connected a power source to a wire that he coiled around one end of an iron ring.  At the 
other end of the ring, he coiled a second wire and attached it to an ammeter to measure current.  
When Faraday connected the power source to the first loop, he discovered that a current was 
briefly induced in the second loop and demonstrated that electromagnetic energy could be 
transmitted through a medium.  This process was termed mutual inductance and lies at the 
foundation of wireless communications.  A recreation of Faraday’s experiment is shown in figure 
1.1. 
 

 
Figure 1.1 Faraday’s Induction Experiment 

 
Then, in 1850, James Maxwell derived a set of four equations that relate electricity and 
magnetism, helping to prove that light is an electromagnetic wave.  In 1864, Mahlon Loomis was 
able to demonstrate wireless transmission of the telegraph over a distance of eighteen miles using 
two kites as antennas.  Later, in 1870, Loomis demonstrated ship-to-ship communications over 
two miles in the Chesapeake Bay under sponsorship by the United States Navy. 
 
Heinrich Hertz proved Maxwell’s equations through experimentation in 1886 with an oscillator 
and receiver built for waves with wavelengths different from visible light.  Guglielmo Marconi 
expanded upon the work done by his predecessors to send wireless messages across the English 
Channel in 1899 and then across the Atlantic Ocean in 1901.  Soon after, Reginald Fessenden 
created the world’s first radio broadcast of voice and music on December 24, 1906. 
 
The first Amateur Radio club formed in 1909 to continue experimentation and development in 
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the field of wireless communications.  One such development was the superheterodyne principle, 
which was discovered by amateur radio operator Edwin Armstrong in 1918.  By utilizing a local 
oscillator at a fixed frequency, superheterodyne receivers provide a high degree of frequency 
agility.  This principle is still used today in nearly all communication systems to maximize the 
use of the frequency spectrum.  Figure 1.2 illustrates a typical superheterodyne receiver.  After 
intermediate frequency amplification is completed (IF Amp), additional signal processing can 
occur to demodulate the signal. 

 
Figure 1.2 Superheterodyne Receiver Block Diagram 

 
In 1957, Sputnik I became the first man-made satellite to orbit the Earth and transmit a wireless 
signal.  Soon after, in 1961, OSCAR-I (Orbital Satellite Carrying Amateur Radio) was launched 
and amateur radio was brought to outer space.  Over 570 amateur radio operators in 28 countries 
received the Morse code signal “HI-HI” sent by the satellite [2].  
 
Since then, over 100 satellites have been launched solely for use by amateur radio operators.  
Today, only 20 of those satellites are fully operable. Of those satellites that are still fully 
functional, only two were made in the USA.  The United States Naval Academy has launched 
eight successful satellite projects created by Midshipmen, but none are fully functional anymore. 
 
1.3 Communications Systems 
 
All communications systems can be described using a few key elements.  Fig. 1.3 displays a 
simple model for a communications system.  The information (a picture, some text or a video) is 
converted into a signal by the transmitter.  The transmitter then sends the signal through the 
channel, which could be a wire or cable or the air.  No matter what medium constitutes the 
channel, the signal is distorted as it passes through the channel.  When the signal is picked up by 
the receiver, it is slightly different from the signal that was transmitted.  The differences between 
the received signal and the original signal depend on the composition of the channel.  
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Figure 1.3 Simple Communications System Model 

 
The first communications systems utilized analog amplitude and frequency modulation.  In analog 
modulation, the entirety of the information is transmitted over the air.  While analog modulation 
systems were simple to design and create, they were highly susceptible to noise and inefficient in 
their use of the frequency spectrum.  As more customers began using communication systems, 
operators began looking for a more efficient way to utilize the frequency spectrum – a limited 
natural resource.  The answer was to move from analog to digital modulation. 
 
Unlike analog modulation, the information sent by a user is not perfectly preserved.  In a digitally 
modulated phone call, the user’s voice is converted into bits before being transmitted over the air.  
The quality of the user’s voice heard at the receiving end of the phone call is proportional to the 
number of bits used to represent the voice.  While the user’s voice can only be approximated by 
using bits, use of digital modulation proves advantageous because it more effectively utilizes the 
frequency spectrum and digitally modulated signals are less susceptible to degradation by noise.  
The trade-off is that digital modulation requires synchronization and tracking, whereas analog 
modulation does not. 
 
Synchronization is required in digital modulation schemes because the receiver needs to know 
where bits start and stop.  If the receiver is not in synch with the start of each bit, then bit errors 
will occur.  Any bit error will alter information, while significant bit errors will garble or even 
destroy information.  As part of maintaining synchronization, the communications system must 
track when bits start and stop. 
 
Since digital modulation utilized the frequency spectrum more efficiently, service providers could 
allow more users to access their networks simultaneously.  This led to the development of purely 
digital communications such as the Internet, cellular phones and Wi-Fi.  
 
1.4 Modulation Schemes 
 
Modulation is the actual process of modifying one or more aspects of a high frequency carrier to 
convey information as seen in Eqn 1.1. 
 

ሻݐሺݏ ൌ ܣ ∗ cos	ሺ2 ∗ ߨ ∗ ௖݂ ∗ ݐ ൅  ሻ   Equation 1.1ߠ	
 
The three major types of modulation include amplitude modulation (changing the value of A), 
frequency modulation (changing the value of fc), and phase modulation (changing the value of θ).  
Examples of these types of modulation are shown in Fig. 1.4. 
 

Signal

s(t)
Transmitter Channel Receiver

Receieved 
Signal

ŝ(t)
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Figure 1.4 Digital Modulation Schemes 

 
Amplitude-shift keying (ASK) conveys information by altering the amplitude of the carrier signal 
in direct proportion to the information.  A high bit, or 1, in an ASK system may correspond to a 
high amplitude of the carrier signal, while a low bit, or 0, corresponds to a lower amplitude.  This 
is a lot like how the crowd reacts at a football game.  When the home team scores, the crows gets 
really excited and there is a loud noise heard throughout the stadium.  When the away team 
scores, there is some excitement by the visiting fans, but the stadium is nowhere near as loud as 
when the home team scored.  The information in this scenario is the score of the game and the 
level of noise in the stadium represents the signal. 

 
 In frequency-shift keying (FSK), information is conveyed by changing the frequency of the 
carrier signal in direct proportion to the information.  A high bit in an FSK system may 
correspond to a higher frequency of the carrier signal, while a low bit corresponds to a lower 
frequency of the carrier signal.  This is best represented by a crying baby.  If something is done 
that further upsets the baby, its cries become even higher pitched, but if something is done that 
pleases the baby, its cries drop to a lower pitch.  The baby is trying to convey how upset it is 
through the pitch, or frequency, of its cries. 

 
Phase-shift keying (PSK) conveys information by altering the phase angle of the signal.  Low bits 
may correspond to the original signal while high bits correspond to the carrier signal shifted 180° 
out of phase.  An example of PSK would be telling students to flip a multi-color button on their 
desk to answer a question.  If the button was blue on one side and gold on the other, the teacher 
could tell the class to flip to one color or the other in response to the question.  In order to 
understand the students’ answers, both the question and the responses need to be known. 

 
After being modulated, the carrier signal is then transmitted across the channel and picked-up by 
the receiver of another unit.  The information is then extracted from the modulated carrier. 

 
1.5 Problems with Satellite Communications 
 
Communicating with a satellite is more difficult than communicating between two ground-level 
users directly.  The signal transmitted by the first user must have enough power to reach the 
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satellite, which orbits anywhere from 700 km to over 35,000 km above the Earth’s surface.  
Signals are affected by atmospheric conditions such as rain and snow.  Just like DirecTV becomes 
fuzzy in the rain, so too does the rain affect satellite radio communications.  An additional issue 
stems from the fact that the satellite travels at over 17,000 miles per hour in its orbit.  For a 700 
km orbit, the result is a ten minute window when the satellite is directly overhead and accessible 
for communications.  The short window means that communications must be quick, atmospheric 
conditions must be favorable and equipment ready in preparation for when the satellite passes 
overhead or else communications will not occur.  
 
Doppler shift is the change in frequency of a wave detected by an observer when the source of the 
wave is moving relative to the observer.  A common example is how a stationary person hears a 
change in pitch of an ambulance siren as the ambulance rushes towards and past the observer.  
The pitch of the siren becomes higher as the ambulance approaches the person and then becomes 
very low as it passes the observer.  Any wireless communications system where the transmitter or 
receiver is moving will experience Doppler shift – even cellular telephones.  The satellite is 
moving at over 17,000 miles per hour and so the Doppler shift has a significant effect on 
communications with the satellite; if the Doppler shift is too large relative to the bit rate, 
synchronization will be lost.  Table 1.1 shows the Doppler shift for Wi-Fi at 2.4 GHz for a sources 
moving at different speeds. 
 

Method of Travel Speed Doppler shift 
Walking 3 miles/hr 10.74 Hz 
Jogging 7 miles/hr 25.05 Hz 

Car 65 miles/hr 232.62 Hz 
Plane 550 miles/hr 1.97 kHz 

Satellite 17,000 miles/hr 60.84 kHz 
Table 1.1 Doppler shift for Wi-Fi at 2.4 GHz over a Variety of Speeds 

 
In order to communicate with a moving satellite, either the satellite or ground station must 
compensate for the Doppler shift.  Fig. 1.5 below illustrates Doppler shift as it applies to satellites.  
 

 
Figure 1.5 Illustration of the Effect of Doppler Shift on Satellite Communications 
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When the satellite is directly over the ground station at point B, the received frequency at the 
ground station is equal to the frequency transmitted by the satellite.  As the satellite moves 
towards point C, the received frequency at the ground station is less than the frequency 
transmitted by the satellite.  Between points A and B, the frequency received at the ground station 
is greater than the frequency transmitted by the satellite.  
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Chapter 2: PSK-31 Explained 
 
2.1 Definition 
 
PSK-31 is one of many standards that amateur radio operators utilize to communicate with one 
another.  The PSK-31 standard was created by Peter Martinez (call sign G3PLX) in December of 
1998 and has become popular for simple text-based communications in the amateur radio 
community [3]. 
 
2.2 Nomenclature 
 
The name PSK-31 is a quick reference to the most important characteristics that comprise the 
transmitted signal.  PSK-31 sends data at 31.25 bits per second.  Instead of using 8-bit ASCII 
representations of characters, a unique character encoding called Varicode is utilized. 
 
2.3 Higher Order PSK 
 
PSK, like all multi-level digital communication schemes, can have two (BPSK), four (QPSK), 
eight, or more different phases—as long as the number of phases is a power of two.  While BPSK 
uses two phases (each 180° apart), QPSK uses four phases (each 90° apart).  Equation 2.1 
establishes the relationship between the number of symbols (M) and the number of bits per 
symbol (N). 
 

ܯ ൌ 2ே     Equation 2.1 
 
Since the information is transmitted as bits, the extra phases can be utilized to send two bits per 
symbol instead of the one bit per symbol that sent in BPSK.  Fig. 2.2 shows a BPSK and QPSK 
transmission; each symbol is represented by a different color.  To the right of the figure, the 
constellation diagram illustrating the phases for each modulation scheme is shown. 
 

 
 Figure 2.2 Understanding Symbols: BPSK and QPSK 
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The bandwidth of a PSK transmission (BW) depends on the number of bits per symbol (N) and 
the symbol rate (Rb) as shown in Eqn. 2.2.  
 

ܹܤ ൌ ଶ∗ோ್
ே

         Equation 2.2 

 
For a given data rate (the rate at which bits are sent), a BPSK transmission will have a symbol rate 
equal to the data rate.  A QPSK transmission will have a symbol rate that is half of the data rate 
and an 8-PSK transmission will have a symbol rate that is a quarter of the data rate.  Of the three, 
the BPSK transmission will have the largest bandwidth and the 8-PSK transmission will have the 
smallest bandwidth.  Fig. 2.3 illustrates the relationship between the number of symbols and the 
bandwidth of a PSK signal.  
 

 
Figure 2.3 Relationship Between Number of Symbols and Bandwidth of PSK Signals 

 
Another way to compare communications standards is to look at the bit error rate (BER).  A bit 
error is counted whenever the received bit is different from the transmitted bit.  BER rate is a 
measure of how many bit errors occurred divided by the number of bits sent.  A single bit error 
marks a distortion in the transmitted information signal, but enough bit errors can garble or ruin 
the entire signal.  For BPSK and QPSK, BER is given by Eqn. 2.3. 
 

ܴܧܤ ൌ 	ܳ ൬ට2 ∗
ா್
ேబ
	൰    Equation 2.3 
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In Eqn. 2.3, 
ா್
ேబ

 refers to the energy per bit (Eb) divided by the noise spectral density (N0).  BER is 

typically plotted against 
ா್
ேబ

 so that comparisons can be made between different modulation 

schemes.  Fig. 2.4 plots BER against  
ா್
ேబ

 for BPSK, QPSK, 8-PSK and 16-PSK.  For a given 

BER, 8-PSK and 16-PSK required higher levels of 
ா್
ேబ

 than BPSK or QPSK. 

 

 
Figure 2.4 Bit Error Rate vs. Eb/N0 for Different Orders of PSK 

 
Although BPSK and QPSK share the same BER curve, BPSK was utilized for this project 
because it is the default implementation of PSk-31.  Since the satellite is expected to exhibit a 
large Doppler shift, the bandwidth of the modulation scheme used will small in comparison.  By 
choosing BPSK over QPSK, the satellite is presented with a larger bandwidth to track.  
Furthermore, a QPSK communications system is more complex than a BPSK communications 
system. 
 
2.5 Differential PSK 
 
Differential phase-shift keying, or DPSK, is a slightly modified form of PSK.  Instead of having 
distinct phases represent symbols, the presence or absence of a change in phase represents a 
symbol.  Typically, the absence of a phase change from the previous symbol is used to represent a 
‘0’ and the presence of a phase change from the previous symbol is used to represent a ‘1’.  Fig. 
2.5 shows the difference between a signal represented in BSK and in DBPSK. 
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Figure 2.5 Differences Between BPSK and DBPSK 

 
In PSK-31, the presence of a phase change represents a ‘0’ and the absence of a phase change 
represents a ‘1’.  Since PSK-31 utilizes two symbols, it would be more accurately labeled 
DBPSK-31. 
 
2.6 Symbol Rate 
 
Assuming that the average user can type at a rate of 50 words per minute, each word is about 6 
characters long and each character is 6.5 bits long (the average bit length for Varicode), the user is 
creating about 32.5 bits per second of data [4].  Since most amateur radio users operate software 
that runs between 8 kHz and 44.1 kHz (common computer sound card operating frequencies), the 
data rate of 31.25 Hz was picked for use in PSK-31.  This data rate would divide into 8 kHz 
evenly (8000/31.25 = 256). 
 
Therefore, the 31 in PSK-31 refers to the data rate used – 31.25 bits per second.  Since binary 
phase shift keying is being utilized, each symbol is transmitted for 32 milliseconds.  Eqn. 2.4 
establishes the relationship between the symbol period, Ts, and the symbol rate, Rb. 
 

௦ܶ ൌ 	
ଵ

ோ್
            Equation 2.4 

 
2.7 Varicode Encoding [5] 
 
While most computers use ASCII tables to convert text into data, PSK31 uses a different system 
called Varicode.  The difference is that, unlike ACII where each character is represented by the 
same number of bits (8), characters are represented by different numbers of bits in Varicode – 
hence the name “Variable Code”.  To distinguish between the end of one character and the start of 
another, there is a gap containing two or more zeroes between each character.  As a result, each 
character starts and ends with a one and cannot contain two consecutive zeroes within the 
Varicode sequence.  The shortest possible Varicode bit sequence is ‘1’ which represents the space 
character.  Table 2.1 displays the Varicode representation for various characters. 
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Varicode Character Varicode Character Varicode Character Varicode Character
1 Space 1011 a 11011 l 1101011 w 

10110111 0 1011111 b 111011 m 11011111 x 
10111101 1 101111 c 1111 n 1011101 y 
11101101 2 101101 d 111 o 111010101 z 
11111111 3 11 e 111111 p 1111101 A 

101110111 4 111101 f 110111111 q 1010101101 Z 
101011011 5 1011011 g 10101 r 111111111 ! 
101101011 6 101011 h 10111 s 111110101 # 
110101101 7 1101 i 101 t 111011011 $ 
110101011 8 111101011 j 110111 u 1010111101 @ 
110110111 9 10111111 k 1111011 v 1011010101 % 

Table 2.1 Varicode Representations for Select Characters 

 
Varicode was designed such that the most common characters have the shortest bit sequences.  
The longest bit sequences are 10 bits long.  Table 2.2 illustrates the number of characters by 
length of Varicode bit sequence.  Within a typical English text, the average number of bits per 
character is 6.5 compared to the 8 bits per character used in ASCII.  This average is not based 
solely on the average length of bit sequence – which would be approximately 8.27 bits per 
character – but also on the frequency with which each character appears in a typical English text.  
 

Length of Bit Sequence 1 2 3 4 5 6 7 8 9 10 
Number of Characters 1 1 2 3 5 8 13 21 34 40 

Table 2.2 Number of Characters by Length of Varicode Bit Sequence 

 
2.8 Generation of PSK31 
 
Normally a phase-shift keying system requires the receiver to have a copy of the signal’s phase 
before it was modulated.  Without this copy, the receiver cannot tell which phase represents one 
and which represents zero.  Thus, PSK requires precise synchronization between the transmitter 
and receiver which must be maintained throughout the transmission of data.  An ordinary PSK 
system is difficult to create even when the transmitter and receiver are both stationary and much 
more complicated to maintain when the transmitter or receiver start moving. 
 
In order to synchronize at the receiver, there must not be a long series of bits without a phase 
reversal.  By choosing a phase reversal to represent a ‘0’ bit and no change in phase to represent a 
‘1’ bit, there will never be more than 10 bits without a phase reversal.  As long as each 
transmission starts with a long enough string of zeroes, the receiver can use the phase reversals to 
determine where one bit ends and the next begins.  For a PSK-31 transmission, a “preamble” of 
81 phase reversals precedes any information being sent [6].  
 
Following the preamble, a digital one is indicated by no phase shift from the previous bit, while a 
digital zero is marked by a 180° phase shift from the previous bit.  For example, the character “U” 
in Varicode is represented by the bit sequence 101010111.  Fig. 2.6 shows the last four bits of the 
preamble followed by the character “U”.  Notice that two zeroes are transmitted before and after 
the bit sequence for “U” to separate the character from any preceding or following characters.  
The bits above the graph are the information that is being transmitted, while the graph below 
illustrates what voltages levels are actually transmitted. 
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Figure 2.6 Digital Representation of “U”  

 

PSK-31 specifies that the bits are sent through a low-pass filter with a cutoff frequency of 15 Hz.  
Without this filter, extraneous sidelobes would be seen at integer multiples as seen in the top 
frequency spectrum in fig. 2.7 and interfere with adjacent users.  The low-pass filter removes all 
sidelobes beyond 15 Hz.  This limits the PSK31 transmission to 31.25 Hz of bandwidth and 
prevents one user from interfering with other users operating at different frequencies.  Fig. 2.7 
shows the frequency spectrum of the baseband bits before (top) and after the low-pass filter 
(bottom).  While the pulse-shaping low-pass filter does not completely remove the lobes, it does 
reduce the power at these spikes by about 20 dB.  At these levels, the shifted copies would be 
drowned out by noise in the channel. 
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Figure 2.7 Frequency Spectrum of Baseband Bits before and after Low-pass Filtering  

 

Typical frequency bands in the very high frequency (VHF) range used for PSK-31 
communications are listed in table 2.3.  To maximize use of the frequency spectrum, the 
superheterodyne principal is utilized by amateur radio operators.  Signals are multiplied by a 
desired intermediate frequency called the subcarrier frequency and then multiplied again by the 
desired carrier frequency.  The advantage of the superheterodyne principal is that it allows 
amateur radio operators to use common hardware, while still utilizing the full frequency spectrum. 
 

Frequency Band Frequency 
6 m 50.29 MHz 
2 m 144.144 MHz 

1.25 m 222.07 MHz 
0.70 m 432.2 MHz 
0.33 m 909 MHz 

Table 2.3 Common Frequency Bands Utilized for PSK-31 Communications [7] 

 
Once the signal has run through the low-pass filter, it is next multiplied by a subcarrier to bring 
the signal to a desired intermediate frequency.  Fig. 2.8 shows a PSK31 signal in the time domain 
before (top) and after (bottom) it is multiplied by a 1 kHz subcarrier wave.  One key feature to 
note is that sharp transitions between bits seen in fig. 2.6 have been smoothed out by the low-pass 
filter.  The last eight bits of the preamble are shown, followed by the character “U”. 
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Figure 2.8 Time Domain View of PSK31 before (top) and after (bottom) multiplication by a 1 kHz Subcarrier  

 
Following the information section of the PSK31 signal is a “tail” that consists of 750 milliseconds 
of the subcarrier without modulation.  The purpose of the tail section is to notify the receiver that 
the transmission is ending and prevent the creation of garbage characters that were not intended to 
be sent [8].  When fully combined, a PSK31 signal has three pieces: the preamble, the information 
and the tail. 
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Chapter 3: GNU Radio and the USRP 
 
3.1 Software-defined Radio 
 
A software-defined radio (SDR) is a communications system that utilizes software instead of 
hardware components to carry out signal processing.  Modern smartphones can be thought of as 
a prevalent example of SDR.  Instead of designing circuits for each function on the phone (text 
messaging, e-mail, internet browsing, etc.), each function is created in software which is then 
selected by the user and executed by the hardware – the computer that serves as the “brain” of 
the smartphone.  Since the applications were written in software, they can be run on a variety of 
cellular phones and they can be updated remotely.  Changing an application does not require the 
user to bring their phone into a service center so that hardware can be replaced to fix a bug in the 
e-mail application.  The upgrade paths for software and hardware are independent. 
 
For satellite communications, SDR has many of the same benefits as it does for smartphones. 
Applications – communications systems – can be run on a variety of hardware platforms.  As 
newer generations of hardware are developed, SDR applications can be improved in a few lines 
of code to take full advantage of the advances in hardware.  Additionally, SDR systems can be 
remotely updated once deployed in orbit.  The satellite can be updated to counter an error found 
in the software or to enhance performance.  Currently, satellites that encounter a significant bug 
must be recaptured and fixed manually by astronauts or, more likely, they are disabled and 
abandoned. 
 
As of the time that this paper is being written, only one example of SDR can be found in outer 
space, which is a USRP operated by NASA aboard the International Space Station (ISS) [9].  No 
known examples of true SDR on board a communications satellite could be found (8 May 2014). 
 
3.2 GNU Radio 
 
GNU Radio is an open-source framework for creating software-defined radio applications.  The 
heart of any GNU Radio application is a flowgraph – a system of functional blocks that perform 
operations on a stream of data.  The flowgraph can be created visually in the GNU Radio 
Companion (GRC) or textually in a Python file. Fig. 3.1 shows a basic flowgraph created using 
GRC. 
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Figure 3.1 Example Flowgraph in GNU Radio  

 
Some blocks are designed to perform a single function, while others combine multiple functions 
together in a hierarchical block.  Each flowgraph must start with a source block and end with a 
sink block.  In Fig. 3.1, there are two source blocks, each creating a cosine wave at a different 
frequency, and one sink block – an audio sink that will play the resulting waveform over the 
computer’s speakers.  Every block requires a specific format for input data and specifies an 
output format.  Connections between blocks can only be made when the output data format of 
the first block matches the input data format of the second block.  For example, the multiply 
block in Fig. 3.1 outputs a stream of floats and the low pass filter block requires a stream of 
floats.  Since the output type of the multiply block matches the input type of the low pass filter 
block, a connection could – and was – made between them.  Table 3.1 lists the data types 
available in GNU Radio and the corresponding colors that will appear on the input and output 
hubs of each block.  Vectors of a certain data type are denoted by darkening the color for that 
data type.  For example, a vector of 2048 complex numbers will be denoted by dark blue. 
 

Data Type Float Complex Integer Unsigned 
Character 

Short Integer 

Color Orange Blue Green Purple Yellow 
Table 3.1 List of the Color Codes by Data Type Available in GNU Radio 

 
Users are provided with a multitude of blocks created by contributors to the GNU Radio 
community, but they can also create their own blocks in C++ or Python.  Table 3.2 lists the major 
types of blocks available within GNU Radio. 
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Block Type Description 
Source These blocks are used to bring data into GNU Radio or create data on which the flow-

graph will operate. Waveform generators, audio sources and the USRP source block fall 
into this category. 

Sink The destination for the data in the flowgraph. Common sink blocks include: file sink, 
WAV sink, audio sink or USRP sink. 

Synchronous Most blocks within the flowgraph are synchronous: the same number of samples that 
enter the block will leave the block. Examples include filters, math operators and phase-
locked loops. 

Decimating These blocks will destroy samples. The rational resampler and fractional resampler 
blocks are both decimating blocks. 

Interpolating These blocks will output more samples than they receive. The repeat block is an interpo-
lating block. 

Hierarchical A single block created by combining multiple blocks that are typically used together for 
a certain purpose. Modulator and demodulator blocks for ASK and FSK systems are hi-
erarchical blocks composed of the functions required to create typical modulators and 
demodulators. 

Table 3.2 List of the Major Block Types Available in GNU Radio 

 
A key feature of GNU Radio is that the software is not designed to work with any specific piece 
of hardware.  While blocks exist to allow SDR applications to run on specific hardware 
platforms, GNU Radio does not limit users to any one line of hardware.  In fact, GNU Radio can 
operate in simulation mode without any hardware at all. 
 
3.3 Universal Software Radio Peripheral 
 
The Universal Software Radio Peripheral (USRP) is a hardware platform developed specifically 
for running SDR applications.  Two major families of USRP products exist, the basic line and the 
embedded line.  Basic USRP products require a connection to a desktop or laptop PC to develop 
and run SDR applications.  Embedded processor USRP products ship capable of running a 
version of Linux and can run as a standalone unit.  For this project, the USRP E100, from the 
embedded line of products was chosen to emulate the standalone system on board the satellite. 
 
To interface with GNU Radio and other SDR frameworks, the USRP utilizes the USRP hardware 
driver (UHD).  Within GNU Radio, there is a source and sink block that allows flowgraphs to 
run on the USRP.  Signal processing occurs within the computer or embedded processor, and the 
UHD sends the results to the appropriate channel in the USRP.  While the signal processing 
capabilities of the USRP are dictated by the embedded processor, the bandwidth of signals that 
the device can physically create is controlled by the daughterboard currently installed in the 
USRP as well as the data transfer rate between the processor and USRP. 
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Chapter 4: Doppler Shift Estimation 
 
4.1 Definition 
 
Doppler shift is the change in frequency of a wave detected by an observer when the source of the 
wave is moving relative to the observer, as given by Eqn 4.1.  In Eqn 4.1, fd is the Doppler shift 
expressed in Hertz, v is the velocity at which the source is moving, ࣅ is the wavelength of the 
signal and ࣂ is the angle between the source and the observer.  
 

ௗ݂ ൌ 	
௩

ఒ
ൈ cos	ሺࣂሻ    Equation 4.1 

 
A common example of Doppler shift is how a stationary person hears a change in pitch of an 
ambulance siren as the ambulance rushes towards and past the observer.  The pitch of the siren 
becomes higher as the ambulance approaches the person and then becomes very low as it passes 
the observer.  In the case of satellite communications, the satellite is moving at over 17,000 miles 
per hour and the Doppler shift has a significant effect on communications with the satellite.  For a 
satellite in Low Earth Orbit (LEO), the maximum Doppler shift expected is about 12 kHz [10]. 
 
If the Doppler shift is too great with respect to the bandwidth of the signal and the change in 
frequency is too large for the satellite to track, synchronization will be lost.  Doppler shift is 
responsible for causing errors in the signal which can obscure or alter the message that is 
received.  In order to communicate with a moving satellite, either the satellite or ground station 
must track the Doppler shift. 
 
4.2 Determining the Event Horizon 
 
In order to create a family of Doppler shift curves that represent the possible ways for the 
satellite to pass over a ground station, the event horizon needed to be calculated.  The event 
horizon is the maximum possible distance that a ground station could communicate with the 
satellite.  Assuming that the Earth is roughly spherical and that the ground station is operating at 
sea level, the event horizon can be calculated with trigonometry.  Figure 4.1 illustrates the 
scenario with the event horizon painted orange, the Earth painted blue and the trajectory of the 
satellite painted green. 
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Figure 4.1 Geometry Used to Determine Radius of the Event Horizon 

 
The radius of the event horizon is the distance between points A and B.  The length of segments 
BC and CD is the radius of the Earth and the length of segment AD is the height above the Earth 
at which the satellite orbits.  Utilizing the Pythagorean Theorem yields Eqn. 4.2.  
 

ܤܣ ൌ 	 ଶܥܣ√ െ	ܥܤଶమ
    Equation 4.2 

 
Knowing that the radius of the Earth is approximately 6371 km and that the satellite will orbit at 
an average height above the Earth of 418.5 km, the radius of the event horizon is found to be 
2346.84 km.  This approximation of the event horizon assumes that the ground station is 
operating at mean sea level.  To account for a station that was as far from the center of the Earth 
as possible, the geometry was redone.  Fig. 4.2 shows the geometry for a ground station 
operating at the summit of Mt. Chimborazo, the point furthest from the center of the Earth [11]. 
 

 
Figure 4.2 Geometry Used to Determine Radius of the Worst Case Event Horizon 
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For this project, the event horizon was rounded up to 2500 km to account for ground stations that 
operate slightly above sea level. 
 
4.3 Data Collection 
 
To simulate the pass of a LEO satellite, Doppler shift data was collected from multiple passes of 
the ISS to estimate the range of expected Doppler shift frequencies for a satellite pass in LEO.  
The data was used to graph a family of curves that displays the effect of the type of overhead pass 
on the expected Doppler shift.  Direct, overhead passes experience the most rapid Doppler shift, 
while passes that are more tangential experience the most gradual Doppler shift.  Fig 4.3 shows 
the Doppler curves plotted for a direct, overhead pass (left graph) and a tangential pass (right 
graph) of the ISS. 
 

 
Figure 4.3 Doppler Shift Seen on International Space Station for Different Overhead Passes 

 
 
4.4 Doppler Curve Generator 
 
The Doppler shift seen at the satellite is dependent upon the relationship between the ground 
station and the satellite.  To generate the Doppler curves, a few simplifying assumptions are made.  
First, the Earth is assumed to be a perfect sphere over the span of the event horizon. Second, the 
pass of the satellite is assumed to be at a constant height above the Earth.  These two assumptions 
allow the satellite passes to be represented in a Cartesian coordinate system with the ground 
station as the origin. 
 
Since the altitude (z-coordinate) is assumed to be constant across the orbit, the pass of the satellite 
can be simplified into a two-dimensional problem.  Given the two points on a planar circle that 
represents where the satellite passes through the event horizon, Doppler shift can be calculated.  
For this Doppler Curve Generator, the user selects a point where the satellite pass begins along a 
vertical line and another point along a second vertical line where the pass ends.  The simulation 
then generates what the overhead pass looks like in the x-y plane. 
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Using information readily available about the I.S.S., the station can be represented in Cartesian 
coordinates.  The Cartesian coordinates are converted into spherical coordinates so that the change 
in relative velocity of the satellite with respect to the ground station can be calculated.  The 
change in distance between the I.S.S. and the user (the value of rho), divided by time between 
samples will give a step approximation of the relative velocity between the user and the satellite.  
This can then be plugged into eqn. 4.1 to calculate Doppler shift.  Fig. 4.4 shows the Doppler 
curve generated for a tangential pass and fig. 4.5 shows the Doppler curve generated for an 
overhead pass.  Code for the Doppler curve generator can be found in appendix e. 
 

 
Figure 4.4 Doppler Curve Generated for a Tangential Pass 

 

 
Figure 4.5 Doppler Curve Generated for a Direct, Overhead Pass 
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Chapter 5: PSK31 Transmitter 
 
5.1 Simulation 
 
MATLAB was used to prototype and evaluate the performance of a PSK31 transmitter due to 
familiarity with the software, ease of use and data manipulation tools.  Once the transmitter was 
verified to work in MATLAB, the code served as a template for creating the transmitter in GNU 
Radio.  Code for the MATLAB transmitter can be found in the appendix. Fig. 5.1 illustrates the 
block diagram used to create the transmitter. 
 

 
Figure 5.1 Block Diagram for PSK31 Transmitter 

 
The first step in creating the transmitter was to take a message input by the user and convert the 
characters into the corresponding Varicode representation.  A MATLAB function looks up each 
individual character that the user inputs and stores the result in a vector (code).  After each 
character, the sequence “0 0” is added to indicate that one character has ended and the next will 
begin.  A preamble of 81 bits worth of zeroes is sent before the first character in the message.  
This preamble allows the receiver time to synchronize with the signal and helps prevent data 
loss. 
 
Next, another vector (base) is generated with an alternating “1 0” pattern for the length of the 
code vector.  This vector represents the phase of the PSK31 signal.  Since transmitting a series of 
zeroes in PSK31 is actually transmitting a series of phase reversals, the base vector is what 
would be transmitted if the user did not send any data or the message string was empty. 
 
The code and base vectors are combined into another vector called netshift.  The netshift vector 
accounts for the bits in the code vector and varies the phase from the base vector appropriately.  
If the current bit being transmitted is a ‘1’, then the phase of the netshift vector will be the same 
as it was for the last bit.  Otherwise, if the current bit being transmitted is a ‘0’, then the phase of 
the netshift vector will be the opposite of what it was for the last bit.  Table 5.1 shows the vectors 
code, base and netshift for the message “14”. 
 
code 0 0 1 0 1 1 1 1 0 1 0 0 1 0 1 1 1 0 1 1 1 0 0 
base 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 
netshift 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 1 1 1 0 1 

Table 5.1 Analyses of MATLAB Vectors for the Message “14” 

 
The next step was to expand the netshift vector by resampling.  Since the bandwidth of a PSK-31 
signal is 31.25 Hz, the signal – in the netshift vector – is sampled at a rate of 31.25 samples per 
second.  In order to share the frequency spectrum with other users, the signal must be multiplied 
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with a subcarrier signal at an open slot in the frequency spectrum.  The Nyquist equation states 
that the sampling rate must be at least twice that of the maximum frequency observed in the 
signal.  Since the subcarrier frequency could be up to 8 kHz, the resulting sampling rate would 
then need to be at least 16 kHz. In MATLAB, this operation entailed copying each item in 
netshift 512 times to up-sample from 31.25 Hz to 16 kHz and storing the result in a vector called 
PSK31_base.  Fig. 5.2 shows a MATLAB plot of PSK31_base at a sampling rate of 16 kHz. 
 

 
Figure 5.2 MATLAB Plot of “14” Represented in Varicode Bits at a Sampling Rate of 16 kHz 

 
After up-sampling, PSK31_base was sent through a low pass filter with a cutoff frequency of 15 
Hz and stored in PSK31_filtered.  Besides being a required step in the creation of a PSK-31 
signal, the low pass filter rounds the sharp phase transitions seen in the baseband bit sequence.  
Fig. 5.3 shows a MATLAB plot of the same bit sequence for “14” after it has been sent through 
the low pass filter.  
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Figure 5.3 MATLAB Plot of “14” After the Bit Sequence was sent through a Low Pass Filter 

 
Then, PSK31_filtered is multiplied by a cosine wave at the desired subcarrier frequency (1 kHz 
was used for testing) and 750 milliseconds of unmodulated subcarrier are added at the end of the 
signal.  Fig. 5.4 shows the result of the subcarrier multiplication.  The low pass filter creates a 
small time delay that causes the blue dashed lines that represent the bit period to misalign with 
the signal by a small fraction. 
 

 
Figure 5.4 MATLAB Plot of PSK-31 Signal for “14” at a Subcarrier Frequency of 1 kHz 

 
One final step was necessary in MATLAB because to eliminate shifted copies of the signal found 
during testing.  A band pass filter was added after the subcarrier multiplication that stretched 
from 985 Hz to 1015 Hz.  Following the band pass filter, the signal was saved in a .WAV file to 
facilitate testing with Digipan and GNU Radio. 
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5.2 Hardware Recreation 
 

 
Figure 5.5 GNU Radio Companion Flowgraph for PSK-31 Transmitter 

 
The PSK31 transmitter was constructed in GNU Radio using the code generated in MATLAB as a 
template.  The complete GNU Radio flowgraph for the transmitter is shown in Fig. 5.5.  Instead of 
taking a message from the user, the transmitter requires that the code from the netshift vector be 
directly input into a “vector source” block.  This block begins the GNU Radio implementation of 
the PSK31 transmitter.  
 
The next step is to run the output of the “vector source” block through a “rational re-sampler” 
block with a resampling rate of 256.  This block takes each sample from the source block and 
creates 255 samples for a total of 256 samples.  The audio output of the USRP E100 is limited to 
sampling rates of 8 kHz or less (instead of the 16 kHz used in the MATLAB simulation).  Since 
the bit rate for PSK-31 is 31.25 Hz, up-sampling by 256 results in a sampling rate of 8 kHz 
(31.25*256). 
 
Since the data created by the “vector source” and “rational re-sampler” blocks are created all at 
once instead of at a set rate, a “throttle” block must be added to the output of the “rational re-
sampler” block.  The sampling rate on the “throttle” block is set to 8 kHz, which limits the rate at 
which data was sent to the rest of the flowgraph to 8 kHz.  Without this block, the computer 
would attempt to use all available processing power to run the transmitter flowgraph until the 
computer froze.  Furthermore, the sampling rate would be determined by the processing power of 
the computer.   
 
In the MATLAB simulated transmitter, the netshift vector was then used as the phase argument of 
a cosine wave.  In GNU Radio, this approach was less straightforward.  Instead, a combination of 
multiplication and addition was utilized to recreate that same phase shifting effect.  The output of 
the “throttle” block was connected to a “multiply by a constant” block.  The constant used in the 
multiply block was the number two.  For each sample created by the “throttle” block, this block 
multiplies the input by two.  The output of the “multiply by a constant” block was then connected 
to the input of the “add a constant” block.  The constant used in the addition block as the number 
negative one.  The combined effect of these two blocks is to turn the phases indicated in the 
“vector source” (similar to those in the netshift vector) from bits into positive and negative ones.   

 

After the “add a constant” block, the data stream was low pass filtered.  The cutoff frequency of 
the filter was set at 15 Hz with a transition width of 5 Hz and the sampling rate was set at 8 kHz.  
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This low pass filter has the same role in the transmission of PSK-31 as the low pass filter used in 
the MATLAB transmitter – the filter is part of the PSK-31 standard and it prevents abrupt phase 
changes in the transmitter.  Fig. 5.6 shows the PSK-31 signal after the data stream has been low 
pass filtered. 
 

 
Figure 5.6 GNU Radio Scope Plot of PSK-31 after Low Pass Filtering for the Message “14” 

 
The output of the low pass filter block was then inputted into a “multiply” block with the other 
input a cosine wave set using a variable slider with a default value of 1 kHz.  While the flowgraph 
was running, the user could move the slider to adjust the subcarrier frequency of the slider.  The 
slider proved that the subcarrier frequency could be set by a variable.  Fig. 5.7 shows the PSK-31 
signal after multiplication by the subcarrier. 
 

 
Figure 5.7 GNU Radio Scope Plot of PSK-31 after Multiplication by a Subcarrier for the Message “14” 

 
Finally, the output of the “multiply” block was connected to an “audio sink” block set at a 
sampling frequency of 8 kHz.  This block allowed the generated PSK-31 signal to play out of the 
audio output port on the USRP for testing purposes. When actually generating a PSK-31 signal, 
the output of the “multiply” block would be connected to a “USRP sink” that would upconvert the 
signal to radio frequency (RF). 
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Chapter 6: PSK31 Receiver 
 
6.1 Simulation 
 

 
Figure 6.1 Block Diagram for PSK31 Receiver 

 
MATLAB was used to simulate a PSK-31 receiver due to familiarity with the software, ease of 
use and data manipulation tools.  Once the receiver was verified to work in MATLAB, the code 
served as a template for recreating the receiver in GNU Radio.  Code for the MATLAB receiver 
can be found in the appendix. 
 
The first step in receiving a PSK-31 signal is determining the subcarrier frequency.  For this 
simulation, MATLAB prompted the user to input the subcarrier frequency.  Once the subcarrier 
frequency was known, the PSK-31 signal (simulated as a .WAV file) was read into the receiver as 
the vector PSK31_TX.  The wavread function was used to read the file and the transpose function 
was used to create a single row-long vector that held all the samples in the .WAV file.  Fig. 6.2 
shows the MATLAB plot of the received .WAV file for the message “14”. 
 

 
Figure 6.2 MATLAB Plot of the Received PSK-31 Signal for the Message “14” 
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Since the subcarrier frequency was set, the PSK31_TX vector was mixed down to complex 
baseband by multiplying the samples in the PSK31_TX vector by a cosine wave generated at the 
subcarrier frequency.  To simplify the demodulation of a PSK-31 signal in MATLAB, phase 
synchronization was artificially forced.  The sampling frequency used in all files was 16 kHz – the 
same sampling frequency used in the PSK-31 MATLAB transmitter simulations.  Fig. 6.3 shows 
the PSK-31 signal after being mixed down to complex baseband. 
 

 
Figure 6.3 MATLAB Plot of the Received PSK-31 Signal Mixed Down to Complex Baseband for the Message “14” 

 
The next step was to find the energy in each bit by integrating over a single bit period.  Since the 
start of the file was known to be the start of a bit, no additional effort was needed to synchronize 
the receiver to the bit sequence in the PSK31_TX vector.  Then, the energy under each bit was 
multiplied by the bit period (0.032 seconds) to find the energy in a single bit period.  Fig. 6.4 
shows the results of the integration and multiplication. 
 

 
Figure 6.4 Plot of the Received Energy for each Bit Period in the Received Message “14” 

2.4 2.6 2.8 3 3.2 3.4

-0.5

0

0.5

Time (sec)

A
m

pl
itu

de
 (

v)

PSK-31 Signal Downconverted to Complex Baseband

60 70 80 90 100 110
-0.01

-0.005

0

0.005

0.01

E
ne

rg
y

Samples Integrated by Bit Period (0.032 seconds)

Sample Number



30 
  

 
The result of this operation was a series of positive and negative numbers.  Using the MATLAB 
sign function, positive numbers were assigned the bit value ‘1’ and negative numbers were 
assigned the bit value ‘0’ and the result was stored in the vector phase_value.  These assigned 
numbers reflect the phase of the PSK-31 signal and not the Varicode bits encoded within the 
signal because PSK-31 is differentially modulated. 
 
To find the Varicode bits, the negation of the “exclusive or” operation was executed on the entire 
phase_value in groups of two.  This means that if phase_value changed from positive to negative 
or from negative to positive, the Varicode bit being represented was a zero.  Conversely, if the 
phase_value had two positive or two negative numbers in a row, then the Varicode bit being 
represented was a one.  The results of this operation were stored in the vector varicode_bits.  
Table 6.1 shows the vectors phase_value and varicode_bits for the message “14”. 
 
phase_value  1  0  1  1  0  0  0 0 0 1 1 0 1 1 0 0 0 0  1  1  1  1 0

varicode_bits  0  0  1  0  1  1  1 1 0 1 0 0 1 0 1 1 1 0  1  1  1  0 0
Table 6.1 Vectors phase_value and varicode_bits for the Message “14” 

 
Finally, a “for loop” was created to find the start and end of each Varicode character.  Since each 
character must start and end with a ‘1’ and at least two ‘0’s separate characters, looking for the 
sequence ‘0 0’ revealed the start and end of each bit sequence.  Using this information, the 
Varicode sequences were extracted from the varicode_bits vector and converted into strings.  This 
allowed a simple search function to be created that would look for the Varicode sequence using 
case statements and return the corresponding ASCII character.  Once all the characters were 
found, the message was displayed.  Fig. 6.5 shows the result that the MATLAB receiver output to 
the command window. 
 

 
Figure 6.5 Capture of the MATLAB Receiver Output to the Command Window 
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6.2 Hardware Recreation 
 

 
Figure 6.6 GNU Radio Companion Flowgraph for the PSK-31 Receiver 

 
The PSK-31 receiver was constructed in GNU Radio using the code generated in MATLAB as a 
template.  The complete GNU Radio flowgraph for the receiver is shown in Fig. 6.6.  Instead of 
utilizing the USRP to capture PSK-31 transmissions over the air, the MATLAB version of the 
transmitter was used to create a .WAV file that contained a PSK-31 modulated signal with a 
message of, “The quick brown fox jumped over the lazy dog 0123456789”.  This approach 
allowed for controlled and repeated trials of the receiver.  As a result, the first block in the receiver 
flowgraph was a .WAV source.  After experimentation, it was determined that a DC offset in the 
wave file was causing problems with the receiver, so a DC blocker was added to the flowgraph.  
After these first two blocks, the stream of data was represented by floats.  Fig. 6.7 shows the 
message “14” after the DC blocker. 
 

 
Figure 6.7 GNU Radio Scope Capture of PSK-31 Message “14” after DC Blocker 

 
A phase-locked loop (PLL) was used to determine the subcarrier frequency.  The PLL tracks the 
error between the incoming frequency and the output frequency to convert the signal to complex 
baseband.   Figure 6.8 shows the block diagram for a PLL.  An important feature of the PLL is 
that it requires a stream of complex numbers as its input.  The Hilbert transform was utilized in 
order to convert the stream of floats into a stream of complex numbers.  Figure 6.9 shows the 
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spectrum of the message “14” after the Hilbert transform (top) and after the PLL (bottom). Note 
that for an original subcarrier frequency of 1 kHz, the Hilbert transform creates an additional 
frequency peak at -1 kHz. 
 

 
Figure 6.8 Block Diagram for a Phase-Locked Loop 

 

 
Figure 6.9 Frequency Spectra of the PSK-31 Message “14” after the Hilbert Transform (top) and the Phase-Locked Loop (bottom) 
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Eqn. 6.1 describes the Hilbert transform function mathematically. Conceptually, the Hilbert 
transform delays the entire signal by 90° - which was used to create a copy of the signal in the 
negative frequency domain [12]. In Fig. 6.9, the PSK-31 signal is seen to have a frequency peak at 
-1 kHz and 1 kHz. It is important to note that the Hilbert transform maintains the magnitude of the 
original signal. 
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Once the signal was at complex baseband, it was converted back into a stream of floats.  Each 
item in the stream was then multiplied by a sample delayed by one bit period.  This operation 
removed the differential encoding from the signal and left a stream of data where each bit was 
represented by multiple samples.  Fig. 6.10 shows the message “14” after each item in the data 
stream was multiplied by a sample delayed by a single bit period. 
 

 
Figure 6.10 GNU Radio Scope Capture of PSK-31 Message “14” after Multiplication by a Sample Delayed by One Bit Period 

 
The stream was then sent through a low-pass filter with a cutoff frequency of 15 Hz to eliminate 
any extraneous sidebands.  Figure 6.11 shows the frequency spectrum of the signal after the 
phase-locked loop (top) and after it was sent through the low-pass filter (bottom). Note that the 
first set of frequency peaks around the baseband signal (centered around 0 Hz) have decreased in 
power from 50 dB less than the baseband signal to 100 dB less than the baseband signal. 
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Figure 6.11 GNU Radio Frequency Spectrum of Message “14” after the Phase-Locked Loop (top) and after the Low Pass Filter (bottom) 
 
The final operation in the receiver was to sample once during each bit period to extract the 
Varicode bits within the signal.  For testing purposes, the bits were saved to a file as a stream of 
unsigned characters to allow for quick verification of the receiver’s performance.  Figure 6.12 
shows the extra blocks required to convert the bits to ASCII characters readable in a .bin file. 
 

 
Figure 6.12 GNU Radio Flowgraph Chain for Conversion of Binary Data to .bin Readable Characters 
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Chapter 7: Testing and Results 
 
7.1 Methodology 
 
Testing of the project was broken into four distinct phases: 
 

1. Transmitter testing with verification in Digipan 
2. Receiver testing using .WAV file created from MATLAB transmitter 
3. Doppler shift curve creation and estimation using International Space Station (I.S.S.) data 

as a reference 
4. End-to-end system testing and verification 

 
All simulation was initially done in MATLAB due to familiarity with the software.  Once a step 
had been completed in MATLAB, it was repeated in GNU Radio and tested in a similar manner. 
Testing of the project followed a logical order that built each new step upon the previous steps.  
For example, once the transmitter design was finalized and verified in Digipan, .WAV files could 
be created using the transmitter to test the receiver. 
 
7.2 Digipan 
 
Digipan is commercially available software used by amateur radio operators to transmit and 
receive signals across a variety of standards, including PSK-31 [13].  Digipan uses the computer’s 
soundcard to do some signal processing work and relies on input from a microphone between 1 
kHz and 5 kHz.  As long as the signal standard is supported, and in the range of frequencies that 
Digipan operates, it will be demodulated.  Digipan is easy to use and a trusted tool of the amateur 
radio operator.  Fig. 7.1 shows a Digipan capture of multiple PSK-31 transmissions. 
 

 
Figure 7.1 Digipan Capture of Multiple PSK-31 Messages 

 
For this project, an additional advantage of Digipan was that it tolerates small levels of Doppler 
shift.  To find what level of Doppler shift Digipan could handle, a fifteen second PSK-31 message 
was created (“the quick brown fox jumped over the lazy dog 1234567890”) and altered to exhibit 
Doppler shift at a constant rate between 0 Hz/second and 6 Hz/second.  Fig. 7.2 shows the 
received PSK-31 with a constant Doppler shift of 5 Hz/second.  Table 7.1 shows the results of the 
test.  Digipan was able to handle 2 Hz/second of Doppler shift before bit errors appeared in the 
received message.  
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Figure 7.2 Digipan Capture of PSK-31 Signal with 5 Hz/second of Doppler shift 

 

Doppler 
shift Rate 

Result 

0 Hz/sec Test case; “the quick brown fox jumps over the lazy dog 123456789” 
1 Hz/sec Full message appears, just like test case 
2 Hz/sec Full message appears, just like test case 
3 Hz/sec About ½ of characters are errors; “thtrowo fox Bumps over th” 
4 Hz/sec About ¾ of character are errors 
5 Hz/sec Only 2 character errors; “the q ick brown fox jumps over the lazy dog 123456789”; Digipan 

requires the right tuning to get this result 
6 Hz/sec About ½ of characters are errors; received message is scattered across multiple channels 

Table 7.1 Results for Digipan Doppler shift Tolerance Testing 
 

7.3 Transmitter Testing 
 
Initial testing of the transmitter came in designing the MATLAB simulation.  Time and frequency 
plots of each step in the creation of the PSK-31 signal were used to streamline the design process.  
In order to test that the generated PSK-31 signal in MATLAB was valid, the signal was multiplied 
by a subcarrier frequency of 1 kHz and played through the computer’s speakers.  A second 
computer was set-up with a microphone to capture the PSK-31 signal in Digipan.  When the 
message created in MATLAB matched the demodulated version shown in Digipan, the transmitter 
was completed.  Verification gave the green light for implementing the simulation code from 
MATLAB and modifying it to work with GNU Radio.  The GNU Radio transmitter was tested in 
a similar fashion.  Multiple tests were run across a variety of subcarrier frequencies to ensure that 
the PSK-31 transmitters were operating as desired.  Fig. 7.3 shows a successful test of the 
message “the goat is old and gnarly”, transmitted at a subcarrier frequency of 1 kHz using the 
GNU Radio transmitter. 
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Figure 7.3 Digipan Capture of PSK-31 Signal Generated in GNU Radio 

 
The over the air testing of the MATLAB transmitter proved beneficial to fully understanding the 
PSK-31 standard.  Since no single reference could be found that described every facet of the 
standard, testing allowed pieces of PSK-31 to be put together until Digipan validated the signal.  
For example, an early reference acknowledged that PSK-31 needed to filter the baseband bits 
before subcarrier multiplication, but did not specify how.  Various windowing functions and filters 
were tested before it was discovered that PSK-31 required a low pass filter with a cutoff 
frequency of 15 Hz. 
 
7.4 Receiver Testing 
 
Since the signals created by the transmitters in MATLAB and GNU Radio were verified to be 
accurate PSK-31 transmissions, these signals could be used to test the receiver design.  PSK-31 
signals created in MATLAB were saved as .WAV files that the receiver would read.  Both the 
MATLAB and GNU Radio receivers could be tested using these .WAV files. 
 
In designing the MATLAB receiver, some major simplifying assumptions were made: the receiver 
knew what the subcarrier frequency would be and that the beginning of the .WAV file would 
exactly mark the start of the first bit period.  As a result of these assumptions, the MATLAB 
receiver and GNU Radio receiver differ significantly. 
 
Firstly, the GNU Radio receiver required the use of a phase-locked loop to determine the 
subcarrier frequency of the incoming PSK-31 signal.  Two blocks were available in GNU Radio 
that seemed suitable for the task: a Costas loop block and a phase-locked loop carrier tracking 
block.  Each block was tested using to determine how well it could track changes in frequency.  
Fig. 7.4 shows the flowgraph utilized for testing the phase-locked loop. 
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Figure 7.4 GNU Radio Flowgraph Used for Testing the Costas Loop and Phase-locked Loop Carrier Tracking Blocks 

 
For the test, the loop bandwidth of the Costas loop and phase-locked loop carrier tracking block 
was set at 2*pi/100.  Although the Costas loop was able to respond to frequency changes more 
rapidly and with greater resolution than the phase-locked loop carrier tracking block, the Costas 
loop had an effective range that depended on the sampling rate.  For a given sampling rate, fs, the 
effective range of the Costas loop, frange, was given by Eqn. 7.1. 
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    Equation 7.1 

 
For a Doppler shift application where the subcarrier frequency would pass from positive 
frequencies, through DC to negative frequencies, the Costas loop could not be used.  Once this 
decision had been made, the loop bandwidth of the phase-locked loop was altered to 10*pi/100 so 
that the receiver would be able to track frequencies over the expected range of Doppler shift (+/- 
12 kHz).  
 
As part of using a phase-locked loop in GNU Radio, the .WAV file source had to be converted to a 
stream of complex numbers by using the Hilbert transform function.  Simply using a “float to 
complex block” and ignoring the imaginary argument would result in the phase-locked loop 
outputting the same signal that it was given as an input instead of converting the signal to 
complex baseband.  
 
The second major change to the GNU Radio receiver was altering the block diagram used to 
demodulate PSK-31 to account for functionality available in GNU Radio.  In the MATLAB 
receiver, the complex baseband signal was integrated over each bit period, evaluated to determine 
the bits and then the negation of the exclusive or operation was taken to leave the Varicode bit 
sequence as a result.  In the GNU Radio receiver, this approach was altered to remove the heavy 
processing requirement of integration.  Instead, the first step was to multiply each of the samples 
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in the complex baseband signal by a sample delayed by one bit period.  The signal was then sent 
through a low pass filter and a clock synchronization block was used to pick the Varicode bits out 
of the samples. 
 
While the MATLAB receiver was only tested using .WAV files generated by the transmitter, the 
GNU Radio receiver’s final test used a “live” transmission of PSK-31 from the MATLAB 
transmitter.  The headphone jack of the computer playing the PSK-31 signal output by the 
MATLAB transmitter was connected to the “line in” port of the USRP E100 using a standard 
audio cable.  Successful completion of this test proved that the GNU Radio receiver could 
perform clock synchronization even when the start of the first bit period was unknown.  The GNU 
Radio receiver was able to successfully decode the message “the quick brown fox jumped over 
the lazy dog 0123456789” without any bit errors.  Fig 7.5 shows a plot of the received signal at 
complex baseband and the resulting bits. 
 

 
Figure 7.5 Received Message at Complex Baseband and Resulting Bits 

 
 
7.5 Doppler Shift Curve Creation and Estimation 
 
Initial Doppler shift data for low-Earth orbit (LEO) was gathered in the USNA Satellite laboratory 
from transmissions of the International Space Station.  These curves were used to verify that the 
Doppler shift curves created in MATLAB appeared to match the range and extent of true Doppler 
shift curves. 
 
Doppler shift curves were then generated for the intended satellite orbit for an expected event 
horizon of 3000 km.  100 curves were generated with samples taken at a rate of 16 samples per 
second. MATLAB was used to generate an m-ary curve estimator that could take a random piece 
of a random Doppler shift curve and find which curve that piece was taken from and when on that 
curve the piece began.  Using this information, the curve estimator could return the value of the 
next projected value of Doppler shift that the satellite was expected to generate.  The M-ary curve 
estimator was coded as a custom block in GNU Radio and print statements were used to evaluate 
its performance. Fig. 7.6 shows a screen capture of some of the print statements created by the M-
ary curve estimator. For the test shown in Fig. 7.6, 5 samples are being recorded to estimate future 
values of Doppler shift and the curve estimator returns the best estimate for the next value of 
Doppler shift that the satellite will exhibit. 
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Figure 7.6 Terminal Window Capture of Output from M-ary Curve Estimator 

 
Various levels of noise were then added to the system and the performance of the M-ary curve 
estimator was measured over 1000 tests for various lengths of randomly generated samples drawn 
from the Doppler shift curves.  A successful test was only when the curve estimator could exactly 
pinpoint the curve and starting segment for the sample.  The results were calculated as a 
percentage of the 1000 tests that the curve estimator was exactly accurate and plotted against the 
length of the sample for each noise level.  Fig. 7.7 shows the MATLAB plot of the results. 
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Figure 7.7 MATLAB Plot of the M-ary Curve Estimator’s Ability to Detect Doppler Shift in Noise 

 
Since Digipan can tolerate Doppler shift at levels up to 2 Hz/second, the probability of detection 
curves were regenerated.  Eqn. 2 calculates what the tolerance level of Digipan given the duration 
of the sample used to estimate Doppler shift (from 0.125 seconds to 5 seconds) and the constant 2 
Hz/second of Doppler shift that Digipan could handle. 
 

݁ܿ݊ܽݎ݈݁݋ܶ ൌ ሺ݈ܵܽ݉݁݌	݊݋݅ݐܽݎݑܦ	ሾܿ݁ݏሿሻ ∗ 2	ሾு௭
௦௘௖
ሿ  Equation 7.2 

 
A successful test occurred whenever the difference in frequency between the start segment 
estimation given by the curve estimator and the actual starting segment was less than the value 
given in equation 2. Figure 7.8 shows the MATLAB plot of the probability of successful detection 
by the m-ary curve estimator given the tolerance of Digipan. Note that while the lowest rate of 
detection in Fig.7.7 occurs for additive white Gaussian noise (AWGN) with a standard deviation 
of 50 Hz, the lowest rate of detection for Fig. 7.8 occurs for AWGN with a standard deviation of 1 
kHz. 
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Figure 7.8 MATLAB Plot of the M-ary Curve Estimator’s Ability to Detect Doppler Shift in Noise given Digipan’s Tolerance 

 
7.6 End-to-end System Testing and Verification 
 
Complete testing of the system involved connecting the receiver to the transmitter and adding in 
the curve estimator.  While the actual system would use the results of the curve estimation to 
determine the subcarrier frequency utilized by the transmitter, the test set the subcarrier frequency 
of the transmitter to a constant 1 kHz so that Digipan could test the entirety of the system.  
Separate verification of the output produced by the curve estimator was completed to ensure that 
the whole system could as a single unit. 
 
The majority of the end-to-end testing, however, used Doppler shift altered PSK-31 signals to test 
the performance of the receiver.  While the receiver was able to bring the PSK-31 signals down to 
complex baseband, the clock synchronization block failed when Doppler shift was introduced into 
the PSK-31 signals.  To measure the accuracy of the receiver, the result of the low pass filter that 
preceded clock synchronization in the GNU Radio receiver was plotted against time and printed 
out.  Then, the bits were manually decoded and compared to the bits that should have been 
produced.  The Doppler shift from the direct overhead pass was used to generate two test cases as 
seen in Fig. 7.9. Table 7.2 lists the characteristics of each test case. 
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Figure 7.9 Side-by-side Comparison of Manually Decoded Message and the Expected Message 

 
Test Case Descrip-
tion 

Initial Doppler 
shift Frequency 

Final Doppler 
shift Frequency 

Change in Doppler 
shift Frequency 

Rate of Change 
in Doppler shift 

Relatively flat piece 
of curve in yellow on 
left of Fig. 7.9 

10203.70 Hz 9562.03 Hz 641.67 Hz 42.78 Hz/sec 

Relatively steep piece 
of curve in yellow on 
right of Fig. 7.9 

4432.44 Hz 1447.87 Hz 2984.57 Hz 198.97 Hz/sec 

Table 7.2 Numerical Characterization of Doppler shift used in PSK-31 Receiver Test Cases 
 
For both test cases, manual decoding of the PSK-31 signal at complex baseband resulted in zero 
bit errors. Although complete automation of the process is currently limited by the receiver’s 
ability to decode the bits in the PSK-31 signal at complex baseband, the two tests demonstrated 
that the satellite could receive signals and correctly demodulate signals affected by Doppler shift. 
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Chapter 8: Future Work 
 
8.1 Stand-Alone PSK-31 Transmitter 
 
One improvement currently in the works for the transmitter is the ability to take user input from a 
GUI and use that as the message the transmitter will send.  This feature is called asynchronous 
input because the user will not always type at a constant rate.  The user will start and stop typing 
at certain points in his message, which creates some problems in GNU Radio.  GNU Radio blocks 
output data to a buffer that consecutive blocks read as an input buffer.  When these buffers overfill 
or run dry, both problems that can occur with asynchronous input, GNU Radio does not behave in 
a desirable manner.  With the upgrade of GNU Radio to patch 3.7, asynchronous systems are now 
feasible by using stream tags. 
 
In order to bring asynchronous input into GNU Radio, a custom block must be made.  Creating a 
block in GNU Radio is an extensive process that requires knowledge of out-of-tree modules.  An 
out-of-tree module is a directory where test code and blocks can be developed separate from the 
core functionality of GNU Radio.  Developing custom blocks requires a strict process to be 
followed and complete understanding of how a block must be formatted in C++ or Python.  
Furthermore, the block must be complete with an xml description if it is going to be utilized in the 
GNU Radio Companion. 
 
Going one step further, adding a GUI to the keyboard source block would allow the user to hotkey 
certain presses that are common in the amateur radio community, such as inputting a call-sign or 
calling up another station.  A fully functional GUI could even allow the user to alter the sub-
carrier frequency of their transmission in real-time. 
 
8.2 Utilize Stream Tags to Insert the “Tail” 
 
Currently, the PSK-31 transmitter does not add the 750 milliseconds of unmodulated carrier to the 
end of the transmitted signal.  This feature is not completely necessary, because the receiver is 
only looking for bits in the transmission and there are no bits in the tail.  The tail does help to 
prevent the last couple characters from being warped at the receiving end, but this issue is 
currently solved by padding the end of the message with additional space characters. 
 
In order to add the “tail” on the end of the PSK-31 transmission, stream tags need to be utilized.  
Stream tags are a relatively new feature in GNU Radio that I have yet to fully explore.  A 
condition would be set that would look for the end of text (ETX) character.  When this condition 
was met, a gate would switch to transmit the unmodulated subcarrier frequency of 0.75 seconds.  
Another condition would then need to be set to stop the tail from transmitting after the 0.75 
seconds concluded. 
 
At this point in time, the “tail” feature was not deemed critical in the operation of this project. 
 
8.3 Multi-Channel Capability 
 
Currently, the system is designed for use by a signal operator at any given time.  This greatly 
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reduces the ability of any two users to communicate with each other during a single overhead pass 
of the satellite.  With less than a ten minute window to communicate with the satellite during each 
pass, users must be able to communicate simultaneously. 
 
In order to accommodate multiple users, some aspects of the project would have to be redesigned.  
The simplest foreseeable way to accomplish this goal would be to designate certain frequencies 
that could be used and run another instance of the project over each band.  This approach is, 
however, computation intensive and unlikely to work for the large number of users that could 
theoretically be supported by such a narrowband signal. 
 
8.4 Receiver Automation 
 
Currently, the receiver is unable to perform the clock recovery operation necessary to sample the 
bits at the correct intervals.  While this step is critical for end-to-end performance of the 
communications system, it is a single step that can be accomplished at a later date.  Verification of 
the receiver design requires that the bits be manually sampled by the Trident Scholar.  In no way 
does the unavailability of this functional block within GNU Radio indicate that the project is not 
possible to complete.  It is merely a reflection of the current lack of a block within GNU Radio 
that can perform the desired function.  
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Appendices 
 
Appendix A: GNU Radio Tutorial 
 

GNU Radio Installation and User Guide 
 

What is GNU Radio? 
GNU Radio is an open-source platform for the communications field. Imagine taking all the 
signal processing blocks from Simulink and all the communications functions from MATLAB 
and putting them into a free package and you start to scratch the surface of what GNU Radio 
actual contains. There is a graphical user interface (GUI) called GNU Radio Companion where 
users can drag and drop pre-made blocks to create communications systems. Users can even 
define their own blocks using Python code. If a user wants to dive deeper into their project, they 
can work entirely in Python or even in C++. 
 
One of the major distinctions of GNU Radio is that, as open-source software, anything created in 
GNU Radio can be made to work with any piece of hardware. This being said, some hardware is 
more compatible with GNU Radio. The Universal Software Radio Peripheral (USRP) series, 
developed by Matt Ettus, is designed specifically for use with GNU Radio. Additional software, 
called the Universal Hardware Driver (UHD) links the USRP with anything created in GNU 
Radio. A variety of USRP devices exist for different purposes. This project implements the E100 
with the basic transmitter and receiver daughterboards. 
 
Additionally, the GNU Radio community is a large, evolving body. Tutorials, examples and 
function blocks are all available through the forum pages, YouTube and across the internet. The 
community is available to answer questions and help troubleshoot problems. 
 
What is all of this actually used to accomplish? 
Before that question is answered, think about cell phones in the late ‘80s or early ‘90s. They 
could only do one thing – call people. If you wanted to send messages to somebody, you would 
have to buy a pager and then you would have to lug around two devices instead of one. Today’s 
phones, however, can do both of these things and more! They can be used to call, text, surf the 
web and play video games – all on the same device. The way the phone works depends on which 
application – or program – is in use. 
 
This is called software-defined radio (SDR), which is exactly the purpose of GNU Radio and the 
USRP. The USRP is the hardware whose function is defined by the user through GNU Radio. 
The UHD is simply used to translate the user’s instructions from GNU Radio to something that 
the USRP can understand. 
 
How do I get started? 
Before getting started, make sure that you have at least 500 MB worth of free space on your hard 
disk and a fair amount of time. On a typical computer set-up, it takes about two hours to install 
UHD and GNU Radio. 
 
Installing GNU Radio with UHD can be done easily on any Ubuntu or Fedora machine by 
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opening a terminal window and running the following command from the GNU Radio website: 
wget http://www.sbrac.org/files/build-gnuradio && chmod a+x ./build-gnuradio && ./build-gnuradio 

This will remove any previous installations of UHD or GNU Radio, download the current stable 
version and then build the software from source code. If done correctly, the terminal window 
should spit out text similar to fig. 1. 
 

 
Fig. 1 Build GNU Radio Script 

 
The build radio script takes a long time to run. After a successful build, the terminal window will 
output some text similar to fig. 2. Also, the script will tell you how to set the PYTHONPATH. 
This is the pathway that the computer will use to look for Python. Execute the command shown 
and GNU Radio will be ready to operate! 
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Fig. 2 Successful Build of GNU Radio 

 
If your system is not running Fedora or Ubuntu (i.e. Windows) or you would prefer to manually 
build GNU Radio from source or even install an older binary version, the GNU Radio 
installation guide has a set of instructions that will help you in your endeavor. An important item 
to note is that you must install UHD from Ettus Research before you build GNU Radio from 
source if you want to use GNU Radio with your favorite USRP device. 
 
Now that I have GNU Radio installed, how do I connect to my favorite USRP device? 
First of all, it depends what sort of USRP device you have. Any USRP device that is in the “E” 
series is designed to operate as its own computer – the “E” stands for embedded, as in embedded 
processor. All other USRP devices must be controlled by a computer through an Ethernet 
connection. This section will cover how to establish communications with a USRP2 device and 
the same concepts should apply to all other USRP devices that are not in the “E” series. 
Once the USRP is connected, the command “find_uhd_devices” should be able to locate the 
USRP. If this is unsuccessful, you can specify the IP address of the USRP be using the command:  
 

find_uhd_devices --args=“addr=192.168.10.2” 
 

If this does not prove to be successful, then the IP address may be something other than 
192.168.10.2. The first step in setting the desktop IP address using: 
 

sudo ifconfig eth0 192.168.10.1 
 

Next, the following command must be executed from the /uhd/host/utils directory: 
 

sudo ./usrp2_recovery.py --ifc=eth0 --new-ip=192.168.10.3 
 

This sets the IP address of the USRP2 to 192.168.10.3. If this is not successful, then the FGPA 
image on the USRP may need to be updated. Ettus Research has guides and forums that cover 
how to update FPGA files on each of their devices. 
 



50 
  

Once communication has been established with the USRP, you can create a simple FM receiver 
by following the YouTube video at http://www.youtube.com/watch?v=KWeY2yqwVA0. Note 
that this implementation will not work on the E100 or E110.  
 
Well, what would I have to do to communicate with my new USRP E100? 
The USRP “E” series has an embedded processor built into the device that allows the E100 and 
E110 to be used as its own computer. This means that unlike previous USRPs, the “E” series 
does not require a separate computer to control the USRP. Furthermore, this changes the way that 
the USRP is used. Software can be developed in GNU Radio on the USRP, or it can be 
developed on another machine and copied onto the USRP. 
 
To set-up the E100 as a stand-alone computer, you will need a monitor that can operate from a 
DVI port and a keyboard. If you also want to use a mouse, then you will need a USB splitter. The 
E100 ships with an ADP-to-USB cable that will also be necessary. Plug the monitor into the DVI 
port, and the ADP-to-USB cable into the “USB host” port. From here, the USB splitter can be 
connected or you can plug in the keyboard directly (if you do not need to use a mouse). Power 
the device and you can get off running. The default username is “root” and the default password 
is “usrpe”. UHD and GNU Radio come preinstalled on the E100. Fig. 3 shows the E100 set-up 
with a mouse and keyboard attached via a four way USB splitter. Fig. 4 zooms in on the E100 
and the ports utilized. 
 

 
Fig. 3 Overview of E100 Set-up for Stand-alone Operation 
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Fig. 4 Close-up of E100 in Stand-alone Operation 

 
There are two different methods to operate the E100 from another machine. The first is to use a 
standard-A to mini-B USB cable from the “console” port on the E100 to any USB port on the 
second machine. This approach requires the GNU Screen application to be installed on the host 
machine – “sudo apt-get install screen” will install the application. Fig. 5 shows the E100 
connected to work with the “screen” command. Run “dmesg” in a terminal window on the 
second machine to locate which USB port is connected to the USRP. If you have just connected 
the USRP to the host machine, then fig. 6 shows what you should see near the bottom of the 
terminal output. 
 

 
Fig. 5 Close-up of E100 Set-up for Screen Mode Operation 
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Fig. 6 Terminal Window Output of “dmesg” Command 

 
The line “…now attached to ttyUSB0” (second from the bottom) is important because 
“ttyUSB0” is the address of the USRP on the host machine. That address is then used to create a 
screen on the host machine by using the following command: 
 

sudo screen /dev/ttyUSB0 115200,cs8,-ixon,-ixoff 
 

Once this command has been entered, power on the E100 and the system should begin to boot. 
Fig. 7 shows the result of a successful boot and the log-in screen. Again, the default username is 
“root” and the default password “usrpe”. 
 

 
Fig. 7 Screen Mode Operation: Log-in Menu 

 
The second method uses the network port on the E100 similar to previous USRP versions. An 
Ethernet cable must be connected into the Ethernet port on the E100 and the host machine. If you 
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know the IP address of the E100, then you can use the “ssh” command to tunnel into the device 
and proceed similar to the screen approach. By default, the E100 is not set with a static IP 
address. This means that if your E100 is straight from the factory, you may need to set the IP 
address using one of the other two methods before you can communicate through the network 
port. When you have vented your frustration and applied either the stand-alone or screen 
approach, open a terminal window and type the following command: 
 

Vi /etc/network/interfaces 
 

The command will open a virtual text editor where the static IP address for the USRP can be set. 
Fig. 8 shows what should appear in the virtual text editor; use the arrow keys to scroll through 
the document until you find the segment seen in fig. 9. 
 

 
Fig. 8 Virtual Editor: Network Interfaces Configuration 

 

 
Fig. 9 Virtual Editor: Network Interfaces Configuration – Wired Network Connections before Editing 

 
Move the cursor to the end of the line that ends with “eth0 inet dhcp” and type “X”. This will 
delete text one character back from the cursor. Delete the word “dhcp”. Once this is done, type 
“a” to begin inserting text and add the lines seen in fig. 10. After all text has been entered, hit 
“Esc” to exit editing mode and then type “:x” to save and exit the virtual editor. 
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Fig. 10 Virtual Editor: Network Interfaces Configuration – Wired Network Connections after Editing 

 
After editing the network interfaces, type “sudo ifdown eth0” and then “sudo ifup eth0” to 
make the changes take effect. The purpose of editing network interfaces is to set the static IP 
address as part of the booting process. This saves the user from having to set the static IP address 
every time they power on the USRP. Once the static IP address has been set, the USRP can be 
accessed through the network port with the “ssh” command. Fig. 11 shows the E100 set-up to 
communicate via the network port. 
 

 
Fig. 11 E100 in Network Operations Mode 

 
Can you step through an example in GNU Radio? 
Now that you can communicate with the E100, turn on the device in stand-alone mode. Once you 
are logged in, open a terminal and type “gnu-radio companion”. This will open the GNU Radio 
Companion GUI where you can create anything your heart desires. An easy project to start with 
is an FM receiver. Due to differences in the hardware between the E100 and the USRP2, this FM 
receiver will be different from the one shown in the Ettus Research YouTube video. 
 
In the GNU Radio Companion, double click on the “Options” block to edit the properties of that 
block. Change the project name in the “ID” field to “FM_RX_Example” and under generate 
GUI, select “none”. Now save the project as “FM_RX_Example.grc”. The name of the project 
must match the file name where it is saved. Edit the “Variable” block so that the “ID” is 
“samp_rate” and the value is “1.024e6”. 
 
To add a block, you can search through the available blocks or use the “CTL + f” key combo to 
search for a particular block. Find the “UHD: USRP Source” block (it is under sources) and add 
it to the flow graph. Edit the sample rate field to “samp_rate” (the variable that was just set), the 
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center frequency to 25 MHz and the gain to 70 dB. 
 
Next, add a low pass filter block and connect it to the “USRP Source” block by clicking on the 
out box on the “USRP Source” and the in box on the low pass filter. The head of the arrow is 
black, which means that the type leaving the “USRP Source” is the same type required by the 
input to the low pass filter. If the arrow head is red, then there is a type mismatch. Edit the low 
pass filter block so that decimation is 4, gain is 1 dB, sample rate is equal to “samp_rate”, the 
cutoff frequency is 95 kHz and the transition width is 45 kHz. The purpose of this filter is to take 
advantage of aliasing to bring the signal down to frequencies at which the USRP can operate. 
This same concept is utilized in the “USRP Source” – since the sample rate is 1.024 MHz, the 
signal is aliased down to 512 kHz (the Nyquist rate for a signal at 512 kHz is 2*512kHz which 
equals 1.024 MHz). In the low pass filter, the signal is aliased further down to 128 kHz. 
 
After the low pass filter will be a “WBFM Receive” block. This stands for wideband frequency 
modulation. Connect this block to the low pass filter and edit the quadrature rate to be 256 kHz 
and the audio decimation rate to be 8. 
 
Following the “WBFM Receive” will be another low pass filter. The function of this low pass 
filter is to alias the signal and to remove noise from the transmission. Connect the output of the 
“WBFM Receive” block to the second low pass filter. Now, edit the low pass filter so that the 
decimation rate is 2, the gain is 1 dB, the sample rate is 32 kHz, the cutoff frequency is 10.625 
kHz and the transmission width is 5 kHz. 
 
Finally, add an audio sink block to the flow graph. Connect the output of the second low pass 
filter to the input to the audio sink. Edit the audio sink block so that the sample rate is 16 kHz 
and the device is “hw:0,0”. This will allow the USRP to play the audio generated by the FM 
receiver out of the “line out” port. Fig. 12 shows the final flow graph in GNU Radio Companion. 

 
 



 
 

Fig. 12 Completed FM Receiver Flow Graph 
 



 
 
 
Appendix B: MATLAB PSK31 Transmitter Code 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Task: Take Text Stream and create PSK-31 Signal       % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
clc, clear, close all 
  
%enter the message as a string 
message=input('Write Message Here: ', 's');   
  
L = length(message); 
  
code = []; 
base = []; 
  
for k = 1:L 
    y = varicode_lookup(message(k)); 
    code = [code y 0 0]; 
end 
  
code = [0 code]; 
  
for i = 1:8 
    code = [0 0 0 0 0 0 0 0 0 0 code]; 
end 
  
%Create the alternating base waveform (series of 0 bits) 
for k = 1:length(code) 
    base=[base mod(k-1,2)]; 
end 
  
netshift(1) = ~base(1); 
%Combine the base 01010... pattern with the code to produce PSK31 
for k = 2:length(base) 
    if code(k) == 1 
        netshift(k) = netshift(k-1); 
    else 
        netshift(k) = ~netshift(k-1); 
    end 
end 
  
  
%%%%PSK-31 Signal Constants 
fc = 31.25; 
f_carrier = 1e3; 
Tc = 1/fc; 
fs = 16e3; 
Ts = 1/fs; 
PSK_amp = 0.65; 
  
%%%%length of time vector will be determined by the number of bits 
num_bits = length(netshift); 
T = 0:Ts:((num_bits*fs/fc-1)*Ts); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Expand the sim_code vector to accomodate for sampling rate 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
newbit      = []; 
PSK31_base  = []; 
  
%Expand the warble vector 
for i=1:length(netshift) 
    for j=1:(fs/fc); 
        newbit = [newbit netshift(i)]; 
    end 
     
    PSK31_base = [PSK31_base newbit]; 
    newbit     = []; 
end 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%   Filter the Baseband bits 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
figure(1) 
plot(T, PSK31_base,'g') 
grid on 
% for j=1:num_bits+81 
%     line([j*(1/fc) j*(1/fc)], [-3 3]) 
% end 
xlabel('Time (Seconds)'), ylabel('Amplitude (Volts)') 
title('PSK31 Baseband Bits') 
axis([0 (((num_bits)*fs/fc-1)*Ts) -1 2]); 
  
[freq1, power1] = get_spectrum(PSK31_base, fs); 
  
figure(2) 
plot(freq1, power1) 
grid on 
xlabel('Frequency (Hz)'), ylabel('Power (dB)') 
title(['PSK31 Baseband Bits: Frequency Spectrum, f_{s} = ' num2str(fs)]) 
axis([-100 100 -60 5]); 
  
  
%LPF is actually done here 
PSK31_filtered = filter_Baseband(PSK31_base, 15, fs); 
  
  
  
figure(3) 
plot(T, PSK31_filtered,'g'); 
for j=1:num_bits 
    line([j*(1/fc) j*(1/fc)], [-3 3]) 
end 
xlabel('Time'), ylabel('Amplitude') 
title('PSK31 baseband') 
%axis([0 (((num_bits+81)*fs/fc-1)*Ts) -3 3]); 
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[freq2, power2] = get_spectrum(PSK31_filtered, fs); 
  
figure(4) 
plot(freq2, power2) 
grid on 
xlabel('Frequency (Hz)'), ylabel('Power (dB)') 
title(['PSK31 Baseband Bits after LPF: Frequency Spectrum, f_{s} = ' num2str(fs)]) 
axis([-100 100 -60 5]); 
  
figure(5) 
subplot(2,1,1) 
plot(freq1, power1) 
grid on 
xlabel('Frequency (Hz)'), ylabel('Power (dB)') 
title(['PSK31 Baseband Bits: Frequency Spectrum, f_{s} = ' num2str(fs)]) 
axis([-100 100 -60 5]); 
subplot(2,1,2) 
plot(freq2, power2) 
grid on 
xlabel('Frequency (Hz)'), ylabel('Power (dB)') 
title(['PSK31 Baseband Bits after LPF: Frequency Spectrum, f_{s} = ' num2str(fs)]) 
axis([-100 100 -60 5]); 
  
%%%Create the PSK-31 waveform 
PSK31_modulated = cos(2*pi*f_carrier*T) .* PSK31_filtered; 
  
  
  
figure(6) 
plot(T, PSK31_modulated,'g'); 
for j=1:num_bits 
    line([j*(1/fc) j*(1/fc)], [-3 3]) 
end 
xlabel('Time'), ylabel('Amplitude') 
title('PSK31 @ 1kHz') 
%axis([0 (((num_bits+81)*fs/fc-1)*Ts) -3 3]); 
  
  
figure(7) 
subplot(2,1,1) 
plot(T, PSK31_filtered,'g') 
grid on 
for j=1:num_bits 
    line([j*(1/fc) j*(1/fc)], [-3 3]) 
end 
xlabel('Time'), ylabel('Amplitude') 
title('PSK31 baseband') 
axis([(((75)*fs/fc-1)*Ts) (((num_bits)*fs/fc-1)*Ts) -1 1]); 
subplot(2,1,2) 
plot(T, PSK31_modulated,'g') 
grid on 
for j=1:num_bits 
    line([j*(1/fc) j*(1/fc)], [-3 3]) 
end 
xlabel('Time'), ylabel('Amplitude') 
title('PSK31 @ 1kHz') 
axis([(((75)*fs/fc-1)*Ts) (((num_bits)*fs/fc-1)*Ts) -1 1]); 



60 
  
  
  
[freq3, power3] = get_spectrum(PSK31_modulated, fs); 
  
figure(8) 
plot(freq3/1000, power3) 
xlabel('Frequency (kHz)'), ylabel('Power (dB)') 
title(['PSK31 @ 1kHz: Frequency Spectrum, f_{s} = ' num2str(fs)]) 
axis([-2.5 2.5 -60 5]); 
  
  
  
%%%Add the 0.750 seconds of unmodulated carrier to the end of the signal 
T2 = (((num_bits)*fs/fc-1)*Ts):Ts:((((num_bits)*fs/fc-1)*Ts)*Ts+0.750); 
T = [T T2]; 
trail = cos(2*pi*f_carrier*T2); 
net_signal = [PSK31_modulated trail]; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%   Filter the shifted copies 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
PSK31_final = filter_IF(net_signal, 1000-15, 1000+15, 16e3); 
%PSK31_final = net_signal; 
  
[freq4, power4] = get_spectrum(PSK31_final, fs); 
  
figure(9) 
plot(freq4/1000, power4) 
xlabel('Frequency (kHz)'), ylabel('Power (dB)') 
title('PSK31 Filtered: Frequency Spectrum, f_{c} = 1000') 
axis([-2 2 -60 5]); 
  
  
%%%Write a .wav file with the PSK31_final 
audiowrite('NewHopePSK@1k.wav',PSK31_final,fs); 
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Appendix C: MATLAB PSK31 Receiver Code 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  Task: Take PSK-31 Signal and recreate the message     % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
clear, clc, close all 
  
%enter the message as a string 
f_carrier=input('What is the center frequency of the signal? ');   
  
%load the PSK31 wav file 
PSK31_TX = transpose(wavread('NewHopePSK@1k.wav')); 
  
%Back out the time vector 
fs = 16e3; 
Ts = 1/fs; 
num_samples = length(PSK31_TX); 
amount_time = num_samples / fs; 
  
t = 0:Ts:amount_time-Ts; 
  
%MIX the PSK31 Signal with a cosine wave at the carrier frequency 
base = cos(2*pi*f_carrier.*t); 
  
figure(1) 
subplot(2,1,1) 
plot(t, base) 
xlabel('Time (sec)'), ylabel('Amplitude (v)') 
title('Carrier Waveform') 
subplot(2,1,2) 
plot(t, PSK31_TX) 
xlabel('Time (sec)'), ylabel('Amplitude (v)') 
title('PSK31 Waveform') 
  
mixed = base .* PSK31_TX; 
  
figure(2) 
plot(t, mixed) 
xlabel('Time (sec)'), ylabel('Amplitude (v)') 
title('Mixed Signal') 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Integrate over a bit period 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
step2 = []; 
for i = 1:length(mixed)/(fs/31.25) 
    temp = []; 
    for j = 1:512 
        temp(j) = mixed((i-1)*512+j); 
    end 
    step2 = [step2 intdump(temp, 512)]; 
end 
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%Multiply area by the bit period 
step2 = step2/31.25; 
  
figure(3) 
plot(step2) 
ylabel('Energy') 
title('Samples Integrated by Bit Period (0.032 seconds)') 
  
%use the sign of the integrated samples to determine bits 
phase_value = (sign(step2)+1)/2; 
  
%plot the bits 
figure(4) 
plot(phase_value, 'bo'), grid on 
xlabel('Time (sec)'), ylabel('Amplitude (v)') 
title('Phase of the Signal') 
axis([0 length(phase_value)+5 -0.5 1.5]) 
  
  
%Pick out the varicode 
varicode_bits = []; 
for i = 2:length(phase_value) 
    varicode_bits(i-1) = ~bitxor(phase_value(i),phase_value(i-1)); 
end 
  
varicode_bits = [varicode_bits 0]; 
  
%plot the varicode 
figure(6) 
plot((Ts:Ts:(num_samples/512)*Ts), varicode_bits, 'bo'), grid on 
xlabel('Time (sec)'), ylabel('Amplitude (v)') 
title('Baseband Bits') 
axis([0 (num_samples/512+1)*Ts -0.5 1.5]) 
  
%Convert the varicode back into text 
start_index  = []; 
finish_index = []; 
  
for i = 3:length(varicode_bits) 
   %Find all the starts to varicode sequences 
   if varicode_bits(i-2) == 0 && varicode_bits(i-1) == 0 
        if varicode_bits(i) == 1 
            start_index = [start_index i]; 
        end      
   end 
  
   %Find all the ends to varicode sequences 
   if (varicode_bits(i-2) == 1) && (varicode_bits(i-1) == 0) 
        if varicode_bits(i) == 0 
            finish_index = [finish_index i-2]; 
        end      
   end 
end 
  
%Look-up the varicode sequences to get the chars 
message = []; 
varicode_sequence = []; 
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for i = 1:length(start_index) 
    for j = start_index(i):finish_index(i) 
        varicode_sequence = [varicode_sequence num2str(varicode_bits(j))]; 
    end 
  
    message = [message array_to_text_s(varicode_sequence)]; 
    varicode_sequence = []; 
end 
  
message 
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Appendix D: Doppler Curve Plots from ISS Data 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%% Plot Doppler curves of ISS                                      %%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
clear 
  
t1 = 0:10:240; 
a1 = [319, 320, 322, 323, 324, 326, 327.8, 329.8, 332.2, 334.5, 339, 341, 343, 350, 
353, 357, 1, 6, 10.6, 15.6, 21, 26, 35, 41, 45]; 
e1 = [2.8, 3.9, 4.9, 6.0, 6.9, 7.8, 8.9, 10.1, 11.4, 12.6, 14, 15, 17, 18, 19.7, 
20.7, 22, 23, 23, 23.6, 24, 24, 24, 23, 22]; 
ds1= [9146, 9048, 8923, 8785, 8652, 8528, 8349, 8109, 7814, 7506, 7126, 6780, 6280, 
5550, 4888, 4330, 3503, 2890, 2200, 1300, 650, -300, -1556, -2550, -3190]; 
  
figure(1) 
plot(t1, ds1) 
xlabel('Time (sec)') 
ylabel('Dopple Shift (Hz)') 
title('Dopple Curve for ISS: Some Skirting Pass') 
  
  
t2 = 0:15:(19*15); 
a2 = [243, 244, 247, 250, 255, 265, 283, 319, 358, 18, 29, 34, 38, 41, 42, 44, 45, 
46, 46, 47]; 
e2 = [26, 30, 35, 41, 49, 58, 67, 71, 65, 57, 48, 41, 34, 29, 25, 22, 19, 16, 14, 
12]; 
ds2= [8862, 8438, 7857, 7003, 5892, 4093, 2022, -700, -2993, -4880, -6330, -7440, -
8113, -8668, -8987, -9230, -9450, -9600, -9700, -9781]; 
  
figure(2) 
plot(t2, ds2) 
xlabel('Time (sec)') 
ylabel('Dopple Shift (Hz)') 
title('Dopple Curve for ISS: Overhead Pass') 
  
  
t3 = 0:15:(15*25); 
a3 = [184, 182.4, 181, 179, 177, 175, 173, 170.4, 167, 164.7, 162, 158, 154, 151, 
147, 142.7, 138.5, 134, 129, 125, 120.2, 115, 111.7, 107, 103.4, 99.7]; 
e3 = [-0.5, 0.3, 1, 1.7, 2.5, 3.3, 4.2, 5.0, 5.8, 6.6, 7.4, 8.1, 8.8, 9.5, 10.1, 
10.5, 10.9, 11.1, 11.2, 11.2, 11.0, 10.7, 10.2, 9.7, 9.1, 8.4]; 
ds3= [8220, 8070, 7907, 7708, 7476, 7210, 6930, 6624, 6243, 5819, 5390, 4872, 4390, 
3600, 2998, 2303, 1505, 750, 90, -725, -1556, -2270, -2980, -3730, -4260, -4830]; 
  
figure(3) 
plot(t3, ds3) 
xlabel('Time (sec)') 
ylabel('Dopple Shift (Hz)') 
title('Dopple Curve for ISS: Large Skirting Pass') 
  
  
t4 = 0:15:(15*32); 
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a4 = [278, 277, 275, 273, 211, 269, 267.5, 265.5, 263.4, 261.2, 258.9, 256.7, 
254.4, 252.0, 249.6, 247.3, 244.8, 211.9, 239.6, 237.0, 234.6, 232.5, 230, 227.7, 
255.5, 223.2, 220.9, 218.8, 216.6, 214, 212.5, 210.6, 208.7]; 
e4 = [-6.5, -6, -5.6, -5.2, -4.9, -4.6, -4.2, -3.9, -3.6, -3.3, -3.1, -2.9, -2.7, -
2.5, -2.4, -2.3, -2.2, -2.1, -2.1, -2.2, -2.3, -2.4, -2.5, -2.7, -2.8, -3.1, -3.3, 
-3.6, -3.8, -4.2, -4.5, -4.9, -5.3]; 
ds4= [5880, 5630, 5390, 5140, 4890, 4600, 4330, 4010, 3680, 3350, 3010, 2640, 2290, 
1880, 1490, 1080, 680, 200, -150, -540, -940, -1330, -1720, -2130, -2490, -2860, -
3210, -3540, -3870, -4200, -4470, -4750, -5010]; 
  
figure(4) 
plot(t4, ds4) 
xlabel('Time (sec)') 
ylabel('Dopple Shift (Hz)') 
title('Dopple Curve for ISS: Tangential Pass') 
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Appendix E: Doppler Curve Generator MATLAB Code 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%    Doppler Curve Generator: Based on ISS Data                       %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
clc, clear 
  
%ISS Data - simplified 
orbit_height = 418.5; %Average Height of ISS in km (apogee+perigee)/2 
orbit_speed  = 7.66;  %Average Speed of ISS is km/sec 
freq_station = 437.8e6; %Operating Frequency of ISS [Hz] 
  
Ts = 1;   %Sample Period [seconds] 
Time_end = 745 - mod(745,Ts); %Max possible time(longest overhead case) 
t = 0:Ts:Time_end; %time vector in seconds 
  
  
%Generate Start Points for the Pass 
prompt = 'Choose the starting coordinates of the pass. The astronomical horizon is 
3000 km in diameter, so choose an initial condition between -1500 km and 1500 km.' 
y0 = input('Input the starting condition (km): '); 
y1 = input('Input the ending   condition (km): '); 
x0 = -2000; % [km] 
x1 =  2000; % [km] 
  
%Calculate the Pass Line 
x = -2000:4000/length(t):2000; % [km] 
m = (y1 - y0)/4000; 
b = 2000*m+y0; 
  
PassLine = m.*x+b; % [km] 
  
  
%Generate the Astronmical Horizon 
x2 = -1500:3000/length(t):1500; % [km] 
horizon_top    = sqrt(1500^2 - x2.^2); 
horizon_bottom = -1*sqrt(1500^2 - x2.^2); 
  
  
%Plot the overhead view of the Satellite Pass 
figure (1) 
plot(x,PassLine, 'b ', x2, horizon_top, 'r', x2, horizon_bottom, 'r'), grid on 
xlabel('Distance in x-direction relative to RX (km)'), ylabel('Distance in y-
direction relative to RX (km') 
title('Overhead View of Satellite Pass - Flat-World Assumption') 
axis([-2500, 2500, -2000, 2000]) 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Convert the Satellite Pass Equations to time-based functions 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
d_sec        = orbit_speed;               %time covered in one second by the satel-
lite 
d_total     = sqrt((x1-x0)^2+(y1-y0)^2);  %total distance covered for this overhead 
pass 
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time_needed = d_total / d_sec;            %amnt of time needed to cover the total 
distance 
delta_x     = (x1-x0)/time_needed;        %step-size for the x-variable 
  
x_t = delta_x*t + x0; 
y_t = m.*x_t + b; 
z_t = orbit_height; 
  
  
%Check that the time-based functions are correct 
figure(2) 
  
subplot(2,1,1) 
plot(x,PassLine, 'b '), grid on 
title('Check of Time-Based Functions - Flat-World Assumption') 
xlabel('x-distance relative to RX (km)'), ylabel('y-distance relative to RX (km)') 
axis([-2500, 2500, -2000, 2000]) 
  
subplot(2,1,2) 
plot(x_t,y_t, 'r '), grid on 
xlabel('x-distance relative to RX (km)'), ylabel('y-distance relative to RX (km)') 
axis([-2500, 2500, -2000, 2000]) 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%   Convert Cartesian Coordinates into Spherical Coordinates          %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
r_t     = sqrt(x_t.^2 + y_t.^2 + z_t.^2);    %result in km 
theta_t = atan(y_t./x_t);                    %result in radians 
phi_t   = acos(z_t./r_t);                    %result in radians 
  
  
figure(3) 
  
subplot(3,1,1) 
plot(t,r_t), grid on 
  
subplot(3,1,2) 
plot(t,theta_t), grid on 
  
subplot(3,1,3) 
plot(t,phi_t), grid on 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%   Calculate the Doppler Shift in Two Directions                     %%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%Z-direction will not cause Doppler shift, but the x and y changes will 
%in spherical coordinates 
  
%Create a t2 vector and delta_v_t vector 
t2        = (Ts/2):Ts:Time_end-(Ts/2); %time vector in seconds 
delta_v_t = 1:length(t2); 
DS_t      = 1:length(t2); 



68 
  
  
for i = 1:length(t)-1 
    delta_v_t(i) = -(r_t(i+1)-r_t(i))/Ts;  %result in km/sec 
    DS_t(i)      = freq_station*delta_v_t(i)*1000/(2.99e8); 
end 
  
figure(4) 
plot(t2, DS_t/1000), grid on 
xlabel('Time (sec)'), ylabel('Doppler Shift (kHz)') 
title('Doppler Shift vs. Time') 
%axis([0 100 -10 10]) 
  


