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Abstract 25 

The non-hydrostatic (NH) compressible Euler equations of dry atmosphere are solved in 26 

a simplified two dimensional (2D) slice (X-Z) framework employing a spectral element 27 

method (SEM) for the horizontal discretization and a finite difference method (FDM) for the 28 

vertical discretization. The SEM uses high-order nodal basis functions associated with 29 

Lagrange polynomials based on Gauss-Lobatto-Legendre (GLL) quadrature points. The FDM 30 

employs a third-order upwind biased scheme for the vertical flux terms and a centered finite 31 

difference scheme for the vertical derivative terms and quadrature. The Euler equations used 32 

here are in a flux form based on the hydrostatic pressure vertical coordinate, which are the 33 

same as those used in the Weather Research and Forecasting (WRF) model, but a hybrid 34 

sigma-pressure vertical coordinate is implemented in this model. We verified the model by 35 

conducting widely used standard benchmark tests: the inertia-gravity wave, rising thermal 36 

bubble, density current wave, and linear hydrostatic mountain wave. The numerical results 37 

demonstrate that the horizontally spectral element vertically finite difference model is 38 

accurate and robust. By using the 2D slice model, we effectively show that the combined 39 

spatial discretization method of the spectral element and finite difference method in the 40 

horizontal and vertical directions, respectively, offers a viable method for the development of 41 

a NH dynamical core. The present core provides a practical framework for further 42 

development of three-dimensional (3D) non-hydrostatic compressible atmospheric models. 43 

44 
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1. Introduction 45 

There is a growing interest in developing highly scalable dynamical cores using 46 

numerical algorithms under petascale computers with many cores (with the goal of exascale 47 

computing just around the corner). The spectral element method (SEM) has been known as 48 

one of the most promising methods with high efficiency and accuracy (Taylor et al. 1997; 49 

Giraldo 2001; Thomas and Loft 2002). SEM is local in nature because of having a large on-50 

processor operation count (Kelly and Graldo, 2012). The SEM achieves this high level of 51 

scalability by decomposing the physical domain into smaller pieces with a small 52 

communication stencil. Also SEM has been shown to be very attractive in achieving high-53 

order accuracy and geometrical flexibility on the sphere (Taylor et al. 1997; Giraldo 2001; 54 

Giraldo et al. 2004).  55 

To date, the SEM has been successfully implemented in atmospheric modeling such as 56 

in the Community Atmosphere Model – spectral element dynamical core (CAM-SE) 57 

(Thomas and Loft 2005) and the scalable spectral element Eulerian atmospheric model (SEE-58 

AM) (Giraldo and Rosmond, 2004). These models consider the primitive hydrostatic 59 

equations on global grid meshes such as a cubed-sphere tiled with quadrilateral elements 60 

using SEM in the horizontal discretization and the finite difference method (FDM) in the 61 

vertical. The robustness of the SEM has been illustrated through three-dimensional dry 62 

dynamical test cases (Thomas and Loft 2005; Giraldo and Rosmond 2004; Giraldo 2005; 63 

Taylor et al. 2007; Lauritzen et al. 2010).  64 

The ultimate objective of our study is to build a 3D non-hydrostatic (NH) model based 65 

on the compressible Navier-Stokes equations using the combined horizontally SEM and 66 

vertically FDM. Since testing a 3D NH model requires a huge amount of computing 67 

resources, studying the feasibility of our approach in 2D is an attractive alternatively to the 68 
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development of a fully 3D model. This is the case because a 2D slice model effectively can 69 

test the practical issues resulting from the vertical discretization and time integration, prior to 70 

the construction of a full 3D model. Although we could also discretize the vertical direction 71 

with SEM (as is proposed in Kelly and Giraldo 2012 and Giraldo et al. 2013), we choose to 72 

use a conservative flux-form finite-difference method for discretization in the vertical 73 

direction, which provides an easy way for coupling the dynamics and existing physics 74 

packages. 75 

We have developed a dry 2D NH compressible Euler model based on SEM along the x-76 

direction and FDM along the z-direction for this purpose. Hereafter, this is simply referred to 77 

as the 2DNH model. We adopt the governing equation formulation proposed by Skamarock 78 

and Klemp (2008) (hereafter, SK08) which is used in the Weather Research and Forecasting 79 

(WRF) Model. The Euler equations are in flux form based on the hydrostatic pressure vertical 80 

coordinate. In SK08, the terrain-following sigma-pressure coordinate is used, but here we 81 

employ a hybrid sigma-pressure vertical coordinate. Park et al. (2013) (hereafter, PK13) 82 

provides a clue for the equation set in the hybrid sigma-pressure in their appendix, in which 83 

the hybrid sigma-pressure coordinate is applied to the hydrostatic primitive equations and can 84 

be modified exactly to the sigma-pressure coordinate at the level of the actual coding 85 

implementation. Also, we built the 2DNH model using a time-split third-order Runge-Kutta 86 

(RK3) for the time discretization, which has been shown to work effectively in the WRF 87 

model. We keep the temporal discretization of the model as similar as possible to the WRF 88 

model in order to more directly the discern the differences related to the discrete spatial 89 

operators between the two models. This provides robust tools for development and 90 

verification of the 2DNH model. 91 

In this paper, we show the feasibility of the 2DNH model by conducting conventional 92 

benchmark test cases as well as focusing on the description of the numerical scheme for the 93 
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spatial discretization. We verify the 2DNH by analyzing four test cases: the inertia-gravity 94 

wave, rising thermal bubble, density current wave, and linear hydrostatic mountain wave. 95 

The organization of this paper is as follows. The next section describes the governing 96 

equations with a definition of the prognostic and diagnostic variables used in our model, in 97 

which we present essential changes from SK08. Section 3 contains the description of the 98 

temporal and spatial discretization including the spectral element formulation. In Sec. 4, we 99 

present the results of the 2DNH model using all four test cases. Finally in Sec. 5 we 100 

summarize the paper and propose future directions. 101 

 102 

2. Governing equations 103 

We adopt the governing equation formulation of SK08. Here we implement the hybrid 104 

sigma-pressure coordinate reported by PK13 which considered only the hydrostatic primitive 105 

equation. The hybrid sigma pressure coordinate is defined with 0,1η ⎡ ⎤∈ ⎣ ⎦  as  106 

 p
d
= B(η) p

s
− p

t( ) + η −B(η)⎡⎣ ⎤⎦ p0 − pt( ) + pt   (1) 107 

where dp  is the hydrostatic pressure of dry air, B(η)  is the relative weighting of the 108 

terrain-following coordinate versus the normalized pressure coordinate, sp , tp , and 0p are 109 

the hydrostatic surface pressure of dry air, the top level pressure, and a reference sea level 110 

pressure, respectively. A more detailed description of the hybrid sigma pressure coordinate 111 

can be found in the Appendix of PK13. The definition of the flux variables are 112 

 
!
V
H
,W,Ω,Θ( ) = µ

d
×
!
v
H
,w, !η,θ( )   (2) 113 

where 
!
v
H
= u,v( )  and w  are the velocities in the horizontal and vertical directions, 114 

respectively, !η ≡ ∂η
∂t

 is the η -coordinate (contravariant) vertical velocity, θ  is the 115 
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potential temperature, and dµ  is the mass of the dry air in the layers defined as 116 

 µ
d
(x,y,η,t) =

∂p
d

∂η
= ∂B(η)

∂η
p
s
− p

t( ) + 1− ∂B(η)
∂η

⎡
⎣
⎢

⎤
⎦
⎥ p0 − pt( ) . (3) 117 

The flux-form Euler equations for dry atmosphere are expressed as  118 

∂
!
V
H

∂t
= −µ

d
∇η ′φ + α

d
∇η ′p + ′α

d
∇ηp( ) − ∇ηφ

∂ ′p
∂η

− ′µd
⎛
⎝⎜

⎞
⎠⎟
− ∇η ⋅

!
V
H
⊗
!
v
H( ) − ∂ Ω

!
v
H( )

∂η
+ F !

VH
,  (4) 119 

 ∂W
∂t

= g ∂ ′p
∂η

− ′µd
⎡
⎣
⎢

⎤
⎦
⎥ − ∇η ⋅

!
V
H
w( ) − ∂ Ωw( )

∂η
+ F

W
,  (5) 120 

 
∂ ′µd
∂t

= ∂
∂t

∂ ′pd
∂η

⎛
⎝⎜

⎞
⎠⎟
= ∂B(η)

∂η
∂ ′ps
∂t

= −∇η ⋅
!
V
H
− ∂Ω
∂η

, (6) 121 

 ∂ ′φ
∂t

= − 1
µ
d

!
V
H
⋅ ∇ηφ + Ω ∂φ

∂η
− gW

⎡
⎣
⎢

⎤
⎦
⎥ ,  (7) 122 

 ∂Θ
∂t

= −∇η ⋅
!
V
H
θ( ) − ∂ Ωθ( )

∂η
,  (8) 123 

where φ  is the geopotential, dα  is the inverse density for dry air, and 
HV

F r  and WF  124 

represent forcing terms of the Coriolis and curvature which we ignore for simplicity. In Eqs. 125 

(4)-(8), the governing equations are described with perturbation variables such as 126 

p = p(z ) + ′p , φ = φ(z ) + ′φ , ( )d d dzα α α′= + , and p
s
= p

s
(x,y) + ′ps  where the 127 

variables denoted by overbars are reference state variables that satisfy hydrostatic balance.  128 

For completeness, the diagnostic relation for Ω  is given by integrating Eq. (6) 129 

vertically from the surface (η = 1) to the material surface as  130 

 Ω = − ∂B(η)
∂η

∂ ′ps
∂t

+ ∇η ⋅
!
V
H

⎛
⎝⎜

⎞
⎠⎟1

η

∫ dη ,  (9) 131 

where 
∂ ′ps
∂t

 is obtained by integrating vertically Eq. (6) for the surface (η = 1) to the top 132 
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(η = 0 ) using a no-flux boundary condition such as Ω
η=0 or 1

= 0  and the specification of 133 

the vertical coordinate such as B(η = 1) = 1 and B(η = 0) = 0  as 134 

 
∂ ′ps
∂t

= − ∇ ⋅
!
V
H( )η=0

η=1

∫ dη .  (10) 135 

The above equation allows ′ps  to be evolved forward in time where we then compute ′µd  136 

directly from Eq. (5). The diagnostic relation for the dry inverse density is given as  137 

 ∂ ′φ
∂η

= −µ
d ′α
d
−α

d ′µd ,  (11) 138 

and the full pressure for dry atmosphere is  139 

 
/

0
0

p vc c

d

d

R
p p

p
θ
α

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
.  (12) 140 

This concludes the description of the governing equations used in our model; in the next 141 

section we describe the discretization of the continuous form of the governing equations that 142 

are used in our model. 143 

3. Discretization 144 

a. Spatial discretization  145 

1) Horizontal direction 146 

For a given η  level, we discretize the horizontal operators using the SEM. Therefore in 147 

2D (X-Z) slice framework we focus on the SEM discrete gradient operator for 1D (x). In 148 

SEM, we approximate the solution in non-overlapping elements eΩ  as 149 

 q(x,t) = ψ
k
(x)q

N
(x
k
,t)

k =1

N +1

∑ ,  (13) 150 

where kx  represents N +1 grid points that correspond to the Gauss-Lobatto-Legendre 151 

(GLL) points and ψ
k
(x)  are the N th-order Lagrange polynomials based on the GLL points. 152 
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It is noteworthy that the ψ
k

 have the cardinal property, i.e., they can be represented as 153 

Kronecker delta functions where ψ
k

 are zero at all nodal points except kx  (but are 154 

allowed to oscillate between nodal points). 155 

The GLL points ξ
k

 in a reference coordinate system ξ ∈ −1,+1⎡⎣ ⎤⎦  and the associated 156 

quadrature weights ω(ξ
k
),  157 

 ω(ξ
k
) = 2

N N +1( )
1

P
N
(ξ
k
)

⎡

⎣
⎢

⎤

⎦
⎥

2

,  (14) 158 

are introduced for the Gaussian quadrature: 159 

 
1

1
0

	
   ( ) ( ) 	
   ( ) ( ) ( )
e

N
e

i i i
i

q d q J d q Jξ ξ ξ ω ξ ξ ξ
+

Ω −
=

Ω = ≈ ∑∫ ∫ ,  (15) 160 

where P
N
(ξ)  are the N th-order Legendre polynomials, J = ∂x

∂ξ
 is the transformation 161 

Jacobian, and eΩ  represents the non-overlapping elements.  162 

We now introduce the polynomial expansions into our governing equations in the form 163 

of  ( )q F q
t

∂ = −
∂

,  (16) 164 

multiply by the basis function as a test function, and integrate to yield a system of ordinary 165 

differential equations as such 166 

 M
nk
e dqk
dt

= − F ψ
n
(ξ)q

n
n=1

N +1

∑⎛⎝⎜
⎞
⎠⎟Ψe

∫ ψ
k
 dξ

n=1

N +1

∑ ,  (17) 167 

where 1,2, , 1k N= +L , e
nkM  is the element based mass matrix given as  168 

 M
nk
e = ψ

n
ψ
k
 dξ

Ψe
∫ = ω

n
J
n
δ
nk

,  (18) 169 

and the right-hand side of Eq. (18) is evaluated using Gaussian quadrature of Eq. (16). It is 170 

noted that using GLL points for both interpolation and integration results in a diagonal mass 171 
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matrix e
nkM , which means that the inversion of the mass matrix is trivial.  172 

The horizontal derivatives included in the right-hand side of Eq. (17) are evaluated using 173 

the analytic derivatives of the basis functions as follows 174 

 
  

∂q
∂x

= ∂q
∂ξ

∂ξ
∂x

= ∂
∂ξ

ψ
k
(ξ)q

k
k=1

N+1

∑⎡
⎣
⎢

⎤

⎦
⎥
∂ξ
∂x

=
∂ψ

k

∂ξ
q

k
k=1

N+1

∑⎡
⎣
⎢

⎤

⎦
⎥

1

J
.  (19) 175 

Note that the non-differential operations, such as cross products, are computed directly at grid 176 

points since we use nodal basis functions associated with Lagrange polynomials based on the 177 

GLL points. In order to satisfy the equations globally, we use the direct stiffness summation 178 

(DSS) operation. For a more detailed description of the SEM, see Giraldo and Rosmond 179 

(2004), Giraldo and Restelli (2008), and Kelly and Giraldo (2012). 180 

 181 

2) Vertical direction 182 

Using a Lorenz staggering, the variables 
!
V
H

, Θ , µ , α , p  are at layer midpoints 183 

denoted by 1,2, ,k K= K  where K  is the total number of layers, and the variables W , 184 

Ω , φ  live at layer interfaces defined by k + 1
2

, 0,1, ,k K= K , so that 1/2K topη η+ =  and 185 

1/2 1Bottomη η= = . Fig. 1 describes the grid points and the allocation of the variables. Here, we 186 

evaluate the vertical advection terms (
∂ Ω
!
v
H( )

∂η
, 

∂ Ωw( )
∂η

, and 
∂ Ωθ( )
∂η

) and vertical 187 

derivative terms ( ∂ ′p
∂η

, and ∂φ
∂η

). The former is discretized using the third-order upwind 188 

biased discretization in Hundsdorfer et al. (1995) which is given as  189 

 ∂f
∂η

k

=
f
k −2 − 8fk −1 + 8fk +1 − fk +2

12Δη
+ sign(Ω)

f
k −2 − 4fk −1 + 6fk − 4fk +1 + fk +2

12Δη
,  (20) 190 

where f  corresponds to the flux such as Ω
!
v
H

, and Δη = η
k +1/2 −ηk −1/2  is the thickness of 191 
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the layer. The latter is discretized by the centered finite difference. Likewise the vertical 192 

discretization quadrature rules for the calculations of Eqs. (9) and (10) follow the finite 193 

difference discretization naturally. 194 

 195 

b. Temporal discretization 196 

For integrating the equations, we use the time-split RK3 integration technique following 197 

the strategy of SK08, in which low-frequency modes due to advective forcings are explicitly 198 

advanced using a large time step of the RK3 scheme, but high-frequency modes are 199 

integrated over smaller time steps using an explicit forward-backward time integration 200 

scheme for the horizontally propagating acoustic/gravity waves and a fully implicit scheme 201 

for vertically propagating acoustic waves and buoyancy oscillations (Klemp et al. 2007) . 202 

This technique has been shown to work effectively within numerous nonhydrostatic models 203 

including the WRF model (Skamarock et al. 2008), the Model for Prediction Across Scales 204 

(MPAS) (Skamarock et al. 2012), and the Nonhydrostatic Icosahedral Atmospheric Model 205 

(NICAM) (Satoh et al. 2008).  206 

It is noted that in the procedure of the time-split RK3 integration, the difference between 207 

the approach used in this paper and SK08 comes from the vertical coordinate. Since we use 208 

the hybrid sigma-pressure coordinate, the equation for ′ps  (Eq. (6)) should be first stepped 209 

forward in time using the forward-backward differencing on the small time steps, then ′µd  210 

can be computed directly from the specification of the vertical coordinate in Eq. (9) and Ω  211 

is obtained from the vertical integration.  212 

 213 

4. Test cases  214 

We validate the 2DNH model on four test cases of the linear hydrostatic mountain wave, 215 
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density current, inertia-gravity wave, and rising thermal bubble experiments. All cases but the 216 

mountain wave experiment do not have analytic solutions. Therefore, for the mountain wave 217 

experiment, numerical results of the 2DNH model are compared to analytic solutions (Durran 218 

and Klemp 1983), and for the other experiments, we compare our results to the results of 219 

other published papers.  220 

It should be mentioned that the horizontal SEM formulation is able to utilize arbitrary 221 

order polynomials per element to represent the discrete spatial operators, but in this paper all 222 

the results presented use either 5th or 8th order polynomials. The averaged horizontal grid 223 

spacing is defined as  224 

 Δx =
Δx
n

n=1

N

∑
N

  (21) 225 

where nxΔ  is the internal grid spacing within the element which is regularly spaced in the 226 

domain and N  is the number of the interval associated with irregularly spaced GLL 227 

quadrature points which is equivalent to the order of the basis polynomials. The average 228 

vertical grid spacing is defined in the same way of Eq. (24). Below, we use this convention to 229 

define the grid resolution.  230 

 231 

a. Linear hydrostatic mountain wave test 232 

In order to verify the 2DNH’s feasibility to treat surface elevations associated with the 233 

vertical terrain-following coordinate, we simulate the linear hydrostatic mountain wave test 234 

introduced by Durran and Klemp (1983) (hereafter, DK83) in which the analytic steady-state 235 

solution is provided by using a single-peaked mountain with uniform zonal wind. To compare 236 

our results with the analytic and numerical solution shown in DK83, the 2DNH is initialized 237 

using the same initial conditions and mountain profile in DK83 and we analyze our results 238 
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using the same metrics of DK83. 239 

The mountain profile is given by 240 

 h(x) =
h
m

1+
x − x

c

a
m

⎛
⎝⎜

⎞
⎠⎟

2
  (22) 241 

where the half-length of the mountain ma  is 10 km, the height mh  is 1 m, and the 242 

prescribed center of the profile is 0 km. The Initial temperature is 0 250T =  K for an 243 

isothermal atmosphere with the uniform zonal wind 20u =  m/s. In the isothermal case, the 244 

Brunt-Väisälä frequency 
2

2

0

(ln )

p

d gN g
dz c T

θ= ≈  yields the potential temperature given as  245 

 0

0
p

g z
c Teθ θ= ,  (23) 246 

which is one of the prognostic variables in our model. The domain is defined as 247 

x,z( ) ∈ −300,300⎡⎣ ⎤⎦ × 0,30⎡⎣ ⎤⎦  km2. The bottom boundary uses a no-flux boundary 248 

condition while the lateral and top boundaries use sponge layers. The sponged zone is 10 km 249 

deep from the top and 50 km wide from the lateral boundaries. Over the sponge layer zone, 250 

the prognostic variables are relaxed to the basic initial hydrostatic state. The model is 251 

integrated for a nondimensional time of ut
a

= 60  which corresponds to 8.33 hours without 252 

diffusion or viscosity.  253 

Fig. 2 shows the numerical and analytic solutions at steady state for the horizontal and 254 

vertical velocities, which agree reasonably well. The vertical velocity fields match very 255 

closely, although the extrema in the horizontal velocity field are underestimated by the 256 

numerical model. The underestimated extrema in the horizontal velocity is also shown in both 257 

models of DK83 and Giraldo and Restelli (2008) (hereafter, GR08). And our result in the 258 
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horizontal velocity is in good agreement with DK83 and GR08. 259 

Fig. 3 shows the normalized momentum flux values at various times to check vertical 260 

transport of horizontal momentum. It is observed that the flux is developing well and the 261 

simulations have reached steady-state after 60ut
a

= . It is noted that the mean momentum 262 

flux at that time is 97% of its analytic value. It agrees well with DK83 as well as GR08; it is 263 

important to point out that the Durran-Klemp model is based on the FD method in both 264 

directions while the Giraldo-Restelli model is based on SEM in both directions. The 265 

mountain test shows the terrain-following vertical coordinate is well suited for the 266 

combination of the horizontal SEM and vertical FDM for spatial discretization even though 267 

we consider a small mountain. 268 

 269 

b. 2D density current test  270 

In order to verify the 2DNH’s feasibility to control oscillations with numerical viscosity 271 

and evaluate numerical schemes in the 2DNH, we conduct the density current test suggested 272 

by Straka et al. (1993). The density current test is initialized using a cold bubble in a neutrally 273 

stratified atmosphere. When the bubble touches the ground, the density current wave starts to 274 

spread symmetrically in the horizontal direction forming Kelvin-Helmholtz rotors. Following 275 

Straka et al. (1993) we employ a dynamic viscosity of ν = 75  m2s-1 to obtain converged 276 

numerical solutions. 277 

For an initial cold bubble, the potential temperature perturbation is given as  278 

 ′θ =
θ
c

2
1+ cos(πr )⎡⎣ ⎤⎦ ,  (24) 279 

where θ
c
= −15  K and r =

x − x
c

x
r

⎛

⎝⎜
⎞

⎠⎟

2

+
z − z

c

z
r

⎛

⎝⎜
⎞

⎠⎟

2

  with the center of the bubble at 280 
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x
c
,z
c( ) = 0,3000( )  m. No-flux boundary conditions are used for all boundaries. The model 281 

is integrated for 900 s on a domain 25600,25600 0,6400⎡ ⎤ ⎡ ⎤− ×⎣ ⎦ ⎣ ⎦ m2.  282 

Fig. 4 shows the potential temperature perturbation after 900s for 400, 200, 100, and 283 

50m grid spacing (Δx ) using 5th order basis polynomials per element. All simulations use 284 

64zΔ = m grid spacing vertically. As expected, the higher resolution experiments produce 285 

better solutions than the lower resolution. At the very lowest resolution of 400 m, only two of 286 

the three Kelvin-Helmholtz rotors are generated with somewhat coarsened frontal surfaces. In 287 

the experiment with 200 m resolution, the three rotors appear but the numerical solution still 288 

suffers from coarsening frontal surfaces. The solutions on grids finer than 100 m converge 289 

with the three rotor structures adequately simulated. The converged solution is almost 290 

identical to other published solutions (e.g. Straka et al. 1993; Skamarock and Klemp 2008; 291 

GR08).  292 

In order to show the effect of higher order of the basis polynomials, we show the 293 

potential temperature perturbations using 8th order basis polynomials per element with the 294 

same number of degrees of freedom (DOF) of the simulations using 5th order basis 295 

polynomials in Fig. 5. The simulation with 8th order basis polynomials on the very lowest 296 

resolution of 400 m reproduced the converged solution more closely than with 5th order basis 297 

polynomials. Even in the experiment with 200 m resolution, the coarsening frontal surfaces 298 

are mitigated and the solution is similar with the converged solution with three rotors.  299 

Fig. 6 shows the profiles of the potential temperature perturbation at the height of 1200 300 

m. The results from the highest grid resolution of the simulations using 5th and 8th order 301 

basis polynomials are indistinguishable and well converged (Fig. 6a). Three minima 302 

corresponding to the three rotors agree well with other published solutions. In addition to the 303 

profiles, the front location (-1K of potential temperature perturbation at the surface), and the 304 
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extrema of the pressure perturbation and potential temperature perturbation agree well with 305 

each other (Table 1), of which the numbers are comparable to those of GR08. In the 306 

numerical results from the different grid resolutions simulated by using 5th order basis 307 

polynomials, the potential temperature profile at the coarsest resolution of 400 m grid shows 308 

significant fluctuations (Fig. 6b). That of 8th order polynomials, however, tends to be 309 

relieved from the deviation from the converged solution (Fig. 6c). The above results suggest 310 

that the numerical solution can be converged more rapidly by using higher order of basis 311 

polynomial. Furthermore, the results in this paper show that an adequate convergence can be 312 

reached at grid resolutions finer than 200 m. 313 

 314 

c. Inertia-gravity wave test  315 

This test examines the evolution of a potential temperature perturbation ′θ  in a 316 

constant mean flow with a stratified atmosphere. This initial perturbation diverges to the left 317 

and right symmetrically in a channel with periodic lateral boundary conditions. The inertia-318 

gravity wave test introduced by Skamarock and Klemp (1994) (hereafter, SK94) serves as a 319 

tool to investigate the accuracy for NH dynamics. Also we use this experiment to check the 320 

consistency of the results with various resolutions. The parameters for the test are the same as 321 

those of SK94. The initial state is a constant Brunt-Väisälä frequency of 0.01N = /s with 322 

surface potential temperature of 0 300θ = K and a uniform zonal wind u = 20m/s. In order 323 

to trigger the wave, the initial potential temperature perturbation θ ′  is overlaid to the above 324 

initial state and is given as 325 

 ′θ x,z( ) = θ
c

sin
πz
z
c

⎛
⎝⎜

⎞
⎠⎟

1+
x − x

c

a
c

⎛
⎝⎜

⎞
⎠⎟

  (25) 326 
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where 0.01cθ = K, 10cz = km, 100cx = km. The domain is defined as 327 

x,z( ) ∈ 0,300⎡⎣ ⎤⎦ × 0,10⎡⎣ ⎤⎦  km2. We use periodic lateral boundary conditions and a no-flux 328 

boundary conditions for both the bottom and top boundaries. The simulation is performed for 329 

3000s with no viscosity. 330 

Fig. 7 shows the solution ′θ  at the initial time and time 3000 s with a horizontal 331 

resolution Δx = 250m and a vertical resolution Δz = 250m. The figure uses the same 332 

contouring interval as in SK94 and Giraldo and Restelli (2008) for comparison. The results 333 

are produced with 8th order polynomials per element. We have conducted the 2DNH model 334 

with various basis polynomial orders at the same resolution, where the simulated results are 335 

found to be very comparable. SK94 give an analytic solution for the case of the Boussinesq 336 

equations, but it is only valid for the Boussinesq equations while we use the fully 337 

compressible equations in our model. Using the analytic solution only for qualitative 338 

comparisons, we find that the extrema of our results are comparable to the analytic values. In 339 

comparison with the results of Giraldo and Restelli (2008) in which the fully compressible 340 

equations are also used, our results look very similar. Fig. 8 shows the profiles along 5000 m 341 

for various horizontal resolutions. All models show consistently identical solutions with the 342 

symmetric distribution about the midpoint (x = 160 km) which is the location to which the 343 

initial perturbation moved by the horizontal flow of 20 m/s after 3000 s. Even at coarser 344 

resolution experiments, it does not exhibit phase errors although the maxima and minima near 345 

the midpoint (x = 160 km) are slightly damped. Table 2 shows the extrema of vertical 346 

velocities and potential temperature perturbations for the results of various horizontal 347 

resolutions after 3000 s. It is noted that all experiments give almost the same values for 348 

potential temperature perturbation where these values in the range 349 

′θ ∈ −1.52 ×10−3,2.83 ×10−3⎡⎣ ⎤⎦  are comparable to other studies (e.g., GR08 and Li et al. 350 
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2013). GR08 give the ranges of ′θ ∈ −1.51×10−3,2.78 ×10−3⎡⎣ ⎤⎦  from the model based on 351 

the spectral element and discontinuous Galerkin method. Also Li et al. (2013) show 352 

3 31.53 10 ,2.80 10θ − −⎡ ⎤′ ∈ − × ×⎣ ⎦  using the high-order conservative finite volume model 353 

which are similar to our results. 354 

 355 

d. Rising thermal bubble test 356 

We also conduct the rising thermal bubble test to verify the consistency of the scheme in 357 

the model to simulate thermodynamic motion (Wicker and Skamarock 1998). This test 358 

considers the time evolution of warm air in a constant potential temperature environment for 359 

an atmosphere at rest atmosphere. The air that is warmer than the ambient air rises due to 360 

buoyant forcing which then deforms due to the shearing motion caused by gradients of the 361 

velocity field and eventually shapes the thermal bubble into a mushroom cloud. Because the 362 

test case has no analytic solution, the simulation results are evaluated qualitatively.  363 

The initial conditions we use follow those of GR08 in which the domain for the case is 364 

defined as x,z( ) ∈ 0,1⎡⎣ ⎤⎦
2

 km2. We consider no-flux boundary conditions for all four 365 

boundaries. The domain is initialized for a neutral atmosphere at rest with θ
0
= 300K in 366 

hydrostatic balance. A potential temperature perturbation to drive the motion is given as 367 
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 , (26) 368 

where 0.5cθ = K, ( ) ( )2 2

c cr x x z z= − + −  with ( ) ( ), 500,350c cx z = m. The model 369 

was run for a time of 700 seconds. It should be noted that an explicit second-order diffusion 370 

on coordinate surfaces is used with a viscosity coefficient of ν = 1 m2s-1 for all simulations 371 
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of this test. The numerical diffusion is applied for momentum and potential temperature along 372 

the horizontal and vertical directions so that it eliminates the erroneous oscillations at the 373 

small scale – while this amount of diffusion might seem excessive, it has been chosen 374 

because it allows the model to remain stable even after the bubble hits the top boundary.  375 

Fig. 9 shows the potential temperature perturbation, horizontal wind, and vertical wind 376 

fields for the simulations of two resolutions of 20 m and 5 m horizontal and vertical grid 377 

spacings ( xΔ  and zΔ ), respectively, employing 5th order basis polynomials. In both 378 

simulations, the fine structures in the numerical solutions are well depicted with a perfectly 379 

symmetric distribution at the midpoint and sharp discontinuities of the fields along boundary 380 

lines of the bubble. At lower resolution, however, degradations in the solution are visible in 381 

the potential temperature perturbation and vertical wind which are illustrated by fluctuations 382 

in the values as well as the concaving contours at the top of the bubble. It is noted that while 383 

the numerical solution of the model using the spatially centered FDM of Wicker and 384 

Skamarock (1998) shows spurious oscillations in the potential temperature field, the 385 

simulations here of 2DNH using the horizontally SEM and vertically FDM is devoid of these 386 

oscillations.  387 

We also show the vertical profiles of potential perturbation at x = 500 m after 700 s for 388 

various resolutions in Fig. 10. Simulations were run with various resolutions of 5, 10, and 20 389 

m, where the resolutions given are defined for both the horizontal and vertical directions. The 390 

results of 10 m and 5 m resolutions are almost identical to each other. The result of the lowest 391 

resolution of 20 m, however, shows a somewhat unresolved solution, in which the maximum 392 

value is underestimated and the phase shift is depicted. The time series for maximum 393 

potential temperature perturbation and maximum vertical velocity are shown in Fig. 11. In all 394 

simulations, the maximum vertical velocity increases as the maximum theta perturbation 395 

decreases. This shows that the thermal energy of the theta perturbation leads to the 396 
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acceleration of the vertical velocity. This result agrees well with the study of Ahmad and 397 

Lindeman (2007).   398 

 399 

6. Summary and Conclusions 400 

The non-hydrostatic compressible Euler equations for a dry atmosphere are solved in a 401 

simplified 2D slice (X-Z) framework by using the spectral element discretization (SEM) in 402 

the horizontal and the third-order finite difference scheme for the vertical discretization. The 403 

form of the Euler equations used here are the same as those used in the Weather Research and 404 

Forecasting (WRF) model. We employ a hybrid sigma-pressure vertical coordinate which can 405 

be modified exactly to the sigma-pressure coordinate at the level of the actual coding 406 

implementation.  407 

For the spatial discretization, the spatial operators are separated into their horizontal and 408 

vertical components. In the horizontal components, the operators are discretized using the 409 

SEM in which high-order representations are constructed through the GLL grid points by 410 

Lagrange interpolations in the elements. Using GLL points for both interpolation and 411 

integration results in a diagonal mass matrix, which means that the inversion of the mass 412 

matrix is trivial. In the vertical components, the operators are discretized using the third-order 413 

upwind biased finite difference scheme for the vertical fluxes and centered differences for the 414 

vertical derivatives. The time discretization relies on the time-split third-order Runge-Kutta 415 

technique. 416 

We have presented idealized standard benchmark tests for large-scale flows (e.g., linear 417 

hydrostatic mountain wave) and for nonhydrostatic-scale flows (e.g., inertia-gravity wave, 418 

rising thermal bubble, and density currents). The numerical results show that the present 419 

dynamical core is able to produce solutions of good quality comparable to other published 420 
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solutions. These tests effectively reveal that the combined spatial discretization method of the 421 

spectral element and finite difference method in the horizontal and vertical directions, 422 

respectively, offers a viable method for the development of a NH dynamical core. Further 423 

research will be continued to couple the present core with the existing physics packages 424 

together and extend the 2D slice framework to develop a 3D dynamical core for the global 425 

atmosphere where the cubed-sphere grid will be used for the spherical geometry.  426 

427 



21 
 

Acknowledgements 428 

 429 

This work was funded by Korea’s Numerical Weather Prediction Model Development 430 

Project approved by Ministry of Science, ICT and Future Planning (MSIP). The first author 431 

thanks Dr. Joseph B. Klemp for sharing his idea for the hybrid sigma-pressure coordinate, 432 

and would also like to thank Frank Giraldo for his assistance and his MA4245 course at 433 

Naval Postgraduate School which introduced us to the spectral element method. The second 434 

author gratefully acknowledges the support of KIAPS, the Office of Naval Research through 435 

program element PE-0602435N and the National Science Foundation (Division of 436 

Mathematical Sciences) through program element 121670. 437 

438 



22 
 

References 439 

 440 

Ahmad, N. and J. Lindeman, 2007: Euler solutions using flux-based wave decomposition. Int. 441 

J. Numer. Meth. Fluids, 54, 47-72. 442 

 443 

Durran, D. R. and J. B. Klemp, 1983: A compressible model for the simulation of moist 444 

mountain waves. Mon. Wea. Rev., 111, 2341-2360. 445 

 446 

Giraldo, F. X., 2001: A spectral element shallow water model on spherical geodesic grids. Int. 447 

J. Numer. Meth. Fluids, 35, 869–901. 448 

 449 

Giraldo, F. X., and T. E. Rosmond, 2004: A Scalable Spectral Element Eulerian Atmospheric 450 

Model (SEE-AM) for NWP: Dynamical Core Tests. Mon. Wea. Rev., 132, 133-451 

153. 452 

 453 

Giraldo, F. X., 2005: Semi-implicit time-integrators for a scalable spectral element 454 

atmospheric model. Quart. J. Roy. Meteor. Soc., 131, 2431–2454. 455 

 456 

Giraldo, F. X. and M. Restelli, 2008: A study of spectral element and discontinuous Galerkin 457 

methods for the Navier-Stokes equations in nonhydrostatic mesoscale 458 

atmospheric modeling: equation sets and test cases. Journal of computational 459 

physics 227, 3849-3877. 460 

 461 

Giraldo, F. X., J. F. Kelly, and E. M. Constantinescu, 2013: Implicit-Explicit Formulations 462 

for a 3D Nonhydrostatic Unified Model of the Atmosphere (NUMA). SIAM J. 463 



23 
 

Sci. Comp. 35 (5), B1162-B1194. 464 

 465 

Hundsdorfer, W., B. Koren, M. van Loon, and K. G. Verwer, 1995: A positive finite-466 

difference advection scheme. Journal of Computational Physics, 117, 35-46. 467 

 468 

Kelly, J. F. and F. X. Giraldo, 2012: Continuous and discontinuous Galerkin methods for a 469 

scalable three-dimensional nonhydrostatic atmospheric model: Limited-area 470 

mode. Journal of Computational Physics, 231, 7988–8008. 471 

 472 

Klemp, J. B., W. C. Skamarock, and J. Dudhia, 2007: Conservative split-explicit time 473 

integration methods for the compressible nonhydrostatic equations. Mon. Wea. 474 

Rev., 135, 2897-2913. 475 

 476 

Lauritzen, P., C. Jablonowski, M. Taylor, and R. Nair, 2010: Rotated versions of the 477 

Jablonowski steady-state and baroclinic wave test cases: A dynamical core 478 

intercomparison. J. Adv. Model. Earth Syst., 2. Art.#15. 479 

 480 

Li, X., C. Chen, X. Shen, and F. Xiao, 2013: A multimoment constrained finite-volume 481 

model for nonhydrostatic atmospheric dynamics. Mon. Wea. Rev., 141, 1216-482 

1240. 483 

 484 

Park, S. –H., W. C. Skamarock, J. B. Klemp, L. D. Fowler, and M. G. Duda, 2013: 485 

Evaluation of global atmospheric solvers using extensions of the Jablonowski 486 

and Williamson baroclinic wave test case. Mon. Wea. Rev., 141, 3116-3129. 487 

 488 



24 
 

 489 

Satho, M., T. Matsuno, H. Tomita, H. Miura, T. Nasuno, and S. Iga, 2008: Nonhydrostatic 490 

icosahedral atmospheric model (NICAM) for global cloud resolving simulations. 491 

Journal of Computational Physics, 227, 3486-3514. 492 

 493 

Skamarock, W. C. and J. B. Klemp, 1994: Efficiency and accuracy of the Klemp-Wilhelmson 494 

time-splitting technique. Mon. Wea. Rev., 122, 2623-2630. 495 

 496 

Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X. Y. 497 

Huang, W. Wang, and J. G. Powers, 2008: A desciption of the advanced 498 

research WRF version 3. NCAR Tech. Note TN-475+STR. 499 

 500 

Skamarock, W. C. and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for 501 

weather research and forecasting applications. Journal of Computational 502 

Physics, 227, 3465-3485. 503 

 504 

Skamarock, W. C. J. B. Klemp, M. G. Duda, L. D. Fowler, and S. –H. Park, 2012: A 505 

multiscale nonhydrostatic atmospheric model using centroidal Voronoi 506 

tessellations and C-grid staggering. Mon. Wea. Rev., 140, 3090-3105. 507 

 508 

 509 

Straka, J. M., R. B. Wilhelmson, L. J. Wicker, J. R. Anderson, and K. K. Droegemeier, 1993: 510 

Numerical solutions of a non-linear density current: A benchmark solution and 511 

comparisons. Int. J. Numer. Methods Fluids, 17, 1-22. 512 

 513 



25 
 

Taylor, M., J. Tribbia, and M. Iskandarani, 1997: The spectral element method for the 514 

shallow water equations on the sphere. Journal of computational physics 130, 515 

92-108. 516 

 517 

Taylor, M., J. Edwards, S. Thomas, and R. Nair, 2007: A mass and energy conserving 518 

spectral element atmospheric dynamical core on the cubed-sphere grid. J. Phys. 519 

Conf. Ser., 78(012074)  520 

 521 

Thomas, S. J. and R. D. Loft, 2002: Semi-implicit spectral element atmospheric model. 522 

Journal of Scientific Computing, 17, 339-350. 523 

 524 

Thomas, S. J. and R. D. Loft, 2005: The NCAR spectral element climate dynamical core: 525 

semi-implicit Eulerian formulation. Journal of scientific computing, 25, 307-526 

322.  527 

 528 

Wicker, L. J. and W. C. Skamarock, 1998: A time-splitting scheme for the elastic equations 529 

incorporating second-order Runge-Kutta time differencing. Mon. Wea. Rev., 530 

126, 1992-1999. 531 

532 



26 
 

Table Captions 533 

Table 1. Comparison between the 5th and 8th order polynomials per elements for the 534 

density current. The simulations is conducted with 50xΔ =  m and 50zΔ =  m resolution. 535 

 536 

Table 2. Comparison of the numerical results for various horizontal resolutions. All 537 

simulations use the 8th order polynomials per elements and vertical resolution of 538 

250zΔ = m. 539 

540 
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Table 1. Comparison between the 5th and 8th order polynomials per elements for the 541 

density current. The simulations is conducted with 50xΔ =  m and 50zΔ =  m resolution. 542 

Order of 
polynomials 

Front 
location(km) maxp ′ (Pa) minp ′ (Pa) maxθ ′ (K) minθ ′ (K) 

5th 14.77 630.62 -452.79 0.08 -8.87 

8th 14.74 626.91 -456.84 0.08 -8.94 

 543 

 544 

Table 2. Comparison of the numerical results for various horizontal resolutions for 545 

inertia-gravity wave. All simulations use the 8th order polynomials per elements and vertical 546 

resolution of 250zΔ = m. 547 

Resolution(m) maxw (m/s) minw (m/s) maxθ ′ (K) minθ ′ (K) 

125xΔ =  2.85×10-3 -2.89×10-3 2.83×10-3 -1.52×10-3 

250xΔ =  2.80×10-3 -2.82×10-3 2.83×10-3 -1.52×10-3 

500xΔ =  2.73×10-3 -2.73×10-3 2.83×10-3 -1.52×10-3 

750xΔ =  2.72×10-3 -2.70×10-3 2.83×10-3 -1.52×10-3 

1250xΔ =  2.68×10-3 -2.62×10-3 2.82×10-3 -1.52×10-3 

 548 

549 
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Figure Captions 550 

FIG. 1. The grid points of columns within an element having four GLL points. The 551 

hybrid sigma coordinate are illustrated and the close (open) circles on the solid (dashed) line 552 

indicate the location of the variables at layer mid-points (interfaces). 553 

 554 

FIG. 2. Steady-state flow of (left) horizontal velocity (m/s) and (right) vertical velocity 555 

(m/s) over 1 m high mountain at nondimensional time 60ut
a

=  with a grid resolution of 556 

2xΔ =  km using 5th order basis polynomials per element and 375zΔ =  m. The 557 

numerical solution is represented by solid lines and the analytic solution by dashed lines.  558 

 559 

FIG. 3. Vertical flux of horizontal momentum, normalized by its analytic value at 560 

several non-dimensional times ut
a

. Here M and MH are the momentum flux of the numerical 561 

and analytic solution.  562 

 563 

FIG. 4. Potential temperature perturbation after 900 s using (a) 400xΔ = m, (b) 564 

200xΔ = m, (c) 100xΔ = m, and (d) 50xΔ = m grid spacing with 5th order basis 565 

polynomials per element. All simulations use 64zΔ = m grid spacing. 566 

 567 

FIG. 5. As in Fig. 4, but with 8th order basis polynomials per element.  568 

 569 

FIG. 6. Profiles of potential temperature perturbation after 900 s along 1200 m height: 570 

(a) high-resolution simulations using 5th (thin solid line) and 8th (thick solid line) order basis 571 

function, (b) simulations using 5th order basis polynomials, and (c) simulations using 8th 572 
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order basis polynomials per element. Total number of the degrees of freedom is the same in 573 

both 5th and 8th order experiments. All simulations use 64zΔ = m grid spacing. 574 

 575 

FIG. 7. Potential temperature perturbation at the initial time (left) and time 3000s (right) 576 

for 250xΔ = m using 8th order basis polynomials per element and 250zΔ = m. 577 

 578 

FIG. 8. The profiles of potential temperature perturbation along 5000 m height for 579 

125xΔ = m (thick solid line), 500xΔ = m (thin dashed line) and 1250xΔ = m (thin 580 

solid line) using 8th order basis polynomials per element. All models use 250zΔ = m. 581 

 582 

FIG. 9. Plots of (a,b) potential temperature perturbation (K), (c,d) horizontal wind (m/s), 583 

and (e,f) vertical wind (m/s) for the rising thermal bubble test after 700s with (left)  584 

20xΔ = m and (right) 5xΔ = m resolution. All simulations use 5th order basis polynomials 585 

per element and 10zΔ = m grid spacing. All negative values are denoted by dashed lines 586 

and positive values by solid lines.  587 

 588 

FIG. 10. Vertical profiles of the potential temperature perturbation at x = 500 m after 589 

700 s for various resolutions: , 20x zΔ Δ = m (thin solid line), , 10x zΔ Δ = m (thin dashed 590 

line), and , 5x zΔ Δ = m (thick solid line). 591 

 592 

FIG. 11. (top) Domain maximum potential temperature perturbation and (bottom) 593 

vertical wind for the rising thermal bubble test. All simulations use the 5th order basis 594 

polynomials per element, and the vertical resolutions are the same as the horizontal 595 

resolutions. 596 

597 
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FIG. 1. The grid points of columns within an element having four GLL points. The 599 

hybrid sigma coordinate are illustrated and the close (open) circles on the solid (dashed) line 600 

indicate the location of the variables at layer mid-points (interfaces).601 
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 602 

FIG. 2. Steady-state flow of (left) horizontal velocity (m/s) and (right) vertical velocity 603 

(m/s) over 1 m high mountain at nondimensional time 60ut
a

=  with a grid resolution of 604 

2xΔ =  km using 5th order basis polynomials per element and 375zΔ =  m. The 605 

numerical solution is represented by solid lines and the analytic solution by dashed lines. 606 

607 
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 608 

FIG. 3. Vertical flux of horizontal momentum, normalized by its analytic value at 609 

several non-dimensional times ut
a

. Here M and MH are the momentum flux of the numerical 610 

and analytic solutions.  611 

612 
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  613 

FIG. 4. Potential temperature perturbation after 900 s using (a) 400xΔ = m, (b) 614 

200xΔ = m, (c) 100xΔ = m, and (d) 50xΔ = m grid spacing with 5th order basis 615 

polynomials per element for the density current.  All simulations use 64zΔ = m grid 616 

spacing. 617 

618 

(a) 

(b) 

(c) 
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  619 

FIG. 5. As in Fig. 4, but with 8th order basis polynomials per element. 620 

621 

(a) 

(b) 

(c) 

(d) 
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  622 

FIG. 6. Profiles of potential temperature perturbation after 900 s along 1200 m height: 623 

(a) high-resolution simulations using 5th (thin solid line) and 8th (thick solid line) order basis 624 

function, (b) simulations using 5th order basis polynomials, and (c) simulations using 8th 625 

order basis polynomials per element. The total number of the degrees of freedom is the same 626 

in both 5th and 8th order experiments. All simulations use 64zΔ = m grid spacing. 627 

(a) 

(b) 

(c) 
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 629 

FIG. 7. Potential temperature perturbation at the initial time (left) and time 3000s (right) 630 

for 250xΔ = m using 8th order basis polynomials per element and 250zΔ = m for the 631 

inertia-gravity wave. 632 

633 
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  634 

FIG. 8. The profiles of potential temperature perturbation along 5000 m height for 635 

125xΔ = m (thick solid line), 500xΔ = m (thin dashed line) and 1250xΔ = m (thin 636 

solid line) using 8th order basis polynomials per element for the inertia-gravity wave. All 637 

models use 250zΔ = m. 638 

639 
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 640 

FIG. 9. Plots of (a,b) potential temperature perturbation (K), (c,d) horizontal wind (m/s), 641 

and (e,f) vertical wind (m/s) for the rising thermal bubble test after 700s with (left)  642 

, 20x zΔ Δ = m and (right) , 5x zΔ Δ = m resolution for the rising thermal bubble test.  All 643 

simulations use 5th order basis polynomials per element. All negative values are denoted by 644 

dashed lines and positive values by solid lines.  645 

646 
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(b) 
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 647 

FIG. 10. Vertical profiles of the potential temperature perturbation for the rising thermal 648 

bubble test at x = 500 m after 700 s for various resolutions: , 20x zΔ Δ = m (thin solid line), 649 

, 10x zΔ Δ = m (thin dashed line), and , 5x zΔ Δ = m (thick solid line). 650 

 651 

652 
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  653 

FIG. 11. (top) Domain maximum potential temperature perturbation and (bottom) 654 

vertical wind for the rising thermal bubble test. All simulations use the 5th order basis 655 

polynomials per element, and the vertical resolutions are the same as the horizontal 656 

resolutions. 657 


