
8 CrossTalk—July/August 2014

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

Barry Boehm, Stevens Institute of Technology
Richard Turner, Stevens Institute of Technology
Jo Ann Lane, University of Southern California
Supannika Koolmanojwong, University of Southern California

Abstract. In Greek mythology, Procrustes was a rogue smith and bandit who invited
travellers to rest in his “perfectly sized bed.” When they accepted, he forcibly bound
them to it, then stretched them or cut off various body parts until they “perfectly” fit
the bed. Too many organizations have a single model of high maturity to which they
try to fit all their projects. Development and acquisition organizations are finding that
competitive success requires systems that are a mix of high security assurance com-
ponents, opaque and dynamic COTS products and cloud services, and highly useful
but kaleidoscopic apps and widgets. Approaching such systems with a one-size-fits-
all corporate process and maturity model often results in a procrustean fit.

As a process model generator, the Incremental Commitment Spiral Model has a
set of criteria for determining which process or processes best fit a particular system
of interest. This article summarizes the criteria and illustrates how they have been
successfully applied in various situations [1].

High Maturity
Is Not A
Procrustean Bed

Introduction
Too often, high maturity is seen as a proven, standard process

that is tailored down or up or in other ways twisted and tortured
to adapt to projects that simply don’t fit the process. This flies in
the face of the definition of a high maturity organization as agile,
flexible, and continuously improving. Rapid change, requirements
uncertainty, and short capability delivery cycles are increas-
ing the need for such agility, and the traditional process and
lifecycle models are not meeting the challenge.

Table 1 describes some examples of Procrustean situations
that result from inflexible or overly constrained “high maturity”
or otherwise “disciplined” approaches. It elaborates the situation
into the likely undesired project result, an example, and a rem-
edy or means of avoiding the situation using the ICSM’s four pri-
mary principles: Stakeholder value-based guidance; Incremental
commitment and accountability; Concurrent multi-discipline
engineering; and Evidence and risk-based decisions.

A Different Approach
The Incremental Commitment Spiral Model (ICSM),1,2 shown in

Figure 1, is the result of our efforts to better integrate the hard-
ware, software, and human factors aspects of systems, to provide
value to the users as quickly as possible, and to handle the
increasingly rapid pace of change. While its pedigree lies in the
spiral concept first broadly published in 1988,3 this new version
draws on over 20 years of experience helping people deal with
the fact that the original version was too easy to misinterpret.

Fundamental Principles
In hindsight, most of the problems in using the 1988 spiral

model came from users constructing processes that had nothing
to do with the underlying concepts. The ICSM’s four underly-
ing principles, based on observed failure modes over years of
experience, are:

Stakeholder value-based guidance. Failing to include and ad-
dress the value propositions of its success-critical stakeholders
can result in their minimal commitment to the project; they may
underperform, decline to use, or block the use of the results.

Incremental commitment and accountability. If success-critical
stakeholders are not accountable for their commitments (or lack
thereof), and the associated consequences (good or bad), they
may not provide necessary commitments or decisions in a timely
manner and are likely to be drawn away to other pursuits when
they are most needed.

Concurrent multi-discipline engineering. Sequential definition
and development of a) requirements and solutions; b) hardware,
software, and human factors; or c) product and processes likely
slows the project and leads to early, hard-to-undo commitments
that limit options for project success.

Evidence and risk-based decisions. If key decisions are made
based on assertions, vendor literature, or meeting an arbitrary
schedule without access to evidence of feasibility, the project is
building up risks.

The annual series of “Top-5 Quality Software Projects”
software-intensive systems projects published in CrossTalk4 are
examples of successful projects that applied the ICSM prin-
ciples. These were chosen annually between 2002 and 2005
by panels of leading experts as role models of best practices
and successful outcomes. Of the 20 Top-5 projects, 16 explicitly
used concurrent engineering; 14 explicitly used risk-driven
development; and 15 explicitly used incrementally committed,
iterative system evolution. Additional projects gave indications
of their partial use. Unfortunately, the project summaries did not
include discussion of stakeholder involvement.

The ICSM is not a single one-size-fits-all process. It is actu-
ally a process generator, which steers your process in different
directions, depending on your particular circumstances. Unlike
in the traditional sequential approaches, each spiral concurrently
addresses all of the activities of product development to include:

• Requirements (objectives and constraints)
• Solutions (alternatives)
• Products and processes
• Hardware
• Software
• Human factors aspects
• Business case analysis of alternative product configurations
• Product line investments

In this way, ICSM helps adapt your lifecycle strategies and
processes to your sources of change. It also supports more
rapid system development and evolution through concurrent
engineering, enabling you to develop and evolve systems more
rapidly and to avoid obsolescence. It is, in many ways, the antith-
esis of Procrustes bed – one that adjusts to the person, not the
other way around.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUL 2014 2. REPORT TYPE

3. DATES COVERED
 00-00-2014 to 00-00-2014

4. TITLE AND SUBTITLE
High Maturity Is Not A Procrustean Bed

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Stevens Institute of Technology,Castle Point On
Hudson,Hoboken,NJ,07030

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
In Greek mythology, Procrustes was a rogue smith and bandit who invited travellers to rest in his
?perfectly sized bed.? When they accepted, he forcibly bound them to it, then stretched them or cut off
various body parts until they ?perfectly? fit the bed. Too many organizations have a single model of high
maturity to which they try to fit all their projects. Development and acquisition organizations are finding
that competitive success requires systems that are a mix of high security assurance components opaque and
dynamic COTS products and cloud services, and highly useful but kaleidoscopic apps and widgets.
Approaching such systems with a one-size-fitsall corporate process and maturity model often results in a
procrustean fit. As a process model generator, the Incremental Commitment Spiral Model has a set of
criteria for determining which process or processes best fit a particular system of interest. This article
summarizes the criteria and illustrates how they have been successfully applied in various situations [1].

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

7

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

CrossTalk—July/August 2014 9

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

Issue Result Example

Defined process
mismatch

Large systems get their
integration lopped off in trying
to keep to 4-week increments

In their paper “Recognizing and Responding to ‘Bad Smells’ in Extreme
Programming,” Amr Elssamadisy and Gregory Schalliol of ThoughtWorks describe
a case where after 3 years of success with applying XP to a lease management
system, the length of time to add a new feature became longer than an iteration
due primarily to increasingly complex integration and technical debt issues.

Poor contracting Development lopped off by a
fixed-price, fixed SOW contract

TRW spent money and schedule designing a system to a 1-second response time
requirement only to find that this was not affordable. Luckily, this was discovered
early and only cost 13 months of schedule.

Policy influences (on
standards
development)

Stretched requirements result
in wasteful expenditures on
non-value adding work that
stretch schedules and budgets

The definition of MIL-STD-498 as a replacement for 2167 and 7935. Wanting to
avoid imposing 23 DIDs that on simple could be tailored down but in principle
rarely were in practice, two other versions (one with 6 DIDs and one with 1 DID)
were developed. The policy police decided that DoD couldn’t have more than one
set of documents covering the same content, leaving only the 23 DID version.

Policy influences
(Expert-developed
standards)

Lack of understanding, “short”
sighted policy definition and
“long” impacts leading to
disastrous process
implementations

The framers of 2167 and 2167A didn’t see the waterfall diagrams as a problem,
because “anyone with common sense would know better than to commit to
requirements without establishing their feasibility.” But less-expert project
managers would see” following the standard” as the safest thing for their careers,
and end up getting into trouble.

Policy Influences
(Piling On Constraints)

Rework and technical debt
overload stretch schedules and
budgets

Changing the rules mid-stream with inflexible processes is disastrous. An
organization started with the 2167 mandate to have the requirements determine
the delivered capabilities. mid-way through the project, a SecDef memo to “use
COTS products wherever possible,” meant COTS capabilities would determine
the requirements. Later in the development, a mandate to use the Ada
programming language resulted in significant effort because many of the selected
COTS products had weak or no Ada bindings.

Top-Executive
Mandates

Unintentionally imposed
constraints that cut off
technical solution options

Dated executive experience often constrains their decisions. A 2006 Mark Maier
SysE Journal paper identified hardware architecture constraints imposed by
hardware-oriented top executives in terms of functional hierarchies and simple
interfaces that cut off software options such as layered-service architectures and
more complex but necessary interface protocol compatibility standards options.

Voice of the
Customer.

Every customer need becomes
a project requirement,
stretching the project well
outside budget and schedule
constraints

The Bank of America Master Net project used a broad, unmediated Voice of the
Customer approach that ended up in a disaster when the major stakeholders’
agreed-to desires resulted in significant success model clashes and overruns.

Test-Driven
Acceptance.

Under-constrained
acceptability, leaving
extremities to be lopped off
later

The 3000-test Ada compiler validation suite led compiler vendors to patch their
compiler software to pass the tests, creating a product that was often less robust
than their beta-test versions.

Search-Driven
Acceptance.

Projects deploying
inappropriate practices,
methods or approaches

Search engine results on the use of formal methods found mostly success stories,
but on small projects, leading some projects to adopt the methods only discover
scalability shortfalls.

Auditor-Driven
Acceptance.

Varying auditor interpretations
over constrain or under
constrain projects leading to
stretching or chopping later

Software CMM or CMMI auditor-based maturity levels requirements had little
impact on acquisition programs.

Value-Neutral
Acceptance.

Inappropriate activity and
gaming on the part of
developers driven by simplistic
or incomplete metrics

Some projects use delivered defect density as the basis for acceptance, leading
project personnel to fix the easy defects. The project then finds the hard defects
are unacceptable, and must be stretched well beyond its budget to become
acceptable.

Acquisition-Oriented
Acceptance.

Product too expensive to
operate and maintain

Tight budgets and schedules lop off options to design and develop the project to
facilitate maintenance, operations, and support.

Table 1. Examples of Procrustean Process Consequences

10 CrossTalk—July/August 2014

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

ICSM Lifecycle
The Phased View (Figure 2) shows how the overall life-

cycle process divides naturally into two major stages. Stage I,
Incremental Definition, covers the up-front growth in system
understanding, definition, feasibility assurance, and stakeholder
commitment. If the Phase I activities do not result in deciding
to radically change the effort by adjusting scope or priorities, or
discontinuing the development completely, they lead to a larger
Stage II commitment to implement a feasible set of specifica-
tions and plans for Incremental Development and Operations.

Figure 1. The Incremental Commitment Model: Spiral View

begin incremental development of a well-defined software project
in less than a week. A more complex project requires significant
effort and could take up to five years or more. An example might be
an ultra-large, unprecedented, multi-mission, multi-owner, system-
of-systems needing to integrate with numerous independently
evolving legacy or external systems. We have provided ICSM ele-
ments to the definition and development of such systems.5

Stage II is planned around the length of the increments to be
used in the system’s development and evolution. This is a key
decision made during the Development Commitment Review.
A small agile project can use two-to-four week increments. A
much larger project could need increments of up to two years
to develop and integrate an increment of operational capability.
However, the ICSM capability delivery cadence is not necessar-
ily linked to the internal development cadence, and there may be
several internal integration cycles within a longer release incre-
ment. Some large, inseparable, hardware components would
take even longer to develop their initial increments, and would
be scheduled to synchronize their capability deliveries with con-
currently evolving infrastructure or software increments.

Stage I activities have assured a common vision, committed
stakeholders, and an architecture capable of accommodating
foreseeable changes such as user interfaces, external system
interoperability requirements, or transaction formats. These en-
able the features in each Stage II increment to be prioritized and
the increment timeboxed.

Flexible, Multiple and Evolving Processes
The ICSM essentially uses evidence and risks to generate ap-

propriate processes throughout the lifecycle. Figure 3 illustrates
four example paths through the ICSM to visualize how different
risks create different processes.

Example A is a simple business application based on an
already-available Enterprise Resource Planning (ERP) package.
There is no need for a Valuation or Architecting activity if the
ERP package has already been purchased and its architecture
has already proved cost-effective in supporting more complex
applications. Thus, the project can go directly into Stage II,
using an agile method such as a combination of Scrum and
Extreme Programming. There is no need for “Big Design Up
Front” activities or artifacts because an appropriate architecture
is already present in the ERP package. Nor is there a need for
heavyweight waterfall or V-model specifications and document
reviews. The critical risk identified at the end of Exploration
could be the user acceptance and business process reengi-
neering required for deployment. In this case, that risk would be
considered negligible if the system’s human interface risks have
been sufficiently mitigated via ERP package-based prototyping.

Example B involves a risky but innovative system such as adding
a retina scanner to the next model of a cellphone product. There
are a number of uncertainties and risks/opportunities to resolve,
such as scanner hardware integration and safety of the user.
But the new capability is needed quickly and there is a fallback
(deferring its introduction to the following model), so proceeding to
address the risks and develop the system is acceptable.

Example C is a system that is defined as safety critical. The
stakeholders responsible for the safety of the proposed system
find at the Foundations Commitment Review that the proposers
have provided inadequate safety evidence. It is better to have the

Figure 2. The ICSM Staged View

The duration of Stage I can be anywhere from one week to five
years, depending on factors like the number, capability, and compat-
ibility of the proposed system’s components and stakeholders. A
small, experienced, developer-customer team, using agile software
methods and operating on a mature infrastructure, can form and

CrossTalk—July/August 2014 11

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

System (or subsystem) Common Case Examples

SW application/system executing on one or
more commercial HW platforms, as a
standalone system or a constituent of one
or more SoSs.

SW application
or system

Cellphone app, business application or system,
military command and control software system,
inventory management systems, computer
operating system, database management system

A special purpose object, machine, or
piece of equipment that has significant
features provided by software.

SW-intensive
device

Computer peripherals, weapons, entertainment
devices, health care devices (including small
surgical), GPS receivers, manufacturing tools

Vehicle (land, sea, air, or space) HW platform Small unmanned vehicle, automobile, tank, ship,
airplane, space shuttle, space station, Mars rover

Computer HW platform Mainframe, server, laptop, tablet, cellphone

Part of a set of systems that are either
similar to each other or interoperate with
each other

Family of
systems or
product line

Car models that share many core components;
interoperating back-office systems such as billing,
accounting, and sales force support, that share a
common repository with standard data definitions
and formats, and are provided by a single vendor

A new capability that will be performed by
more than one interoperating system

SoS or
enterprise-wide
system

Multiple interoperating systems owned and
managed by different organizations; for example,
navigation systems that include airborne and land
systems using GPS

Refactoring or re-implementation of an
older legacy system or set of systems

Brownfield
modernization

Incremental replacement of old, fragile business
systems with COTS products or technology
refresh/upgrade of existing systems

Figure 3. Different Risk Patterns Yield Different Processes

proposers develop such evidence through archi-
tecture-based safety cases, fault tree analyses,
and failure modes and effects analyses before
proceeding into the Foundations phase. The ar-
row back into the Valuation phase indicates this.

In Example D, the developers are simply too
late to play. It is discovered before entering the
Development phase that a superior product
has already entered the marketplace, leaving
the current product with an infeasible business
case. Here, unless adjusting the project’s scope
can make a viable business case, it is best to
discontinue it. It is worth pointing out that it
is not necessary to proceed to the next major
milestone before terminating a clearly non-via-
ble project; however, stakeholder concurrence
in termination is essential.

ICSM Risk-Driven Common Cases
Many projects can reuse experience from

previous projects. However, every project has
the possibility of unique aspects that could
impact the selection of processes and the path
through the ICSM. To enable early estima-
tion, supply examples that help users with
initial planning, and support categorization and
capture of lessons learned, we have identified
a set of seven risk patterns that represent the
most often seen paths through the ICSM. We
have named these patterns Common Cases:

• Software application or system
• Software-intensive device
• Hardware platform
• Family of systems or product line
• System of systems (SoS) or

 enterprise-wide system
• Brownfield modernization

Table 2 briefly describes when to use each
common case and some examples of each.

ICSM and Large, Complex Systems
Obviously, larger, more complex systems will

require a great deal more activity in Stage I.
In Stage II, however, the ICSM allows a great
deal of flexibility in providing a way of integrat-
ing and accommodating the wide variety of
development activities that can appear across
the various hardware, software, and human
development activities. For that reason, the
Implementation Phase is based on a three-
tiered, timeboxed process that allows for
reflection, anticipation, and adjustment to the
changing environment, shown in Figure 4. This
concept works best in software, but can apply
to hardware in many cases. Figure 5 shows
how this three-tiered model scales to multiple
component or subsystem development.

Table 2. ICSM Common Cases

12 CrossTalk—July/August 2014

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

Figure 4. Three-tier timeboxed approach (Evolution View)

ICSM and Process Improvement
ICSM is designed to provide flexibility. It also expects you to

evaluate and apply the process assets you already have in new
ways, and provides essential guidance on hw that can happen.
ICSM also seeks to actively create and use lessons learned
both within and between projects to decrease the learning cycle
and accelerate improvement. The key intrinsic process improve-
ment aspects in ICSM are evidence, risk-based process, the
incremental approach, and anticipation/reflection.

In the ICSM, evidence is continuously created as a first class
deliverable and used for process generation, decision-making, and
stakeholder commitment. This evidence captures a wide variety
of knowledge in a way that can be empirically analyzed to support
retrospection at almost every point in the lifecycle. It can also be
used to improve estimation, evaluate experimental processes and
methods, and transfer knowledge across projects and systems.

As with many process models, risks are captured and tracked.
However, in the ICSM they also directly impact the process
generation activities and are integrated into all decision-making.
Many risks are common across a domain, and so mitigation
efforts based on ICSM process decisions are documented and
can be easily captured to support decision-making and process
generation across projects.

Figure 5. A Large-system development phase

CrossTalk—July/August 2014 13

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

Issue ICSM Mitigation

Defined process
mismatch

Track evidence of time needed to both develop and integrate new increments, and adjust
increment sizes and/or schedules as necessary

Poor contracting Develop evidence of the need for 1-second response time and the cost of achieving it
before committing to it.

Policy influence (on
standards development)

Develop and sustain multiple sources of guidance for deliverables on different classes of
systems, such as with the recent draft update of DoDI 5000.02

Policy influence (Expert-
driven standards)

Provide criteria for initial choice of project process, and risk-based decision guidance on
process adaptation to change

Policy Influence (Piling On
Constraints)

Add new guidance directives only based on evidence of their compatibility with existing
directives

Top-executive Mandates Involve development and support stakeholders in key process and product guidance.
Concurrently engineer the system’s hardware, software, and human elements

Voice of the Customer. Involve all success-critical stakeholders in key project and product guidance decisions

Test-driven Acceptance Evolve test criteria based on user alpha, beta-test experience

Search-driven Acceptance Ensure that evidence is accumulated from fully representative stakeholder communities

Auditor-driven
Acceptance

Involve stakeholders in choice of process and product guidance.

Value-neutral Acceptance Use stakeholder value propositions to prioritize requirements, proposed changes, test
cases, defect fixes

Acquisition-oriented
Acceptance

Involve post-deployment stakeholders in determination and prioritization of requirements

Table 3.ICSM mitigations to procrustean issue

The incremental nature of the ICSM shortens the learning
cycle. Agile and lean development methods with short cycle
times, value-based scheduling, and continuous integration can be
employed wherever appropriate. Coupled with the ICSM emphasis
on evidence and risk, these can accelerate learning, reduce rework,
and manage technical debt in such a way as to provide continuous
process improvement throughout the Stage II activities.

Finally, process improvement requires balanced reflection and
anticipation. Wayne Gretzky, who is generally acknowledged
as the greatest hockey player of all time, ascribes a good deal
of his success to the ability to anticipate where the hockey
puck was going, and to skate to where he could capitalize on
that knowledge. Anticipating where technologies, competitors,
organizations, and the marketplace are going is increasingly
critical to successful systems and software engineering. In
contrast, organizations that spend their time asking, “How could
we have done our last project better?” are actually skating to
where the puck has been. Clearly, such “reflection in action” is
good,6 but in a world of rapid change, reflection in action needs
to be balanced with anticipation. The Incremental Commitment
Spiral Model integrates reflection, anticipation, and agility to
take advantage of evolving knowledge through a risk-based,
principle-driven approach to system development. We are still
firm believers that there are no panaceas, silver bullets, or one-

size-fits-all solutions. We are confident, though, that the ICSM
offers a coherent and useful way to approach systems develop-
ment in a world that has not only changed, but will also continue
to change throughout every system’s life cycle.

Conclusions
Procrustes caused a lot of damage before Theseus turned

the tables (or the bed) on him. We believe that there are a lot
of ways to fight procrustean tendencies through rethinking the
processes we advocate, and pushing back on those who are
applying inappropriate or damaging processes to our projects.
One of these ways is using the process generation framework
provided by the ICSM. Table 3 shows how the ICSM can miti-
gate our earlier list of procrustean issues.

ISCM supports adapting and applying multiple processes (or
process assets) as needed throughout a project, regardless of size,
duration, or complexity. It provides a flexible, extensible lifecycle that
can be adopted across a wide variety of project environments. Most
importantly, it establishes all of the underlying principles of high ma-
turity organizations— stakeholder value, incrementality, concurrency,
agility, flexibility, empiricism, improvement and predictability—without
restricting the specific processes deployed. ICSM enables the
opposite of a procrustean process: one that adapts to your needs
rather than forcing you to meet its own.

14 CrossTalk—July/August 2014

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

ABOUT THE AUTHORS
Dr. Barry Boehm is a USC Distinguished Pro-
fessor and Chief Scientist of the DoD-Stevens-
USC Systems Engineering Research Center,. He
was director of DARPA-ISTO 1989-92, at TRW
1973-89, at Rand Corporation 1959-73, and at
General Dynamics 1955-59. He is a Fellow of the
primary professional societies in computing (ACM),
aerospace (AIAA), electronics (IEEE), and systems
engineering (INCOSE), and a member of the U.S.
National Academy of Engineering.

E-mail: barryboehm@gmail.com

Dr. Richard Turner is a Distinguished Service Pro-
fessor at the Stevens Institute of Technology. Active
in the agile, lean and kanban communities, he
helped author the Software Extension to the PMI
Guide to the PMBOK. He is a Golden Core member
of the IEEE Computer Society, a fellow of the Lean
Systems Society and co-author of four books: The
Incremental Commitment Spiral Model, Balancing
Agility and Discipline, CMMI Survival Guide, and
CMMI Distilled.

Phone: 202-390-3772
E-mail: rturner@stevens.edu

Jo Ann Lane is currently the systems engineering
Co-Director of the University of Southern Califor-
nia Center for Systems and Software Engineering,
a member of the Systems Engineering Research
Center Research Council representing the system
of systems research area, and emeritus professor
of computer science at San Diego State University.
Her current areas of research include system of
systems engineering, system affordability, expe-
diting systems engineering, and balancing agile
techniques with technical debt.

Phone: 858-945-0099
E-mail: jolane@usc.edu

Dr. Supannika Koolmanojwong is a lecturer and
a researcher at the University of Southern Califor-
nia Center for Systems and Software Engineering.
Her primary research areas are Software Process
Improvement, Software Process Quality Assurance,
Software Metrics and Measurement, Agile and Lean
Software Development and Expediting Systems
Engineering. She is a certified scrum master and
a certified Product Owner. Prior to this, she was a
software engineer and a RUP/OpenUp Content
Developer at IBM Software Group.

E-mail: koolmano@usc.edu

NOTES
1. Boehm, B. and J. Lane, “Using the Incremental Commitment Model to Integrate
 System Acquisition, Systems Engineering, and Software Engineering,” CrossTalk,
 October, 2007
2. Boehm, B., J. Lane, S. Koolmanojwong, and R. Turner, The Incremental
 Commitment Spiral Model: Principles and Practices for Successful Systems
 and Software, Addison Wesley Pearson, New York, 2014.
3. Boehm, B. “A Spiral Model for Software Development and Enhancement.”
 Computer. May 1988;61–72.
4. CrossTalk. “Top Five Quality Software Projects.” January 2002, July 2003,
 July 2004, September 2005. www.stsc.hill.af.mil/crosstalk.
5. Stephen Blanchette Jr., Steven Crosson, Barry Boehm, “Evaluating the Software
 Design of a Complex System of Systems,” CMU/SEI Tech Report
 CMU/SEI-2009-TR-023, January 2010
6. D. Schon, The Reflective Practitioner. Basic Books, 1983.

REFERENCES
1. Much of the material in this article is drawn from a new book: Boehm, B.,
 J. Lane, S. Koolmanojwong, and R. Turner, The Incremental Commitment
 Spiral Model: Principles and Practices for Successful Systems and Software,
 Addison Wesley Pearson, New York, 2014. The initial work that provided the
 basis for the book was funded in part by the US Department of Defense,
 through the Systems Engineering Research Center, a University Affiliated
 Research Center at Stevens Institute of Technology.

