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The implementation of a multi-scale three dimensional variational (MS3DVAR) data assimilation scheme
for use with the Navy Coastal Ocean Model (NCOM) in the Kuroshio Extension western boundary current
region is presented here. This work leverages on Li et al. (2013), who initially developed this method.
MS3DVAR data assimilation allows for the effective assimilation of both spatially coarse and dense
collections of observations. Traditional 3DVAR produces an inherent filtering of dynamical features
smaller than the decorrelation length. The MS3DVAR allows for a scale selective background error
covariance capable of handling a wider range of ocean scales. Here the MS3DVAR is examined in an
energetic coastal regime using simulated and real observations. The results show that the MS3DVAR
reduces analysis errors when compared to a traditional 3DVAR scheme. Forecast errors appear to be
similar for both systems and are most likely due to the coarse resolution of the surface forceing being

3DVAR "
applied.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Thanks to the ever increasing computer capabilities, numerical
ocean models are now routinely run at higher and higher resolu-
tion, e.g. global hybrid coordinate ocean model (HYCOM) at 1/25°
(Metzger et al., 2010; Hurlburt et al., 2011). The spatial resolution
in regional models is usually higher than that of the global models
providing initial and boundary conditions. When models are run
at high resolution, they resolve features and processes (usually of
small spatial and short temporal scales) that are absent at lower
resolution. These small scale processes may be the realistic result
of the dynamics and physics of the model equations, but they are
not necessarily synoptic, and need to be validated against observa-
tions that are not always available, let alone at high resolution.
The lack of high density observations, however, results in ocean
analyses that are largely unconstrained and may lead to unsatis-
factory forecasts of the ocean state.

And, even if high resolution observations were available, in
addition to the sparse observations routinely collected, an assim-
ilation system that is able to take into account the presence of
multiple scales in both the model and the observations would still
be needed. A natural choice for such an assimilation system would
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be an ensemble based algorithm, such as the EnKF (Evensen, 2003)
in which the interaction between processes of different scales is
implicitly accounted for in the ensemble generated background
error covariance. However, with models running at high resolu-
tion, an ensemble approach would be very costly. An alternative
was proposed by Li (2011) and Li et al. (2013) in the form of the
multi-scale 3DVAR (MS3DVAR), where the model forecast, the
observations and their respective error covariances are decom-
posed into large and small scale components, and the 3DVAR
analysis is carried out for each component. MS3DVAR has been
successfully used in assimilating observations from the Southern
California Coastal Ocean Observing System (SCCOOS) (Li, 2011),
and in a real time nowcast-forecast modeling system for Prince
William Sound that was developed and operated in support of the
summer 2009 Sound Predictions Field Experiment (Farrara et al.,
2013; Li et al., 2012).

A similar algorithm was proposed by Xie et al. (2011) and used
for hurricane data assimilation. Another atmospheric application
was carried out by Xiao and Tastula (2011) for the problem of
hurricane initialization.

The objectives of this study are, first of all to describe the
MS3DVAR system being used with NCOM (Martin, 2000). A first
order validation of this system using simulated and real observa-
tions is presented here as well. Comparison metrics will focus on
the assimilation system's ability to improve the model analyses
and forecasts. Oceanic applications of the MS3DVAR have been
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carried out mostly in small domains with weak to moderate flows.
In this study, the MS3DVAR is applied to a domain containing the
continental shelf, shelf break, deep ocean and strong western
boundary flow. Of particular interest is the ability of the MS3DVAR
to handle both the large scale circulation in the region as well as
the small scale processes generated in the island wakes and their
interaction and with the Kuroshio. These small scale features are
present in most shelf regions around the world and a better
representation of them in our models is an issue that is addressed
with the MS3DVAR.

Background error covariances are essential to any assimilation
algorithm. They describe the assumptions made about the errors
in the model solution, which are poorly understood and are
responsible for spreading the information from the observation
locations to everywhere else in the model domain and to all model
variables. Li et al. (2013) describes a method for the construction of
background error covariances for a MS3DVAR based on the
Kronecker product formulation using perturbations derived from
an ensemble of multi-year simulations. Here, an empirical ortho-
gonal function (EOF) analysis is performed to partition the
variances from the large and small scales, and a diffusion equation
is used for the correlation operator in the background error
covariance (Carrier and Ngodock, 2010; Derber and Rosati, 1989;
Egbert et al., 1994; Weaver and Courtier, 2001; Weaver et al., 2005;
Ngodock, 2005) with appropriate spatial correlations for both the
large and small scale components of the MS3DVAR.

The next section presents a summary of the formulation of
MS3DVAR by Li et al. (2013), followed by a description of the
numerical model used in Section 3. Section 4 deals with the
application of the MS3DVAR in the Kuroshio Extension using
simulated and real observations, and a summary follows in
Section 5.

2. Formulation of ms3dvar

The original formulation of the MS3DVAR scheme was pro-
posed by Li et al. (2013). The scheme uses an incremental 3DVAR
approach that explicitly treats multiple scales separately, but was
written for a two-scale partition of the traditional 3DVAR cost
function into a large and a small scale cost function as

1 1
Ji(5x) = j5><{BL “ox,+ S(Hox — 5) (R+HBH")"Y(Hox, —5,) (1)
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where 6x is the incremental state variable defined as sx = x—x?,
with x” the background state (such as a previous forecast) created
by the forward model. The cost function simply measures the
weighted sum of squares of distances to the background state and
to the observations. B; and Bs are the background error covar-
iances associated with the large and small scales respectively sy is
the innovation vector (data model misfit) defined as y—Hx?,
where y is the observation vector and H is the operator that maps
the model state to the observations and R is the observation's
error covariance, according to the unified notations of Ide et al.
(1997).

As mentioned by Li et al. (2013) the use of a multi-scale
assimilation introduces a new dimension of flexibility not present
in the traditional formulation of 3DVAR. From a practical stand-
point this flexibility allows for a full utilization of high resolution
observations in addition to coarse resolution observations. These
observations can be divided into two types: dense (y?) and coarse
(¥°). The first type can be partitioned again into a large and small
scale components y¢ and y¢ with observation errors covariances Rf
and Rg’ respectively, while the second cannot be partitioned. After

these partitions, the large scale cost function becomes
1 _ 1
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with sy? =y? —H%® as the large scale innovation. Due to the
assimilation of y¢ the representativeness error in the small scale
background errors is removed. Therefore the observational error
covariance of the large scale component of the dense observations
reduces to RY. It can be shown that the elimination of the repre-
sentativeness error will improve the assimilation of the dense
observations into the large scale component of the model state
variables (Li et al., 2013). Representativeness error is the error
associated with an observation not adequately representing the
actual state of the ocean on the scale of the assimilation model. It
is important to note that spatially continuous observations, such as
satellite sea surface temperature measurements, should be denoted
as the dense observation type. This is not true for sparse observa-
tions, such as moorings or floats, which lack spatial continuity and
thus cannot be partitioned into a large and small scale. These types of
observations must then be specified as coarse observations.

The implementation of the small scale cost function is slightly
more difficult because there are types of high resolution observa-
tions that have highly localized and patchy spatial distributions,
such as high frequency radar (Paduan and Graber, 1997).
The characteristics of these types of observations can produce
unrealistic large scale analysis increments around these patchy
localized observations. This problem is resolved by only assimilat-
ing these types of observations into the small scale component of
the MS3DVAR. So the small scale cost function is
d
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where 59" =y4 —H/x? and x¢ = x? +5x2. The large scale analysis
increment here is created without localized and patchy observa-
tions. Also, the assimilation of the small scale component of the
dense observations eliminates the small scales representation
error, reducing the small scales component of the dense observa-
tions error covariance matrix to Rg’ (Li et al., 2013).

2.1. Background error covariances for the large and small scales

The background error covariances for both the large and small
scales cost functions in (3) and (4) take the same form

B(x,x") = v(x)!/2v(x")!/? ex —x—xP?
o p( 212 ) ®)
where v(x) is the variance and L is the decorrelation length. The
differences between B; and Bs lie in the choice of the variance and
the length scales. The latter are chosen to be 100 km and 20 km
respectively, and the former are derived from an EOF decomposi-
tion of a time series of model solutions. The number of modes
used in the EOF analysis is determined by the number of total
number of time steps. The lower order modes (1)-(5) are qualita-
tively determined to represent the large scale features. Fig. 1
shows the amount of variance as a function of depth (left panel)
where there is a maximum located at approximately 75 m. The
middle and right panels show the variance that is attributed to the
large and small scales respectively. At the surface the large scale is
approximately 90% of the variance. This value drops to 80% within
the mixed layer where small scale features become more energetic.
This analysis reveals the importance of large scale features over the
majority of the domain. The choice of the covariance form in (5) is
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Fig. 1. Mean total temperature variance (left), large scale variance (center), and small scale variance (right). The y-axis is depth in meters.
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Fig. 2. Western Pacific region including Japan and Korean Peninsula. Relocatable
NCOM model domain within black box. Color plot shows model maximum depths
in meters.

mostly for convenience, because the covariance multiplication during
the analysis is obtained as a solution of a suitably initialized diffusion
equation as mentioned earlier.

3. Model description

The forward ocean model is the NCOM and produces forecasts
of temperature, salinity, sea surface height, and velocity. The
model domain spans longitudes 137°E to 145°E and latitudes
31°N to 38°N at 3 km horizontal resolution. The model grid has
dimensions of 244 x 259 with 50 vertical levels. In order to
eliminate boundary noise issues the model is nested down from
a global grid (1/8 degree resolution) to intermediate resolutions of
9 and 6 km. Each nested grid is inset from its parent grid by 5 grid
points. The atmospheric forcing is provided by the Navy Global
Atmospheric Prediction System (NOGAPS, Rosmond et al., 2002)
with a horizontal resolution of 0.5 degrees which is archived at
intervals of 12 h. The model grid location and depth can be seen in
Fig. 2.
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Fig. 3. Model surface temperature in degrees Celsius for 20th September, 2010.

In this region the Kuroshio appears as a narrow large magni-
tude current in excess of 30 cm/s which follows the continental
margin of the East China Sea and then passes into the deeper
North West Pacific over the Izu Ridge south and east of Honshu,
seen in Fig. 2 (Niiler et al., 2003). The Kuroshio represents a
significant transport mechanism in this region. According to Qu
et al. (2001) the eastward flow of this western boundary current at
the point where it separates from the main island of Japan
(approximately 140° east longitude) is 40 Sv which increases to
51 Sv (144° east longitude). Also present are Kuroshio-induced
cold-core eddy trains which have the general form of a von
Karman vortex street and are described in detail in Isoguchi
et al. (2009). An example of these features can be seen in Fig. 3.
The appropriate handling of these features remains difficult for
traditional single scale 3DVAR assimilation schemes.

4. Assimilation experiments and results
Here two experiments are examined to study the character-

istics and utility of the multi-scale system in a highly energetic
region of the coastal ocean. The first experiment uses an idealized
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configuration of surface and profile observations taken from a non-
assimilative run of the forward model. This experiment will be
referred to as the simulated data experiment in which observations
consist of surface temperature and subsurface temperature and
salinity profiles. The second experiment, referred to as the real data
experiment, uses real observations of satellite sea surface tempera-
ture (SST) as well as subsurface temperature and salinity profiles. In
essence, both experiments assimilate the same types of observa-
tions with the exception that one data set is simulated from the
model and the other is real. Both of these experiments will be
evaluated relative to the analysis time, the 24-h and 48-h forecasts.

4.1. Simulated data experiment

The simulated data experiment consists of two runs: (1) a non-
assimilative model run from 13th September to 13th October from
which the simulated observations are sampled and (2) an assim-
ilative model run from 2nd September to 30th September. The
offset of dates between the non-assimilative and assimilative runs
ensures that the initial background to be corrected is significantly
different from the simulated data run, and offers a means of
verification for the assimilation's effectiveness in driving the
model towards the observations. The simulated observations of
surface temperature and subsurface profiles of temperature and
salinity are sampled from the non-assimilative run and assimilated
at a 24-h interval with the MS3DVAR and a traditional 3DVAR.
A 24-h forecast is run using the analysis field as the initial
condition; this becomes the background for the next assimilation
cycle. The simulated observations are sampled in such a way to
mimic the spatial distribution of a field experiment with coarse
satellite coverage over the whole domain along with several
profiling buoys and a dense collection of observations meant to
sample small scale features generated in the island wakes within
the core of the Kuroshio. An example of these features, e.g.
meanders, can be seen in Fig. 3. The spatial distribution of the
simulated observation is seen in Fig. 4.

Oy
38°N 7 L v - -
?\ O L] L] *
37°N | * L] L]
& . . . L
. & . .
36°N - - Y
L] L] L] L]
L] * L ] L]
35°N - ) . ) .
£ L] L] £ * L]
3 4°N J ° 03 o,. ﬁ . ° ° .
L] L] L] L] L] *
A
* L] ‘§. L] L] L] L]
33°N -
L] L] * . L] L]
. . L] . L] * .
32°N A . oA . . . . o
o . * * L] L] L]
310N |. [ ] T (] (] T (] (] T [ ]
138°E 140°E 142°E 144°E

Fig. 4. Simulated observation locations. Surface observations (black circles) and
profile locations (white triangles).

4.1.1. Experiment results

To assess the performance of the MS3DVAR comparisons with a
traditional 3DVAR system are made. The MS3DVAR partitions the
total variance into large (100 km) and small (20 km) scale con-
tributions, whereas the traditional 3DVAR system uses the total
variance and has only one decorrelation scale set at 100 km. There
is no clear or rigorous separation of scales between 100 km and
20 km. It is understood that the scales of features are better
described as a cascade. Attempting to represent all the scales in
a cascade would be burdensome and computationally costly and
beyond the scope of this study.

The differences between the assimilation and the observations
is examined at the observation locations using the fit to the
observations metric

l M |.mexm|

€ =17 o172 (6)

m=1
where m is the observation index, x, is the model state (mapped
to the observation locations), y,, is the observation, M is the total
number of observations and a,ln/z is the observation standard
deviation. Because the assimilation is expected to fit the observa-
tions to within one standard deviation, the metric is expected to
have values less or equal to 1. When this metric is applied to an
analysis or forecast trajectory it can be used to examine the time
variability of the errors. Although the latter is not subject to the
same expectation as the analysis, the metric still reveals improve-
ments or deteriorations of the forecast.

Fig. 5 shows the comparison of the fit to the observation metric
(ep) for the analysis, 24 h forecast, and 48 h forecast. Obviously the
smaller the error metric the better a given assimilation scheme is
at representing the observations when compared to the simulated
observations. It is clear that the analysis time series comparison
shows the MS3DVAR has a significantly lower metric than the
traditional 3DVAR. The MS3DVAR has a sharp initial decrease and
remains slightly less than 1 until the end of the month where
there is another sharp decrease. The traditional 3DVAR does not
exhibit the same sharp decrease. Additionally, the errors for both
the MS3DVAR and the traditional 3DVAR appear to decrease over
time, an indication that the systems have a ‘spin-up’ period;
however, this is not investigated in this study. The 24-h and 48-
h forecasts have several peaks in the time series of the error
metrics. In general the traditional 3DVAR has a higher maximum
value (i.e. large errors) than the MS3DVAR. Also it may be helpful
to note that the scales on Fig. 5 are not the same. The errors are
higher for the 24-h and 48-h forecasts compared to the analysis
time.

Fig. 6 depicts a scatter plot comparison between all the
observations and the model analyses, 24-h, and 48-h forecast
values for both the MS3DVAR and the traditional 3DVAR. The red
points are the traditional 3DVAR while the blue are the MS3DVAR.
The differences between the observations and the model are
smallest at the analysis time (left panel). The differences between
the simulated data run and the model increase as the forecast is
pushed out to 24-h and 48-h. The spread at the analysis time is
significantly smaller than in the forecasts. The spread shown
between the data and the forecast values are similar between
the 24-h and 48-h results. Examining the RMS error however
indicates that the MS3DVAR produces lower error than the
traditional 3DVAR (RMS values shown in Fig. 6).

4.1.2. Three one day experiments

A second comparison experiment between the traditional and
the MS3DVAR is carried out, where the density of simulated
observations is drastically increased, and the background is chosen
to be significantly different from the simulated data run from
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Fig. 6. Scatter plot of temperature for the MS3DVAR (blue points) and traditional 3DVAR (red points) at the analysis time (left), the 24-h forecast (middle) and the 48-h
forecast (right) versus simulated observations taken from the simulated data run. The values given in the plot are the root-mean-square (RMS) difference between the
analyses and the observations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Surface temperature, in °C, of the background field (left) and simulated data run field (right) regions of interest are denoted by black boxes and coarse observations

are the black points.

which the observations are sampled, at a time when the model
exhibits small scale features as seen in Fig. 7. The black boxes
shown in Fig. 7 represent regions of interest where there are
significant differences between the background and the simulated
data run. The island wake region is a generation area for small
scale eddies and is densely sampled in space. The downstream
region is important for evaluating the influence of correcting small
scale features in the island wake region and letting them propa-
gate downstream. This experiment aims to highlight the inability
of the traditional 3DVAR to handle dense observations accurately.

First, a coarse subset of the dense observations is assimilated using
the traditional 3DVAR, then the dense observations are assimilated
using 3DVAR, and finally the dense observations are assimilated
using the MS3DVAR. All three experiments in this section are
carried out for a single day and use the same background.

A comparison of the analyses from these three experiments with
the simulated data run reveals the limitations of the traditional
3DVAR. Qualitative comparisons using the color plots as well as using
RMS differences over the full region, the downstream region, and the
island wake region are examined. A direct comparison between the
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Fig. 8. Surface temperature from simulated data run minus analysis field for coarse observations with traditional 3DVAR experiment (left), dense observations with
traditional 3DVAR experiment (middle), and dense observations with MS3DVAR experiment (right).

Table 1
Root mean square differences of surface temperature between simulated data run
and experiments for three regions in °C.

Data/Assimilation /Length scale (km) Full Downstream Island wake
Coarse/traditional 3DVAR/100 094 137 1.02
Dense/traditional 3DVAR/100 0.55 0.8 0.36
Dense/traditional 3DVAR/50 033 036 0.31
Dense/traditional 3DVAR/20 037 041 0.29
Dense MS3DVAR 0.3 0.33 0.27

simulated data run and the background field shows that the
temperatures are higher in the simulated data run and that the
placement of the Kuroshio in the downstream region is different.
Additionally, there are major differences between the magnitude
and shape of the small scale features present in the island wake
region.

Fig. 8 shows these differences for each of the three experiments.
The largest errors are found in the traditional 3DVAR experiment
with the coarse observations (left panel). This is expected and
represents a common problem in data assimilation experiments
where there are not enough observations to constrain the models.
The middle panel of Fig. 8 shows the traditional 3DVAR comparison
with the simulated data run when the observation density is greatly
increased to mimic the spatial resolution of a geostationary opera-
tional environmental satellite (GOES), for this example a spatial
resolution of 6 km was used. The right panel shows the same
observations as the middle panel but now using the MS3DVAR.
Simply put, small scale features cannot be reproduced without high
density observations. There also seems to be an inherent smoothing
of the small scale features in the traditional 3DVAR experiments
due to the long decorrelation length. The MS3DVAR better repre-
sents the multiple scales present in these dense observations. This
is confirmed by the smaller differences in the experiment with the
MS3DVAR when compared to the traditional 3DVAR. To support
this qualitative assessment Table 1 shows some RMS results which
reveal the dense MS3DVAR experiment to have the lowest errors
over the full domain. The RMS errors in the downstream region for
the MS3DVAR are comparable to the full domain. This is not the
case for the traditional 3DVAR experiments, where the coarse
collection of observations lacks the necessary coverage, and the
dense collection has too many observations within a decorrelation
length of the background error covariance, causing the cooling of
the Kuroshio in this region to be over estimated. In the island wake

region the MS3DVAR again produces the lowest RMS errors with
the dense traditional 3DVAR performing better than the coarse
traditional.

It can be argued that setting the decorrelation length scale for
the traditional 3DVAR at 100 km puts it at a disadvantage. Several
additional experiments with the traditional 3DVAR decorrelation
length scale set at 50 km and 20 km show that RMS errors
decrease for these runs (seen in Table 1). However, this decrease
in length scale may not be appropriate for most basin scale
domains which hope to represent the large scale first. Also the
use of a small decorrelation length in a traditional 3DVAR will only
reduce errors when the observations are extremely dense. For
most real world cases a larger length scale is more prudent.
Generally, the traditional 3DVAR will represent a single length
scale whereas the MS3DVAR represents multiple scales.

4.2. Real data experiment

The same NCOM grid and 3DVAR length scales from Section 4.1
are also used here for the assimilation of real observations, unlike
the experiment in the previous section which used simulated
observations. The remotely sensed and in-situ ocean data assimi-
lated here include GOES SST, ARGO profiling floats (Roemmich
et al,, 2001), and in-situ profile buoys. These observations are
collected, prepared and quality controlled with the Navy Coupled
Ocean Data Assimilation (NCODA) system (Cummings, 2005, 2011;
Cummings and Martin, 2013). The experiment uses a 24-h update
cycle, assimilating observations at 0000 UTC of each day, and the
time period for this experiment is 1st September through 31st
October 2010.

Fig. 9 shows an example of the distribution of SST observations
for 17th September, 2010. In order to perform the MS3DVAR
assimilation the observations need to be partitioned into dense
and coarse types. A simple sorting method is used here. For each
observation location the distance to the nearest observation is
recorded. If that distance is less than 15 km it is flagged as dense.
These dense flagged data are then examined again where the
distance to the nearest dense observation is recorded and if it is
less than 15 km it is again flagged as dense. These double flagged
data are determined to be of dense data type while the remaining
observations are of the coarse data type. This partitioning is only
relevant for the MS3DVAR scheme; the traditional 3DVAR uses all
observations. All the profile observations are assigned to the
coarse type.
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4.2.1. Experiment results

Again, in order to examine the temporal variability of the analysis
errors at the observation locations we look at the fit to the observa-
tions metric e, over September and October 2010 (Fig. 10). In general
the error metric shows that MS3DVAR has lower values when
compared to the traditional 3DVAR. It is important to note there are
no observations on 14th October, 2010 as seen by the missing data
point. The left panel in Fig. 10 depicts the metric at the analysis time
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Fig. 9. SST observation locations for 17th Sept, 2010. Dense observations (circles)
and coarse locations (asterisks).
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with the majority of the metric values near or less than one. This
implies that the analysis is fitting the observations to within a
standard deviation. The metric comparison at the analysis time (left
panel) shows variability in September which then decreases in
October. This variability can be attributed to the atmospheric forcing.
Additionally, the middle and right panels show the observation metric
for the 24-h and 48-h forecasts respectively. The atmospheric forcing
is also responsible for larger values of the observation metric in the
forecast fields. Obviously the forcing is most influential at the surface
where the majority of the observations are located. Fig. 11 shows that
there is an increased amount of variance in the surface temperature in
September that then decreases in October thereby confirming the
observed decrease in variability of e, over this time period.

Fig. 12 shows scatter plots between the model and observations
for both the MS3DVAR and the traditional 3DVAR at the analysis,
24-h and 48-h forecasts . For all of the time levels the MS3DVAR
produces the smallest errors when compared to the traditional
3DVAR and is significantly better than the non-assimilative model
run. These figures show that the free run diverges away from the
observations much more than the model runs using data assimila-
tion, which is to be expected. The scatter plots for the MS3DVAR
and the traditional 3DVAR forecasts are relatively similar with some
minor differences relating to lower error values for the MS3DVAR.

5. Summary

An MS3DVAR was developed following Li et al,, 2013, and was
used in assimilating simulated and real observations with the Navy
coastal ocean model in the Kuroshio extension. The main advantage
of this MS3DVAR includes the ability to handle dense collections of
observations (that would otherwise be redundant according to a
single correlation scale) through explicitely accounting for large and
small correlation scales within the cost function minimization.

The comparisons between the MS3DVAR and traditional 3DVAR
assimilation experiments show decreased analysis and forecast
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Fig. 10. e, comparison metric time series between MS3DVAR (solid line) and traditional 3DVAR (dashed line) for September and October 2010 at the analysis time (left),

24 h forecast (middle) and 48 h forecast (right).
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Fig. 11. Mean total variance of temperature time series for September and October 2010.
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Fig. 12. Scatter plot of temperature for the MS3DVAR (blue), traditional 3DVAR (green) and the non-assimilative model run (red) at the analysis time (left), the 24 h forecast
(middle) and the 48 h forecast (right) versus real observations. The values given in the plot are the root-mean-square (RMS) difference between the analyses and the
observations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

errors for the multi-scale system. These statistics hold for the
simulated and real observations. Results suggest that the MS3DVAR
is an improved method of data assimilation when compared to a
traditional 3DVAR. The traditional 3DVAR smooths over the small
scale features causing them to be under represented. Therefore, the
MS3DVAR seems better suited for representing these small scale
features allowing for improvements to the analyses and forecasts.

The improvements to the MS3DVAR forecasts are not as large
as the improvements to the analysis times. This is mainly because
most of the circulation is dominated by the large scale features,
and the small scales account only for a small fraction of the
variance. Additionally, atmospheric forcings applied to both the
3DVAR and MS3DVAR may be contributing to the similarity of the
forecasts even after corrections are applied at the analysis time.
Nevertheless the marginal gains in analysis and forecast accuracy
may prove beneficial or even crucial in areas where small scale
features play a more significant role.

Scales are not just large and small, but they are a cascade. We
have not yet addressed where the line is to be drawn. Addressing
this is beyond the scope of this paper, which only attempted to
apply the MS3DVAR in a more energetic circulation region than
where it has been applied so far.
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