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ABSTRACT  

A new blast code, Loci/BLAST, has been coupled with the commercial structural dynamics package LS-DYNA to 
provide a fully-coupled simulation strategy for predicting the effects of blast on a ground vehicle. Loci/BLAST is 
a fully-conservative, computational fluid dynamics code with the capability to model soil and blast using a multi-
species formulation with advanced equations of state. The two-way coupling between Loci/BLAST and LS-DYNA 
provides a robust mechanism for predicting the blast-induced deformation of structural elements with no 
topology changes. The efficacy of the resulting software is demonstrated by comparisons of predicted 
deformations for a constrained plate with experimental data. Results are also presented for a notional hull 
subjected to the effects of detonation of a buried IED.  

1.0 INTRODUCTION 

Predicting the effects of a blast on a vehicle and its occupants due to the detonation of an improvised explosive 
device (IED) is a challenging task. In addition to the effects of the blast, the effects of soil, which could have a 
high water content, must also be included. An attractive strategy, which is much less costly than experimental 
approaches, is to employ numerical simulations to predict these complex interactions. The fidelity of the 
numerical simulations can vary from empirical models to hydrocode simulations to decoupled Computational 
Fluid Dynamics (CFD) and Computational Structural Dynamics (CSD) simulations to fully-coupled fluid-
structure interaction (FSI) simulations. 

There are two widely used, candidate methodologies for blast simulations: 1) Lagrangian methods or 2) Eulerian 
methods. Lagrangian methods simulate material deformations directly by coupling the deformation of the 
material with movement of the discrete mesh. These methods are usually based on a finite-element formulation 
and have proven to be both robust and efficient. For highly plastic or fluid flow problems, they are subject to 
mesh tangling that can lead to issues with both accuracy and robustness. In the case of soil in close proximity to 
an explosive event, the soil undergoes severe deformations that can present challenges for a Lagrangian method. 
In addition, material and energy leakage are problems associated with Lagrangian simulation methodologies. 
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In contrast, an Eulerian formulation keeps the mesh fixed and allows material to convect through it thereby 
obviating issues associated with mesh tangling. Further, Eulerian methods are conservative by design. One 
disadvantage of Eulerian techniques is that they have less fidelity in capturing material interfaces due to 
diffusion. However, for cases that involve blast-soil interactions, the soil interface is unlikely to remain sharply 
defined and such a compromise is reasonable.  

In this paper, we describe a simulation strategy that is based on a conformal coupling between Loci/BLAST [1-
3], which is an Eulerian, CFD-based blast code, and LS-DYNA [4], which is a commercial, Lagrangian-based 
CSD code. First, the basic algorithm employed in Loci/BLAST is described. Then, the algorithm employed to 
transfer loads between the blast simulation and the CSD simulation is described. Results predicted for a simple, 
constrained plate are compared with experimental data [5]. Finally, predictions for the TARDEC generic hull [6] 
are then presented. 

2.0 BACKGROUND 

The literature contains numerous examples of simulations to predict blast effects on vehicles. This review, which 
is not intended to be exhaustive, highlights a few of these efforts that employ a coupled Eulerian-Lagrangian 
strategy similar to the approach described in this paper. 

Tai et al. [7] investigated the interactions and impact effect between air-blast waves and an armored vehicle. The 
geometry consisted of a simplified model of a six-wheeled armored tank, including the muzzle, turret, wheels, 
and hull. The decoupled inviscid CFD simulations (i.e. assuming a rigid vehicle) were used to examine the 
pressure variation and shock wave interaction with the vehicle. Silver [8] used a commercial CFD code to 
predict the overpressure of a large caliber gun mounted on a simplified, rigid tank geometry. Similarly, Kim and 
Han [9] used a commercial CFD code and a structural response code (GUNBLAST) to predict the response of 
and damage to an aircraft wing and equipment mounted in the aircraft that were subjected to repetitive blast 
waves from a gun mounted on the aircraft. 

Lottati et al. [10] used a coupled CFD/CSD approach to design a blast deflector to improve the survivability of a 
tactical vehicle subject to mine blasts at different locations under the crew cab and wheels. The pressures were 
calculated using the inviscid AUGUST-3D CFD code. The assessment of the structural response to the blast load 
was computed using the DYNA CSD code. A simplified geometry model of the eight-wheeled vehicle included 
the cab, body, frame, wheels, transmission, and axles. 

Fairlie and Bergeron [11] used a coupled Euler-Lagrangian approach with the AUTODYN hydrocode to 
perform mine blast loading simulations to assess blast effects on a light armor vehicle. The blast simulations 
demonstrated both above ground (air blast) and buried charges and were used to extract local velocity 
measurements from various parts of the vehicle.  For these simulations, a complete model of the vehicle 
structure, suspension system, and wheels was created in order to ensure a realistic response to a mine detonation 
under one of the vehicle wheels. The model also included other bulky and heavy components such as the engine 
gearbox, differentials, leaf springs, axles, shock absorbers, wheels, and tires.  

Grujicic et al. [12] performed numerical simulations demonstrating the effects of a mine blast on a commercial 
truck. The simulations modeled the interactions between the detonation-products/soil ejecta resulting from the 
explosion of a shallow-buried mine and a Ford F800 single-unit commercial truck. The simulations were 
performed using the Eulerian-Lagrangian coupling options with the AUTODYN hydrocode. An especially 
detailed geometric model of the truck was used. The results showed that: 1) the kinematic response of the 
vehicle to a landmine detonation and the amount of blast momentum transfer is sensitive to the proportion of 
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water in the sand into which the landmine is buried – for saturated sand, the tunneling-effect gives rise to 
localized damage while for dry sand, the damage is spread out over a larger area – and 2) the presence of 
frequency components in the initial blast-loading impulse that match the vehicle’s natural frequency plays a 
significant role in the kinematic response and damage of the vehicle.  

Grujicic et al. [13] also conducted simulations to determine the survivability of a 1994 Chevrolet C1500 
commercial pick-up truck subjected to the detonation of landmines buried in different soil types. These 
simulations were also performed using the Eulerian-Lagrangian coupling options with the AUTODYN 
hydrocode. Again, a very detailed model of the pick-up truck was used. The results demonstrated that the soil 
type and moisture content affect both the extent and spatial distribution of the damage and the kinematic 
response of the vehicle and that the blast load contains minimal low-frequency content and therefore does not 
provoke a whole-vehicle resonance response when subjected to the mine-detonation loading. 

Fallet [14] conducted a simulation of an explosion of a buried landmine under the front wheel of a civilian 
pickup truck. The simulation was performed using a coupled Eulerian-Lagrangian approach with the 
HyperWorks RADIOSS model. The geometry included the complete vehicle, specifically a detailed model of the 
cabin, tires, wheels, suspension, and underbody. The results of the simulation were used to determine where to 
reinforce the vehicle structure with armor plates to limit blast penetration into the vehicle. It was also used to 
design energy absorbers for the vehicle seats to limit the acceleration level on the passenger. 

3.0 METHODOLOGY 

3.1  Blast and Soil Modeling 

The numerical methods employed to simulate the blast and blast/soil interaction are described in detail in 
Thompson et al. [1-3]. Loci/BLAST is a relatively new blast code [1,2,3] that extends the capabilities of the 
Loci/CHEM flow solver [15] to model blast events through the addition of advanced equations of state (EoS), 
such as the Jones-Wilkins-Lee (JWL) EoS [16], to model explosive material and soil. Loci/CHEM is a full-
featured flow solver that has undergone extensive verification and validation and has been demonstrated to scale 
efficiently to thousands of processors. Loci/BLAST has successfully been applied to modeling blast-soil 
interactions such as the simulation of landmines buried in sand, with and without moisture. Loci/CHEM and 
Loci/BLAST are both based on the Loci software framework [17], which simplifies the development of complex 
multi-physics high resolution numerical models.   

3.1.1 Governing Equations 

The governing equations for the soil-blast model are those of a multicomponent inviscid flow assuming thermal, 
pressure, and velocity equilibrium between all materials in any given region in space.  These equations are 
described by the conservation of component mass, momentum, and energy, which are given by 
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Here, i is the component density of material i, u


 is the material velocity vector, p is the pressure of the 

component mixture.  Note that NS is the number of component species and the overall material density at any 

point is given by i
NS
i  1 . The total energy per unit mass, ,0e is the sum of the fluid kinetic energy and 

internal energy given by the expression 

 internal0 2

1
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These equations are closed by a multicomponent EoS that relates pressure to the material densities of the 
components and the internal energy as represented by  internal21 ,,,, epp NS  .  The formulation of this 
EoS is central to the soil and blast gas models, which are derived from a mixture rule that combines single 
component equations of state for each material, assuming pressure and thermal equilibrium. 

3.1.2 Multicomponent EoS for Blast Modeling 

To support non-ideal equations of state for blast modelling, a robust density-energy query capability is needed. 
The resulting mixing rule assumes that the materials are immiscible and are in mechanical (pressure) and thermal 
equilibrium. In this mixing rule, it is assumed that the mixture of species equations of state which define pressure 
as a function of density and temperature. Using the immiscible assumption, we find the volume of the mixture is 
the sum of the volume occupied by each species, or  

 
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where iY is the species mass fraction and *
i  is the density of a pure material i at a given temperature and 

pressure as given by 

    NSiTpp ii 1,*     ,       (6) 

where  Tp ii ,*  is the EoS for species i, and p is the system pressure. The energy of the mixture is given by the 
mass averaged species energies, as in  
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where the species energy equation is given by  
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The last term in this expression is the departure function that accounts for the effects of non-ideality in the EoS. 
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Note that equation (8) is simply a trivial regrouping of the energy components that allows us to view the energy 
of a species as a division of thermally perfect and thermally imperfect components.  Thus the departure function 
is viewed as the deviation of the energy equation from a thermally perfect gas and can be computed using  
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Equations (5), (6), and (7) describe NS+2 nonlinear equations and NS+4 unknowns (the unknowns are the 

species specific volumes *1 i and the thermodynamic variables P, T, , and e). Given any two thermodynamic 
state variables, this system of equations can be solved to find the remaining thermodynamic variables along with 

the specific volumes implied by the species pure substance densities *
i . Due to the inherent non-linearities in 

these equations, robustly solving for the thermodynamic state, given the fluid density and energy (as will be 
required by an explicit time integrator), can be a significant challenge. The most straightforward approach is to 
use a multi-dimensional Newton method. However, when the initial guess is far away from the final solution, it 
can be difficult to reliably converge to a solution. We have developed an alternative approach that is robust, but 
perhaps with a sacrifice in computational efficiency. 

To obtain a robust solution to the above non-linear equations, it can be observed that if the problem is cast in 
terms of pressure and temperature instead of density and energy, the pressure equation, i.e., equation (6), 
decouples and NS non-linear scalar equations must be solved. Since non-linear root finding for scalar equations 
can be made robust using root bracketing techniques, a pressure-temperature query has a very robust solution. 
This observation can be used to implement an indirect procedure that provides a robust density-energy Eos 
query. First, a robust density-temperature query can be obtained by performing a bracketed-scalar solve for the 
pressure. This iterative solve can utilize the robust pressure-temperature query; in addition, it is expected that 
pressure will increase monotonically with temperature. Finally, given a robust density-temperature query, a 
robust density-energy query can be formulated by solving for the temperature that gives the specified energy. All 
of these queries are solved using a bracketed Newton method whereby the values that bracket a solution are 
identified. If the Newton method overshoots the bracket, the robust bisection method is utilized for that step. The 
resulting EoS query evaluator has been shown to be robust in practice. A variety of species equations of state 
have been implemented in Loci/BLAST including a perfect gas, a density-temperature form of the JWL EoS for 
the explosive gas [16], a linear barytropic EoS for an elastic solid (explosive and soil), and a Tait EoS for liquid 
water [18].  

3.1.3 Prescribed Burn Model 

A prescribed burn capability is used to simulate the propagation of the detonation front through the explosive 
material. The current model assumes that the detonation is initiated from a single point and that there are no 
obstructions to the detonation front. In the prescribed explosive burn methodology, the initiation point and a 
detonation velocity are provided by the user. The explosive burn is accomplished by converting the solid 
explosive material into the corresponding gas material as the detonation wave passes each given point in the 
mesh. Usually the solid explosive before detonation is modeled as an elastic solid, while gasses released by the 
burn are modeled using the JWL EoS. To accomplish the appropriate energy release during the burn, the heat of 
formation of the solid explosive material is set such that the proper heat release is achieved. 

The detonation front is computed by enforcing a burn fraction that is a function of the lighting time, t1. The 
lighting time is the computed time that the detonation front will arrive at a given cell and is computed by 
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dividing the distance to the initiation point by the detonation velocity, D. The burn fraction, F, is zero if tt
1
. 

When t>t
1
, the burn fraction is defined by  
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where t is the current simulation time, t1 is the current cell lighting time, D is the detonation velocity, 0V  
is the relative volume, CJV is the relative volume at the Chapman-Jouguet conditions, and  is an estimated grid 
spacing for the mesh where the detonation front is propagating. 

2.1.4 Numerical Considerations 

When simulating multicomponent flows, it is possible to take a time-step such that the material in a cell is 
completely depleted, resulting in the time evolution of negative mass fractions of material. This non-physical 
circumstance is unacceptable because advancing the solution becomes nearly impossible. For first-order spatial 
approximations, depletion of the material from a cell is avoided if a time-step is employed that satisfies the stable 
CFL condition. However, when reconstructing higher-order mixture fractions, it is possible to deplete a material 
even though a much smaller time-step is used. To facilitate a second-order spatial reconstruction of species mass 
fractions, the mass fraction extrapolation is limited to ensure that a negative mass fraction is avoided (assuming a 
first-order upwind convection). While such limiting helps avoid the evolution of negative mass fractions, they 
can still evolve. Therefore, to provide an effective strategy that avoids negative mass fraction evolution in the 
time-stepping algorithm, the time-step is further limited to include the time required to deplete a cell of all 
species material using the first time-step residual. In practice, a CFL setting between 0.5 and 0.75 may still be 
required to avoid the evolution of negative mass fractions. 

3.2  Coupling Loci/BLAST with LS-DYNA  

3.2.1 Coupling Strategy 

A two-way coupled, conformal blast-vehicle interaction analysis capability was developed utilizing 
Loci/BLAST and LS-DYNA. The loosely-coupled approach solves each set of governing equations within its 
own computational domain and interfaces the solutions at common boundaries. In this approach, the structural 
mesh is embedded in the fluid mesh in a conformal manner. That is, both the fluid mesh and the structures mesh 
share a common surface that deforms as prescribed by the LS-DYNA simulation. The surface mesh 
deformations predicted by LS-DYNA are projected into the fluid mesh enabling Loci/BLAST to simulate the 
fluid response to the structural deformation. The updated pressure loading on the LS-DYNA model is 
dynamically passed from Loci/BLAST thereby providing a two-way coupling capability between the two codes. 
The conformal approach does have limitations in that it is only applicable for problems with modest structural 
deformation and is not able to respond to topological change in the structure caused by fracture or fragmentation.  

Once the structural deformations have been passed to the blast simulation, the conformal approach requires the 
fluid mesh to be modified to reflect these changes. A limiting feature of conformal approaches is the inability of 
the mesh movement strategy to adjust the volume grid in response to large surface deformations. In previous 
efforts, the widely used tension-torsion spring analogy was utilized. This approach suffers from the 
aforementioned bottleneck and thus has only a limited range in which the volume grid will remain valid or retain 
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sufficient quality.  

The approach employed for the volume mesh deformation [19] is an interpolation-based method whereby the 
displacements at the boundary are interpolated into the volume. The unique feature of this approach is that the 
displacement field at each boundary point is decomposed into a displacement and rotation. The local rotation is 
included to reduce mesh shearing near the surface. These rotations are obtained by utilizing a least squares fitting 
method to find the closest rotation that matches the local displacement field. The interpolation method is based 
on a reciprocal distance weighted sum that is roughly analogous to an elastic model solved using a boundary 
element method. In order to obtain efficiency, a form of the fast multipole expansion approach is employed, 
whereby collections of points at a distance are approximated by a truncated expansion that represents the 
collection.  

3.2.2 Load Transfer Algorithm 

The coupling between the CSD software package LS-DYNA and the CFD-based blast simulation code 
Loci/BLAST was accomplished using the user defined loading feature available in LS-DYNA. Within the user-
defined loading subroutine loadud a general interface was constructed. The interface performs all necessary 
mapping required between the fluid surfaces and structural model, and transfers load and displacements between 
the respective software packages in a conservative manner and thus provides all the capabilities required to 
perform two-way coupled, conformal blast-vehicle interaction.  

Typically, load transfer schemes are based on projecting a fluid node onto the adjacent finite element face of the 
structural model. Ideally, the projection is defined such that the vector connecting the fluid node and the 
projected point is normal to the element face. This scheme is based on representing the fluid nodes and the 
adjacent element faces as rigid solid elements. Transferring the integrated loads from the fluid node to the 
projected point is then identical to connecting the two nodes with a rigid beam element. Since this is a statically 
determinate system, equilibrium equations are sufficient to transfer the load vector to a unique statically 
equivalent system. However, transferring the load vector from the projected point to the nodes of the structural 
element represents a statically indeterminate problem, and hence the use of the element shape functions to 
distribute these loads in a statically equivalent manner. It should be noted that since this transfer is statically 
indeterminate, it does not represent a unique set of nodal loads, only that the transfer is statically equivalent. 
Furthermore, this transfer is dependent on the location of the projected point, which is also selected and is not 
unique. 

In order to uniquely transfer the integrated fluid forces to the nodes of the structural elements, the dependency on 
the projected point locations must be eliminated. Additionally, a statically equivalent force system must be 
defined for the statically indeterminate transfer. To accomplish this task, kinetics (equilibrium equations), 
kinematics, and constitutive relations must be utilized. The newly developed node-projection method constructs 
a solid element from the fluid node and the nodes of the adjacent structural element. The element equations 
contain the necessary information to enable the statically indeterminate transfer of the loads from the fluid node 
to the nodes of the structural element. As is well known, solid elements should typically be avoided for thin-
walled structures, such as shells, since they are subject to locking. However, as will be shown, these concerns do 
not pose any difficulties as used in this formulation.  

Given that the structural element face will be either triangular or quadrilateral, introduction of the fluid node will 
create a tetrahedral or a pyramidal element, respectively. Denoting the fluid node (apex node for the pyramidal 
element) as the last node in the element, node n, the element equations may be expressed as 
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where each  jiK ,  represents a 3x3 submatrix within the element stiffness matrix,    are the nodal 

displacement components, and  F


 the nodal force vectors. The complete element stiffness matrix may be 
evaluated using  

                                                       dVBDBK
V

T][ ,      (12) 

where  D  is the elastic matrix and  B  is the strain-displacement matrix. To transfer the loads from the fluid 
node, the structural nodes may be considered to be supported, resulting in the displacement boundary conditions  
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


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. Solving this system for the unknown degrees-of-freedom, which represent the 

displacements at the fluid node, yields 

                                                       nnnn FK
 1

,
        (13) 

Using Equation (11), the unknown reactions at the structural nodes may in turn be evaluated from 

                                  1,...,11
,,,   nmjFKKKF nnnnjnnjj


     (14) 

The above transfer provides a means of obtaining the statically equivalent loads to the statically indeterminate 
system. It is not dependent upon a projected point on the element and takes into account any mismatch or gaps 
between the fluid and structural surfaces. Furthermore, although the elastic matrix has been utilized, the product   

   1
,,


nnnj KK  for elastostatics is independent of the elastic modulus, but dependent on Poisson’s ratio. For a 

perfectly rigid material Poisson’s ratio is set to zero, and thus the force transfer is not a function of the material 
properties chosen for the element. Under these conditions, the 3x3 submatrices in Equation (14) are only 
dependent on the gradients of the shape functions. 

When the fluid node lies in the plane of the element surface, or coincides with a structural node (i.e. a one-to-one 
match), the volume vanishes. For a tetrahedral element the integrand in the element stiffness matrix is constant, 

and in the product    1
,,


nnnj KK , the volume from each submatrix will cancel. Thus, degeneracy poses no 

difficulties. In the case of a pyramidal element, the element stiffness matrix must be numerically integrated. 
Using the isoparametric transformation to natural coordinates, the Cartesian derivatives require the inverse of the 
Jacobian, and in the case of degeneracy the Jacobian determinate vanishes. However, this situation can be 
avoided by determining the natural coordinates of the fluid node within a regular pyramid with the base being 
represented by the structural nodes. The natural coordinates of the fluid node for degeneracy will be in the same 
plane (of the master pyramid) as the base points. Subsequently, the product above may be numerically evaluated 
at these coordinates with a weight of unity. For validation purposes, numerous cases were simulated to test this 
algorithm, from one-to-one matched mesh transfers to arbitrary discretizations of the fluid and structural 
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surfaces. In all cases, load transfer and work done for time dependent simulations were conserved, with 
differences on the order of machine precision. 

3.2.3 Inter-application Communication 

To support coupling between LS-DYNA and Loci/BLAST, a simple socket protocol for communicating 
between the two applications was developed utilizing the POSIX standard API’s for communicating using 
TCP/IP protocols. This socket library allows LS-DYNA and Loci/BLAST to exchange information whereby the 
two codes can run on either the same machines, or alternatively to two independent machines that can 
communicate using TCP/IP protocols (e.g. have an Internet connection between them). On the LS-DYNA side, a 
load subroutine is modified to call the socket library using an API that consists of two phases: 

1. A registration phase which is initiated when LS-DYNA load subroutine is called for the first time. In the 
registration phase the load subroutine waits until Loci/BLAST connects with LS-DYNA.  

2. Following the registration phase, the API provides a routine called fsi_interact_step where the load 
subroutine provides the current LS-DYNA simulation time, time-step, nodal displacements, velocities 
and accelerations. This interface passes the information (as needed) to the Loci/BLAST and then waits 
for LS-DYNA to return nodal forces to be applied during the next LS-DYNA time-step.  

The Loci/BLAST side of the socket library provides facilities that are able to collect and distribute information 
to the parallel processes that are performing the simulation as well as coordinating the mapping between 
dissimilar meshes utilized on the structural and fluid sides of the problem. The API utilized on the Loci/BLAST 
side only communicates requested information through the socket, so that only the information that is needed to 
accomplish the transfer is communicated. In addition, the Loci/BLAST API supports sub-cycling whereby 
multiple fluid time-steps may be executed in order to integrate over a single LS-DYNA time-step. In this API, 
the Loci/BLAST application connects to the LS-DYNA application. The Loci/BLAST run is provided the 
machine Internet address of the LS-DYNA application. The socket library then uses this address to connect to 
the LS-DYNA run. Once the two applications are connected, the simulation proceeds automatically without 
further user intervention 

4.0 RESULTS 

4.1 Validation using DRDC Plate Data 

Validation of the two-way coupled FSI algorithm was carried out using experimental and numerical data 
reported at the 7th International LS-DYNA Users Conference [20]. Data collected during field tests to study the 
effects of mine blasts on aluminum armor and RHA plates provides an opportunity to validate the FSI algorithm 
for a relatively simple geometry. Figure 1 depicts the arrangement and dimensions of the experimental 
apparatus. In the LS-DYNA model, a 31.75 mm target plate was described using the Johnson-Cook material 
properties for 5083-AL and was resolved with approximately 16K shell elements. The computational geometry 
used halfplane symmetry. The CFD mesh for target plate was discretized using roughly 1cm surface resolution. 
For the three-dimensional FSI simulation, Loci/BLAST was used with the HLLE inviscid flux, the nodal Barth 
flux limiter, and Runge-Kutta second-order time integration. A maximum CFL of 0.9 was implemented 
throughout the run. The cylindrical C4 charge with l/d=1/3 had a mass was 6 kg. The charge was buried at a 
depth of 5 cm in soil with a density of 2300 kg/m3. It should be noted that detailed information about the 
composition of the soil was not provided.  



Conformal, Fully-Conservative Approach for Predicting Blast Effects on Vehicles 

XX - 10 STO-MP-AVT-211 

UNCLASSIFED 
 

UNCLASSIFED 
 

 

Figure 1: DRDC Experimental Set-up [20]. 

The solution process was initiated by performing an axisymmetric simulation of the charge detonation on a 
uniform mesh. The axisymmetric mesh had significantly higher resolution (approximately 0.5 mm spacing) than 
the fully three-dimensional mesh in the same region. The charge detonation was initiated at the center of the base 
of the charge and the axisymmetric simulation was executed for approximately 0.3 ms. The solution was then 
interpolated onto the computational domain employed for the fully three-dimensional simulation. The solution 
was continued for an additional 5 ms. The deformed plate geometries at 1 ms and 2 ms, as predicted by 
Loci/BLAST-LS-DYNA, are shown in Figures 2(a) and 2(b), respectively.  Detailed comparisons with the 
experimental data and the Williams simulation data for the TACOM impulse loading model [20] are shown in 
Figures 3 and 4. Note the four experimental points for each station (distance from the center) are measured with 
respect to the “symmetry” plane axes and hence the variability shown indicates some slight asymmetry in the 
experiment. It should be noted that the Loci/BLAST data in the figures show the deformed positions of the plate 
at 5 ms and does not include the rigid body translation the entire plate was experiencing at that time. Overall, the 
agreement between the experimentally-observed deformation and the coupled Loci/BLAST-LS-DYNA 
predictions for this geometry is good.  It should be noted that testing various solution procedures demonstrated 
the sensitivity of the maximum deformation of this geometry to soil density, charge weight, and DOB. This 
could explain the observed discrepancies since the precise composition of the soil was not reported. 

4.2 Results for TARDEC Generic Hull 

The coupled Loci/BLAST-LS-DYNA simulation capability was also tested on the simulation the detonation of a 
buried IED in close proximity to the TARDEC generic hull configuration [6]. Referring to Figure 5, a CFD mesh 
was built for the exterior space of the hull-surface elements. In Figure 5, the ground-plane is depicted as a 
magenta-colored mesh. In order to avoid nonphysical blast reflections, the soil (which is not shown in the figure) 
extended 3 meters below the ground-plane surface. A near-field transparent surface meshing box surrounded the 
vehicle to enable better control of the mesh points in the vicinity of the vehicle. Initially, an axisymmetric, high-
resolution, buried-blast simulation was performed using the specifications for a 6 kg cylindrical (d/h = 3) charge 
of C4 buried approximately 5 cm below the surface in dry sand. For the axisymmetric simulation, a uniform 
mesh of 0.5 mm resolution was used. The axisymmetric solution was then interpolated onto the three-
dimensional mesh and further evolution of the blast event was simulated.  

The fully-coupled, three-dimensional simulations of the generic hull were run using 192 processors for 
Loci/BLAST and one processor for LS-DYNA. Due to a timestep disparity between the CSD and CFD 
simulations for this case, Loci/BLAST utilized several subcycle steps for the CFD part of the simulation. Also, 
due to the size of the CSD model, the Linux stack storage limit and memory allocation were increased for the 
LS-DYNA simulation. This three-dimensional run took roughly 15 wall-clock hours to complete. The snapshot 
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shown in Figure 6 was generated after approximately 5 ms, with the isosurface of the 70% quartz (sand) volume 
fraction being displayed. Figure 7 shows an isosurface of pressure indicative of the blast front at approximately 5 
ms. Most of the destructive forces of the blast occur in the first 2 ms of the simulation. Figure 8 shows the 
pressures on the surface of the hull 1ms after the initiation of the three-dimensional simulation; notice the 
buckling of the surface panels directly above the blast charge. The preceding images were from Loci/BLAST 
output data, additional structural data was obtained from LS-DYNA output. Figure 9 shows the hull surface, 
colored by stress, after 1 ms.  Moving further into the interior of the structure, Figure 10 shows the structural 
frame supporting the outer skin and inner floor at approximately 1ms, again colored by stress.  

The fully-coupled, three-dimensional simulations of the generic hull were run using 192 processors for 
Loci/BLAST and one processor for LS-DYNA. Due to a timestep disparity between the CSD and CFD 
simulations for this case, Loci/BLAST utilized several subcycle steps for the CFD part of the simulation. Also, 
due to the size of the CSD model, the Linux stack storage limit and memory allocation were increased for the 
LS-DYNA simulation. This three-dimensional run took roughly 15 wall-clock hours to complete. The snapshot 
shown in Figure 6 was generated after approximately 5 ms, with the isosurface of the 70% quartz (sand) volume 
fraction being displayed. Figure 7 shows an isosurface of pressure indicative of the blast front at approximately 5 
ms. Most of the destructive forces of the blast occur in the first 2 ms of the simulation. Figure 8 shows the 
pressures on the surface of the hull 1ms after the initiation of the three-dimensional simulation; note the buckling 

 
  (a) deformed plate (1 ms)                            

 
(b) deformed plate (2 ms) 

Figure 2: Loci/BLAST–LS-DYNA Simulations for the DRDC Plate. 

     

Figure 3: Displacement as a Function of 
Distance from Centerline. 

 

Figure 4: Time History of Displacement 
30.5 cm from Plate Centerline. 
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Figure 5: Unstructured CFD Mesh Used 
for Generic Hull. 

 

Figure 6: Quartz Cloud (70%Volume 
Fraction) at t=5 ms. 

 

Figure 7: Representative Blast Front at   
t=5 ms. 

 

Figure 8: Log10 Pressure on Hull Surface 
at t=1 ms. 

 

Figure 9: Generic Hull Outer Surface 
Stress Contours and Deflection. 

 

Figure 10: Generic Hull Stress and 
Deflection for Frame at t=1 ms. 
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(a) 5 cm resolution 

 

(b) 2.5 cm resolution 

 

(c) 1.25 cm resolution 

Figure 11: Log10 Pressure on Hull Surface at t=1 ms. 

of the surface panels directly above the charge. The preceding images were generated using Loci/BLAST output 
data. Additional structural data was obtained from LS-DYNA output. Figure 9 shows the hull surface, colored by 
stress, after 1 ms.  Moving further into the interior of the structure, Figure 10 shows the structural frame 
supporting the outer skin and inner floor at approximately 1ms, again colored by stress.  

To further explore the coupled solution of the generic hull, a series of CFD grid refinements were undertaken. 
The grids will be referenced here based on the hull surface resolution, i.e., coarse (5 cm), medium (2.5 cm), and 
fine (1.25 cm). The soil model chosen was the soil15 model. For this study, additional transparent surfaces were 
created underneath the vehicle to improve local resolution and reduce mesh density in regions known to be 
largely inactive over the simulation time. A marked increase in blast strength due to enhanced resolution is 
evident from the coarse to medium grids and less so from the medium to fine grids as illustrated in Figure 11, 
which shows pressure on the surface of the hull 1 ms after the initiation of the three-dimensional simulation. The 
increased CFD resolution results in an increase in load to the vehicle and hence greater deflections are seen on 
the vehicle surface as well as in the frame. From the hull, this greater load is then transferred to the internal 
frame of the vehicle. The deflection and stress distribution within the vehicle frame for the medium grid 
simulation are shown for 1 ms and 5 ms in Figures 12(a) and 12(b), respectively. In order to assess the 
differences in predicted deflections, two representative CSD nodes were selected and their deflections extracted. 
For reference, the locations of these nodes are shown in Figures 13 and 14. Figure 13 shows that the maximum 
skin-node deflection for the medium grid (approximately 80mm) is nearly 40% greater than the coarse grid 
(approximately 58 mm), while the fine grid further extends this surface deflection (approximately 94mm). 
Likewise, Figure 14 shows that the maximum frame-node deflection for the medium grid (approximately 43 
mm) is again nearly 40% greater than the coarse grid (approximately 31 mm), while the fine grid only extends 
this deflection only slightly (approximately 47 mm). Note that for the fine grid simulation, after the blast wave 
had passed (approximately 1.8 ms), the CFD simulation ended and the LS-DYNA simulation was allowed to 
continue the structural response (with the unloaded nodes). The results, in particular those shown in Figure 13, 
suggest that an additional mesh refinement is needed. 

4.0  SUMMARY AND CONCLUSIONS 

The results shown here demonstrated that it is feasible to perform a two-way, conformal coupling between 
Loci/BLAST (Eulerian blast code) and LS-DYNA (Lagrangian structural dynamics code) to predict the effects 
of the detonation of a buried charge on a realistic ground vehicle configuration. While not applicable to problems 
with large structural change or vehicular topological change, e.g. fracture, the coupled technology provides a 
fully-conservative approach for predicting applied loads and damage to a vehicle. 
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(a) frame configuration at t =1ms 

 

(b) frame configuration at t =5ms 

Figure 12: Generic Hull Stress and Deflection Computed using the Medium Grid.  

 

 

Figure 13: Deflection Time History 
Node 645358 (skin). 

 

 

Figure 14: Deflection Time History 
Node 612928 (frame). 
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