
UNCLASSIFIED: Distribution Statement A. Approved for public release. #24404 

 1 Copyright © 2014 by ASME 

Proceedings of the ASME 2014 International Design Engineering Technical Conferences & 

Computers and Information in Engineering Conference 

IDETC/CIE 2014 

August 17-20, 2014, Buffalo, NY, USA 

DETC2014-35349 

BI-LINEAR SHEAR DEFORMABLE ANCF SHELL ELEMENT                

USING CONTINUUM MECHANICS APPROACH 
 

 

Hiroki Yamashita 
Department of Mechanical and Industrial Engineering 

The University of Iowa  
Iowa City, Iowa 52242 

Antti I. Valkeapää 
Department of Mechanical Engineering 
Lappeenranta University of Technology 

Skinnarilankatu 34, 
53850 Lappeenranta, Finland 

 

Paramsothy Jayakumar 
US Army RDECOM TARDEC 

6501 E. 11 Mile Road 
Warren, MI 48397-5000 

Hiroyuki Sugiyama 
Department of Mechanical and Industrial Engineering 

The University of Iowa 
Iowa City, Iowa 52242 

 

 

ABSTRACT 
In this investigation, a bi-linear shear deformable shell element 

is developed using the absolute nodal coordinate formulation 

for the large deformation analysis of multibody shell structures. 

The element consists of four nodes, each of which has the 

global position coordinates and the gradient coordinates along 

the thickness introduced for describing the orientation and 

deformation of the cross section of the shell element. The global 

position field on the mid-plane and the position vector gradient 

at a material point in the element are interpolated by bi-linear 

polynomials. The continuum mechanics approach is used to 

formulate the generalized elastic forces, allowing for the 

consideration of nonlinear constitutive models in a 

straightforward manner. The element locking exhibited in this 

type of element can be eliminated using the assumed natural 

strain (ANS) and enhanced assumed strain (EAS) approaches. 

In particular, the combined ANS and EAS approach is 

introduced to alleviate the thickness locking arising from the 

erroneous transverse normal strain distribution. Several 

numerical examples are presented in order to demonstrate the 

accuracy and the rate of convergence of numerical solutions 

obtained by the bi-linear shear deformable ANCF shell element 

proposed in this investigation. 

1. INTRODUCTION 

The plate elements of the absolute nodal coordinate formulation 

(ANCF) can be classified into the fully parameterized shear 

deformable element [1] and the gradient deficient thin plate 

element [2]. While the fully parameterized element leads to a 

general motion description that accounts for coupled 

deformation modes including complex cross-section 

deformation modes of the plate and shell elements, use of 

higher order polynomials and the coupled deformation modes 

exhibited in this type of element cause severe element locking 

that needs to be carefully treated [3,4]. The gradient deficient 

plate elements, on the other hand, can be developed by 

eliminating the position vector gradient coordinate along the 

thickness ( / z r ), thus the global displacement field on the 

mid-plane can be uniquely parameterized by the global position 

vector and the two gradient vectors / x r  and / y r  

which are both tangent to the surface. By doing so, the cross-

section is assumed to be rigid and the elastic forces are derived 

using an in-plane stress assumption with Kirchhoff-Love plate 

theory in a straightforward manner. While the element does not 

suffer from severe element locking problems, the element can 

be applied to problems of thin plate and shell structures only. 

In recent years, the ANCF parameterization, which eliminates 

the position vector gradients tangent to the surface, are 

investigated. The position vector gradient along the plate 

thickness is used to describe the orientation and deformation of 

the cross-section, allowing for describing the shear and 

thickness deformation of the plate. The two- and three-

dimensional beam elements that eliminate the gradient vector 
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along the beam centerline are proposed in the literatures [6], 

while a bi-linear shear deformable ANCF plate element is 

discussed in the literature [5], in which a selective reduced 

integration is used for eliminating the transverse shear locking. 

The use of such an element parameterization allows for 

developing shear deformable plate elements while reducing the 

number of coordinates per node. Furthermore, it is shown in the 

literature [7] that the element locking problems exhibited in the 

bi-linear shear deformable ANCF plate element based on the 

elastic plane approach can be alleviated by the assumed natural 

strain (ANS) approach for the transverse shear and the 

transverse normal (thickness) strains, while the enhanced 

assumed strain (EAS) approach is applied to the in-plane 

normal and shear locking. Since the elastic forces are 

formulated using an elastic plane approach, in which the strain 

distribution along the thickness is assumed to be constant, the 

element can be applied to moderately thick and flat plate 

problems and, at the same time, consideration of nonlinear 

material models requires specialized formulations. It is, 

therefore, the objective of this investigation to generalize the bi-

linear shear deformable ANCF plate element based on the 

elastic plane approach to the shell element using continuum 

mechanics approach, which allows for the consideration of 

nonlinear constitutive models in a straightforward manner. 

2. KINEMATICS OF BI-LINEAR SHEAR DEFORMABLE 

ANCF ELEMENT 

As shown in Fig. 1, the global position vector i
r   of a 

material point T[ ]i i i ix y zx   in a shell element i is 

defined as 

( , ) ( , )
i

i i i i i i im

m i
x y z x y

z


 



r
r r    (1) 

where ( , )i i i

m x yr  is the global position vector on the mid-plane 

and ( , )i i i i

m x y z r  is the transverse gradient vector used to 

describe the orientation and deformation of the infinitesimal 

volume in the element. The preceding global displacement field 

is interpolated using the bi-linear polynomials as follows: 

 

 

0 1 2 3 4 5 6 7( )i i i i i i i i i ir a a x a y a x y z a a x a y a x y         (2) 

from which, one can interpolate both displacement field on the 

mid-plane and the transverse gradient vector as 

( , ) ( , ) , ( , ) ( , )
i

i i i i i i i i i i i i im

m m m m gi
x y x y x y x y

z


 



r
r S e S e     (3) 

where 1 2 3 4

i i i i i

m S S S S   S I I I I is the bi-linear shape 

function matrix and 

1 2

3 4

1 1
(1 )(1 ), (1 )(1 ),

4 4

1 1
(1 )(1 ), (1 )(1 )

4 4

i i i i i i

i i i i i i

S S

S S

   

   

     

     

   (4) 

where /i i ix   and /i i iy w  . i  and iw  are lengths 

along the element ix  and iy  axes, respectively. In Eq. 3, the 

vectors i

me  and 
i

ge  represent the element nodal coordinates 

associated with the global position vector on the mid-plane and 

the transverse gradient vector. That is, for node k of element i, 

one has ik ik

m e r  and ik ik i

g z  e r . It is important to notice 

here that the assumed displacement field i

mr  on the mid-plane 

does not involve any gradient coordinates, while the orientation 

and deformation of the infinitesimal volume at the material 

point in the shell element is parameterized by the transverse 

gradient coordinates. Substitution of Eq. 3 into Eq. 1 leads to 

the following general expression for the global position vector 

used for the absolute nodal coordinate formulation: 

( , , ) ( , , )i i i i i i i i ix y z x y zr S e    (5) 

where the shape function matrix i
S  and the element nodal 

coordinates are, respectively, defined as 

, [( ) ( ) ]i i i i i i T i T T

m m m gz   S S S e e e    (6) 

 
 

Figure 1. Kinematics of bi-linear ANCF element 
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3. BI-LINEAR SHEAR DEFORMABLE ANCF SHELL 

ELEMENT 

3.1 Generalized Elastic Forces using Continuum 

Mechanics Approach 

The Green-Lagrange strain tensor i
E  of element i is defined as 

 
1

( )
2

i i T i E F F I    (7) 

where the displacement gradient tensor i
F  is defined by 

1

1( )
i i i

i i i

i i i



   
   
   

r r X
F J J

X x x
   (8) 

In the preceding equation, i i i  J r x  and i i i  J X x  , 

where the vector i
X  represents the global position vector of 

element i at the reference configuration. Substitution of Eq. 8 

into Eq. 7 leads to 

1( ) ( )i i T i i E J E J     (9) 

where i
E  is the covariant strain tensor defined by 

 
1

( ) ( )
2

i i T i i T i E J J J J   (10) 

The transformation (push-forward operation) of the covariant 

strain tensor i
E  given by Eq. 9 can be re-expressed in a form 

of the vector transformation by introducing the engineering 

covariant strain vector i
ε  as 

( )i i T iε T ε                (11) 

where 

[ ]i i i i i i i T

xx yy xy zz xz yz     ε  (12) 

and the vector ε  indicates the engineering strain vector 

associated with Green-Lagrange strain tensor given by Eq. 7. 

The transformation matrix i
T  in Eq. 11 can be expressed 

explicitly as 

2 2 2

11 12 11 12 13 11 13 12 13

2 2 2

21 22 21 22 23 21 23 22 23

11 21 12 22 11 22 12 21 13 23 11 23 13 21 12 23 13 22

2 2

31 32 31 32 3

( ) ( ) 2 ( ) 2 2

( ) ( ) 2 ( ) 2 2

( ) ( ) 2 (

i i i i i i i i i

i i i i i i i i i

i i i i i i i i i i i i i i i i i i

i

i i i i

J J J J J J J J J

J J J J J J J J J

J J J J J J J J J J J J J J J J J J

J J J J J

  
T

2

3 31 33 32 33

11 31 12 32 11 32 12 31 13 33 11 33 13 31 12 33 13 32

21 31 22 32 21 32 22 31 23 33 21 33 23 31 22 33 23 32

) 2 2i i i i i

i i i i i i i i i i i i i i i i i i

i i i i i i i i i i i i i i i i i i

J J J J

J J J J J J J J J J J J J J J J J J

J J J J J J J J J J J J J J J J J J

 
 
 
 
 
 
   
 

    

             

(13) 

and i

abJ  is the element in the a-th column and b-th row of 

matrix i
J . The generalized elastic forces can then be obtained 

using the virtual work as 

0
0i

T
i

i i i

k iV
dV

 
  

 


ε
Q σ

e
   (14) 

where i
σ  is a vector of the second Piola–Kirchhoff stresses 

and 
0

idV  is the infinitesimal volume at the reference 

configuration of element i. It is important to notice here that the 

element elastic forces are evaluated as a continuum volume, and 

a wide variety of nonlinear constitutive models such as 

hyperelasticity for large deformation problems can be 

considered in the shell element in a straight forward manner.  

3.2 Element Locking for Transverse Shear and In-

Plane Strains 

As it has been addressed in many literatures of shell element 

formulations [8-17], the bi-linear quadrilateral shell element 

suffers mainly from the element locking associated with the 

transverse shear and the in-plane strain components. It is well 

known that the transverse shear locking can be elegantly 

eliminated using the assumed natural strain (ANS) approach 

proposed by Bathe and Dvorkin [10,11]. In this approach, the 

covariant shear strain components are interpolated using those 

evaluated at the sampling points A, B, C and D shown in Fig. 2 

as follows: 

   

   

1 1
1 1

2 2

1 1
1 1

2 2

ANS C D

xz xz xz

ANS A B

yz yz yz

    

    


    


   


    (15) 

where 
A

yz , 
B

yz , C

xz  and D

xz  are the compatible strains at 

the sampling points.  

The parasitic in-plane shear under pure bending loads is a 

typical locking problem exhibited in the bi-linear quadrilateral 

element [18], and the compatible in-plane strain vector obtained 

by the assumed displacement field can be enhanced by 

introducing the enhanced assumed strain (EAS) EAS
ε  as [8] 
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c EAS ε ε ε      (16) 

and EAS
ε  is defined by 

( ) ( )EAS ε ξ G ξ α      (17) 

where α  is a vector of internal parameters introduced to 

define the enhanced strain field and the matrix ( )G ξ  is given 

as [8] 

0 T

0( ) ( )
( )


J

G ξ T M ξ
J ξ

   (18) 

where ( )J ξ  and 
0J   are defined as a position vector 

gradient at the reference configuration evaluated at the 

integration point ξ  and at the center of element ( ξ 0 ), 

respectively. ξ  is a vector of the element coordinates in the 

parametric domain and 
0T  is the transformation matrix 

evaluated at the center of element [8,9]. The matrix ( )M ξ  

defines polynomials introduced to enhance the strain field. 

Using Eq. 18, the enhanced covariant strains are pushed 

forward to those in the physical coordinates. It is important to 

notice here that the matrix ( )M ξ  needs to satisfy the following 

condition [8]: 

( )d M ξ ξ 0         (19) 

such that the following orthogonality condition of the assumed 

stress and strain is satisfied:  

0

0 0EAS

V

dV  σ ε      (20) 

Using the preceding condition, the assumed stress term that 

appears in Hu-Washizu mixed variational principle vanishes 

and one can obtain the generalized elastic force vector as 

follows [8]: 

0
0

( )
T

c c EAS

k
V

W
dV

   
  

  


ε ε ε
Q

e ε
        (21)  

where W  is an elastic energy function. Furthermore, the 

internal EAS parameters are determined by solving the 

following equations for each element i: 

0
0( )

i

T
EAS

c EAS i

iV
dV

 
  

 


ε
ε ε 0

α
        (22) 

3.3 Thickness Locking 

In addition to locking problems associated with the shear and 

in-plane strains discussed in the previous subsection, the 

element locking associated with the transverse normal strain is 

exhibited in the bi-linear ANCF shell element due to the use of 

the transverse gradient coordinates, and the thickness locking 

has a significant impact on the accuracy of this type of element. 

The solid shell elements which consists of layers of translational 

nodal coordinates at the top and bottom surfaces of the element 

[15-17] and shell elements parameterized by extensible 

directors [12-14] also suffer from the thickness locking 

resulting from the erroneous transverse normal strain 

distribution. The use of the assumed natural strain (ANS) 

approach is proposed in the literature [12] for the shell element 

with extensible directors and the transverse normal strain at a 

material point in the element is assumed as follows: 

1 2 3 4

1 2 3 4

ANS ANS ANS ANS ANS

zz zz zz zz zzS S S S            (23) 

where k

zz  indicates the compatible transverse strain at node k 

and ANS

kS  indicates the shape function associated with it. It is 

shown in the literature [7] that use of this approach eliminate 

the thickness locking of the bi-linear shear deformable ANCF 

flat plate element formulated by the elastic plane approach, in 

which the strain distribution along the thickness is assumed to 

be constant. 

Another approach is the use of the enhanced assumed strain 

(EAS) approach [8]. In this case, additional internal EAS 

parameters α  are introduced to enhance the transverse normal 

strain field. In the continuum mechanics approach, the elastic 

forces of the shell element is formulated as a continuum volume, 

thus the strain distribution along the thickness is not assumed to 

be constant unlike the elastic plane approach. This leads to 

severe thickness locking exhibited in the continuum mechanics 

 
 

Figure 2. Sampling points for assumed natural strain 
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based ANCF shell element. For this reason, the transverse strain 

modified by the assumed natural strain approach is further 

modified as follows: 

ANS EAS

zz zz zz         (24) 

In the preceding equations introduced in this investigation for 

the bi-linear shear deformable ANCF shell element, the 

compatible strain c

zz  is replaced with the assumed natural 

strain given by Eq. 23. Since it is not guaranteed that transverse 

strains at nodal points (sampling points) are always accurate in 

Eq. 23, the assumed strain field is further enhanced by the 

enhanced assumed strain approach. In the combined ANS and 

EAS approach for the transverse normal strain applied to the 

continuum mechanics based ANCF shell element, the covariant 

strain components of the transverse shear and transverse normal 

strains are interpolated in the natural coordinate system and the 

covariant strain vector given in Eq. 12 is replaced with the 

following strain vector: 

T
ANS ANS ANS

xx yy zz xy xz yz        ε         (25) 

and then the Green-Lagrange strains are evaluated using the 

transformation defined by Eq. 11 and the enhanced assumed 

strains associated with EAS

xx , EAS

yy , EAS

xy  and EAS

zz  are 

added. This leads to a systematic derivation of the generalized 

elastic forces for the locking-free continuum mechanics based 

shear deformable ANCF shell element. 

4. NUMERICAL EXAMPLES 

In this section, several numerical examples are presented in 

order to demonstrate the performance of the continuum 

mechanics based bi-linear shear deformable ANCF shell 

element developed in this investigation. The effect of the 

assumed natural strain and enhanced assumed strain approaches 

on the element accuracy is also discussed. 

4.1 Cantilevered Plate and Shell Subjected to a Point 

Force 

In the first problem, a rectangular cantilevered plate subjected 

to a vertical point force at one of the corner of the plate is 

considered as shown in Fig. 3. The length, width, and thickness 

of the plate are assumed to be 1.0  m, 1.0w   m, and 

0.01h   m. The Young’s modulus and Poisson’s ratio are 

assumed to be 82.1 10E    Pa and 0.3  , respectively. As 

shown in Fig. 3, the plate is subjected to large deformation at 

the static equilibrium state. The six models with different strain 

modifications discussed in Section 3 are considered to 

demonstrate the effect of the EAS and ANS approaches on the 

element accuracy. These models are summarized in Table 1. In 

Model-1, any strain modifications are not made, while Model-6 

has the combined ANS and EAS approach for the thickness 

locking together with ANS for the transverse shear and EAS for 

the in-plane normal and shear.  

The error of the vertical deflection at the corner of the plate 

edge is presented as a function of the number of elements in Fig. 

4. The numerical error is defined by difference from the 

reference solution obtained using ANSYS SHELL181 with 

100 100  elements. The results obtained by ANSYS 

SHELL181 and the bi-linear shear deformable ANCF flat plate 

element using the elastic plane approach [7] are also presented 

for comparison. It is observed from this figure that use of 

Model-6 with the combined ANS and EAS approach leads to 

the identical result with that of the locking-free ANCF flat plate 

element using the elastic plane approach. It is important to 

notice here that the plate element obtained using the elastic 

plane approach employs ANS for alleviating the thickness 

locking, while Model-4 of the continuum mechanics approach 

that uses the same strain modification does not eliminate the 

thickness locking completely. While the application of EAS to 

the thickness locking improves the element performance as 

shown in the result of Model-5, the accuracy is not satisfactory 

especially when the small number of elements is used. This 

result clearly indicates severity of the thickness locking 

exhibited in the continuum mechanics based ANCF shell 

element and the thickness locking of the shell element, in which 

the elastic forces are formulated as a continuum volume, needs 

to be eliminated using the combined EAS and ANS approach as 

discussed in Section 3. The effect of ANS for the transverse 

shear locking is shown by the comparison between Model-1 and 

Model-2, while the effect of EAS for the in-plane normal and 

shear locking is shown by the comparison between Model-3 and 

Model-4, with which it is shown that the in-plane normal and 

shear locking effect is not significant in this problem.  

 

 
Figure 3. Deformed shape of a cantilevered plate subjected to 

a large transverse tip load 
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In the second problem, the flat plate is replaced with 

the quarter cylinder modeled by the continuum mechanics based 

bi-linear ANCF shell elements as shown in Fig. 5 while keeping 

the same material properties, tip load, width and height. The 

radius of curvature is assumed to be 1.0 m. The deformed shape 

in static equilibrium is shown in Fig. 5 and the large 

deformation is exhibited in this problem. The error of the 

numerical solutions is presented in Fig. 6 for Models 1 to 6 and 

ANSYS SHELL181. The trend of the convergence rate and the 

accuracy is similar to that observed for the flat plate problem, 

and the use of the combine EAS and ANS approach leads to the 

suitable rate of convergence and accuracy for shell structures. 

 

 

4.2 Quarter Cylinder Pendulum 

In the third problem, the quarter cylinder that has the same 

dimension as the one discussed in the previous subsection is 

used for the nonlinear dynamics problem. A corner of the plate 

is connected to ground by spherical joint as shown in Fig. 7 and 

the deformed shapes of the quarter cylinder under the effect of 

gravity are shown in Fig. 7. In this problem, Young’s modulus 

is reduced to 72.1 10E    Pa to demonstrate the motion with 

large deformation. The global position at point A shown in Fig. 

7 is presented in Fig. 8 for different number of elements, and 

the results are compared with those obtained using the cubic 

ANCF thin shell element [19] with 20 20 elements. While the 

effect of the shear deformation is not noticeable in the gross 

motion of the quarter cylinder, the numerical result is in good 

agreement with those of the continuum mechanics shear 

deformable ANCF shell element developed in this investigation. 

 

 
Figure 4. Numerical convergence with large deformation 

(initially flat) 

 
 

Figure 5. Deformed shape of a cantilevered shell subjected to a 

large transverse tip load (initially curved) 

 
Figure 6. Numerical convergence with large deformation 

(initially curved) 

 
Figure 7. Deformed configuration of nonlinear dynamics 

(initially curved shell element) 
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5. SUMMARY AND CONCLUSIONS 

In this investigation, a bi-linear shear deformable shell element 

is developed using the absolute nodal coordinate formulation 

for the large deformation analysis of multibody shell structures. 

The elastic forces are formulated using the continuum 

mechanics approach which allows for the consideration of 

nonlinear material model such as hyperelasticity in the shell 

element in a straight forward manner. It is demonstrated that the 

use of the continuum mechanics approach leads to severe 

thickness locking which needs to be carefully handled in the 

element formulation. To overcome the difficulty associated with 

the thickness locking of the element, the transverse normal 

strain modified by the assumed natural strain approach is 

further enhanced by the enhanced assumed strain approach. It is 

demonstrated by several numerical examples that the combined 

ANS and EAS approach leads to the better approximation of the 

transverse normal strain, and the thickness locking exhibited in 

the continuum mechanics based bi-linear shear deformable 

ANCF shell element can be eliminated. The shear locking as 

well as the in-plane normal and shear locking are also 

eliminated using the assumed natural strain and the enhanced 

assumed strain approaches, respectively, in a standard manner. 

The locking-free shear deformable element developed in this 

investigation can be used for modeling a wide variety of large 

deformable multibody shell structures with material 

nonlinearities that include pneumatic tires in vehicle dynamics 

simulation as well as rotor blades in the wind turbine dynamics 

simulation. 
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Table 1. Strain modification for the continuum mechanics based ANCF bi-linear shell element 

 

Model 

name 

ANS for 

transverse shear 

strains ANS

/xz yz  

EAS for in-plane 

strains 
EAS

/ /xx yy xy  

ANS for 

transverse normal 

strain ANS

zz  

EAS for 

transverse normal 

strain 
EAS

zz  

Combined EAS 

and EAS for 

transverse normal 

strain ANS/EAS

zz  

Model-1 - - - - - 

Model-2 Y - - - - 

Model-3 Y - Y - - 

Model-4 Y Y Y - - 

Model-5 Y Y - Y - 

Model-6 Y Y - - Y 
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