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Abstract 25 

In this paper, we present a dynamical core for the atmospheric primitive hydrostatic 26 

equations using a unified formulation of spectral element (SE) and discontinuous Galerkin 27 

(DG) methods in the horizontal direction with a finite difference (FD) method in the radial 28 

direction. The CG and DG horizontal discretization employs high-order nodal basis functions 29 

associated with Lagrange polynomials based on Gauss-Lobatto-Legendre (GLL) quadrature 30 

points, which define the common machinery. The atmospheric primitive hydrostatic 31 

equations are solved on the cubed-sphere grid using the flux form governing equations in a 32 

three-dimensional (3D) Cartesian space. By using Cartesian space, we can avoid the pole 33 

singularity problem due to spherical coordinates and this also allows us to use any 34 

quadrilateral-based grid naturally. In order to consider an easy way for coupling the dynamics 35 

with existing physics packages, we use a FD in the radial direction. The models are verified 36 

by conducting conventional benchmark test cases: the Rossby-Haurwitz wavenumber 4, 37 

Jablonowski-Williamson tests for balanced initial state and baroclinic instability, and Held-38 

Suarez tests. The results from those tests demonstrate that the present dynamical core can 39 

produce numerical solutions of good quality comparable to other models..  40 

41 
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1. Introduction 42 

Spectral element (SE; here after is referred to as continuous Galerkin (CG)) and 43 

discontinuous Galerkin (DG) methods are very attractive on many-core computing platforms 44 

because these methods decompose the physical domain into smaller pieces having a small 45 

communication footprint. CG/DG methods are local in nature and thus can have a large on-46 

processor operation count (Kelly and Giraldo, 2012) which is advantageous on large 47 

processor-count computers. Also CG/DG methods can achieve high-order accuracy because 48 

the polynomial order can be adjusted automatically according to the corresponding numerical 49 

integration rule, that is, the Gaussian quadrature (Taylor et al. 1997; Giraldo 2001; Giraldo et 50 

al. 2002). In addition, CG/DG methods are geometrically flexible in the types of grids they 51 

can use; this includes static and adaptive grids as well as conforming and non-conforming 52 

grids (Giraldo et al. 2002; Giraldo and Rosmond 2004; Mueller et al. 2013).  53 

The CG method is characterized by the high-order approximation combined with the 54 

local decomposition property of the finite element method (FEM) and weak numerical 55 

dispersion property of the spectral method. The DG method, on the other hand, is best 56 

characterized as a combination of the properties of the CG method plus the local conservation 57 

properties of the finite volume method (FVM) (Giraldo and Restelli 2008).  The virtues of 58 

the DG method are that it is inherently conservative (both locally and globally) as in the case 59 

of the FVM. However, the common criticism of the DG method is the stringent Courant-60 

Friedrichs-Lewy (CFL) stability constraint in explicit time schemes. For a DG method using 61 

k-th order basis functions, an approximate CFL limit estimate is 1/(2k+1) (Cockburn and Shu 62 

1989). This, however, is partly due to the choice of the numerical flux which, for expediency, 63 

is chosen as a purely edge-based flux although other fluxes are also possible (e.g., Yelash et 64 

al. 2014); however these more sophisticated approaches come at a price and it is yet unclear 65 
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which strategy yields a faster wallclock time to solution. 66 

To date, successful applications of the CG method in hydrostatic atmospheric modeling 67 

include the Community Atmosphere Model – spectral element dynamical core (CAM-SE) 68 

(Dennis et al. 2012) and the scalable spectral element Eulerian atmospheric model (NSEAM) 69 

(Giraldo and Rosmond, 2004, hereafter GR04). In this context, one of the motivations of this 70 

study is to construct a dynamical core using a unified formulation of CG and DG methods as 71 

described in Giraldo and Restelli 2008 and Kelly and Giraldo 2012 where nonhydrostatic 72 

atmospheric models are proposed. Successful applications of the DG method in hydrostatic 73 

atmospheric modeling include the work of Nair et al. 2009; however, in our paper we shall 74 

present results for more than one test case. To our knowledge, the results for the Held-Suarez 75 

test cases presented in our paper are the first such results shown for a DG model. The 76 

significance is that this confirms the long-term stability of the DG method for hydrostatic 77 

models. Although we could also discretize the vertical direction with CG and DG methods, 78 

we choose a conservative flux-form finite-difference method for discretization in the vertical 79 

direction which is similar to the approach used in both CAM-SE and NSEAM. This choice of 80 

vertical discretization provides an easy way for coupling the dynamics with existing physics 81 

packages.  82 

In this paper we construct a unified formulation of CG and DG for the primitive 83 

hydrostatic equations in GR04. In order to achieve a unified formulation, the advective-form 84 

governing equations in GR04 are recast in flux form. GR04 provides a clue for converting the 85 

advective-form equation set in 3D Cartesian space to the flux form in their appendix. By 86 

using 3D Cartesian space, we can be free from the pole singularity problem in spherical 87 

coordinates. Although a local Cartesian coordinate system could also be used to overcome 88 

these problems (Taylor et al. 1997; Nair et al. 2005), the use of 3D Cartesian space 89 

everywhere allows us to treat the pole as any other point. Therefore it permits general grids 90 
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naturally such as icosahedral, hexahedral, and adaptive unstructured grids (it should be noted 91 

that general grids can also be used with the coordinate invariant form of the equations). In 92 

this paper we adopt a hexahedral grid – the so called cubed-sphere.  93 

In brief, the objective of this paper is to show the feasibility of the hydrostatic primitive 94 

equation models using CG/DG horizontal discretization and the FD vertical discretization by 95 

conducting conventional benchmark test cases. The organization of the remainder of this 96 

paper is as follows. In the next section we describe the governing equations in 3D Cartesian 97 

space with a definition of the prognostic and diagnostic variables. In Sec. 3 we explain the 98 

horizontal, vertical, and temporal discretization methods including the numerical 99 

approximation of the equations. In Sec. 4 we describe the cubed-sphere grid, and in Sec. 5, 100 

we present the simulation results of the test cases. Finally, in Sec. 6, we end the paper with a 101 

summary of our findings and some concluding remarks. 102 

 103 

2. Governing Equations 104 

The primitive hydrostatic equations of conservation form in the 3D Cartesian space with 105 

a sigma pressure vertical coordinate σ  are given as  106 

 ∂q
∂t

+ ∇ ⋅F = S
Cor
+S

h
+S

v
, (1) 107 

where  108 
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are prognostic variables, 110 
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   (3) 111 

respectively denote Coriolis with the Lagrange multiplier µ , horizontal, and vertical source 112 

terms, and  113 
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  (4) 114 

is the horizontal flux terms where î , ĵ , and k̂  denote the Cartesian directional unit 115 

vectors. The prognostic variables q  are comprised of: 1) the surface pressure π  defined as  116 

 s tp pπ = − ,  (5) 117 

where sp  is the true surface pressure, and tp is the pressure at the top of the atmosphere; 2) 118 

the flux-form velocity components ( , , ) ( , , )U V W u v wπ π π= =U , where ( , , )u v w  are the 119 

three Cartesian velocity components, and 3) the flux-form potential temperature πθΘ = , 120 

where θ  is the potential temperature. The diagnostic variables are 1) the geopotential φ  121 

given by the diagnostic equation as 122 
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P pc
φ θ∂ = −

∂
,  (6) 123 

2) the Exner function P  defined as  124 

 
/

0

P
d pR c

p
p

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

,  (7) 125 

where p  and 0p  is the hydrostatic pressure and standard surface pressure, respectively, 126 

and dR and pc  is the gas constant and specific heat of dry air at constant pressure, and 3) 127 

the σ -coordinate vertical velocity d
dt
σσ =&  where 0,1tp pσ

π
−

⎡ ⎤= ∈ ⎣ ⎦  is the definition 128 

of the sigma pressure coordinate with a value of 0 at the top of the atmosphere and 1 at the 129 

surface. The constants a  and ω  in Eq. (4) are the Earth’s radius and angular velocity, 130 

respectively, and µ  is a Lagrange multiplier for the fluid particles to remain on a spherical 131 

shell with constant σ . The momentum variables representing the atmospheric motion over 132 

the shell in the Cartesian space have three components along the x, y, and z axes in Cartesian 133 

coordinates, so that the movement of a particle on the shell has three degrees of freedom, 134 

which can move freely in R3. To ensure that fluid particles remain on the spherical shell, it is 135 

required that the fluid velocity remains perpendicular to the position vector, which yields a 136 

Lagrange multiplier in the momentum equations (Giraldo 2001; Giraldo et al. 2002; Giraldo 137 

and Rosmond, 2004). It is noteworthy that among the independent variables ( , , , , )x y z tσ ,  138 

( , , )x y z  represent grid points on the sphere which are related to the points in the spherical 139 

coordinates ( , )λ ϕ  given as   140 

 
cos cos ,
s in c os ,
s in .

x a
y a
z a

λ ϕ
λ ϕ
ϕ

=
=
=

  (8) 141 

Thus ∇  is defined as  142 
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x

y

z
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⎜ ⎟∂
⎜ ⎟∂⎝ ⎠

  (9) 143 

at constant σ .  144 

 145 

3. Discretization 146 

1) Discretization in the horizontal direction 147 

To describe the discretization of the horizontal operators by the CG/DG method we 148 

follow the description given previously in Giraldo and Restelli 2008 and in Kelly and Giraldo 149 

2012. Let us begin by rewriting Eq. (1) as follows 150 

 q F S
t

∂ + ∇ ⋅ =
∂

  (10) 151 

Next, let us introduce the following vector spaces 152 

 { }1( ) ( )C G
N eV H Pψ ψ= ∈ Ω ∈ Ω   (11) 153 

and  154 

 { }2( ) ( )DG
N eV L Pψ ψ= ∈ Ω ∈ Ω   (12) 155 

where we now seek solutions of Eq. (1) as follows:  156 

 	
   	
   	
   	
   Vq V ψ∈ ∀ ∈   157 

where V  denotes either C GV  or DGV . Next, we approximate the solution vector as follows  158 

 
1

( , , , ) ( , , ) ( )
M

N i i
i

q x y z t x y z q tψ
=

=∑   (13)  159 

where, for quadrilateral elements in the horizontal direction, 2( 1)M N= +  with N  160 
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representing the polynomial order of the basis function ψ . 161 

We now introduce this expansion into our governing system of equations, multiply by a 162 

test function, and integrate by parts to yield 163 

 ˆ ( ) ( )
e e e e

N
i e i e i N e i N e

q
d n Fd F q d S q d

t
ψ ψ ψ ψ

Ω Γ Ω Ω

∂
Ω + ⋅ Γ − ∇ Ω = Ω

∂∫ ∫ ∫ ∫ .  (14) 164 

where the terms with  Ωe
 refer to volume integrals and the one with  Γe

 is a boundary 165 

integral which accounts for both internal faces (neighboring elements share faces) as well as 166 

boundary faces (elements on boundaries do not share faces with other elements). In matrix-167 

vector form, this equation can be written as 168 

 ( ) ( ), *
, , ,( ) ( ) ( )

e
TTje F e e e e

i j i j j N i j j N i N

dq
M F q F q S q

dt
+ − =M D%   (15) 169 

where 170 

 

,

,e
,

,

,

ˆ ,

.

e

e

e

e
i j i j e
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i j i j e

e
i j i j e

M d

nd

d

ψ ψ

ψ ψ

ψ ψ

Ω

Γ

Ω

= Ω

= Γ

= ∇ Ω

∫
∫
∫

M

D%

   (16) 171 

These matrices represent: the mass, flux, and differentiation matrices, respectively. 172 

For the DG method, the matrix-vector form given above is sufficient as long as we define 173 

the numerical flux , e.g., as follows 174 

 ( )*
max

1 ˆ( ) ( ) ( ) n
2

L R R L
N N N N NF q F q F q q qλ⎡ ⎤= + − −⎣ ⎦   (17) 175 

where the superscripts L and R refer to the left and right elements (arbitrarily decided) of the 176 

face  Γe
 and  λmax

is the maximum eigenvalue of the Jacobian matrix of the governing 177 

partial differential equations. Here we use the Rusanov scheme for the numerical flux 178 

because of its simplicity although any other Riemann solver could be used. For the CG 179 

method, the matrix-vector form given above is also used except that the term of the flux 180 
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matrix vanishes on the sphere and we then use the direct stiffness summation (DSS) operation 181 

which gathers the element-wise solution to a global grid point solution and then scatters it 182 

back to the element-wise space. This is done to ensure that the solution is C0 across all 183 

element faces. 184 

 185 

2) Discretization in the vertical direction 186 

We use the FD method similarly to other global models to gain an easy way for coupling 187 

the dynamics with existing physics packages, although we could also discretize the vertical 188 

operators with the CG/DG methods (as done in Kelly and Giraldo 2012; Giraldo et al. 2013). 189 

Also by using the FD, we can keep the model as similar as possible to the NSEAM model 190 

(GR04) so that we directly discern differences from the discrete horizontal operators. Using a 191 

Lorenz staggering, the variables U , V , W , Θ , and φ  are at layer mid points denoted by 192 

1,2, ,k Nlev= …  where Nlev  is the total number of layers, while the variable P  and σ& 193 

are at layer interface points denoted by 1
2

k + , 0,1, ,k Nlev= … .  194 

We begin the vertical discretization by the evaluating 
t
π∂
∂

 which is given by 195 

integrating the first row of Eq. (1) (i.e., the continuity equation) from the surface 196 

( 1/2 1bottom Nlevσ σ += = ) to the top ( 1/2 0topσ σ= = ) with no-flux boundaries at the top and 197 

bottom levels of the atmosphere (i.e. 0top bottomσ σ= =& & ). Thus,  198 

 1

1

Nlev

k k
kt

π σ−

=

∂ = ⋅ Δ
∂ ∑M D U% ,  (18) 199 

where k  is the number of vertical levels to be integrated across and 1/2 1/2l l lσ σ σ+ −Δ = −  is 200 

the thickness of the layer. Then the vertical velocity σ& at each vertical level is obtained by 201 

integrating the continuity equation from the top of the atmosphere to the material surface as 202 
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follows 203 

 
    
( !σπ)

k+1/2 = − ∂π
∂t

σ
k+1/2 +M−1 !D ⋅U

l
Δσ

l
l=1

k

∑ .  (19) 204 

The vertical advection term 
   

∂( !σq)

∂σ
 in the vertical source term S v  is computed using the 205 

third-order upwind biased discretization in Hundsdorfer et al. (1995) which is given as  206 

 2 1 1 2 2 1 1 28 8 4 6 4
s ign( )

12 12
k k k k k k k k k

k

f f f f f f f f ff σ
σ σ σ

− − + + − − + +− + − − + − +∂ = +
∂ Δ Δ

& ,  (20) 207 

where f  denotes the flux ( )qσ& . It is noted that the upwind-biased schemes are inherently 208 

diffusive. Following GR04, the hydrostatic equation, Eq. (6), is evaluated as follows 209 

 1 1/2 1 1 1/2(P P ) (P P )k k p k k k p k k kc cφ φ + + + + +− = Θ − + Θ − ,  (21) 210 

where the Exner function at layer interfaces and midpoints is given by  211 

 1/2
1/2

0

P k
k

p
p

κ

+
+

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

  (22) 212 

and 213 

 
1 1
1/2 1/2

1/2 1/20

1 1P
1

k k
k

k k

p p
p pp

κ κ

κκ

+ +
+ −

+ −

⎛ ⎞−
= ⎜ ⎟⎜ ⎟+ −⎝ ⎠

,  (23) 214 

respectively. 215 

 216 

3) Discretization in time 217 

For integrating the equations, we adopt a third-order strong stability preserving explicit 218 

Runge-Kutta (SSP-RK) scheme (Cockburn and Shu 1998; Nair et al. 2005). The 3rd order 219 

SSP-RK scheme is introduced into our governing equations in the form of  220 

 ( )q R q
t

∂ =
∂

,  (24) 221 
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and is given as follows: 222 

 

(1)

(2) (1) (1)

1 (1) (2)

R (q )
3 1 1 R (q )
4 4 4
1 2 2 R(q ),
3 3 3

n n

n

n n

q q t

q q q t

q q q t+

= + Δ

= + + Δ

= + + Δ

 (25) 223 

where the superscripts n  and 1n +  denote time levels t  and t t+ Δ , respectively. While 224 

for smooth problems the SSP-RK scheme does not generate spurious oscillations so that are 225 

widely used for DG methods, for problems with strong shocks or discontinuities, oscillations 226 

can lead to nonlinear instabilities (Cockburn and Shu 1998). Since an SSP-RK time-227 

integration scheme cannot control such undesirable effects, a Boyd-Vandeven spatial filter is 228 

applied after the time integration, which is described in GR04. Neither viscosity nor slope 229 

limiter are used in all simulations. 230 

 231 

4. Cubed-sphere Grid  232 

The cubed-sphere grids are composed of the six patches obtained by the gnomonic 233 

projection of the faces of the hexahedron which are subdivided into ( )H Hn n×  quadrilateral 234 

elements where Hn  is the number of quadrilateral elements in each direction (GR04). Inside 235 

each element we build ( 1)N +  Gauss-Lobatto-Legendre (GLL) quadrature points, where N  236 

indicate the polynomial order of the basis function ψ . Therefore the total number of grid 237 

points pN  is given as  238 

 ( )26 2p HN n N= + ,  (26) 239 

and the number of elements eN  comprising the sphere is  240 

 ( )26e HN n= .  (27) 241 
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We now introduce the square region on the gnomonic space ( )
2

, ,
4 4G G

π πξ η ⎡ ⎤
= − +⎢ ⎥
⎣ ⎦

 in 242 

each of the six faces to describe the relation to spherical coordinates ( ),λ ϕ . The gnomonic 243 

space ( )
2

, ,
4 4G G

π πξ η ⎡ ⎤
= − +⎢ ⎥
⎣ ⎦

 is mapped to the corresponding spherical coordinates 244 

( ),G Gλ ϕ  via  245 

 G Gλ ξ= ,  (28) 246 

 
2 2

tan
arc s in

1 tan tan
G

G

G G

η
ϕ

ξ η

⎛ ⎞
⎜ ⎟=
⎜ ⎟+ +⎝ ⎠

, (29) 247 

and then we construct the cubed-sphere grid by rotating this face to the six faces of the 248 

hexahedron by  249 

 cos s in
arc tan

cos cos cos s in s in
G G

c
G G c G c

ϕ λλ λ
ϕ λ ϕ ϕ ϕ

⎛ ⎞
= + ⎜ ⎟−⎝ ⎠

,  (30) 250 

 ( )arc s in s in cos cos cos s inG c G G cϕ ϕ ϕ ϕ λ ϕ= + ,  (31) 251 

with the centroids, ( ), 1 ,0
2c c c πλ ϕ ⎛ ⎞⎡ ⎤= −⎜ ⎟⎣ ⎦⎝ ⎠

 for 1, ,4c = K , ( )5 5, 0,
2
πλ ϕ ⎛ ⎞= ⎜ ⎟

⎝ ⎠
, and 252 

( )6 6, 0,
2
πλ ϕ ⎛ ⎞= −⎜ ⎟

⎝ ⎠
.  253 

The resolution of the cubed-sphere grid H  is determined by Hn  (the number of 254 

quadrilateral elements in each direction contained in each of the six faces of the cube) and N  255 

(the polynomial order of the elements), where we use HH n N=  as the convention to define 256 

the grid resolution. Fig. 1 show examples of the grids with 3H =  ( 3Hn =  and 1N = ), 257 

15H =  ( 3Hn =  and 5N = ), and 35H =  ( 5Hn =  and 7N = ). 258 
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 259 

5. Simulation results with Benchmark Tests 260 

We consider the following test cases: 1) 3D Rossby-Haurwitz wavenumber 4,                                                       261 

2) Jablonowski-Williamson balanced initial state test, 3) baroclinic instability test, and 4) 262 

Held-Suarez test. Because all of the test cases except 2) the Jablonowski-Williamson 263 

balanced initial state test do not have analytical solutions, we compare our results to the 264 

results of other published papers and evaluate the results qualitatively. We now discuss the 265 

results of the four test cases. 266 

 267 

1) 3D Rossby-Haurwitz wavenumber 4 268 

We conduct the Rossby-Haurwitz (RH) wave test case which is a 3D extension of the 269 

2D shallow water RH wave discussed in Williamson et al. (1992). The main differences 270 

compared to the 2D shallow water formulation include the introduction of a temperature field 271 

and the derivation of the surface pressure, which is discussed in GR04 and Jablonowski et al. 272 

(2008). The Rossby-Haurwitz wave approximately preserves its shape even in nonlinear 273 

shallow water and primitive equation models, which has a sufficiently simple enough pattern 274 

to allow one to judge if the simulation was successful. We initialize the model following 275 

Jablonowski et al. (2008). 276 

Snapshots of the output data for the CG and DG models for day 15 are presented in Figs. 277 

2 and 3, respectively. The figures show the 850 hPa zonal wind, meridional wind, and 278 

temperature as well as the surface pressure. These model results were computed at the 279 

resolution of 64H =  ( 8Hn =  and 8N = ) with 26 vertical levels (Nlev=26). The results 280 

of the CG and DG simulations are virtually indistinguishable; in addition, the accuracy results 281 

of both simulations are almost identical to the results obtained with the CAM3.5.41 version 282 
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of the NCAR Finite Volume (FV) dynamical core at the resolution 1° by 1° with 26 hybrid 283 

levels, as described in Jablonowski et al. (2008). Although we have used a relatively low 284 

resolution of H64 which is comparable to T63 of a spectral model, the results are strikingly 285 

similar to the solutions with the 1°x1° NCAR CAM-FV core, both in phase and amplitude.  286 

 287 

2) Jablonowski-Williamson balanced initial state test 288 

In order to estimate the accuracy and stability of the dynamical core, we conduct the 289 

Jablonowski-Williamson balanced initial state test introduced by Jablonowski and 290 

Williamson (2006). We initialize the model following Jablonowski and Williamson (2006a 291 

and b). Using the balanced initial fields, the simulation results should maintain the initial state 292 

perfectly for a sufficient amount of time. Since the initial state of this test is the true solution, 293 

we can compute error norms. We evaluate the error by using the relative L2 error defined by  294 

 
( )

2

2

2

exac t s imulation
s imulation L

exac t

q q d
q

q d
Ω

Ω

− Ω
=

Ω
∫

∫
, 295 

where s imulationq  represents the computed state variables and exac tq  the exact (i.e., initial 296 

condition) values. 297 

Figure 4 shows the normalized surface pressure L2 error norms for the CG and DG 298 

simulations with   H = 128  ( 16Hn =  and 8N = ) horizontal resolution and 26 vertical 299 

levels (Nlev=26). The L2 error norms of the two simulations are visually identical, in which 300 

the error oscillates but remains bounded. These results (including the value of the L2 error) 301 

compare well against those of the NSEAM model presented in GR04. The bounded error 302 

confirms that the initial balanced state is properly maintained. In practice though, the initial 303 

state degrades over time. After 20-days, the zonal wind fields for the CG and DG simulations 304 

show a somewhat distorted distribution with an increasing zonally asymmetric pattern (Fig. 305 
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5). Initially the maximum of the zonal winds at the lowest level are about 9.4 m/s in mid-306 

latitude, but after 20-days the maximum difference of the zonal wind is up to about 0.02 m/s 307 

showing the zonal asymmetry. Although the error distribution is different between the CG 308 

and DG simulations in detail, these have a wavenumber 4 structure which arise from the 309 

cubed-sphere grid. The wavenumber 4 signals grow over time and lead eventually to a 310 

breakdown of the balanced state. However, higher resolutions delay the growth of the signals 311 

as the truncation error associated with the spatial discretization decreases. Actually, at 312 

192H =  ( 16Hn =  and 12N = ) horizontal resolution this error virtually disappears for 313 

20-day simulations (Fig. 6).  314 

 315 

3) Jablonowski-Williamson baroclinic instability test 316 

The baroclinic instability test case starts from the balanced initial fields, which is 317 

described above, with a perturbation in the initial zonal velocity. The baroclinic wave is 318 

induced by the small perturbation in the initial zonal wind. Here a Gaussian profile is used for 319 

the zonal wind perturbation, which is centered at ( ) 2, ,
9 9c c

π πλ ϕ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 pointing to the 320 

location ( )o o20 E ,40 N . This perturbation is given by  321 

 
2

( , , ) expperturbation

ru
R

λ ϕ σ
⎡ ⎤⎛ ⎞⎢ ⎥= −⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

 , 322 

where  323 

 ( )arc c os s in s in c os c os c osc c cr a ϕ ϕ ϕ ϕ λ λ⎡ ⎤= + −⎣ ⎦ , 324 

and /10R a=  is the perturbation radius (Jablonowski and Williamson 2006a and b). 325 

Since the baroclinic wave test case does not have an analytic solution, we compare our 326 

results to the solutions from Jablonowski and Williamson (2006a) and the NSEAM model in 327 
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GR04. We show the surface pressure, 850 hPa temperature, and 850 hPa relative vorticity at 328 

day 9 for the CG and DG simulations with the resolution of 80H =  ( 16Hn =  and 329 

5N = ) and 26 vertical levels (Nlev=26) in Fig. 7 which can be compared with the solutions 330 

of the National Center for Atmospheric Research’s Community Atmosphere Model version 3 331 

(NCAR CAM3) Eulerian dynamical core at T85 resolution and finite volume core at 1° by 332 

1.25° from Jablonowski and Williamson (2006a). The CG and DG simulations in Fig. 7 are 333 

visually very similar to those reported in Jablonowski and Williamson with regard to the 334 

structure in the fields and the extrema for the surface pressure; in addition, the CG and DG 335 

results are almost identical to each other. Differences, however, can only be seen in the 336 

relative vorticity field at very small scales. In the CG simulation, the small-scale vorticity in 337 

the vicinity of the hook is depicted, and the maximum strength of the relative vorticity is 338 

larger than that of the DG simulation, which can be also seen in the results of a relatively 339 

higher resolution shown in Fig. 8. Figure 8 shows the same fields at day 9 as in Fig. 7 but for 340 

the higher resolution of 160H =  ( 32Hn =  and 5N = ) and 26 vertical levels (Nlev=26). 341 

In comparison with the results of the lower resolution of 80H =  ( 16Hn =  and 5N = ), it 342 

can be clearly seen that the numerical solutions of the two different resolutions are well 343 

converged in terms of the strength and structure in the surface pressure, temperature, and 344 

vorticity fields. It is noted that the vorticity fields in the higher resolution are characterized by 345 

the smallest scale in the vicinity of the hook, which is the same as in the lower resolution, 346 

which imply that the DG simulation is more diffusive than the CG simulation. It suggests that 347 

the diffusive property of the DG simulation is induced by the Rusanov numerical flux used in 348 

this study, because the only difference between the CG and DG formulations is the numerical 349 

flux and the fact that the DG solutions are allowed to contain jumps across element edges. 350 

However, this difference in the results suggests that it is the dissipation of the numerical flux 351 
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that is mainly responsible for the differences in the two simulations. 352 

In general, the baroclinic wave grows observably around day 4. At day 7 the baroclinic 353 

wave evolves rapidly and by day 9 the wave train has intensified significantly (Jablonowski 354 

and Williamson 2006a). In order to examine the growth of the perturbation, an evolution of 355 

the minimum surface pressure is shown in Fig. 9 which we now compare with the results in G 356 

R04. The results of the CG and DG simulations with different resolutions are almost in 357 

agreement until day 10, at which point the simulations begin to show slight deviations from 358 

each other. The DG simulation with the lower resolution tends to simulate somewhat weak 359 

deepening. During the period between day 10 and 11 when wave breaking has set in, the 360 

remarkable weak deepening is shown in the DG simulation at the lower resolution. At day 14, 361 

the difference of the minimum surface pressure between the DG simulation at the lower 362 

resolution and the three other simulations is about 2 hPa.  363 

 364 

4) Held-Suarez test 365 

In order to estimate the capabilities of the model in simulating a realistic climate 366 

circulation without complex parameterizations, we conduct the Held-Suarez test. The Held-367 

Suarez test ensures that a dynamical core produces a realistic zonal and time mean climate 368 

and synoptic eddies by using a simple Newtonian relaxation of the temperature field and a 369 

Rayleigh damping of low-level winds representing boundary-layer friction (Held and Suarez 370 

1994). The Newtonian relaxation of the temperature is added as the diabatic forcing term to 371 

the thermodynamic equation, the fifth row of Eq. (1), and the Rayleigh damping is imposed 372 

as dissipation term in the momentum equation, the second to fourth rows of Eq. (1). The 373 

detailed specifications are adapted from Held and Suarez (1994). For this test we use a 374 

relatively low resolution of 40H =  ( 8Hn =  and 5N = ) with 25 vertical levels 375 

(Nlev=25) because this test case requires a relatively long model time simulation for 1200 376 
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days. In this paper, the integrations start from a stably stratified state at rest atmosphere, in 377 

which the lapse rate of temperature is 6.5 K/m and the surface temperature is 288 K. We use 378 

the simulation results from day 200 to day 1200 integrations sampled every 10-days. 379 

Fig. 10 shows the time mean zonally averaged zonal wind and temperature for both the 380 

CG and DG simulations which can be easily compared to the results of other published 381 

papers. In comparison with the results of the spectral transform model in Held and Suarez 382 

(1994), both the CG and DG simulations show reasonable and comparable distributions, 383 

where the midlatitude jets at the upper troposphere near 250 hPa and the equatorial easterly 384 

flow in the lower and upper atmosphere are clearly visible in each hemisphere. Also 385 

temperature stratification is maintained realistically. The simulation results are comparable to 386 

that of GR04. There exist, however, differences between the results of the CG and DG 387 

simulations mainly in the strength of the westerly flow and the temperature structure in the 388 

upper atmosphere. DG simulates broader upper-level jet streams than CG that strengthen with 389 

altitude. Also in the temperature field, the DG simulation shows warmer air in the equatorial 390 

upper atmosphere. The difference is shown clearly in Fig. 11 where we plot the time mean 391 

zonally averaged eddy heat flux of the CG and DG simulations. There are two maxima at 392 

mid-latitude in the lower and upper atmosphere indicating transportations of heat in the 393 

poleward direction, of which the distributions in the CG and DG simulations are in good 394 

agreement with previous studies, for example, Held and Suarez (1994), Lin (2004) and Wan 395 

et al. (2008). However, in comparison of the strength and horizontal gradient of the eddy heat 396 

flux between both simulations, CG simulates a stronger eddy motion than DG.  397 

 398 

6. Summary and Conclusions 399 

We have proposed a hydrostatic dynamical solver using both the continuous Galerkin 400 
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(CG) and discontinuous Galerkin (DG) methods. It is solved on a cubed-sphere grid in 3D 401 

Cartesian coordinates although in principle any quadrilateral-based grid could be used. The 402 

CG and DG horizontal discretization employs a high-order nodal (Lagrange) basis function 403 

based on quadrilateral elements and GLL quadrature points which compose the common 404 

machinery. However, the DG method use fluxes along the boundaries of the elements which 405 

are approximated by the Rusanov method. In the vertical direction, a conservative flux-form 406 

finite-difference method is employed for coupling the dynamics with existing physics 407 

packages easily; we hope to report progresses on this specific topic in the future. A third-408 

order strong stability preserving Runge-Kutta scheme was used for time integration although 409 

other time-integrators (including semi-implicit methods) could also be used. 410 

In this paper, we show simulations of the model using four baroclinic test cases 411 

including: the Rossby-Haurwitz wave, balanced initial state, baroclinic instability, and Held-412 

Suarez test cases. All cases, except for the Jablonowski-Williamson balanced initial state test 413 

case, do not have analytic solutions. Therefore, we compare our results to the results of test 414 

cases run by a vast community. Through our comparison of the CG and DG simulations, we 415 

show that for the baroclinic instability test and Held-Suarez test cases, the DG simulation 416 

tends to simulate somewhat weaker small-scale features, such as the minimum surface 417 

pressure perturbation and eddy heat flux, than the CG method. This could be due to the 418 

intrinsic diffusion of the Rusanov numerical flux scheme used for the horizontal 419 

discretization of the DG method, which is the only difference between the CG and DG 420 

formulations. One of the valuable contributions of this model is that we can use it to study the 421 

effects of using different horizontal discretizations since we use the exact same model with 422 

the same finite difference method in the vertical and time-integration methods but use either 423 

CG or DG in the horizontal. The discrete operators in the horizontal use the exact same 424 

numerical machinery and so the results shown here isolate the differences offered by the CG 425 
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and DG methods. However, for the other two test cases (Rossby-Haurwitz wave and balanced 426 

initial state tests), the results of the CG and DG simulations are virtually indistinguishable. 427 

Furthermore, the numerical results obtained for all four test cases show that the present 428 

dynamical core can produce numerical solutions of good quality comparable to other models. 429 

The results confirm that the CG and DG methods combined with the finite difference method 430 

in the vertical direction offer a viable strategy for atmospheric modeling. To our knowledge, 431 

we present the first results for a DG model for long-time simulations represented by the Held-432 

Suarez test case. The importance of this result is that this confirms the stability of the DG 433 

method for long-time simulations in hydrostatic atmospheric dynamics. In order to make the 434 

model efficient and competitive with operational models, we need a semi-implicit time 435 

integration method which, although requires some additional machinery to be added, does not 436 

pose any theoretical barriers since such algorithms have already been designed by one of the 437 

authors in previous papers (Giraldo 2005, Giraldo et al. 2013). 438 

439 
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Figure Captions 534 

FIG. 1. The cubed-sphere grid for (a) the 3H =  ( 3Hn =  and 1N = ), (b) the 535 

15H =  ( 3Hn =  and 5N = ), and (c) the 35H =  ( 5Hn =  and 7N = ) horizontal 536 

resolutions. 537 

 538 

FIG. 2. Numerical results for the CG simulation on the resolution of the 64H =  539 

( 8Hn =  and 8N = ) with 26 vertical levels: Top row: 850 hPa zonal wind and meridional 540 

wind, bottom row: surface pressure and 850 hPa temperature.  541 

 542 

FIG. 3. As in Fig. 2 but for the DG simulation.  543 

 544 

FIG. 4. L2 error norm of surface pressure in Pa for the CG and DG simulations at the 545 

  H = 128  ( 16Hn =  and 8N = ) horizontal resolution and 26 vertical levels. 546 

 547 

FIG. 5. Distribution of zonal wind difference at the lowest model level between day 20 548 

and day 0 for the (top) CG and (bottom) DG simulations at the   H = 128  ( 16Hn =  and 549 

8N = ) horizontal resolution and 26 vertical levels. 550 

 551 

FIG. 6. As in Fig. 5 but for the 192H =  ( 16Hn =  and 12N = ) horizontal 552 

resolution. 553 

 554 

FIG. 7. Baroclinic wave at day 9 with the (left) CG and (right) DG simulations with the 555 

resolution of the 80H =  ( 16Hn =  and 5N = ) horizontal resolution and 26 vertical 556 
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levels: (upper row) surface pressure, (middle row) 850 hPa temperature, and (bottom row) 557 

850 hPa relative vorticity at days (left) 7 and (right) 9.  558 

 559 

FIG. 8. As in Fig. 7 but for the 160H =  ( 32Hn =  and 5N = ).  560 

 561 

FIG. 9. The minimum surface pressure (hPa) as a function of days for the CG and DG  562 

simulations with the lower resolution of the 80H =  ( 16Hn =  and 5N = ) and the higher 563 

resolution of the 160H =  ( 32Hn =  and 5N = ).  564 

 565 

FIG. 10. The (left) mean zonally averaged zonal velocity (m/s) and (right) mean zonally 566 

averaged temperature (K) for the (upper row) CG and (bottom row) DG simulations with the 567 

resolution of the 40H =  ( 8Hn =  and 5N = ) and 25 vertical levels (Nlev=25). These 568 

are calculated over the last 1000 days of a 1200-day integration. 569 

 570 

FIG. 11. The mean zonally averaged eddy heat flux for the (left) CG and (right) DG 571 

simulation with the resolution of the 40H =  ( 8Hn =  and 5N = ).  572 

573 
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 574 

FIG. 1. The cubed-sphere grid for (a) the 3H =  ( 3Hn =  and 1N = ), (b) the 575 

15H =  ( 3Hn =  and 5N = ), and (c) the 35H =  ( 5Hn =  and 7N = ) horizontal 576 

resolutions. 577 

578 
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 579 

FIG. 2. Numerical results for the CG simulation on the resolution of the 64H =  580 

( 8Hn =  and 8N = ) with 26 vertical levels: Top row: 850 hPa zonal wind and meridional 581 

wind, bottom row: surface pressure and 850 hPa temperature.  582 

583 
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 584 

 585 

FIG. 3. As in Fig. 2 but for the DG simulation.  586 

587 
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 588 

FIG. 4. L2 error norm of surface pressure in Pa for the CG and DG simulations at the 589 

  H = 128  ( 16Hn =  and 8N = ) horizontal resolution and 26 vertical levels. 590 

591 
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 592 

FIG. 5. Distribution of zonal wind difference at the lowest model level between day 20 593 

and day 0 for the (top) CG and (bottom) DG simulations at the   H = 128  ( 16Hn =  and 594 

8N = ) horizontal resolution and 26 vertical levels. 595 

596 
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 597 

FIG. 6. As in Fig. 5 but for the 192H =  ( 16Hn =  and 12N = ) horizontal 598 

resolution. 599 

600 
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 601 

FIG. 7. Baroclinic wave at day 9 with the (left) CG and (right) DG simulations with the 602 

resolution of the 80H =  ( 16Hn =  and 5N = ) horizontal resolution and 26 vertical 603 

levels: (upper row) surface pressure, (middle row) 850 hPa temperature, and (bottom row) 604 

850 hPa relative vorticity at days (left) 7 and (right) 9.  605 

606 

CG(H80) DG(H80) 
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 607 

FIG. 8. As in Fig. 7 but for the 160H =  ( 32Hn =  and 5N = ).  608 

609 

CG(H160) DG(H160) 
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 610 

FIG. 9. The minimum surface pressure (hPa) as a function of days for the CG and DG  611 

simulations with the lower resolution of the 80H =  ( 16Hn =  and 5N = ) and the higher 612 

resolution of the 160H =  ( 32Hn =  and 5N = ).  613 

614 
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 615 

FIG. 10. The (left) mean zonally averaged zonal velocity (m/s) and (right) mean zonally 616 

averaged temperature (K) for the (upper row) CG and (bottom row) DG simulations with the 617 

resolution of the 40H =  ( 8Hn =  and 5N = ) and 25 vertical levels (Nlev=25). These 618 

are calculated over the last 1000 days of a 1200-day integration. 619 

620 
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 621 

FIG. 11. The mean zonally averaged eddy heat flux for the (left) CG and (right) DG 622 

simulation with the resolution of the 40H =  ( 8Hn =  and 5N = ).  623 


