

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUL 2014 2. REPORT TYPE

3. DATES COVERED
 00-00-2014 to 00-00-2014

4. TITLE AND SUBTITLE
CrossTalk, The Journal of Defense Software Engineering. Volume 27,
Number 4. July/August 2014

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
517 SMXS/MXDED,6022 Fir Ave,Hill AFB,UT,84056-5820

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

44

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2 CrossTalk—July/August 2014

TABLE OF CONTENTS CrossTalk
NAVAIR Jeff Schwalb
DHS Joe Jarzombek
309 SMXG Karl Rogers

Publisher Justin T. Hill
Article Coordinator Heather Giacalone
Managing Director David Erickson
Technical Program Lead Thayne M. Hill
Managing Editor Brandon Ellis
Associate Editor Colin Kelly
Art Director Kevin Kiernan

Phone 801-777-9828
E-mail Crosstalk.Articles@hill.af.mil
CrossTalk Online www.crosstalkonline.org

CrossTalk, The Journal of Defense Software Engineering
is co-sponsored by the U.S. Navy (USN); U.S. Air Force (USAF); and
the U.S. Department of Homeland Security (DHS). USN co-sponsor:
Naval Air Systems Command. USAF co-sponsor: Ogden-ALC 309
SMXG. DHS co-sponsor: Office of Cybersecurity and Communica-
tions in the National Protection and Programs Directorate.

The USAF Software Technology Support Center (STSC) is the
publisher of CrossTalk providing both editorial oversight and
technical review of the journal. CrossTalk’s mission is to encour-
age the engineering development of software to improve the reliabil-
ity, sustainability, and responsiveness of our warfighting capability.

Subscriptions: Visit <www.crosstalkonline.org/subscribe> to
receive an e-mail notification when each new issue is published
online or to subscribe to an RSS notification feed.

Article Submissions: We welcome articles of interest to the defense
software community. Articles must be approved by the CrossTalk
editorial board prior to publication. Please follow the Author Guide-
lines, available at <www.crosstalkonline.org/submission-guidelines>.
CrossTalk does not pay for submissions. Published articles
remain the property of the authors and may be submitted to other
publications. Security agency releases, clearances, and public af-
fairs office approvals are the sole responsibility of the authors and
their organizations.

Reprints: Permission to reprint or post articles must be requested
from the author or the copyright holder and coordinated with
CrossTalk.

Trademarks and Endorsements: CrossTalk is an authorized
publication for members of the DoD. Contents of CrossTalk are
not necessarily the official views of, or endorsed by, the U.S. govern-
ment, the DoD, the co-sponsors, or the STSC. All product names
referenced in this issue are trademarks of their companies.

CrossTalk Online Services:
For questions or concerns about crosstalkonline.org web content
or functionality contact the CrossTalk webmaster at
801-417-3000 or webmaster@luminpublishing.com.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

CrossTalk is published six times a year by the U.S. Air Force
STSC in concert with Lumin Publishing <luminpublishing.com>.
ISSN 2160-1577 (print); ISSN 2160-1593 (online)

Agile and the Definition of Quality
Newcomers to Agile often fail to see the connection between older thoughts
about Agile and today’s Agile movement.
by Gerald M. Weinberg

High Maturity Is Not A Procrustean Bed
Too many organizations have a single model of high maturity to which they try to
fit all their projects.
by Barry Boehm, Richard Turner, Jo Ann Lane,
and Supannika Koolmanojwong

Disciplined Learning: The Successor to Risk Management
Disciplined learning, or “learn early, learn often,” updates naïve agile develop-
ment and traditional risk management, and safely replaces the dreaded catch
phrase, “fail early fail often.”
by Alistair Cockburn

Achieving Software Excellence
Software is the main operational component of every major organization in the
world, but software quality is still not acceptable for many applications.
by Capers Jones

Improving Software through Metrics while Providing Cradle to
Grave Support Metrics are beneficial to an organization that supports a
product from inception through product retirement and disposal.
by Jennifer Walters, and Kevin MacG. Adams, Ph.D.

Paths of Adoption: Routes to Continuous Process Improvement
The long-term goals of Process Improvement should be to introduce and sus-
tain a culture of continuous process improvement.
by David Saint-Amand and Mark Stockmyer

High Maturity Heresy
How rocket scientists implement High Maturity.
by Tom Lienhard

8

4

15

19

26

36

30

High Maturity Organizational Characteristics

Departments

Cover Design by
Kent Bingham

 3 From the Sponsor

 41 Upcoming Events

 43 BackTalk

CrossTalk—July/August 2014 3

FROM THE SPONSOR

CrossTalk would like to thank 309 SMXG for sponsoring this issue.

Anyone who has spent a significant amount of time working toward organiza-
tional and process high maturity knows that it is never an easy or short-term
endeavor. This issue of CrossTalk focuses on High Maturity Organizational
Characteristics. The complexities of creating and sustaining a High Maturity
Organization never cease to amaze me. There are many ways to achieve High
Maturity and this issue focuses on many of the perspectives from people who
have worked in the software industry for many years.

Gerald Weinberg sometimes called the Father of Agile, focuses on Agile and
the often-elusive definition of Quality. When it comes to software, what is Qual-
ity and how good is good enough?

 Barry Boehm, Richard Turner, Jo Ann Lane, and Supannika Koolmanojwong
focus on the fact that high maturity processes are not one size fits all in their
article, “High Maturity is Not a Procrustean Bed.” Due to the complexity of high
maturity processes and tools it is tempting for many organizations to try and
make their process a one size fits all for high maturity projects, this approach
can be problematic however there are ways to determine which process, or
processes best fit a particular project.

In his article, “Disciplined Learning: The Successor to Risk Management”
Alistair Cockburn, investigates the idea that traditional Risk Management is
focused on avoiding failure and not delivering success. He investigates how
Disciplined Learning may add to the probability of success of programs.

Capers Jones provides insight into proven methods of achieving excellence
in software development in his article, “Achieving Software Excellence.” He also
explores the definition of what software excellence really means.

“Improving Software through Metrics while Providing Cradle to Grave Sup-
port” was written by Jennifer Walters and Kevin MacG. Adams. This article
focuses on the benefits of metrics collection over the lifecycle of the system.
Above are examples of the articles in this issue of CrossTalk Magazine. As I
write this article I just walked out of a CMMI® High Maturity SCAMPI B ap-
praisal. It was very interesting and informative. It reminded me once again that
High Maturity is an involved and difficult process. I have consistently found that
the more we learn about processes and all of the aspects of software process
improvement the more able we are to lead our organizations/projects to pro-
vide high quality software on schedule, at a reasonable cost. I hope you enjoy
this edition of CrossTalk Magazine and always continue to learn.

Disclaimer:
CMMI® is registered in the U.S. Patent and Trademark Office by Carnegie

Mellon University.

Karl G. Rogers
Software Maintenance Group Director
309th Software Maintenance Group

4 CrossTalk—July/August 2014

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

Gerald M. Weinberg, Author

Abstract. To convince people of the value of Agile, we need to produce new
software that is full of wonderful features that the old software didn’t possess while
functioning exactly the way as the old software did.

Agile and
the Definition
of Quality

Introduction
Some Agile writers have called me “the grandfather of Agile.”

I choose to interpret that comment as a compliment, rather than
a disparagement of my advanced age. As a grandfather, much
of my most influential writing was done long before the Agile
movement appeared on stage. As a result, newcomers on the
scene often fail to see the connection between those writings
and today’s Agile movement.

I use my blog to correct that situation, with a series of articles re-
lating specific material to Agile basics. I started with an essay about
my definition of “quality”—often quoted by not always understood.

A Bug in the Family
My sister’s daughter, Terra, is the only one in the family who

has followed Uncle Jerry in the writer’s trade. She writes fasci-
nating books on the history of medicine, and I follow each one’s
progress as if it were one of my own. For that reason, I was
terribly distressed when her first book, Disease in the Popular
American Press, came out with a number of gross typographical
errors in which whole segments of text disappeared. I was even
more distressed to discover that those errors were caused by
an error in the word processing software she used—CozyWrite,
published by one of my clients, the MiniCozy Software Company.

Terra asked me to discuss the matter with MiniCozy on my
next visit. I located the project manager for CozyWrite, and he
acknowledged the existence of the error.

“It’s a rare bug,” he said.
“I wouldn’t say so,” I countered. “I found over twenty-five

instances in her book.”
“But it would only happen in a book-sized project. Out of over

100,000 customers, we probably didn’t have 10 who undertook
a project of that size as a single file.”

“But my niece noticed. It was her first book, and she
was devastated.”

“Naturally I’m sorry for her, but it wouldn’t have made any
sense for us to try to fix the bug for 10 customers.”

“Why not? You advertise that CozyWrite handles book-
sized projects.”

“We tried to do that, but the features didn’t work. Eventually,
we’ll probably fix them, but for now, chances are we would intro-
duce a worse bug—one that would affect hundreds or thousands
of customers. I believe we did the right thing.”

As I listened to this project manager, I found myself caught in
an emotional trap. As software consultant to MiniCozy, I had to
agree, but as uncle to an author, I was violently opposed to his
line of reasoning. If someone at that moment had asked me, “Is
CozyWrite a quality product?” I would have been tongue-tied.

How would you have answered?

The Relativity of Quality
The reason for my dilemma lies in the relativity of quality. As

the MiniCozy story crisply illustrates, what is adequate quality to
one person may be inadequate quality to another.

Finding the Relativity
If you examine various definitions of quality, you will always

find this relativity. You may have to examine with care, though,
for the relativity is often hidden, or at best, implicit.

Take for example Crosby’s definition:
“Quality is meeting requirements.”
Unless your requirements come directly from heaven (as some

developers seem to think), a more precise statement would be:
“Quality is meeting some person’s requirements.”
For each different person, the same product will generally have

different “quality,” as in the case of my niece’s word processor. My
MiniCozy dilemma is resolved once I recognize two things:

a. To Terra, the people involved were her readers.
b. To MiniCozy’s project manager, the people involved were

(the majority of) his customers.

Who Was That Masked Man?
In short, quality does not exist in a non-human vacuum, but ev-

ery statement about quality is a statement about some person(s).
That statement about quality may be explicit or implicit. Most

often, the “who” is implicit, and statements about quality sound
like something Moses brought down from Mount Sinai on a
stone tablet. That’s why so many discussions of software quality
are unproductive—it’s my stone tablet versus your Golden Calf.

When we encompass the relativity of quality, we have a tool to
make those discussions more fruitful. Each time somebody as-
serts a definition of software quality, we simply ask, “Who is the
person behind that statement about quality.”

Using this heuristic, let’s consider a few familiar but often
conflicting ideas about what constitutes software quality:

a. “Zero defects is high quality”
1. to a user such as a surgeon whose work would be

 disturbed by those defects
2. to a manager who would be criticized for those defects

b. “Lots of features is high quality”
1. to users whose work can use those features—if they

 know about them
2. to marketers who believe that features sell products

CrossTalk—July/August 2014 5

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

c. “Elegant coding is high quality”
1. to developers who place a high value on the opinions

 of their peers
2. to professors of computer science who enjoy elegance

d. “High performance is high quality”
1. to users whose work taxes the capacity of their machines
2. to salespeople who have to submit their products

 to benchmarks

e. “Low development cost is high quality”
1. to customers who wish to buy thousands of copies of

 the software
2. to project managers who are on tight budgets

f. “Rapid development is high quality”
1. to users whose work is waiting for the software
2. to marketers who want to colonize a market before

 the competitors can get in

g. “User-friendliness is high quality”
1. to users who spend 8 hours a day sitting in front of a

 screen using the software
2. to users who can’t remember interface details from

 one use to the next

The Political Dilemma
Recognizing the relativity of quality often resolves the seman-

tic dilemma. This is a monumental contribution, but it still does
not resolve the political dilemma; More quality for one person
may mean less quality for another.

For instance, if our goal were “total quality,” we’d have to do a
summation over all relevant people. Thus, this “total quality” effort
would have to start with a comprehensive requirements process
that identifies and involves all relevant people. Then, for each de-
sign, for each software engineering approach, we would have to as-
sign a quality measure for each person. Summing these measures
would then yield the total quality for each different approach.

In practice, of course, no software development project ever
uses such an elaborate process. Instead, most people are elimi-
nated by a prior process that decides whose opinion of quality is
to count when making decisions?

For instance, the project manager at MiniCozy decided, without
hearing arguments from Terra, that her opinion carried minuscule
weight in his “software engineering” decision. From this case, we
see that software engineering is not a democratic business. Nor,
unfortunately, is it a rational business, for these decisions about
“who counts” are generally made on an emotional basis.

Quality Is Value To Some Person
The political/emotional dimension of quality is made evident

by a somewhat different definition of quality. The idea of “re-
quirements” is a bit too innocent to be useful in this early stage,
because it says nothing about whose requirements count the
most. A more workable definition would be this, “Quality is value
to some person.” By “value,” I mean, “What are people willing to
pay (or do) to have their requirements met.”

Suppose, for instance, that Terra were not my niece, but the
niece of the president of the MiniCozy Software Company. Know-
ing MiniCozy’s president’s reputation for impulsive emotional ac-
tion, the project manager might have defined “quality” of the word
processor differently. In that case, Terra’s opinion would have been
given high weight in the decision about which faults to repair.

The Impact on Agile Practices
In short, the definition of “quality” is always political and emo-

tional, because it always involves a series of decisions about
whose opinions count, and how much they count relative to one
another. Of course, much of the time these political/emotional
decisions—like all important political/emotional decisions—are
hidden from public view. Most of us software people like to ap-
pear rational. That’s why very few people appreciate the impact
of this definition of quality on the Agile approaches.

What makes our task even more difficult is that most of the
time these decisions are hidden even from the conscious minds
of the persons who make them. That’s why one of the most im-
portant actions of an Agile team is bringing such decisions into
consciousness, if not always into public awareness. And that’s
why development teams working with an open process (like
Agile) are more likely to arrive at a more sensible definition of
quality than one developer working alone. To me, any team with
even one secret component is not really Agile.

Customer support is another emphasis in Agile processes,
and this definition of quality guides the selection of the “custom-
ers.” To put it succinctly, the “customer” must actively represent
all of the significant definitions of “quality.” Any missing compo-
nent of quality may very likely lead to a product that’s deficient
in that aspect of quality.

As a consultant to supposedly Agile teams, I always exam-
ine whether or not they have active participation of a suitable
representation of diverse views of their product’s quality. If they
tell me, “We can be more agile if we don’t have to bother satisfy-
ing so many people,” then they may indeed be agile, but they’re
definitely not Agile (capital A).

Why People Don’t Instantly Buy Into
Agile Methods: A Catch-22

When “selling” their methods, Agile evangelists often stress
the strength of Agile methods at removing, and even prevent-
ing, errors. I used to do this myself, but I always wondered how
people could resist this sales pitch. I would plead, “Don’t you
want quality?” And, although they always said, “Yes, we want
quality,” they didn’t buy what I was selling. Eventually, I learned
the reason, or at least one of the reasons. Why can Agile meth-
ods be so difficult to sell?

Another Story About Quality
I’ve demonstrated how “quality” is relative to particular

persons. To test our understanding of this definition, as well as
its applicability, let’s read another story, one that illustrates that
quality is not merely the absence of error.

One of the favorite pastimes of my youth was playing crib-
bage with my father. Cribbage is a card game, invented by the
poet Sir John Suckling, very popular in some regions of the

6 CrossTalk—July/August 2014

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

world, but essentially unknown in others. After my father died, I
missed playing cribbage with him and was hard pressed to find
a regular partner. Consequently, I was delighted to discover a
shareware cribbage program for the Macintosh: “Precision Crib-
bage” by Doug Brent, of San Jose, CA.

Precision Cribbage was a rather nicely engineered piece of
software, I thought, especially when compared with the great
majority of shareware. I was especially pleased to find that it
gave me a challenging game, though it wasn’t good enough to
beat me more than 1 or 2 games out of 10.

Doug had requested a postcard from my hometown as a
shareware fee. I played many happy games of Precision Crib-
bage, so I was pleased to send Doug this minimum fee. Soon
after I sent the card, though, I discovered two clear errors in the
scoring algorithm of Precision Cribbage.

(Perhaps the word “precision” in the name should have been a
clue. If it was indeed precise, there was no need to call it “preci-
sion.” The software would have spoken for itself. I often use that
observation about product names to begin my evaluation of a
project. For instance, whenever a product has the word “magic”

in its title, I steer clear of the whole mess.)
One error in Precision Cribbage was an intermittent failure to

count correctly hands with three cards of one denomination and
two of another (a “full house,” in poker terminology). This was
clearly an unintentional flaw, because sometimes such hands
were counted correctly.

The second error, however, may have been a misunderstand-
ing of the scoring rules (which were certainly part of the “re-
quirements” for a program that purported to play a card game). It
had to do with counting hands that had three cards of the same
suit when a fourth card of that suit turned up when the deck
was cut. In this case, I could actually prove mathematically that
the algorithm was incorrect.

So what makes this story relevant? Simply this: even with two
scoring errors in the game, I was sufficiently satisfied with the
quality of Precision Cribbage to:

a. keep on playing it, for at least several of my valuable hours
each week

b. pay the shareware “fee,” even though I could have omitted
payment with no fear of retribution of any kind

The Software Maintenance Group at Hill Air Force Base is recruiting civilians (U.S. Citizenship Required).
Benefits include paid vacation, health care plans, matching retirement fund, tuition assistance, and

time paid for fitness activities. Become part of the best and brightest!
Hill Air Force Base is located close to the Wasatch and Uinta
mountains with many recreational opportunities available.

Send resumes to:
309SMXG.SODO@hill.af.mil

or call (801) 777-9828www.facebook.com/309SoftwareMaintenanceGroup

Electrical Engineers and Computer Scientists
Be on the Cutting Edge of Software Development

CrossTalk—July/August 2014 7

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

ABOUT THE AUTHOR
Gerald M. Weinberg is the winner of many
awards for his writing. His works include
“The Psychology of Computer Program-
ming, An Introduction to General Systems
Thinking, Becoming a Technical Leader,”
“Quality Software Series,” “Perfect Software,”
and other books on computing, consult-
ing, human behavior, writing, and techno-
fiction. In addition to his works on software
development, Gerald is also science fiction
author. He was an architect of NASA’s space
tracking network and designed and built the
first real-time multiprogrammed OS. Gerald
is in the University of Nebraska Hall of Fame
and is a Founding member of the Computing
Hall of Fame.

E-mail: jerryweinberg@comcast.net

In short, Precision Cribbage had great value to me, value that
I was willing and able to demonstrate by spending my own time
and (if requested) money. Moreover, had Doug corrected these
errors, it would have added very little to the value of the software.

What’s Happening to Quality?
My experience with Precision Cribbage took place some

years ago, and occurred in a more-or-less amateur piece of
shareware. Certainly, with all we’ve learned over the past few
decades, the rate of software errors has diminished. Or has it?

I’ve conducted a small survey of more modern software. Soft-
ware written by professionals. Software I use regularly. Software I
paid real money for. And not software for playing games, but soft-
ware used for serious tasks in my business. Here’s what I found:

Out of the 20 apps I use most frequently, 16 have bugs that
I have personally encountered—bugs that have cost me at least
inconvenience and sometime many hours of fix-up time, but
at least one hour for each occurrence. If I value my time at a
conservative $100/hour (I actually bill at $500/hour), these
bugs cost me approximately $5,000 in the month of August. If I
maintain that average, that’s $60,000 a year.

If I consider only the purchase prices, those 20 apps cost me
about $3,500. In other words, over one year, the purchase price
of the software represents less than 10% of what it costs me.
(And these are selected apps. The ones that are even buggier
have been discarded any time I can find a plausible substitute.)
In other words, since quality is value, there’s a large negative
quality associated with this set of applications.

And that’s only for one person. In the USA, there must be at
least 100,000,000 users of personal computers. My hourly rate
is probably higher than the average, so let’s just estimate $10/
hour, roughly minimum wage for the average person. That would
give us an estimate $6,000/year per person for buggy software,
which adds up to about $600,000,000,000 for the annual cost
to United States workers. Even if my estimates are way off,
that’s not chump change.

Why Is Improving Quality So Difficult?
If they payoff is so huge, why aren’t we raising software quality to

new levels? We could ask the same question about improving auto
safety, where tens of thousands of human lives are destroyed every
year in the United States. You might think that’s more motivation
than any number of dollars, but it doesn’t work that way. Unless the
person killed in the car is someone we know, we’ve heard about so
many traffic deaths that we’ve grown immune to the terrible cost.
In other words, it’s precisely because traffic deaths are so common
that we don’t get awfully excited about them.

And, I believe, it’s the same with software failures. They’re
so common that we’ve learned to take them with an accepting
shrug. We simply reboot and get back to work. Very seldom do
we even bother to switch to a different app. The old one, with
all its bugs, is too familiar, too comfortable. In fact, some people
obtain most of their job security precisely because of their famil-
iarity with software bugs and ways to work around them.

In other words, we’re surprised that people don’t generally feel
motivated to improve quality because we vastly underrate the
value of the familiar. And that observation explains an interesting
paradox. Agile advocates are often so eager to prove the value
of Agile methods that they strive to create products with all
sorts of wonderful new features. But each new feature, no mat-
ter how potentially valuable, has a downside—a negative quality
value because of its unfamiliarity. The harder we strive to pro-
duce “higher quality,” the lower the quality we tend to produce.

It’s a classic catch-22. To convince people of the value of
Agile, we need to produce software that is full of wonderful fea-
tures that the old software didn’t possess, at the same time the
new software functions exactly the way the old software did. No
wonder it’s so difficult to change the way we develop software.

Disclaimers:
© Gerald M. Weinberg, 2013
Author’s note: For this article, I’ve adapted some material from

my book, “Agile Impressions” <https://leanpub.com/jerrysblog>

8 CrossTalk—July/August 2014

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

Barry Boehm, Stevens Institute of Technology
Richard Turner, Stevens Institute of Technology
Jo Ann Lane, University of Southern California
Supannika Koolmanojwong, University of Southern California

Abstract. In Greek mythology, Procrustes was a rogue smith and bandit who invited
travellers to rest in his “perfectly sized bed.” When they accepted, he forcibly bound
them to it, then stretched them or cut off various body parts until they “perfectly” fit
the bed. Too many organizations have a single model of high maturity to which they
try to fit all their projects. Development and acquisition organizations are finding that
competitive success requires systems that are a mix of high security assurance com-
ponents, opaque and dynamic COTS products and cloud services, and highly useful
but kaleidoscopic apps and widgets. Approaching such systems with a one-size-fits-
all corporate process and maturity model often results in a procrustean fit.

As a process model generator, the Incremental Commitment Spiral Model has a
set of criteria for determining which process or processes best fit a particular system
of interest. This article summarizes the criteria and illustrates how they have been
successfully applied in various situations [1].

High Maturity
Is Not A
Procrustean Bed

Introduction
Too often, high maturity is seen as a proven, standard process

that is tailored down or up or in other ways twisted and tortured
to adapt to projects that simply don’t fit the process. This flies in
the face of the definition of a high maturity organization as agile,
flexible, and continuously improving. Rapid change, requirements
uncertainty, and short capability delivery cycles are increas-
ing the need for such agility, and the traditional process and
lifecycle models are not meeting the challenge.

Table 1 describes some examples of Procrustean situations
that result from inflexible or overly constrained “high maturity”
or otherwise “disciplined” approaches. It elaborates the situation
into the likely undesired project result, an example, and a rem-
edy or means of avoiding the situation using the ICSM’s four pri-
mary principles: Stakeholder value-based guidance; Incremental
commitment and accountability; Concurrent multi-discipline
engineering; and Evidence and risk-based decisions.

A Different Approach
The Incremental Commitment Spiral Model (ICSM),1,2 shown in

Figure 1, is the result of our efforts to better integrate the hard-
ware, software, and human factors aspects of systems, to provide
value to the users as quickly as possible, and to handle the
increasingly rapid pace of change. While its pedigree lies in the
spiral concept first broadly published in 1988,3 this new version
draws on over 20 years of experience helping people deal with
the fact that the original version was too easy to misinterpret.

Fundamental Principles
In hindsight, most of the problems in using the 1988 spiral

model came from users constructing processes that had nothing
to do with the underlying concepts. The ICSM’s four underly-
ing principles, based on observed failure modes over years of
experience, are:

Stakeholder value-based guidance. Failing to include and ad-
dress the value propositions of its success-critical stakeholders
can result in their minimal commitment to the project; they may
underperform, decline to use, or block the use of the results.

Incremental commitment and accountability. If success-critical
stakeholders are not accountable for their commitments (or lack
thereof), and the associated consequences (good or bad), they
may not provide necessary commitments or decisions in a timely
manner and are likely to be drawn away to other pursuits when
they are most needed.

Concurrent multi-discipline engineering. Sequential definition
and development of a) requirements and solutions; b) hardware,
software, and human factors; or c) product and processes likely
slows the project and leads to early, hard-to-undo commitments
that limit options for project success.

Evidence and risk-based decisions. If key decisions are made
based on assertions, vendor literature, or meeting an arbitrary
schedule without access to evidence of feasibility, the project is
building up risks.

The annual series of “Top-5 Quality Software Projects”
software-intensive systems projects published in CrossTalk4 are
examples of successful projects that applied the ICSM prin-
ciples. These were chosen annually between 2002 and 2005
by panels of leading experts as role models of best practices
and successful outcomes. Of the 20 Top-5 projects, 16 explicitly
used concurrent engineering; 14 explicitly used risk-driven
development; and 15 explicitly used incrementally committed,
iterative system evolution. Additional projects gave indications
of their partial use. Unfortunately, the project summaries did not
include discussion of stakeholder involvement.

The ICSM is not a single one-size-fits-all process. It is actu-
ally a process generator, which steers your process in different
directions, depending on your particular circumstances. Unlike
in the traditional sequential approaches, each spiral concurrently
addresses all of the activities of product development to include:

• Requirements (objectives and constraints)
• Solutions (alternatives)
• Products and processes
• Hardware
• Software
• Human factors aspects
• Business case analysis of alternative product configurations
• Product line investments

In this way, ICSM helps adapt your lifecycle strategies and
processes to your sources of change. It also supports more
rapid system development and evolution through concurrent
engineering, enabling you to develop and evolve systems more
rapidly and to avoid obsolescence. It is, in many ways, the antith-
esis of Procrustes bed – one that adjusts to the person, not the
other way around.

CrossTalk—July/August 2014 9

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

Issue Result Example

Defined process
mismatch

Large systems get their
integration lopped off in trying
to keep to 4-week increments

In their paper “Recognizing and Responding to ‘Bad Smells’ in Extreme
Programming,” Amr Elssamadisy and Gregory Schalliol of ThoughtWorks describe
a case where after 3 years of success with applying XP to a lease management
system, the length of time to add a new feature became longer than an iteration
due primarily to increasingly complex integration and technical debt issues.

Poor contracting Development lopped off by a
fixed-price, fixed SOW contract

TRW spent money and schedule designing a system to a 1-second response time
requirement only to find that this was not affordable. Luckily, this was discovered
early and only cost 13 months of schedule.

Policy influences (on
standards
development)

Stretched requirements result
in wasteful expenditures on
non-value adding work that
stretch schedules and budgets

The definition of MIL-STD-498 as a replacement for 2167 and 7935. Wanting to
avoid imposing 23 DIDs that on simple could be tailored down but in principle
rarely were in practice, two other versions (one with 6 DIDs and one with 1 DID)
were developed. The policy police decided that DoD couldn’t have more than one
set of documents covering the same content, leaving only the 23 DID version.

Policy influences
(Expert-developed
standards)

Lack of understanding, “short”
sighted policy definition and
“long” impacts leading to
disastrous process
implementations

The framers of 2167 and 2167A didn’t see the waterfall diagrams as a problem,
because “anyone with common sense would know better than to commit to
requirements without establishing their feasibility.” But less-expert project
managers would see” following the standard” as the safest thing for their careers,
and end up getting into trouble.

Policy Influences
(Piling On Constraints)

Rework and technical debt
overload stretch schedules and
budgets

Changing the rules mid-stream with inflexible processes is disastrous. An
organization started with the 2167 mandate to have the requirements determine
the delivered capabilities. mid-way through the project, a SecDef memo to “use
COTS products wherever possible,” meant COTS capabilities would determine
the requirements. Later in the development, a mandate to use the Ada
programming language resulted in significant effort because many of the selected
COTS products had weak or no Ada bindings.

Top-Executive
Mandates

Unintentionally imposed
constraints that cut off
technical solution options

Dated executive experience often constrains their decisions. A 2006 Mark Maier
SysE Journal paper identified hardware architecture constraints imposed by
hardware-oriented top executives in terms of functional hierarchies and simple
interfaces that cut off software options such as layered-service architectures and
more complex but necessary interface protocol compatibility standards options.

Voice of the
Customer.

Every customer need becomes
a project requirement,
stretching the project well
outside budget and schedule
constraints

The Bank of America Master Net project used a broad, unmediated Voice of the
Customer approach that ended up in a disaster when the major stakeholders’
agreed-to desires resulted in significant success model clashes and overruns.

Test-Driven
Acceptance.

Under-constrained
acceptability, leaving
extremities to be lopped off
later

The 3000-test Ada compiler validation suite led compiler vendors to patch their
compiler software to pass the tests, creating a product that was often less robust
than their beta-test versions.

Search-Driven
Acceptance.

Projects deploying
inappropriate practices,
methods or approaches

Search engine results on the use of formal methods found mostly success stories,
but on small projects, leading some projects to adopt the methods only discover
scalability shortfalls.

Auditor-Driven
Acceptance.

Varying auditor interpretations
over constrain or under
constrain projects leading to
stretching or chopping later

Software CMM or CMMI auditor-based maturity levels requirements had little
impact on acquisition programs.

Value-Neutral
Acceptance.

Inappropriate activity and
gaming on the part of
developers driven by simplistic
or incomplete metrics

Some projects use delivered defect density as the basis for acceptance, leading
project personnel to fix the easy defects. The project then finds the hard defects
are unacceptable, and must be stretched well beyond its budget to become
acceptable.

Acquisition-Oriented
Acceptance.

Product too expensive to
operate and maintain

Tight budgets and schedules lop off options to design and develop the project to
facilitate maintenance, operations, and support.

Table 1. Examples of Procrustean Process Consequences

10 CrossTalk—July/August 2014

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

ICSM Lifecycle
The Phased View (Figure 2) shows how the overall life-

cycle process divides naturally into two major stages. Stage I,
Incremental Definition, covers the up-front growth in system
understanding, definition, feasibility assurance, and stakeholder
commitment. If the Phase I activities do not result in deciding
to radically change the effort by adjusting scope or priorities, or
discontinuing the development completely, they lead to a larger
Stage II commitment to implement a feasible set of specifica-
tions and plans for Incremental Development and Operations.

Figure 1. The Incremental Commitment Model: Spiral View

begin incremental development of a well-defined software project
in less than a week. A more complex project requires significant
effort and could take up to five years or more. An example might be
an ultra-large, unprecedented, multi-mission, multi-owner, system-
of-systems needing to integrate with numerous independently
evolving legacy or external systems. We have provided ICSM ele-
ments to the definition and development of such systems.5

Stage II is planned around the length of the increments to be
used in the system’s development and evolution. This is a key
decision made during the Development Commitment Review.
A small agile project can use two-to-four week increments. A
much larger project could need increments of up to two years
to develop and integrate an increment of operational capability.
However, the ICSM capability delivery cadence is not necessar-
ily linked to the internal development cadence, and there may be
several internal integration cycles within a longer release incre-
ment. Some large, inseparable, hardware components would
take even longer to develop their initial increments, and would
be scheduled to synchronize their capability deliveries with con-
currently evolving infrastructure or software increments.

Stage I activities have assured a common vision, committed
stakeholders, and an architecture capable of accommodating
foreseeable changes such as user interfaces, external system
interoperability requirements, or transaction formats. These en-
able the features in each Stage II increment to be prioritized and
the increment timeboxed.

Flexible, Multiple and Evolving Processes
The ICSM essentially uses evidence and risks to generate ap-

propriate processes throughout the lifecycle. Figure 3 illustrates
four example paths through the ICSM to visualize how different
risks create different processes.

Example A is a simple business application based on an
already-available Enterprise Resource Planning (ERP) package.
There is no need for a Valuation or Architecting activity if the
ERP package has already been purchased and its architecture
has already proved cost-effective in supporting more complex
applications. Thus, the project can go directly into Stage II,
using an agile method such as a combination of Scrum and
Extreme Programming. There is no need for “Big Design Up
Front” activities or artifacts because an appropriate architecture
is already present in the ERP package. Nor is there a need for
heavyweight waterfall or V-model specifications and document
reviews. The critical risk identified at the end of Exploration
could be the user acceptance and business process reengi-
neering required for deployment. In this case, that risk would be
considered negligible if the system’s human interface risks have
been sufficiently mitigated via ERP package-based prototyping.

Example B involves a risky but innovative system such as adding
a retina scanner to the next model of a cellphone product. There
are a number of uncertainties and risks/opportunities to resolve,
such as scanner hardware integration and safety of the user.
But the new capability is needed quickly and there is a fallback
(deferring its introduction to the following model), so proceeding to
address the risks and develop the system is acceptable.

Example C is a system that is defined as safety critical. The
stakeholders responsible for the safety of the proposed system
find at the Foundations Commitment Review that the proposers
have provided inadequate safety evidence. It is better to have the

Figure 2. The ICSM Staged View

The duration of Stage I can be anywhere from one week to five
years, depending on factors like the number, capability, and compat-
ibility of the proposed system’s components and stakeholders. A
small, experienced, developer-customer team, using agile software
methods and operating on a mature infrastructure, can form and

CrossTalk—July/August 2014 11

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

System (or subsystem) Common Case Examples

SW application/system executing on one or
more commercial HW platforms, as a
standalone system or a constituent of one
or more SoSs.

SW application
or system

Cellphone app, business application or system,
military command and control software system,
inventory management systems, computer
operating system, database management system

A special purpose object, machine, or
piece of equipment that has significant
features provided by software.

SW-intensive
device

Computer peripherals, weapons, entertainment
devices, health care devices (including small
surgical), GPS receivers, manufacturing tools

Vehicle (land, sea, air, or space) HW platform Small unmanned vehicle, automobile, tank, ship,
airplane, space shuttle, space station, Mars rover

Computer HW platform Mainframe, server, laptop, tablet, cellphone

Part of a set of systems that are either
similar to each other or interoperate with
each other

Family of
systems or
product line

Car models that share many core components;
interoperating back-office systems such as billing,
accounting, and sales force support, that share a
common repository with standard data definitions
and formats, and are provided by a single vendor

A new capability that will be performed by
more than one interoperating system

SoS or
enterprise-wide
system

Multiple interoperating systems owned and
managed by different organizations; for example,
navigation systems that include airborne and land
systems using GPS

Refactoring or re-implementation of an
older legacy system or set of systems

Brownfield
modernization

Incremental replacement of old, fragile business
systems with COTS products or technology
refresh/upgrade of existing systems

Figure 3. Different Risk Patterns Yield Different Processes

proposers develop such evidence through archi-
tecture-based safety cases, fault tree analyses,
and failure modes and effects analyses before
proceeding into the Foundations phase. The ar-
row back into the Valuation phase indicates this.

In Example D, the developers are simply too
late to play. It is discovered before entering the
Development phase that a superior product
has already entered the marketplace, leaving
the current product with an infeasible business
case. Here, unless adjusting the project’s scope
can make a viable business case, it is best to
discontinue it. It is worth pointing out that it
is not necessary to proceed to the next major
milestone before terminating a clearly non-via-
ble project; however, stakeholder concurrence
in termination is essential.

ICSM Risk-Driven Common Cases
Many projects can reuse experience from

previous projects. However, every project has
the possibility of unique aspects that could
impact the selection of processes and the path
through the ICSM. To enable early estima-
tion, supply examples that help users with
initial planning, and support categorization and
capture of lessons learned, we have identified
a set of seven risk patterns that represent the
most often seen paths through the ICSM. We
have named these patterns Common Cases:

• Software application or system
• Software-intensive device
• Hardware platform
• Family of systems or product line
• System of systems (SoS) or

 enterprise-wide system
• Brownfield modernization

Table 2 briefly describes when to use each
common case and some examples of each.

ICSM and Large, Complex Systems
Obviously, larger, more complex systems will

require a great deal more activity in Stage I.
In Stage II, however, the ICSM allows a great
deal of flexibility in providing a way of integrat-
ing and accommodating the wide variety of
development activities that can appear across
the various hardware, software, and human
development activities. For that reason, the
Implementation Phase is based on a three-
tiered, timeboxed process that allows for
reflection, anticipation, and adjustment to the
changing environment, shown in Figure 4. This
concept works best in software, but can apply
to hardware in many cases. Figure 5 shows
how this three-tiered model scales to multiple
component or subsystem development.

Table 2. ICSM Common Cases

12 CrossTalk—July/August 2014

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

Figure 4. Three-tier timeboxed approach (Evolution View)

ICSM and Process Improvement
ICSM is designed to provide flexibility. It also expects you to

evaluate and apply the process assets you already have in new
ways, and provides essential guidance on hw that can happen.
ICSM also seeks to actively create and use lessons learned
both within and between projects to decrease the learning cycle
and accelerate improvement. The key intrinsic process improve-
ment aspects in ICSM are evidence, risk-based process, the
incremental approach, and anticipation/reflection.

In the ICSM, evidence is continuously created as a first class
deliverable and used for process generation, decision-making, and
stakeholder commitment. This evidence captures a wide variety
of knowledge in a way that can be empirically analyzed to support
retrospection at almost every point in the lifecycle. It can also be
used to improve estimation, evaluate experimental processes and
methods, and transfer knowledge across projects and systems.

As with many process models, risks are captured and tracked.
However, in the ICSM they also directly impact the process
generation activities and are integrated into all decision-making.
Many risks are common across a domain, and so mitigation
efforts based on ICSM process decisions are documented and
can be easily captured to support decision-making and process
generation across projects.

Figure 5. A Large-system development phase

CrossTalk—July/August 2014 13

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

Issue ICSM Mitigation

Defined process
mismatch

Track evidence of time needed to both develop and integrate new increments, and adjust
increment sizes and/or schedules as necessary

Poor contracting Develop evidence of the need for 1-second response time and the cost of achieving it
before committing to it.

Policy influence (on
standards development)

Develop and sustain multiple sources of guidance for deliverables on different classes of
systems, such as with the recent draft update of DoDI 5000.02

Policy influence (Expert-
driven standards)

Provide criteria for initial choice of project process, and risk-based decision guidance on
process adaptation to change

Policy Influence (Piling On
Constraints)

Add new guidance directives only based on evidence of their compatibility with existing
directives

Top-executive Mandates Involve development and support stakeholders in key process and product guidance.
Concurrently engineer the system’s hardware, software, and human elements

Voice of the Customer. Involve all success-critical stakeholders in key project and product guidance decisions

Test-driven Acceptance Evolve test criteria based on user alpha, beta-test experience

Search-driven Acceptance Ensure that evidence is accumulated from fully representative stakeholder communities

Auditor-driven
Acceptance

Involve stakeholders in choice of process and product guidance.

Value-neutral Acceptance Use stakeholder value propositions to prioritize requirements, proposed changes, test
cases, defect fixes

Acquisition-oriented
Acceptance

Involve post-deployment stakeholders in determination and prioritization of requirements

Table 3.ICSM mitigations to procrustean issue

The incremental nature of the ICSM shortens the learning
cycle. Agile and lean development methods with short cycle
times, value-based scheduling, and continuous integration can be
employed wherever appropriate. Coupled with the ICSM emphasis
on evidence and risk, these can accelerate learning, reduce rework,
and manage technical debt in such a way as to provide continuous
process improvement throughout the Stage II activities.

Finally, process improvement requires balanced reflection and
anticipation. Wayne Gretzky, who is generally acknowledged
as the greatest hockey player of all time, ascribes a good deal
of his success to the ability to anticipate where the hockey
puck was going, and to skate to where he could capitalize on
that knowledge. Anticipating where technologies, competitors,
organizations, and the marketplace are going is increasingly
critical to successful systems and software engineering. In
contrast, organizations that spend their time asking, “How could
we have done our last project better?” are actually skating to
where the puck has been. Clearly, such “reflection in action” is
good,6 but in a world of rapid change, reflection in action needs
to be balanced with anticipation. The Incremental Commitment
Spiral Model integrates reflection, anticipation, and agility to
take advantage of evolving knowledge through a risk-based,
principle-driven approach to system development. We are still
firm believers that there are no panaceas, silver bullets, or one-

size-fits-all solutions. We are confident, though, that the ICSM
offers a coherent and useful way to approach systems develop-
ment in a world that has not only changed, but will also continue
to change throughout every system’s life cycle.

Conclusions
Procrustes caused a lot of damage before Theseus turned

the tables (or the bed) on him. We believe that there are a lot
of ways to fight procrustean tendencies through rethinking the
processes we advocate, and pushing back on those who are
applying inappropriate or damaging processes to our projects.
One of these ways is using the process generation framework
provided by the ICSM. Table 3 shows how the ICSM can miti-
gate our earlier list of procrustean issues.

ISCM supports adapting and applying multiple processes (or
process assets) as needed throughout a project, regardless of size,
duration, or complexity. It provides a flexible, extensible lifecycle that
can be adopted across a wide variety of project environments. Most
importantly, it establishes all of the underlying principles of high ma-
turity organizations— stakeholder value, incrementality, concurrency,
agility, flexibility, empiricism, improvement and predictability—without
restricting the specific processes deployed. ICSM enables the
opposite of a procrustean process: one that adapts to your needs
rather than forcing you to meet its own.

14 CrossTalk—July/August 2014

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

ABOUT THE AUTHORS
Dr. Barry Boehm is a USC Distinguished Pro-
fessor and Chief Scientist of the DoD-Stevens-
USC Systems Engineering Research Center,. He
was director of DARPA-ISTO 1989-92, at TRW
1973-89, at Rand Corporation 1959-73, and at
General Dynamics 1955-59. He is a Fellow of the
primary professional societies in computing (ACM),
aerospace (AIAA), electronics (IEEE), and systems
engineering (INCOSE), and a member of the U.S.
National Academy of Engineering.

E-mail: barryboehm@gmail.com

Dr. Richard Turner is a Distinguished Service Pro-
fessor at the Stevens Institute of Technology. Active
in the agile, lean and kanban communities, he
helped author the Software Extension to the PMI
Guide to the PMBOK. He is a Golden Core member
of the IEEE Computer Society, a fellow of the Lean
Systems Society and co-author of four books: The
Incremental Commitment Spiral Model, Balancing
Agility and Discipline, CMMI Survival Guide, and
CMMI Distilled.

Phone: 202-390-3772
E-mail: rturner@stevens.edu

Jo Ann Lane is currently the systems engineering
Co-Director of the University of Southern Califor-
nia Center for Systems and Software Engineering,
a member of the Systems Engineering Research
Center Research Council representing the system
of systems research area, and emeritus professor
of computer science at San Diego State University.
Her current areas of research include system of
systems engineering, system affordability, expe-
diting systems engineering, and balancing agile
techniques with technical debt.

Phone: 858-945-0099
E-mail: jolane@usc.edu

Dr. Supannika Koolmanojwong is a lecturer and
a researcher at the University of Southern Califor-
nia Center for Systems and Software Engineering.
Her primary research areas are Software Process
Improvement, Software Process Quality Assurance,
Software Metrics and Measurement, Agile and Lean
Software Development and Expediting Systems
Engineering. She is a certified scrum master and
a certified Product Owner. Prior to this, she was a
software engineer and a RUP/OpenUp Content
Developer at IBM Software Group.

E-mail: koolmano@usc.edu

NOTES
1. Boehm, B. and J. Lane, “Using the Incremental Commitment Model to Integrate
 System Acquisition, Systems Engineering, and Software Engineering,” CrossTalk,
 October, 2007
2. Boehm, B., J. Lane, S. Koolmanojwong, and R. Turner, The Incremental
 Commitment Spiral Model: Principles and Practices for Successful Systems
 and Software, Addison Wesley Pearson, New York, 2014.
3. Boehm, B. “A Spiral Model for Software Development and Enhancement.”
 Computer. May 1988;61–72.
4. CrossTalk. “Top Five Quality Software Projects.” January 2002, July 2003,
 July 2004, September 2005. www.stsc.hill.af.mil/crosstalk.
5. Stephen Blanchette Jr., Steven Crosson, Barry Boehm, “Evaluating the Software
 Design of a Complex System of Systems,” CMU/SEI Tech Report
 CMU/SEI-2009-TR-023, January 2010
6. D. Schon, The Reflective Practitioner. Basic Books, 1983.

REFERENCES
1. Much of the material in this article is drawn from a new book: Boehm, B.,
 J. Lane, S. Koolmanojwong, and R. Turner, The Incremental Commitment
 Spiral Model: Principles and Practices for Successful Systems and Software,
 Addison Wesley Pearson, New York, 2014. The initial work that provided the
 basis for the book was funded in part by the US Department of Defense,
 through the Systems Engineering Research Center, a University Affiliated
 Research Center at Stevens Institute of Technology.

CrossTalk—July/August 2014 15

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

Alistair Cockburn, Humans and Technology
Abstract. Disciplined learning, or “learn early, learn often,” updates naïve agile
development and traditional risk management, and safely replaces the dreaded catch
phrase, “fail early fail often.” Disciplined learning is a rich, creative and rewarding
endeavor, already in use in small pockets of excellence.

Disciplined Learning
The Successor to
Risk Management

changes can be made with lower cost. This is where creativity
and discipline come in.

Four Learning Topics
The team has (at least) four categories in which to learn:
• What they should really be building, never mind what

 they thought they should build at the start.
• Whether they have the right people on the team,

 and for those people, how best to work together.
• Where their technical ideas are flawed.
• How much it will cost to develop.

In the strategy shown in Figure 1, these are all learned late
in the project, around the time when the parts are integrated
and deployed, when the consumers finally give feedback on the
result. This learning arrives too late to benefit the product.

The disciplined learning approach is to apply the same
“broken” learning curve in very small doses, deliberately and
often, so that each step provides information that can be used
to adjust the four categories of learning. The payoff is not just
reduced risk in the final delivery, but the ability of the sponsors
to steer the final delivery in a fine-grained way, both in delivery
time and delivered features and quality.

Figure 2 illustrates the disciplined learning approach. The following
four sections describe strategies for learning in the four categories.

Introduction
Naïve agile development works remarkably well, given how

simple it is. It is less than optimal, however, and insufficient for
many situations. Disciplined learning adds to agile.

Traditional risk-management generally addresses how to
avoid failure rather than how deliver success. Disciplined learn-
ing updates risk management by incorporating some of the
principles of agile development.

Disciplined learning is neither obvious nor for the faint of
heart, but it is in active use by top teams in many disciplines,
who manage to deliver success in difficult circumstances.

Consider, as a reference point, the still-common way of working
in which a major integration or delivery occurs at the end of a long
period of work without integration or delivery (see Figure 1). It is
not necessary to be working in a waterfall fashion to have this
moment of integration or delivery in the project, so the curve need
not be ascribed to waterfall. It is a simply a common strategy.

Figure 1 shows time on the horizontal axis. The dotted line
shows project costs increasing steadily over time. The solid line
shows that learning progresses while the project teams work, talk,
design, but not in the major way that learning (and surprises) oc-
cur immediately after the moment of integration or delivery.

Learning occurs relatively late in the project, after most of the
cost has been accrued.

What we are after is how to learn earlier in the project, when

Figure 1. The typical “late-learning’ strategy.

Figure 2 Applying the principle: Learn Early, Learn Often.

Learn What Should Get Built
The most important and most difficult question is: Will people

like, buy and use what we’re building?
Normally, this question gets answered when it is too late. Re-

cently, however, strategies have come into usage that move this
learning process forward. The strategies are fairly simple, but
require discipline, patience, and a willingness to change course
based on the results.

Sample strategies are:
• Paper prototyping.
• Ambassador user.
• Early delivery.
• Empty or manual delivery.

Paper prototyping [1] and related strategies coming from the
user-centered design community [2] involve nothing more com-

16 CrossTalk—July/August 2014

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

plicated than putting a mockup of the product into the hands
of the consumer, who reacts to these early design thoughts.
Prepared at low cost, early in the development cycle, these
prototypes allow the development team to change their minds
about how to proceed.

An “ambassador user” is a friendly user to whom the team
can deliver an incomplete but growing product. This user usually
breaks the system within moments, and give valuable feedback
from his or her (limited) perspective. The difference between the
“ambassador user” and “paper prototyping” is that the ambas-
sador user is encountering the actual system as it grows, not a
mockup of the system.

“Early delivery” is a full deployment of the system with
reduced capabilities. The intention is to learn, first of all, what
is incorrect with the product as envisioned, but possibly more
significantly, how the presence of the product changes the
thoughts about what should be built in the first place. “Early
delivery” recognizes that once people start using a system, their
habits and needs change, often in unpredictable ways. Deliver-
ing a thin version of the system early allows the development
team to gather new input and adjust the priorities on what
should be developed.

The above are all standard albeit frequently ignored tech-
niques, found in the regular and agile literature.

The most interesting strategies to emerge in the last decade
are two documented and practiced in the lean startup commu-
nity: Empty and Manual delivery (my terms for them).

The “Empty Delivery” [3] strategy is particularly well suited for
online products. Initially, all that is detected is whether anyone
clicks on a link or accesses a feature. There is no implementa-
tion behind the façade of the click. Measuring these clicks, a
team can reduce or sequence the features developed to follow
those drawing the most attention. The system evolves in the
direction of maximum draw.

“Manual Delivery” is described in Eric Ries’ book, The Lean
Startup [4]. In this strategy, a team spends what may seem
to be excessive money even delivering products manually, for
the simple reason that manual procedures can be set up and
changed for very little cost. Delivering manually, the team can
change the product offering with every single purchase, evolving
to what the customer base indicates is really desired.

Adjust Design Decisions
Mistakes in design come from:
• Choosing technology that doesn’t work as advertised.
• Mistakes due to people not talking to each other, with

 resultant mistaken assumptions about each other’s work.
• Inevitable omissions and mistakes in design.
These mistakes are discovered and repaired using strategies:
• Walking skeleton.
• Micro-incremental development.
• Spikes.
• Story splitting.

The “Walking Skeleton” strategy [5] calls for the team to con-
nect a thin path through the architecture. In creating this simple
but full system, they discover the first round of surprises in the

technologies they are using.
Once the system is thinly connected, the infrastructure and

functionality teams each adds onto their part of the system. It is
not uncommon to see the infrastructure team redesigning the
skeleton itself, while keeping the interfaces to the functional-
ity running (or forcing updates). This restructuring is one of the
costs of using the strategy.

Micro-incremental development is when teams integrate their
work every hour, half-day, or day. The shorter the time between
integrations, the faster they find mistakes, and the lower the
cost of making changes. A side benefit is that they are less
likely to change the same part of the design at the same time,
and so they do not need to check out and branch the design,
making integration easier, faster, and less error prone.

A spike [6,7] is a small, disposable piece of work created to
explicitly address the question, “Is there an obvious flaw in this
approach?” It is used to flush out interface mismatches as well
as various performance and scaling problems.

The difference between a spike and ordinary incremental
development is that ordinary incremental development is con-
ducted using full production conventions, with the assumption
that the work will be used in the final product. A spikes must
absolutely not be used in the final product; it is throwaway work.
Because the work is throwaway, it is always done in the most
rapid and effective manner possible with the sole purpose of
learning about the question at hand.

Some questions might seem impossible to move forward in
the schedule, such as the final conversion of the database. With
story splitting [8] a story is split into a learning (spike) piece and
a production piece. The spike is placed early to learn how to
address whatever difficulties might lie in it. Then the actual work
can be left until the appropriate moment in the schedule.

Learn to Work Together
Failure to deliver is sometimes due not to the people being not

correct for the assignment, but to them not having learned how
to work together. Tom DeMarco and Tim Lister refer to a “jelled
team” [9]. Three strategies help with creating a jelled team:

• Early victory.
• Walking skeleton.
• Simplest first, worst second.

The Early Victory [10] strategy is based on the work of
sociologist Karl Weick [11], showing that achieving results helps
people come to trust each other more, raises morale and helps
them perform better.

The “walking skeleton” already described produces an early
technical victory to the team and to the sponsors. The concept
is sometimes adjusted to implement and deliver a thin path
through the workflow of a company, with similar “early victory”
and technical learning for the delivery and work flow aspects of
the project.

The “simplest-first, worst second” strategy [12] is contrary to
the usual recommendation in the agile development world. The
usual agile advice is to build the highest business value first.
That strategy makes good sense once the team is functioning
well, social risks have been reduced, and the team is capable

CrossTalk—July/August 2014 17

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

and confident of being able to deliver whatever is of the high-
est business value. However, many conversations need to take
place before the team has reached that point. For this reason,
it is sometime useful to build something real but very simple, so
that they can adjust social habits in good time before the dif-
ficult parts of the project are reached.

Learn How Much It Will Cost
Two strategies help with learning the cost of a project:
• Core samples.
• Microcosm.

Tim Lister told the following story at a conference [13], “A
man wanting a pool built in his back yard calls in three con-
tractors to present estimates. The third contractor, instead of
presenting an estimate, tells the homeowner he will need to drill
and core sample in the ground, and will charge the man for that.
The homeowner complains, saying that the first two contractors
didn’t charge him for core sampling. The contractor responds
that he has no idea how the first two contractors could submit
a bid, since they don’t know what sorts of rock layer lies under
the lawn, but he couldn’t possibly put in a bid without having
that information. The homeowner now comfortable with the third
contractor, hires him for the work.”

To do this with a development project, isolate parts of the sys-
tem the development of which is not obvious and develop very
small elements within those areas. In that development, identify
what sorts of surprises lurk below the surface and understand
how difficult the work will really be. Carefully selecting such
“core samples” allows the team to develop a more reliable cost-,
time-, and resource estimate for the project.

Core sampling is the miniature version of the more general
“Microcosm” strategy [14], in which a mini-project is run for
the sole purpose of establishing a sound estimate. A full
Microcosm project can be set up to test the productivity of
a new development team (think off-shoring, in particular), as
well as to test the learning speed of staff with new technolo-
gies, to benchmark the productivity of expert versus ordinary
or new developers.

Whereas a core sample effort is intended to take hours to
days, a full Microcosm project may take weeks to carry out, and
should therefore only be used for larger development efforts.

Creating a Plan
In the light of these strategies, the creation of a project plan is

rather different than before.
Disciplined learning calls for merging learning steps from the

four categories above with requests for growth of business val-
ue as is standard with incremental development. Business value
and learning are artfully interleaved into a sequence of work
assignments designed to reduce risk, deliver crucial information,
and develop product capability in an “optimal” way.

This is where creativity enters.
The quality of the plan is sensitive to the ability of the plan-

ners to identify and merge the learning needs and the upcoming
possibilities for income. As lessons are learned and new risks
and opportunities spotted, the project will need to be updated.

Trimming the Tail
A product feature actually consists of three parts, not just the two:
• Learning.
• Value.
• Tail.

The “tail” is the polishing and glossing that makes a feature
“wonderful.” Since not every feature is of equal value to the
buyers and users, many or even most features can be thinned or
trimmed back without damage to the system.

Attending to the presence of a tail, a team can arrange for a
minimum set of features to be at an “adequate” level of wonder-
fulness in plenty of time before final delivery, then spend the re-
maining time polishing and glossing those feature that are more
important than the others [15]. Alternatively, if time is short, they
can cut back on (trim) the polishing and deliver early or on time
[16]. This is described in the final section.

Reaping the Benefits
Disciplined learning delivers two benefits: early income and

the ability to trim the tail.
Early income from incremental development is well presented

in Software by Numbers [17]. A project can become self-
funding if it is delivered to paying users part-way through its
development, thus lowering the load on the sponsors.

Less obvious but equally valuable is the ability to not de-
velop less valuable aspects of the system. Here is the shortest
example, to give the idea:

When you are opening a new hotel, it may not be necessary
to shine the doorknobs before opening to the public. If it is nec-
essary to have shined doorknobs for the guests, it is probably
not necessary that all of the doorknobs need be shined.

You might trim any of four aspects of a system:
• Features.
• Feature details.
• Usage quality.
• Internal quality.

You drop an entire feature. A car (for example) might not
need a sunroof. The first iPads did not have phone modems.

If not an entire feature, you might be able to trim an aspect
of a feature: Given that your car must have all of the basics
(such as brakes), it might not need brakes with antilock braking.
A computer system might require searching capability, but not
auto-completion or auto-correction.

Recognizing that really smooth and easy to use features take
a lot of work, you might choose to skip improving usability for
selected features.

Finally, you can trim internal design quality and correctness.
The question is how much internal quality is needed for the
delivery in question.

If development has proceeded incrementally, attending to the
learning areas, then the team can deliver:

• Early, with reduced features or quality.
• On time, with either full or reduced quality,

 depending on where development stands at that time.
• Or later, with enriched features or quality;
 at the choice of the sponsors!

18 CrossTalk—July/August 2014

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

Under usual project circumstances, the only choices are to
delay or work overtime. The “trim the tail” option is available only
for those who have worked in this more disciplined fashion.

Disciplined learning with trim-the-tail is one of the few ap-
proaches equally available to very small and very large projects,
fixed-price and floating-price projects. Here are three examples,
taken from real projects:

1. Small, floating-price project: A web site development
involving only the web site owner and the programmer. After
several months of open-ended work, the web site owner wanted
the site delivered “soon,” and trimmed the tail back aggressively
and repeatedly until something much smaller than expected but
still suitable was deployed.

2. Small, fixed-price project: The company in question always
bid small, fixed-price contracts of three- to six-months, involving
three to eight people. As usual, the bids were aggressive and the
teams typically ended late, missing the deadline or scope, with
resulting overtime from the developers and penalties at the end
of the contract. Jeff Patton [18] worked in the manner described
in this article, leaving the least important features to the end, and
deliberately thinning the less critical features, so that when the
contract period ended, it was clear to the customers that they
had gotten most of what they wanted. This produced the least
overtime, the smallest penalties, the highest customer satisfaction
and the greatest likelihood of receiving a follow-on contract.

3. Very large development project: A company with several
thousand developers in several countries, working on a product
line with multiple variations, applications and releases. Under
normal circumstances, when they call for a full integration on a
particular date, every team starts to work overtime and jockey
for position not to be the one most behind schedule. The inte-
gration date keeps getting slipped back as team after team fails
to complete their work on time. Using the trim-the-tail approach,
each team would have in place the essential elements needed
for the integration, with only tail elements left unfinished. For
delivery, management would be in position to deliver slightly
less, on time, or slightly more, a bit later.

It is exciting to find a baseline strategy that applies to projects
of such different sizes and natures as just outlined.

Disciplined learning is not for the faint of heart. It requires
discipline, creativity and constant correction. The payoff is the
ability to get a team working together, discover what is needed
in time, deliver it early in order to create a self-funding project,
and finally, trim the tail at the end to meet inelastic deadlines.

ABOUT THE AUTHOR
Dr. Alistair Cockburn, one of the creators of the Manifesto
for Agile Software Development, was voted one of the “The
All-Time Top 150 i-Technology Heroes” in 2007 for his pio-
neering work in use cases and agile software development.
An renowned IT strategist and author of the Jolt award-
winning books “Agile Software Development” and “Writing
Effective Use Cases,” he is an expert on agile development,
use cases, process design, project management, and object-
oriented design. In 2001 he co-authored the Agile Mani-
festo, in 2003 he created the Agile Development Confer-
ence, in 2005 he co-founded the Agile Project Leadership
Network, in 2010 he co-founded the International Consor-
tium for Agile. Many of his articles, talks, poems and blog are
online at <http://alistair.cockburn.us>.

E-mail: totheralistair@aol.com

REFERENCES
1. <http://en.wikipedia.org/wiki/Paper_prototyping>
2. <http://en.wikipedia.org/wiki/User-centered_design>
3. BBC “Searching the internet’s long tail and finding parrot cages,”
 <http://www.bbc.co.uk/news/business-11495839>
4. Reis, E., The Lean Startup: How Today’s Entrepreneurs Use Continuous
 Innovation to Create Radically Successful Businesses, Crown Business, 2011.
5. <http://alistair.cockburn.us/Walking+skeleton>
6. <http://c2.com/xp/SpikeSolution.html>
7. <http://agiledictionary.com/209/spike/>
8. <http://alistair.cockburn.us/The+A-B+work+split>
9. Tom DeMarco and Timothy Lister, Peopleware: Productive Projects and Teams.
 New York: Dorset House Publishing Co., 1987.
10. <http://alistair.cockburn.us/Advancedpmstrategies1-180.ppt>
11. Karl Weick, The Social Psychology of Organizing, McGraw-Hill Humanities/
 Social Sciences/Languages; 2nd edition, 1979.
12. Alistair Cockburn, Crystal Clear: A Human-Powered Methodology for Small
 Teams, Addison-Wesley, 2005. Also online at <http://alistair.cockburn.us/ASD
 +book+extract%3A+%22Individuals%22>
13. Lister, Tim, keynote at Agile Development Conference 2010.
14. <http://alistair.cockburn.us/Project+risk+reduction+patterns>
15. <http://www.agileproductdesign.com/downloads/patton_embrace_
 uncertainty_optimized.ppt>
16. <http://alistair.cockburn.us/Trim+the+Tail>
17. Mark Denne and Jane Cleland-Huang. Software by Numbers: Low-Risk, High-
 Return Development. Prentice-Hall, 2003.
18. Jeff Patton, “Unfixing the Fixed Scope Project: Using Agile Methodologies
 to Create Flexibility in Project Scope,” in Agile Development Conference 2003,
 Proceedings of the Conference on Agile Development, 2003, ACM Press.
 Available online through a Google docs search.

CrossTalk—July/August 2014 19

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

Topics Excellent Average Poor
 Monthly Costs
(Salary+overhead) $10,000 $10,000 $10,000
 Size at Delivery
Size in function points 1,000 1,000 1,000
Programming language Java Java Java
Language Levels 6.25 6.00 5.75
Source statements per function point 51.20 53.33 55.65
Size in logical code statements 51,200 53,333 55,652
Size in KLOC 51.20 53.33 55.65
Certified reuse percent 20.00% 10.00% 5.00%
 Quality
Defect potentials 2,818 3,467 4,266
Defects per function point 2.82 3.47 4.27
Defects per KLOC 55.05 65.01 76.65
 Defect removal efficiency (DRE) 99.00% 90.00% 83.00%
Delivered defects 28 347 725
High-severity defects 4 59 145
Security vulnerabilities 2 31 88
Delivered per function point 0.03 0.35 0.73
Delivered per KLOC 0.55 6.50 13.03
 Key Quality Control Methods
Formal estimates of defects Yes No No
Formal inspections of deliverables Yes No No
Static analysis of all code Yes Yes No
Formal test case design Yes Yes No
Testing by certified test personnel Yes No No
Mathematical test case design Yes No No
 Project Parameter Results
Schedule in calendar months 12.02 13.80 18.20
Technical staff + management 6.25 6.67 7.69
Effort in staff months 75.14 92.03 139.98
Effort in staff hours 9,919 12,147 18,477
Costs in Dollars $751,415 $920,256 $1,399,770
Cost per function point $751.42 $920.26 $1,399.77
Cost per KLOC $14,676 $17,255 $25,152
 Productivity Rates
Function points per staff month 13.31 10.87 7.14
Work hours per function point 9.92 12.15 18.48
Lines of code per staff month 681 580 398
 Cost Drivers
Bug repairs 25.00% 40.00% 45.00%
Paper documents 20.00% 17.00% 20.00%
Code development 35.00% 18.00% 13.00%
Meetings 8.00% 13.00% 10.00%
Management 12.00% 12.00% 12.00%
Total 100.00% 100.00% 100.00%
 Methods, Tools, Practices
Development Methods TSP/PSP Agile Waterfall
Requirements Methods JAD Embedded Interview
CMMI Levels 5 3 1
Work hours per month 132 132 132
Unpaid overtime 0 0 0
Team experience Experienced Average Inexperienced
Formal risk analysis Yes Yes No
Formal quality analysis Yes No No
Formal change control Yes Yes No
Formal sizing of project Yes Yes No
Formal reuse analysis Yes No No
Parametric estimation tools Yes No No
Inspections of key materials Yes No No
Static analysis of all code Yes Yes No
Formal test case design Yes No No
Certified test personnel Yes No No
Accurate status reporting Yes Yes No
Accurate defect tracking Yes No No
More than 15% certified reuse Yes Maybe No
Low cyclomatic complexity Yes Maybe No
Test coverage > 95% Yes Maybe No

Capers Jones, Namcook Analytics LLC

Abstract. In 2014 software is the main operational component of every major
business and government organization in the world. But software quality is still not
acceptable for many applications. Software schedules and costs are frequently much
larger than planned.

This short study discusses the proven methods and results for achieving software
excellence. The paper also provides quantification of what the term “excellence”
means for both quality and productivity.

Achieving
Software
Excellence

Software Quality Differences for Best, Average,
and Poor Projects

Software quality is the major point of differentiation between
excellent results, average results, and poor results.

While software executives demand high productivity and
short schedules, the vast majority do not understand how
to achieve them. Bypassing quality control does not speed
projects up: it slows them down. The number 1 reason for

Introduction
Software is the main operating tool of business and govern-

ment in 2014. But up through the end of 2013 software quality
remained marginal; software schedules and costs remained
much larger than desirable or planned. Cancelled projects were
about 35% in the 10,000 function point size range and about
5% of software outsource agreements ended up in court in liti-
gation. This short study identifies the major methods for bringing
software under control and achieving excellent results.

The first topic of importance is to show the quantitative differ-
ences between excellent, average, and poor software projects
in quantified form. Table 1 shows the essential differences
between software excellence and unacceptable results for a
mid-sized project of 1,000 function points or about 53,000 Java
statements.

The data in table 1 comes from the author’s clients, which
consist of about 600 companies of whom 150 are Fortune 500
companies. About 40 government and military organizations
are also clients, but table 1 is based on corporate results rather
than government results. Government software tends to have
large overhead costs and extensive status reporting that are not
found in the civilian sector. (Some big defense projects have
produced so much paperwork that there were about 400 Eng-
lish words for every Ada statement, and the words cost more
than the source code.)

(Note that the data in this report was produced using the
Namcook Analytics Software Risk Master™ (SRM) tool. SRM
can operate as an estimating tool prior to requirements or as a
measurement tool after deployment.)

At this point it is useful to discuss and explain the main differ-
ences between the best, average, and poor results.

Table 1: Comparisons of Excellent, Average,
and Poor Software Results

20 CrossTalk—July/August 2014

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

enormous schedule slips noted in breach of contract litigation
where the author has been an expert witness is starting test-
ing with so many bugs that test schedules are at least double
their planned duration.

The major point of this article is: High quality using a syner-
gistic combination of defect prevention, pre-test inspections
and static analysis is fast and cheap. Poor quality is expensive,
slow, and unfortunately far too common because most compa-
nies do not know how to achieve it. High quality does not come
from testing alone. It requires defect prevention such as Joint
Application Design or embedded users; pre-test inspections and
static analysis; and formal test case development combined with
certified test personnel.

 The defect potential information in table 1 includes defects
from five origins: requirements defects, design defects, code
defects, document defects, and “bad fixes” or new defects acci-
dentally included in defect repairs. The approximate distribution
among these five sources is:

1. Requirements defects 15%
2. Design defects 30%
3. Code defects 40%
4. Document defects 8%
5. Bad fixes 7%
6. Total Defects 100%

However the distribution of defect origins varies widely
based on the novelty of the application, the experience of the
clients and the development team, the methodologies used, and
programming languages. Certified reusable material also has an
impact on software defect volumes and origins.

Because the costs of finding and fixing bugs have been the
#1 cost driver for the entire software industry for more than
50 years, the most important difference between excellent and
mediocre results are in the areas of defect prevention, pre-test
defect removal, and testing.

All three examples are assumed to use the same set of test
stages, including:

1. Unit test
2. Function test
3. Regression test
4. Component test
5. Performance test
6. System test
7. Acceptance test

The overall defect removal efficiency levels of these 7 test
stages range from below 80% for the worst case up to about
90% for the best case.

Testing alone is not sufficient to top 95% in defect removal
efficiency (DRE). Pre-test inspections and static analysis are
needed to approach or exceed the 99% range of the best case.

Excellent Quality Control
Excellent projects have rigorous quality control methods that

include formal estimation of quality before starting, full defect

measurement and tracking during development, and a full suite
of defect prevention, pre-test removal and test stages. The
combination of low defect potentials and high defect removal ef-
ficiency (DRE) is what software excellence is all about.

Companies that are excellent in quality control are usually the
companies that build complex physical devices such as comput-
ers, aircraft, embedded engine components, medical devices,
and telephone switching systems. Without excellence in quality
these physical devices will not operate successfully. Worse,
failure can lead to litigation and even criminal charges. There-
fore all companies that use software to control complex physical
machinery tend to be excellent in software quality.

Examples of organizations with excellent software quality in
alphabetical order include Advanced Bionics, Apple, AT&T, Boe-
ing, Ford for engine controls, General Electric for jet engines,
Hewlett Packard, IBM, Motorola, NASA, the Navy for weapons,
Raytheon, and Siemens.

Companies and projects with excellent quality control tend
to have low levels of code cyclomatic complexity and high test
coverage; i.e. test cases cover > 95% of paths and risk areas.

These companies also measure quality well and all know their
defect removal efficiency (DRE) levels. (Any company that does not
measure and know their DRE is probably below 85% in DRE.)

Excellent quality control has defect removal efficiency levels
(DRE) between about 97% for large systems in the 10,000
function point size range and about 99.6% for small projects <
1,000 function points in size.

A DRE of 100% is theoretically possible but is extremely rare.
The author has only noted DRE of 100% in two projects out of
a total of about 20,000 projects examined.

Average Quality Control
In today’s world agile is the new average. Agile develop-

ment has proven to be effective for smaller applications
below 1,000 function points in size. Agile does not scale
up well and is not a top method for quality. Agile is weak in
quality measurements and does not normally use inspections,
which has the highest defect removal efficiency (DRE) of any
known form of defect removal. Inspections top 85% in DRE
and also raise testing DRE levels. Among the authors clients
that use Agile the average value for defect removal efficiency
is about 92%. This is certainly better than the 85% industry
average, but not up to the 99% actually needed to achieve
optimal results.

Some but not all agile projects use “pair programming” in
which two programmers share an office and a work station
and take turns coding while the other watches and “navigates.”
Pair programming is very expensive but only benefits quality by
about 15% compared to single programmers. Pair programming
is much less effective in finding bugs than formal inspections,
which usually bring 3 to 5 personnel together to seek out bugs
using formal methods.

Agile is a definite improvement for quality compared to wa-
terfall development, but is not as effective as the quality-strong
methods of team software process (TSP) and the rational uni-
fied process (RUP).

CrossTalk—July/August 2014 21

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

Average projects usually do not know defects by origin, and
do not measure defect removal efficiency until testing starts;
i.e. requirements and design defects are under reported and
sometimes invisible.

A recent advance in software quality control now frequently
used by average as well as advanced organizations is that of
static analysis. Static analysis tools can find about 55% of code
defects, which is much higher than most forms of testing.

Many test stages such as unit test, function test, regression
test, etc. are only about 35% efficient in finding code bugs, or
find one bug out of three. This explains why 6 to 10 separate
kinds of testing are needed.

The kinds of companies and projects that are “average” would
include internal software built by hundreds of banks, insurance
companies, retail and wholesale companies, and many govern-
ment agencies at federal, state, and municipal levels.

Average quality control has defect removal efficiency levels
(DRE) from about 85% for large systems up to 97% for small
and simple projects.

Poor Quality Control
Poor quality control is characterized by weak defect preven-

tion and almost a total omission of pre-test defect removal
methods such as static analysis and formal inspections. Poor
quality control is also characterized by inept and inaccurate
quality measures which ignore front-end defects in requirements
and design. There are also gaps in measuring code defects. For
example most companies with poor quality control have no idea
how many test cases might be needed or how efficient various
kinds of test stages are.

Companies with poor quality control also fail to perform any
kind of up-front quality predictions so they jump into development
without a clue as to how many bugs are likely to occur and what
are the best methods for preventing or removing these bugs.

One of the main reasons for the long schedules and high
costs associated with poor quality is the fact that so many bugs
are found when testing starts that the test interval stretches out
to two or three times longer than planned.

Some of the kinds of software that are noted for poor quality
control include the Obamacare web site, municipal software for
property tax assessments, and software for programmed stock
trading, which has caused several massive stock crashes.

Poor quality control is below 85% in defect removal effi-
ciency (DRE) levels. In fact for canceled projects or those that
end up in litigation for poor quality, the DRE levels may drop
below 80%, which is low enough to be considered profes-
sional malpractice. In litigation where the author has been an
expert witness DRE levels in the low 80% range have been
the unfortunate norm.

Reuse of Certified Materials for Software Projects
So long as software applications are custom designed and

coded by hand, software will remain a labor-intensive craft
rather than a modern professional activity. Manual software
development even with excellent methodologies cannot be
much more than 15% better than average development due to

the intrinsic limits in human performance and legal limits in the
number of hours that can be worked without fatigue.

The best long-term strategy for achieving consistent excellence
at high speed would be to eliminate manual design and coding in
favor of construction from certified reusable components.

It is important to realize that software reuse encompasses many
deliverables and not just source code. A full suite of reusable soft-
ware components would include at least the following 10 items:

1. Reusable requirements
2. Reusable architecture
3. Reusable design
4. Reusable code
5. Reusable project plans and estimates
6. Reusable test plans
7. Reusable test scripts
8. Reusable test cases
9. Reusable user manuals
10. Reusable training materials

These materials need to be certified to near zero-defect levels of
quality before reuse becomes safe and economically viable. Reus-
ing buggy materials is harmful and expensive. This is why excellent
quality control is the first stage in a successful reuse program.

The need for being close to zero defects and formal certifi-
cation adds about 20% to the costs of constructing reusable
artifacts, and about 30% to the schedules for construction.
However using certified reusable materials subtracts over
80% from the costs of construction and can shorten sched-
ules by more than 60%. The more times materials are reused
the greater their cumulative economic value.

One caution to readers: reusable artifacts may be treated as tax-
able assets by the Internal Revenue Service. It is important to check
this topic out with a tax attorney to be sure that formal corporate
reuse programs will not encounter unpleasant tax consequences.

The three samples in table 1 showed only moderate reuse
typical for the end of 2013: Excellent project (15% certified
reuse - close to current maximum); Average project (10%
certified reuse); and Poor projects (5% certified reuse).

In the future it is technically possible to make large increases
in the volumes of reusable materials. By around 2025 we should
be able to construct software applications with perhaps 85%
certified reusable materials.

Table 2 shows the productivity impact of increasing volumes
of certified reusable materials. Table 2 uses whole numbers and
generic values to simplify the calculations.

Software reuse from certified components instead of custom
design and hand coding is the only known technique that can
achieve order-of-magnitude improvements in software produc-
tivity. True excellence in software engineering must derive from
replacing costly and error-prone manual work with construction
from certified reusable components.

Because finding and fixing bugs is the major software cost
driver, increasing volumes of high-quality certified materials can
convert software from an error-prone manual craft into a very
professional high-technology profession. Table 3 shows prob-
able quality gains from increasing volumes of software reuse.

22 CrossTalk—July/August 2014

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

nies don’t actually perform any kind of due diligence on method-
ologies and merely select the one that is most popular.

In today’s world agile is definitely the most popular. Fortunate-
ly agile is also a pretty good methodology and much superior
to the older waterfall method. However there are some caveats
about methodologies.

Agile has been successful primarily for smaller applications <
1,000 function points in size. It has also been successful for in-
ternal applications where users can participate or be “embedded”
with the development team to work our requirements issues.

Agile has not scaled up well to large systems > 10,000
function points. Agile has also not been visibly successful for
commercial or embedded applications where there are millions
of users and none of them work for the company building the
software so their requirements have to be collected using focus
groups or special marketing studies.

A variant of agile that uses “pair programming” or two pro-
grammers working in the same cubical with one coding and
the other “navigating” has become popular. However it is very
expensive since two people are being paid to do the work of
one person. There are claims that quality is improved, but formal
inspections combined with static analysis achieve much higher
quality for much lower costs.

Another agile variation, extreme programming, in which test
cases are created before the code itself is written has proven to
be fairly successful for both quality and productivity, compared
to traditional waterfall methods. However both TSP and RUP
are just as good and even better for large systems.

There are dozens of available methodologies circa 2013 and
many are good; some are better than agile for large systems;
some older methods such as waterfall and cowboy development
are at the bottom of the effectiveness list and should be avoided
on modern applications.

For major applications in the 10,000 function point size range
and above the team software process (TSP) and the Rational
unified process (RUP) have the best track records for success-
ful projects and among the fewest failures.

Quantifying Software Excellence
Because the software industry has a poor track record for

measurement, it is useful to show what “excellence” means in
quantified terms.

Excellence in software quality combines defect potentials of
no more than 2.5 bugs per function point combined with defect
removal efficiency (DRE) of 99%. This means that delivered
defects will not exceed 0.025 defects per function point.

By contrast current average values circa 2013 are about 3.0
to 5.0 bugs per function point for defect potentials and only
85% to 90% DRE, leading to as many as 0.75 bugs per func-
tion point at delivery.

Excellence in software productivity and schedules is not a
fixed value but varies with the size of the applications. Table 4
shows two “flavors” of productivity excellence: 1) the best that
can be accomplished with 10% reuse and 2) the best that can
be accomplished with 50% reuse:

Reuse
Percent

Months
of staff

effort

Function
Points per

month

Work hours
per function

point

Lines of
Code per

month

Project
Costs

0.00% 100 10.00 13.20 533 $1,000,000

10.00% 90 11.11 11.88 592 $900,000

20.00% 80 12.50 10.56 666 $800,000

30.00% 70 14.29 9.24 761 $700,000

40.00% 60 16.67 7.92 888 $600,000

50.00% 50 20.00 6.60 1,066 $500,000

60.00% 40 25.00 5.28 1,333 $400,000

70.00% 30 33.33 3.96 1,777 $300,000

80.00% 20 50.00 2.64 2,665 $200,000

90.00% 10 100.00 1.32 5,330 $100,000

100.00% 1 1,000.00 0.13 53,300 $10,000

Table 2: Productivity Gains from Software Reuse
(Assumes 1000 function points and 53,300 LOC)

Since the current maximum for software reuse from certified
components is only in the range of 15% or a bit higher, it can be
seen that there is a large potential for future improvement.

Note that uncertified reuse in the form of mashups or extract-
ing materials from legacy applications may top 50%. However
uncertified reusable materials often have latent bugs, security
flaws, and even error-prone modules so this not a very safe
practices. In several cases the reused material was so buggy it
had to be discarded and replaced by custom development.

Software Methodologies
Unfortunately selecting a methodology is more like joining a

cult than making an informed technical decision. Most compa-

Table 3: Quality Gains from Software Reuse
(Assumes 1,000 function points and 53,300 LOC)

Reuse
Percent

Defects per
Function

Point

Defect
Potential

Defect
Removal

Efficiency

Delivered
Defects

0.00% 5.00 1,000 90.00% 100

10.00% 4.50 900 91.00% 81

20.00% 4.00 800 92.00% 64

30.00% 3.50 700 93.00% 49

40.00% 3.00 600 94.00% 36

50.00% 2.50 500 95.00% 25

60.00% 2.00 400 96.00% 16

70.00% 1.50 300 97.00% 9

80.00% 1.00 200 98.00% 4

90.00% 0.50 100 99.00% 1

100.00% - 1 99.99% 0

CrossTalk—July/August 2014 23

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

As can be seen from table 4, software reuse is the most
important technology for improving software productivity and
quality by really significant amounts. Methods, tools, CMMI
levels, and other minor factors are certainly beneficial. However
so long as software applications are custom designed and hand
coded software will remain an expensive craft and not a true
professional occupation.

Summary and Conclusions
Because software is the driving force of both industry and

government operations, it needs to be improved in terms of both
quality and productivity. The most powerful technology for making
really large improvements in both quality and productivity will be
from eliminating costly custom designs and labor-intensive hand
coding, and moving towards manufacturing software applications
from libraries of well-formed standard reusable components that
approach zero-defect quality levels.

Today’s best combinations of methods, tools, and program-
ming languages are certainly superior to waterfall or cowboy de-
velopment using unstructured methods and low-level languages.
But even the best current methods still involve error-prone
custom designs and labor-intensive manual coding.

 Schedule
Months

Staffing Effort
Months

FP per
Month

With < 10% certified reuse

100 function points 4.79 1.25 5.98 16.71

1,000 function points 13.80 6.25 86.27 11.59

10,000 function points 33.11 57.14 1,892.18 5.28

100,000 function points 70.79 540.54 38,267.34 2.61

With 50% certified reuse

100 function points 3.98 1.00 3.98 25.12

1,000 function points 8.51 5.88 50.07 19.97

10,000 function points 20.89 51.28 1,071.43 9.33

100,000 function points 44.67 487.80 21,789.44 4.59

Table 4: Excellent Productivity with Varying Quantities of Certified Reuse

Disclaimers:
Copyright ® 2013-2014 by Capers Jones. All Rights Reserved.

24 CrossTalk—July/August 2014

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

Capers Jones is currently vice president
and chief technology officer of Namcook
Analytics LLC. The company designs
leading-edge risk, cost, and quality estima-
tion and measurement tools.

Prior to the formation of Namcook
Analytics in 2012 Capers Jones was the
president of Capers Jones & Associates
LLC between 2000 and 2012.

He is also the founder and former chair-
man of Software Productivity Research LLC (SPR). Capers
Jones founded SPR in 1984 and sold the company to Artemis
Management Systems in 1998. He was the chief scientist at
Artemis until retiring in 2000. SPR marketed three successful
commercial estimation tools: SPQR/20 in 1984; CheckPoint
in 1995; and KnowledgePlan in 1998. SPR also built custom
proprietary estimation tools for AT&T and Bachman Systems.

Before founding SPR Capers was Assistant Director of Pro-
gramming Technology for the ITT Corporation at the Program-
ming Technology Center in Stratford, Connecticut. During his
tenure Capers Jones designed three proprietary software cost
and quality estimation tools for ITT between 1979 and 1983.

He was also a manager and software researcher at IBM in
California where he designed IBM’s first two software cost esti-
mating tools in 1973 and 1974 in collaboration with Dr. Charles
Turk.

Capers Jones is a well-known author and international public
speaker. Some of his books have been translated into five
languages. His five most recent books are “The Technical and
Social History of Software Engineering,” Addison Wesley 2014;
“The Economics of Software Quality with Olivier Bonsignour,”
Addison Wesley, 2011; “Software Engineering Best Practices,”
McGraw Hill 2010; “Applied Software Measurement,” 3rd
edition, McGraw Hill, 2008; and “Estimating Software Costs,”
McGraw Hill, 2nd edition, 2007.

Among his older book titles are “Patterns of Software Sys-
tems Failure and Success” (Prentice Hall 1994); Estimating
Software Risks,” International Thomson 1995; “Software Quality:
Analysis and Guidelines for Success” (International Thomson
1997); and “Software Assessments: Benchmarks, and Best
Practices” (Addison Wesley Longman 2000).

Capers and his colleagues have collected historical data
from thousands of projects, hundreds of corporations, and more
than 30 government organizations. This historical data is a key
resource for judging the effectiveness of software process im-
provement methods and also for calibrating software estimation
accuracy.

Capers Jones data is also widely cited in software litigation
in cases where quality, productivity, and schedules are part of
the proceedings. Capers Jones has also worked as an expert
witness in 15 lawsuits involving breach of contract and software
taxation issues.

Phone: 401-864-2632
E-mail: Capers.Jones3@gmail.com
Blog: http://Namcookanalytics.com
Web: www.Namcook.com

ABOUT THE AUTHOR REFERENCES
1. Abran, A. and Robillard, P.N.; “Function Point Analysis, An Empirical Study of its
 Measurement Processes”; IEEE Transactions on Software Engineering, Vol 22, No.
 12; Dec. 1996; pp. 895-909.
2. Austin, Robert d:; Measuring and Managing Performance in Organizations; Dorset
 House Press, New York, NY; 1996; ISBN 0-932633-36-6; 216 pages.
3. Black, Rex; Managing the Testing Process: Practical Tools and Techniques for
 Managing Hardware and Software Testing; Wiley; 2009; ISBN-10 0470404159;
 672 pages.
4. Bogan, Christopher E. and English, Michael J.; Benchmarking for Best Practices;
 McGraw Hill, New York, NY; ISBN 0-07-006375-3; 1994; 312 pages.
5. Brown, Norm (Editor); The Program Manager’s Guide to Software Acquisition Best
 Practices; Version 1.0; July 1995; U.S. Department of Defense, Washington, DC;
 142 pages.
6. Cohen, Lou; Quality Function Deployment – How to Make QFD Work for You;
 Prentice Hall, Upper Saddle River, NJ; 1995; ISBN 10: 0201633302; 368 pages.
7. Crosby, Philip B.; Quality is Free; New American Library, Mentor Books, New York,
 NY; 1979; 270 pages.
8. Curtis, Bill, Hefley, William E., and Miller, Sally; People Capability Maturity Model;
 Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA; 1995.
9. Department of the Air Force; Guidelines for Successful Acquisition and
 Management of Software Intensive Systems; Volumes 1 and 2; Software
 Technology Support Center, Hill Air Force Base, UT; 1994.
10. Dreger, Brian; Function Point Analysis; Prentice Hall, Englewood Cliffs, NJ; 1989;
 ISBN 0-13-332321-8; 185 pages.
11. Gack, Gary; Managing the Black Hole: The Executives Guide to Software Project
 Risk; Business Expert Publishing, Thomson, GA; 2010; ISBN10: 1-935602-01-9.
12. Gack, Gary; Applying Six Sigma to Software Implementation Projects;
 <http://software.isixsigma.com/library/content/c040915b.asp.>
13. Gilb, Tom and Graham, Dorothy; Software Inspections; Addison Wesley, Reading,
 MA; 1993; ISBN 10: 0201631814.
14. Grady, Robert B.; Practical Software Metrics for Project Management and Process
 Improvement; Prentice Hall, Englewood Cliffs, NJ; ISBN 0-13-720384-5; 1992; 270
 pages.
15. Grady, Robert B. & Caswell, Deborah L.; Software Metrics: Establishing a
 Company-Wide Program; Prentice Hall, Englewood Cliffs, NJ; ISBN 0-13-821844-7;
 1987; 288 pages.
16. Grady, Robert B.; Successful Process Improvement; Prentice Hall PTR, Upper
 Saddle River, NJ; ISBN 0-13-626623-1; 1997; 314 pages.
17. Humphrey, Watts S.; Managing the Software Process; Addison Wesley Longman,
 Reading, MA; 1989.
18. IFPUG Counting Practices Manual, Release 4, International Function Point Users
 Group, Westerville, OH; April 1995; 83 pages.
19. Jacobsen, Ivar, Griss, Martin, and Jonsson, Patrick; Software Reuse - Architecture,
 Process, and Organization for Business Success; Addison Wesley Longman,
 Reading, MA; ISBN 0-201-92476-5; 1997; 500 pages.
20. Jones, Capers and Bonsignour, Olivier; The Economics of Software Quality, Addison
 Wesley Longman, Reading, MA; 2011.
21. Jones, Capers; Estimating Software Costs; 2nd edition; McGraw Hill; New York,
 NY; 2007.
22. Jones, Capers; Software Engineering Best Practices; McGraw Hill, New York,
 NY; 2010.
23. Jones, Capers and Bonsignour, Olivier; The Economics of Software Quality; Addison
 Wesley, Boston, MA; 2011; ISBN 978-0-13-258220-9; 587 pages.
24. Jones, Capers; “A Ten-Year Retrospective of the ITT Programming Technology
 Center”; Software Productivity Research, Burlington, MA; 1988.
25. Jones, Capers; Applied Software Measurement; McGraw Hill, 3rd edition 2008.
26. Jones, Capers; Software Engineering Best Practices; McGraw Hill, 1st edition 2010.
27. Jones, Capers; Assessment and Control of Software Risks; Prentice Hall, 1994;
 ISBN 0-13-741406-4; 711 pages.
28. Jones, Capers; Patterns of Software System Failure and Success; International
 Thomson Computer Press, Boston, MA; December 1995; 250 pages; ISBN 1-850
 -32804-8; 292 pages.

CrossTalk—July/August 2014 25

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

29. Jones, Capers; Software Assessments, Benchmarks, and Best Practices; Addison
 Wesley Longman, Boston, MA; 2000 (due in May of 2000); 600 pages.
30. Jones, Capers; Software Quality – Analysis and Guidelines for Success; International
 Thomson Computer Press, Boston, MA; ISBN 1-85032-876-6; 1997; 492 pages.
31. Jones, Capers; The Economics of Object-Oriented Software; Software Productivity
 Research, Burlington, MA; April 1997; 22 pages.
32. Jones, Capers; Becoming Best in Class; Software Productivity Research, Burlington,
 MA; January 1998; 40 pages.
33. Kan, Stephen H.; Metrics and Models in Software Quality Engineering; 2nd edition;
 Addison Wesley Longman, Boston, MA; ISBN 0-201-72915-6; 2003; 528 pages.
34. Keys, Jessica; Software Engineering Productivity Handbook; McGraw Hill, New York,
 NY; ISBN 0-07-911366-4; 1993; 651 pages.
35. Love, Tom; Object Lessons; SIGS Books, New York; ISBN 0-9627477 3-4; 1993;
 266 pages.
36. McCabe, Thomas J.; “A Complexity Measure”; IEEE Transactions on Software
 Engineering; December 1976; pp. 308-320.
37. Melton, Austin; Software Measurement; International Thomson Press, London, UK;
 ISBN 1-85032-7178-7; 1995.
38. Multiple authors; Rethinking the Software Process; (CD-ROM); Miller Freeman,
 Lawrence, KS; 1996. (This is a new CD ROM book collection jointly produced by
 the book publisher, Prentice Hall, and the journal publisher, Miller Freeman. This CD
 ROM disk contains the full text and illustrations of five Prentice Hall books:
 Assessment and Control of Software Risks by Capers Jones; Controlling Software
 Projects by Tom DeMarco; Function Point Analysis by Brian Dreger; Measures for
 Excellence by Larry Putnam and Ware Myers; and Object-Oriented Software Metrics
 by Mark Lorenz and Jeff Kidd.)
39. Paulk Mark et al; The Capability Maturity Model; Guidelines for Improving the
 Software Process; Addison Wesley, Reading, MA; ISBN 0-201-54664-7; 1995;
 439 pages.
40. Perry, William E.; Data Processing Budgets - How to Develop and Use Budgets
 Effectively; Prentice Hall, Englewood Cliffs, NJ; ISBN 0-13-196874-2; 1985;
 224 pages.
41. Perry, William E.; Handbook of Diagnosing and Solving Computer Problems; TAB
 Books, Inc.; Blue Ridge Summit, PA; 1989; ISBN 0-8306-9233-9; 255 pages.
42. Putnam, Lawrence H.; Measures for Excellence -- Reliable Software On Time, Within
 Budget; Yourdon Press - Prentice Hall, Englewood Cliffs, NJ; ISBN 0-13-567694-0;
 1992; 336 pages.

43. Putnam, Lawrence H and Myers, Ware.; Industrial Strength Software - Effective
 Management Using Measurement; IEEE Press, Los Alamitos, CA;
 ISBN 0-8186-7532-2; 1997; 320 pages.
44. Radice, Ronald A.; High Quality Low Cost Software Inspections; Paradoxicon
 Publishingl Andover, MA; ISBN 0-9645913-1-6; 2002; 479 pages.
45. Royce, Walker E.; Software Project Management: A Unified Framework; Addison
 Wesley Longman, Reading, MA; 1998; ISBN 0-201-30958-0.
46. Rubin, Howard; Software Benchmark Studies For 1997; Howard Rubin Associates,
 Pound Ridge, NY; 1997.
47. Rubin, Howard (Editor); The Software Personnel Shortage; Rubin Systems, Inc.;
 Pound Ridge, NY; 1998.
48. Shepperd, M.: “A Critique of Cyclomatic Complexity as a Software Metric”; Software
 Engineering Journal, Vol. 3, 1988; pp. 30-36.
49. Strassmann, Paul; The Squandered Computer; The Information Economics Press,
 New Canaan, CT; ISBN 0-9620413-1-9; 1997; 426 pages.
50. Stukes, Sherry, Deshoretz, Jason, Apgar, Henry and Macias, Ilona; Air Force Cost
 Analysis Agency Software Estimating Model Analysis ; TR-9545/008-2; Contract
 F04701-95-D-0003, Task 008; Management Consulting & Research, Inc.;
 Thousand Oaks, CA 91362; September 30 1996.
51. Symons, Charles R.; Software Sizing and Estimating – Mk II FPA (Function Point
 Analysis); John Wiley & Sons, Chichester; ISBN 0 471-92985-9; 1991; 200 pages.
52. Thayer, Richard H. (editor); Software Engineering and Project Management; IEEE
 Press, Los Alamitos, CA; ISBN 0 8186-075107; 1988; 512 pages.
53. Umbaugh, Robert E. (Editor); Handbook of IS Management; (Fourth Edition);
 Auerbach Publications, Boston, MA; ISBN 0-7913-2159-2; 1995; 703 pages.
54. Weinberg, Dr. Gerald; Quality Software Management - Volume 2 First-Order
 Measurement; Dorset House Press, New York, NY; ISBN 0-932633-24-2; 1993;
 360 pages.
55. Wiegers, Karl A; Creating a Software Engineering Culture; Dorset House Press,
 New York, NY; 1996; ISBN 0-932633-33-1; 358 pages.
56. Yourdon, Ed; Death March - The Complete Software Developer’s Guide to Surviving
 “Mission Impossible” Projects; Prentice Hall PTR, Upper Saddle River,
 NJ; ISBN 0-13-748310-4; 1997; 218 pages.
57. Zells, Lois; Managing Software Projects - Selecting and Using PC-Based Project
 Management Systems; QED Information Sciences, Wellesley, MA;
 ISBN 0-89435-275-X; 1990; 487 pages.
58. Zvegintzov, Nicholas; Software Management Technology Reference Guide;
 Dorset House Press, New York, NY; 1994; ISBN 1-884521-01-0; 240 pages.

CALL FOR ARTICLES
If your experience or research has produced information that could be useful to others,
CrossTalk can get the word out. We are specifically looking for articles on software-

related topics to supplement upcoming theme issues. Below is the submittal schedule for
two areas of emphasis we are looking for:

Software Education Today
Jan/Feb 2015 Issue

Submission Deadline: Aug 10, 2014

Test and Diagnostics
Mar/Apr 2015 Issue

Submission Deadline: Oct 10, 2014

Please follow the Author Guidelines for CrossTalk, available on the Internet at
<www.crosstalkonline.org/submission-guidelines>. We accept article submissions on

software-related topics at any time, along with Letters to the Editor and BackTalk. To see
a list of themes for upcoming issues or to learn more about the types of articles we’re

looking for visit <www.crosstalkonline.org/theme-calendar>.

26 CrossTalk—July/August 2014

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

Jennifer Walters, Northrop Grumman
Kevin MacG. Adams, Ph.D., NCSOSE

Abstract. Metrics are beneficial to an organization that supports a product from
inception through product retirement and disposal. Quality metrics have a critical role
in this type of environment because they span both the development and opera-
tions and maintenance phases of the software life cycle, and there is a relationship
between the internal quality metrics collected during development and the external
quality metrics collected once the product is deployed. The key finding is that internal
metrics can be collected early in the software development phase to predict the sup-
port required during the operations and maintenance phase; likewise, external met-
rics can be collected to drive software development process improvements. Finally,
analyzing the relationships between the two can drive overall process improvements
for the entire software lifecycle.

Improving Software through
Metrics while Providing
Cradle to Grave Support

Role of Metrics
It is important to understand the role metrics play in the

overall software lifecycle. First, the metrics of concern in this
paper are quality attributes because maintenance efforts
are highly dependent on the overall quality of the software
[3]. In addition, quality attributes span both pre-delivery
and post-delivery phases of the lifecycle and are therefore
specifically relevant when a single organization supports the
software over the entire lifecycle. Second, quality attributes
are categorized as either internal or external [4]. “Internal
quality attributes are those that can be directly measured
purely on the basis of product features such as size, length,
or complexity” [5]. External metrics are measurements that
are dependent on how the software interacts with its environ-
ment and can therefore only be collected after the product
has been deployed and operated during the maintenance and
operations phase of the software lifecycle [5]. The remainder
of this discussion involves the relationship between internal
and external metrics.

Internal Metrics
As previously mentioned, internal quality attributes are measure-

ments based on characteristics of the product itself. Size, length,
and complexity are the key attributes collected. Research has
shown that there is a correlation between internal quality attributes
and external quality of the product [5-8]. By measuring internal
quality that can be accomplished early during the software develop-
ment process, it is possible to predict product maintainability and
thus the effort required to support product maintenance.

There are many metric options available for evaluating internal
software design quality. A few of the most commonly used
suites include: Chidamber and Kemerer (CK) Metrics [9], Robert
C. Martin Metric Suite [10], and McCabe’s Metric Suite [11,12].
Table 1 provides a brief overview of the metric suites. The next
section will discuss CK Metrics in more detail.

Chidamber and Kemerer Metrics
Chidamber and Kemerer (CK) metrics can “assist users

in understanding object oriented design complexity and in
forecasting external software qualities for example software
defects, testing, and maintenance effort” [13]. Numerous
research studies have validated CK metrics as a method for
predicting maintainability [8, 13-16]. The suite includes six
metrics: (1) weighted methods per class (WMC), (2) depth
of inheritance tree (DIT), (3) number of children (NOC), (4)
coupling between objects/classes (CBO), (5) response for
a class (RFC), and (6) lack of cohesion in method (LCOM).
Each of the six measurements in the CK suite quantify differ-
ent quality attributes which relate to maintainability qualities;
however, the last metric discussed in the next section, LCOM,
has been shown to have the greatest impact on the total
number of defects [8].

Weighted Methods per Class
Weighted Methods per Class (WMC) is a complexity mea-

surement. However, Chidamber and Kemerer did not propose

Introduction
Software development is “the specification, construction,

testing and delivery of a new application or of a discrete addition
to an existing application” [1] while a maintenance project is
“a software development project described as maintenance to
correct errors in an original requirements specification, to adapt
a system to a new environment, or to enhance a system” [1].
Often times these two processes are supported by two different
organizations with two different goals. One team will focus on
building the initial application and their primary concern is build-
ing a product that fulfills the requirements within both cost and
schedule constraints. The second team has the responsibility of
supporting the product during the remainder of the lifetime and
has a primary concern of maintainability.

As a result, the maintenance team is at the mercy of the soft-
ware design and processes imposed by the software develop-
ment team. While the resulting product might meet all the user
requirements and appear to be a superb product, it is likely that
the software development team did not build the initial product
with maintenance in mind [2]. This results in a product that is
more difficult and costly to maintain.

One Organization Supporting Entire Lifecycle
When the same organization supports both the development

phase and the operations and maintenance phase, however,
there are some opportunities to create a synergy between
development and maintenance efforts. The focus can shift from
individual phases to the overall software lifecycle. By transition-
ing focus, team members can collect measurements early in the
development phase that can help predict issues in maintenance.
Likewise, maintenance related metrics can be analyzed to pro-
vide guidance for improving development processes. Cause and
effect analysis is a very powerful technique in this situation.

CrossTalk—July/August 2014 27

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

a definition or method for measuring complexity. “If methods
complexities are considered to be unity, the WMC metric turns in
to the number of methods in a class” [17]. Whether it is general-
ized to a count of methods or is more specialized through the
use of a complexity algorithm, a higher WMC indicates a class
that is more difficult to understand and modify.

Depth of Inheritance Tree
Depth of Inheritance Tree (DIT) is object oriented (OO) specif-

ic as it measures the OO characteristic inheritance. Inheritance
is “a semantic notion by which the responsibilities (properties
and constraints) of a subclass are considered to include the
responsibilities of a superclass, in addition to its own, specifically
declared responsibilities” [1]. It is often described as an isa rela-
tionship. For example, a cat isa mammal. This can be extended
to include a mammal isa animal. DIT measures the hierarchy of
inheritance. In this example, there is a hierarchy of three: cat >
mammal > animal. The deeper a class is in the inheritance tree,
the more difficult it is to comprehend and predict the behavior of
the class [18].

Number of Children
Number of Children (NOC) is similar to DIT as it is related to

inheritance. It is the count of immediate sub-classes in the class
hierarchy [13]. NOC takes a more horizontal approach to inheri-
tance. Instead of walking down the inheritance tree, it counts
the number of classes inheriting methods from the parent class.
Extending the previous example, a reptile is also an animal. Now
both mammal and reptile classes inherit the members from
animal. So, if the animal base class is modified there is potential
impact to both sub-classes. High NOC measurements require
more impact analysis.

Coupling Between Objects Classes
As the name suggests, Coupling Between Objects Classes

(CBO) measures coupling. Coupling is “the manner and degree
of interdependence between software modules” [1]. A class is
considered coupled with another class if its members are used
by another class. Coupling makes it more difficult to isolate
units of code for testing. The interdependence also makes code
comprehension more difficult and increases the need for impact
analysis. It is “highly connected to portability, maintainability, and
re-usability” [17].

Response for a Class
Response for a Class (RFC) is similar to CBO but this

measure also takes inheritance into count. It is the number
of methods that can be executed as a response to a mes-
sage received by class objects [13,17]. The count includes
methods in the same class, methods accessible within the
class hierarchy, and methods accessible in other classes.
Source code with a high RFC count is complex and can be
very difficult to trace potential code paths for testing and
comprehension.

Table 1: Metric Suites for Measuring Internal Quality Attributes

Metric Suite Description Measurements
CK Metrics CK metrics designed specifically for object-

oriented software [9]. Commonly utilized to
predict fault-proneness [8] and included in
static code analysis tools to provide
automation opportunities.

• Weighted Methods Per Class (WMC)
• Depth of Inheritance Tree (DIT)
• Number of Immediate Subclasses (NOC)
• Coupling between Objects Classes (CBO)
• Response for a Class (RFC)
• Lack of Cohesion in Method (LCOM)

Robert C. Martin
Metric Suite

This suite of metrics focuses on
interdependence between packages, or
cohesion [10]. It is also designed for object-
oriented software.

• Afferent Coupling
• Efferent Coupling
• Instability
• Abstractness
• Normalized Distance from Main Sequence

McCabe’s Metric Suite McCabe is most commonly associated with
the concept of cyclomatic complexity. The
metric was introduced as a way to quantify
design decisions to indicate how difficult it
is to test and maintain the method [11, 12].
Also commonly found in static analysis
tools.

• McCabe’s Complexity
• Method Lines of Code
• Total Lines of Code
• Nested Block Depth

	

Lack of Cohesion in Method
The final metric in the CK suite is Lack of Cohesion in

Method (LCOM). Since cohesion is considered a positive char-
acteristic in object-oriented code, this measurement considers
the lack of cohesion. “A highly cohesive module should be inde-
pendent” [13] of other modules and improve reusability. Lack of
cohesion on the other hand signifies poor design that generates
more complex code that is difficult to maintain. It is an indica-
tor of potential redesign opportunities to create smaller more
cohesive classes [13,17]. LCOM “has a significant effect on the
total number of defects… and software development companies
should concentrate on [it] to control… design defects” [8].

External Metrics
While internal metrics provide a wealth of interesting informa-

tion, the measures themselves are not very helpful on their own.
“For these early indicators to be meaningful, they must be related
(in a statistically significant and stable way) to the field quality/
reliability of the product” [7]. The field quality attributes can only
be measured while the product is in the testing or operations and
maintenance phase of the software lifecycle (ISO/IEC, 2002)
and are known as external metrics. Figure 1 displays the relation-

Figure 1: Relationships between types of metrics [19, p.4]

28 CrossTalk—July/August 2014

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

ship between the internal metrics already discussed and external
metrics which include functionality, usability, reliability, maintain-
ability, portability, and efficiency [19].
As shown, internal metrics influence external quality and external
quality depends on internal metrics. With this type of relationship
it is possible to predict external quality as well as maintenance
support needs of the final product by collecting internal metrics
which are available earlier in the software lifecycle [7,8,13,19].

Maintainability
While all of the external metrics are important to a mainte-

nance organization, maintainability is critical when planning
and staffing maintenance activities and will be the focus of the
external metric discussion that follows. Maintainability is “the
ease with which software system or component can be modified
to change or add capabilities, correct faults or defects, improve
performance or other attributes, or adapt to a changed environ-
ment” [1]. The four primary maintainability metrics are analyzabil-
ity, changeability, stability, and testability.

Analyzability
Analyzability describes the ability to trace and comprehend the

intent of the existing software code. The maintenance organiza-
tion must be able to comprehend the existing software in order to
perform analysis activities [20] such as defect analysis and impact
analysis. All six of the CK Metrics discussed earlier have a great
impact on analyzability. From lack of cohesion to highly coupled
modules to deep inheritance trees, all of these factors contribute
to the difficulty of reading, tracing, and comprehending the code
base. Some options for measuring analyzability are audit trail
capability, diagnostic function support, failure analysis capability,
failure analysis efficiency, and status monitoring capability [19].

Changeability
Changeability metrics relate to the actual maintenance activities

that modify the existing code. The modification could be the result
of discovering a defect, the need to adapt to a new environment,
or the request for a new enhancement. Regardless of the reason

for the change, most of the same qualities that make a code easier
to analyze also makes it easier to change. High cohesion and low
coupling are critical when developing an application with a focus
on maintenance. An organization should review the relationship
between internal metrics and changeability by gathering some of
the following external metrics: change cycle efficiency, change
implementation elapse time, modification complexity, parameterized
modifiability, and software change control capability [19].

Stability
Most users dislike unexpected software behavior. Stability related

metrics such as change success ratio and modification impact
localization [19] provide evidence of unexpected behavior or the
lack thereof. One method for decreasing the risk of unexpected
behavior is to complete a thorough impact analysis and ensure
modified code paths are systematically tested. With this under-
standing it is clear that the internal metrics that impact analyzability
and testability are also crucial to predicting software stability.

Testability
The final maintainability component discussed is testability.

As its name suggests, testability refers to the ease at which the
software can be tested, or verified and validated. To measure
testability, an organization should collect the following measure-
ments: availability of built-in test function, re-test efficiency,
and test restartability [19]. Coupling is a critical characteristic
when determining testability [21]. When modules are coupled,
it is more difficult or impossible to isolate the module under
test to ensure the test is focusing only on the desired code and
producing clear concise results. CBO and RFC metrics will have
a strong correlation to the external metrics related to testability.

Conclusion
Software operations and maintenance is a critical phase in

the software lifecycle. While much emphasis is placed on the
development phase, most software products do eventually reach
the operations and maintenance phase where they must then be
maintained until the system is no longer needed or is replaced
by a new product. It stands to reason, then, that software should
be developed with maintenance in mind. But this is not typically
the case because the software development team is focused on
quickly creating a product to meet the needs of the customer at
a cost and schedule the customer is willing to accept. The team
is likely not considering how the product will be maintained after
it is in operation.

However, when the same organization supports both software
development and software operations and maintenance, there is
incentive to keep maintenance in mind during the development pro-
cess. It is also easier to capture both internal metrics, such as CK
Metrics, that are available during the development phases as well
as external metrics which are available only after the product is in
operation. Internal metrics can help predict the level of support re-
quired to maintain the product once it is in operation. Furthermore,
by analyzing the relationships between these two sets of metrics,
the organization can improve both development and maintenance
processes and thus improves the overall quality of the product as it
supports the software from the cradle to the grave.

While much emphasis is placed on the development
phase, most software products do eventually reach
the operations and maintenance phase where they must
then be maintained until the system is no longer needed
or is replaced by a new product. It stands to reason,
then, that software should be developed with mainte-
nance in mind. But this is not typically the case because
the software development team is focused on quickly
creating a product to meet the needs of the customer
at a cost and schedule the customer is willing to ac-
cept. The team is likely not considering how the product
will be maintained after it is in operation.

CrossTalk—July/August 2014 29

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

ABOUT THE AUTHORS
Jennifer Walters is a software develop-
ment analyst at Northrop Grumman
Enterprise Shared Services. She holds a
B.S. in Computer and Information
Science from University of Maryland Uni-
versity College, an M.A.E.D. in
Secondary Education from University of
Phoenix, and an M.S. in Information
Technology from University of Maryland
University College.

RR 2 BX 542
Nelson Drive
Ridgeley, WV 26753
E-mail: jennifer.walters@ngc.com
Phone: 304-726-4174 (home)

Dr. Kevin MacG. Adams is an Adjunct
Professor at the University of Maryland
University College where he teaches soft-
ware and systems engineering in the
graduate program in Information Technol-
ogy. Dr. Adams is a retired Navy
submarine officer and information systems
consultant. Dr. Adams holds a
B.S. in Ceramic Engineering from Rutgers
University, an M.S. in Naval
Architecture and Marine Engineering and
an M.S. in Materials Engineering
both from MIT, and a Ph.D. in Systems
Engineering from Old Dominion
University.

University of Maryland University
College
3501 University Blvd. East,
Adelphi, Maryland 20783
E-mail: kevin.adams@faculty.umuc.edu
Phone: 757-855-1954 (home)

REFERENCES
1. IEEE, IEEE and ISO/ IEC Standard 24765: Systems and software engineering — Vocabulary. New York
 and Geneva: Institute of Electrical and Electronics Engineers and the International Organization for
 Standardization and the International Electrotechnical Commission, 2010.
2. A. Abran and J. Moore, Guide to the Software Engineering Body of Knowledge, 2004 ed. Los Alamitos, CA:
 The Institute of Electrical and Electronics Engineers, 2004.
3. J. Bansiya and C. Davis, “A hierarchical model for object-oriented design quality assessment,” IEEE
 Transactions on Software Engineering, vol. 28, pp. 4-17, 2002.
4. M. Barbacci, M. Klein, T. Longstaff, and C. Weinstock, “Quality Attributes (Technical Report: CMU/SEI-95-
 TR-021, ESC-TR-95-021),” Carnegie Mellon University, Software Engineering Institute, Pittsburgh, PA1995.
5. E. Bagheri and D. Gasevic, “Assessing the maintainability of software product line feature models using
 structural metrics,” Software Quality Journal, vol. 19, pp. 579-612, 2011.
6. M. Bocco, D. L. Moody, and M. Piattini, “Assessing the capability of internal metrics as early indicators
 of maintenance effort through experimentation,” Journal of Software Maintenance & Evolution:
 Research & Practice, vol. 17, pp. 225-246, 2005.
7. N. Nagappan, “Toward a software testing and reliability early warning metric suite,” in Proceedings of the
 26th International Conference on Software Engineering, ed Los Alamitos, CA: IEEE Computer Society,
 2004, pp. 60-62.
8. M. R. J. Qureshi and W. Qureshi, “Evaluation of the design metric to reduce the number of defects in
 software development,” International Journal of Information Technology and Computer Science, vol. 4, pp.
 9-17, 2012.
9. S. R. Chidamber and C. F. Kemerer, “Towards a metrics suite for object oriented design,” in Proceedings
 of the Conference on Object-oriented programming systems, languages, and applications (OOPSLA 91), A.
 Paepcke Ed., ed New York: Association for Computing Machinery, 1991, pp. 197-211.
10. R. C. Martin, Agile Software Development: Principles, Patterns, and Practices. Upper Saddle River, NJ:
 Prentice-Hall, 2003.
11. T. J. McCabe, “A Complexity Measure,” IEEE Transactions on Software Engineering, vol. SE2,
 pp. 308-320, 1976.
12. T. J. McCabe and C. W. Butler, “Design Complexity Measurement and Testing,” Communications of the
 ACM, vol. 32, pp. 1415-1425, 1989.
13. P. M. Shanthi and K. K. Duraiswamy, “An empirical validation of software quality metric suites on open
 source software for fault-proneness prediction in object oriented systems,” European Journal of Scientific
 Research, vol. 51, pp. 166-181, 2011.
14. V. Basili, L. Briand, and W. L. Melo, “A validation of object-oriented design metrics as quality indicators,”
 IEEE Transactions on Software Engineering, vol. 22, pp. 267-271, 1996.
15. K. E. Emam, W. Melo, and J. Machado, “The prediction of faulty classes using object-oriented
 design metrics,” Journal of Systems and Software, vol. 56, pp. 63-75, 2011.
16. W. Li and S. Henry, “Object oriented metrics that predict maintainability,” Journal of Systems and
 Software, vol. 23, pp. 111-122, 1993.
17. J. M. Veiga and M. J. Frade, “Treecycle: a Sonar plugin for design quality assessment of Java programs
 (Technical Report: CROSS-10.07-1),” Fundação para a Ciência e a Tecnologia, Centro de Ciências e
 Tecnologias de Computação, Braga, Portugal2010.
18. G. Vandana, K. K. Aggarwal, and Y. Singh, “A fuzzy approach for integrated measure of object-oriented
 software testability,” Journal of Computer Science, vol. 1, pp. 276-282, 2005.
19. ISO/ IEC, Software engineering - Product quality - Part 2: External metrics (ISO/ IEC TR 9126-2).
 Geneva: International Organization for Standardization and the International Electrotechnical
 Commission,, 2003.
20. T. M. Pigoski, Practical Software Maintenance: Best Practices for Managing Your Software Investment.
 New York: John Wiley & Sons, Inc. , 1997.
21. S. Khatri, R. S. Chhillar, and A. Sangwan, “Analysis of factors affecting testing in object oriented systems,”
 International Journal on Computer Science & Engineering, vol. 3, pp. 1191-1196, 2011.

30 CrossTalk—July/August 2014

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

David Saint-Amand, Naval Air Systems Command
Mark Stockmyer, Naval Air Warfare Center
Abstract. This paper covers the different types of teams the authors have en-
countered as NAVAIR Internal Process Coaches and how they approached Process
Improvement with them, with special emphasis on the curmudgeons (bad-tempered,
difficult, or cantankerous persons).

Paths of
Adoption:
Routes to Continuous
Process Improvement

Introduction
There are many approaches to Continuous Process Improve-

ment (CPI). The authors have observed, participated, or assisted
in numerous CPI initiatives in both private industry and United
States Federal Government service. Those efforts included Agile,
Capability Maturity Model-Software (CMM®-SW), Capability
Maturity Model Integration (CMMI®), Total Quality Management
(TQM), High Performance Organization Training (HPO), Lean Six
Sigma, Personal, Software Processes (PSPSM), Rational Unified
Process (RUP), the Team Software Processes (TSPSM), and pos-
sibly a few others which may have been forgotten. All of these
systems have a good chance for success if the people and orga-
nizations to which they are being applied are properly prepared,
and the initiatives are managed in the same manner as a project.
A good example of this would be the use of the ADKAR model,
with its five objectives, to prepare for and execute a process
improvement effort [1]:

• Awareness of the need for change
• Desire to support and participate in the change
• Knowledge of how to change
• Ability to implement desired skills and behaviors
• Reinforcement to sustain the change

Another good example would be the use of the Software Engi-
neering Institute (SEI) IDEAL model, IDEAL has five steps, the last
four of which are repeated in a continuous cycle of process improve-
ment [2]: Initiating, Diagnosing, Establishing, Acting, and Learning.

What can a process improvement coach do though when the
proper preparations aren’t made and the people are not effective-
ly prepared in advance? If the success of a CPI initiative for any
given team is defined as the whole team undertaking and sustain-
ing CPI, then there are many paths to the adoption of CPI.

When preparing to introduce CPI in this sort of environment,
it is important to remember that all pre-CPI teams are different.
Some are made up of process champions, while others seem to
have only arm-folded curmudgeons. Using our experiences as
NAVAIR Internal process coaches we will address the follow-
ing questions. How are these team types different? How can
a process coach take these teams from ad-hoc processes to
disciplined superstars? Are special approaches required? Most
importantly, and this is where we spent most of our time as pro-
cess coaches, what kind of techniques can you use to deal with
the more difficult teams?

The authors believe that the answers they have found are ap-
plicable to most process improvement initiatives. While this article
focuses on recent NAVAIR initiatives which utilized the Team Pro-
cess Integration (TPI), it is because the TPI was able to provide
them with data from which to draw conclusions about successful
approaches to pursuing CPI.

The TPI is a NAVAIR derivative of the SEI’s TSP. The TSP is a
disciplined approach to writing software originally based upon the
SEI Capability Maturity Model – Software (CMM-SW). The TPI
takes the process scripts of the TSP and strips out the elements
that are specific to software development. This leaves a general-
ized set of process scripts which may be customized and applied
to support the planning, project execution, reporting, and process
improvement efforts of both software and non-software teams.

To begin the discussion of the different types of teams let us
briefly review the by-the-book approach to instituting the TSP
familiar to its practitioners. We start with the “Innovators” and
“Early Adopters” as defined in the “Innovation Adoption Curve”
(Figure 1) [3]. They are willing to try new things, they work hard
toward success, and they socialize that success to their friends.
Their friends are encouraged to try the new techniques and the
good new spreads from there. It has been the authors’ personal
experience in both the private software industry and the DoD
that this is seldom the approach used. It has been more typical in
these working environments for management to simply man-
date all teams to use a new process improvement framework.
While some teams may respond well to that approach, many do
not. Whether they do or not often depends on the percentage
of individual ‘laggards’ on a given team. If the team is made up
almost exclusively of laggards, we call them “Never Adopters” and
a special approach will be required.

Different Working Environments
The by-the-book approach, as described above, was devel-

oped by experts who hoped that organizations seeking process
improvement would pursue it in an idealized, formal fashion. Some
of the characteristics of that idealized approach are:

• the project is new
• the members of the project might never have worked

Figure 1: An adapted “Innovation Adoption Curve”
showing the Innovators, the Early Adopters, and the
“Never Adopters.”

CrossTalk—July/August 2014 31

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

 together before
• everyone, from management to the individual engineer,

 is properly trained and prepared
• the purpose of the weeklong Team Project Planning

 Session (aka “the Launch”) is to build the team
• the organization has sufficient communication between

 projects to allow the “Adoption Curve Strategy” to work
 across the organization

This strategy has been used on numerous teams in the non-
Academic environments of both the DoD and private industry.
During the course of those efforts some differences between the
Academic and non-Academic environments were identified. In
general, in the non-Academic environments:

• the project is to enhance and maintain an existing product
• the team already exists and team members have often been

 working together for years
• in the interest of schedule, importance, and budget, not

 everyone is trained properly, if at all
• the Launch is used to introduce “Best Practices”
• few of the projects in a large organization talk to each other,

 making the dissemination of TSP/TPI a grindingly slow
 process

These differences in environment are important. Depending on
the type of team, they can make a by-the-book approach unwork-
able.

Different Types of Teams
It is said that the first step to recovery is admitting you have a

problem. Based on that, we have found that teams may be divided
into two general categories, depending on who is doing the “ad-
mitting.” Is it the team or their management?

Self-Selected Teams
These are the teams who know that something is wrong with

the way the work is being done and they are personally motivated
to do something about it. In our experience, these teams will
usually identify one of three primary reasons to adopt process
improvement:

1. To fix broken management: Irrational management has cre-
ated a chaotic environment

2. To obtain a process the team will use: The Team Lead has
worked on teams with good processes and wants their new team
to start out on the right foot

3. To save the broken schedule: The product is chronically late
and the team as a whole decides that they need a way to judge
their progress.

Management-Selected Teams
If it is the management that decided there is a problem, which

they think may be solved by process improvement; it is usually for
one of the following reasons:

1. To fix the broken team: They have teams where the product
is never delivered or, if it is, the product doesn’t work

2. To introduce best practices: Management read about a pro-
cess improvement framework in a White Paper

3. To gain insight into the schedule: Their teams are unpredict-
able and product delivery is never known until the last minute

It has been our experience that Management-Selected teams
are typically neither convinced to, nor properly prepared to un-

dertake process improvement. They are instructed to do it. Some
teams will take this new effort on willingly, but the Never Adopters
will not. The probability that these types of teams will be success-
ful in the pursuit of mandated Continuous Process Improvement
can vary widely.

Introduction Strategies for Self Selected Teams
Self-Selected teams, by their nature, are generally not difficult

to deal with and can be expected to attempt to take on all the
TSP or TPI practices from the start. A coach should not have to
spend much time with them outside of what might normally be
expected. These are the teams where the Innovation Adoption
Curve works, and for which TSP coaches are trained.

In general, the team’s chance of success is good, but not
always.

Self-Selected: Fix the broken Management
Occasionally, an engineer from a disciplined team joins a

new team and the new surroundings are not that for which they
bargained. The engineer figures out too late that the new environ-
ment is not quite as disciplined as they had imagined, but at least
they figure that they can control their own world.

There is a low chance of success here because it is likely that,
intentionally or unintentionally, management itself is fostering
an environment of chaos and will oppose attempts to introduce
discipline.

Is there a good reason for a person to pursue process improve-
ment in this environment even though the chance of success is
low? Yes. That person builds a record of their attempt at discipline
and that will serve them well later on when the project fails and
management is attempting to assign blame. One of the authors of
this article assisted an engineer in this situation, and because that
engineer had planned, documented, and tracked their work, they
were recognized by upper management as a competent, honest,
and diligent employee: complaints lodged against him by his ir-
rational manager notwithstanding.

Self-Selected: Obtain a Process the Team Will Use
In this instance the team lead is an innovator, an early-adopter

type, or a person who may have formerly worked on a high-
discipline team. They understand that chaos is a poor product
development strategy. They want a team process and are willing
to try new things. As the new team lead they have an opportunity
during their new Team Lead “honeymoon” period to introduce CPI
and they make the most of it.

The overall chance of success in adopting Process Improve-
ment is high.

Self-Selected: Save the Broken Schedule
In this instance, an entire team comes to a consensus that

something is wrong, be it schedule, cost, or quality. Not only do
they admit they have a problem, they are willing to accept change
in order to find a better way to do business.

The overall chance of success in adopting Process Improve-
ment is high.

The Management-Selected Teams
Teams are usually selected for Process Improvement when

management:

32 CrossTalk—July/August 2014

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

• Understands there is a problem with a team’s performance
• Hears about other teams’ success with process

 improvement
• Wants a process coach to fix their broken team
Management-Selected teams all respond to the new CPI initia-

tive in pretty much the same way and are the process coach’s
biggest hurdle. They are often staffed with experienced profes-
sionals who have seen many Process Improvement flavor-of-the-
month initiatives start and fail, or worse, start and be abandoned
with the next change in management. If a process coach tries
using the by-the-book approach with these teams, the probability
of success is low. This is because the Canon of this approach
often runs squarely into the Reality of the work environments of
the DoD and Industry (Table 1). It is because these teams can be
such a challenge for a process coach that the remainder of this
article will focus on them.

It is likely for the Management-Selected teams that at least
one member of the team with significant professional experience
will be cynical and has learned that the best strategy for avoiding
“work disruption” is to passive-aggressively resist the latest initia-
tive. If all the members of the team fit that description then the
process coach has entered the “Never-Adopters” portion of the
Innovation Adoption curve. A coach will spend much more time
with these teams than with a self-selected team, and the bulk of
that time will be a seemingly endless effort to cajole the team into
complying with the initiative.

For the Never Adopters, the introduction of process improve-
ment must be done slowly and incrementally. Overwhelming them
with process will just give them the ammunition they need in
their complaints to management that what the process coach is
asking cannot be accomplished and still expect them to get work
done. Worse, the ferocity of their passive-aggressive resistance
will blind them to any value there is from the process improve-
ment initiative. At best, they will do the very minimum they can get
away with and still be seen to be complying. In some cases they
may even outright refuse to participate. Then, after the initiative
collapses due to the team’s intentional failure to perform, they will
point to the lack of progress and data and say that the process
is a hoax. They will say this even in the face of evidence of other
team’s successes with the same initiative. Typically their explana-
tion is that their work is unique and not at all like the other team,
whose success is either some sort of very-specific lucky break, or
an outright lie.

In a further effort to justify their failure, they will spread this
word throughout the larger organization and that will “poison the

Table 1: The by-the-book approach to Process Improvement and what a Process Coach is likely to encounter

Canon	 vs.	 Reality	 	

Canon	 Reality	
Each	 project	 starts	 with	 a	 new	 team	 of	 people	 who	 have	 never	
before	 worked	 together.	

The	 team	 is	 already	 established,	 sometimes	 for	 more	 than	 a	
decade.	

The	 arduous	 effort	 of	 a	 detailed	 weeklong	 planning	 session	 will	
‘jell’	 a	 collection	 of	 strangers	 into	 a	 high-‐performance	 team.	

The	 team	 is	 already	 jelled,	 and	 if	 they	 aren’t,	 they	 soon	 will	 be	 as	
the	 process	 coach	 becomes	 their	 common	 enemy.	

You	 roll	 out	 the	 entire	 process	 at	 once.	 	 The	 team	 is	 exposed	 to	
everything	 and	 is	 expected	 to	 put	 all	 of	 it	 into	 practice,	
improving	 steadily	 over	 time.	

You	 can	 only	 get	 the	 ‘difficult’	 teams	 to	 accept	 some	 small	
portion	 of	 the	 overall	 process.	 	

	

well.” As a result, the organization will be less likely to try that
brand of process improvement in the future and the coaching
organization will lose other process improvement opportunities.

If management keeps up the pressure for process improve-
ment, despite the manufactured failure and team complaints,
then there is a risk of the organization losing valuable corporate
knowledge through early retirements and lateral transfers.

So, if taking the by-the-book approach is likely to produce poor
results, will rolling out process improvement in small doses really
result in long-term success? If the goal is to change the culture
and improve the practices of an organization, then the experi-
ences of the NAVAIR Process Coaches suggest that the answer
is ‘Yes.’

Introduction Strategies for the “Never Adopters”
Everyone knows, from the manager who orders it, the process

coach who has to introduce it, and the team who has to imple-
ment it, that they are eventually going to have to eat the entire
process-improvement elephant. So, how do you get the “Never-
Adopters” to undertake the effort? The key is to convince the
team to agree to try a bite of the trunk, just to see what it tastes
like.

Ask the team to:
• plan their work: introduce the team to projects with

 detailed plans
• track their work: start to instill process discipline
• think about Quality: get them to consider the possibility of

 building on the process
From this modest introduction, the process coach wants the

team to come to understand that collecting performance data is
neither difficult nor time consuming, that their performance data
will not be used against them, and that there is value for them
personally in the data which they are collecting.

Introduce Planning
Of all the process improvement practices this brings the

greatest benefit, but it is not a common practice: have the team
who will be creating the product build the project development
plan. Many engineers in industry and the DoD have never seen a
detailed plan, let alone participated in making one. The planning
effort might not be considered much fun at first, but the resulting
plan will be popular. Here are two quotes from the end of one
such planning session:

“This is the first time I’ve known what I should be doing on this
project.”

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

CrossTalk—May/June 2014 33

“We should always have a plan.”
Start the project team off with basic planning techniques. Have

the team create a task list, estimate task size in terms of time and
keep the workflows, if there are any, simple.

Introduce Tracking
Now the team has a plan, how are they going to track prog-

ress? Have them use a project tracking tool. There are a number
of commercial programs available, and several of them are free
to use. By using one of these tools, each member of the team
will record their personal time against their tasks, and mark those
tasks as completed when they are finished with them. Emphasize
to the team that tracking their own work will, with very little effort
on their part, provide them with personal insight into the following
areas: Time on task, Earned value, Schedule progress, Forecasts,
and Accuracy of estimates.

Introduce Quality
Will a team have good quality assurance practices right from

the start? That is unlikely. Will they have a quality product? That
depends. Their quality will probably be better than in the era
before they started to make detailed plans, if only because their
software interfaces are usually better defined. The key is that the
process coach starts the discussion on quality which primes the
team for introducing more disciplined quality practices later on.

Build on the Process
Will the team have high-quality personal data at the end of the

first project cycle? Probably not. Most likely they weren’t too dili-
gent in recording their own data, but it is still data. After the first
cycle, the team members will begin to see that their plans have
useful information in them, and they will see that the data wasn’t
as good as it could have been. Most engineers like data and the
desire for better data encourages them to improve the way in
which they have been tracking their effort. It also leads them to
begin wondering “if this data is useful, what else might I track that
would be of interest?” They begin to think “if some process isn’t
bad, more process might be better.” It is in this way that individual
members take themselves from ‘Process Resistors’ to ‘Process
Defenders’ and then on to ‘Process Advocates.’ Once that starts,
the team is on the road to higher performance.

Team Results Over Time
So, the strategy outlined for introducing CPI to Never-Adopters

is to start them out with simple processes and build on them

over time. It will certainly take longer, but will it actually produce
positive results? The answer is yes, as the results of the efforts
of two different types of TPI teams will show: a team of software
testers, and an Interdisciplinary team of Software, Electronic, and
Mechanical engineers.

Team A: The Software Test Team
Figure 2 shows how a team of software product testers fared

over time in their tracking of the actual hours associated with their
Task Time. The first chart shows the data for the first TPI cycle,
and the second for the fourth TPI cycle: a span of two years. The
red lines represent the planned accumulation of task hours as es-
timated during the launches. The blue lines are the actual number
of task hours as logged by the team during the project cycles.

If you move the Actual line of the fourth project cycle to the left
to account for the delay in the start of testing, you can see that the
team is accurately estimating their availability to work on the effort.

Figure 3 shows how the team fared in tracking their earned
value (EV) over the span of the same four project cycles. The red
lines represent what was planned at the launches. The blue lines
are the EV that the team accrued during the project cycles. The
green lines are the actual cost of that EV in terms of hours.

While the actual EV never matches the EV progress as antici-
pated by the planning tool, the actual EV and the actual cost of
that EV are very close. As a result of using the TPI, this team is
able to accurately estimate the size of their tasks, even though
they were estimating solely on the basis of time.

Team B: The Interdisciplinary Team
How well did this approach work for the interdisciplinary TPI

Team composed of software, electronic, and mechanical engi-
neers? The results can sometimes be startling. Figure 4 shows
the team’s performance during their first TPI cycle. The red line
represents the planned accumulation of task hours as estimated
during the launch. The blue line is the number of task-hours as
logged by the team.

It is all the more impressive as they had only one day of TPI
training.

The outcome is equally exciting for their EV tracking (Figure 5),
where the tasks were, for the most part, simple tasks estimated in
units of hours or days, not Source Lines of Code (SLOC) or some
other more direct measurement. The red line represents what
was planned at the launch. The blue line is the EV that the team
accrued over time. The green line is the actual cost of that EV in
hours.

Figure 2: Direct Time charts for a team of software testers: the first cycle on the left and the fourth on the right.

34 CrossTalk—July/August 2014

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

Figure 3: Earned Value charts for a team of software testers: the first cycle on the left and the fourth on the right.

Figure 4: Direct Time chart for an Interdisciplinary
team of engineers from their first project cycle.

Figure 5: Earned Value chart for an Interdisciplinary team of
engineers from their first project cycle.

Table 2: Typical comments from the first project cycle. Color added for emphasis.

First	 Cycle	 Comments	 Second	 and	 Third	 Cycle	 Comments	 Fourth	 Cycle	 Comments	

Launch	 was	 dreaded	 by	 everyone	 More	 comfortable	 with	 the	 process	 	 and	
the	 plan	 let	 me	 know	 what	 to	 work	 on	
next	

Liked	 having	 historical	 data.	 	 Made	 the	
Post	 Mortem	 less	 painful	 than	 in	 the	 past	

“What	 have	 we	 done	 to	 ourselves?!”	 Liked	 consulting,	 designing,	 and	 planning	
together	

Work	 patterns	 are	 emerging	

The	 Launch	 is	 one	 more	 thing	 taking	 time	
out	 of	 my	 availability	 for	 work	

Injected	 discipline	 into	 work.	 	 Helped	 to	
keep	 focus	

Need	 more	 rigorous	 planning	
requirements	

Not	 nearly	 as	 bad	 an	 experience	 as	 I	
thought	 it	 would	 be.	 	 Turned	 out	 to	 be	
relatively	 painless	

Interesting	 to	 see	 the	 kind	 of	 statistics	
being	 collected	

Stopped	 launch	 tasks	 to	 work	 out	 issues	
and	 sync	 team	 understanding	

The	 Project	 Launch	 was	 efficient	 and	
effective	

Emphasized	 the	 importance	 of	 logging	
time	 as	 you	 go,	 instead	 of	 back	 filling	

The	 team	 lead	 and	 planning	 manager	 are	
spending	 less	 time	 on	 preparing	 the	
monthly	 management	 report	 as	 the	
necessary	 information	 is	 readily	 available	

The	 Coach	 accepted	 that	 it	 was	 more	
important	 to	 start	 measuring	 the	 existing	
process	 rather	 than	 force	 the	 team	 to	
adopt	 practices	 that	 the	 team	 will	
probably	 not	 do	

Kept	 the	 Coach	 employed	 	

Next	 time	 we	 should	 have	 more	 detail	 on	
the	 number	 and	 type	 of	 Development	
Tasks	

	 	

	

CrossTalk—July/August 2014 35

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

What About Quality?
It has it been our experience that convincing the never-adopter

teams to perform quality assurance practices, other than the
usual test-and-fix, has been one of the most difficult areas of our
CPI efforts. At the time that this article was written, some of our
teams had on their own initiative taken on peer reviews, and they
do seem to be more open to additional quality control practices,
but they are just getting started on this part of their journey. It is
too early yet to know what sort of progress to expect.

Changes in Attitude
It was hinted at earlier in this article that if a process coach

took the incremental CPI path, the team members’ attitudes
towards process improvement would become more positive over
time. The evidence for that change in attitude may be found in a
comparison of selected comments collected from the launches
and postmortems of four six-month project cycles of four TPI
teams (Table 2).

The teams went into their first project cycle launch with the
idea that it would be a useless, miserable experience. They left
feeling that:

• it wasn’t unbearable
• they had some control over their work
• the plan generated during the launch was their plan
• they would like to have had more detail in the plan
By the Second and Third project cycles the launches are taking

less time, and now that they know what to expect, are beginning
to seem easy. More importantly, to the process coach anyway; the
coach has gone from being seen as the common enemy to being
part of the work environment. In essence they:

• worked together as a team and enjoyed it
• found the rigor of the new processes to be beneficial
• liked that there was data to analyze
• wanted better data from the next cycle
The Fourth cycle comments suggest that after two years of

following the incremental CPI path, the project launches are now
easy, safe, and relatively fun. The teams:

• have historical data they can use to estimate their future
 work

• are beginning to take control of their current work
• are working together to create the plan and iron out the

 unclear parts
• understand that process improvement is saving them time-

 and-effort
These results are evidence of a strong improvement in team’s

attitudes towards CPI.

Final Comments
The long-term goals of Process Improvement should be to

introduce and sustain a culture of continuous process improve-
ment. The results of the incremental approach used by the
authors suggest that not all teams have to take the steep path
towards that goal. After several years of coaching Never-Adopter
teams, NAVAIR Process Coaches have seen steady improvement
in the ability of their TPI teams to estimate their level of effort
and schedule, and have seen positive changes in team member’s
attitudes towards process improvement. While the journey for
these teams is not yet over, it appears that by taking the slow,

incremental path, reluctant teams may be able to make themselves
into process-improvement-oriented teams which actively search for
ways to do business better.

Disclaimer:
CMMI,® CMM,® PSP,SM and TSPSMare registered in the U.S. Patent

and Trademark Office by Carnegie Mellon University.

Table 2: Typical comments from the first project cycle. Color added for emphasis.

ABOUT THE AUTHORS
David Saint-Amand is a Team Process Integration
(TPI) Coach with the Naval Air Systems Command
Process Resource Team. His previous positions
include DCS Corporation Section Manager, Naval
Operations Research Analyst, and Engineering Geolo-
gist and Seismic Safety Consultant. He holds a B.A.
in Geology from the University of California at Santa
Barbara with a secondary emphasis in Computer Sci-
ence. He is a Defense Acquisition University Certified
Level III Life Cycle Logistician and an SEI-Authorized
PSP Instructor.

Mail Stop 6308, 1900 N. Knox Rd.
China Lake, California 93555-6106

Phone: 760-939-2372
FAX: 760-939-0150
E-mail: David.Saint-Amand@navy.mil

Mark Stockmyer is the Software Lead for the
OASuW (Offensive Anti-Surface Warfare) Techni-
cal Project Office at the Naval Air Warfare Center in
China Lake, California. His previous positions include
Fire Control System software engineer for the SPIKE
missile project and systems software engineer at
TouchNet Information Systems, Inc. He holds an M.S.
degree from the University of Kansas in Computer
Science and B.S. degrees from Missouri Western
State University in Computer Science and Chemistry.
He is an SEI-Authorized PSP Instructor.

Mail Stop 6612, 1900 N. Knox Rd.
China Lake, California 93555-6106

Phone: 760-939-3979
E-mail: mark.stockmyer@navy.mil

REFERENCES
1. Hiatt, Jeffrey M. ADKAR: A model for Change in Business, Government and our Community.
 Loveland, CO: Prosci Research, 2006.
2. McFeeley, Robert; IDEAL: A User’s Guide for Software Process Improvement. Software Engineering
 Institute, Carnegie Mellon University, 1996.
3. Rogers, E. M. Diffusion of innovations (3rd edition). New York: Free Press, 1983.

36 CrossTalk—July/August 2014

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

Tom Lienhard, Raytheon Missile Systems

Abstract. Where does our knowledge regarding High Maturity of the CMMI®
come from? Usually from CMMI training classes, CMMI conferences, CMMI lead ap-
praisers, consultants and other CMMI “experts.” And how can we forget the “upfront
material” of the CMMI and the infamous page 80 of CMMI Ver 1.1? What if all these
sources were wrong or, at best, were only painting half the story? After all, these
sources all stem from the same origin.

High Maturity Heresy:
Doing Level 5 Before
Level 4 Without Data

My personal evolution of High maturity understanding is de-
picted in Figure 1 below. It started with the Software CMM® (SW
CMM) where high maturity was usually tied to the statistical con-
trol of defects found in peer reviews. I later became a BlackBelt
and learned all about variation and the analysis of variation. From
there I was exposed to the CMMI and attended the Understand-
ing High Maturity Practices class at SEI, where I learned that
High Maturity was about control charts. It was not until I truly
understood that taking advantage of High Maturity Practices
is about identifying business objectives, and what influences
achieving those objectives, that I was able to pull my knowledge
together and fully comprehend the potential of an organization
that implements High Maturity Practices.

Raytheon Missile Systems (RMS) achieved SW CMM Level 5
in 2001 by statistically controlling defects detected in the soft-
ware development process. Improvement was realized and return
on investment was made however programs were stilling having
the problem of being able to produce product at a price the cus-
tomer was willing to pay. So, what went wrong, RMS was Level 5?

Was the objective of High Maturity to indentify an iterative pro-
cess so statistical process control (SPC) could be applied? Was
it to hang a Maturity Level 5 sticker on the wall? Or was it about
identifying true business objectives and the key processes that
impact those objectives, then statistically controlling those key
processes to maximize the probability of meeting the objectives?
We needed to step back, understand the key business objec-
tives and concentrate on achieving those objectives. Not simply
following what had been up until now, “success” in achieving High
Maturity.

RMS could be described as a “high-volume prototype” factory.
Although RMS builds families of weapons (missiles, projectiles,
etc) each has their own unique objectives. Some are surface
launched, some are launched from aircraft. Some have rocket
motors, some glide. Some are small, some are large. Some are
guided by GPS, some by laser and some by an Inertial Measure-
ment Unit (IMU).

RMS needed to change their approach from one of design-
ing a product, implementing that design, and then re-designing
the product because the design was too expensive or could not
be built in the volume needed to an approach of understanding
the intended use of the product, making capability trades around
affordability and produceabilty, and then designing the product to
maximize affordability and produceabilty, as shown in Figure 2.

The paradigm shift was necessary because a business cannot
survive if they design technically excellent products that can’t
be produced at a price the customer is willing to pay. Analysis

Evolution of a High Maturity Practitioner

SW CMM SW CMMI CMMISix Sigma
BlackBelt

Understand High
Maturity Practices

Understand Business
Objectives

Figure 1: My Personal Evolution of High Maturity Understanding

CrossTalk—July/August 2014 37

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

How to move from a Business that…

Understands
Product

Requirements

Designs A
Product

Determines
Suppliers

Decides
Where To

Build

Evaluate For
Affordability Redesigns

Understands
The Use Of

The Product

Makes
Requirements

Capability
Trades
Around

Affordability

Determines A
Build Strategy

Identifies
Where To Buy

From

Designs To
Maximize This

Strategy

To a Business that

Figure 1: My Personal Evolution of High Maturity Understanding

showed that 70% of product lifecycle costs were determined prior
to the start of development yet over 75% of the cost is spent post
development. In other words, once the design is on paper, over
70% of the cost is locked in.

The ah-ha moment came when RMS realized that the product
lifecycle was expanded when the product was more than soft-
ware, see Figure 3. SW CMM caused the lifecycle to be seen as
development, since there was no manufacturing associated with
software. When the SW CMM was sun-setted and the CMMI took
over, it was easy to duplicate the software solution for high matu-
rity (statistically control the peer review process), replicate for sys-
tems and hardware and claim victory. But keeping the status quo,
focusing on just the development lifecycle, would completely miss
RMS’ business objective – to reduce the Average Unit Production
Cost (AUPC), reduce scrap, and increase yield.

Focus needs to be on the entire product lifecycle, from pre-
concept through production, not just development. If the focus
is just on optimizing the development lifecycle, it might actually
increase the overall lifecycle costs. Or worse, negatively impact
the business objectives, e.g. increase AUPC, increase scrap, and
decrease yield. Production is ultimately where RMS will make a
profit or lose their shorts. A small savings per unit in production
can add up to be far greater than the entire development cost,
refer to Figure 4. RMS was caught in the paradigm that the SW

Figure 2

CMM, CMMI-Dev and industry caused – focusing High maturity
Practices on development.

This was an epiphany. No longer think of the CMMI in terms of
software, hardware, and systems but in terms of System Develop-
ment. Remember what is critical to the RMS’ business. Production
needs to be the emphasis over development. Production is where
cost and time is either minimized or super-inflated. RMS is willing
to invest more resources in development in order to streamline
production. When dealing with software, production is virtually
“CTRL-C” and rarely impacts design decisions. Production is ex-
tremely complex with hardware and is very much impacted by de-
sign decisions. The scope of the lifecycle does not stop at the end
of development but should include manufacturing (production)
and fielding. There was a profound shift in focus from the typical
Software Development 1st, Systems and Hardware Development
2nd to Production 1st and Development 2nd.

In the 1950s SPC was applied to product. Starting in the
1980s, in part thanks to CMM and CMMI, SPC started to be ap-
plied to processes during development. What RMS is doing in the
2010s is looking at the mission objectives of the fielded product
in the pre-concept phase and developing process and product
performance models to predict the capability of the process to
produce products that meet the customers’ needs at a price they
can afford. This enables RMS to compose a defined process that

Figure 3

38 CrossTalk—July/August 2014

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

Figure 4

maximizes the probability of meeting the key objectives and a
design that will not need to be redesigned once it transitions into
production, see Figure 5.

The process and product performance models allow predic-
tions to be made throughout the entire lifecycle by different
groups for different purposes as shown in Figure 6. Beginning
in the pre-concept phase, models and historical baselines from
systems which have previously been built are used to determine
if the concept is even feasible. These models gain fidelity as they
progress through the lifecycle. When actual data becomes avail-
able, the models are recalibrated. In development, these models
are used to predict performance, producibility and affordability,
and optimize the design prior to “bending metal.” During produc-
tion RMS transitions from using models and simulations to SPC.
The collections of models and resulting baselines are captured
across the business for future programs to leverage and the cycle
begins again.

Figure 5

For RMS, the goal is to balance performance, producibility
and affordability to design a product which meets the custom-
ers’ needs at a price the customer can afford. This is embedded
in RMS’ common process and is institutionalized via a plethora
of statistical tools and techniques contained in the Raytheon Six
Sigma Toolbox, including Quality Functional Deployment, Sensitiv-
ity Analysis, Design of Experiments, Reliability Predictions, Design
for Manufacturing Analysis, Process Modeling, Producibility
Assessments, and Cost as an Independent Variable and Process
Capability Analysis.

Once the true business objectives are understood, the first step
is to identify and understand what the customer needs. After that
is established, transfer functions (or models) can be developed
using tools including Process Capability Analysis Toolset (PCAT),
Design Capability Analysis Tool (DCAT),Design and Analysis of
Simulation Experiments (DASE) and Raytheon Analysis of Varia-
tion Engine (RAVE). These models can be used to help identify
the influential factors or key characteristics that have the greatest
impact on the customer needs. (In the CMMI world, these will be
the subprocess that will be statistically controlled). These models
can then be used to perform “what-ifs” and the knobs can be
turned to determine where to set these key characteristics to
maximize the probability of meeting the customer needs. These
setting are captured and a control plan is established and used
during production to ensure the key characteristics maintain
within range. This is iterated at each subassembly and component
level as appropriate.

This process helps eliminate over-design (high cost) and
under-design (high scrap, rework and low quality) to find the
sweet spot allowing RMS to design a product which meets the
customers’ needs that can be affordably produced. This is done
starting at pre-concept through production. In CMMI terms, the

CrossTalk—July/August 2014 39

HIGH MATURITY ORGANIZATIONAL CHARACTERISTICS

Figure 5

programs are predicting performance and optimizing the design
using models and simulations prior to design and development
without collecting actual measures, aka Doing Level 5 Before 4
without data!

Disclaimer:
CMMI® and CMM® are registered in the U.S. Patent and Trade-

mark Office by Carnegie Mellon University.

Figure 6

Figure 7

ABOUT THE AUTHOR
Tom Lienhard is a Sr. Principal Engineer at

Raytheon Missile Systems and a Six Sigma Black
Belt. Tom has participated in more than 50 CMMI®
and CMMI® appraisals both in DoD and Commer-
cial environments across North America and Europe
and was a member of Raytheon’s CMMI® Expert
Team. He has taught Six Sigma across the globe,
and helped various organizations climb the CMM and
CMMI maturity levels, including Raytheon Missile
Systems’ achievement of CMMI® Maturity Level 5.

He has received the AlliedSignal Quest for Excel-
lence Award, the Raytheon Technology Award and
the Raytheon Excellence in Operations and Quality
Award. Tom has a BS in computer science and has
worked for Hughes Aircraft Co., Raytheon, Allied-
Signal, Honeywell and as a consultant for Managed
Process Gains.

Phone: 520-663-6580
E-mail: thomas_g_lienhard@raytheon.com

40 CrossTalk—July/August 2014

UPCOMING EVENTS

CrossTalk—July/August 2014 41

UPCOMING EVENTS

The 26th International Conference on Software Engineering and Knowledge Engineering
1-3 July 2014
Hyatt Regency, Vancouver, Canada
http://www.ksi.edu/seke/seke14.html

SPIN 2014: International SPIN Symposium on Model Checking of Software
San Jose, California, USA
21-23 July 2014
http://spin2014.org

Association of Software Testing: The Art of Science and Testing
August 11-13, 2014 New York City
http://www.associationforsoftwaretesting.org/conference/cast-2014/

SIGCOMM’14 — ACM SIGCOMM 2014 Conference
17-22 Aug 2014
Chicago, Illinois
http://www.sigcomm.org/events/sigcomm-conference

SEFM- Software Engineering and Formal Methods
1-5 Sept 2014
Grenoble, France
http://sefm2014.inria.fr/

APPSEC USA 2014
16-19 Sept 2014
Denver, Colorado
http://2014.appsecusa.org/2014/

International Conference on Software Engineering and Technology
17-18 September 2014
Paris, France
http://www.icste.org/

QSIC 2014 Int. Conf. on Quality Software
Dallas, Tx
October 2-3, 2014
http://paris.utdallas.edu/qsic14

SEDE 2014: The 23rd International Conference on Software Engineering and Data Engineering
New Orleans, Louisiana
13-15 Oct 2014
http://www.wikicfp.com/cfp/servlet/event.showcfp?eventid=33994©ownerid=9837

17th Annual Systems Engineering Conference
27-30 Oct 2014
Waterford Springfield
http://www.ndia.org/meetings/5870/Pages/default.aspx

Upcoming Events
Visit <http://www.crosstalkonline.org/events> for an up-to-date list of events.

42 CrossTalk—July/August 2014

UPCOMING EVENTSUPCOMING EVENTS

To subscribe to CrossTalk, visit
www.crosstalkonline.org and click
on the subscribe button.

SUBSCRIBE TODAY!

CrossTalk—July/August 2014 43

Ever heard of the word “schadenfreude?” It is what is called
a “loanword” entering the English language from German. It
can best be described as that delicious feeling you get when
you see somebody cut you off at a four-way stop, but then
immediately run into something. Technically, it is defined as
pleasure derived from the misfortunes of others?” It is a very
interesting word—it has a diverse background (being found in
many languages), and various studies have shown the feeling of
schadenfreude is linked to envy, possibly linked to a particular
sex (some studies show that men feel it more), and also possibly
linked to a feeling of low self-esteem. However, I personally
think that that many/most/all software practitioners get some
delight as seeing (or reading) about a colossal software failure.

Way back in 1996, a very good friend of mine, then-Captain
Thomas Schorsch (now Retired Lt. Col, Ph.D.) was a student
at the Air Force Institute of Technology. He wrote an article
called, “The Capability Immaturity Model,” published in CrossTalk
(November 1996, a copy available at http://cs.hbg.psu.edu/
comp413/cimm.pdf). In it, he described additional negative
CMM® levels describing software immaturity. I wish I could turn
back time—so I could convince Tom to let me be his co-author.
I am in awe of the cynicism, sarcasm, and validity of Tom’s
research.

But such cynicism and sarcasm did not, unfortunately, start
with Dr. Schorsch. Back in the early 1970s I had the following
posted on my wall when I was an applications programmer back
at Strategic Air Command:

Six Phases of A Software Project
1. Enthusiasm
2. Disillusionment
3. Panic and hysteria
4. Search for the guilty
5. Punishment of the innocent
6. Praise and honor for the nonparticipants
This list was probably not new even back in the 1970s. I

can find similar sayings on the web, and this particular list was
located at http://en.wikipedia.org/wiki/Six_phases_of_a_big_
project). I am certainly not the originator.

In 1997, Robert Glass published a book entitled “Software
Runaways: Monumental Software Disasters.” I have a copy, and
enjoy reading it over from time to time. You can almost feel the
joy when you read about such massive failures. In fact, to quote
from the Amazon.com “blurb” on the book, Runaways brings
a software engineer’s perspective to projects like: American
Airlines’ failed reservation system, the 4GL disaster at the New
Jersey Department of Motor Vehicles, the NCR inventory system

that nearly destroyed its customers, and the next-generation
FAA Air Traffic Control System that collapsed.

I really enjoyed reading the book the first time I read it, and as
I said, I try to re-read it yearly (enjoying it just as much). In fact,
I am pretty sure I know why I enjoy reading about spectacular
failures – there are two reasons: I was not part of the project,
and, there are valuable lessons to be learned from spectacular
failures.

The very next year, Glass followed up with a similarly great
book, “Computing Calamities: Lessons Learned from Products,
Projects, and Companies That Failed.” I enjoy re-reading this
book, also! You see, Robert Glass understands – sometimes the
only benefit from failure is that you can learn from it. Some-
times being a bad example is the last, great act of a failing
software project. There is no real joy or pleasure in seeing a list
of failures and associated costs. There is, however, a lot to be
learned from seeing how the failure developed, what steps were
ineffectively implemented to stop the failure, and what the final
straw was that broke the software engineer’s back!

And that’s the thing: I am not REALLY enjoying the massive
failures of others. What I am appreciating is that I can learn
from their failures without having to actually undergo the failure
myself. I don’t want to be part of a multi-million dollar failure.
However, I certainly appreciate “lessons learned” that allow me
to effectively reason “Wow – what’s happening to me is what
happened in the massive XYZ failure, and they tried this to fix it,
and it didn’t work. Maybe I better try something else.”

I recently saw—for the umpteenth time—the movie Apollo
13. I love the part where Ed Harris, playing Gene Kranz (Flight
Director) says, “Failure is not an option!” In spite of massive
failures, they managed to bring the Apollo 13 crew home safe,
using slide rules for complex calculations. Unfortunately, that
was hardware, and this is software. Failure for software projects
is, unfortunately, almost always an option—from the simplest
printer driver to complex flight software. To make software work,
it takes a lot of hard work, process discipline, and adherence to
standards, directives, and regulations. It takes a lot of research
on “lessons learned” from other projects. It also takes best
practices, good lifecycle selection, and great designers mak-
ing workable designs—architectural, data, interface and module
design.

And—maybe learning a bit from other, similar projects that
failed.

All of this takes high maturity. As I frequently tell my students,
anybody can write code. Want to craft software instead? That
takes maturity and discipline.

Disclaimer:
CMM® is registered in the U.S. Patent and Trademark Office

by Carnegie Mellon University.

David A. Cook, Ph.D.
Stephen F. Austin State University
cookda@sfasu.edu

Schadenfreude and
Mature Software
Development

BACKTALK

To subscribe to CrossTalk, visit
www.crosstalkonline.org and click
on the subscribe button.

SUBSCRIBE TODAY!

CrossTalk thanks the
above organizations for
providing their support.

Exciting
and Stable
Workloads:
 �Joint Mission Planning System
 �Battle Control System-Fixed
 �Satellite Technology
 �Expeditionary Fighting Vehicle
 �F-16, F-22, F-35, New Workloads
Coming Soon
 �Ground Theater
Air Control System
 �Human Engineering
Development

Employee
Benefits:
 �Health Care Packages
 �10 Paid Holidays
 �Paid Sick Leave
 �Exercise Time
 �Career Coaching
 �Tuition Assistance
 �Retirement Savings Plans
 �Leadership Training

Location,
Location,
Location:
 �25 minutes from Salt Lake City
 �Utah Jazz Basketball
 �Three Minor League
Baseball Teams
 �One Hour from 12 Ski Resorts
 �Minutes from Hunting, Fishing,
Water Skiing, ATV Trails, Hiking

Contact Us:
Email:

309SMXG.SODO@hill.af.mil
Phone: (801) 777-9828

www.facebook.com/309SoftwareMaintenanceGroup

	Front Cover
	Table of Contents
	From the Sponsor
	Agile and the Definition of Quality
	High Maturity Is Not A Procrustean Bed
	Disciplined Learning
	Achieving Software Excellence
	Improving Software Through Metrics While Providing Cradle to Grave Support
	Paths of Adoption
	High Maturity Heresy
	Upcoming Events
	BackTalk
	Back Cover

