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ABSTRACT 
Flow regime Identification is an integral aspect of 
modeling two phase flows as most pressure drop and 
heat transfer correlations rely on a priori knowledge of the 
flow regime for accurate system predictions. In the 
current research, two phase R-134a flow is studied in a 
7mm adiabatic horizontal tube over a mass flux range of 
100-400 kg/m

2
s between 550-750 kPa. Electric 

Capacitance Tomography results for 196 test points were 
analyzed using statistical methods and neural networks. 
This data provided repeatable normalized permittivity 
ratio signatures based on the flow distributions. The first 
four temporal moments from the mean scaled permittivity 
data were utilized as input variables. Results showed that 
only 80 percent of flow regimes could be correctly 
identified using seven flow regime classifications. 
However reducing to five more commonly used regimes 
resulted in an improvement to 99 percent of the flow 
regimes correctly identified. Both methods of neural 
network training resulted in errors that were off by mostly 
one flow regime classification. Further analysis shows 
that transition cases can oscillate between two separate 
flow regimes at the same time.  

NOMENCLATURE 

A = Input matrix 

(t) =     void fraction 
b = Target vector  
D = Channel diameter (m)  
DH = Hydraulic diameter (m) 
  = Normalized permittivity ratio 
  ̅(𝑡) Spatial mean for  
G = Total mass flux (kg/m2s)  
L = Channel length (m)  
n = Number of electrodes  
N =  Number of bins 
x = coefficient vector 
Subscripts 

f = liquid 
v = vapor 
Acronyms 

ECT  = Electrical capacitance tomography 
fps = Frames per second 
ID = Inner diameter 
LBP = Linear back projection 
lpm = liter per minute  
OC = Observation channel 
PDF =  Probability density function 
 

INTRODUCTION 

Flow regime identification is necessary for accurate 
prediction and modeling of two-phase flow systems. 
Classifications descriptions focus on tracking the evolution of 
liquid and vapor distributions within the channel over time. 
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Body forces acting on the two-phase mixture influence phase 
distributions as well as the shape of the interface between 
phases. Horizontal channel flow has three major classifications, 
bubbly, intermittent and annular flows; where intermittent flow 
is further divided into plug, slug and stratified wavy flows 1-3.  
  Most correlations for heat transfer coefficient or pressure 
drop require a priori knowledge of the flow regime based on 
steady state operation of the channel. Measurement and 
detection of changes in flow regime improve thermal 
management system modeling efforts. Historically, 
identification and classification of horizontal two-phase flow 
regimes relies on human interpretation of measured signals. 
Variations in flow regime labels and identification definitions 
results in discrepancies when comparing results from one 
research effort to another. Rosa et al.4 used six identification 
groups instead of the traditional four to capture transitions 
better when observing vertical two-phase flows. Departures like 
these make direct comparison between different techniques 
difficult.  
 Classification techniques include wavelet transformations, 
fractal analysis, pressure signature tracking, ECT signature 
analysis, and neural networks5-9. Each technique has advantages 
and disadvantages. Electrical Capacitance Tomography (ECT) 
is a non-invasive impedance measurement method that 
produces mean normalized permittivity ratio,   ̅, values that are 
directly linked to void fraction correlations. This paper utilizes 
ECT data as input parameters for neural networks.  
 Hu et al.10 studied the behavior of two-phase gas/solid 
vertical flows using electrostatic techniques. Raw electrostatic 
signals showed random fluctuations with only minor 
differences in amplitude. The signals were analyzed using three 
different techniques, short-term average energy, Mel frequency 
cepstrum coefficient, and cepstrum. Each of the individual 
signal analysis techniques resulted in marginal performance 
from the neural network (67% to 89% recognition rate), 
however, combining the three techniques increased the 
accuracy to 97%.  
 Mi et al.11 points out that most flow pattern maps depend on 
superficial velocities, however in most systems these 
parameters are often impossible to measure directly. As a result 
they studied void fraction measurements based on impedance 
measurements. However, they needed to remove system noise 
and therefore used simulated impedance signals as input data 
for their neural network. Two different neural network 
techniques were used to sort the data, a supervised neural 
network and a self-organizing neural network. Results showed 
good agreement between the techniques. Comparisons with 
existing empirical data in Mishima and Ishii12 showed that 
neural networks indicate proper flow regime classifications.  
 Rosa et al.4 investigated the use of neural networks in 
vertical liquid vapor flows. Their work compared results 
obtained based on prior identification via a human specialist 
with a clustering algorithm that automatically binned the data 
based only on data signals. The results from this study suggest 
that the use of a human specialist to visually classify flow 

regime labels before training in the neural network improved 
network accuracy by 40%.  
 Ghosh et al.13 compared data collected with a ring electrode 
configuration with that of a parallel wire configuration for 
counter current vertical pipe flow. The results showed that data 
collected with the ring probe failed to capture the 
hydrodynamic properties of the two phase air water system.  
However, the data collected with the parallel wire probe was 
sufficient to predict flow regimes. Data analysis looked into 
statistical parameters based on the parallel wire probe signals. It 
was found that the mean and standard deviation were most 
helpful, while the skewness and kurtosis did not capture 
changes in flow conditions.  
 The research presented in this paper focuses on ECT signal 
analysis of horizontal two-phase refrigerant flows. Neural 
networks are applied, varying input parameters and algorithm 
control of the network, to investigate the influence on flow 
regime identification. This paper consists of a brief 
experimental description, with sections focusing on 
visualization results and ECT signal interpretation. The 
automatic flow regime identification using neural networks is 
then explained. Finally, results are then presented and discussed 
followed by concluding statements.  

EXPERIMENTAL APPARATUS  
 A schematic for the experimental setup is provided in 
Figure 1. The apparatus for the current work consists of two 
separate loops, 1) R-134a test loop and 2) Water Cooling loop. 
A pumped refrigeration loop is utilized to ensure the purity of 
the refrigerant by avoiding the use of lubrication oils. Single 
phase liquid refrigerant enters a minichannel heat exchanger 
which is heated by two aluminum nitride heaters resulting in 
two phase flow. The heat exchanger has 40 rectangular sections 
with a hydraulic diameter, DH, of 1.4mm. Exiting two phase 
flows mix in an exit plenum before entering a clear, fused 
quartz, DH = 7mm ID observation channel with downstream 
length of 300 diameters.  

 
Figure 1. Schematic of two phase flow system. 

 The observation channel is equipped with thermocouple 
and pressure transducer measurements at 0.35m increments. 
Transparent channel sections allow for real time observation 
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and recording using a Phantom V4.2 high speed video camera. 
A non-intrusive electrical capacitance tomography section is 
wrapped around the channel and used to measure the liquid-
vapor distribution traveling through the channel. Both high 
speed video and ECT measurements are taken between an L/D 
of 280 and 300 to ensure that the two phase flow is fully 
developed. Testing was performed with refrigerant saturation 
conditions set for room temperature of 20 °C. Minimal 
deviations from this temperature during testing provide grounds 
for an adiabatic assumption. 

 A condenser removes the heat from the two-phase 
refrigerant, returning it to a single-phase liquid flow entering 
the receiver. Uncertainty measurements are tracked for all 
equipment in the system. Type T thermocouples were 
calibrated to ±0.1 °C using a Fluke constant temperature bath. 
Omega PX-409 pressure transducers were calibrated to ± 0.1% 
full scale using a Heise handheld pressure calibrator between 
35 and 760 kPa. Finally, a McMillan flow meter was calibrated 
to 0.6% full scale using Air Force Standard F242007 for mass 
flux from 0-500 kg/m2s. The condenser is connected to a 
NESLAB RTE 17 constant temperature bath with temperature 
stability of ± 0.01 °C. 

Non-invasive measurements are accomplished using a high-
speed video camera and the ECT measurement system.  A 
phantom V4.2 high-speed video camera provides the ability to 
analyze the two-phase flow allowing for a subjective 
classification technique. The ECT system is comprised of a 
clamp on sensor and an electronics box that handles control, 
data acquisition and data reduction for the sensor. The sensor is 
approximately 150 mm long and consists of grounded entrance 
and exit regions on either side of eight 51mm long electrodes 
positioned axially along the tube at equal angular spacing, see 
Figure 2.  The electronics box contains a power supply and 
software to sequentially apply a voltage to one of the eight 
electrodes and measure the resulting voltage at each of the 
remaining electrodes.  

 
Figure 2. ECT Sensor with eight electrodes. 

A single tomogram is generated by taking a series of 28 
individual measurements in quick succession (n(n-1)/2 = 28). 

Tomograms are graphical representations of numerically 
calculated normalized permittivity ratio values that represent 
the liquid-vapor distribution.  The normalized permittivity ratio 
is given as   (𝑥̃, 𝑡) = ( (𝑥̃, 𝑡) −  𝑔)/( 𝑓 −  𝑔)  where f and g 
are the permittivities of the liquid and gas phases. 𝑥̃ represents 
the spatial variables, x, y and t is time. This process assigns a 
value of zero for complete vapor and a value of 1 for complete 
liquid. Tomograms values are calculated using a linear back 
projection reconstruction algorithm that creates a 32x32-pixel 
map. Each pixel value, or sub-volume, is a volumetric 
representation proportional to the normalized permittivity ratio 
within the measurement volume of the sensor.  

The software accounts for the presence of the quartz tube by 
taking single phase reference measurements with vapor only or 
liquid only. Because of the length of the electrodes it is 
important to note that each measurement is proportional to a 
volume and not a cross section. Thus, the tomogram will have 
regions that are assigned values of permittivity between zero 
and one because the sub-volume associated with a given pixel 
can consist of both liquid and vapor at the time of the 
measurement.  
The volumetric representation and the time to take the 
measurements limits the resolution of the sensor. For example, 
at the fastest setting, it takes approximately 17ms to take a 
frame with a millisecond delay between frames. In this time, a 
feature that is moving at approximately 2.8m/s would pass from 
the entrance to the exit of the sensor and the recorded 
permittivity would be an average during that time. This is not a 
problem for stratified or annular flows that have stable phase 
distributions but could cause problems during intermittent 
flows. What is being used for flow regime identification is the 
spatial mean normalized permittivity ratio, or liquid fraction, 
  ̅(𝑡) =

1

𝐴
∬   (𝑥̃, 𝑡) 𝑑𝐴. For the present paper the data 

represents the values averaged over three frames taken at 
approximately 20ms each to provide smoothing. The spatial 
average is taken over the 812 pixel values inside of the tube. As 
mentioned previously, the value for   (𝑥̃, 𝑡) is averaged over 
the length of the sensor thus it is averaged over time and 
volume and not an instantaneous value at a given cross section. 
A complete description of the ECT measurement process can be 
found in Kreitzer, 201214.  

EXPERIMENTAL ANALYSIS 
 Two phase flow regimes 

 Typical horizontal two phase flow studies are divided into 
five regimes, bubbly, plug, slug, stratified wavy, and annular 
flows. High speed video analysis demonstrates the liquid vapor 
distributions for each flow regime as seen in Figure 3. Each test 
point described in this paper is accompanied by high speed 
video for visual verification of the measured void fractions 
using ECT signals. Brief descriptions of each flow regime 
follows. 
 Bubbly flow is the first flow regime beyond that of single 
phase liquid flows. Small discrete bubbles are formed and 
move along the top of the channel. Channel size dictates that 

Grounded Screen 

Electrode 

Insulation 

 
 
 

Measurement 
Volume 

1 

2 3 

8 

7 6 

5 

4 

Approved for public release; distribution unlimited.



 4 Copyright © 2013 by ASME 

gravitational and buoyancy forces dominate. Bubble sizes vary, 
but are typically smaller than the channel diameter.  
 Plug flow occurs when adjacent bubbles coalesce into small 
Taylor bubbles, separated by liquid plugs. The bubble diameter 
remains smaller than the channel diameter and the length 
extends to several channel diameters. Bubbles often consist of a 
larger rounded front section followed by a smaller slightly 
elongated tail section. 
 

 
 

 
 

 
 

 
 

 
 

Figure 3. High speed video images depicting: a) Bubbly, b) 

Plug, c) Slug, d) Stratified wavy, and e) Annular horizontal 
channel flows. 

 Slug flow is a continuation of plug flow where the Taylor 
bubbles continue to grow in length and can approach 50-80 
times the channel diameter. Bubble shapes start to form a 
consistent bullet shape with a rounded nose and blunt tail. The 
diameter of the vapor bubbles starts to approach the channel 
diameter. Liquid slugs separate vapor bubbles and can entrain 
small dispersed bubbles.   
 Stratified wavy flow occurs with higher vapor velocities. 
The clearly defined liquid slugs are no longer present and a 
continuous vapor layer occurs along the top of the channel. 
Instabilities remain along the interface between the liquid and 
vapor sections that can be observed as waves propagating down 
the length of the channel. These waves will not reach the top of 
the channel; however will result in a wetting of the walls of the 
channel leaving behind thin films.  
 Annular flow occurs when the vapor velocity increases 
further and a ring of liquid flow surrounds a central core of 
vapor flow. Due to channel size, a thicker layer will remain 
along the bottom of the channel. Small waves still exist 
resulting in a rippled view along all sides of the channel. 
 

ECT Signal Analysis  

 The normalized permittivity ratio provides a non-intrusive 
method for tracking the distribution of liquid and vapor within 
the channel over time. The mean normalized permittivity ratio 
represents the liquid fraction in the sensor volume. From these 
measurements, the void fraction,  can be calculated as 
 (𝑡) = 1 −   ̅𝑡) as described in Kreitzer14. Each flow regime 
results in a unique ECT permittivity pattern that can be used in 
differentiating between flow regimes. Figure 4 reveals how the 
normalized permittivity ratio values show a clearly identifiable 
trend between flow regimes. These plots provide a method for 
observing the void fraction, by looking at the mean of the 
normalized permittivity ratio. Similarly, the liquid vapor 
oscillations can be identified by watching the peak and valley 
values. Figure 5 converts the information presented in Figure 4 
into Probability Density Functions (PDFs) showing the 
distribution of normalized permittivity ratio values for each 
classification; all 196 cases are plotted in Figure 8. 
This section explains typical measurements for   ̅(𝑡)  and the 
subsequently formed PDF for each of the five main flow 
regimes observed during two phase flow in a horizontal 
channel.  
 Bubbly flow presents a relatively smooth curve with values 
of   ̅ ranging between 0.85-1. Bubbly flow is dominated by 
small discrete bubbles that are much smaller than the 
measurement volume. Thus detection of individual bubbles is 
nearly impossible.  However, signal fluctuations can occur 
when multiple bubbles pass through at the same time. Taking 
the PDF of bubbly flow shows single peak near the upper end 
of the permittivity range indicating that most of the flow is 
liquid with a small amount of vapor present.  
 Plug Flow demonstrates growth of a semi-periodic 
fluctuation in   ̅ with values ranging from 0.7-0.95. This 
fluctuation is expected as the growing vapor bubbles coalesce 
and form Taylor bubbles separated by liquid plugs during flow. 
Observations of the PDF show two distinct peaks indicating the 
bounds of the alternating liquid and vapor phases. 
 Slug flow permittivity values range from 0.3-0.95. The 
large fluctuations are explained by the periodic passage of long 
vapor bubbles and short liquid slug regions with almost 
complete liquid fill and occasional bubbles. Looking at the PDF 
curve shows that the two peaks shows further separation 
showing an increase in void fraction and greater dependence on 
the oscillatory behavior of the flow.  
 Stratified wavy flow shows a decrease in   ̅ between 0.2-
0.4. The signal appears to be noisier due to the passage of 
randomly sized waves through the channel at different 
intervals. The PDF curve shows a single, wide spike with a 
slightly longer tail on the right hand side showing that the 
periodic passage of vapor pockets has dissipated leaving 
constant vapor presence along the top half of the channel. The 
extended tail on the right hand side of the PDF curve indicates 
that occasional waves of measureable amplitude are present.  
 Annular flow signals smooth out greatly as the waves from 
stratified wavy flows subside.   ̅ values range from 0.1-0.25. 

a) 

b) 

c) 

d) 

e) 
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The PDF curve shows a sharper and narrower peak with a 
smaller   ̅ value indicating mostly vapor presence in the 
channel.  
 Table 1 presents an average value for each of the first four 
moments of the   ̅ curves for all 196 test cases. Variance 
values provide an indication of the amplitude of the fluctuations 
of the ECT data and indicate a maximum value associated with 
slug flow, which is to be expected. Skewness values tend to 
increase with changes in flow regime and kurtosis values show 
less of a definitive trend. This data is used in the next section as 
input data for the neural network. 

 
Figure 4. Selected   ̅data plotted for each flow regime: a) 

Bubbly, b) Plug, c) Slug, d) Stratified wavy, and e) Annular 
flows.  

Table 1. First four moments of   ̅ curves corresponding to 196 

test cases over five categories.  

Flow 

Regime 
Mean Variance Skewness Kurtosis 

Bubbly 0.9443 0.0010 -0.4446 2.0435 
Plug 0.8459 0.0084 -0.2808 2.4916 
Slug 0.5671 0.0589 0.4865 1.6134 
St. Wavy 0.2509 0.0024 0.4697 2.7235 
Annular 0.1773 0.0001 0.7320 3.6014 
  

AUTOMATIC FLOW REGIME IDENTIFICATION  
 The raw ECT data for a given case is represented by a 256-
row and 812-column matrix of values between zero and one, 
inclusive. Each row of the matrix or tomogram frame 
represents a volumetric slice in time and consists of 812 pixels

 
Figure 5. PDF of   ̅ plotted for each flow regime: a) Bubbly, b) 

Plug, c) Slug, d) Stratified wavy, and e) Annular flows. 

calculated by ECT Toolsuite. Each frame is spatially averaged 
resulting in a   ̅ value. The averaged data results in a single 
column vector of   ̅ data versus time, for each test point. 
Similar calculations form column vectors representing the 
minimum and maximum of each frame with respect to time.
 To further reduce the data, several options are employed. 
Firstly, summary statistics of the   ̅ data are calculated over the 
entire 256 frame data set (~15 seconds), including the mean, 
variance, skewness, and kurtosis. Using this data reduction 
technique reduces the number of data points by over 200,000 
and formed four input parameters for each case. Unfortunately, 
this limited information proved insufficient to provide accurate 
flow regime identification.  
  Secondly, subsets of the data vector can be extracted to 
represent the entire signal. Obviously, care must be taken not to 
truncate too much data as important characteristics can be lost. 
Experience guides the decision between computational 
economy and data fidelity. The first 50 frames of each ECT 
data set were determined to capture the behavior while reducing 
the number of input data points.  

a) 

b) 

c) 

d) 

e) 

c) 

d) 

e) 

* 

* 

* 

* 
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* 

b) 

a) 

Approved for public release; distribution unlimited.



 6 Copyright © 2013 by ASME 

 Finally, the   ̅ data can be represented by a PDF. The PDF 
is generated by applying a smoothed curve fit of   ̅ histogram. 
A histogram partitions the data by counting the number of data 
points that fall within the boundaries of predetermined bins. In 
this way, the 256 length vector of   ̅ data is summarized by N 
integer values, with N equal to the number of bins. The PDF 
provides a metric for observing the range and spread of the 
data. All data presented in this paper uses 50 bins to allow 
direct comparison with the inputs.  
 All three methods can be used independently or in combination 
to create input parameters for neural network training. Different 
combinations of concatenated data were used to provide training 
inputs. Four separate network inputs were used to test the 
performance for five flow regime labels. The first test used only 
the four summary statistics from 15 seconds of data. Second, fifty 
values of   ̅ calculated from the first 50 frames of ECT data were 
used. Third, magnitudes of 50 PDF bins from three seconds of data 
were used. Finally, a combination of the four statistics, 50 values 
of   ̅, and the 50 PDF bin magnitudes were used forming 104 
inputs. The first and last networks from the five flow regime label 
tests can be directly compared with the results using seven flow 
regime labels. 
 Similar to the conclusions made by Rosa et al.4 visual 
observations indicated that transition regions exhibited slightly 
different behavior and were therefore given different classification 
labels. However, closer examination after testing showed that the 
statistics and trends of   ̅ values showed little difference. 
Reductions in the number of classifications from seven to five 
resulted in improved network accuracy during a second set of 
network training and testing.  
  
Neural Network 

 An artificial neural network consists of an interconnected 
arrangement of computational nodes. Based on its arrangement, 
the neural network can map any number of inputs to any 
number of outputs. In our case, the number of outputs is one 
and consists of an integer regime classifier for each power and 
flowrate case. The various combinations of inputs to the neural 
network were described in the previous section. 
 For the current work, a function fitting neural network was 
employed with ten nodes in the hidden layer (see Figure 6). The 
nodes utilized a hyperbolic tangent transfer function. The input 
cases (ranging from 2-113 parameters for each of the 196 test 
points) were divided randomly such that 70% were used to train 
the neural network, 15% were used for validation, and 15% 
were used for testing. The training of the network was 
accomplished with the Levenberg-Marquardt algorithm and 
performance was tracked using the mean squared error15. The 
goal of training is to identify the constants that comprise the 
weights and biases of each artificial neuron. 

 
Figure 6. Schematic representation of present Neural Net 

architecture (generated by MATLAB). 

 A single training session does not produce a high 
correlation between the target regime classifiers and those 
predicted by the neural network. Consequently, the neural 
network is retrained by supplying it with newly randomized 
subsets of the input and target data. This is repeated until the 
neural network can predict the targets to a high accuracy, 
usually 90% or better. Since the outputs of the neural network 
are floating point numbers, they are rounded to the nearest 
integer before comparison to the target values. In the present 
work, the neural network had to be retrained around ten times 
to reach the desired accuracy. 
 Many different arrangements of the ECT data have been 
tried as inputs to the neural network with varying degrees of 
success. As mentioned before, the 104 length vector provided 
the best accuracy using five flow regime classifications. To 
evaluate a new case, an input vector was formulated from its 
raw data and sent to the neural network, which provided a 
single predicted value of flow regime. 

RESULTS 

 The use of neural networks can be complicated by the 
plethora of options available, such as training methodology, 
number of nodes, number of hidden layers, error calculation, 
regularization method, and so forth. Adjustments were made to 
the training methodologies available in the software package. 
Ultimately, no method beyond the default one provided any 
better neural network performance or reduction in training time. 
Also, while heuristics exist to help guide one in choosing the 
number of layers and nodes, no more than the numbers 
presented earlier were required. 
 Figure 7 shows a map of the heater power and flowrate 
cases, separated into their visually determined flow regimes. 
Generally, there are demarcations between the regimes; 
however, overlapping data points do exist, especially along the 
boundaries. One reason for this is the often stochastic behavior 
of transition regimes, ones where the flow exhibits 
characteristics of two adjacent regimes. Great care has been 
taken to label these transitions correctly, or, in the case of great 
uncertainty, eliminate them altogether.  

Figure 8 presents a smoothed PDF overlay showing all 196 
cases on top of each other. This figure demonstrates that there 
is clear seperation between each of the first four flow regimes; 
however there is less of a distinction between stratified wavy 
and annular flows. Bubbly flow shows a single peak between 
permittivity vlaues of 0.8 and 1. Plug flow shows two peaks, 
one around 0.3 and a larger peak around 0.9. Slug flow 
similarly shows two peaks with the first occuring around 0.2 
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and the second occuring around 0.9.  The difference between 
the two is the size and location of peaks. For plug flow the 
larger amplitude peak occurs at higher permittivity values 
indicating lower void fractions, while slug flow sees the larger 
peak at much lower permittivity values indicating higher void 
fractions. Another difference between these two flow regimes is 
the overall spread of the  PDF.  Slug flow typically has a wider 
range of permittivity values accounted for in each PDF curve, 
which is to be expected due to the larger difference between 
vapor and liquid levels. Stratified wavy flow has a single large 
peak occuring around 0.25 with a long tail on the right hand 
side.  Ocassionally the tail ends with a peak around 0.9 
indicating the occurance of short, large-ampltitude waves 
traveling through the channel. Finally, annular flow shows a 
single peak occuring for permittivity values between 0.1 and 
0.2.  

 
Figure 7. Flow map for the cases in the present work. 

The largest possiblitiy of mislabled flow regimes occurs 
during the trasition regions between adjacent flow regimes. In 
this case, the flow is actually in one regime part of the time and 
the neighboring regime the rest and thus exibits characteristics 
of two flow regimes when averaged over a long enough time 
interval. Since the behaviour of stratified wavy closely 
resembles that of annular flow under certain circumstances, and 
flow velocities are much faster, a greater possiblility for mis-
labeling occurs during this transition.  

Table 2 presents the accuracy results from the neural 
networks using seven flow regime labels. The second column 
provides the number of cases tested for each flow regime listed 
in the first column. The third column presents the results of the 
percent accurate for each flow regime and an overall accuracy 
for the network generated using only the four summary 
statistics. This network identifies bubbly, plug and slug flow 
well, while performing poorly for elongated bubbly, 
intermittent, stratified wavy, and annular. Increasing the 
number of input parameters to include the four summary 
statistics, the 50   ̅ values, and the 50 bin PDF shows only a 

slight improvement in overall accuracy with the most notable 
improvement occuring for annular flow.   
 

 
Figure 8. Overlapping PDF plots for each flow regime show 

consistency in labeling for each of the five flow regimes. 

Table 2. Seven-label flow regime identification results of neural 

network analysis for 196 test cases using a combination of 

statistics,   ̅, and PDF values, forming 104 inputs.  
Flow Regime #  Stats (4) Combined (104) 

Bubbly 10 90.0 100 
Elongated bubbly 2 50.0 100 
Plug 18 94.4 88.9 
Slug 35 91.4 82.9 
Intermittent 65 72.3 75.3 
St. Wavy 45 60.0 71.1 
Annular 21 61.9 90.5 

Total 196 75% 80% 

 Table 3 presents the neural network results for the five 
reduced flow regime classification labels. A second series of 
neural networks was created for four sets of input parameters. 
Similar to the data presented in Table 2 the first and second 
columns represent the flow regime labels and the number of 
test cases at each regime. The third column presents the 
accuracy for each regime using only the four summary 
statistics. Comparing the results in this column to the data 
presented using seven classifications shows a dramatic 
improvement from 75 % to 90 %. Next, the fourth and fifth 
columns show the results for the first 50   ̅ values and 50 PDF 

(*) 
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bins respectively. Each of these methods alone shows a further 
increase to 97% with a couple regimes seeing 100 % accuracy 
for each. Finally, the last column presents the concatenation of 
summary statistics, 50   ̅ and 50 PDF bins. As would be 
expected this results in better agreement and the network shows 
almost perfect accuracy of 99%.  

Table 3. Five-label flow regime identification results of four 

separate neural networks, comparing statistics,   ̅, PDF, and a 

combination of all three (Number of input parameters in 
parenthesis).  

Flow 

Regime 
#  

Stats 

(4) 

ECT 

(50) 

PDF 

(50) 

Combined 

(104) 

Bubbly 12 100 100 100 100 
Plug 18 83.3 83.3 100 100 
Slug 35 91.4 97.1 91.4 94.2 
St. Wavy 65 81.5 96.9 98.5 100 
Annular 66 96.7 100 96.7 100 

Total 196 90% 97% 97% 99% 

 
 Figure 9 presents error histograms for the combined input 
values for seven and five classification labels respectively. 
Using unrounded output values generated from the trained 
neural network and taking the difference with the expected 
target values provides a value that tracks how far off the 
network was with each prediction. Since the network generates 
output values on either side of the expected target the histogram 
shows both positive and negative values showing both over and 
under predictions. Any error value within ± 0.5 will represent 
correct regime identification. Any value outside of these 
bounds is considered to be incorrect. Values ranging between 
0.5 and 1.5 on either side will represent a misclassification by 
one regime. Values larger than this are off by more than one 
regime. It is clear from Figure 9 that reducing the number of 
flow regime classifications from seven to five results in much 
less error, with no errors larger than 1.5 indicating that all data 
is within one flow regime of the expected targets.  
 Accuracy of the neural networks improved from 80% to 
99% by reducing the number of flow regime classifications 
from seven to five. This improvement shows that transition 
cases exhibiting behavior of adjacent flow regimes prove 
difficult for neural networks to identify. Further testing is 
recommended to analyze this dependency in more detail.  
 

 
Figure 9. Histogram of errors for the combined data, comparing: 

a) 7 classification labels to b) 5 classification labels. 

CONCLUSION 
A novel technique for automated flow regime identification 

was presented in this paper. ECT signals were tracked for 196 
different test points by adjusting flow rate and heater input 
power for horizontal 7mm channel flows of R134a. Mean 
normalized permittivity ratio values studied over time were 
compared to visual analysis of high speed videos using a neural 
network.  

The results presented in this paper clearly show that using 
the five most commonly documented flow regime classification 
labels in the literature resulted in better performance by the 
neural network. An 80% accuracy was seen using seven flow 
regime labels and 104 input parameters combining the four 
summary statistics, 50 ECT values, and 50 PDF bins. Reducing 
the number of flow classifications to five and only using the 
four summary statistics resulted in an improvement to 90%. 
Additional improvements from 90% to 99% were realized by 
increasing the number of input parameters from four to 104 by 
combining a three input types.  

Limitations of the currently developed neural network 
were test points that exhibited behavior of two separate flow 
regimes. Transition points need to be investigated further by the 
use of two and three level neural networks. Additionally desired 
tests include a comparison of the neural network developed for 
this paper with a new channel setup using different size 
channels.  
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