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ing attributes of a design that require human input, such as
maintainability of a vehicle. The challenge is to correctly es-
timate the design scores using a massive and diverse crowd,
particularly when only a minority of evaluators give correct
evaluations. As an alternative to simple averaging, this
paper introduces a Bayesian network approach that models
the human evaluation process and estimates design scores,
taking human abilities in evaluating the design into account.
Simulation results indicate that the proposed method is
preferred to averaging since it identifies the experts from
the crowd, under the assumptions that (1) experts do exist
and (2) only experts have consistent evaluations. These
assumptions, however, do not always hold as indicated by
the results of a human study. Clusters of consistent yet
incorrect human evaluators are shown to exist along with
the cluster of experts. This suggests that additional data
such as evaluators’ background are needed to isolate the
correct clusters of experts for design evaluation tasks .
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1 Introduction

Suppose we wish to evaluate a set of military vehicle de-
sign concepts with respect to objective mission performance
attributes. For many objective attributes, the “true score”
may be determined using detailed physics-based simulations,
such as finite-element analysis to evaluate blast resistance or
human mobility modeling to evaluate ergonomics; however,
for some objective attributes, such as situational awareness,
physics-based simulation is difficult or not possible at all. In-
stead, these objective attributes require human input for ac-
curate evaluation.

To obtain evaluations over these objective attributes, one
may ask a number of specialists to evaluate the set of vehicle
design concepts. This assumes the requisite ability is imbued
within this group of specialists. Oftentimes though, the abil-
ity to make a comprehensive evaluation is instead scattered
over the “collective intelligence” of a much larger crowd of
people with diverse backgrounds [1].

Crowdsourced evaluation, or the delegation of an eval-
uation task to a large and unknown group of people, is
a promising approach to obtain such design evaluations.
Crowdsourced evaluation draws from the pioneering works
of online communities, like Wikipedia, which have shown
that accuracy and comprehensiveness are possible in a large
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2 RELATED WORK

crowdsourced setting. Although many successful online
communities exist, there are limited reference materials on
the use of crowdsourced evaluation for engineering design.

In this study, we explore how the ability of evaluators
in the crowd affects the crowdsourced evaluation process,
where ability is defined as the probability that a participant
gives an evaluation close to the design’s frue score. The
choice of exploring ability comes from an important les-
son from successful online community efforts, namely, the
need to implement a systematic method of filtering “signal”
from “noise” [2]. In a crowdsourced evaluation process, this
manifests itself as a need of screening good evaluations from
bad evaluations, in particular when we are given a heteroge-
neous crowd made up of a mixture of high-ability and low-
ability participants. In this case, averaging evaluations from
all participants with equal weight will reduce the accuracy
of the crowd’s combined evaluation due to bad evaluations
from low-ability participants. Accordingly, a desirable goal
is to identify the high-ability participants from the rest of the
crowd, as their “signal” will be closer to the true scores of
the designs, and their evaluations may be subsequently given
more weight.

To achieve this goal, we statistically model the crowd-
sourced evaluation process with a Bayesian network that
does not require prior knowledge of the true scores of the
designs or of the ability of each evaluator in the crowd, yet
still aims to identify the high-ability participants within the
crowd. This model links the ability of evaluators in the crowd
(i.e., knowledge or experience for the design being evalu-
ated), the evaluation difficulty of each design (e.g., a detailed
3D model provides more information than a 2D sketch and
may therefore be easier for an expert to evaluate accurately),
and the true score of each of the designs. The model rests
on the key assumption that low-ability evaluators are more
likely to “guess,” and while guessing, to evaluate designs
more randomly. This assumption is modeled by defining an
evaluation be a random variable centered at the true score of
the design being evaluated [3]. A graphical representation of
the Bayesian network showing these relationships is given in
Figure 1.

The performance of the Bayesian network versus the
baseline method of Averaging were explored through two
studies. First, we created simulated crowds to generate eval-
uations for a set of designs. These crowds had a homo-
geneous or heterogeneous ability distribution, representing
two cases that may be found in a human crowd. Second,
we used a human crowd recruited from the crowdsourcing
platform Amazon’s Mechanical Turk [4], and performed a
crowdsourced evaluation with the same crowd and task prop-
erties as in the simulation.

The remainder of this paper is organized as follows.
Section 2 reviews related work from engineering design, psy-
chometrics, and crowdsourcing literature, as well as research
motivations from industry. Section 3 presents the simulation
environment and modeling assumptions. Section 4 details
the statistical inference scheme of the Bayesian network.
Section 5 descibes the simulated crowd study and results.
Section 6 describes the human crowd study and discusses its

Evaluators

Designs

i

Evaluations

Fig. 1. Graphical representation of the Bayesian network model.
This model describes a crowd of evaluators making evaluations 7p4
that have error from the true score ®,;. Each evaluator has an abil-
ity ap and each design has an difficulty dy. The gray shading on
the evaluation rp denotes that it is the only observed data for this
model.

results. We conclude in Section 7 with limitations of this
work and opportunities for future development.

2 Related Work

Within the engineering design community, attention is
being drawn to the use of crowdsourcing for better inform-
ing subjective design decisions [5]. Methods using publi-
cally accessible crowdsourced data from social media sites
have been used for preference learning [6,7]. More directed
crowdsourced evaluation with online surveys have been also
used for idea evaluation [8], creativity evaluation [9], and
aesthetic preference learning [10]. Our work differs from
these works in that we focus on an objective task, thus ne-
cessitating the estimation of evaluator ability.

Much literature modeling the ability of evaluators in a
crowd exists from the psychometrics community under Item
Response Theory [11] and Rasch Models [12]. These mod-
els have been applied to standardized tests, with several ex-
tensions to include hierarchical structure [13] similar to this
study’s model. More recently, the human-computer inter-
action, machine learning, and crowdsourcing communities
have modeled the ability of evaluators in a crowdsourced
evaluation process for various tasks. These tasks are typi-
cally “human easy, computer hard,” such as image annota-
tion [14, 15], planning and scheduling [16], and natural lan-
guage processing [17,18].

Many of these models are qualitatively similar, with
differences in the treatment of evaluator bias [15, 19, 20],
form of the likelihood function (e.g., ordinal, ranking, bi-
nary) [21], extent to which the true score is known [22], and
methods of scaling up to larger datasets [15,23]. Our study
is also qualitatively similar to this literature, but with a key
difference on the application to an engineering design task
and its subsequent distribution of ability in the crowd.

Specifically, many of these recent crowdsourced evalu-
ation tasks have a majority of evaluators with the ability to
give an accurate evaluation (e.g., how many animals are in
this image?) [24]. As a result, either averaging or taking a
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3 A BAYESIAN NETWORK MODEL FOR HUMAN EVALUATIONS

majority vote of the crowd’s evaluators is often already quite
accurate [25]. For these cases, ability often represents the
notion of task consistency and attentiveness, with low-ability
evaluators being more spammy or malicious [15].

In contrast, engineering design tasks may require abil-
ity that is more sparsely scattered amongst the crowd. This
is supported by prior industrial applications of crowdsourced
evaluation for engineering design. The Fiat Mio was a fully
crowdsourced vehicle design concept, yet the large number
of low-ability submissions resulted in Fiat using its design
and engineering teams as a filter without the use of algorith-
mic assistance [26]. Local Motors Incorporated developed
the Rally Fighter using a crowdsourced evaluation system
similar to this study, but strongly weighted evaluations of
the internal design team [27]. For these engineering design
tasks, the notion of ability instead may represent specialized
knowledge and heuristics necessary to give an accurate eval-
uation.

3 A Bayesian Network Model for Human Evaluations

Let the crowdsourced evaluation contain D designs and
P evaluators. We denote the true score of design d as
®, € [0, 1], and the evaluation from evaluator p for design d
as R = {r,q} where r,; € [0,1]. Each design d has an eval-
uation difficulty d;, and each evaluator p has an evaluation
ability a,. Some significant assumptions we made shall be
highlighted here: (1) We assume that evaluators evaluate de-
signs without systematic biases, i.e., given infinite chances of
evaluating one specific design, the average score of the evalu-
ators will converge to the true score of that design regardless
of their ability [3]; note that this assumption also implies that
no evaluators purposely give bad evaluations; (2) we assume
that evaluation responses are independent, i.e., the evaluation
on one design from one user will not be affected by the eval-
uation made by that user for any other design, nor will it be
affected by the evaluation given by a different user; (3) we
assume that the ability of evaluators is constant during the
entire evaluation process; (4) we assume that all evaluators
are fully incentivized and do not exhibit fatigue. Without loss
of generality, we consider human evaluations real-valued in
the range of zero to one.

The evaluator evaluation r,q is modeled as a random
variable following a truncated Gaussian distribution around
the true performance score @, as detailed by Eq. (1) and
shown in Figure 2a.

rpa ~ Truncated-Gaussian (CI>d,(712,d) . Tpa €10,1] (1)

The variance of density ny 4 1s interpreted as the error an
evaluator makes when using his or her cognitive processes
while evaluating the design, and is described by a random
variable taking an Inverse-Gamma distribution:

2
G,q ~ Inverse-Gamma (Ocpd, B pd)

@

The average evaluation error for a given evaluator on a
given design is a function of the evaluator’s ability a, and
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Fig. 2. (a) Low evaluation ability (dashed) relative to the design eval-

uation difficulty results in an almost uniform distribution of an evalua-
tor’s evaluation response, while high evaluation ability (dotted) results
in evaluators making evaluations closer to the true score. (b) An eval-
uator’s evaluation error variance (5,27 4 as a function of that evaluator's
ability a, given some fixed design difficulty dy; and crowd-level pa-
rameters 0 and .

the design’s difficulty d;. In addition, this function is sig-
moidal to capture the notion that there exists a threshold of
necessary background knowledge to make an accurate eval-
uation. Figure 2b illustrates this function. We set the first
requirement on the evaluator’s error random variable using
the expectation operator [E in Eq. (3).

2 1

E[0p] = 1 1 &OWa—ap)—Y

3)

The random variables 6 and ¥ are introduced as model
parameters to allow more flexibility in modeling evaluation
tasks and are assumed to be the same for all evaluators and
designs: A high value of the scale parameter 8 will sharply
bisect the crowd into good evaluators with negligible errors
and bad evaluators that evaluate almost randomly; the loca-
tion parameter 'y captures evaluation losses intrinsic to the
system, such as those stemming from the human-computer
interaction.

Next, the variance V of the evaluator error is considered
constant, capturing the notion that, while we hope the major
variability in the evaluation error to be captured by Equation
(3), other reasons exist to spread this error, represented by
constant C in Eq. (4).

“

Following the requirements given by Eq. (3) and (4), we
reparameterize the Inverse-Gamma of Eq. (2) to obtain Eq.
(5) and (6).

1
c(1 +ee(dd—ap>—v)2

1 1
Bpa = (ge(dd_al))_Y> (Cgle(dd—ap)—ZY + 1) ©)

+2 5)

Olpd =
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5 SIMULATED CROWD STUDY

Case |: Homogenous Crowds

Case |l: Heterogeneous Crowds
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Evaluator Ability a, Evaluator Ability a,
[ Case | Typeof Crowd | Varied Parameter Figure | Number of Crowd Simualtions
I Homogeneous Crowd Average Crowd Ability 4 250
II Heterogeneous Crowd | Variance of Crowd Ability 5 250

Fig. 3. Crowd ability distributions for Cases | and Il that test how the abilities of evaluators within the crowd affect evaluation error for
homogeneous and heterogeneous crowds, respectively. Three possible sample crowds are shown for both cases.

The hierarchical random variables of the evaluator’s
evaluation ability a, and the design’s evaluation difficulty
d; are both restricted to the range [0,1]. We let their distri-
butions be truncated Gaussians with parameters u,, Gg, Ud,
Gfi set globally for all evaluators and designs as shown in Eq.
(7) and (8).

a, ~ Truncated-Gaussian (,ua,cz) , ap€[0,1]

(N

dy ~ Truncated-Gaussian (,ud,(sﬁ) , dg€10,1]  (8)
The probability densities over 6 and 7y are assumed as

Gaussian with parameters ug, G%, Uy, G% as shown in Eq. (9)

and (10).

©))

6 ~ Gaussian (ue, o5 )

Y~ Gaussian (y, 63) (10)

Finally, by combining all random variables described in
this section, we obtain the joint probability density function
shown in Eq. (11). Note that all hyperparameters are implic-
itly included.

p(a7d?¢7R?e’Y) = (11)

P D
p(©)p(7) III plap) [T p(rpalap,da, 0,7, ®4)p(da) p(Pa)
= d=1

p=

4 Estimation and Inference of the Bayesian Network

The proposed Bayesian network model is built upon
the following random variables: evaluators’ abilities
{ap}h_,. designs’ difficulties {ds}7_,, true scores of designs
{®@,4}0_,, and parameters - 6, Y, y4, 62, g, 65. This section
explains the settings for infering the random variables and
estimating the parameters using the observed evaluations of
the evaluators R = {r,q}p—1...pd—1,..D-

Two techniques are used in sequence. Maximum a
posteriori estimation is performed using Powell’s conju-
gate direction algorithm [28], a derivative-free optimization
method, to get initial estimates of the parameters that max-
imize Equation (11). These point estimates are then used
to initiate an adaptive Metropolis-Hastings Markov Chain
Monte Carlo (MCMC) algorithm [29-31] that determines
the estimates of all unknown parameters and infers posterior
distributions of the random variables. The posterior sample
size of the single-chained MCMC simulation is set to 109,
thinned by a factor of 2, with the first half discarded as burn-
in.

5 Simulated Crowd Study

We now study how the ability distribution of the crowd
affects the crowdsourced evaluation process using Monte
Carlo simulations. There are two main goals of this study.
First, we want to understand how crowds made up of dif-
ferent mixtures of high and low-ability evaluators affect the
crowd’s combined scores of designs and the subsequent eval-
uation error from the true scores of the designs. Second, we
want to understand the performance differences between the
Bayesian network and Averaging. Specifically of interest are
the conditions under which the Bayesian network is able to
find the subset of high-ability evaluators within the crowd so
that it can give greater weight to their responses.

There are two crowd ability distribution cases we test, as
shown in Figure 3. Case I is that of a homogeneous crowd,
where all evaluators making up the crowd have similar abil-
ities. The varied parameter in the homogenous case is the
average ability of the crowd, thus testing the question: How
well can a crowd perform if no individual evaluator can eval-
uate correctly or, alternatively, if every evaluator can eval-
uate correctly? Case II is that of a heterogeneous crowd,
where the crowd is made up of a mixture of high and low-
ability evaluators. In this case we fix the average ability of
the crowd to be low, so that most evaluators cannot evaluate
designs correctly. Instead, the varied parameter in the hetero-
geneous case is the variance of the crowd’s ability distribu-
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5 SIMULATED CROWD STUDY
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Fig. 4. Case I: Design evaluation error from the Averaging and the
Bayesian network methods as a function of average evaluator ability
for homogeneous crowds. This plot shows that when dealing with
homogeneous crowds, combining the set of evaluator responses into
the crowd’s combined score is invariant to the combination method
used.

tion. This tests the question: How well can a crowd perform
as a function of its proportion of high-ability to low-ability
evaluators?

The procedure for these studies is to use the Monte Carlo
simulation environment to: (1) Generate a crowd made up of
evaluators with abilities drawn from the tested ability distri-
bution (Case I or II), and a set of designs with true scores
unknown to the crowd; (2) simulate the evaluation process
by generating a rating between 1 and 5 that each evalua-
tor within the crowd gives to each design; (3) combine the
evaluator-level ratings into the crowd’s combined score for
each design using either the Bayesian network or Averag-
ing; and (4) calculate the evaluation error between the true
scores of the designs and the combined scores from either
the Bayesian network or Averaging.

The simulation setup for these studies consisted of 60
evaluators per crowd, as well as eight designs with scores
drawn uniformly from the range [0,1] and evaluation diffi-
culties {d;} set at 0.5 for all designs. The evaluation pro-
cess for each evaluator is to rate all eight designs in the con-
tinuous interval [1,5] according to a deterministic equation
given by the right hand side of Equation (3), with the lo-
cation parameter Y set at 0 and the scale parameter 0 set at
0.1. After the crowd’s combined scores are obtained, either
by the Bayesian network or Averaging, the evaluation error
between the combined scores <i>d and the true scores is calcu-
lated using the mean-squared error (MSE) metric as shown
in Equation (12).

1 D

MSE=— Y’

A 2
&, — @,
Dd:l( )

12)

The results of Case I are shown in Figure 4. Each data
point represents a distinct simulated crowd with average abil-

Case Il: Heterogeneous Crowds

**s Averaging
%% Bayesian Network

Design Evaluation Error

0.2 .4 0.6 .8
Crowd Variance of Evaluator Abilities

Fig. 5. Case Il: Design evaluation error over a set of designs for
a mixed crowd with low average evaluation ability. With increasing
crowd variance of ability there is an increasingly higher proportion
of high-ability evaluators present within the crowd. This leads to a
point where the Bayesian network is able to identify the cluster of
high-ability evaluators, upon which evaluation error drops to zero.

ity given on the x-axis, and associated design evaluation error
between the overall estimated score and the true scores on the
y-axis. All crowds in Case I were generated using the same
narrow crowd ability variance 6, = 0.1 to create homoge-
neous crowds. The results show that if the average evaluator
evaluation ability is relatively high, both Averaging and the
Bayesian network perform equally well with small design
evaluation error. In contrast, when the average ability is rel-
atively low, neither Averaging nor the Bayesian network can
estimate the true scores very well.

This observation agrees with intuition. A group of eval-
uators where “no one has the ability” to evaluate a set of de-
signs should not collectively have the ability to evaluate a set
of designs just by changing the relative weightings of evalu-
ators and their individual evaluation responses upon combi-
nation when determining the crowd’s combined score. Simi-
larly, a group of evaluators where “everyone has the ability”
to evaluate a set of designs should perform well regardless
of the relative weighting between evaluators. The key result
for Case I is this: When the crowd has a homogeneous distri-
bution of evaluator abilities, it does not matter what weight-
ing scheme one assigns between various evaluators and their
evaluations; the Bayesian network and Averaging will per-
form similarly to each other.

The results of Case II are shown in Figure 5. Contrary to
Case I, distinct crowds represented by each data point have
on average the same ability u, = 0.2. Instead, moving right
along the x-axis designates crowds with increasingly higher
proportions of high-ability evaluators within the crowd. In
this case, we observe that the Bayesian network performs
much better than Averaging after a certain point on the x-
axis; the point where a sufficient number of high-ability eval-
uators is contained within the crowd. Under these conditions,

5 UNCLASSIFIED: Distribution Statement A. Approved for public release.
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6 HUMAN CROWD STUDY

3.64

4.01
(a)

Fig. 6.

the Bayesian network identifies the small group of experts
from the less competent crowd and weighs their evaluation
more so than the rest, thus leading to combined scores much
closer to the true scores of the designs. This observation is
not present when the crowd does not have the sufficient num-
ber of high-ability evaluators within the crowd. When this
occurs, as is shown on the left side of the x-axis, the situa-
tion of “no one has the ability” is recreated from Case L.

In summary, we have created simulated crowds to test
the influence of crowd ability on the crowdsourced evalu-
ation process. Two cases were tested, representing homo-
geneous and heterogeneous ability distributions. Under the
modeling assumptions described in Section 3, we find that:
(1) When the crowd is homogeneous, it does not matter
what weighting scheme is used, as both Averaging and the
Bayesian network give similar results; (2) when the crowd
is heterogeneous, the Bayesian network is able to output the
crowd’s combined score much closer to the true scores under
the condition that a sufficient number of high-ability evalua-
tors exist within the crowd.

6 Human Crowd Study

In this section we set up a design evaluation task for a
real human crowd to test our modeling assumptions. The
evaluation task was chosen to be a classic structural design
problem for a load-bearing bracket [32], in which evaluators
are asked to rate the capabilities of bracket designs to carry a
vertical load as shown in Figure 6.

Participants

The human crowd consisted of 181 evaluators recruited
using the crowdsourcing platform Amazon Mechanical Turk.
For the bracket designs, eight bracket topologies were gen-
erated using the same amount of raw material. The deforma-
tion induced by tensile stress upon vertical loading of each
bracket was calculated in OptiStruct [33]. The strength of
a bracket was defined as the amount of deformation under a
common load, and was subsequently scaled linearly between
1 and 5 as labeled in Figure 6. The scaled strength values
were considered as the true scores, which were later used to
calculate evaluation errors from the estimations from either
the Bayesian network or Averaging methods.

Procedure

The evaluation process for each evaluator was as fol-
lows: The eight bracket designs were first presented all to-
gether to the user, who was then asked to review these de-

4.65 2.39

=
n
Q

1.00 4.72

(b)

(a) Boundary conditions for bracket strength evaluation, (b) the set of all eight bracket designs

signs to get an overall idea of their strengths. After at least
20 seconds, the user was allowed to continue to the next stage
where the designs were presented sequentially and in random
order. For each design, the evaluator was asked to evaluate its
strength using a rating between 1 and 5, with 1 being “Very
Weak” and 5 “Very Strong.” To gather these data, a web-
site with a database backend was set up that recorded when
an evaluator gave an evaluation to a particular bracket de-
sign [34].

Data analysis

A preprocessing step was carried out before the data
were fed into either the Bayesian network or Averaging tech-
niques. Specifically, since some evaluators would give rat-
ings all above 3 while some others tended to give ratings all
around 3, all evaluations were linearly rescaled to a range
of 1-5. It should be noted that while this mapping ensures
that everyone gives ‘1’s and °5’s, it does not help to re-
move nonlinear biases in between an evaluator’s most ex-
treme evaluations. To calculate design evaluation error, the
same mean-squared error metric was used as in the simulated
crowd study and as given in Equation (12).

6.1 Results
The Bayesian network did worse than Averaging when

estimating the true scores of the bracket designs as shown in
Table 1.

Design Evaluation Error (std.)
1.001 (N/A)
1.728 (0.006)

Averaging

Bayesian Network

Table 1. Mean-squared evaluation error and standard deviation
from entire human crowd using Averaging and Bayesian network es-
timation.

According to the simulation results, the Bayesian net-
work can only do worse than Averaging if it is not able to
find the high-ability evaluators, or experts, in the crowd.
This could happen under either of the following two situa-
tions: (1) The modeling assumption made in Section 3 holds,
namely, that low-ability evaluators are less consistent (more
random) in their evaluations, but there are just no high-ability
evaluators; (2) the modeling assumption is violated, in that
there exist low-ability evaluators consistently wrong in their
evaluations. In this situation, the Bayesian network model
would mistakenly identify these individuals as having high
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Fig. 7. Clustering of evaluators based on how similar their evalua-
tions are across all eight designs. Each black or colored point repre-
sents an individual evaluator, where colored points represent evalua-
tors who were similar to at least 3 other evaluators, and black points
represent evaluators who tended to evaluate more uniquely.

abilities due to their consistency and overweigh their incor-
rect evaluations.

Visualizing the crowd’s ability distribution

We now show that situation (2) above has occurred;
namely, there are indeed “consistently wrong” evaluators that
exist in the human crowd. To show this, we cluster the eight-
dimensional human evaluation data to find clusters of sim-
ilar evaluators, and then flatten these clustered data to two
dimensions for visualization. This clustering finds groups
of evaluators who give consistent evaluation, regardless of
whether such evaluations are correct or incorrect. In other
words, members of a cluster were consistent in their evalua-
tions not necessarily to the right or wrong answer, but con-
sistent to others in the cluster.

The clustering algorithm we have used is density-based
and uses the Euclidean distance metric to identify clusters of
evaluators who gave similar evaluations [35]. This clustering
method was chosen as it can account for varying clustering
sizes, as well as not necessitating that every evaluator belong
to a cluster. The flattening from eight dimensions to two
dimensions was done using multidimensional scaling.

We see in Figure 7 that five clusters of similar evaluators
were found, while Table 2 gives the evaluation error of each
cluster. We find that the cyan cluster is made up of high
ability “expert” evaluators, as evidenced by their evaluation
error. In contrast, the other four clusters were consistent but
wrong in their evaluations.

This analysis suggests that finding high-ability “expert”
evaluators through an open call is possible even for a task
like structural design, in which ability is sparsely distributed
through the crowd. However, while the Bayesian network is
a theoretical way to identify these evaluators, its application
in reality is limited by the fact that there exist other (more
numerous) clusters of evaluators who are just as consistent
yet wrong in their evaluations.

Cluster Color | Design Evaluation Error
Blue 1.826
Cyan “Experts” 0.796
Red 1.805
Green 2.394
Magenta 6.275

Table 2. Mean-squared evaluation errors from the 5 clusters of sim-
ilarly evaluators.

6.2 Follow-up to human crowd study

For completeness of the human study, we conducted two
follow-up experiments to capture the differences between
the simulated crowd assumptions and results, and the human
crowd results. The first follow-up experiment augments the
human crowd data with simulated experts, in order to offset
the “consistently wrong” evaluators with a larger cluster of
experts. The second follow-up experiment remains entirely
in simulation, and shows that the existence of enough “con-
sistently wrong” evaluators will also cause the Bayesian net-
work to fail in simulation as well, thus mimicking the results
of the human study.

6.2.1 Human crowd augmented with simulated experts

We show in Figure 8 how the design evaluation error
would be reduced if extra expert evaluations, i.e., evaluations
exactly the same as true scores, were collected in addition to
the original 181 responses from the human study. Notice
that the error should be reduced monotonically as the num-
ber of experts increases. However, the stochastic nature of
the estimation process of a Bayesian network could cause
sub-optimal estimations. Similar to the simulations in Fig-
ure 5, one can observe the phase-changing phenomenon in
the change of the design evaluation error.

Human Crowd Data Augmented with Simulated Experts
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Fig. 8. Design evaluation error with respect to additional experts.
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6.2.2 Simulation of “consistently wrong” evaluators

In this scenario, we tested a set of simulations in which
the crowd contained two clusters of evaluations. One cluster,
“the experts”, can always evaluate correctly; the other clus-
ter is almost the same, except that evaluators in this cluster
always rate one design off by 0.5. We vary the crowd pro-
portion of “experts” from O to 1 and calculate the correspond-
ing evaluation errors, as shown in Figure 9. While the error
from Averaging changes linearly with respect to the propor-
tion, that from the Bayesian network takes only two phases.
The result mimicks what we saw with the human study; the
Bayesian network simply considers one of the two groups
as the experts and trusts its evaluations, and that decision is
made based on the group sizes.

Simulated Crowd with “Consistently Wrong” Evaluators
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Fig. 9. Design evaluation error with respect to the proportion of the
expert group.

7 Conclusion

Crowdsourcing is a promising method to evaluate engi-
neering design concepts that require human input, due to the
possibility of leveraging evaluation ability that is distributed
over a large number of people. A common characterisitic of
crowdsourced design evaluation processes is that the crowd
is composed of a heterogeneous mixture of high and low-
ability evaluators. A key challenge in such crowdsourced
evaluation processes is to find the subset of high ability, or
expert, evaluators in the crowd such that their evaluations
may be given more weight.

In this paper we proposed a Bayesian network to model
human evaluations. The key modeling assumption is that
low-ability evaluators tend to give less consistent (more ran-
dom) evaluations than expert evaluators. We tested using
simulated crowds how both the Averaging and the Bayesian
network can be affected by the distribution of evaluator abil-
ities and showed that, when assumptions hold, the Bayesian
network approach is preferable to simple Averaging and re-
quires fewer experts to achieve a good estimation of the true
design scores across all simulation settings.

A human crowd study on bracket strength evaluation
was then conducted. Evaluators recruited through Amazon
Mechanical Turk gave evaluations on eight bracket designs

according to how strong the brackets were under load. The
result of this study was that the Bayesian network model
did worse at estimating the true strengths of the bracket de-
signs. Upon further investigation, it was found that there
were numerous clusters of “consistently wrong” evaluators
in the crowd. These clusters caused the Bayesian network to
believe they were the experts, and consequently overweigh
their (wrong) evaluations.

While the human study did not showcase the superiority
of Bayesian network over Averaging, it does reveal the chal-
lenges of performing such crowdsourced evaluations when
dealing with even a simple engineering design task. The dis-
tribution of evaluation ability in this study sharply contrasts
many of the recent successes within the human-computer in-
teraction, computer vision, and crowdsourcing communities;
namely, we show that only a minority of the crowd are ex-
perts and that there exist numerous clusters of consistent yet
incorrect evaluators.

Further study into methods to find experts in settings in
which they are the minority is justified. These methods may
generalize our definition of evaluator ability by incorporat-
ing relevant information about the evaluation process, as well
as setup analytic conditions under which it is impossible to
find experts. This study is thus a first step in showing that
extra information in the form of evaluator variables, design
variables, and task variables may be needed to find expert
evaluators for even simple engineering design tasks, as such
experts are otherwise overshadowed by the crowd.
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