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Abstract

Background: Despite increased investment in pharmaceutical research and development, fewer and fewer new
drugs are entering the marketplace. This has prompted studies in repurposing existing drugs for use against
diseases with unmet medical needs. A popular approach is to develop a classification model based on drugs with
and without a desired therapeutic effect. For this approach to be statistically sound, it requires a large number of
drugs in both classes. However, given few or no approved drugs for the diseases of highest medical urgency and
interest, different strategies need to be investigated.

Results: We developed a computational method termed “drug-protein interaction-based repurposing” (DPIR) that is
potentially applicable to diseases with very few approved drugs. The method, based on genome-wide drug-protein
interaction information and Bayesian statistics, first identifies drug-protein interactions associated with a desired
therapeutic effect. Then, it uses key drug-protein interactions to score other drugs for their potential to have the
same therapeutic effect.

Conclusions: Detailed cross-validation studies using United States Food and Drug Administration-approved drugs
for hypertension, human immunodeficiency virus, and malaria indicated that DPIR provides robust predictions. It
achieves high levels of enrichment of drugs approved for a disease even with models developed based on a single
drug known to treat the disease. Analysis of our model predictions also indicated that the method is potentially useful
for understanding molecular mechanisms of drug action and for identifying protein targets that may potentiate the
desired therapeutic effects of other drugs (combination therapies).
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Background
By conservative estimates, we know the molecular basis
of more than 4,000 human diseases, whereas treatments
are available for only about 250 of them [1]. The modern
drug discovery paradigm, i.e., starting with a disease tar-
get and looking for a highly selective small molecule that
interacts strongly only with the intended target, is strug-
gling to meet our medical and social requirements [2].
Current estimates indicate that it takes an average of
14 years at a cost of close to $2 billion to bring a new,
safe, and efficacious drug to market [3]. In the process,
more than 90% of the drug candidates fail due to safety
concerns, inadequate bioavailability, or lack of efficacy [3].

In reality, highly selective compounds are rare. The large
number of safety and bioavailability issues facing candi-
date drugs, as well as reported side effects of marketed
drugs, is a reflection of many undocumented and deleteri-
ous interactions between drugs and human targets. In
addition, many underlying disease causes are multifactor-
ial and can be due to dysfunctional processes involving
multiple biomolecules. Even though significant efforts are
devoted to understanding the molecular details of drug
action, the fact is that the mechanisms of action of
many efficacious drugs are poorly understood and, in
many cases, remain largely unknown [4].
Drug interactions with unintended targets may lead to

devastating side effects. However, these interactions may
also signal the possibility for a drug to have therapeutic
potential for diseases other than those for which it was
approved. Indeed, there are many examples of a drug
developed for a specific disease that was later approved
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for treating an unrelated disease [5,6]. One of the most
dramatic examples is thalidomide, a drug first marketed
as an anti-nausea and sedative agent prescribed to treat
morning sickness in pregnant women. Thalidomide was
found to cause severe birth defects and was withdrawn
from the market, but it later proved to have other
therapeutic effects and was approved by the United
States Food and Drug Administration (FDA) for skin le-
sions caused by leprosy [7] and multiple myeloma [8].
In addition, thalidomide has shown promise in treating
cutaneous lupus and Behcet’s disease, human immuno-
deficiency virus (HIV)-related mouth and throat ulcers,
and blood and bone marrow cancers [9]. Although the
recorded effects of thalidomide are multifaceted, with mul-
tiple underlying mechanisms possible [10], clarification of
a mechanism [11] that distinguishes between the terato-
genic and anticancer therapeutic effects of thalidomide
[12,13] was only recently identified. The success of drug re-
purposing, i.e., finding new uses for existing drugs, via ser-
endipitous discoveries inspired the development of many
computational approaches for the discovery of the yet un-
known therapeutic potentials of existing drugs [14-24].
A common approach used in drug repurposing is to

build a binary classifier based on a training set consisting
of drugs with and without a desired therapeutic effect as
the positive and negative classes, respectively. One of the
requirements for developing a statistically sound classifier
is the availability of a relatively large number of drugs in
the training set. Furthermore, it is desirable to have an
equal number of drugs with and without the desired thera-
peutic effect in the training set so as not to bias classifier
training. However, when there are many drugs approved
for treating a disease, the need for discovering more drugs
for the same disease is less than that for a disease for which
there is a very limited number of drugs or no drugs at all.
Thus, there is a need to develop computational drug repur-
posing methods that can be applied to diseases for which
there are very few known pharmacological options.
In this article, we report on the development of a com-

putational approach termed “drug-protein interaction-
based repurposing” (DPIR) that is potentially applicable
to diseases for which a very limited number of drugs are
available. We based DPIR on large-scale drug-protein
interaction profiles and Bayesian statistics to decipher
the drug-protein interactions indicative of a desired thera-
peutic effect. These drug-protein interactions are then
used to identify other drugs that are likely to have the
same therapeutic effect.

Methods
Source of large-scale chemical-protein interaction
information
To create large-scale chemical-protein interaction pro-
files for FDA-approved drugs and drug development

candidates, we exploited the Search Tool for Interactions
of Chemicals (STITCH) database [25]. The October
2013 release of the database (STITCH 3.1) contains
chemical-protein interaction information, derived from a
broad range of sources, between 300,000 small mole-
cules and 2.6 million proteins from 1,133 organisms.
The database provides a confidence measure for each
chemical-protein interaction calculated by the equation
score = 1 – Πi(1 – pi), with corrections that take into ac-
count the possibility of observing an interaction by chance
[25]. In the equation, pi denotes the confidence of inter-
action from the i-th information source. Based on STITCH,
a score between 0.40 and 0.70 indicates medium confi-
dence, between 0.70 and 0.90 indicates high confidence,
and between 0.90 and 1.00 indicates the highest confidence.
To retain high-confidence chemical-protein interactions,

we filtered out entries in STITCH 3.1 with confidence
scores of <0.70. In addition, we removed all entries of
chemical interaction with non-human proteins. The filter-
ing reduced the total number of small molecule-protein
interaction entries from >171 million to just over a half
million. The categories of chemical-protein interactions
with the highest occurrence in the database are binding
(chemical binds to protein), inhibition (chemical inhibits
protein function), and activation (chemical enhances pro-
tein function). Because the therapeutic effects of most
drugs are due to chemical modulation of protein function,
functional information of chemical-protein interactions,
i.e., inhibition or activation, is important. However, this
information is not always available. Instead, the most
prevalent type of interaction information is binding. To
create drug-protein interaction profiles relevant for drug
repurposing, we retained interactions of only these three
categories. This left 445,162 interactions between chemi-
cals identified by 232,765 unique STITCH chemical iden-
tifiers and 6,399 unique human proteins.

Source of FDA-approved drugs and drug development
candidates
To generate a list of FDA-approved drugs and drug devel-
opment candidates, we retrieved the SMILES strings of all
structurally unique small molecule compounds in Drug-
Bank [26]. Molecular structures represented by the SMILES
strings were standardized, i.e., we stripped salts, standard-
ized charge representation, removed stereochemistry label-
ing, removed single atom fragments, neutralized bonded
zwitterions, and protonated acids/deprotonated bases. After
structure standardization, we generated canonical SMILES
and removed duplicates, resulting in 4,902 unique entries.
They consisted of 1,163 FDA-approved drugs, 3,630 drug
development candidates, 55 nutraceuticals, and 54 drugs
withdrawn from market. These molecules are all referred to
as “drugs” in the remainder of this article.
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Computational prediction of drug-protein interactions
Most of the compounds in DrugBank are in the biological
activity screening libraries of pharmaceutical companies,
government research laboratories, and academic institu-
tions. However, not all of the DrugBank compounds have
been tested in all assays evaluating chemical-protein inter-
actions and, hence, the data collected in the STITCH
database do not cover all drug-protein interactions. Thus,
to create as complete drug-protein interaction profiles
as possible, we complemented the drug-protein interac-
tions contained in the STITCH database with predicted
drug-protein interactions based on chemical structural
similarity. This was accomplished by re-implementing
the similarity ensemble approach (SEA) [27] and pre-
dicting additional drug-protein interactions based on
the collection of chemical-protein interactions con-
tained in STITCH 3.1. SEA predictions are based on
two-dimensional molecular structure similarity as mea-
sured by Tanimoto coefficients between a drug mol-
ecule and all known ligands of a protein. When the
similarity score is high, the probability that the drug in-
teracts with the same protein is high. In this study, we
retained drug-protein interaction predictions with a p-value
cutoff of 0.01, and combined these predictions with the
high-confidence drug-protein interactions contained in the
STITCH database. The so-constructed final set of drug-
protein interactions is available for non-commercial use
(via download at http://www.bhsai.org/downloads/drugre-
purposing/).

Creation of a machine-readable representation of
drug-protein interaction profiles
For the application of machine learning techniques, we
created a binary bit-string representation of the drug-
protein interaction profile for each drug. In the bit-
string representation, each protein was assigned up to
three bit positions to encode 1) drug interaction (bind-
ing) with the protein, 2) drug activation of the protein,
and 3) drug inhibition of the protein. If a drug was re-
corded in STITCH and/or predicted to bind to a protein,
the bit representing this drug-protein interaction was
turned on, i.e., assigned a value of 1 (on-bit). Otherwise,
the bit was turned off (assigned a value of 0). The bits
representing drug activation and drug inhibition of a
protein were similarly set. To reduce memory usage,
when a bit was off for all drugs, the bit was removed.
The length of the final binary string was 8,769 bits,
representing drug interactions with 5,516 unique human
proteins. If the SEA-predicted drug-protein interactions
were excluded, the length of the final binary string
would be 7,886, representing interactions between 4,369
drugs and 5,003 unique human proteins. Thus, in our
final drug-protein interaction profile dataset, the number
of drugs whose high-confidence protein interaction

information was not found in the STITCH 3.1 database,
but predicted by SEA, was 533. In other words, SEA
predictions contributed about 10% of the drug-protein
interaction pairs in our final drug-protein interaction
profiles.

Method for identifying drug-protein interactions
contributing to a desired therapeutic effect
We found that the Laplacian-corrected Bayesian method
of Xia et al. [28] was suitable for identifying drug-
protein interactions indicative of a desired therapeutic
effect. To illustrate this method, we used a collection of
drug-protein interaction profiles, as shown in Figure 1.
Given that M of the N drugs are approved for a certain
disease, we assigned them to the positive class, i.e., those
drugs that are known to have a desirable therapeutic ef-
fect. The number of on-bits of bit feature fi among the
positive class is denoted by Ai and the number of on-
bits of the same bit feature among all drugs is denoted
by Bi. For drug repurposing, we need to estimate the
conditional probability p(+|fi) of a drug-protein inter-
action represented by bit feature fi to be responsible for
the desired therapeutic effect of the drugs in the positive
class. Bayes theorem gives the following:

pðþjf iÞ ¼
P þð Þ � pðf ijþÞ

p f ið Þ ¼
M
N � Ai

M
Bi
N

¼ Ai

Bi
; ð1Þ

where P(+) is the prior probability for a drug to be posi-
tive, p(fi|+) is the conditional probability of fi to be an
on-bit in the positive class, and p(fi) is the probability of
fi to be an on-bit in all drugs. In most cases, Eq. 1 pro-
vides a reasonable estimate of p(+|fi). However, when a
bit feature is severely under-sampled, such as in a situ-
ation where Bi =Ai = 1, then p(+|fi) = 1.0, which provides
an overly optimistic probability estimate. However, when
more samples with this bit feature on are included in the
data set, p(+|fi) will most likely decrease. Thus, for dis-
eases with few drugs, we expect the number of drugs in
the positive class to be very small, and therefore under-
sampling of bit features may be common, leading to an
inaccurate probability estimate of the predictive value of
the bit feature. To correct for the effect of undersam-
pling, one could assume that if this bit feature were sam-
pled K more times, a reasonable estimate of the number
of positive drugs would be K × P(+). Thus, the corrected
probability is as follows:

pcðþjf iÞ ¼
Ai þ K � P þð Þ½ �

Bi þ K
: ð2Þ

This correction ensures that as Bi→ 0 and Ai→ 0,
p (+|fi) approaches the prior probability P(+). When K is
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set to 1/P(+), the adjustment corresponds to the Laplacian
correction [29].
Following Xia et al. [28], we defined a weight wi to rep-

resent the contribution of the i-th bit-feature fi to the de-
sired therapeutic effect of the positive class, as follows:

wi ¼ log
pcðþjf iÞ
P þð Þ

� �
: ð3Þ

Once wi for every fi has been determined from a training
set consisting of positive and negative classes of drugs,
one can rank a given drug by its likelihood of having the
desired therapeutic effect of the positive drug set based on
the following score:

score ¼
Xn

i¼1
wi � f i; ð4Þ

where fi equals 1 or 0, representing on and off bits,
respectively. The higher the score a drug receives, the
more likely it has the therapeutic effect of the positive
class of the training set. In this formulation, the numeric
score itself is never used to calculate an absolute prob-
ability. Rather, it is only used to rank the likelihood of a
drug in a given disease model as a possible repurposing
candidate for that disease.

Results and discussion
Details of model development and quality assessment
To assess performance of the drug repurposing method
described above, we used three model development
procedures, as shown in Figure 2. Type I model devel-
opment represents a conventional machine learning
process in which a data set is segregated into a training
set and a testing set. The training set consists of a sub-
set of samples of the positive class and a subset of

samples of the negative class. The remaining samples,
including both positive and negative samples, are
grouped into the testing set. The model parameters are
determined by the training set only. The model is then
applied to the testing set to assess its ability to distinguish
the positive from the negative samples. In principle,
type I models are not suitable for drug repurposing ap-
plications because most drugs were developed for
treating a specific disease. Accordingly, for most drugs,
their ability to treat other diseases has not been sys-
tematically evaluated and, in most cases, one cannot
confidently label true negative drugs (samples) in the
training set.
A more robust model development approach is repre-

sented by a type II model, which is trained with a subset
of the positive drugs as the positive class and all other
drugs collected in a baseline class, i.e., a large set of
compounds that may or may not include drugs with a
desired therapeutic effect. Because all drugs are used for
model development, there is no testing set. However, for
drug repurposing, one can simply score all the drugs
assigned to the baseline class with the model and evalu-
ate the degree of enrichment of the (known) positive
drugs in the highest-scored samples. Type II models are
more appropriate than type I models for drug repur-
posing, based on the premise that there exist drugs
with yet unknown desirable therapeutic effects for a
disease among the marketed drugs.
Type III models are constructed for the purpose of

examining the impact of false positives on model devel-
opment. In this model-building process, k baseline drugs
(those not known to have the same therapeutic effect of
the drugs of the positive class) are purposely introduced
in the positive class as false positives.

Figure 1 Schematic bit-string representation of a drug-human protein interaction profile. Each protein is represented by 3 bits to encode
drug binding, drug activation, and drug inhibition of the protein, respectively. When a drug has been reported or predicted to bind, activate, or
inhibit a protein, the bit representing the specific drug-protein interaction is turned on (assigned a value of 1). Otherwise, the bit is off (assigned
a value of 0). M denotes the number of drugs with an approved indication (positive class), N denotes the total number of drugs, fi represents
on-bit or off-bit of the i-th bit feature, Ai denotes the number of on-bits of the i-th bit feature in the positive class, and Bi denotes the number of
on-bits of the i-th bit feature in all drugs.
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DPIR prediction analysis
To assess the performance of the proposed drug repur-
posing method, we performed detailed cross-validation
analysis using FDA-approved drugs for hypertension,
HIV, and malaria. These diseases were selected based on
two criteria: the disease is clinically well defined and a
significant number of FDA-approved drugs are available
for cross-validation analyses. Note that our goal was to
develop a method that can be applied to a disease with
as few as one approved drug. However, for evaluating
the performance of the DPIR method and establishing
the advantages and disadvantages of different model
training processes, we needed to use diseases with a sig-
nificant number of approved drugs.
For hypertension, 55 single-component (non-combin-

ation) drugs on the National Institutes of Health (NIH)
high blood pressure (HBP) drug list [30] have drug-protein
interaction information. For HIV, 20 single-component
drugs on FDA’s HIV drug list [31] have drug-protein inter-
action information. For malaria, 7 single-component FDA-
approved drugs were listed on the Centers for Disease
Control and Prevention (CDC) malaria treatment Web site
[32]. In addition, we searched DrugBank and identified 4
additional drugs that were approved for treating malaria
but are not in the current CDC’s list because of drug resist-
ance, severe side effects, or because they were replaced by
newer generations of antimalarial drugs of the same class.

We included these 4 drugs to define a set of 11 antimalarial
drugs for analysis. The names of these drugs, their molecu-
lar structures in the form of SMILES strings, and the num-
ber of on-bits in the drug-protein interaction profiles are
available via publicly available download at http://www.
bhsai.org/downloads/drugrepurposing. Even though the
bit-length of the drug-protein interaction profiles is 8,769,
for a specific drug the number of on-bits is much lower. It
depends on how many proteins a drug interacts with and
how many of these interactions have been identified. Thus,
newer drugs tend to have a lower number of on-bits, as
the synthetic routes may be under patent coverage and,
therefore, the compounds are less likely to be found in the
catalogs of chemical suppliers. Compounds extracted from
natural products (such as some antimalarial drugs) also
tend to have lower numbers of on-bits, simply because
these compounds are more expensive to acquire than their
synthetic counterparts and, therefore, are found in fewer
screening libraries. Among the 20 HIV drugs, the number
of on-bits ranges from 1 (etravirine, approved by the FDA
in 2008) to 42 (ritonavir, approved by the FDA in 1996),
with the average number of on-bits being 12. Among
the 11 antimalarial drugs, the number of on-bits ranges
from 1 (lumefantrine) to 57 (quinine) with an average
of 20. Among the 55 hypertension drugs, the number
of on-bits ranges from 4 (fosinopril) to 111 (verapamil)
with an average of 36.

Figure 2 Three machine learning approaches for developing data-driven drug repurposing models. The total number of drugs and drug
development candidates with drug-protein interaction profiles is 4,902. m denotes the number of drugs with a desirable therapeutic effect (positive
class), n represents a subset of m used as the positive class of the training set for model development, and k denotes the number of drugs that do not
have a desired therapeutic effect but can be used as false positives (FP) for the purpose of model development. TP: true positive.
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Using the drugs for each disease, we performed complete
cross validation by training type I, II, and III models using
one, two, or three approved drugs in the positive classes.
To perform complete cross validation of models developed
using a single positive drug in the positive class, each and
every positive drug was used once as the positive class to
build a model. For complete cross validation of models de-
veloped with two (three) positive drugs in the positive
class, each unique pair (triplet) of the positive drugs was
used once as the positive class to develop a model. With
an increasing number of positive drugs and increasing
number of positive drugs assigned to the positive class
for model development, the total number of models for
complete cross validation increases dramatically. For
instance, with 55 HBP drugs for hypertension, complete
cross validation for models developed with 3 positive
drugs required training of 26,235 models. Despite the
large number of models to train, the DPIR method is
computationally efficient as there is no regression or
optimization of any parameters required. We assessed
the performance of the models by degree of enrichment
of positive drugs in the top-ranked testing sets or base-
line classes.

Performance of type I models
Figure 3A-C shows degrees of enrichment of positive
drugs by type I models for hypertension, HIV, and anti-
malarial drugs. These results show that with models de-
veloped using a single positive drug in the positive class
of the training set, on average, between 15% and 20% of
positive drugs in the testing sets were in the highest-
scored 1% of the tested samples, between 30% and 40%
of positive drugs were in the highest-scored 5% of the
tested samples, and between 40% and 60% of positive
drugs were in the highest-scored 10% of the tested sam-
ples. The corresponding enrichments by models devel-
oped from two or three positive drugs in the positive
class of the training sets were slightly higher, but, more
importantly, they exhibited lower variability, as indicated
by decreasing standard deviations of the fraction of posi-
tive drugs in the highest-scored testing samples. This is
because increasing the sample size (number of positive
drugs in the positive class) increases the signal-to-noise
ratio, which improves Bayesian statistics.
The expected fractions of positive drugs randomly dis-

tributed in the testing sets were 1%, 5%, and 10% in the
1%, 5%, and 10% of testing samples, respectively. Com-
pared with a random selection, type I models achieved
significant enrichment, especially considering the small
number of positive drugs (one, two, or three) present in
the positive class for model development. The corre-
sponding p-values for achieving such levels of enrich-
ment by chance ranged from 6.5 × 10-3 to 1.8 × 10-28.

Performance of type II models
Figure 3D-F shows the results of type II models for the three
diseases. Even though a large number of positive drugs for
each disease are in the baseline class and play the role of
false negatives, they had little impact on model performance.
The bar heights of type I and type II models for each disease
and the standard deviations were nearly identical. The lack
of appreciable impact of the false negatives was at first sur-
prising. However, as the number of false negatives was very
small compared with the total number of compounds in the
various baseline classes, their effect was minimal. As a re-
sult, the false negatives had negligible impact on the weight
wi associated with each drug-protein interaction. Thus, the
results shown in Figure 3 indicate that false negatives have
a negligible impact on the model development.

Impact of false positives on model performance
Figure 4 shows the comparison between type II and type
III models. To develop the type III models, we included
one false positive drug in the positive class for model
building. The comparison shows that a false positive in
the training set had a significant negative impact on model
quality. Models developed with one true positive and one
false positive in the positive class performed no better
than picking the drugs randomly. Increasing the number
of true positives in the positive class improved model per-
formance; the improvement was not very significant as
the enrichment rates of type III models were significantly
lower than the corresponding enrichment rates of type II
models. The practical implication is that the drugs used
for the positive class in the model development should
truly be associated with the desired therapeutic effect in
order for the repurposing method to work efficiently.

Model performance without SEA-predicted drug-protein
interactions
To examine the impact of SEA-predicted drug-protein in-
teractions on model performance, we re-created drug-
protein interaction profiles using information only con-
tained in the STITCH database and used the profiles to re-
peat the cross-validation calculations of type II models.
Table 1 shows the results in comparison with those ob-
tained using drug-protein interaction information from the
STITCH database augmented by SEA predictions. For the
hypertension and HIV models, the enrichment rates ob-
tained with and without SEA-predicted drug-protein inter-
actions were very close, with a slight increase in retrieved
drugs when adding the SEA predictions. For malaria, how-
ever, the models that did not use SEA-predicted drug-
protein interactions performed significantly better. The
primary reason for this was that 6 out of the 11 malaria
drugs shared the same mechanism of action. They con-
sisted of quinine, a natural product extracted from the
bark of cinchona trees, and 5 synthetic analogs of
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quinine: amodiaquine, mefloquine, chloroquine, hydro-
xychloroquine, and primaquine. Because they shared
the same mechanism of action, this mechanism of ac-
tion was already well represented by the drug-protein
interactions in the STITCH database. Thus, for this
model, the additional SEA-predicted interactions intro-
duced mechanistic noise through irrelevant interactions
that led to a degraded model performance.
In summary, the main contribution of the SEA predic-

tions was to make ~10% of the drugs whose protein inter-
action information was not available in STITCH 3.1
amenable to repurposing. As an example, among the 20

HIV drugs, high-confidence drug-protein interaction in-
formation for fosamprenavir, a pro-drug, was not present
in STITCH 3.1. Therefore, this compound would not be
amenable to repurposing by DPIR without including the
SEA-predicted interactions. The additional 11 protein in-
teractions with fosamprenavir, derived from the SEA pre-
dictions, allowed us to include it in our modeling analyses.

Impact of increasing number of drugs in the positive
class on model performance
In the above analyses, all models were built with one to
three positive drugs to simulate the situation of a disease

Figure 3 Performance comparison between type I and type II models. Comparison of enrichment efficiencies of type I (A-C) and type II
(D-F) models for high blood pressure (HBP), HIV, and antimalarial drugs. The models were built with one, two, and three drugs in the positive
class of the training set. Bar heights denote the fraction of FDA-approved HBP, HIV, and antimalarial drugs in the testing set (type I models) or
baseline class (type II models) that scored in the highest 1%, 5%, and 10% of the compounds, respectively. Error bars represent 1 standard deviation
from full cross-validation calculations.
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with very few approved drugs. To evaluate the impact of
increasing the number of positive drugs on model per-
formance, we also performed cross-validation calculations
using 1, 5, 11, and 54 hypertension drugs in the positive
class for type II model development, and we evaluated the
enrichment power of the resulting models for the hyper-
tension drugs left in the baseline class. On average, among
the highest-scored 1% baseline compounds, there were
13%, 25%, 33%, and 56% hypertension drugs with models
developed with 1, 5, 11, and 54 hypertension drugs. The
corresponding hypertension drugs in the highest-scored

5% baseline compounds were 36%, 61%, 71%, and 85%, re-
spectively, and the corresponding hypertension drugs in
the highest-scored 10% baseline compounds were 50%,
77%, 85%, and 100%. We obtained similar results from the
other models (data not shown). Thus, as expected, in-
creasing the number of compounds in the training set in-
creased the number of positive drugs retrieved.

Pharmacological information of top-scored baseline drugs
The analyses above indicate that models derived by in-
creasing the size of the positive class have increasingly

Figure 4 Impact of false positive on the performance of type II models. The models were built with one to three true positives and either
zero or one false positive. Error bars represent 1 standard deviation from full cross-validation calculations. The random bar heights represent the
expected fractions of positive drugs in 1%, 5%, and 10% randomly picked baseline compounds. Models constructed with no false positives
correspond to type II models (Figure 3,D-F). A: High blood pressure (HBP) model. B: Human immunodeficiency virus (HIV) model. C: antimalarial
model. TP: true positive. FP: false positive.
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better performance. In practical applications, one should
include all drugs approved for an indication/disease in
the positive class of the training process. To this end, we
developed our final models for hypertension, HIV, and
malaria by including all the drugs for each disease in the
respective positive class. We used the resulting type II
models to score the baseline compounds and we
assessed the predictive power of the models by perform-
ing literature searches of the relevant information for

the 10 highest-scored FDA-approved drugs for each dis-
ease. Tables 2, 3 and 4 summarize the results.
Because we included all the drugs from the NIH’s

hypertension drug list in the positive class for model de-
velopment, the baseline class did not include any of
these drugs. As shown in Table 2, among the 10 highest-
scored FDA-approved drugs in the baseline class, six of
them have hypertension as part of their approved indica-
tions based on information contained in DrugBank [26].
In addition, a 1998 clinical study observed that nimodi-
pine, the second highest-scored baseline drug, reduced
systolic and diastolic blood pressures of the central ret-
inal artery, and it therefore may be a candidate for
pregnancy-induced hypertension therapy [33]. However,
information from DrugBank indicates that norepineph-
rine, the sixth highest-scored drug in Table 2, has been
approved for the treatment of critical hypotension, and
yohimbine was approved for the treatment of impotence.
In addition, epinephrine was approved for asthma and
cardiac failure, and a 2002 review found that use of this
drug was associated with small non-significant increases
in systolic and diastolic blood pressure [34]. It seems
that these three drugs induce a blood pressure increase,
contrary to the expected therapeutic effect of hyperten-
sion drugs. This apparent contradiction is rationalized
because functional information for many drug-protein
interactions contained in the STITCH database is in-
complete. Although these drugs and the hypertension
drugs interact with the same proteins, they induce an
opposite functional outcome, i.e., activation instead of
inhibition of the targeted proteins. Because of the lack of
specific functional information, drugs interacting with
the same proteins annotated as “binding” in the STITCH
database were scored high by the algorithm, even though
they may have opposite therapeutic effects. We similarly
observed the same effect in the highest-scored baseline
drugs identified by the HIV and malarial models dis-
cussed below.
Table 3 shows the results for the 10 baseline drugs

scored highest by the HIV type II model. Among them,
amprenavir was approved by the FDA as a treatment for
HIV-1 infection in combination therapy with other anti-
HIV drugs, even though it is not approved as a mono-
therapy for HIV. Surprisingly, two statins, atorvastatin
and lovastatin, scored among the top-10 drugs, suggest-
ing that they affect proteins that are also targeted by
anti-HIV drugs. Indeed, our literature search found a
2004 study that concluded that statins inhibit HIV-1 in-
fection by downregulating Rho activity [35]. The anti-
inflammation drug dexamethasone also scored high. Our
search identified a 2001 study that found that dexa-
methasone inhibits CD4 T cell death mediated by mac-
rophages from HIV-infected persons [36]. Toward the
end of an HIV infection, the number of functional CD4

Table 1 Impact of SEA-predicted drug-protein
interactions on Type II model performancea

With SEA Without SEA

Evaluation of
top-ranking scores (%)

Drugs in
training set

Fraction σ Fraction σ

High Blood Pressure model

1 1 0.14 0.06 0.15 0.07

5 1 0.36 0.11 0.36 0.11

10 1 0.50 0.14 0.48 0.14

1 2 0.14 0.06 0.18 0.07

5 2 0.48 0.09 0.45 0.10

10 2 0.64 0.09 0.60 0.11

1 3 0.19 0.06 0.20 0.07

5 3 0.53 0.08 0.52 0.10

10 3 0.70 0.08 0.67 0.10

HIV model

1 1 0.16 0.09 0.20 0.19

5 1 0.28 0.14 0.30 0.18

10 1 0.37 0.17 0.39 0.21

1 2 0.17 0.07 0.18 0.07

5 2 0.32 0.12 0.33 0.10

10 2 0.44 0.13 0.43 0.15

1 3 0.19 0.07 0.21 0.07

5 3 0.34 0.11 0.37 0.09

10 3 0.48 0.10 0.50 0.12

Malaria model

1 1 0.14 0.07 0.20 0.24

5 1 0.34 0.14 0.54 0.25

10 1 0.70 0.22 0.79 0.22

1 2 0.20 0.13 0.20 0.13

5 2 0.43 0.20 0.58 0.16

10 2 0.73 0.15 0.89 0.10

1 3 0.21 0.09 0.21 0.10

5 3 0.49 0.15 0.66 0.13

10 3 0.77 0.13 0.91 0.07
aThe type II models were built with one, two, and three positive drugs in the
positive class of the training set. The fraction of positive drugs in the baseline
class that scored in the highest 1%, 5%, and 10% of the compounds are recorded
for models using the STITCH 3.1 database with and without SEA-predicted
drug-protein interactions. Fraction, fraction of known drugs retrieved;
σ, standard deviation; SEA, similarity ensemble approach.
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T cells falls, which leads to the symptomatic stage of
AIDS. The observation that dexamethasone inhibits
CD4 T cell death supports the predictive power of our
model. However, our search for the highest-scored base-
line drug, verapamil, did not find a convincing literature

report for its putative anti-HIV activity. Instead, a 1991
study observed that, in high concentration, verapamil
can potentiate HIV-1 replication in lymphoid cells [37].
Its interaction with nuclear factor κ-light-chain enhancer of
activated B cells (NF-κB) was suggested to be responsible

Table 2 Therapeutic information of the drugs assigned to the baseline class that were scored highest by the
hypertension modela

Generic name Score Information from DrugBankb Information from other sources

Nitrendipine 103.9 For mild to moderate hypertension.

Nimodipine 93.9 For use as an adjunct to improve neurologic outcome following
subarachnoid hemorrhage.

A 1998 clinical study [33] observed that nimodipine
reduces systolic and diastolic blood pressures of the
central retinal artery and therefore may provide another
therapeutic choice for pregnancy-induced hypertension.

Alprenolol 69.7 For hypertension, angina, and arrhythmia.

Nilvadipine 69.2 For vasospastic angina, chronic stable angina, and hypertension.

Oxprenolol 69.1 For the treatment of hypertension, angina pectoris, arrhythmias,
and anxiety.

Norepinephrine 53.8 For patients in vasodilatory shock states, also used as a
vasopressor medication for patients with critical hypotension.

Spirapril 52.1 An ACE inhibitor for hypertension.

Lercanidipine 46.5 For hypertension, angina pectoris, and Raynaud’s syndrome.

Yohimbine 44.7 Used as a mydriatic and for the treatment of impotence.

Epinephrine 43.9 Used in asthma and cardiac failure and to delay absorption of
local anesthetics.

A systematic review in 2002 [34] found that the use of
epinephrine in uncontrolled hypertensive patients was
associated with small, non-significant increases in systolic
and diastolic blood pressure.

aThe model was developed with all 55 drugs in the National Institutes of Health hypertension drug list in the positive class; the remaining drugs and drug
development candidates were potential repurposing candidates in the baseline class.
bRef. [26].
ACE: angiotensin-converting enzyme.

Table 3 Therapeutic information of the drugs assigned to the baseline class that were scored highest by the HIV modela

Generic name Score Information from DrugBankb Information from other sources

Verapamil 23.5 For hypertension, angina, and cluster headache prophylaxis. A 1991 study [37] observed that verapamil at
high concentration can potentiate HIV-1
replication in lymphoid cells.

Clotrimazole 22.6 For oropharyngeal candidiasis, vaginal yeast infections,
and fungal infections.

Ketoconazole 21.5 For fungal infections.

Dexamethasone 21.0 An anti-inflammatory 9-fluoro-glucocorticoid. A 2001 study [36] found that dexamethasone
inhibits CD4 T cell death mediated by macrophages
from HIV-infected persons.

Amprenavir 19.6 For treatment of HIV-1 infection in combination with
other antiretroviral agents.

Atorvastatin 19.3 For hypercholesterolemia. A 2004 study [35] concluded that statins inhibit HIV-1
infection by downregulating Rho activity.

Clarithromycin 18.5 Antibiotic.

Lovastatin 18.2 For hypercholesterolemia. A 2004 study [35] concluded that statins inhibit HIV-1
infection by downregulating Rho activity.

Quinidine barbiturate 18.1 For the treatment of ventricular pre-excitation
and cardiac dysrhythmias.

Cimetidine 17.9 For acid-reflux disorders (GERD), peptic ulcer disease,
heartburn, and acid indigestion.

aThe model was developed with all 20 HIV drugs in the FDA’s HIV drug list in the positive class; the remaining compounds were potential repurposing candidates
in the baseline class.
bRef. [26].
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for this effect. NF-κB was later considered a potential target
of anti-HIV chemotherapy by Pande and Ramos [38]. The
high scoring of verapamil in our model seems to support
NF-κB as a target for anti-HIV drugs. The reason we mis-
identified the therapeutic effect of verapamil may again
be partly rationalized by the lack of functional informa-
tion (activation or inhibition) of drug-NF-κB inter-
action of the anti-HIV drugs in the STITCH database.
Table 4 shows the 10 drugs in the baseline class that

scored highest by the antimalarial model. None of them
has been approved by the FDA for the treatment of
malaria. However, three of them are azole compounds
(miconazole, clotrimazole, and ketoconazole), and many
studies that have reported antimalarial activities of azole
compounds [39-43] lend support to our model predictions.
The highest-scored non-malarial drug is dexamethasone. It
has been reported to have dramatic life-saving effects in
people with cerebral malaria [44]. However, these effects
were not observed in subsequent placebo-controlled
clinical trials [45,46]. A flavonol nutraceutical, quercetin,
scored third-highest, as shown in Table 3. It was reported
in 2002 to have antiplasmodial activity [47], corroborating
our model prediction.
It is interesting to note that two other drugs shown in

Table 4, verapamil and cimetidine, do not have antimal-
arial activities themselves but exhibit synergism when
used in combination with antimalarial drugs [48,49]. In
the case of verapamil, it was reported that it reverses
chloroquine resistance in the malaria parasite [48]. To

understand why these two drugs scored high, we inves-
tigated the most frequently occurring drug-protein in-
teractions among the antimalarial drugs. Among the 11
antimalarial drugs, 10 are cytochrome P-450 (CYP)2D6
inhibitors, 4 are CYP1A2 inhibitors, 4 are CYP3A4 in-
hibitors, 3 are CYP2C9 inhibitors, and 3 are CYP1A1
activators. Because of their high frequencies among the
antimalarial drugs, according to Eq. 3, the drug-protein
interactions contributing most to the antimalarial model
relate to the inhibition of CYP proteins. However, the hu-
man CYP proteins are unlikely malarial drug targets.
Instead, the similarity between the CYP-binding site, the
heme group, and malarial drug target may be the reason
for the apparent importance of CYP inhibition for anti-
malarial activity. Indeed, one of the proposed antimalarial
mechanisms of 4-amino quinolones is the formation of a
drug-heme complex that inhibits the polymerization and
crystallization of free heme into hemozoin [50]. The mal-
aria parasite digests hemoglobin and produces free heme,
which is toxic to the parasite. The formation of hemozoin
is a parasite detoxification pathway. Quinolones with fused
bicyclic aromatic rings bind well with heme due to π-π
stacking interactions and therefore inhibit hemozoin effi-
ciently. Because heme is also the most important structural
moiety of the CYP enzymes, the high affinity of quinolones
to heme also makes them inhibitors of CYP enzymes.
Verapamil and cimetidine were scored high by the anti-
malarial model because both of them are inhibitors of
CYP2D6, CYP3A4, and CYP2C9. As the compounds do

Table 4 Therapeutic information of the drugs assigned to the baseline class that were scored highest by the malaria
modela

Generic name Score Information from DrugBankb Information from other sources

Dexamethasone 22.1 An anti-inflammatory 9-fluoro-glucocorticoid. Dexamethasone was reported to have a dramatic life-saving effect on
people with cerebral malaria [44]. However, two subsequent placebo-
controlled clinical trials failed to demonstrate clinical benefit [45,46].

Verapamil 21.5 A calcium channel blocker for hypertension,
angina, and cluster headache prophylaxis.

A 1995 study [48] reported that verapamil reverses chloroquine resistance
in the malaria parasite.

Quercetin 18.9 A flavonol found in plants, antioxidant. A 2012 study [47] reported that quercetin had antiplasmodial activity.

Miconazole 16.5 An imidazole antifungal agent. Many studies [39-43] have reported antimalarial activities of antifungal
azole compounds.

Clotrimazole 15.9 An imidazole derivative with a broad
spectrum of antimycotic activity.

Many studies [39-43] have reported antimalarial activities of azoles,
including clotrimazole [43].

Cimetidine 15.5 For acid-reflux disorders (GERD), peptic ulcer
disease, heartburn, and acid indigestion.

A 1997 study [49] reported synergism of cimetidine with antimalarial
agents. It is ineffective when used alone.

Ketoconazole 15.2 For systemic fungal infections. Many studies [39-43] have reported antimalarial activities of azoles,
including ketoconazole [41].

Nifedipine 14.9 A calcium channel blocker for angina,
hypertension, and Raynaud's phenomenon.

Tamoxifen 14.4 For breast cancer.

Clobetasol 14.4 For corticosteroid-responsive dermatoses of
the scalp.

aThe model was developed with all 11 antimalarial drugs in the positive class; the remaining compounds were potential repurposing candidates in the
baseline class.
bRef. [26].
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not have a fused bicyclic aromatic moiety, they do not bind
well with free heme and, hence, do not have antimalarial
activity by themselves. The reason they enhance the activ-
ity of antimalarial drugs is more likely a direct effect of
their inhibition of Pgh1, an ATP-binding cassette protein
functioning as a membrane efflux pump [51]. It reduces
antimalarial drugs in the parasite food vacuole and there-
fore results in drug resistance. The human homologue of
Pgh1 is P-glycoprotein, a well-known multidrug-resistant
protein. Both verapamil and cimetidine are inhibitors of P-
glycoprotein and, therefore, are also likely inhibitors of
Pgh1; thus, co-administration of these drugs with trad-
itional malarial drugs should result in enhanced antimalar-
ial activity.
It is interesting to note that five of the ten entries in

Tables 3 and 4 are overlapping. This was partly a reflection
of the five drugs having an above-average number of on-
bits in their protein interaction profiles, effectively leading
to more off-target effects, including a heightened potential
for therapeutic repurposing. The numbers of on-bits in the
drug-protein interaction profiles were 445, 111, 65, 44, and

40 for dexamethasone, verapamil, cimetidine, ketoconazole,
and clotrimazole, respectively, whereas the average number
of on-bits of all 4,902 compounds was 38.
In summary, the results shown in Tables 2, 3 and 4

support the conclusions we derived from the results
shown in Figures 2 and 3: that the performance of the
drug-repurposing method developed in this project is
robust and may have practical utility. The high-scoring
drugs derived for each disease not only included drugs
approved for the disease but also molecules identified in
the literature as potential drugs against the disease. Thus,
we can propose top-scored drugs with no recorded indica-
tion for the disease as novel drug repurposing candidates
for the disease. In addition, the methodology can be used
to characterize and decipher the mode of drug action and
identify protein targets that may enhance the effect of
existing drugs via synergistic drug combinations.

Application to a condition with only one approved drug
Impaired blood clotting may lead to hemorrhagic shock
and contribute to fatalities resulting from traumatic

Table 5 Structures and therapeutic information of tranexamic acid and the highest-scored drugs by the tranexamic
acid modela

Structure Generic name Score DrugBank indicationb Information from other sources

Tranexamic Acid For preventing hemorrhage in trauma and for
excessive bleeding during and following
tooth extraction, surgery, and menstruation.

The only drug used to build the DPIR
prediction model.

Aminocaproic
acid

1.39 For the treatment of excessive postoperative
bleeding.

Amiloride 1.38 For use as adjunctive treatment with thiazide
diuretics or other kaliuretic-diuretic agents in
congestive heart failure or hypertension.

Amiloride was evaluated as a treatment for
ameliorating trauma-hemorrhagic shock-
induced lung injury in rats [53].

… 26 experimental drugs with scores between 1.38 and 0.69 ….

Diethylstilbestrol 0.69 For treatment of prostate cancer and
prevention of miscarriage or premature
delivery in pregnant women prone to
miscarriage or premature delivery.

Diethylstilbestrol was found to have particular
clinical value in the treatment of certain
functional gynecic aberrations. One of these is
excessive or prolonged functional uterine
bleeding [54].

aThe model was developed with tranexamic acid as the only member of the positive class; all other compounds were in the baseline class.
bRef. [26].

Liu et al. BMC Bioinformatics 2014, 15:210 Page 12 of 16
http://www.biomedcentral.com/1471-2105/15/210



injuries. Currently, the only drug approved by the FDA for
reducing or preventing hemorrhage in trauma is tranex-
amic acid. We constructed a type II model using tranex-
amic acid as the only drug in the positive class. We used
the model to score all other compounds, and Table 5
shows the highest-scoring compounds. The highest-
scored baseline compound was aminocaproic acid, a drug
for the treatment of excessive postoperative bleeding [52].
As an acyclic analog of tranexamic acid, aminocaproic
acid and tranexamic acid have a high level of structural
similarity. Therefore, it can be expected that they have
similar therapeutic effects.
Two other marketed drugs that ranked high were

amiloride, approved for congestive heart failure and
hypertension, and diethylstilbestrol, approved for the
treatment of prostate cancer and the prevention of mis-
carriage or premature delivery. Amiloride was evaluated
for trauma-hemorrhagic shock-induced lung injury in a
rat model [53], and diethylstilbestrol was studied for
hemostasis in functional uterine hemorrhage and con-
cluded to be of clinical value for excessive or prolonged
functional uterine bleeding [54]. These observations are
in line with the model predictions.

Limitations on comparison with other methods
The comparison of different computational drug repur-
posing methods is limited by a lack of publicly available
datasets and software systems. Further complications
arise because different methods rely on different types
of information, ranging from experimentally/clinically
derived data (such as drug- and disease-induced gene
expression changes, drug side effects, and drug-protein
interactions) to calculated measures (such as drug-drug
structure similarity, drug target protein sequence simi-
larity, and semantic similarity of disease phenotypes).
Thus, because most publications do not make software,
training data, and test data containing all types of infor-
mation available, there is little scope for proper methodo-
logical comparison, i.e., method A versus method B on the
same dataset using a generally accepted standard. To fa-
cilitate future comparison with other methods, we have
made our drug-protein interaction dataset publicly avail-
able for download (see Methods).
To enable a reference comparison, we compared the

performance of the type II models with that of a chem-
ical fingerprint similarity search on the same datasets.
Thus, we performed cross-validation calculations using
one, two, and three positive drugs as the positive classes,
and the remaining compounds, including other positive
drugs, as the test compounds. We used the Tanimoto
chemical similarity between a test compound and a posi-
tive class compound, calculated by using Accelrys ECFP_4
fingerprints, to rank order the test compounds. Table 6
shows the calculated percentages of the positive drugs in

the highest-ranked 1%, 5%, and 10% of the test set com-
pounds for all three repurposing models. The chemical
fingerprint searches provided significant enrichments, the
success of which was largely determined by the presence
or absence of chemically similar drugs in the approved
drug set for each disease. For the hypertension and HIV
drugs, the DPIR method consistently performed better
than the structural similarity search. This was because the
drugs used to construct the models were different from

Table 6 Comparison of DPIR and chemical fingerprint
(similarity) search-based drug repurposing approachesa

DPIR Similarity

Evaluation of
top-ranking scores (%)

Drugs in
training set

Fraction σ Fraction σ

High Blood Pressure model

1 1 0.14 0.06 0.09 0.07

5 1 0.36 0.11 0.16 0.07

10 1 0.50 0.14 0.24 0.10

1 2 0.14 0.06 0.14 0.08

5 2 0.48 0.09 0.22 0.09

10 2 0.64 0.09 0.29 0.10

1 3 0.19 0.06 0.18 0.08

5 3 0.53 0.08 0.27 0.10

10 3 0.70 0.08 0.33 0.10

HIV model

1 1 0.16 0.09 0.08 0.07

5 1 0.28 0.14 0.20 0.09

10 1 0.37 0.17 0.25 0.10

1 2 0.17 0.07 0.11 0.07

5 2 0.32 0.12 0.28 0.12

10 2 0.44 0.13 0.36 0.12

1 3 0.19 0.07 0.13 0.07

5 3 0.34 0.11 0.32 0.13

10 3 0.48 0.10 0.44 0.14

Malaria model

1 1 0.14 0.07 0.26 0.18

5 1 0.34 0.14 0.50 0.21

10 1 0.70 0.22 0.55 0.23

1 2 0.20 0.13 0.35 0.16

5 2 0.43 0.20 0.62 0.16

10 2 0.73 0.15 0.72 0.16

1 3 0.21 0.09 0.40 0.14

5 3 0.49 0.15 0.68 0.14

10 3 0.77 0.13 0.79 0.12
aThe DPIR (type II) models were developed with one, two, or three positive
drugs in the positive class of the training set. The chemical fingerprint search
used Tanimoto similarity (TS) calculated with the Accelrys ECFP_4 fingerprint.
The highest TS coefficient between a baseline compound and a positive
compound was used to rank order the baseline compound. DPIR, drug-protein
interaction-based repurposing; fraction, fraction of known drugs retrieved;
σ, standard deviation; bold font, highest fraction retrieved.
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each other and structural similarity was limited, whereas
the DPIR methodology, based on capturing drug-protein
interactions, did not require structural similarities. In con-
trast, for malaria drugs the situation was reversed, with
structural similarity being the most “successful” repurpos-
ing strategy. However, this was primarily because 5 of the
11 malaria drugs (~50%) were structurally very closely re-
lated to quinine, the original malaria drug. They (amodia-
quine, mefloquine, chloroquine, hydroxychloroquine, and
primaquine) are synthetic analogs of quinine and therefore
structurally very similar to it. Molecular structures of
the hypertension, HIV, and malaria drugs are given in
Additional file 1: Figures S1, Additional file 2: Figure S2,
Additional file 3: Figure S3. They show that all malaria
drugs can be grouped in one structural similarity cluster
of six compounds and five singletons. The hypertension
drugs belong to seven structural clusters and 27 single-
tons, and the HIV drugs belong to six clusters and seven
singletons. Thus, the hypertension and HIV drug sets rep-
resent a more structurally diverse ensemble of drugs than
the malaria drugs.
In effect, DPIR could identify compounds whose activ-

ity was due to structurally similar compounds having
similar activity, as well as compounds containing differ-
ent structural scaffolds but having similar protein inter-
action profiles. This was also corroborated by the data
shown in Table 5, where even though amiloride and di-
ethylstilbestrol were structurally very different from
tranexamic acid, DPIR successfully scored them high as
potential repurposing candidates.

Conclusions
In this article, we described the development of a Bayesian
statistics-based computational drug repurposing method
termed DPIR and assessed its performance. We demon-
strated that the method required very few known drugs to
build a successful predictive model for test cases for which
there are many approved drugs. We also demonstrated
that for trauma-induced hemorrhage, for which only one
FDA-approved drug is available, the method gave high
scores to two drugs approved for unrelated indications,
but with potential therapeutic effects against hemorrhage
as supported by literature reports. These results indicate
that DPIR is potentially applicable to diseases with as few
as one approved drug, a challenging situation for methods
based on a binary classifier approach. DPIR relies on large-
scale drug-protein interaction information. In principle,
if one knows the molecular mechanisms of a disease
and the details of drug-protein interactions, one can
predict whether a drug will have the desired therapeutic
effect for a specific disease. However, details of molecu-
lar mechanisms of drug action are not well understood
and even unknown for many efficacious drugs, compli-
cated by the fact that most drugs interact with a large

number of proteins. Bayesian statistics provide a power-
ful and unbiased approach to identify specific drug-
protein interactions critical for a desired therapeutic
effect.
The DPIR method relies on the association of drug-

protein interactions to capture and define the therapeutic
effects of the drug based on the knowledge of at least one
known drug. The underlying assumption in this approach
is that the main effect of the drug is mediated through
drug-protein interactions. These interactions create a char-
acteristic profile, or signature, that can be used to find
other drugs without direct knowledge of how these inter-
actions contribute to disease treatment. Furthermore, as
found in the case studies above, the true effect of the drug-
protein interaction determines the therapeutic potential
and cannot be predicted without accurate interaction an-
notations. Thus, if the drug-protein activation or inhibition
effect is only annotated as “binding”, the model cannot re-
solve the true nature of the interaction. Experimental veri-
fication will, of course, always be required for probing the
repurposing potential of any drug.
Because of the large number of druggable targets that

can be associated with human diseases, a major limita-
tion of our method is availability of large-scale drug-
protein interaction information. This is not a problem
for drugs that have been on the market for a long time,
as these compounds are increasingly likely to be in-
cluded in different screening libraries and tested in mul-
tiple bioassays over time. However, for newer drugs,
information of their interactions with a broad spectrum
of proteins is usually lacking and therefore may limit the
applicability of the method. Yet with time, these com-
pounds will be tested in more assays, and information
about their interaction with human proteins will become
available. As more and more screening results are depos-
ited in the public domain, the aggregated data will become
an invaluable resource for establishing whole genome-
wide drug-protein interaction profiles and for discovering
new uses for existing drugs.

Additional files

Additional file 1: Figure S1. Hypertension drugs grouped by molecular
structure similarity. Molecular structure similarity clusters of the hypertension
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Additional file 2: Figure S2. HIV drugs grouped by molecular structure
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Additional file 3: Figure S3. Malaria drugs grouped by molecular
structure similarity. Molecular structure similarity clusters of the malaria drugs.
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