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ABSTRACT

A major challenge facing computer architects today is designing cost-effective hard-
ware that executes multiple operations simultaneously. The goal of such designs is to im-
prove performance by taking advantage of fine-grain parallelism. In this dissertation, 1
study vector architectures, the oldest of several processor designs that support fine-grain
parallelism. Because implementing a cost-effective processor that performs well requires
studying not only the design of processors but also the design of algorithms for compilers,
this dissertation encompasses aspects of both hardware and software design.

In the first half of this dissertation, I demonstrate that a vector architecture is a
cost-effective processor that supports fine-grain parallelism. I show that implementing a
vector architecture is no more costly than implementing a superscalar architecture, which
is currently popular among designers of VLSI microprocessors. I then show that programs
that are rich in parallelism tend also to be vectorizable and are also the ones that execute the
longest in a workload, thus demonstrating further the effectiveness of vector architectures.
Finally, I show that superpipelined hardware in combination with a vector architecture can
take advantage of what little parallelism is available in non-vectorizable programs.

In the second half of this dissertation, I investigate the cost and performance of
different organizations for a vector register file in the Cray Y-MP vector processor, an inves-
tigation that emphasizes the interaction between processor design and compiler algorithms.
After showing that instruction scheduling has a ma jor impact on how effectively more vector
registers can be used, I present data from simulation experiments indicating that 16 vector
registers and a list scheduling algorithm can improve performance significantly over that
of 8 vector registers and the scheduling algorithm used in the Cray vectorizing compiler. I
also investigate the usage of an alternative register organization, called a partitioned vec-
tor register file, which is less costly to implement than a traditional one but places some
restrictions on accessing vector registers. To circumvent this restrictive access, I develop
an algorithm for assigning vector registers and present data showing that, when using my
algorithm, the performance of a partitioned vector register file is comparable to that of a
traditional one.
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Chapter 1

Introduction

In the fall of 1990, I worked at Cray Research, Incorporated with the architecture
group that is designing the follow-on to the Cray Y-MP C-90, which in turn is the successor
to the Cray Y-MP, the classic embodiment of a vector architecture. My project was to
answer the following question:

How many vector registers are enough to effectively use
the functional units of the Cray Y-MP vector processor?

What this question really means, how I went about answering this question, and the actual
answer itself are described in two chapters of this dissertation.

In the course of answering this question, I developed two compiler algorithms: a
vector instruction scheduler and a vector register assigner. I also examined the design of
a vector processor to determine the cost of implementing different configurations of vector
register files. Finally, I carried out simulation experiments to evaluate the effectiveness of
the algorithms I developed and to measure the performance of different register files as well
as to determine the answer to the above question.

In addition to answering the above question, my dissertation also addresses the
more fundamental question: “Why do research in vector architectures?” The short — but
not often heard — answer is “because a vector architecture is an inexpensive processor
design that supports fine-grain parallelism well.” The longer version of this answer is given
in two chapters: one that contrasts how vector architectures support fine-grain parallelism
in comparison to other architectural classes, and another chapter that explains how vector
architectures are inexpensive to implement.

1.1 Definitions

Before 1 present an overview of my dissertation, I discuss my usage of particular
words.

In the discipline of computer science, the term architecture is typically used as an
abbreviation for computer architecture, which refers to the organization and implementa-
tion of a computer. A computer, in turn, consists of three major components: processor,
memory, and input/output. For my thesis, I examine the design of only the processor com-
ponent, which is also commonly known as the central processing unit or CPU for short.



Hence, in this dissertation, I use the term architecture as an abbreviation for processor
architecture to refer to the organization and implementation of a processor rather than an
entire computer.

I make a distinction between an operation and an instruction. An operation is a
task executed by an instruction. An instruction, on the other hand, is associated with a
particular processor design and represents the smallest unit of work that is examined during
one clock period by the instruction-issue logic in hardware. Furthermore, an instruction
can cause one or more operations to execute, depending on the processor architecture, and
specifies not only what operations to execute but also where the operands and results of
those operations are located. In describing algorithms for code optimization, I use the more
abstract term operation because it is less specific about its execution and hence has fewer
restrictions on how it should be executed. The purpose of these algorithms is to transform a
set of operations into a sequence of instructions. For example, an algorithm for instruction
scheduling determines in what order a set of operations should execute, and an algorithm for
register assignment determines where the operands and result of an operation are located.

Because an instruction in a vector architecture can specify more than one oper-
ation to execute, the term instruction-level parallelism inadequately portrays the amount
of parallelism supported by a vector architecture. In contrast, the term fine-grain paral-
lelism refers to the number of operations that can be executed at the same time and more
accurately depicts the amount of parallelism supported by a vector architecture. Further-
more, it is more insightful to compare the amount of fine-grain parallelism, rather than
instruction-level parallelism, supported by various architectures because different architec-
tures can specify different amounts of work for an instruction but an operation specifies the
same amount of work across different architectures. Hence, I use the term fine-grain paral-
lelism to refer to the parallelism that can be supported by a uniprocessor. (Although the
term operation-level parallelism would be a more logical choice, I use fine-grain parallelism
instead because it is more commonly used among designers of compilers and hardware.)

Finally, I use the term functional unit rather than the acronym ALU to refer to
a part of hardware that executes an operation. All types of operations, including memory
accesses, are executed by some type of functional unit. A functional unit can be general
purpose like an ALU or special purpose like a shifter or a floating-point adder. A memory
port, which executes a memory operation, is a special-purpose functional unit that serves
as the interface between a processor and its memory system.

1.2 Overview of Dissertation

This dissertation has two common themes: the use of fine-grain parallelism to
improve performance, and the cooperation between software and hardware to design a cost-
effective processor, particularly one that supports fine-grain parallelism. An example of
the second theme is provided by the question posed in the opening paragraph. Because a
solution to this question must provide improved performance at a reasonable cost, answering
this question requires understanding the interaction between a code optimizer and the design
of a register organization. Each of the four major chapters in this dissertation develops these
two themes, with the first two chapters emphasizing fine-grain parallelism and the last two



concentrating on how aspects of a vector processor interact with aspects of a compiler.

In addition to providing background information about vector architectures and
fine-grain parallelism, the first two major chapters address the question “Why do research
in vector architectures?” I begin Chapter 2, Fundamentals of Vector Architectures, with
a short discussion on data dependence, a concept that affects both hardware and software
when using parallelism. Next I describe how the hardware features of a vector architecture,
and in particular the vector instruction, support fine-grain parallelism and contrast these
features with those of other architectures that support fine-grain parallelism. Because not all
parts of a program can be executed with vector instructions, I then describe the properties
of a vectorizable program fragment and explain how a compiler can identify these.

At the ASPLOS?! conference in 1991, cries of “Vector architectures are history!”
were heard throughout the sessions. The rapid advancement of VLSI technology and the
trend in microprocessor design towards superscalar architectures have led to this predic-
tion of the vector architecture’s imminent demise. Because of this dire prediction, many
people may mistakenly believe that research in vector architectures is a futile activity. To
counter this prediction as well as these mistaken beliefs, in Chapter 3, A Case for Vector
Architectures, I present arguments with accompanying data that emphasize the hardware
and software strengths of vector architectures and the weaknesses of superscalar ones.

Chapter 4, Common Ezperimental Framework is a short one in which I describe
the basic vector hardware, performance tools, and workload used in the empirical studies
carried out in the next two chapters.

In the last two major chapters, I answer the question posed in the opening para-
graph. In Chapter 5, Register Usage and Instruction Scheduling, I analyze the performance
of using more vector registers. As part of this analysis, I also show that algorithms for
instruction scheduling have a major impact on how effectively more registers are used to
improve performance. I present empirical data that determines the minimum number of
vector registers needed to significantly improve performance over the current design of the
Cray Y-MP vector processor. In Chapter 6, Bus Usage and Register Assignment, 1 exam-
ine the cost of using more vector registers and investigate a special organization, Ical a
partitioned vector register file, that is less costly but more restrictive in its access to indi-
vidual vector registers. For this investigation, I describe a register assignment algorithm I
developed that uses such a restrictive organization with minimal loss in performance. I also
present empirical data for choosing a register organization that is most cost-efffective for
improving performance.

In the closing chapter, Concluding Remarks, I summarize my work by highlighting
the contributions of this dissertation and finish by discussing extensions of this work for
future study.

1 ASPLOS is an acronym for Architectural Support for Programming Languages and Operating Systems.



Chapter 2

Fundamentals of
Vector Architectures

In this chapter, I describe the fundamentals of vector hardware and compilation
to demonstrate how suitable a vector architecture is for supporting fine-grain parallelism.
Because my dissertation examines the interaction between vector hardware and compiler
algorithms, the information in this chapter also serves as the background material for the
remaining chapters. This discussion outlines problems faced by any architecture that sup-
ports fine-grain parallelism and differentiates what is specific to a vector architecture. I
begin with a short discussion on data dependence, a concept that is fundamental to any ar-
chitecture that uses parallelism. I then describe the hardware capabilities needed to support
fine-grain parallelism and contrast how a vector architecture and three other architectures
provide this support. Because not all parts of a program can be executed with vector
instructions, I next describe the properties of a vectorizable program fragment, using the
hardware as the basis for justifying each property, and outline how a program is transformed
into vectorized code.

2.1 Data Dependence

Correct parallel execution requires that multiple operations be executed simulta-
neously without changing a program’s functionality, which is typically defined by the output
produced by the scalar version of the program. Imprudently executing any operations in
parallel will likely alter a program’s functionality. One way to maintain correct functionality
is to guarantee that accesses to the same storage location occur in the same order as they
do in the scalar version. In other words, references to the same location must be serialized
whereas references to different locations can execute in parallel. Two references that access
the same storage location form a data dependence' Moreover to ensure that the correct value
is always in the common location, this dependence relation specifies the order in which the
two references can execute: the reference that accesses the common storage location first
must execute first [120]. Hence, any architecture that supports fine-grain parallelism must

1 Another type of dependence that occurs in a program is control dependence. I focus only on data
dependence in this discussion. Ferrante, Ottenstein, and Warren show how a compiler can uniformly treat

control and data dependences [39].



DEPENDENCE TYPES ACCESS TYPES
HARDWARE NAME | coMPILER NAME || AND ORDER
RAW flow dependence read after write
WAR anti-dependence write after read
WAW output dependence || write after write

Figure 2.1: Hardware and Compiler Names for Dependence Types

This table shows the names given by the hardware and compiler communities to the different
types of data dependences. The hardware names refer to dependences that occur in registers and
the compiler names refer to those that occur in memory. A fourth combination — RAR or input
“dependence” — is not really a dependence because no state is changed. RAW or flow dependences
are considered the only true data dependences in that they cannot be eliminated without jeopardizing
correct functionality. WAR/anti and WAW /output dependences occur because storage is finite; if
every newly-created value were assigned its own storage location, these dependences would never

occur.

maintain the orderings specified by all data dependences.

A dependence can be classified by access type and the order in which two refer-
ences occur. In addition, data dependences can occur in two different storage locations:
registers and main memory. Although techniques in either hardware or software can be
used to detect, work around, or even eliminate data dependences, hardware normally han-
dles dependences occurring in registers and a compiler handles ones occurring in memory.
Consequently, the hardware and compiler communities have given different names, which
are listed in Figure 2.1, to the same dependence type.

Register dependences can either be avoided by the software or surmounted by the
hardware. With information about hardware, a compiler can assign values to registers in
order to avoid WAR and WAW dependences. These dependences can still occur, however, if
hardware is upgraded to provide more parallelism than what was compiled for. Fortunately,
with appropriate hardware, register-dependent operations can execute correctly in parallel.
This is because register addressing is explicit, allowing hardware to accurately recognize
when register dependences occur. An example of a hardware mechanism that eliminates
WAR and WAW dependences is register renaming (to be discussed in Section 2.2.1) whereas
data forwarding uses bypass paths to ensure that a RAW-dependent instruction reads the
correct data value.

Memory dependences can also be detected and handled by either the hardware
or the compiler. Unfortunately, there is no comparable hardware technique to register
renaming or data forwarding that will allow dependent memory references to execute si-
multaneously. At best, hardware that allows out-of-order execution, which is also known as
dynamic scheduling, can be used to minimize idle cycles due to dependent memory refer-
ences. Alternatively, a compiler can detect memory dependences using analysis techniques



that provide information not only about memory addresses but also about the access pat-
tern of related memory references. Once dependences are detected, a compiler can order the
operations to execute in parallel in such a way that data dependences are still preserved.

How hardware or compilers handle data dependences is one central theme of this
dissertation. Section 2.2 provides a fuller description on handling register dependences
in the context of vector hardware and Section 9.3 details how memory dependences are
detected by the compiler. Compilation techniques for scheduling around memory depen-
dences and avoiding register dependences when using a vector architecture are examined in
Chapters 5 and 6, respectively.

2.2 Hardware Support for Fine-Grain Parallelism

A major challenge facing computer designers today is determining how to execute
multiple operations simultaneously to improve performance. For single, instruction-stream,
load/store architectures, research groups are currently investigating four approaches: super-
pipelined, superscalar, VLIW,? and vector architectures. To support fine-grain parallelism,
irrespective of the architectural approach, hardware must be able to perform simultaneously
more than one instance of the basic sequence of tasks for executing an operation. In other
words, hardware must be able to simultaneously:

1. initiate multiple operations,

2. fetch multiple operands,

3. execute multiple operations, and
4. store multiple results.

In the rest of this section, I will describe and contrast how each architectural class performs
these tasks. Because this dissertation focuses on vector architectures as embodied by the
Cray Y-MP, I will give more details on this class of architecture than on the other three.
Although all four tasks are equally important in determining the maximum amount of par-
allelism that can be realized, initiating multiple operations has received the most attention
from computer designers, who have named the architectural classes on the basis of how each
class accomplishes this task.

2.2.1 Multiple Operation Initiation

Initiating operations and issuing instructions are closely-related activities. Initiat-
ing an operation is the first task in the basic sequence for executing an operation, whereas
the method for issuing instructions determines how this task is done for more than one
operation at a time. The limitation of issuing one instruction per clock period has become
known as the Flynn bottleneck (based on [42]). Both superscalar and VLIW architectures
overcome this bottleneck in order to initiate more than one operation simultaneously. This

2yLIW is an acronym for “Very Long Instruction Word,” suggesting many operations per instruction.



is not a requirement, however, because both superpipelined and vector architectures support
fine-grain parallelism and still issue only one instruction each clock period.

In this subsection, I describe how each architectural class initiates multiple oper-
ations simultaneously. This is accomplished by extending the instruction-issue mechanism
of a scalar, pipelined architecture in a manner that is reflected by the name of a class.
Because there is a large body of programs already compiled for scalar architectures, a de-
sirable property of such an extension is that the resultant architecture can execute these
scalar-compiled binaries with the possibility of improving performance, a characteristic of
both superscalar and superpipelined architectures but not VLIW and vector ones.

In addition to describing how multiple operations are initiated at once, I provide
examples of implementations in each class. 1also discuss hardware mechanisms for handling
register dependences because such mechanisms affect how frequently instructions are issued,

which in turn affect how much parallelism can occur.

Superpipelined Architectures

This architectural class supports fine-grain parallelism by using deeper pipelines
and a higher clock rate than those used in a basic scalar machine [70]. For example, whereas
a pipelined machine will have a 4- or 5-stage pipeline, a superpipelined machine will have
an 8- or 10-stage pipeline and half the cycle time. The higher clock frequency is obtained
through the deeper pipelines, hence the name superpipelining. Although one instruction
still specifies only one operation, if the cycle time of a pipelined machine is considered the
basic time unit, then a superpipelined machine gives the appearance of multiple-operation
initiation by issuing instructions at a faster rate. However, the inability to control clock skew
will ultimately limit how fast the clock rate can be made and hence how much performance
can be gained by this approach [57].

Because, in the strictest sense, operations are not actually issued at the same
time, the organization of a superpipelined machine is not significantly different from that
of a pipelined machine; the main difference lies at the level of hardware implementation.
As a result, scalar-compiled binaries can be executed with the possibility of improving
performance.

Superpipelined processors have been implemented at the high end of the cost
spectrum beginning with the CDC 6600 in 1964 and continuing to this day with the scalar
units of the Cray processors. More recently, in the 1990’s the microprocessor world, which
is at the lower end of the cost spectrum, produced the MIPS R4000, an 8-stage pipelined
implementation of the MIPS architecture [71], and the DEC EV4, a 64-bit implementation
of the new Alpha architecture [75).

Superscalar Architectures

For this architectural class, fine-grain parallelism is achieved by issuing multiple,
scalar instructions in the same clock period, hence the name superscalar. Typically, the
operational types of the simultaneous operations are different. Because one instruction still
specifies one operation and the instruction-issue unit dynamically determines how many



instructions can be issued, scalar-compiled binaries can be executed with the possibility of
improving performance.

Among the various architectural approaches, the superscalar one is the newest and
is currently the focus of the commercial microprocessor community. In 1989, the first super-
scalar implementations, the IBM RS/6000 and the Intel i860, were announced. The 1990
and 1991 Hot Chips Symposium hosted several presentations that described superscalar
designs, such as the Metaflow Lightning and the Sun SuperSPARC [94, 13].

To increase the number of instructions that can execute simultaneously, additional
hardware allows multiple register-dependent instructions to issue in the same clock period.
Bypass hardware to forward data as it becomes available allows RAW-dependent instruc-
tions to be issued together [13]. Because a limited number of registers cause WAR and
WAW dependences to occur, register-renaming hardware eliminates these dependences by
providing more physical registers than the instruction set can specify. When a logical reg-
ister is used by two instructions in either 2 WAR or WAW dependence, the register is
mapped to two different physical registers, thus removing the dependence and allowing the
instructions to execute at once. Register renaming was first implemented in the IBM 360/91
[112] and is included in contemporary superscalar processors such as the IBM RS/6000 and
Metafiow Lightning [89, 94].

VLIW Architectures

Like a superscalar architecture, a VLIW architecture also issues more than one
operation per clock period, where the type of each operation is usually different. However,
whereas each operation in a superscalar architecture requires a separate instruction, in a
VLIW architecture many operations are encoded in a single instruction, resulting in a Very
Long Instruction Word from which this architectural class takes its name. Moreover, a
compiler is responsible for grouping operations into a VLIW instruction, which means that,
unlike execution on a superpipelined or superscalar architecture, scalar-compiled binaries
cannot take advantage of the parallelism when executing on VLIW hardware.

VLIW architectures have typically implemented as minisupercomputers. An early
VLIW computer is the Floating Point Systems AP-120B, which was first delivered in 1976
[59]. In 1983, J.A. Fisher actually coined the term VLIW to describe the ELI-512, a com-
puter that was built at Yale University [40). The Multifiow Trace computers, the commer-
cial version of the ELI-512, became available in 1987 [23]. In 1989, Cydrome announced its
VLIW computer, the Cydra 5 [97]. The Intel iWarp, a commercial realization of a research
project at Carnegie-Mellon University, was developed in the same time period [6, 14].

In addition to extracting parallelism, a VLIW compiler is also responsible for han-
dling register dependences. The hardware contains no synchronization mechanisms and, in
particular, does not check for register dependences [23, 97). It is the compiler’s responsibil-
ity to ensure that operations use the correct register values. Although this precludes binary
compatibility, it simplifies the control logic in the hardware.



Vector Architectures

Like a VLIW architecture, a vector architecture issues more than one operation
per clock period and relies on a compiler to extract any parallelism that can use its hard-
ware. However, whereas a VLIW instruction causes multiple operations of different types
to initiate simultaneously in different functional units, a vector instruction causes multiple
operations of the same type to initiate sequentially in one functional unit. The name vector
comes from the fact that a vector instruction operates uniformly on a set of related data,
such as a column or row in a matrix, to produce another vector of data.

There have been many commercially successful implementations of vector archi-
tectures, beginning with the load/store architecture of the Cray-1 in 1976 [110, 101, 8].
Since then Cray Research Incorporated has produced a succession of vector machines: the
Cray X-MP in 1982, the Cray-2 in 1985, the Cray Y-MP in 1988, and the Cray Y-MP C-
90 in 1991. In 1983, three Japanese vendors entered the supercomputer market with the
Fujitsu VP200, the Hitachi S810, and the NEC SX/2 [85, 88, 116]. The 1980’s also saw
less costly vector implementations. For example, in 1985, Convex produced the supermini-
computer, the C1, and now offers a multiprocessor version, the C2 (68, 19]. In 1986, IBM
introduced the System/370 vector architecture, a family of vector computers designed to
cover a range of cost/performance implementations, the first being the 3090 Vector Facility
[16). In 1988, the Ardent Titan entered the market as a superworkstation with graphics ca-
pabilities [31]. In 1989, Digital Equipment Corporation formally introduced the VAX 6000
Model 400 series, which extended the VAX architecture to include vector processing [102].
The most recent development occurred in 1991 when Thinking Machines Corporation in-
cluded a vector execution unit as part of the processor node in its Connection Machine-5,
a massively parallel processor [109], and both NEC and Fujitsu have fabricated a vector
processor on a single VLSI chip (90, 64).

Because only one instruction is issued during each clock period, how a vector
architecture initiates more than one operation per clock period is less obvious than how
this is accomplished by the other classes of architectures. Moreover, a vector instruction
can take a long time to execute because, in a load /store architecture, such as the Cray Y-MP,
the maximum number of operations executed by a vector instruction is equal to the number
of elements in a vector register, or 64 in the case of the Cray Y-MP. Hence, a Y-MP vector
instruction, which sequentially initiates its operations, can take over 64 clock periods to
execute. Two vector instructions can execute concurrently, however, when the instructions
use completely different resources, such as separate functional units and distinct registers
for operands and results. In this way, two operations, one from each instruction, will
initiate simultaneously even though the instructions still issue one at a time (see Figure 2.2).
Multiple operations will also commence simultaneously when any scalar instructions are
issued during the execution of a vector instruction.

Vector hardware, unlike VLIW hardware, provides interlock logic for its registers.
This means that without additional hardware a register-dependent vector instruction must
wait until the independent vector instruction has finished using the common register, as Fig-
ure 2.3(a) shows. Two hardware mechanisms, however, can be used to eliminate this large
loss in potential parallelism. If two vector instructions form a RAW dependence, chaining
hardware allows the dependent instruction to begin executing as soon as the first opera-



10

Independent Vector and Execution Trace of Vector and Scalar Operations
Scalar Instructions
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Figure 2.2: Multiple Operation Initiation with Independent Vector Instructions

This execution trace illustrates how independent vector and scalar instructions cause parallel
initiation of more than one operation. A scalar instruction causes only one operation to execute
while a vector instruction causes multiple operations (64 in this example) of the same type to initiate
sequentially in one functional unit. The number of operations executed by a vector instruction is
typically stored in a vector length register, called VL in the Cray Y-MP.

A vector instruction is identified by its use of vector registers, such as VO or V2, each of which
consists of multiple registers. (A more thorough description of vector registers is provided in the
next subsection.) The vector instruction VO<-M [R1] transfers into vector register VO data from VL
consecutive memory locations starting at the address stored in register R1. The vector instruction
V3<-V14V2 stores into the i'® register of vector register V3 the sum of the ith registers of vector
registers V1 and V2.

At most, only one instruction is actually issued every clock period. But because a vector
instruction causes multiple operations to initiate over time, the overlapped execution of vector

instructions allows fine-grain parallelism to occur.
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tion of the independent instruction has finished executing. Figure 2.3(b) gives an example
of chaining. On the other hand, with tailgating hardware, a WAR-dependent instruction
is issued immediately following the independent instruction as shown in Figure 2.3(c). A
WAR dependence is avoided because register reads occur near the beginning of a pipeline
and register writes occur at the end, thus guaranteeing that the independent operation
reads the register before the dependent one writes into it. In summary, using chaining or
tailgating allows multiple operations to initiate simultaneously in the presence of dependent
vector instructions. Neither of these approaches, however, affects the instruction set design;
their main impact is to improve performance by increasing the opportunities for fine-grain
parallelism.

Chaining and tailgating hardware were first implemented in different Cray com-
puters. Because the Cray-1 uses single-ported register cells, it provides a limited form
of chaining; a RAW-dependent instruction can begin executing within a certain period of
time, called the chain slot time, after the independent instruction has issued. If, for some
other reason, the dependent instruction cannot issue within the chain-slot time, it must
wait until after the independent instruction has finished executing completely. By using
dual-ported register cells, the Cray X-MP and Y-MP implement fully flexible chaining; a
RAW-dependent instruction can begin executing any time after the first operation of the
independent instruction has finished executing. Rather than using chaining, the Cray-2
implements tailgating. To date, there is no vector machine that implements both chaining
and tailgating.

2.2.2 Multiple Operands and Results

The second and fourth tasks in the basic sequence for executing an operation fetch
and store data for an operation. Simultaneously handling multiple operands and results in
a load /store architecture requires a register file with multiple read and multiple write ports.
A register file with R read-ports and W write-ports provides the capability of reading R
registers and writing W registers during the same clock period. Figure 2.4 shows three
distinct configurations for implementing a multiported register file: monolithic, partitioned,
and distributed. Combinations of these types of register files are also possible. In this
subsection, in addition to explaining how these types of register files provide simultaneous,
multiple access, I also:

e discuss how these configurations differ by examining how well individual registers are
connected to all of the available functional units; and

o give examples for each type of register file. Although these configurations can be
used with any of the architectural approaches, there is a natural tendency for an
architectural class to use a specific configuration.

The most straightforward configuration for implementing a multiported register
file is to use a register cell with multiple read- and multiple write-ports. Although the
number of registers actually accessed is determined by the number of ports, all registers in
such a monolithic register file are available simultaneously as an operand or a destination for
any functional unit. This type of register file is also known as a shared register file [105, 15].
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Execution Traces of Dependent Vector Instructions
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Figure 2.3: Multiple Operation Initiation with Dependent Vector Instructions

These execution traces illustrate how chaining and tailgating hardware increase parallelism in
the presence of RAW and WAR dependences between vector registers. The above chart assumes
that the latency for one load operation is four clock periods. The notation for vector instructions is

explained in Figure 2.2.
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Figure 2.4: Types of Multiported Register Files

This figure shows three different configurations for providing a multiported register file to
support multiple functional units. The components that are part of a register file have a bolder
outline.

When implementing a register file with a given bandwidth, these configurations represent a
tradeoff between decreasing area cost and increasing restrictions on accessibility per clock period.
The monolithic configuration uses a multiported register cell that increases in size with increasing
bandwidth, which means that any register can be accessed, even multiple times, in the same clock
period. The partitioned configuration uses a dual-ported register cell with one read port and one
write port. Although the register banks are fully connected to the functional units by a pair of
multiplexors, at most two registers from each register bank can be accessed by any functional unit per
clock period. The distributed configuration does not use multiplexors and lacks the full connectivity
of the other two configurations. Although any register is available for its associated functional unit,
an explicit transfer is needed if a different functional unit requires access.




14

A monolithic register file is used by most superpipelined, superscalar and VLIW designs.
For example, the floating-point register file of the IBM RS/6000 has 4 read-ports and 2
write-ports to support a three-input multiply-add unit, a load port and a store port. The
SUN SuperSPARC also uses registers with 4 read-ports and 2 write-ports [13]. A register
file on the Multifiow Trace handles four reads and four writes at once to support a floating-
point multiplier, a floating-point adder and two memory ports [23]. Whereas these register
files are similar in organization, the Intel iWarp, in contrast, has a a 17-ported register cell
for 128 32-bit words [67).

An alternative configuration for providing a multiported register file is to partition
the registers into banks where each register has only one read-port and one write-port —
a configuration which I call a partitioned register file. This configuration is used in vector
architectures, where a register bank is more commonly known as a vector register and is
comparable in organization to a simple, scalar register file. Each vector register consists
of many dual-ported registers and has its own read bus and write bus. Multiple vector
registers, which are considered collectively as a vector register file, give the appearance of
a register file with multiple read and write ports. A register file that is partitioned into N
banks can allow N accesses to occur in the same clock period. With chaining or tailgating
hardware, N reads and N writes can occur simultaneously.

When compared to a monolithic register file, a partitioned one provides less connec-
tivity between any individual register and any functional unit. Despite being partitioned,
such a register file has two sets of multiplexors that provide complete flexibility in con-
necting any register bank with any functional unit. One set of multiplexors connects the
register-read buses to the input buses of the functional units, while another set connects the
output buses of the functional units to the register-write buses. However, not all registers
are available simultaneously as an operand or as a result. Instead, only two registers per
vector register are available, one for a read and one for a write, during each clock period. In
other words, a vector register can be used concurrently by at most two vector instructions:
as the destination for one and the source for the other.

As Figure 2.5 shows, the number of registers provided in vector register files varies
greatly, mainly because the number of registers per vector register spans a wide range.
Vector processors typically have eight vector registers; eight of the eleven implementations
listed use a vector register file that can have eight vector registers. In contrast, the number
of registers in one vector register ranges from 4 registers in a Thinking Machine processor
node to 2048 registers in an Ardent Titan. The Thinking Machines, Ardent, and Fujitsu
processors are different in that the vector register file is reconfigurable: software can par-
tition the register file into any number of vector registers where the number of registers
per vector register can be varied as long as the total number of registers remains constant.
Reconfigurability is possible because a vector instruction can address individual elements
of a vector register.

A VLIW machine, the Cydrome Cydra, also uses a variant of a partitioned register
file, called a multiconnect in Cydrome terminology [28], which demonstrates that a type of
register file is not necessarily confined to a specific architectural class. A multiconnect is
slightly different from a vector register file in that the connectivity between registers and
functional units in the former is more restrictive for writes and less restrictive for reads. In
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VECTOR D O avowash  NUMBPER OF  REFDRENCE
PROCESSOR

REGISTERS LENGTH REGISTERS
processor node of
Thinking Machines CM-5 4-16 16-4 64 [109]
IBM 3090 8 8-256 64-4096 16}
NEC VPP ULSI 4(+4)  64(+96) 256(+384) 90
Cray-1, Cray-2,
Cray X-MP, Cray Y-MP 8 o4 512 [110)
Convex C1 8 128 1024 92]
Fujitsu VPU 8-64 128-16 1024 64
DEC VAX 6000 16 64 1024 102]
NEC SX-2 8(+32) 256  2048(+8192) 116
Ardent Titan 4-8192 2048-1 8192 31]
Fujitsu VP200 8-256 1024-32 8192 85
Hitachi $810/20 32 256 8192 88

Figure 2.5: Configurations of Vector Register Files for Commercial Processors

This table shows configurations of register files for eleven commercial vector processors, listed
in order of total register capacity and minimum number of vector registers. All configurations store
64-bit data.

Some of the implementations have special features. The vector-register length in the IBM 3090
can vary among implementations, providing a range of cost/performance models. The implementa-
tions from NEC include a set of vector registers, whose size is enclosed in parentheses, that are not
connected directly to the arithmetic functional units and are used mainly for temporary storage.
The implementations from Thinking Machines, Ardent, and Fujitsu provide a register file that is
reconfigurable in software. The number of vector registers and their lengths can vary in the indi-
cated range as long as the total number of registers remains constant: 64 for the CM-5, 512 for the
VLSI implementation by Fujitsu, and 8192 for the Ardent Titan and Fujitsu VP200.

With the exception of the CM-5 processor node, which is part of a massively parallel processor,
and the low-end IBM implementations, the total number of registers provided in a vector register
file ranges from 256 to 8192, much larger than the typical 32 registers used in today’s scalar and

superscalar architectures.
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a multiconnect, a register bank can only receive results produced by a particular functional
unit; hence, the number of register banks, or partitions, is equal to the number of functional
units connected to such a register file. In contrast, not only can any register bank deliver
an operand to any functional unit, but each register bank can deliver, in the same clock
period, operands to all functional units. To provide this functionality, each register bank
must have as many read ports as there are inputs to functional units; to implement this
in the Cydrome Cydra, a bank uses dual-ported registers that are replicated rather than
registers with multiple read-ports. In the Cydra, there are 64 registers per register bank
and six functional units, for a total of 384 registers that can store unique data. Because
a register bank is replicated to provide increased accessibility to its registers, the physical
implementation of this multiconnect requires six times as many registers.

Finally, a configuration different from the monolithic and partitioned ones is a
distributed register file (although the definition of a register file becomes somewhat vague
at this point). In this configuration, the registers are divided into sets where each set is
connected to its own functional unit(s). A slight variation of a distributed register file is a
split register file where each register set has a specific purpose such as an integer register
set or a floating-point one [105, 15]. The VLIW architecture, the Multifiow Trace, has
a distributed register file where each register set is actually a monolithic one, which was
described earlier. A distributed register file is also used in the vector processor node for
Thinking Machine’s CM-5. The number of register sets can vary from four in the CM-5
processor to 7, 14, or 28 in a Multiflow Trace, depending upon the model.

Unlike the partitioned register file, a distributed one is more restrictive in its
connectivity between itself and any functional units. If a value that is stored in one register
set is needed for a different group of functional units, the value must first be transferred
to the appropriate register set. This transfer is often made through the memory system,
making this configuration similar to the separate register files in a multiprocessor. Without
a special algorithm for assigning registers, up to 50% of performance could be lost due to
excessive data transferring [41].

2.2.3 Multiple Operation Execution

The third task in the basic sequence for carrying out an operation is to actually
execute it. Executing multiple operations at the same time can be accomplished with a
pipelined functional unit or multiple functional units or both. When multiple functional
units are used, they can be general purpose or special purpose (e.g., 2 floating-point adder)
or somewhere in between (e.g., 2 floating-point unit or an integer unit). The main ad-
vantages of a general purpose functional unit are fewer unique components to design and
simpler algorithms for scheduling instructions in a compiler. The main advantage of spe-
cial purpose functional units is a faster implementation of hardware for specific types of
operations.

Vector architectures typically implement multiple, fully-pipelined, special purpose
functional units. Superpipelined designs also use multiple, special purpose functional units,
although these are not always pipelined; the functional units of the CDC 6600 are not
pipelined whereas those of the CDC 7600 and the Cray machines are. Superscalar designs,
such as the IBM RS/6000, Metaflow Lightning, and Sun SuperSPARC, use a fully-pipelined,
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floating-point unit and integer unit as well as a special purpose unit for handling branch
operations. VLIW designs have used various combinations: the Cydrome Cydra uses special
purpose, fully-pipelined functional units; the Multiflow Trace uses several fully-pipelined,
floating-point and integer units; and the Intel iWarp uses non-pipelined, special purpose
units.

In addition to providing multiple functional units, hardware also provides a map-
ping between the functionality of a given operation to any functional unit that can provide
that functionality. Changing the configuration of functional units merely changes this map-
ping; this is part of a hardware implementation and is independent from instruction set
design. Thus, of the four tasks, this is the most decoupled from the design of an instruction
set, and there is no inherent reason why special purpose or general purpose functional units
should be used in one architecture and not another.

2.3 Vectorization

In this section, I describe how a vectorizing compiler transforms a source program
that is written for a scalar processor into code containing vector instructions. An un-
derstanding of this software procedure, known as vectorization, is important for hardware
designers because vectorization facilitates the effective use of a vector architecture. Conse-
quently, this description is not intended to be a thorough examination of the research issues
concerning vectorization but rather a tutorial that outlines the main aspects of vectorization
for those who are more familiar with hardware design.

Because vector hardware imposes some restrictions on what can be executed with
vector instructions, not all parts of a program can be translated into vectorized code. Using
vector hardware as the motivating factor, I first present the properties of a vectorizable
program fragment. I next outline how a vectorizing compiler identifies these properties
and generates vectorized code. This last part also describes how using vector instructions
is conceptually similar to using “loop unrolling”, an optimization technique used in scalar
compilation.

2.3.1 Properties of A Vectorizable Program Fragment

Not all parts of a program can be translated into vector instructions. In this
subsection, I show that a program fragment can be translated into vectorized code if it has
the following properties:

1. it is a loop;

2. it has at least one variable, called an aggregate variable, that can reference different
memory locations (e.g., an array);

3. the memory accesses of each aggregate variable form an arithmetic progression; and
4. any statement that contains an aggregate variable cannot depend on itself.

Because it is a compiler’s job to identify these properties, many presentations have been
made using a simplified model of vector execution as seen by a compiler. I take a different
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approach by explaining how a hardware implementation of a vector instruction contributes
to these properties.

Other properties, such as the presence of conditional statements and array refer-
ences with nested indices, do not prevent vectorization as long as the above properties and
appropriate vector hardware, such as conditional vector execution and gather/scatter mem-
ory, are present. For the interested reader, Hennessy and Patterson describe the necessary
hardware for allowing such constructs to be vectorized [92, Section 7.6).

For now, I assume that a vector instruction can execute as many operations as
needed. 1 will remove this simplifying assumption in Section 2.3.2 when I discuss the
generation of vectorized code.

Property 1: Loop

The first property of a vectorizable program fragment is that it be a loop, which
repeatedly executes the same sequence of statements. This is because the operations per-
formed by a vector instruction are all of the same type. For example, the vector instruction
vo<-M[R1] loads a vector register with values stored in consecutive memory locations begin-
ning at the address held in register R1. A loop statement is analogous to a vector instruction
in that successive iterations of a loop statement correspond to successive operations of a
vector instruction. For example, in the following loop

DO 10 I=1,N
10 A(I)=A(I)+B(I)

the addition in the i*" iteration corresponds to the itk operation of a vector add instruction.

Although a loop is certainly 2 compact expression of such a regular computation,
it is possible to express vectorizable computations in a full “ynrolled” fashion. For example,
the following two program fragments express the same computation:

c(1) = A(1) + B(1)
c(2) = A(2) + B(2)

DO 101 =1,5
=1 c(3) = A(3) + B(3)
10 C(I) = A(I) + B(D) c(4a) = A(4) + B(4)
c(5) = A(5) + B(5)

Today’s vectorizing compilers will translate the loop on the left into vector instructions but
not the straight-line code on the right. Determining that the five individual statements
are somehow related requires techniques substantially different from those used in current
vectorizing compilers. The situation is complicated by the possibility that these statements
could be interspersed among other, Jess related statements.

Property 2: Aggregate Variables

The second property of a vectorizable program fragment is that it must contain at
Jeast one variable that can reference a different location on each iteration. This is because
each operation in a vector instruction accesses a different storage location. I call such
a variable an aggregate variable because it may reference a number of different storage
Jocations. For instance, in the following loop:
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D0 20 I=1,N
A=A+21
20 B(I)=B(I)+21

the array reference B(I) is an aggregate variable whereas the scalar variable A is not. Other
examples are pointers and procedure parameters. Just as a vector instruction is used to
execute a statement in a loop, a vector register stores the values of an aggregate variable.
For example, the ith element of the array B(I) is stored in the it* register of a vector

register.

Property 8: Arithmetic Progression for Memory-access Pattern

The third property of a vectorizable statement is that the memory accesses of
each aggregate variable form an arithmetic progression [101]. This is because the vector
address-generator is only capable of addition. As a counterexample, the access pattern for
B(J) in the following loop

DO 10 I=1,N
J=J*2
10 A(I)=A(I)+B(I)

is a geometric progression requiring multiplication for successive addresses. This property is
not all that restrictive because array references in most programs proceed in an arithmetic
sequence.

This property does not completely describe all aggregate variables that can be
vectorized. For example, the access pattern of an array reference with a nested index, such
as A(B(I)), can be completely random. However, because calculating the addresses uses
only addition and the B addresses still form an arithmetic progression, this reference can be
vectorized if gather/scatter hardware is provided.

Property 4: No Self-dependent Statements

Finally, the fourth property of a vectorizable loop is that any statement that con-
tains an aggregate variable cannot depend on itself. Although it is not immediately obvious,
the reason for this property is that vector instructions do not interleave the execution of
their operations. For example, two vector instructions that use the same functional unit
execute serially rather than alternating the execution of their operations. At the begin-
ning of this chapter (in Section 2.1), I stated that any architecture that supports fine-grain
parallelism must deal with data dependences. This fourth property shows the relationship
between dependences and a vector architecture.

Figure 2.6 shows how a vectorizable statement can directly or indirectly depend
on itself.3 Direct self-dependence is often simple enough to vectorize with either special
hardware or a major software transformation. In addition, there are other special cases of
self-dependence that can be vectorized; 1 will give more details about these shortly. More

3Gtatements involving only scalar variables, such as A=A+5, are also self-dependent. However, because
scalar self-dependences do not prevent vectorization, 1 exclude them from this discussion. For the sake of
brevity, 1 use the term self-dependent statement to mean one that involves aggregate variables.
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generally, an indirect self-dependence specifies an execution order that vector instructions
cannot satisfy but that statements of a loop must execute to preserve data dependences for
correct functionality.

To explain why self-dependent statements prevent vectorization I will first describe
the execution order that is specified by a self-dependent statement. To better visualize this,
I make a distinction between a statement and an instance of a statement; one iteration ofa
loop contains one instance of each statement. For example, for the following loop

D0 10 I=1,N
5  A(I)=B(I)*C(D)
10  B(I+2)=A(I)+T

A(2)=B(2)*C(2) is the second instance of the statement labeled 5 (Ss). The execution
order specified by a self-dependent statement is dictated by the order in which accesses
to the same memory location occur. For instance, for the above loop, the following table
summarizes the order of accesses to the two memory locations A(1) and B(3):

MEMORY

LOCATION FIRST REFERENCE SECOND REFERENCE
AQ1) first instance of S5 first instance of S1o
B(3) first instance of Syo  third instance of Ss

In order to preserve the order of these accesses, the first instance of statement 5 must
execute before the first instance of statement 10, which in turn must execute before the
third instance of statement 5. In general, to preserve the dependences involving two self-
dependent statements, S, and Sy, the instances of each statement must be executed in an
interleaved fashion. In other words, some instance of §, must execute before some instance
of Sy, and vice versa.

However, using vector instructions to execute self-dependent statements in a loop
does not produce the necessary interleaved pattern. This is easiest to see when vector
instructions execute serially. Although, in reality, this is not often the case (otherwise
little parallelism would occur), two vector instructions will execute serially if they use the
same functional unit. Figure 2.7 shows that, because a vector instruction is analogous
to a vectorizable statement and operations of a vector instruction correspond to instances
of a statement, the serial execution of two vector instructions is conceptually equivalent
to all instances of a statement being executed before all instances of another statement.
However, a self-dependent statement requires that instances of different statements execute
in an interleaved fashion to ensure correct functionality. As a result, vector instructions
cannot be used to execute any statement that indirectly depends on itself.

As mentioned at the beginning of this discussion on self-dependence, a statement
that directly depends upon itself is often a special case that can be vectorized. For instance,
the following loop

D0 10 I=1,N
10 A=A+B(I)

is an example of a scalar reduction, which is a function that reduces a vector of data to a
scalar value; other examples of scalar reductions are minimum and maximum operations.
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NO DIRECTLY INDIRECTLY
SELF-DEPENDENT SELF-DEPENDENT SELF-DEPENDENT
STATEMENTS STATEMENT STATEMENTS
DO 10 I=1,¥ DO 30 I=2,X
8  A(I+1)=B(I)+X(I) DO 20 I=2,K 28 A(I)=B(I)+X(I)
9  B(I)=A(I)*S 20 A(I)=A(I-1)+X(I) 20  C(I)=A(I)*S
10 C(I)=C(I)*Y(I) 30 B(I+1)=C(I)*Y(I)

Figure 2.6: Self-dependent Statements

These loops contain examples of self-dependent statements. Recall from Section 2.1 that a
dependence specifies the order in which two references that access the same memory location must
execute in order to guarantee correctness. To more easily recognize when self-dependence occurs, a
dependence is associated with the statements that contain the two references. It is also necessary to
distinguish between instances of a statement; one iteration of a loop contains one instance of each
statement in the loop. A statement is self-dependent if instances of that statement must be executed
in succession for the associated program to execute correctly. Moreover, a statement can be either
directly or indirectly self-dependent.

A statement S, directly depends on another statement S, if S, and S, contain references that
access a common storage location and S, accesses the location after S, does. For example, in the
loop labeled 10, statement 9 directly depends on statement 8 because statement ® accesses A(2)
after statement 8 does. This order of access, in fact, is true for all elements of the arrays A and B. A
statement S, is directly self-dependent if it contains references that access the same location but in
different iterations because in order to maintain the order specified by the dependences among these
references, the instances of S, must execute in succession. For example, the statement in the loop
labeled 20 is self-dependent because the two references A(I) and A(I-1) access the same memory
locations, albeit in different iterations. On the other hand, statement 10 in the loop labeled 10 is
not self-dependent even though it contains two references to c(I).

Dependence and self-dependence are also transitive. A statement S, indirectly depends on an-
other statement S, if S, depends, directly or indirectly, on a statement which in turn directly or
indirectly depends on S,. For example, in the loop labeled 30, statement 30 indirectly depends
on statement 28 because statement 30 directly depends on statement 29 because of the references
to C(I), and because statement 29, in turn, depends on statement 28 because of the references to
A(I). Note that indirectly dependent statements do not necessarily access the same memory loca-
tion. A statement Sy, is indirectly self-dependent if Sy depends, directly or indirectly, on another
statement S, which in turn directly or indirectly depends on S,,. Moreover, any statement, such
as S,, that is part of these indirect dependences is also indirectly self-dependent. For example, in
the loop labeled 30, statement 28 indirectly depends on itself because it directly depends on state-
ment 30 because of the references B(I+1) and B(I), and because statement 30 indirectly depends
on statement 28. In fact, each statement in this loop is self-dependent.

The presence of a self-dependence is signaled by a dependence whose references occur in different
iterations. Such a dependence is called a loop-carried one. In contrast, a dependence whose references
oceur in the same iteration is called loop-independent. Although a self-dependence contains at least
one loop-carried dependence, not all loop-carried dependences are part of a self-dependence. For

example, the loop labeled 10 has a loop-carried dependence but no self-dependent statements.
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EXECUTION ORDER
SOURCE CODE SCALAR VERSION | VECTOR VERSION
DO 10 I=1i,N A(1)=B(1)+C(1) A(1)=B(1)+C(1)
A(I)=B(I)+C(I) B(1)=A(1)+D A(2)=B(2)+C(2)
10 B(I)=A(I)+D A(2)=B(2)+C(2) A(3)=B(3)+C(3)

B(2)=A(2)+D :
A(3)=B(3)+C(3) | B(1)=A(1)+D
B(3)=A(3)+D | B(2)=A(2)+D

: B(3)=A(3)+D

Figure 2.7: Execution Orders When Using Scalar and Vector Instructions

This figure illustrates how the order in which instances of statements in a loop are executed
is different when using vector instructions instead of scalar instructions. Scalar code executes one
iteration of a loop — i.e., one instance of each statement in the loop — before executing the next
iteration (ignoring scalar optimization techniques such as loop unrolling or software pipelining). The
difference in execution order when using vector instructions is easiest to see when two vector in-
structions use the same functional unit. All operations of a vector instruction will initiate before any
operations of the other instruction are initiated. Because successive operations of a vector instruc-
tion correspond to successive iterations of a loop, vector code conceptually executes all instances of
a statement before executing all instances of the next statement.
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Fither hardware or software techniques can be used to vectorize such functions. As an
example of the former, the IBM System/370 vector architecture includes the reduction
operations accumulate, minimum, and mazimum in its instruction set [16]. The Cray-1 also
provides some hardware support for computing scalar reductions as an unexpected benefit of
using single-ported vector registers [65]. Alternatively, a scalar reduction can be vectorized
using an algebraic transformation in software without any special hardware support [92,
page 382]. For example, a summation can be vectorized as follows (The notation for vector
instructions is explained in Figure 2.2 on page 10.):

R1 <- address of A(1)
R2 <- address of A(1) + N

DD 10 I=1,N — TOP: Vi <- M[R1]
10 A=A+B(I) VO <- VO + V1
R1 <- R1 + 8

BRNE R1,R2,TOP

The arithmetic laws of commutativity and associativity are used to separate the sum into
n partial sums that can be vectorized, where n < N. Because floating-point arithmetic is
not associative, this transformation can compute a value that is different from what the
original code computes. The transformed code on the right-hand side is the vectorized
version where the vector length is 8, the vector register VO contains the n = 8 partial sums,
and N is assumed to be a multiple of 8. The final sum is obtained by using scalar code to
add the partial sums that are stored in VO.
Another example of a direct self-dependence is a first-order linear recurrence:

DO 20 I=1,N
20 A(I)=A(I-1)*B(1) + ¢(I)

This function is given its name because the expression on the right-hand side is a linear
function that uses a value from the previous iteration. By extension, an nth-order linear
recurrence uses a value from the nth previous iteration. Again, either hardware or soft-
ware techniques can be used to vectorize such functions. The Hitachi S-810 has a special
macro-vector instruction called VITR that executes first-order linear recurrences [114]. Al-
ternatively, an algebraic transformation similar to the one for scalar reductions can vectorize
such functions using basic pair-wise vector instructions [103].

In addition to the above self-dependences, there are other special ones that can be
vectorized. For example, the following anti-dependence

DO 10 I=1i,N
10 A(1)=A(I+1)*B(I)

forms a self-dependence that can be vectorized because, on most modern vector implemen-
tations, the fetch of the A elements will occur before the store. Another self-dependence,
consisting of both a flow dependence and an anti-dependence on the B elements, can be
vectorized by separating the loop into two parts, one with only the flow dependence and
the other with only the anti-dependence:
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Do 5 I=1,N/2
ACI)=B(N-I+1)+C(I)
5 B(I)=D(I)*T
DO 10 I=N/2+1,N
A(I)=B(N-I+1)+C(I)
10 B(I)=D(I)*T

As a last example, a major software transformation vectorizes array references with nested
indices:

DO 10 I=1,N
A(I)=B(N-I+1)+C(I) =
10 B(I)=D(I)*T

DD 10 I=1,N
10 AC K(I) ) = ACK() ) + B(D

Because the index values for the A references are not known at compilation time, this
statement must be assumed to be self-dependent. Nonetheless, using gather/scatter memory
instructions, the Cray Research compiler, cft77 version 5.0, is able to vectorize such a loop
and still preserve any dependences that may exist. Michael Wolfe describes other techniques
for vectorizing in the presence of certain self-dependences [120, pages 64-67 of Chapter 3).

In summary, although there are special instances of self-dependences that can be
vectorized, a self-dependent statement normally prevents vectorization because the depen-
dences force instances of statements from different iterations to execute in an interleaved
fashion. The absence of self-dependent statements imposes no restrictions on the order in
which statements from different iterations can execute; only those from the same iteration
must execute according to a partial ordering based on intra-iteration dependences. This re-
sults in statements that can be ordered in such a way that all dependences will be preserved
when vector instructions are used.

2.3.2 Generating Vectorized Code

Whereas vector hardware determines the properties of a vectorizable program
fragment, a vectorizing compiler is responsible for identifying these properties and then
generating the appropriate mixture of vector and scalar instructions that will execute a
vectorizable program fragment. Using this mixture of vector and scalar instructions to
execute a loop is conceptually similar to using loop unrolling, an optimization technique used
in scalar compilation. To highlight this similarity, I outline in the following paragraphs how
a vectorizing compiler identifies a vectorizable program fragment and generates vectorized
code.

For the following discussion, I distinguish between vectorizable and non-vectorizable
operations: the former are translated into vector instructions and the latter into scalar in-
structions. In a vectorizable loop, operations that either have an aggregate variable as
input or generate an aggregate variable as output are vectorizable operations; all other op-
erations are non-vectorizable ones. For example, the loads, multiplication, and store in the
statement A(I)=B(I)*C(I) are vectorizable operations whereas the three additions for ad-
dress calculations are non-vectorizable ones. Other examples of non-vectorizable operations
include loop-index calculations, branch comparisons, and explicit, scalar self-dependences
such as X=X+21.

Identifying a vectorizable program fragment is a simple matter of identifying a
program fragment that has the four properties described in the previous subsection. The
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first three properties are easily identified. Loops can be identified by the semantics of a
language. For example, in FORTRAN, the DO construct signifies a loop whereas in C, the
for and while constructs do. Because other constructs, such as if ... goto,can also form
a loop, a more semantic-independent methodology, that is based on flow graphs, can be used
to identify loops. A flow graph, which is normally constructed for scalar optimization, is a
directed graph that represents the control flow of a program; a loop is merely a sub-graph
with a special structure within a flow graph. Aho, Sethi, and Ullman give algorithms for
constructing flow graphs and identifying loops in them [2, Chapter 10]. The second property,
the presence of aggregate variables, is easily determined by examining the type of a variable;
that is, whether a variable is a scalar, an array, or a pointer. The third property, memory
accesses that form an arithmetic sequence, can be determined by examining the use-def
chains, which are built for scalar analysis [4, 2], to identify variables (typically indices of
arrays) that are used to compute the addresses of an aggregate variable and check that their
computations involve only additions or subtractions. For the purposes of code generation,
this analysis can also extract more information, such as the value of memory offsets, about
the access pattern of an aggregate variable.

Identifying the fourth property, the absence of self-dependent statements, proceeds
in two steps. The first is to construct a dependence graph, which is a directed graph that
represents the dependence relations of a program. In such a graph, a vertex is a statement
or operation depending upon the level of detail desired, and there is an edge from one
statement to another if the second statement accesses a common memory location after the
first statement does. Because a dependence graph is used to identify vectorizable loops,
only vectorizable statements or operations are represented in the dependence graph for a
vectorizing compiler. For example, in the following loop

DO 10 I=1,N
5 B=B+21
10 A(I)=A(I)*8

statement Sjo would be included in the dependence graph but statement Ss would not.
Similarly, the operations for loop overhead and address calculation would not be part of the
graph.

Constructing a dependence graph, or more specifically, identifying dependences
that exist among vectorizable statements, is not trivial. Unlike the other functions I have
described above for a vectorizing compiler, identifying dependences, a process also known as
dependence analysis, is necessary for any compiler that is generating parallel code because
knowing where the dependences are is the key to correct functionality. Consequently, much
research, past and present, has been spent in this area not only for vectorizing compilers but
also for more general, parallelizing compilers. There are two major methods for detecting
dependences. The more established method operates only on arrays. Because an array
has an explicit addressing mechanism, detecting a dependence between two statements
is a matter of solving an algebraic equation constructed from the address functions of
the associated array references [120, 5, 83]. A newer, graph-theoretic technique, which is
based on data-flow analysis, is aimed at linked-list data structures that use pointers with
implicit addresses [79, 56]. Because the early vector implementations were used for scientific
programs that modeled physical phenomena in a discrete fashion that is a good match for
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the array data structure, vectorizing compilers typically use the algebraic method.

Two critical aspects of any dependence analyzer are efficiency and accuracy. Effi-
ciency is important for practical reasons whereas accuracy is critical because any dependence
that really exists must be identified. If there is doubt about the presence of a dependence,
the dependence is assumed to exist; otherwise the program will not function correctly. Iden-
tifying too many «“false” dependences, however, will reduce the opportunities for parallelism.
Array-based dependence analysis tends to be more accurate than dependence analysis for
linked lists due to the array’s more explicit mechanism for naming memory locations. Fur-
thermore, although efficiency is often traded for accuracy, Maydan, Hennessy, and Lam
have shown that a suite of selected algorithms for array-based dependence analysis can
accurately identify all dependences in the PERFECT Club benchmark set of 13 scientific
programs and add only an average of about 3% to the compilation time [83].

Once a dependence graph is constructed, the second step to identifying self-
dependent statements is to determine whether the graph contains a directed path from
any statement to itself. Any statement on such a pathis a self-dependent one. Such a path
is called a dependence cycle because it forms a directed cycle in a dependence graph, and
the statements on that path are said to form a dependence cycle. Because a vectorizable
loop is one whose dependence graph has no directed cycles, its corresponding dependence
graph is also known as a dag, an acronym for directed acyclic graph. When compared with
constructing a dependence graph, finding cycles in a dependence graph is relatively easy.
Wolfe describes an algorithm for doing so that is attributable to Tarjan [120, page 57].

After identifying a vectorizable loop, 2 vectorizing compiler schedules vectorizable
operations and assigns registers. Scheduling determines an execution order that preserves
dependences among the operations whereas assigning determines which register stores the
value produced by an operation. Both these tasks use a loop’s dependence graph to repre-
sent the functionality of the vectorizable portion of a loop. Although these tasks are also
performed for non-vectorizable operations, more emphasis is placed on the vector aspect
because execution of vectorizable operations will dominate the execution time of a loop.
These tasks are important not for correct functionality but more for performance reasons.
Because the performance impact of instruction scheduling and register assignment is a cen-
tral theme of my dissertation, details about each task are provided in upcoming chapters.
For now, I will simply discuss some issues concerning the order in which these two tasks are
executed.

Scheduling and assignment can be done in either sequence, both of which present
potential compromises to performance. Scheduling first with disregard for register usage
can lead to execution orders whose register requirements exceed the physical limitations of
the processor. To accommodate such a schedule, extra instructions are introduced to spill
values out to memory. In an architecture that supports fine-grain parallelism, such regis-
ter spilling may not reduce performance because the execution of these extra instructions
can be potentially overlapped with that of the original instructions. On the other hand,
assigning can be done first using the execution order taken directly from the source code,
thereby providing more control over register usage. However, this introduces extra register
dependences that the scheduler must now preserve, and more dependences reduce the op-
portunities to schedule for parallelism. Reassignment of the registers will help alleviate this
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restriction. In the Cray Research compiler, scheduling is done before register assignment
but the scheduler attempts to minimize register usage.

Although these two tasks traditionally have been performed separately, research
in scalar algorithms are examining techniques that allow for interaction between these func-
tions [50, 15]. Based on information from the register assigner, the scheduler alternates
between two scheduling strategies. The initial goal of the scheduling algorithm is to mini-
mize execution time. To avoid exceeding the register limitation of the processor, the register
assigner is used to inform the scheduler about the register usage of its schedule while the
schedule is being constructed. Once a threshold has been exceeded, the scheduler changes
strategies to reduce register usage until registers are no longer a critical resource, at which
point the scheduler switches back to the initial strategy. Such a technique is being adapted
in future versions of the Cray Research compiler.

In addition to scheduling and assigning, a vectorizing compiler translates oper-
ations into vector and scalar instructions. However, whereas the translation from a vec-
torizable operation to a vector instruction is straightforward, the translation from a non-
vectorizable operation to a scalar instruction requires some explanation. First, it should
be noted that a vectorizable operation produces a different result every iteration and is
translated into a vector instruction that executes n instances of that operation. As with
a vectorizable operation, a non-vectorizable one that is sel{-dependent, such as A=A+1 and
X=X+21, produces a different result every iteration and is translated into one or more scalar
instructions that emulate the execution of n iterations of that self-dependence. The exe-
cution of n iterations of a scalar self-dependence can be expressed as a function of n that
requires fewer instructions to execute than n instances of the corresponding scalar instruc-
tion. For example, the scalar instruction for executing the operation A=A+1 n times is
just R1<-R1+R0O, where register R1 holds the value of A and register RO holds the value n. A
slightly more complex operation, such as X=X+21, requires two scalar instructions to emulate
executing it n times: R2<-21*R0 and R1<-R1+R2.

A technique called stripmining generates code to execute a loop in which the
number of iterations executed exceeds the number of registers in a vector register. To reduce
the number of parameters in the following discussion, I assume the number of registers in
a vector register to be 64 (based on the Cray Y-MP). Stripmining executes such a loop in
strips where each strip executes 64 or fewer iterations. When the number of iterations N
is not a multiple of 64, one of the strips executes N mod 64 iterations.

The easiest type of loop to stripmine is one in which the value of N is known
without having to execute the loop, such as:

DO 10 I=1,N
10 A(I)=0

There are two ways to implement the code that controls the execution of the strips for such
a loop. In a software-oriented approach, which is used in the Cray vector implementations,
the strip that executes N mod 64 iterations is executed first:
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< scalar code to calculate N mod 64 >

VL <- 64

VO <~ 0

VL <- N mod 64 ; assign length of first strip
R1 <- address of A(1)

R2 <- N
TOP: M[R1] <- VO ; store O into elements of array A
R1 <- R1+VL ; update address
R2 <- R2-VL ; update branch counter
VL <- 64 ; update strip length

BRNZ R2,TOP

Because 64 is a power of 2, the value N mod 64 can be computed by using simple shift and
mask operations and no divide or remainder calculations. Alternatively, for a hardware-
only method, which is used in the IBM System/370 vector architecture [16], the strip that
executes N mod 64 iterations is executed last. A special instruction, VLVCU (Load Vector
Count and Update), first subtracts the number of iterations executed for a strip from a
register that holds the number of remaining iterations to be executed, and then it sets the
condition code to indicate whether or not the difference is greater than or equal to zero.
Because the number 64, which is the number of registers in a vector register, does not need
to appear in the generated code, implementing stripmining in this fashion allows processors
with different vector-register lengths to be binary compatible.

Stripmining can be used even when the value of N can be determined only by
executing the loop. For example, because there are no self-dependent statements, the
following loop can be vectorized despite the potential early exit:

D0 10 I=1,N
A(I) = B(I)*C(I) + 4/D(I)
if ( A(I).eq.S(I) ) goto 20
10 CONTINUE
20 ...

However, the resultant stripmined code becomes more complex and involves the possible
execution of unnecessary operations. Because of the complexity and variability in perfor-
mance, few vectorizing compilers attempt to vectorize such loops. For the interested reader,
Wolfe describes techniques for vectorizing such loops [120, Chapter 10].

Stripmining is conceptually similar to the scalar optimization technique called loop
unrolling whereby the body of a loop is replicated n times and n is called the amount of
unrolling. A strip that executes n iterations of a loop is analogous to a loop body that
has been unrolled n times. One of the benefits of loop unrolling is that more independent
operations are available to execute in parallel. However, in order to correctly execute
these operations, accurate information about data dependence is needed as is the case for
vectorization and stripmining. Moreover, optimizations applied to an unrolled loop body to
eliminate redundant computations should result in code similar to that produced for scalar
instructions in a stripmined loop. Based on this analogy, the hardware-only implementation
of stripmining in the IBM System/370 vector architecture can be considered hardware
support for loop unrolling where the amount of unrolling is set by the hardware.
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Despite the similarities between stripmining and loop unrolling, the former has
advantages over the latter. For example, other than having to calculate N mod 64, no
extra code is needed to execute the N mod 64 iterations because the same code is used to
execute strips of any length. Moreover, this code is reasonably optimized for most amounts
of unrolling. In contrast, the extra code required to execute the N mod 64 iterations for
loop unrolling can be either a non-optimal, rolled version of the loop or optimized, unrolled
versions for each residual value that is possible. Another advantage to stripmining is that the
number of instructions generated does not increase substantially over the number generated
for the rolled version because vector instructions are used. Hence, stripmining and the use
of vector instructions avoids the higher instruction-bandwidth incurred by loop unrolling
while taking advantage of the same fine-grain parallelism that loop unrolling uses.

2.4 Summary

In this chapter, I described how vector architectures support fine-grain parallelism
in both hardware and software, and I contrasted this architectural approach with three
others: superpipelined, superscalar, and VLIW. What follows is a summary of those aspects
that are common to any architecture that supports fine-grain parallelism and those that
are specific to a vector architecture.

A program’s functionality must not change even though the operations of a pro-
gram are performed in a different order when using parallel instead of scalar execution.
A program’s functionality, which is reflected by its output, will not change if the order
of accesses to each storage location does not change. Because data dependences stipulate
the order of accesses, preserving data dependences is the key to guaranteeing correct func-
tionality. As a result, any architecture that supports fine-grain parallelism must provide a
mechanism for handling data dependences to ensure correct functionality.

Dependences can occur in two different storage locations: registers or main mem-
ory. Hardware mechanisms are typically used for resolving register dependences, examples
of which are register-renaming and data-forwarding in superscalar and superpipelined ar-
chitectures, and chaining and tailgating in vector architectures. In contrast, the compiler is
usually responsible for handling memory dependences. Because it is responsible for ensur-
ing correct functionality, a crucial component of such a compiler is its dependence analyzer
that identifies dependent operations. There are two major methods for detecting depen-
dences in software. The more established method operates only on arrays which have an
explicit addressing mechanism. Dependences are detected by solving an algebraic equation
constructed from the address functions of array references.

In addition to handling dependences, any architecture that executes more than
one operation per clock period must be able to perform multiple instances of the basic ex-
ecution sequence: initiate operation, fetch operand(s), execute operation, and store result.
Whereas there are many techniques for performing multiple instances of each of these tasks,
only the first is specifically associated with a particular architectural approach: for example,
superpipelined architectures use longer pipelines to produce a faster clock; superscalar and
VLIW architectures use the obvious approach of simultaneously issuing multiple operations
from the instruction unit; and vector architectures use overlapped execution of multiple vec-
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tor instructions. The second and fourth tasks, fetching and storing multiple values in the
same clock period, can be accomplished by several register file organizations: monolithic,
partitioned, distributed, and combinations thereof. These organizations vary in their degree
of connectivity to the functional units, which creates a trade off between accessibility and
hardware costs. Although there is no hard and fast rule for using a particular organization
with a specific architecture, superscalar architectures typically use a monolithic configura-
tion, vector architectures use a partitioned one, and VLIW architectures use combinations
of these organizations. Finally, all of the architectures perform the third task, executing
multiple operations, in a uniform fashion by using several functional units.

In fact, because only techniques for accomplishing the first task are associated
with a particular architectural class and techniques for accomplishing the remaining tasks
could be used by any architecture, the defining element of an architecture that can execute
more than one operation per clock period is how it initiates more than one operation per
clock period. For a vector architecture, the key characteristic is the vector instruction, one
that causes multiple operations to execute sequentially in the same functional unit. This
instruction provides a simple intuitive model for understanding how fine-grain parallelism
can be used by hardware and by a compiler.

Whereas all four architectural approaches are attempting to use the parallelism
present in a program, a vector architecture does so through the use of its vector instructions.
Fine-grain parallelism exists in two places: among operations from different basic blocks
and among operations within the same basic block. Parallelism across different basic blocks
is used by the vector instruction itself, which is essentially a compact form of loop unrolling.
This type of parallelism is also manifested when a vector instruction continues to initiate
operations after the next basic block begins executing. Such a situation will occur as long
as completely independent resources are used. Parallelism within the same basic block is
made use of through the overlapped execution of several vector instructions.

Although vector instructions use the fine-grain parallelism present in a program,
not all parts of a program can be executed with vector instructions because of how vector
instructions are implemented. A program fragment with the properties listed in Figure 2.8
can be vectorized. The presence of either non-aggregate variables or scalar self-dependences
does not prevent vectorization. A common example of a non-vectorizable loop is one that
performs pointer-chasing through a linked list; such a loop cannot be vectorized because the
statement that performs the pointer-chasing (p=p->next) contains an aggregate variable and
directly depends upon itself. A technique, which is conceptually similar to loop unrolling
and is called stripmining, is used to execute a vectorizable loop. Moreover, operations
that either have an aggregate variable as input or generate an aggregate variable as output
are translated into vector instructions; other operations, such as address calculation or
branch computation, are translated into scalar instructions in a manner similar to how this
translation is done when loop unrolling.

The properties of a vectorizable program fragment do not include any characteristic
of a loop’s branch computation, which determines the number of iterations, or loop length,
which are executed for a particular invocation of a loop. Although it may seem that knowing
the length of a loop without executing it is necessary for vectorization, this is not true.
The easiest type of loop to vectorize is certainly one whose length can be determined in
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CHARACTERISTIC OF VECTOR

HARDWARE

PROPERTY OF A VECTORIZABLE
PROGRAM FRAGMENT

a vector instruction specifies only
one type of operation

a program fragment is a loop in
which statements are executed mul-
tiple times

each operation in a vector instruc-
tion accesses a different storage
location

a loop has at least one variable,
called an aggregate variable, that ac-
cesses a different storage location on
each iteration

a vector address-generator can only
do addition

the memory accesses of each ag-
gregate variable form an arithmetic
progression, which involves only
addition

vector instructions do not interleave
the execution of their operations

any statement containing an aggre-

gate variable cannot depend on itself

Figure 2.8: Properties of a Vectorizable Program Fragment

This table summarizes the relationship between a characteristic of vector hardware and the
corresponding property of a vectorizable program fragment. Details explaining these relationships
can be found in Section 2.3.1.




32

advance. An example of such a loop is a FORTRAN DO loop. But a loop whose length
cannot be determined in advance will not prevent vectorization as long as the properties
mentioned above are present, although the resultant stripmined code will be more complex.
Examples are a loop with a conditional exit and a loop with the branch computation
while (X(I)<Y(I)).

Deriving the properties of a vectorizable program fragment from hardware char-
acteristics illustrates the restrictions imposed by vector hardware rather than those caused
by inadequate compilation technology. An example of a restriction imposed by vector hard-
ware is that vectorizable loops cannot contain any self-dependent statements because the
execution of operations from different vector instructions cannot be interleaved. If this hard-
ware restriction were removed, as suggested by Chieuh [20], the absence of self-dependent
statements would no longer be a requirement for a vectorizable program fragment.

On the other hand, restrictions imposed by inadequate compilation technology can
be removed without having to alter hardware. In particular, the accuracy of the dependence
analyzer in a vectorizing compiler greatly affects what is vectorizable and what is not from
the viewpoint of a compiler. Examples of vectorizable loops that could be executed using
vector instructions are an unrolled version of a vectorizable loop and a vectorizable loop
with an undeterminable loop length. A specific example of the latter type of loop is one
that accounts for more than 90% of the time it takes to execute egntott, a program in
the SPEC benchmark suite [106). Current vectorizing compilers do not vectorize this loop
because the program is written in C and the loop has multiple exits. However, compilation
improvements incorporated in the the next version of the C compiler from Cray Research
will be able to vectorize this loop [62].

In addition to describing the fundamentals of a vector architecture, the contents
of this chapter also serve as background material for later chapters. In Chapter 3, 4
Case for Vector Architectures, I examine in greater detail the hardware support for fine-
grain parallelism and compare the techniques used by vector and superscalar architectures.
Although a vector architecture can be used on only specific parts of a program, I also
present data to show that this apparent restriction is minimal. In Chapters 5 and 6, I
explore the interaction between vector hardware and the code-generation algorithms in a
compiler. In Chapter 3, Register Usage and Instruction Scheduling, 1 improve upon the
scheduling algorithm used by the Cray compiler to effectively use more than the eight
vector registers currently provided in the Cray Y-MP. And finally, in Chapter 6, Bus Usage
and Register Assignment, I develop an assignment algorithm for a special configuration of
a vector register file that reduces the hardware cost of adding more registers but at the
expense of more restrictive accessibility. In the latter two chapters, I also evaluate how
effective my algorithms are at using the hardware.
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Chapter 3

A Case for Vector Architectures

VLSI technology continues to improve at a phenomenal rate. The combination of
decreasing area for one transistor and increasing area for an entire chip has resulted in a
proliferation of transistors in a single chip. Since the introduction of the first microprocessor,
the Intel 4004 with 2300 transistors, in 1971, the number of transistors per processor chip has
consistently doubled every two years resulting in an average yearly growth-rate of about
1.4 [47). In 1986, Myers, Yu and House predicted that a VLSI chip that has 10 million
transistors could be manufactured in 1995 [86]. As evidence that this prediction is well
within reason, the following table demonstrates the rapid growth in the transistor count of
CMOS processors since Myers et al. made their prediction:

NUMBER OF
YEAR PROCESSOR NAME REFERENCE
TRANSISTORS
1985 Intel 180386 275,000 86]
1989 Intel i860 1,000,000 73, 93]
1091 Intel i860 XP 2,500,000 6]
Sun SuperSPARC 3,100,000

As shown by the transistor counts for 1989 and 1991, this growth rate is expected to increase
to 1.5 as memory, which is denser than processor logic, is integrated with the processor.
Based on these growth trends, producing a ten-million transistor chip should be feasible by
1995.

Such a large VLSI processor can be used in at least two types of computers. One
type of computer is the workstation, a high-performance desktop or deskside computer
with a graphical user interface. The workstation is targeted for scientific and engineering
applications which is reflected by the fact that 6 of the 10 programs in the SPEC benchmark
suite come from this application domain [106). The purpose of the SPEC benchmark suite is
to chronicle the performance of workstations. Programs for user-interface graphics and for
scientific/engineering can be characterized as being compute-intensive with a high demand
for memory bandwidth.

Another computer in which a large VLSI processor is advantageous is one in which
100 or even 1000 or more processors are connected. Such a computer, called a massively
parallel processor or MPP, is designed to meet a hardware challenge of the 1990’s: to
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build a computer system that is capable of executing 1012 floating-point operations per
second or 1 TFLOPS. Because of physical limitations, computer architects generally agree
that the only way to achieve 1 TFLOPS performance is through massive parallelism. One
important aspect in the design of an MPP is its processor architecture. A more powerful
processor reduces the number of processors needed to achieve teraflop performance, thus
trading increased design complexity in the processor for decreased design complexity in
the interprocessor communication network. In addition, fewer processors means shorter
communication latencies, which reduces the burden on the software to schedule around
communication delays.

As VLSI technology continues to improve, processor architects are considering de-
signs that support fine-grain parallelism because such designs can easily use the increased
hardware resources for continued gains in performance. Of the architectures that support
fine-grain parallelism, VLSI designers appear, based on current design trends for micro-
processors [58, 61], to prefer a superscalar architecture for the processor of both types of
computers. This preference is based on the belief that such an architecture is more cost-
effective than a vector architecture, which many designers mistakenly believe is inherently
costly to implement and has limited application.

This misjudgement is due partly to the fact that the majority of commercially
successful vector implementations have been at the high end of the cost range, the clas-
sical example being the Cray Y-MP. Some of this cost is attributable to using expensive
technology for fabrication and exotic techniques for packaging and cooling. Nonetheless,
a historical correlation between high cost and a vector architecture does not imply that a
vector architecture could not be implemented using technology that is less costly. Moreover,
although vector architectures have typically been used in multiprocessor computers with
less than 20 processors, there is nothing inherent in a vector architecture that prevents it
from being implemented in VLSI and consequently used in an MPP. In fact, three companies
have recently implemented a vector architecture in VLSI:

e Thinking Machines Corporation has extended the SPARC architecture with a vector
architecture for use in their MPP, the Connection Machine 5 {109];

e NEC has implemented a single-chip vector processor with 693,000 transistors in 0.8 um
BiCMOS technology using a clock frequency of 100 Mhz [90]; and

o Fujitsu has implemented a single-chip vector processor with 1.5 million transistors in
0.5 um CMOS technology using a clock frequency of 70 Mhz [64].

Contrary to the beliefs of proponents of superscalar architectures, I believe that a
vector architecture combined with superpipelined hardware would be a better cost-effective
choice than a superscalar one for use in either a workstation or an MPP. Although the VLSI
implementations of vector architectures are examples of practical feasibility, in this chapter,
1 explain why a vector architecture is a better choice. I first examine the hardware cost of
a vector implementation, showing that the cost is comparable to or, in some aspects, even
less costly than that of a superscalar implementation. I next address the criticism that a
vector architecture is only effective for 2 limited number of programs showing that, in fact,
a vector architecture can effectively use parallelism when it exists in abundancy and that,
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to mitigate the effects of Amdahl’s Law, a combined vector and superpipelined architecture
can take advantage of what little parallelism there is in non-vectorizable programs. Finally,
I discuss some of the software advantages of a vector architecture.

3.1 Hardware Advantages of Vector Architectures

One common misconception about vector architectures is that the hardware re-
sources they require are many times more expensive than those of superscalar architectures,
in particular the vector register file and the high-bandwidth memory system. In fact, as |
discuss in this section, the hardware resources required to implement a vector architecture
are comparable or, in some aspects, even less costly when supporting the same amount of
parallelism as a superscalar implementation. In particular,

e the number of functional units can be the same;
e the need for a high performance memory is the same;

e the area of a vector register file is comparable to that of a superscalar multiported
register file; and

o the instruction-issue logic of a vector implementation is less complicated.

Moreover, as hardware designers increase the amount of parallelism in the processor, the
cost advantage of a vector architecture over a superscalar one becomes more pronounced
with respect to the register file and issue logic.

3.1.1 Number of Functional Units

To support the simultaneous initiation of N operations, N functional units must
be provided in either vector or superscalar architectures. Furthermore, either one will need
the same number of buses to deliver operands and results between the functional units and
the register file because this number is solely dependent on the number of functional units
provided. Hence, the implementation cost of functional units is identical for superscalar
and vector architectures that support the same amount of fine-grain parallelism.

3.1.2 High-Performance Memory System

Based on past implementations, computer designers mistakenly believe that a vec-
tor processor must have a more expensive, high-bandwidth memory system than one re-
quired by a superscalar processor. Although this may be true historically, I do not believe
an expensive memory system is a fundamental requirement of a vector processor. Moreover,
I believe that a less costly memory system that is suitable for a superscalar architecture
should also be suitable for a vector architecture. This is because either one, and in fact
any processor architecture that supports fine-grain parallelism, will place a comparable de-
mand on memory bandwidth as a natural consequence of executing multiple operations per
clock period. Studies of instruction mixes show that memory operations make up 20-30%
of the instructions executed for a typical program [92]. In a scalar implementation with a
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performance goal of one instruction per clock period, the memory demand for data is one
memory access every three to five clock periods. In a superscalar or vector implementation,
where multiple operations are executed per clock period, the demand for data can be as
frequent as a memory access every two to three clock periods or even every clock period. In
fact, with enough datapath parallelism in the hardware, the demand for data can be greater
than one memory access per cycle.

Because memory demand for data can be so high, multiple memory-ports will be
necessary with increasing datapath parallelism in either a vector or superscalar architec-
ture. Continually increasing the parallelism of the datapath without increasing the number
of memory ports will ultimately make memory the bottleneck to improved performance.
Memory ports are more expensive to add than floating-point units, however, because in-
creasing their numbers impacts the entire memory system. Although several vector com-
puters have implemented multiple memory-ports, superscalar architectures have yet to do
50.

Vector computers typically use a large, highly-interleaved main memory built from
expensive SRAM chips. In contrast, superscalar computers follow their scalar ancestors by
using cache-based memory systems that are less costly and reputedly provide sufficient
performance. But, not only is the demand for memory bandwidth independent of the
processor architecture, so is the implementation of the memory system. Consequently,
although high-cost memory systems have routinely been used in vector computers, a cached-
based memory system could be used as a more cost-effective solution. For example, the
IBM 3090 has a 64-Kbyte, 4-way set-associative cache [113]. Furthermore, research into
cache designs that provide high memory-bandwidth for superscalar architectures [104] could
also be applied to vector architectures.

Cache-based vector computers are not common because popular wisdom suggests
that scientific and engineering programs, which are most suitable for a vector architecture,
have memory reference patterns with poor spatial and temporal locality. Although these
characteristics result in poor cache performance, this performance has more to do with the
program itself rather than the design of the processor. Accordingly, if a cache-based vector
computer exhibits poor cache performance, so will a cache-based superscalar computer when
executing the same program.

Evidence that the program is the major influence on cache behavior comes from
Clark and Wilson who present performance data for the vector cache in the IBM 3090
[21). To multiply two matrices of dimensions 300 x N and N x 100, where N is varied
from 50-600 by increments of 50, they use three different algorithms1 to improve the cache
performance as measured by execution time. They find that for each algorithm, the cache
performance curves of both scalar and vector processing have the same shape. Moreover,
the straightforward algorithm for matrix multiply has declining cache performance for both
scalar and vector processing as the problem size increases, whereas two blocked algorithms
have cache behavior that is insensitive to the size of the problem. Rather than working on an
entire row or column of a matrix, such blocked algorithms rearrange computations to work
on submatrices or blocks that will fit in a cache [45, 77]. Such rearrangements are designed
not to affect the vectorizability of a program [29]. Hence, if a blocked algorithm performs

11 use the words program and algorithm interchangeably.
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well on a superscalar architecture, it should also perform well on a vector architecture.

Although memory implementation and memory demand are independent of the
processor architecture, a vector architecture has several features that can simplify the design
of a memory system: less memory traffic than in a superscalar architecture, a built-in mech-
anism for prefetching data, and fewer wires in the memory interface than what is needed
for a superscalar architecture. The last feature is especially advantageous when multiple
memory-ports are implemented. In the following paragraphs, I qualitatively describe the
advantages of these features, leaving a quantitative analysis for a future study.

First, whenever parallelism is exhibited, memory traffic from a vector architecture
is less than it is from a superscalar architecture. Parallelism demands substantial data
bandwidth. In a vector architecture, however, memory traffic for instructions does not
increase when memory traffic for data does because vector instructions are used. Conversely,
in a superscalar architecture, instruction demand increases in conjunction with data demand
because each operation corresponds to an instruction. Even if an instruction cache is used
to reduce traffic to main memory, a cache for a superscalar architecture must deliver many
more instructions than one in a vector architecture. Moreover, such an instruction cache
may also have to be larger to provide a good hit ratio when techniques such as loop unrolling
are used to increase the amount of available parallelism at the expense of increased code
size.

Second, vector memory instructions prefetch data from the memory system. Be-
cause a stream of references through a memory port could exhibit a regular pattern, a
high-bandwidth memory system can be designed to take advantage of this regularity. A
vector memory instruction encodes this pattern in three pieces of information: the base
address, the offset between successive addresses (known as the stride), and the number of
words to access. Hence, the memory system is told about the pattern at the time a vector
memory instruction is issued. In contrast, a superscalar architecture treats memory refer-
ences individually. Consequently, additional hardware would be needed to first discover the
pattern. Alternatively, prefetching could be performed by the software by including extra
instructions [17, 72). A disadvantage of this, however, is an increase in memory traffic for
instructions.

Finally, the physical package that contains a vector VLSI processor requires sig-
nificantly fewer pins to communicate with the memory system than one that contains a
superscalar processor. This is an important consideration when implementing a single-chip
VLSI processor with a limited number of pins. Because a superscalar architecture has no
mechanism for encapsulating multiple memory references, the processor computes and sends
the address of each memory operation to the memory system. Consequently, each memory
port must have associated with it both a data and an address bus. In addition, because
each address must be sent out from the processor and the demand for data will be one or
more accesses each clock period, the address pins will be used just as frequently.

In contrast, a vector memory instruction provides only three pieces of informa-
tion to specify multiple memory references. As long as the memory system can generate
addresses, this information can be sent once at the time an instruction is issued rather
than sending an address for each reference of a vector memory instruction. Although this
complicates the memory controller somewhat, the number of address buses is kept to only
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one, even with multiple memory-ports.2 In other words, each extra memory port requires
32 fewer pins (assuming 32-bit addresses) in a vector architecture than the number needed
in a superscalar one. Moreover, the address pins are used only once for each vector memory
instruction rather than for each memory reference, as in a superscalar architecture. Because
placing an electrical load on many pins simultaneously causes electrical difficulties to arise,
fewer pins and less frequent use of the address pins together simplify the electrical design
of a VLSI chip with hundreds of pins.

3.1.3 Register File

Hardware designers also mistakenly believe that the vector register file is costly
to implement because vector architectures have many more registers than do superscalar.
Although the area cost is greater, the design of the vector register file results in an in-
crease in area that is far less than the increase in the number of registers. As described
earlier in Section 2.2, vector and superscalar architectures use different configurations for
implementing a multiported register: vector architectures use a partitioned configuration
whereas superscalar architectures use 2 monolithic one. These two configurations represent
different tradeoffs between area and accessibility.

A partitioned register file can contain far more registers than a monolithic register
file without a corresponding increase in area. For example, the vector register file in the Cray
Y-MP vector processor consists of 8 dual-ported vector registers, each with 64 elements,
for a total of 512 registers. The register file in the Texas Instrument Megacell chip, used
in both the Hewlett Packard Snake workstation and Sun SuperSPARC chip set, consists
of 32 registers with 5 read-ports and 3 write-ports. As shown in Figures 3.1 and 3.2,
dual-ported registers have a smaller area than multiported ones. Assuming each register is
64-bits wide, the area of this vector register file (67.2 X 108)?) is only 2.5 times that of the
superscalar one (26.9 x 106A2) while providing 16 times more registers.

Moreover, this difference in area could be smaller if a superscalar architecture im-
plemented more than the typical 32 registers, a possibility indicated by Wall’s parallelism
study [115). More registers are needed for additional datapath parallelism because support-
ing more parallelism will produce more intermediate results at once, thus requiring more
registers to simultaneously store these results. Wall’s data, reproduced in Figure 3.3, shows
a direct correlation between more registers and more attainable parallelism. Because how
a compiler uses registers affects how many will be needed, Wall's experiment uses regis-
ter renaming to diminish a compiler’s influence. Because Wall’s study did not assume a
particular architectural approach, this data suggests that any architecture that supports
parallelism will need to provide more registers.

The need for more registers is also demonstrated in several commercial implemen-
tations. The IBM RS/6000, a superscalar design, actually implements 38 floating-point
registers, six of which are invisible to the programmer and are used for renaming registers.

2The exception to thisis a gather/scatter vector instruction where the processor computes and then sends
the address of each memory operation. As long as only one gather/scatter memory-port is implemented, as
is the case in the Cray Y-MP, only one address bus is needed to support multiple memory-ports in a vector
architecture.
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Figure 3.1: Design of a Multiported Register Cell

The multiported register cells listed in Figure 3.2 are a straightforward extension of the 1R,1W
register cell design shown above. In designing the cells, the VLSI technology used is scalable CMOS
where 0.4p < A < 2p and the minimum line width is 2. I use only two metal layers with a minimum
pitch of 8 (i.e., the minimum width of a metal line is 4) and the minimum distance between lines
is 4)). VLSI technology that is capable of more than two metal layers would not help in reducing
the size of the register cell because the extra layers of metal are much coarser: a minimum width
about three to five times wider than that of the first two layers.

The memory portion of each register cell is a pair of cross-coupled inverters consisting of four
transistors that force a minimum height of 41A. To access the register cell, each port requires one
transistor, a select line, and a data line. In addition, a write port requires a second access transistor
and data line. In the diagram above, the top two transistors are the access devices for the write
port and the bottom transistor is the access device for the read port.

The area of the register cell grows approximately as the square of the number of ports added
because each port forces the cell to grow in both height and width. Because the memory portion of
the cell can accommodate three select lines running width-wise across the cell, the height of the cell
does not grow until more than three ports are implemented, after which each port adds 8) to the
height. A read port adds 14A to the width: 8) for the data line and 6) for the access transistor. A

write port adds 28) to the width because it requires two data lines and two access transistors.
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NUMBER DIMENSIONS AREA COMMERCIAL
OF PORTS (w x h) (relative area) MACHINES
1R,1W 50X x 41 205022 (1.00)

2R,1W 64N x A1) | 2624)% (1.28) MIPS R3000,

MIPS R4000,

most RISC scalar micropro-

4R,2W 1203 < 651 | 780047 (3.80) | IBM RS/6000,

SUN SuperSPARC IU
5R,3W 1621 x 81 | 13122X% (6.40) Hewlett-Packard Snake,
SUN SuperSPARC FPU

Figure 3.2: Area Requirements of Multiported Register Cells

This table lists the area requirements of various multiported register cells based on the design in
Figure 3.1. The description of the register cell design explains why the area increases approximately
as the square of the number of register cell ports.

The column labeled COMMERCIAL MACHINES lists processors that use an analogous register
cell, which is not necessarily the same size because it may use a different implementation technology.
Both the Hewlett-Packard Snake and SUN SuperSPARC use the Texas Instruments Megacell chip

that implements a register cell with 5 read ports and 3 write ports.
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Figure 3.3: Number of Registers versus Parallelism

Based on Wall’s parallelism data [115], this graph shows that the number of registers affects
how much parallelism can be extracted. To show the extent to which the number of registers can
impede parallelism, perfect branch/jump prediction and perfect dependence analysis are assumed.
Similar trends also occur for more realistic models of computation.
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VLIW implementations, which are designed with more datapath parallelism than is found
in superscalar machines, have a large number of 64-bit registers:

NUMBER OF
IMPLEMENTATION 64-BIT REGISTERS
Intel iWarp 64
Multiflow Trace 7 7x32=224

Multiflow Trace 14 14 x 32 = 448
Multiflow Trace 28 28 x 32 = 896
Cydrome Cydra 6 x 64 = 384

Finally, vector architectures use a large number of registers ranging from 512 in a Cray
processor to 8192 in Ardent and Fujitsu processors (see Figure 2.5 on page 15).

Given that more than 32 registers are required to support a reasonable amount of
fine-grain parallelism, Figure 3.4 shows that the partitioned approach is more attractive than
the monolithic approach from the perspective of hardware cost because for the same area
many more registers can be implemented in a partitioned register file than in a monolithic
one. The overall size of the register file is determined mainly by the size of the register cell,
the most replicated part of the register file. Other components that are needed to access
the register file, such as decoders and read/write drivers for the data lines, are typically less
than 5% of the area required by the register cells themselves (assuming 64-bit registers).
Consequently, the relative size of the two register files is equal to the relative sizes of the
register cells. If Spw is the size of a register cell with R read ports and W write ports,

the partitioned register file can implement %’%lﬁ times more registers in the same area.

Alternatively, the partitioned register file requires 3‘2—'&,— times less area to implement the

same number of registers. Figure 3.2 lists some values for the %’-:alﬂ ratio.

In fact, this difference in area may be reversed with increasing datapath parallelism
because a monolithic register file needs to expand even if the number of registers remains
unchanged, whereas a partitioned register file does not. Increasing datapath parallelism
requires a corresponding increase in the number of ports in the register file because these
should match the number of operands and results used and produced by the functional
units. Of the two techniques for providing a multiported register file, the partitioned ap-
proach, which uses dual-ported registers, scales better with increasing datapath parallelism
than does the monolithic approach, which uses multiported registers. To support more
parallelism, the monolithic approach uses a register cell with more ports. As Figure 3.2
shows, adding more ports to a register cell expands the area in both dimensions. Hence,
the area of a monolithic register file enlarges as the square of the increase in the number
of ports even though the number of registers does not change. By contrast, adding more
ports to a partitioned register file entails partitioning the file further but without having
to change the size of the register cell. If the total number of registers remains unchanged,
only a minimal increase in area will result when adding more “ports” to the register file.

Although a partitioned register file requires less area than a monolithic one, the
former also has restrictions on which registers are available for use each clock period. How-
ever, as datapath parallelism is increased, the partitioned approach will be the better design
for reasons of cost, despite the loss in functionality.
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Figure 3.4: Area Requirements of Monolithic and Partitioned Register Files

The graph above compares the area requirements of the monolithic and partitioned approaches
for implementing a multiported register file. Note the log scale on both axes. The areas are based
on the design of the register cells described in Figure 3.2.

As points of reference, I have identified data points that correspond to machines with the same
register file parameters although not necessarily the same area because the actual implementation
may use a different technology. In particular, assuming the same technology, the register file of
the Cray Y-MP would require 2.5 times as much area as the register file of the Texas Instrument
Megacell, but it would provide 16 times as many registers.
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A superscalar architecture could implement a partitioned register file, although
this is not traditionally done. To prevent any loss in performance as a result of too many
conflicts in register accesses, however, a new algorithm would be needed to assign values
to registers in register banks. For example, the Multiflow Trace 14/300 system, which is
a VLIW architecture, has a register file with read and write restrictions that effectively
partition the file into register banks. Experience with this system led its designers to
observe that “the more byzantine the constraints put on the code generator, the worse the
code quality,” which in turn results in performance loss [22]. Because of the similarities
between a VLIW architecture and a superscalar one, this observation would probably hold
true for a superscalar implementation with a comparable register file organization. Hence,
the need for a good assignment algorithm is probably the main reason why superscalar
architectures have not implemented a partitioned register file.

In contrast, a partitioned register file fits well with the vector architecture in
that no special algorithm for register assignment is needed to overcome the restrictive
accessibility of such a design. Because a vector instruction operates on a vector of data
which can be assigned to a vector register, register assignment for a vector register file can
occur at the vector-register level rather than at the level of individual registers. Hence, as a
natural consequence of the vector computational model, traditional algorithms for assigning
values to registers in a scalar register file can be used to assign vectors of data to vector
registers in a vector register file. Furthermore, a vector architecture can easily support more
datapath parallelism because a partitioned register file can support more register-ports with
a minimal increase in area.

3.1.4 Instruction-Issue Logic

Another advantage of a vector architecture is its simpler instruction-issue mech-
anism for simultaneously initiating multiple operations. In general, before an instruction
can be issued, interlock logic in the hardware must first determine that no data or struc-
tural hazards exist between an instruction and any previous one in the instruction stream.
In addition to the number of instructions that must be examined simultaneously, another
indicator of the amount of hardware needed to simultaneously initiate multiple operations
is the number of hazard checks that must be performed in parallel.

In a vector architecture, because only one instruction per clock period is ever han-
dled by the interlock logic, the amount of hardware required to check for hazards is about
the same as in a scalar implementation. In addition, no hardware checks are performed
among the individual operations of a vector instruction because a compiler has guaran-
teed that the appropriate operations have been grouped into one vector instruction; hence,
hardware does not duplicate the work of the compiler.

In contrast, the issue mechanism of a superscalar architecture requires more hard-
ware than that of a vector processor with equivalent parallelism support. First, the interlock
logic must simultaneously examine a minimum of N instructions as a requirement for full
usage of N functional units. Moreover, because there must be a hazard check between each
instruction and any previous one in the instruction stream, not only are there hazard checks
between each examined instruction and already-issued instructions, as shown in Figure 3.5,
but there are also explicit pair-wise checks among the about-to-issue instructions. Each of
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Figure 3.5: Instruction-Issue Logic in a Superscalar Architecture

This figure shows how the hardware cost for issuing instructions in a superscalar architecture
grows as the square of the number of instructions that are simultaneously examined for issuing. The
minimum number of instructions that must be examined per clock period is equal to the number of
functional units. An instruction can be issued only if there are no data or structural hazards between
itself and any previous instruction in the instruction stream. Moreover, these checks for hazards
must execute in parallel. Consequently, for each instruction in the issue window, there is interlock
logic for detecting hazards with instructions already issued (indicated by the vertical arrows). In
addition, there is interlock logic for detecting hazards between each pair of instructions in the issue
window (indicated by the right-to-left arrows).

these checks must be implemented in hardware so that they can execute in parallel. In ad-
dition, extra hardware is needed to handle any instructions with hazards, either to stall the
instruction stream at the first instruction with a hazard or to design the pipeline to allow
forwarding of data [13]. A consequence of this increase in hardware for issuing instructions
is that the design and diagnostics required for functional testing are also more complex and
hence, more likely to take longer to complete.

This difference in hardware for issuing instructions is greatly magnified as hard-
ware designers increase the parallelism in a processor. In a vector architecture, because
sequentially-issued vector instructions allow operations to be initiated in parallel, the num-
ber of instructions handled by the interlock logic remains at one even as datapath paral-
lelism grows. In contrast, as Figure 3.5 shows, the total number of pair-wise hazard checks
required in a superscalar processor increases as the square of the increase in datapath par-
allelism. This quadratic growth in hardware was described as early as 1970 by Tjaden and
Flynn [111]. Recently, Johnson described techniques for reducing this hardware cost but
such techniques have the adverse effect of complicating the hardware design [66]. Extra
logic for handling hazards and the increase in debugging complexity also magnifies at the
same rate as that of the interlock hardware.
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3.2 The Effectiveness of Vector Architectures

Another common misconception about vector architectures is that they are ef-
fective for only a small set of programs, and then only for those portions of a program
containing loops that have no self-dependent statements. Moreover, proponents of super-
scalar architectures believe that, for less cost, a superscalar architecture can take advantage
of vectorizable parallelism as well as non-vectorizable parallelism. I believe the opposite to
be true. In this section, I address the issue of effectiveness, arguing that a vector architecture
is, in fact, highly effective at using fine-grain parallelism.

There are three parts to my argument. In Section 3.2.1,1 present data from a par-
allelism study that suggests that vectorizable programs have an abundancy of parallelism
and that only a minuscule amount of parallelism is available elsewhere for any architecture.
This data also suggests that vectorizable programs are likely to be the more time-consuming
ones in a workload. Traditional analyses of this data, which is based on reducing execu-
tion time, tend to downplay time consumption. In Section 3.2.2, I discuss an alternate
measure of improvement, based on increased workload, that highlights the effectiveness of
using parallelism. Nonetheless, Amdahl’s Law reminds us that ignoring non-vectorizable
program fragments completely would be unwise. In Section 3.2.3, I show how a combined
superpipelined and vector architecture can take advantage of both the limited parallelism
that is available in non-vectorizable program fragments and the abundancy of parallelism
that is available in vectorizable ones.

3.2.1 Where Is the Parallelism?

An understanding of the properties of a vectorizable program fragment shows
intuitively that a vectorizable loop intrinsically has more parallelism than a non-vectorizable
one. Although many hardware and software techniques are used to expose the parallelism
in a loop, it is the presence or absence of self-dependent statements that determines how
much parallelism is present in a loop. For example, while unrolling a loop is a software
technique for exposing more parallelism, unrolling a vectorizable loop, which has no self-
dependent statements, produces more parallelism than unrolling a non-vectorizable one
that has a comparable number of operations. This is because the dependence graph of an
unrolled vectorizable loop has a path of maximal length, known as a critical path, much
shorter than a critical path in the dependence graph of an unrolled non-vectorizable loop.
As Figure 3.6 illustrates, a self-dependent statement results in 2 critical path whose length
is proportional to the number of iterations executed. In contrast, the absence of a self-
dependent statement produces a critical path whose length is proportional to the number
of operations executed in an iteration. An indication of the amount of parallelism available
in a loop is the ratio of the number of operations executed for the loop and the number
of operations in a critical path of the loop. Because the number of iterations executed for
a loop is typically greater than the number of operations executed for one iteration, the
critical path of a vectorizable loop will be shorter than that of a non-vectorizable loop that
has a comparable number of operations. Hence, in theory, a vectorizable loop has more
parallelism than a non-vectorizable one.

In support of this intuitive explanation, I use data from a study performed by Wall



47

NON-VECTORIZABLE LOOP VECTORIZABLE LOOP
Loop D010 I = 1,4 DO 101 = 1,4
10 A(I+1) = A(D) + B(I) 10 ACI) = ACI) + B(I)
L U
DEPENDENCE
GRAPH
(®
DEPENDENCE ORONCHNONCHNC
GRAPH s 4 o
AFTER
UNROLLING A A A

Figure 3.6: Intrinsic Parallelism in Non-vectorizable and Vectorizable Loops

This figure demonstrates the difference in the intrinsic parallelism in a non-vectorizable loop
and a vectorizable one with a comparable number of operations. The dependence graph that results
from unrolling a loop illustrates the intrinsic parallelism of that loop. Unrolling a non-vectorizable
loop, which has a self-dependent statement, produces a dependence graph with a chain of dependent
operations that are executed for different iterations. This chain of dependent operations, outlined
in bold, is typically the critical, or longest, path in the execution of such a loop. Although trans-
formations, such as tree-height reduction or cyclic reduction [74] can be made to eliminate some
dependences in a non-vectorizable loop that has been unrolled, not all dependences between itera-
tions can be removed and the resultant dependence graph will remain connected. In contrast, the
dependence graph of a vectorizable loop, after unrolling, contains disjoint subgraphs, each of which
represents one iteration of the loop. A critical path of this loop, outlined in bold, is limited to the
operations in one iteration and is, hence, shorter than the critical path in the non-vectorizable loop.
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that indicates that programs with vectorizable loops do have plenty of parallelism while non-
vectorizable program fragments, for the most part, have relatively little parallelism, even
under favorable hardware and software conditions [115]. Although Wall’s study provides
data that is favorable to vector architectures, the purpose of his study is to search for any
type of parallelism. Moreover, because Wall does not assume a vector architecture nor rely
on a vectorizing compiler to generate his data, this study provides independent evidence
that parallelism, when it exists in quantity, is suitable for such an architecture.

Wall measured, under a variety of hardware and software conditions, the paral-
lelism available in 17 programs representative of those that would be executed on a work-
station. Wall identifies and varies three parameters that affect how much parallelism can
be extracted from a program:

1. the level of branch/jump prediction to find parallelism across multiple basic blocks;

9. the number of registers for renaming purposes to eliminate false register dependences;
and

3. the level of dependence analysis (called alias analysis by Wall) to identify when two
memory references access the same location.

Figure 3.7 lists some of the parameter values used by Wall. Another parameter, multiple
functional-units, is fixed at 64 for this study. Varying the value of these parameters results
in different models of computation. The model of computation that is closest to what a
vector architecture can provide today has the following parameter values:

e static branch/jump prediction, which chooses the most frequent target based on a
profile from an identical run;

e 256 integer registers, 256 floating-point registers; and

o perfect dependence analysis of stack and global references, and instruction inspec-
tion to identify memory dependences among heap references (called alias analysis by
compiler by Wall).

Although Wall did not include data for this particular computational model, a reasonable
approximation is the one that uses perfect dependence analysis because the parallelism
demonstrated for most of the computational models using compiler analysis is comparable
to what is exhibited for the corresponding computational model using perfect analysis.

In Figure 3.8, I have reproduced the parallelism data for five models of computa-
tion:

1. bNone,jNone,r256,aNone shows how much parallelism is extractable using basic scalar
execution and a generous supply of registers;

2. bNone,jNone,r256,aPerfect indicates the parallelism available within basic blocks;

3. bStatic,jStatic,r256,aPerfect approximates how much parallelism can be obtained by
a vector compiler and processor;
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| LEVEL OF BRANCH/JUMP PREDICTION |

bNone,jNone branch/jump targets are not predicted at all

bStatic,jStatic a branch/jump is predicted to go to its most frequent target as de-
termined by a profile from an identical run

binfinite,jInfinite the target of a branch/jump is dynamically predicted based on a two-
bit counting scheme in which the table holding the branch histories
is infinitely large

bPerfect,jPerfect branch/jump targets are always correctly predicted

[ NUMBER OF REGISTERS ]
r256 256 integer registers and 256 floating-point registers dynamically al-
located in an LRU fashion
rPerfect an infinite number of registers to completely eliminate all false reg-
ister dependences

[ LEVEL OF DEPENDENCE ANALYSIS |
aNone no memory dependences are identified, and all loads and stores are
assumed to conflict
aPerfect all memory dependences are identified, and loads and stores conflict
only if they access the same memory location

Figure 3.7: Parameter Values for Models of Computation

This table gives the details of the parameter values used for the computational models displayed
in Figure 3.8. Some amount of branch/jump prediction, in effect, increases the basic block sizes and
hence the number of instructions that can be considered for parallel execution. A more accurate
prediction scheme results in fewer wasted cycles that occur when the processor flushes any pending
instructions after incorrectly predicting a branch/jump. Register renaming is used to reduce the
number of false register dependences that arise because the executable code is compiled for an archi-
tecture with 32 registers. The number of registers provided by the hardware determines the number
of false dependences that can be eliminated. Because dependence analysis (called alias analysis by
Wall) identifies instructions that access the same memory location, the level of dependence analysis
affects how many instructions can execute in parallel. For identifying memory dependences, I use
the two extremes of dependence analysis.
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Figure 3.8: Measured Parallelism under Various Hardware and Software Conditions

This graph reproduces some of Wall’s data [115] showing the amount of parallelism that can
be extracted under five different models of computation. These models vary in the number of
available registers, and in their ability to do branch/jump prediction and identify dependences that
involve memory. Figure 3.7 gives details on the values of individual parameters. The inputs for
all these models are the executable codes of programs compiled for a DECStation 5000 that uses a
MIPS R3000 processor, a scalar architecture with 32 registers.

4. bInfinite, jInfinite,rPerfect,aPerfect indicates how much parallelism is accessible under
nearly impossible conditions; and

5. bPerfect,jPerfect, rPerfect,aPerfect gives the intrinsic parallelism in a program.

For the vector computational model, only the 3 programs fpppp, tomcalv, and linpack
have parallelism above 10, whereas the other 14 programs have parallelism between 4 and
8. Of the three programs, tomcatv and linpack contain loops vectorizable by ¢ft77, the
vectorizing compiler developed by Cray Research, Incorporated. More importantly, these
Joops constitute the bulk of the time it takes to execute each program.

The program fpppp is unique in that it contains large basic blocks (30] that have
parallelism in quantity. This is unusual because large basic blocks do not guarantee copious
amounts of parallelism as evidenced by the generally low levels of parallelism exhibited
under a nearly impossible computational model (labeled bInfinite,jInfinite,rPerfect,aPerfect
in Figure 3.8), which assumes aggressive branch/jump prediction techniques to enlarge
basic blocks. The large basic-blocks of fpppp, however, do contain an unusual abundance
of parallelism as demonstrated by the fact that only fpppp has parallelism greater than 10
when there is no branch/jump prediction, a generous supply of registers, and perfect alias
analysis, the model of computation (labeled bNone, jNone,r256,aPerfect in Figure 3.8) that



51

measures the parallelism available exclusively in a basic block. Although current vectorizing
compilers are unable to identify and express this parallelism in vector terms, perhaps with
more research fpppp will be vectorizable in the near future.

Of the 14 programs that have parallelism between 4 and 8, only the Livermore
Loops benchmark is known to contain any vectorizable loops. Extracted from actual sci-
entific applications, this benchmark is a set of representative loops [84), half of which are
loops with self-dependent statements. Hence, this data bolsters my claim that there is
meager parallelism to be found in non-vectorizable loops. Wall states that the parallelism
for each individual loop in this benchmark ranges from 2.4 to 29.9 with a median around 5.
The reason a parallelism of only 4.9 is demonstrated over all the loops is a consequence of
Amdahl’s Law, an issue I will address shortly.

Providing increasingly more resources for branch/jump prediction and registers
does not significantly change this parallelism profile. Even under nearly impossible condi-
tions (Wall’s Great model which is labeled bInfinite, jInﬁnite,rPerfect,aPerfectin Figure 3.8),
only tomcatv and fpppp show a significant increase in parallelism over the vector model. A
major change in the parallelism profile occurs when perfect branch and jump prediction
is assumed (Wall's Perfect model which is labeled bPerfect,jPerfect,rPerfect,aPerfect in
Figure 3.8). Under such impossible conditions, all but Whetstones and Livermore Loops
demonstrate parallelism greater than 195. Hence, although there is parallelism intrinsic in
non-vectorizable program fragments, it is not as easily extracted as parallelism in vectoriz-
able loops, which require only a good dependence analyzer in the compiler — a technology
that is already available.

3.2.2 The Effectiveness of Parallelism

In the previous subsection, I demonstrated that there is abundant parallelism in
vectorizable programs. In this subsection, I will quantify how effectively this parallelism can
be used to improve the performance of a workload as typified by the one in Wall’s study.

The standard reason for using parallelism is to reduce execution time but, because
of Amdahl’s Law, measuring improvement in this fashion tends to downplay the overall
benefits of parallelism. For example, using the instruction counts listed in Figure 3.9 as
approximations to execution times, the overall speedup is:

execution time of total workload — 981

v execution time of program i
parallelism of program i

In other words, the total execution time of Wall’s workload can be reduced by a factor
of less than 10 despite the fact that the program that accounts for 44.5% of the executed
instructions exhibits the largest amount of parallelism (44). This rather low speedup results
because li, the second longest running program, exhibits little parallelism (5.2).

As an alternative, a different reason for using parallelism is to execute larger prob-
Jems in the same amount of time, thus providing a different measure of improvement based
on increasing workload. Gustafson has shown quantitatively the importance of increasing
the size of a workload to provide more parallelism [54]. To facilitate acceptance of this
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relatively new measure of performance, Gustafson et al. have constructed the SLALOM3
benchmark, which compares the performance of computers by measuring the number of
polygons a computer can generate in one minute [53). To use this measure for Wall’s data,
I assume that the time contributed by each program remains the same (an assumption I
will discuss shortly). Thus, the overall increase in Wall’s workload using parallelism is:

Y (execution time of program i x parallelism of program i) _ 04.11
execution time of entire workload )

In other words, about 25 times as many instructions can be executed without increasing
the workload’s execution time.

These two ways of measuring improvement rely upon slightly different concepts
of what a workload is. A workload, when improvement is measured by reduced execution
time, is characterized by a set of programs and their corresponding inputs. A workload,
when improvement is measured by its enlargement, is characterized by a set of programs
and their time contributions to the workload.

The dramatic improvement when measured by increased workload is due to the
fact that the most time-consuming program in Wall’s workload also happens to exhibit
the most parallelism, an important characteristic of any workload if significant gains from
parallelism are to be obtained. Let me demonstrate the importance of this characteristic
with a fictitious workload as a counter-example:

By switching the parallelism numbers for tomcatv and sed, the least time-
consuming program now exhibits the most parallelism. The improvement of
this fictitious workload when measured by reduced execution time is 6.6, 30%
less than the corresponding improvement of Wall’s workload. More significantly,
the improvement when measured by increased workload is only 8, a factor of
three less than that for Wall’s workload.

Hence, using the size of a workload as a measure of improvement serves to highlight the
effectiveness of parallelism, particularly if a workload contains highly parallel programs that
are also the most time-consuming.

When measuring improvement by increased workload, I assumed that the time con-
tributed by each program remains the same. This is equivalent to assuming that programs
with more parallelism are the ones that a user wishes to execute the most, a reasonable
assumption given the context in which I am making my case. In Wall’s workload, the
programs with the most parallelism come from the scientific and engineering domain. The
push for higher performance computers, such as workstations and MPPs, comes from this
application domain. Two major benchmarking efforts reflect this: all 13 programs of the
Perfect Club Suite [12] and six out of the 10 programs in the SPEC suite [106] come from
scientific and engineering applications.

Given the fact that Wall’s workload represents about three minutes of execution
time (assuming a 25 MHz clock frequency, which is used in a SUN SPARCstation, and ideal
cache behaviour), increasing workload seems a better use of parallelism rather than simply

351 ALOMis an acronym for Scalable Language-independent Ames Laboratory One-minute Measurement.
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PROGRAM LINES EXECUTED INSTRUCTIONS PARALLELISM
number (percentage)

tomcatv 180 1,986,257,545 (44.5) 43.7

I 7000 1,247,190,509 (279) 52

fpppp 2600 244,124,171 ( 5.5 ) 29.7

doduc 5200 984,697,827 (6.4 ) 8.0

Linpack 814 174,883,597 ( 3.9) 13.6

espresso 12000 135,317,102 (3.0) 5.0

grr 5883 142,980,475 (3.1) 4.0

metronome 4287 70,235,508 ( 1.6 ) 5.7

yacc 1856 30,948,883 ( 0.7 ) 53

eco 2721 26,702,439 (0.6 ) 4.7

Whetstones 462 24,479,634 (0.5) 4.4

gecel 83000 99,745,232 (0.5) 4.8

Livermore 268 22,294,030 ( 0.5 ) 4.9

Stanford 1019 20,759,516 ( 0.5) 4.0

ccom 10142 18,465,797 ( 0.4 ) 5.5

egrep 844 13,910,586 (0.3) 4.3

sed 1751 1,447,717 ( 0.03) 74

TOTAL 9.81 harmonic mean

WORKLOAD 140027 4,467,440,568 (99.93) 24.11 arithmetic mean

Figure 3.9: Execution Characteristics of Wall’s 17 Programs

This table lists some characteristics of the programs in Wall’s parallelism study [115): the
number of source-code lines, the number and percentage of dynamic instructions, and the amount
of parallelism demonstrated using a model of computation closest to what vector architectures can
provide today. The number of instructions executed per program varies by a factor of 1000, ranging
from 1.4 million to 2.0 billion with an average of 262.8 & 533.0 million.

Parallelism for the total workload can be represented by two weighied averages, depending
upon how performance improvement for the total workload is measured. The weight is a program’s
percentage of the workload with respect to time, which is estimated by the number of executed
instructions. Improvement as measured by reduced execution time is equivalent to the weighted
harmonic mean of the amount of parallelism, whereas improvement as measured by increased work-
load is equivalent to the weighted arithmetic mean of the amount of parallelism. In either case, using
the unweighted mean excludes the time contributed by each program and will not reflect the fact
that, in this workload, the most time-consuming program benefits the most from parallelism.
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reducing execution time. Continually measuring improvement in terms of reduced execution
time will ultimately limit the amount of improvement that is theoretically possible. In
contrast, measuring improvement in terms of increased workload has no limitation assuming
that the sizes of problems can grow indefinitely.

3.2.3 Addressing Amdahl’s Law

I have just argued that parallelism, when available in quantity, can be used ef-
fectively by a vector architecture. Nevertheless, some amount of parallelism does exist in
non-vectorizable parts. To avoid the consequences of Amdahl’s Law, a vector architecture
combined with superpipelined hardware can be used to take advantage of the limited par-
allelism (4-7) in such programs. A superpipelined extension to a vector architecture makes
more sense than a superscalar extension because the instruction-issue logic for vector and
superpipelined implementations are similar; in particular, both issue only one instruction
per clock period. Moreover, Jouppi indicates that superpipelined hardware is more likely to
take advantage of parallelism better than superscalar hardware because of nonuniformities
in fine-grain parallelism {69]. In addition to using the limited parallelism in non-vectorizable
fragments, which a basic vector architecture cannot take advantage of, superpipelined hard-
ware can also be used in conjunction with vector hardware to execute vectorizable loops.
In this subsection, I present data showing how effective this combination works on non-
vectorizable and vectorizable programs.

Combining vector and superpipelined hardware can provide good scalar perfor-
mance in a vector processor as evidenced by the Cray machines. Figure 3.10 compares
the performance of the scalar MIPS R2000 in the DECstation 3100 and the superpipelined
scalar portion of the Cray Y-MP executing spice, a circuit-simulation program that does
not vectorize. As a point of reference, the clock frequencies of these two machines differ
by a factor of 10: the Cray Y-MP has a cycle time of 6 ns whereas the MIPS R2000 has a
cycle time of 60 ns [24, 92]. Because I want to emphasize the superpipelined aspect of the
processors and not the implementation technology, this discussion is based solely on counts
of clock periods. As Figure 3.11 shows, the Cray Y-MP has much longer latencies in terms
of clock periods than does a basic scalar processor, such as the MIPS R2000, which range
from 3 times longer for floating-point operations to 8 times longer for a memory operation.
On the other hand, the MIPS R2000 has a much shorter memory latency because it uses
a data cache. Despite longer latencies, the CPI (cycles per instruction) of the Cray Y-MP
(4.13) is only slightly more than two times that of the MIPS R2000 (1.95).

This surprisingly low CPI indicates that some amount of parallelism is being used
by the superpipelined hardware. This parallelism can be quantified by comparing the mea-
sured CPI with the calculated CP1, another ratio of cycles-per-instruction. The latter ratio
is the weighted average of a processor’s operational latencies where the weights are based
on a program'’s operational mix. Although based on dynamic information, this metric does
not take into account the interaction of the executed operations and indicates what the
CPI would be without pipelined execution. Because the measured CPI does reflect parallel
execution, the ratio of the calculated and measured CPIs (6.77 +4.13 = 1.64) is the amount
of parallelism extracted by the superpipelined hardware of the Cray Y-MP.

Because superpipelining already improves performance through parallelism, how
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[ spice < digsr [ MIPS R2000 | Cray Y-MP_|
#cycles 1711.7TM 2744.9M
#instructions 875.8M 664.8M

OPERATIONAL MIX
#memory operations 325.7M (37%) | 145.0M (22%)
#floating-point operations 112.5M (13%) | 127.5M (19%)
#branches 60.0M ( 7%) | 49.1M ( 7%)
#other operations 377.7M (43%) | 343.1M (52%)
RATIOS
calculated CPI 1.64 6.77
measured CPI 1.95 4.13
average parallelism 0.87 1.64

Figure 3.10: Relative Performance of Superpipelined and Scalar Architectures

This table compares the performance of a superpipelined architecture, the Cray Y-MP, with
that of a scalar architecture, the MIPS R2000 in the DECstation 3100, executing a non-vectorizable
program, spice, that is simulating the circuit behavior of a digital-shift register. The operation
latencies of these two processors are listed in Figure 3.11.

The dynamic information for the Cray Y-MP was gathered using the hardware performance
monitor that is part of the computer. The dynamic information for the MIPS R2000, with the
exception of the execution time, was gathered using a MIPS software tool called pizie that augments
the executable with code to count the number of times each basic block is executed. Because pizie
does not take into account cache misses, the time command in the UNIX operating system was used
to determine the execution time.

The calculated CPI (cycles per instruction) for a program is the weighted average of a processor’s
operational latencies where the weights are taken from the operational mix for the program. This
number represents what the CPI would be without pipelined execution. In computing this metric, I
assume that the floating-point operations are equally divided between adds and multiplies. For the
Cray Y-MP, I assume all branches are taken and a two-cycle latency for other operations. For the
MIPS R2000, all memory operations are assumed to hit in the cache.

For the Cray Y-MP, the ratio of the calculated CPI and the measured CPI shows how much
parallelism is extracted by the hardware because the measured CPI is based on actual execution,
and the calculated CPI encompasses all the latencies seen by the processor. For the MIPS R2000,
the difference between the calculated and measured CPIs indicates how many cycles per instruction,

on average, are due to cache misses.
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[ [ MIPS R2000 | Cray Y-MP |
memory operation 2 CPs 17 CPs
floating-point add 2 CPs 7 CPs
floating-point multiply 3 CPs 8 CPs
branch 2 CPs 2-8 CPs
other operations 1CP 1-7 CPs

Figure 3.11: Operation Latencies of Superpipelined and Scalar Architectures

This table shows the operation latencies of a superpipelined architecture, the Cray Y-MP, and
a scalar architecture, the MIPS R2000.

The memory operation latency in the MIPS R2000 is based on a cache hit. Branch operations
are any that can potentially change the sequential instruction stream, which includes conditional
branches, jumps, and calls. The branch latency in the Cray Y-MP depends on whether the branch is
taken or not taken. Changing the instruction stream results in an eight-cycle branch, whereas falling
through takes two cycles. Other operations in the Cray Y-MP include population-count, logical and
shift functions.

Most operations in the Cray Y-MP and the MIPS R2000 are delayed operations in that indepen-
dent ones may execute in the delay slot(s) of an operation that requires more than one clock period
to execute. The Cray Y-MP has no data cache and relies on the compiler to find enough operations
to fill the delay slots of a memory operation. The only operations that are not are branches in the

Cray Y-MP and memory operations resulting in a cache miss in the MIPS R2000.




NUMBER OF KERNELS 3 + 4 + 7 =14
MFLOPS CONTRIBUTION [Tiesr t Ziesrm + YeVE=SLRE=H
scalar, unoptimized 0.600 + 0.599 + 1.009 = 2.208 ]
COMPILATION vector only 0.600 + 0.599 +0.133 =1.332
TECHNIQUE scalar only, unroll 8x [l 0.301  + 0.528 + 0.427 = 1.256
vector + unroll 8x 0.301 + 0.528 +0.133 = 0.962

all values in seconds per million floating-point operations
R, is the MFLOPS rate of the it? kernel
H is the harmonic mean of the MFLOPS rates of the 14 kernels

Figure 3.12: Relative Performance of Superpipelined and Vector Architectures

To compare the performance of a superpipelined architecture and a vector architecture with
superpipelining, this table shows the contributions of in MFLOPS of different classes of kernels to
the harmonic means for different compilation techniques on the Cray-1. Instead of using harmonic
means, which are measured in MFLOPS, I use sums of the inverses of the rates, measured in seconds
per million floating-point operations, to highlight the contributions. This analysis is based on data
collected by Weiss and Smith on the first 14 Livermore Kernels [119].

The set of 14 kernels can be divided into three different classes based on their vectorizability.
The three kernels in the set S (called case 2 by Weiss and Smith) are strictly scalar. The four
kernels in the set S? (case 3) could possibly be vectorized, but not enough information is provided
at compilation time to accurately determine this. The seven kernels in the set V (case 1) are
vectorizable.

The data for the scalar compilation techniques and the harmonic mean for the vector compilation
are taken directly from Weiss and Smith. The other numbers are derived as follows. For vector
compilation, the value for the vector kernels is computed as the difference between the inverse of
the vector harmonic mean and the sum of the inverses of the rates of the non-vectorizable kernels
using unoptimized scalar compilation. For veclor + unroll compilation, superpipelined hardware
plus scalar unrolling techniques are used for the non-vectorizable kernels, and vector hardware plus

vectorization are used for the vector kernels.

much more improvement can vector hardware provide? Weiss and Smith compared the
performance of various scalar compilation techniques [119], allowing me to compare the
performance of optimized scalar code with that of vectorized code. Although only scalar
performance is discussed in this paper, a brief comparison with vector performance is made
in the conclusion of the paper. The basis for the comparison is the harmonic mean for the
first 14 Livermore kernels executing on 2 Cray-18. Using vector code produces a harmonic
mean of 10.51 MFLOPS, whereas the best scalar-compilation technique, which unrolls aloop
8 times and uses 64 scalar registers, slightly outperforms the vector version with a harmonic
mean of 11.15 MFLOPS. Although this conclusion does not appear highly supportive of
vector architectures, I use a more detailed breakdown of these performance sumimmaries,
presented in Figure 3.12, to show that a vector processor, when it can be used, is about
three times faster than a superpipelined scalar processor.
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Scalar performance is comparable overall to that of vector performance because
this is another instance of Amdahl’s law: a smaller average speedup over a larger portion of
the workload can result in better performance over the entire workload than a much larger
average speedup over a smaller portion of the workload. Unrolling scalar code produces an
average speedup of 2 for 10 kernels with only a marginal average speedup of 1.1 for the
remaining 4 kernels. In contrast, the vectorized code showed an average speedup of 7.5
for 7 kernels, assuming no improvement over the other half of the kernels. Although this
could be interpreted as evidence against the overall effectiveness of vector architectures, the
argument could be also be used against superpipelined architectures; that is, seven kernels,
half the workload, could be improved by a factor of three if vector hardware were to be
added.

In addition, the improvement in vector performance in this analysis is somewhat
limited by less mature vector-compiler technology and by the Cray-1S implementation, an
old vector processor by today’s standards with limited chaining capabilities and only one
memory port; hence even more improvement could be expected with modern implementa-
tions. Finally this data is further evidence that more parallelism is available in vectorizable
loops — loops with no self-dependent statements — and limited in non-vectorizable ones.

In summary, using superpipelined hardware for scalar program fragments improves
performance by a factor of 1.6 to 2 depending upon the program, while using vector hard-
ware improves vectorizable program fragments by a factor of about 8. To compare the
improvement in performance of an entire program when using vector-only hardware and
vector hardware combined with superpipelined hardware, I use the following variation of
Amdahl’s Law

1
o]

where f is the percentage of vectorizable code executed by a program, and S is the speedup
provided by superpipelined hardware. Vector-only hardware has § = 1, while combined
hardware has § = 1.6 or S = 2 depending upon the program. The following table lists the
proeram speedups for a range of values for f and S:

f §=1 §=16 §=2

00 1.0 1.6 2.0  (scalar-only code)

02 1.2 1.9 2.3

04 15 2.3 2.8

06 2.1 3.1 3.6

08 33 4.4 5.0

1.0 80 8.0 8.0  (vector-only code)

This table show how effectively superpiplined hardware in combination with a vector archi-
tecture dampens the negative effect of Amdahl’s Law when the percentage of vectorizable
code is less than 80%.

3.3 Software Advantages of Vector Architectures

In academia, an architecture is often judged only by its hardware and performance.
In practice, however, a commercially successful architecture also depends on other aspects
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that are more software-oriented, such as ease of use and whether a program can execute
on implementations which differ in cost but implement the same architecture. Commercial
success depends on such issues because they affect how many people can use an architecture.
In this regard, a vector architecture holds advantages over a superscalar one, although these
advantages are not as easily quantifiable as the advantages in hardware and performance.

First, vector compilation technology is mature, having been in development since
before the announcement of the Cray-1 in 1976 [101}. Moreover, if a vector processor were
to be used in an MPP, mature compilers and a well-established user community that already
knows how to productively use such processors will allow researchers in the compiler and
applications community to concentrate on the more important issue of how to efficiently
distribute a workload across a large number of processors. By contrast, compilation tech-
niques for superscalar architectures are still in the research and development phase [92].
Using a superscalar processor in an MPP would have the additional burden of developing
good compilers for the processor. Although superscalar compilation techniques may be able
to extract parallelism from non-vectorizable program fragments, it is unclear that there is
much parallelism to extract in such programs (as discussed in the previous section).

One area of concern about vectorization is that it typically takes longer than basic
scalar compilation; however, this will also be true for superscalar compilation. A major
difference between vectorization and basic scalar compilation is that the former includes a
dependence-analysis phase that determines what operations can execute in parallel without
changing the functionality of the program. Because dependence analysis must be part
of any compiler that generates instructions to execute operations in parallel, superscalar
compilation will also include this phase.

A second advantage of vector architectures is that the concept of the vector instruc-
tion is easily understood by a wide range of people from high-level language programmers
to hardware designers. This conceptual simplicity reduces the chances of implementation
errors at the hardware and compiler levels. A simple abstraction model for expressing
parallelism will become increasingly important as systems with more parallelism become
available. Such simplicity is also advantageous for the end-user who must use not only the
computer but also the software that makes the computer easier to use [25]. If a compiler
is not yet able to produce vectorized code, the user could still resort to using assembly
language with vector instructions and still be able to achieve some amount of parallelism,
as did those who used the ETA computer at Florida State University [80]). This would be
more difficult to accomplish with a superscalar architecture.

Finally, a vector architecture can provide binary compatibility across different
hardware implementations with varying degrees of parallelism more or less as easily as a su-
perscalar architecture does, depending upon the type of compatibility. Binary compatibility
allows a program to execute without recompiling on a range of processor implementations
that vary in cost and performance. I consider binary compatibility to be a software ad-
vantage for an architecture because it minimizes the impact that changes in the hardware
can have on existing compiler and application software. Binary compatibility is also a way
to amortize the cost and development of a big VLSI chip over a large consumer base by
increasing the potential market at both the high and low end of the cost/performance range.
There are, in fact, three types of binary compatibility to consider:
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e upward compatibility, which allows a program compiled for a vector architecture to
execute on vector processors with varying degrees of datapath parallelism;

e scalar compatibility, which allows a program compiled for a vector architecture to
execute on a scalar processor; and

o backward compatibility, which improves the performance of a program compiled for a
scalar architecture (typically one that already exists) when the program executes on
a vector processor.

Upward compatibility allows an architecture to quickly take advantage of improv-
ing technology and to increase its cost /performance range at the higher end. A program
compiled with vector instructions can be executed on vector implementations with a varying
number of functional units because the mapping of a vector instruction to a particular func-
tional unit is part of the hardware implementation and not the instruction set architecture.
For architectures that support fine-grain parallelism, more transistors on a single chip, as
the result of improving VLSI technology, allows support for greater amounts of parallelism.
As I have already discussed in the first part of this section (when I compared the hardware
expense of a vector architecture with that of a superscalar one), a vector architecture is
not only upwardly compatible with increasing amounts of datapath parallelism, but it also
provides this capability at less cost than does a superscalar architecture.

Scalar compatibility increases the range of an architecture at the lower end of
the cost/performance scale. Because a scalar instruction is equivalent to its corresponding
vector instruction that executes one operation, scalar compatibility can be provided by
making each vector register have one element each, although good engineering is needed so
that such an implementation has acceptable performance for a vector length of one. In such
an implementation, the vector register file becomes in essence a second scalar register file.
Viewed this way, scalar compatibility in a vector architecture is easily provided if stripmining
is entirely supported by the hardware, as it is in the IBM 3090 vector architecture in
which binary-compatible implementations can have different lengths of vector registers [16).
Because scalar compatibility is an issue when cost is more important than performance, the
need to provide a scalar-compatible implementation will lessen as larger chips become less
costly.

Backward compatibility allows a new implementation to improve the performance
of so-called “dusty-deck” programs that have been compiled for a scalar architecture. The
motivating factor for providing backward compatibility is to maintain the market share of
an already existing architecture that has a large software base that is not likely to be re-
compiled. To accomplish the same effect as recompilation, which rearranges the execution
order of operations to allow parallelism to occur, backward-compatible hardware uses dy-
namic scheduling, also known as out-of-order instruction-issuing. To find instructions that
can overlap in execution, hardware for dynamic scheduling must perform, in each clock
period, pairwise checks for dependences among several instructions, in a manner similar to
what is done when issuing instructions in a superscalar architecture. However, dynamic
scheduling for backward compatibility requires instruction-issue logic that is more complex
than that of a superscalar architecture because, to find enough instructions to issue without



61

recompilation, hardware for dynamic scheduling must examine more than the number of
instructions that are actually issued per clock period.

In fact, Wall’s study on parallelism provides data showing that hardware for dy-
namically extracting parallelism is extremely expensive for a relatively small gain in per-
formance. Wall's data, given in more detail in Figure 3.13, shows that a constant increase
in the number of instructions issued per clock period requires an exponential growth in the
number of instructions examined. For example, to issue an average of 3 instructions per
clock period, an average of 4 instructions must be examined per clock period. Doubling the
number of examined instructions to 8 produces, on average, only 3 to 5.5 instructions that
can issue each clock period. Continuing to double the number of examined instructions
finds, at best, one more instruction to issue for programs with little intrinsic parallelism
(< 8) and 3 to 11 more instructions for programs rich in parallelism. The hardware expense
of dynamic scheduling is actually in the hazard checks made for each possible pair of exam-
ined instructions. Hence, because the number of pair-wise hazard checks is proportional to
the square of the number of examined instructions, a constant increase in datapath paral-
lelism requires an exponentially-squared increase in the number of pair-wise hazard checks.

Unless the market share for dusty-deck programs is an overriding concern, pro-
viding backward compatibility hardly seems like a good cost/performance feature in any
architecture, even for programs whose intrinsic parallelism is plentiful. If the main pur-
pose of an architecture is to support fine-grain parallelism, it is best to begin with a new
architecture, thus making backward compatibility less of an issue. This is, in fact, what
most commercial superscalar implementations have done, with the notable exceptions of
Sun’s SuperSPARC and possibly 2 future implementation of the Intel i386, architectures
that clearly have a high investment in market share. However, if absolutely necessary, the
superpipelined extension of a combined vector and superpipelined architecture could pro-
vide backward compatibility, although the simplicity of the instruction-issue logic would be
gone because of the many hazard checks required for dynamic scheduling.

3.4 Summary

In this chapter, I presented arguments for why a vector architecture combined
with superpipelined hardware is more appropriate for supporting fine-grain parallelism than
is a superscalar architecture with respect to hardware, performance, and software issues.
Although either architecture could be implemented on a single VLSI chip, much work is
focused on superscalar architectures but little attention is being paid to vector architectures
as a viable VLSI design. This is because many designers, in part, mistakenly believe that a
vector processor is expensive to implement and is effective for only a small set of programs.

1 presented data showing that, in fact, when supporting the equivalent amount
of datapath parallelism, a vector architecture is no more expensive than a superscalar one
and, for some features, is even less costly. One feature that is needed by either architecture
is a high-bandwidth memory system because both have a high memory demand. A high-
performance cache system could be used for a vector processor as a more cost-effective
alternative to an expensive, large, highly-interleaved memory, although further research is
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Figure 3.13: Number of Instructions Issued versus Number of Instructions Examined

Based on Wall’s parallelism data [115), this graph shows the number of instructions that are
examined and the number of hazard checks that are performed each clock period in order to find
a given number of independent instructions to issue. To show the extent to which the number of
examined instructions determines the amount of parallelism under optimistic conditions, 1 use the
computational model that has unlimited hardware resources for branch/jump prediction, 256 reg-
isters, and perfect dependence analysis (Wall’s Good model). The following table summarizes the
above graph to emphasize that both the number of examined instructions and the number of hazard
checks grow non-linearly for a linear growth in the number of instructions issued per clock period:

NUMBER OF ISSUED INSTRUCTIONS ~ NUMBER OF NUMBER OF

programs with programs with EXAMINED HAZARD CHECKS

parallelism < 8 parallelism > 8  INSTRUCTIONS
2.0-3.0 2.0-3.0 4 6
3.0-4.5 3.0-5.5 8 28
4.0-6.5 5.0-9.0 16 120
4.0-7.0 8.0-14 32 496
4.0-7.0 11-22 64 2016
4.0-7.5 14-33 128 8128

4.0-7.5 14-43 256 32640
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needed to determine an appropriate cache organization. Another feature that is comparable
in cost is the register file. Although vector architectures typically use many more registers
than do superscalar ones, the area increase of a vector register file is not comparable to its
increase in number. In fact, doubling the number of superscalar registers to 64, as Wall’s
data suggests will be necessary, makes a superscalar register file with 5 read-ports and
3 write-ports comparable in area to a vector register file similar to the one in the Cray Y-MP
with 512 registers. A vector architecture also has simpler instruction-issue logic. Finally,
these differences in cost favor the vector architecture as hardware designers increase the
amount of datapath parallelism in response to further advances in VLSI technology.

I also analyzed data from Wall’s parallelism study showing that vectorizable pro-
gram fragments have copious quantities of parallelism and are, furthermore, most likely to
be the more time-consuming programs in a workload [115]. Because of these characteristics,
about 25 times as many instructions could be executed if the hardware were to make full
use of the intrinsic parallelism in Wall’s workload. To lessen the effects of Amdahl’s Law,
I showed that superpipelined hardware is effective at handling non-vectorizable program
fragments and that additional vector hardware provides three times more performance on
vectorizable kernels.

Finally, I discussed some of the software advantages of a vector architecture: ma-
ture compiler technology, the vector instruction as a simple, elegant abstraction for ex-
pressing parallelism, and binary compatibility. These software advantages facilitate use of
a vector architecture across a range of implementations that differ in cost. Although often
overlooked by academics, in part, because their effects are difficult to quantify, such issues
are important to the commercial success of an architecture because they affect the number
of people that can use an architecture.

In summary, although superscalar architectures appear to be the current design
of choice, I believe that a vector architecture is more suitable in computers, such as work-
stations and massively parallel processors, that rely heavily on VLSI technology. Vector
architectures work effectively for vectorizable programs which have an abundance of paral-
lelism, while non-vectorizable programs appear to contain meager amounts of parallelism.
If superscalar architectures are to perform as well as vector ones, contrary to popular belief,
the hardware implementation of a superscalar architecture can be more expensive than that
of a vector one. In other words, if the main purpose of an architecture is to support fine-
grain parallelism, a vector architecture is a better choice than a superscalar one because
of the simplicity of a vector architecture’s hardware, its natural match to programs rich in
parallelism, and its established compiler and application communities.
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Chapter 4

Common Exp erimental
Framework

This short chapter describes the common experimental framework — the basic
vector hardware, the performance tools, and the workload — that I use in the following two
chapters, in which I evaluate the performance impact of changes in a vectorizing compiler
and in vector hardware. Other aspects of the experimental framework, such as performance
criteria and methodology, differ for the studies I carry out and, hence, are described in the
chapter for their respective study.

4.1 Processor Description

The hardware basis for my dissertation is the processor of the Cray Y-MP, which
was first announced in 1988. A fully-configured Y-MP computer contains eight processors;
the “MP” in the name stands for “multiprocessor.” The processor itself is a load/store,
superpipelined, vector architecture. The deep pipelines plus the use of rather expensive,
bipolar technology result in an extremely high clock frequency: 167 MHz, or equivalently,
a 6 ns clock period. As a point of reference, in 1991, most microprocessors have a clock
frequency between 25 and 40 MHz with the higher performance ones having 63 MHz (the
Hewlett-Packard Snake) and 100 MHz clocks (the MIPS R4000). Following are details
on the organization of the registers and functional units that are relevant to my thesis.
Other details about the Y-MP processor are available in the Cray Y-MP Computer Systems
Function Description Manual [24].

Figure 4.1 lists the register files in the Y-MP processor. The vector register file,
which is the focus of this thesis, can be viewed as a partitioned one (see Section 2.2.2)
in which each vector register is comparable in organization to a scalar register file. A
vector register consists of 64 dual-ported registers that are attached to read and write buses
common to the vector register. Because of the separate read and write buses, chaining is
possible between any vector instructions. For my thesis, I examine different configurations
of the vector register file. In Chapter 5, Register Usage and Instruction Scheduling, I
experiment with the number of vector registers, and in Chapter 6, Bus Usage and Register
Assignment, 1 explore the implications of having more than one vector register share a set
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TOTAL
REGISTER
FILE WIDTH ORGANIZATION NUMBER FUNCTION
OF BYTES

A 32 bits 8 registers 32 bytes store addresses or integer data
B 32 bits 64 registers 256 bytes back-up for A register file

S 64 bits 8 registers 64 bytes store integer/FP scalar data
T 64 bits 64 registers 512 bytes back-up for S register file

\Y 64 bits 8x64 registers 4096 bytes store integer/FP vector data

Figure 4.1: Register Files of the Cray Y-MP Processor

This table shows how the five register files of the Y-MP processor vary in size, organization,
and functionality. Note that data and address words differ in size: data are 64-bits and addresses
are 32-bits. Because of the limited capacity of the the A and S register files, the back-up register
files, B and T respectively, serve as temporary storage that is faster to access than main memory.
All the register files are connected to memory ports, which are functional units that serve as the
interface between the Y-MP processor and its memory system. The register files, A, S,and V, are
also connected to the other functional units, while the back-up ones are not.

of read and write buses.

There are also individual registers for special purposes. The vector length register
VL specifies the number of operations that a vector instruction is to execute. The maximum
number is 64, which is the number of elements in a vector register. The vector mask register
VM is a 64-bit register that is set and used by special vector instructions for conditional
selection of data. For example, the instruction VO<-VM?V1:V2 (written with C-like syntax)
transfers the ith element of V1 to the i* element of VO if the i** bit of VM is equal to 1;
otherwise the it" element of V2 is transferred. The VM register and its associated instructions
permit some loops with conditional statements to be vectorized.

The Y-MP processor has nine special-purpose functional units:

two load ports

a store port

a floating-point adder

a floating-point multiplier

a floating-point reciprocal unit
an integer unit

a logical unit

a shifter

The logical unit is used in conjunction with the VM register for conditional selection. A



66

second logical unit is optional but because the simulator does not model this, I choose to
ignore it. Division is computed using the reciprocal unit and the multiplier in four steps
(one reciprocal approximation and three multiplications).

The Y-MP processor is rich in memory bandwidth with a total of three memory
ports, whereas most processors have only one bi-directional memory port. Furthermore,
the Y-MP processor has gather/scatter hardware that provides a vector version of indexed
addressing to allow nested array references to be vectorized. For example, to load the data
specified by the array reference A(I(K)) into vector register Vi, only two vector memory
instructions are executed:

AO <- base address of array I()
A1 <- base address of array A()
Vo <- M[ 40 ]

Vi <- M[ A1+V0 ]

To compute the effective addresses for the second memory instruction, gather/scatter hard-
ware adds the elements in the vector register VO to the base address in register Al. Gather
refers to memory loads that use a vector register as an index register whereas scatter refers
to stores.

These functional units are fully-pipelined so that a new operation can begin exe-
cuting every clock period in each functional unit. Pipelined memory accesses are provided
by an interleaved memory system. However, because individual memory banks are not
pipelined and have an access time that is greater than one clock period, memory opera-
tions that reference the same bank take longer to execute when they are performed in rapid
succession. Such access conflicts to a memory bank cause execution delays in the vector
memory instructions that generated the references, preventing these instructions and any
vector instructions chained to them from achieving full pipelined execution.

Although functional units can execute simultaneously, there are some restrictions
on the simultaneous use of the memory ports when using gather or scatter instructions.
Even though a gather instruction and a scatter one use different memory ports, only one of
these can occur at a time. However, a gather can occur in conjunction with a simple load
or store, and a scatter can execute in parallel with one or two loads.

4.2 Performance Tools

To generate the raw data used for my performance studies, I use modified versions
of Cray Research’s production FORTRAN compiler, which is named cft77, and the Cray
Y-MP simulator. Figure 4.2 illustrates the relationship of these two tools. Both tools are
parameterized so that the number of vector registers can vary up to a maximum of 64.

The cft77 compiler is a vectorizing one, and performs global and local optimizations
on both the scalar and vector code that it generates. I am specifically interested in the
instruction scheduling and register assignment phases. An instruction scheduler determines
an appropriate order in which operations in a dependence graph execute and which preserves
dependences among the operations, and a register assigner determines which register stores
the value produced by an operation. In the cft77 compiler, the scheduling phase occurs
before the assignment phase, a sequence that I assume when describing algorithms for these
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Figure 4.2: Performance Tools

This figures shows how I use Cray Research’s vectorizing compiler, called ¢ft77 and Y-MP sim-
ulator in my performance studies. Both tools have been modified so that I can specify the number
of vector registers to use, up to a maximum of 64. The instruction scheduler and register assigner
are highlighted because these are the phases that I will concentrate on in this dissertation. Although
not explicitly shown, inputs to earlier phases are also inputs to later phases. In other words, input
to a phase is augmented with more information, all of which is passed on to the next phase.




68

two phases. Consequently, input to the instruction scheduler is a dependence graph, which
is generated by the dependence analyzer, and input to the register assigner is an execution
order for that dependence graph.

The simulator emulates every aspect of a Y-MP processor and can keep track of
simulated execution time. The behavior of the instruction buffer is accurately modeled.
Only simple, memory-bank conflicts, such as those occurring within one stream, are taken
into account. Memory conflicts between two independent reference streams are ignored.

4.3 Workload

In addition to performance tools, an appropriate workload is needed for my per-
formance studies. Because my research experiments explore aspects of vector design, I use
a set of 36 vectorizable loops that was collected at Cray Research, Incorporated for use
by their architects to evaluate future designs. These loops, which I collectively call “the
CRI workload,” have been extracted from actual applications used by Cray customers and
are written in FORTRAN. They include kernel 7 and the second loop of kernel 18 from the
Livermore Loops [84] plus several loops extracted from the Perfect Club benchmark suite
[12]. In addition, these loops contain several program constructs that are traditionally con-
sidered difficult to vectorize. Examples are scalar reductions, array references with nested
indices, conditional statements, and calls to intrinsic functions.

Seven of the 36 loops in this workload consist of more than one basic block. One
reason for this is that a loop containing a conditional IF...THEN...ELSE statement has
at least three basic blocks. For example, one loop contains nine IF...THEN statements
resulting in 27 basic blocks. Vectorizing scalar reductions also produces multiple basic
blocks: one for computing a vector of practical sums and another to calculate the final sum.
(Section 2.3.1 describes the software transformation for computing a scalar reduction using
vector instructions).

In the cft77 compiler, each basic block is represented by a dependence graph
in which a vertex is a vectorizable operation and there is an arc from one operation to
another if the first operation produces a result used by the second one. A vectorizable
operation is eventually converted into a vector instruction in the code-generation phase of
the compiler. The vectorizable operations in this workload comprise a mixture of floating-
point and integer operations. Because some loops contain more than one basic block, there
are in fact 88 dependence graphs for the 36 loops.

An important characteristic of these loops is the substantial variance in the number
of vectorizable operations, which, in turn, results in a wide range in the execution times
for one iteration. Figure 4.3 illustrates this diversity. Two-thirds of the loops contain more
than 30 vectorizable operations, and the execution time for one iteration ranges from 2 clock
periods to about 300 clock periods. This considerable variance is important because, in all
likelihood, the larger loops will have more parallelism and hence require more registers. If
the workload consisted of loops with less than 30 operations, I could erroneously conclude
that eight vector registers is sufficient for the Cray Y-MP functional unit configuration.

Figure 4.3 also shows that, with the exception of one loop, more than one vec-
torizable operation is executed per clock period, demonstrating that a vector architecture
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Figure 4.3: Vectorizable Operations and Execution Time of the CRI Workload

This graph, which uses a log scale for the Y-axis, shows the immense range in the number of
vectorizable operations and, hence, the execution times of the loops that I use for my evaluation
studies.

The number of vectorizable operations for a loop is an indication of the minimum amount of
work that is executed each iteration. In addition to vectorizable operations, scalar instructions for
address and branch computations are executed each iteration. Sometimes there are extra vector
instructions to handle register spilling or extra instructions for executing any intrinsic functions
such as square root. None of these extra instructions nor the scalar instructions are included in the
count of operations plotted above.

The execution time of a loop as plotted above is the average time to execute one iteration of
a loop as compiled by cft77, Cray Research’s vectorizing FORTRAN compiler, for the Cray Y-MP
using eight vector registers. This average, which is calculated as the time to execute the entire
loop divided by the number of iterations executed, includes any time spent executing loop set-up
instructions, strip overhead, or intrinsic functions.
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does make use of fine-grain parallelism. The average-per-iteration time for the one loop
(number 16 in the graph) includes computing a square root whose instructions are excluded
from the count of operations. In fact, because the average-per-iteration times for all the
loops includes the execution time for instructions other than the vectorizable operations,
the amount of parallelism capitalized on by the Y-MP vector architecture is greater than
what is illustrated in this graph.

4.4 Summary

In summary, with the cooperation of Cray Research Incorporated, I have access
to benchmarks, a production vectorizing compiler, and a simulator. In the following two
chapters, I will modify the Cray compiler and use the benchmarks and simulator to evaluate
the performance impact of changes in the Cray Y-MP vector processor and compiler.



71

Chapter 5

Register Usage and
Instruction Scheduling

In Section 2.2 (of Chapter 2, Fi undamentals of Vector Architectures), I outlined the
general hardware requirements needed for supporting fine-grain parallelism. In particular,
I stated that both multiple functional units and an appropriate organization for a register
file are equally important for allowing parallelism to occur. In support of this statement,
I presented data from an independent study showing that increasing the number of regis-
ters from 32 to 512 increases the amount of achievable parallelism, which results in better
utilization of 64 functional units (see Section 3.2 of Chapter 3, A Case for Vector Archi-
tectures). Hence, the number of registers must be balanced with the number of functional
units, if enough parallelism is to occur to use the hardware efficiently. If there are too few
registers relative to the number of functional units, the functional units will not be used to
their fullest potential. If there are too many registers, the functional units will be effectively
used but the register file will be over-designed. In other words, a hardware designer needs
to know the minimum number of registers required to use a given number of functional
units effectively across a range of programs. Determining this number requires 2 study that
examines both the performance and cost of implementing a given number of registers.

In this chapter, I focus primarily on the performance aspect of implementing vec-
tor registers in the Cray Y-MP vector architecture, and defer the cost analysis to the next
chapter. There are 8 vector registers connected to 9 special-purpose functional units in the
Y-MP processor. Because I want both of these components to be well utilized, I begin my
investigation by asking «“Would more vector registers significantly improve performance?”
and if so, “How many more vector registers are needed before performance no longer im-
proves?” These questions form the primary goal of this study, which is to determine the
minimum number of vector registers that can effectively use the 9 special-purpose functional
units in the Cray Y-MP vector processor. To produce the desired results, I need to also
demonstrate that the instruction-scheduling algorithm, which is used in the code-generation
phase of a compiler, has a major impact on the performance of the generated code. This
secondary goal was not obvious at the outset of this study and became apparent only after
I had analyzed some preliminary performance data.

For this study, I vary only the number of vector registers, leaving the mazimal
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vector length, which is the number of elements per vector register, fixed at 64. Vector length,
which is the amount of unrolling provided by stripmined code (described in Section 2.3.2,
pages 24 to 29), is used to hide both the latency of vectorizable operations and the execution
of scalar operations, an effect that is more dominant when the number of iterations executed
for a loop is greater than the maximal vector length. A maximal length of 64 is sufficiently
long to effectively hide the latencies of the operations implemented in the Cray Y-MP.
Shortening vector length to be less than 64 is likely to either not affect performance or even
decrease it because operational latencies can no longer be effectively overlapped with the
execution of other operations. Increasing vector length beyond 64 is unlikely to improve
performance. Furthermore, in order to be effective, a longer vector length would require
more iterations to be executed for aloop, a factor which is influenced more by an application
rather than a compiler. On the other hand, increasing the number of vector registers
does improve performance significantly as I will demonstrate in this chapter. Moreover
this performance improvement, although somewhat dependent upon characteristics of an
application, is also influenced by a compiler’s algorithm for scheduling instructions.

The version of the ¢ft77 compiler used for this chapter is the one that was available
to me during my work term at Cray Research, Incorporated in the fall of 1990. Since that
time, a newer version of ¢ft77 has been released that uses a scheduling algorithm similar
to the one I developed [62]. Nonetheless, for the sake of brevity, I use the term “eft17
interchangeably with the phrase “the 1990 version of cft77.”

To explain how I formulated the goals for this investigation, I show how more vector
registers can improve performance and present some initial performance data that suggest a
scheduling algorithm different from the one used in the cft77 compiler is needed to use more
registers! effectively. Then, after describing the performance criteria and methodology I use
to perform my experiments, I contrast the scheduling algorithm used in the cft77 compiler
with an algorithm that I developed and that is a variant of list scheduling. Finally, I present
a set of performance data showing that the scheduling algorithm does have a major impact
on performance and another set of data that determines a cost-effective number of registers
for the Cray Y-MP vector processor.

5.1 More Registers and A Different Scheduling Algorithm

In this section, I show how the number of vector registers and the scheduling
algorithm affect performance. First, I work through an example to show how more registers
improve performance and use this example as the inspiration for the primary goal of this
study. Additionally, this example demonstrates how determining the appropriate balance
between the number of registers and functional units involves understanding the interaction
among vector hardware and two aspects of the code-generation phase of a compiler, the
instruction scheduler and the register assigner. In the second part of this section, I present
an initial performance study whose apparently conflicting results inspire the secondary goal
of this study.

1Because the scheduling algorithms described in this chapter can treat vector registers and registers
analogously, 1 use the terms vector register and register interchangeably.
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5.1.1 Why More Registers?

Because using more registers requires increasing the number of register cells in
hardware, it must be justified by a significant reduction in execution time. Using more
registers reduces execution time in two ways. First, more registers allow more aggressive
scheduling which, in turn, allows more parallelism to occur. More parallelism causes more
intermediate results to be generated at any one time and hence, more registers are needed
to hold these intermediate results. Reducing execution time in this way also allows the
functional units to be used more frequently.

A second way that more registers reduce execution time is to reduce the number
of register spills generated by a compiler. Because the number of results can outnumber the
number of registers available in hardware, a compiler generates extra memory instructions
when all registers are used to save the contents of a register so that another value can be
stored in it. In a scalar architecture, executing these extra instructions will increase the
execution time because only one operation can be executed during each clock period. With
a vector architecture, in contrast, these extra instructions are, in fact, vector instructions
that save and restore the contents of vector registers. However, in contrast to a scalar
architecture, the time to execute these extra instructions can be overlapped with the original
instructions. Reducing register spills also lessens the demand on memory, but this is less of
an issue when an abundance of memory bandwidth is provided in the implementation, as
is the case for most vector architectures.

In short, reducing the need for register spills has minimal impact on execution
time in vector architectures, and the better reason for adding more registers is to allow
more parallelism to occur. Later in this chapter, I present data that supports both of these
claims.

To demonstrate how register usage affects how much parallelism occurs, I use the
vectorizable loop in Figure 5.1, which is represented by the dependence graph also shown
in that figure. Once the vectorizable operations of a loop are identified, a vectorizing
compiler determines an order in which these operations can execute. (Although this order
corresponds to an instruction sequence, I use the term ezecution order to emphasize the fact
that these are still operations that are eventually translated into instructions. Moreover,
I prefer the term ezecution order to evaluation order, which is more commonly used by
the compiler community [2], because hardware does not evaluate operations but instead
executes them.) Any execution order is permissible as long as the loop’s functionality does
not change, which will happen if the data dependences among the vectorizable operations
are preserved. In other words, a correct execution order is one in which all ancestors of an
operation in a dependence graph are executed first.

Although a dependence graph of a loop specifies a partial order for correct func-
tionality, an enormous number of execution orders satisfy that partial order. To take a
somewhat trivial example, the first seven operations of a correct execution order for the de-
pendence graph in Figure 5.1 could be the seven loads. Because these loads do not depend
on any other operations, they can be executed in any order, which results in at least 7! or
5040 different correct execution orders for the first 7 operations alone. All of these different
execution orders are ezactly equivalent in functionality because the dependence graph, in
addition to specifying a partial order, also specifies how the results of the operations are



74

DO 40 I=1,%
RA = W(I,1)+X(I,1) LOAD, +2 LOADs
RB = W(I,2)+X(1,2) LOAD, +s LOADs
RC = W(I,3)+X(1,3) i LOAD; +s LOADy
FS(I) = SX(I)*RA*RB*RC STORE,p LOAD; *12 *3 ‘14
40 CONTINUE

LOAD, LOAD,

LOAD, | +; LOQ jADs
* + LOAD LOAD

Figure 5.1: Source Code and Dependence Graph for Sample Loop

This figure presents the vectorizable loop that I use extensively in this chapter and in the next
one to motivate the studies I perform. This loop is a modified version of one from the CRI workload.
On the left is the FORTRAN source code and on the right are the corresponding vectorizable
operations for each FORTRAN statement. Each operation is identified by the type of operation it
executes and a unique number as a subscript to the operational type. At the bottom is a dependence
graph that shows the data dependences among the vectorizable operations. A vertex in such a
graph is a vectorizable operation, and an arc is a dependence where the direction of the arc is from
the producer of the dependent value to the consumer of the value. In Chapter 2, Fundamentals of
Vector Architectures, 1 discuss data dependences in greater detail and also describe how a vectorizing
compiler identifies vectorizable operations and constructs a dependence graph.
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to be combined. In contrast, Figure 5.2 shows two dependence graphs that are, in theory,
functionally equivalent but which combine the results of operations in different orders. This
figure also explains why, in practice, such dependence graphs are not exactly equivalent.

There are two main differences between all the correct execution orders for a
dependence graph:

1. the time needed to execute the order, and

2. the minimum number of registers needed to execute the order without having to spill
registers.

For example, Figure 5.3 shows two correct execution orders for the dependence graph in
Figure 5.1. Because all the dependence arrows point downward, both these orders satisfy
the partial order specified by the dependence graph. Nonetheless, these two orders differ in
their execution times and their minimal register requirements.

To demonstrate that the execution times of the two orders in Figure 5.3 are differ-
ent, I use a technique called chime counting to provide a quick estimate of execution time.
A chime, which originally was an abbreviation for “chain time”? is a unit of time that is
approximately equal to the time it takes to execute one vector instruction. Instructions
that use different functional units can execute in the same chime in the absence of any
access conflicts among registers. For example, for the execution orders in Figure 5.3, the
first two loads and the addition execute in the same chime because the Cray Y-MP has two
load ports and chaining hardware. Conversely, instructions that use the same functional
unit must execute in different chimes. For example, the fourth operation (LOAD,) must
execute in the second chime because the load ports are already each executing a vector load
instruction. '

Continuing in this fashion, we see that the execution order on the left executes in
6 chimes, and the one on the right executes in 4 chimes. Because each operation of a vector
instruction corresponds to an iteration of a loop (see Section 2.3 in Chapter 2, ), executing a
loop with vector instructions in t chimes corresponds to executing one iteration of that loop
in approximately t clock periods. Chime counting, in fact, provides an optimistic estimate of
the per-iteration execution time because the temporal impact of loop- and strip-overhead is
ignored. To verify that this estimate is reasonable, I executed these two orders on a Cray Y-
MP for 100 iterations each; the per-iteration time of the order on the left is 7.5 clock periods,
and that on the right is 5.7 clock periods. This is a difference of about 2 clock periods as
predicted by chime counting.

In addition to differing in their execution times, these orders also differ in the
minimum number of registers needed to execute the operations without spilling registers.
To demonstrate this, I must first explain how a compiler uses registers and then how to
determine the minimal register requirement of an execution order. A compiler uses a vector
register to store a vector of values produced by a vectorizable operation. If a compiler
assigns each result to a different register, too many registers will be used; fewer registers
could be used without increasing the execution time predicted by chime counting.

2My thanks to James E. Smith for this etymological fact.
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DO 40 I=1,¥ DO 40 I=1,N

RA = W(I,1)+X(I,1) RA = W(I,1)+X(I,1)

RB = W(I,2)+X(I,2) RB = W(I,2)+X(1,2)

RC = W(I,3)+X(I,3) RC = W(I,3)+X(1,3)

FS(I) = {{ {SX(I)*RA} *RB} *RC} FS(1) = {SX(I)*RA} * {RB*RC}
40 CONTIRUE 40 CONTINUE

LOAD, LOAD, LOAD‘

STORE,, STORE,

Figure 5.2: Two Dependence Graphs for the Sample Loop

These dependence graphs, both of which represent the loop in Figure 5.1, differ in how they
combine the results of the multiplications, as indicated by the arcs that are highlighted in bold.
This difference is explicitly shown with braces in the corresponding source code. Although these
two dependence graphs combine the results in a different order, they are, in theory, functionally
equivalent under the arithmetic law of associativity. In practice, however, the equivalence of such
graphs is not ezact because floating-point arithmetic does not guarantee associativity; instead, these
graphs are considered equivalent within the limits of rounding error.

Because both graphs combine the results in different orders, they also specify different partial
orders and, hence, different sets of correct execution orders. For example, * .%13%14 is the only order
in which the three multiplications can be placed in any correct execution order for the dependence
graph on the left, and *12*14*13 OF * ,*12%13 are the only orders for the dependence graph on the
right.

By taking as input the source code shown in Figure 5.1, which does not have parentheses
to explicitly group operators, a FORTRAN compiler would produce the dependence graph on the
left, in accordance with FORTRAN semantics, which specify that a series of operators of the same
class is grouped from left to right. On the other hand, an optimizing compiler may produce the
dependence graph on the right to increase the amount of parallelism available; two multiplications
can be executed in parallel using the dependence graph on the right, whereas all three multiplications
are executed sequentially using the dependence graph on the left. There is little point in generating
the more parallel graph, however, unless the hardware includes at least two multipliers to take
advantage of the extra parallelism. Although more than one dependence graph can represent a loop,
for my study, I use those dependence graphs that most closely follow the arithmetic conventions of

the FORTRAN language.
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Figure 5.3: Two Execution Orders for the Example Loop

These are two execution orders that satisfy the partial order specified by the dependence graph
in Figure 5.1. For each order, I have shown which operations execute in the same chime when the

hardware has chaining, two load ports, one adder,

one multiplier, and one store port. I have also

listed, for each order, the number of values that are live in each chime. The lifetime of a value is
indicated by the dependence arrow that connects the producer and the consumer of that value, and
the number of live values in each chime is equal to the number of dependence arcs that appear in,

or pass through, that chime.
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To explain how, I consider the dependence graph of a single basic block. A value
is said to be live from the time of its production to its Jast use. In Figure 5.3, the lifetime of
a value is indicated by the dependence arrow that connects the producer and the consumer
of that value. Two values that are live at different times can be assigned to the same vector
register. For example, for both execution orders in Figure 5.3, the values produced by the
operations LOAD; and LOAD,4 can be stored in the same vector register. In contrast, two
values that are live at the same time, such as the values produced by the operations +3
and LOAD, in Figure 5.3, must be stored in different vector registers to avoid generating
extra instructions that would transfer the two values between memory and a shared register.

Although the execution of register-spill code, if done at a judicious moment, may
not increase execution time, I assume, for the sake of simplifying this example, that it does.
The impact of register spilling on execution time and register usage is taken into account
Jater in this chapter in Section 5.4, the quantitative part of this study. To avoid generating
any code for spilling registers and thereby increasing execution time, all simultaneously live
values must be assigned to different registers. Hence, a compiler needs to use only a number
of registers that is equal to the maximum number of simultaneously live values, a number
which is called the critical register quantity by Eisenbeis, Jalby, and Lichnewsky [32]. This
is, in fact, the minimum number of registers that can be used without spilling registers.
For the purposes of this example, it is sufficient to know that this minimum is achievable.
An assignment algorithm that is able to match this minimal requirement is described in
Section 6.2.3 (on page 123 in Chapter 6, Bus Usage and Register Assignment).

Now that I've explained what is the minimum number of registers needed to ex-
ecute an order, I can now show that the two orders in Figure 5.3 have different minimal
register requirements. To do this, I must first know what values are live at the same time;
these are the values that are used by operations executing in the same chime because oper-
ations in the same chime execute simultaneously. Thus, counting the number of live values
in each chime reveals the maximum number of simultaneously live values. In Figure 5.3, the
number of live values in each chime is equal to the number of dependence arcs that appear
in, or pass through, that chime. Based on this method for determining minimal register
requirements, the execution order on the left requires 5 vector registers to avoid generating
spill code and that on the right requires 6 vector registers.

In addition to differing in execution time and minimal register requirements, these
orders differ in two other respects. First, the execution order on the right exhibits more
parallelism; there are two chimes in which four operations are executed, while at most three
operations are executed in a chime in the execution order on the left. This is because both
orders execute the same number of operations, but the one on the right executes in less
time. The second difference is that the execution order on the right uses the functional
units more effectively. In every chime, at least one load port is always used; in other words,
during the execution of this loop using the order on the right, a load operation is initiated
every clock period. In contrast, there is no single functional unit that is always in use when
the order on the left is executed.

In summary, Figure 5.3 demonstrates how using more registers allows more paral-
Jelism to occur, which in turn reduces the time to execute a loop and results in more effective
use of the functional units. In this case, the Cray Y-MP provides enough vector registers to
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accommodate the faster execution order. However, one example does not prove sufficiency
in general. One goal of this study is to determine a cost-effective number of registers, which
I believe is more than the 8 vector registers currently provided in the Cray Y-MP vector
processor.

5.1.2 Why a Different Scheduling Algorithm?

To substantiate my hypothesis that more registers are needed to improve perfor-
mance, I must determine the minimal number of registers required for maximal parallelism
in each loop of the CRI workload. A minimal register requirement is associated with a
particular execution order of a dependence graph, as was explained in the previous sub-
section, and an execution order is chosen by an instruction scheduler, which is part of a
compiler. Hence, the algorithm used by an instruction scheduler affects both execution
time and register usage of a loop. What is not obvious is how much a scheduling algorithm
affects performance and register usage. In this subsection, I present two sets of apparently
contradictory data that together suggest that the performance impact of a scheduling algo-
rithm can be significant and that a scheduling algorithm different from the one used in the
1990 version of the c¢ft77 compiler is needed to prove my hypothesis.

The first set of data indicates that execution time could possibly be reduced by a
significant amount. This data is based on a static lower bound for the per-iteration execution
time of a loop. An important characteristic of this lower bound is that it is calculated using
only the frequency of operational types in a dependence graph and the number and types
of functional units in the hardware. This provides a method for quantifying the maximal
improvement to performance without having to generate an actual execution order that
achieves this improvement. Because a loop can consist of one or more dependence graphs
(for example, vectorizable loops with conditional statements or scalar reductions), the static
lower bound for the per-iteration execution time of a loop is, in fact, based on a lower bound
for the per-iteration execution time of a dependence graph, and is equal to the sum of the
lower bound for each of its dependence graphs. Short of actually executing a loop, there
is no information about the execution frequency of each dependence graph. Consequently,
this lower bound for a loop’s execution time is a static one because it does not accurately
account for dynamic information and, instead, assumes that all dependence graphs in aloop
are executed the same number of times.

A lower bound on the execution time for a dependence graph is equal to the
number of times a critical resource is used, where a critical resource is a functional unit
that is used most frequently to execute operations in that dependence graph [107]. For
example, the load port is a critical resource for the dependence graph in Figure 5.1. The
following statements summarize the relationships that establish the lower bound for the
execution time of a dependence graph:

a lower bound for the per-iteration execution time of a dependence graph, G
= the number of times a critical resource is used in G
< the number of chimes needed to execute G
< the number of clock periods needed to execute one iteration of G

The number of times a critical resource is used is a lower bound on the execution time of a
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dependence graph because it must be less than or equal to the number of chimes needed to
execute a dependence graph; otherwise, a critical resource would be used twice in the same
chime, which is impossible. In turn, the number of chimes needed to execute one iteration
of a dependence graph must be less than or equal to the number of clock periods because
the chime count only considers vectorizable operations, whereas the clock-period count also
includes loop- and strip-overheads.

Thus, determining the lower bound for the execution time of a dependence graph
is a simple matter of counting the different types of operations in such a graph, dividing
the frequency of each operational type by the number of functional units that execute that
operational type, and determining the maximum of these quotients. In other words, a lower
bound for the execution time of a dependence graph is equal to:

( the number of operations of type T )
the number of functional units that execute the operational type T

max
T

For example, the lower bound for the dependence graph in Figure 5.1 is four chimes when the
hardware has two load-ports and a store-port. This lower bound is greatly affected by the
configuration of functional units. For example, if there were only one memory-port in the
hardware, the lower bound for the dependence graph in Figure 5.1 would be eight chimes.

A static lower bound on execution time gives a static upper bound on the im-
provement in performance relative to that of the ¢ft77 compiler using eight vector registers.
Figure 5.4, which summarizes this relative performance, shows that there is a possibility for
substantial improvement for almost all the loops and that the performance of the workload
can be improved by up to 37%. Although an upper bound on relative performance differ-
ence should always be positive, there are three data points that show a negative difference.
This is because these loops do not conform to the assumption that all dependence graphs
in a loop are executed the same number of times. For these loops, a scalar reduction is
computed, and the vectorized version consists of two dependence graphs: one to compute
partial sums and the other to compute the final sum (for a full explanation of this trans-
formation see Section 2.3 on page 17 in Chapter 2, Fundamentals of Vector Architectures).
The number of times these dependence graphs are executed is different; the first is executed
several times, and the second is executed only once. Without this dynamic information, the
static lower bound places equal emphasis on both dependence graphs, thus over-estimating
the execution time of the loop and showing a paradoxical performance degradation. Despite
these three misleading data points, the overall data indicate that there is a possibility for
significant improvement in performance.

Unfortunately, the next set of data appears to contradict the optimistic promise
shown by the static upper bound. In addition to the obvious question of “Do execution
orders exist that can achieve this upper bound?”, the question that is more pertinent to this
study is “What is the minimum number of registers needed to achieve this upper bound?”
My theory hypothesizes that more than eight vector registers are needed. If this hypothesis
is true, then increasing the number of registers should, on average, reduce the execution
time. Because the cft77 compiler can be directed to use any number of vector registers, I
can easily test my hypothesis by comparing the performance using 8 vector registers with
the performance using 64 registers, the latter number of registers being sufficiently large
to avoid adverse effects on performance due to limited register capacity. This performance
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Figure 5.4: Static Upper Bound Vs. Cft77 Scheduler Using 8 Registers

This graph shows the maximal improvement in performance over that of the 1990 version
of the cft77 scheduler using 8 vector registers, indicating that there is a possibility for significant
improvement in performance. Section 5.2.1 describes the performance metrics and the basic layout
of this graph, and Figures 5.18 and 5.19 list the execution times plotted in it.
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Figure 5.5: Cft77 Scheduler Using 64 Registers Vs. Cft77 Scheduler Using 8 Registers

To test my hypothesis that more than 8 vector registers are needed to improve performance, this
graph compares the performance of the 1990 version of the cft77scheduler using 64 vector registers to
that of the same scheduler using 8 vector registers. Section 5.2.1 describes the performance metrics
and the basic layout of this graph, and Figures 5.18 and 5.19 list the execution times plotted in it.

data, gathered using the 1990 version of the cft77 compiler, is summarized in Figure 5.5.

Because more registers are provided, using 64 vector registers should always be
faster than using 8. However, a few loops execute slower with 64 registers, the worst case
being 5% slower. After hand-examining the assembly code for several of these loops, I
determined that the only difference between using 64 registers and using 8 for the same
loop is that the datais placed in different locations in memory, possibly causing conflicts to
occur in different memory banks. Because memory-bank conflicts can cause a 5% variance
in performance, I believe that relative differences less than 5%, including negative ones, are
due to differences in memory access patterns and should be considered insignificant.

Overall, the relative improvement to performance for the entire workload when
using 64 vector registers instead of 8 registers is about 9%, a reasonable gain in performance.
A great disappointment, however, is the meager distribution of the individual differences
in relative performance: only 5 out of the 36 loops show more than a 10% improvement in
performance, and the rest show less than a 5% performance improvement. Not enough loops
show a significant performance improvement to warrant increasing the number of registers
beyond eight. As a result, adding more registers appears not, on average, to reduce the
execution time significantly.

One possible explanation I considered for these apparently contradictory results is
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that the upper bound is unrealistic, the ¢ft77 scheduler already provides the best achievable
performance, and 8 vector registers are enough. In particular, the static lower bound does
not use any information about the structure of a dependence graph, which may actually
prevent the lower bound from being achieved. I didn’t believe this to be true because I had
experimented with some of the loops by hand in a manner similar to that in the example
in the previous subsection and estimated that their execution time could be improved by
adding more registers. Another possible explanation is that more than 64 vector registers are
needed to achieve the upper bound. I didn’t believe this second explanation either because
the execution orders I produced in my hand-experiments used fewer than 64 registers to
improve performance. A third possibility is that more sophisticated compiler optimizations,
such as loop unrolling or the transformation made in Figure 5.2, are needed to expose
more parallelism. Although such techniques will eventually be needed when there are more
functional units in the hardware, I did not believe that this was the case here because I did
not have to resort to such techniques in my hand-experiments to show an improvement to
performance.

A fourth explanation, and the one that I accept, is that a scheduling algorithm
different from the one used by the 1990 version of the cft77 compiler is needed. This is
because different scheduling algorithms can produce different execution orders for the same
dependence graph, and different execution orders can require not only different amounts
of time to execute but also different numbers of registers, as shown by the example in
the previous subsection. Even though the cft77 scheduler does not use more registers to
improve performance, this does not preclude a different scheduling algorithm from doing
so. Hence, in addition to this study’s primary goal of determining a cost-effective number
of vector registers, a secondary goal is to show that a different scheduling algorithm uses
more registers more effectively than does the ¢ft77 scheduling algorithm. In the rest of this
chapter, I compare, both qualitatively and guantitatively, the impact the cft77 scheduler and
a different scheduler have on performance to show that this fourth explanation reconciles
the disparate results presented above.

5.2 Experimental Framework

In this section, I describe the performance criteria and the methodology I use to
carry out the studies throughout this chapter. Other aspects of the experimental framework,
such as the architectural platform, the performance tools, and the workload are described
in Chapter 4, Common Ezperimental Framework.

5.2.1 Performance Criteria

As part of my investigation, I compare the performance of different combinations
of scheduling algorithms and number of vector registers. The raw data for these comparisons
are the times needed to execute each loop in the CRI workload using various combinations
of scheduling algorithms and number of registers. Unless stated otherwise, all execution
times are measured using the Cray Y-MP simulator. In this subsection, I describe how
this raw data is used to determine whether the performance of two configurations differs
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significantly. First, I describe the performance metrics used to represent the time it takes to
execute a loop and the time it takes to execute the entire workload when using a particular
configuration. I then describe how I compare the performances among various configurations
and give the criteria for acceptable performance improvement.

As the performance metric for a loop, I use the average time t to execute an
iteration of that loop:

the time to execute the entire loop T

t =
the number of iterations executed for the loop L

An obvious alternative to using per-iteration time as a performance metric for a loop is using
the time it takes to execute the entire loop. Loop-execution time is influenced by factors
arising from a program and a compiler, whereas per-iteration time is more influenced by
just the compiler because the number of iterations executed for a loop, which is influenced
by a program, is factored out. This makes per-iteration time the preferred metric because it
emphasizes the differences in performance among various execution orders, differences that
I want to measure. Moreover, whereas loop-execution time includes the times to execute
loop- and strip-overheads, per-iteration time also includes these overheads because it is
calculated from loop-execution time. Although using per-iteration time assumes that all
loops in a workload are executed the same number of times, I address this assumption below
when I discuss the criteria for evaluating acceptable improvements to performance.
Another alternative to per-iteration time is the MFLOPS3 rate of a loop, which is
a standard metric for measuring the performance of scientific workloads [55, 84). Because
the MFLOPS rate r of a loop is computed from the same data as the per-iteration time ¢,
these two metrics are, in fact, inversely proportional to each other. Just as t is the average
time it takes to execute one iteration of a loop, -} can be interpreted as the average time
it takes to execute one floating-point operation of that loop. In other words, t is equal to
the product of } and f, the number of floating-point operations executed in one iteration

of that loop. This equality can be shown algebraically as follows:
T T 1

t=z=foxf=;xf

1 use per-iteration time instead because not all the loops in the CRI workload contain
floating-point operations. Furthermore, using per-iteration times shifts the emphasis from
floating-point operations to execution time, which is more directly related to performance.

As the performance metric for the entire workload, I use the sum of per-iteration
times of all loops in the workload. Just as per-iteration time is proportional to the inverse
of MFLOPS rate, this sum is proportional to the inverse of the weighted harmonic mean
of MFLOPS rates of each loop, where the weight for a loop is the number of floating-point
operations executed in one iteration of that loop. This equality can be shown algebraically
as follows:

e = X7

3 MFLOPS is an acronym for “Millions of Floating-point Operations Per Second.”
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where N is the number of loops in the workload
T; is the time to execute the i** loop
L; is the number of iterations executed for the ith loop
t; is the per-iteration time for the it* loop
r; is the MFLOPS rate for the i** loop
fi is the number of floating-point operations
executed in one iteration of the it* loop

Although the harmonic mean is a standard metric for summarizing the performance of a
workload, I use the sum of per-iteration times for the same reasons I cited in the previous
paragraph.

A critical aspect of my investigation is to determine which of two configurations
is faster. To do this, I examine the relative difference in performance of both individual
loops and the entire workload. For an individual loop, I use the performance metric for
a loop to calculate the difference in performance of a new configuration relative to a base

configuration
B
L
t
where t? is the per-iteration time for the ith loop using the base configuration, and t}' is
the per-iteration time for the ith loop using the new, and presumably faster, configuration.
For a summary of the individual relative differences, I use the performance metric for a

workload to calculate the relative difference in performance of the entire workload:

PN
zt

Although I examine many different configurations, I directly compare only two
at a time by plotting their relative performance differences in a graph that has a specific
structure. Not only does such a graph provide a visual way to compare the performances of
two configurations, but multiple graphs with this common structure allow the performances
of several configurations to be compared simultaneously. Figure 5.5 on page 82 (in the
previous section) shows an example of such a graph. Loops are plotted along the X-axis,
sorted by execution time. In other words, the leftmost loop executes in the fewest clock
periods per iteration when using the cft77 scheduler and 8 vector registers, and the rightmost
loop executes in the greatest number of clock periods. The difference in performance of a
new configuration relative to that of a base configuration is plotted along the Y-axis. The
new configuration is listed first in the caption title (for example, “Cft77 Scheduler Using
64 Registers” in Figure 5.5), and the base configuration is listed last. Positive values for the

-1
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relative performance difference indicate that the new configuration is faster than the base
one, and the larger the value, the faster it is. A solid curve connects the relative performance
differences of individual loops. To readily identify which loops perform significantly better
or worse when using a new configuration, the relative difference in performance of a loop is
plotted using one of three symbols:

o 10% < relative difference
x —5% < relative difference < 10%
O relative difference < —5%

A dashed horizontal line gives the relative difference in performance for the entire workload.

The reason for comparing the performance of two configurations is to choose one
of them to implement; a significant difference in performance justifies implementing the
faster configuration, which presumably is the new one. An improved performance of a new
configuration over that of a base one is considered significant if the following two criteria
are satisfied:

1. the improvement in performance for the entire workload is greater than 10%, and

2. the majority of individual loops in the workload show a performance improvement
greater than 10%.

In more mathematical terms, implementing the new configuration is justified only if:
1. T8/ Tt — 1 is greater than 10%, and
2. the median of the values ¥ /1] — 1 is greater than 10%.

Any performance improvement of less than 10% is considered insignificant because other
factors in implementation, such as 2 shorter clock period, can easily eclipse such a small
improvement. Furthermore, as I will show in the next chapter, the minimal increase in
hardware is 10%. Hence, any improvement in performance must be at least 10% to justify
the increased cost.

Fach criterion is needed for a different reason. The first criterion avoids the neg-
ative consequences of Amdahl’s Law. In other words, large improvements in individual
loops must have a significant impact on the execution time of the entire workload. The
second criterion prevents loops with longer per-iteration times, which have more influence
on the performance of the entire workload, from dominating the decision-making process.
Moreover, this criterion compensates somewhat for using per-iteration time rather than
loop-execution time as the basis for my performance analysis. A few paragraphs back, I
noted that using per-iteration time assumes that all loops in a workload are executed the
same number of times, an assumption that using loop-execution time would avoid. But
relative per-iteration time and relative loop-execution time are equal. Hence, the second
criterion can be computed from either metric.

To see why both these criteria are needed, I present two examples using hypothet-
ical sets of performance data for the CRI workload (all execution times are rounded to the
nearest 10 clock periods):
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The base configuration, which is the ¢ft77 compiler using 8 vector registers,
executes the CRI workload in 1270 clock periods.

For the first example, suppose that a new configuration improves the perfor-
mance of the 20 loops with the shortest per-iteration times by 45% but has no
effect on the performance of the other loops. Then, the median performance im-
provement for this example is 45%. However, because the sum of per-iteration
times of the 20 loops is 240 clock periods when using the base configuration,

the performance improvement for the workload is only -1-2—76}22—4%@ —1)100
1.45

= 6%.

For the second example, suppose that a different configuration improves the
performance of the 2 loops with the longest per-iteration times by 45% but has no
effect on the performance of the other loops. Because the sum of the per-iteration
times of these 2 loops is 440 clock periods when using the base configuration, the

: ) : 1270 _ —
performance improvement for the workload is (m{ 1) 100 = 12%.

However, because the remaining 34 loops show no improvement in performance,
the median performance improvement is 0%.

These two hypothetical examples show a huge variation in performance improvement among
individual loops. In both cases, a select subset of loops shows a significant performance
improvement of 45% whereas the rest of the loops show none. In the first example, this
select subset is a significant portion of the loops in the workload but does not represent a
significant enough portion of the time to execute it. The select subset in the second example
represents a significant portion of the time to execute the workload but is not a significant
portion of the loops within it. An actual example of this situation is illustrated in Figure 5.5,
which shows the performance of the ¢ft77 scheduler using 64 registers relative to that of the
same scheduler using 8. In both cases, because only one criterion is satisfied, implementing
the new configuration is not worthwhile despite large performance improvements among
individual loops.

5.2.2 Methodology

I considered two methods for achieving the goals of this chapter. These two meth-
ods offer a tradeoff between providing a definitive answer and being able to produce an
answer in a reasonable amount of time.

The first method solves the following optimality problem: determine the shortest
time to execute a dependence graph using some fixed number of registers. By comparing
the optimal performances using a different number of registers, I can then definitively say
that the most cost-effective number of registers is the one for which:

1. using fewer than that number decreases performance significantly, and
2. using more than that number does not increase performance significantly.

Unfortunately, the major disadvantage of this method is that this optimality problem is in
a class of precedence constrained problems, which are known to be NP-hard for an arbitrary



88

dependence graph [46]. Such problems are so computationally intensive that obtaining an
answer for just one instance can require years of computational time; moreover, the existence
of methods that are less computationally intensive is currently thought to be unlikely. This
optimality problem, however, is no longer NP-hard when the dependence graph is a tree,
which is a specially-structured dependence graph with no common subexpressions and where
each operation has only one dependence; the dependence graphs illustrated in this chapter
are trees (in Figures 5.2, 5.12, and 5.13). In fact, there are algorithms that take advantage
of a tree’s regular structure to generate a minimal execution-time order in polynomial time
[87, 98, 99, 3]. But because 75% of the dependence graphs in the CRI workload are not
trees, this problem is NP-hard for the majority of this workload and, in particular, for the
larger dependence graphs.

An obvious method for finding an optimal order for such an NP-hard problem is
to examine all possible orders for a dependence graph. The time it would take to compare
all possible orders of a dependence graph with N operations is proportional to N!, which
is a function that grows more than exponentially with a constant increase in the number
of operations in a dependence graph. Despite this daunting super-exponential growth rate,
today’s computers can exhaustively compare the orders of a dependence graph if the number
of operations is “small” enough. Moreover, characteristics of the problem can be used to
reduce the number of orders that are examined. For example, because not all orders satisfy
the partial order specified by a dependence graph, we can ignore any order whose prefix does
not satisfy the partial order, such as orders beginning with the operation STORE;o for the
dependence graph in Figure 5.1 (on page 74 of the previous section). Other rules based on
execution time and register usage can also be used to further prune the number of examined
orders. If these pruning rules allow most of the dependence graphs in the CRI workload to
be exhaustively compared in a reasonable amount of time, then this method could still be
used to provide a definitive answer.

To determine whether such a method is feasible, I timed how long a Sun SPARCsta-
tion 1 takes to exhaustively compare the orders of progressively larger and larger dependence
graphs. Figure 5.6 shows the results of these timings. Optimal solutions for dependence
graphs with less than 30 operations can be found in less than a minute. Unfortunately,
the time it takes to find an optimal solution grows extremely quickly even when pruning
rules are used. Based on this data, Figure 5.7 lists estimates for the comparison times of
the larger dependence graphs in the CRI workload. Even computers in the near future are
unlikely to improve this situation substantially because their performance is progressing by
only a factor of at most two every two years, whereas an increase of just two operations in
a dependence graph requires that search time be increased by a factor of 2.4.

In summary, although this method could provide a definitive value for the most
cost-effective number of registers, it is infeasible because finding an optimal execution order
for the larger dependence graphs in the CRI workload requires years of computational time.
Moreover, this method is impractical from a compiler standpoint because the time it takes
to find an optimal order is far greater than the time to execute the resultant code for the
larger dependence graphs, regardless of how frequently the code is executed. This method
could, however, be used if dependence graphs with more than 50 operations were excluded,
but doing so is unacceptable not only because 36% of them in the CRI workload contain



89

seconds .
]].6dys:l(xxxm ......... preeeeee preseene preseeeesegeeees ;' .........
1.2dys= 100000{--------- T e ERURRPRRR SOV AV PP
28hrs=  10000f---ceee- e EPRUTRUOOL S SCeennnnnns T
17mins=  1000]------+-- S SRS Al Feveeeeee e

110'0] [PPEPUTS SO SR S R frveeeenns
Time to Find :og 1 : : :
OpumalOrder 10 ......... EPLLERRTR Peeseenees Beeesennes freeenee

) PR e i e Fvnren Fveeeen
0.10].co ottt PR e fanes e

001 —u—

0, 10 20 30 40 50 60

Number of Operations in a Dependence Graph

Figure 5.6: Completion Times for Exhaustive Comparisons

This graph shows how long a Sun SPARCstation 1 took to find an optimal execution order for
each of five dependence graphs from the CRI workload by exhaustively comparing all the execution
orders of a dependence graph. The five dependence graphs have 7, 15, 18, 26 and 49 operations,
respectively. The dashed line shows that the comparison time grows exponentially relative to a
constant increase in the operations in a dependence graph.

NUMBER OF OPERATIONS ESTIMATED TIME FOR
IN A DEPENDENCE GRAPH EXHAUSTIVE COMPARISON
(N) (1055_33!”\"'3'27 seconds)
49 10% seconds = 11.6 days
54 107 seconds ~ 100 days
60 108 seconds ~ 3.2 years
65 10° seconds =~ 32 years
70 10'° seconds ~ 3.2 centuries
80 102 seconds =~ 320 centuries

Figure 5.7: Estimated Times for Exhaustive Comparisons

This table lists estimated times for finding an optimal execution order for some of the larger
dependence graphs in the CRI workload. The dashed line in Figure 5.6 is used to calculate these
estimates, which are rounded to the nearest order of magnitude.
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more than 50 operations, but also because I expect these graphs to be the ones with larger
register requirements.

A second, more practical method is to use scheduling algorithms that execute in
polynomial time and then to compare the performance of their execution orders using a dif-
ferent number of registers. In addition to its computational practicality, another advantage
to this method is that an algorithm that results in a significant improvement to performance
can be adopted by a compiler with only a minimal increase in compilation time. The main
disadvantage to this method is that it cannot provide a definitive answer because a schedul-
ing algorithm chooses an execution order based on heuristics and, although heuristics are
designed to minimize some aspect of an execution order, optimality cannot be guaranteed.
Nonetheless, because I am beginning with a configuration that already exists — namely,
the Cray Y-MP with 8 vector registers and the cft77 scheduling algorithm — I can at least
show that a different scheduling algorithm can significantly improve performance when us-
ing more registers. The fact that such an algorithm exists is not necessarily obvious as
indicated by the initial performance results presented in the previous section. Because this
method is computationally practical and the first one infeasible, I use the former method
to achieve the goals of my study.

5.3 A Comparison of Two Scheduling Algorithms

In this section, I describe and contrast the two scheduling algorithms I use in my
study. One was used in the 1990 version of the cft77 compiler, and the other, which 1
developed to emulate what I had accomplished in my hand experiments, is a variant of list
scheduling. In the first part of this section, I highlight similarities between these algorithms
by comparing a scheduling algorithm for a vector architecture to ones for other architectures
and by describing, in general, how a vector scheduling algorithm works. In the second half
of this section, I describe the different aspects of the scheduling algorithms and provide a
detailed description of each.

The function of any scheduling algorithm, regardless of the underlying architec-
ture, is to generate an order in which to execute the operations of a given dependence
graph. Understanding how the underlying architecture affects a scheduling algorithm al-
lows an algorithm designed for one architecture to be more readily adapted to another one.
For example, the underlying architecture determines what the operations of a dependence
graph represent. For a scalar or VLIW architecture, there is a one-to-one correspondence
between an operation in a dependence graph and an operation to be executed. For a vector
architecture, in contrast, an operation in a dependence graph represents many independent
operations to be executed.

Despite this disparity in representations, scheduling vectorizable operations is com-
parable to scheduling them for a VLIW architecture; scheduling vectorizable operations is
Jeast like scheduling ones for a scalar architecture, even though both issue instructions se-
quentially. For a scalar architecture, a scheduling algorithm must contend with delayed as
well as deeply pipelined operations [52]. In contrast, a scheduling algorithm for a VLIW
architecture focuses on grouping together operations that can initiate in parallel {34, 76).
To simplify the description of how such groupings are done, operations are often assumed to
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execute in unit time, and an abstract machine model is used to handle deeply-pipelined and
delayed operations. Similarly, a vector scheduler is concerned with grouping vectorizable
operations that can execute in parallel, which in turn causes individual ones to initiate in
parallel.

A major difference between schedulers for these architectures and one for a vector
architecture is that the unit of time for the latter is one chime rather than one clock
period. In other words, a VLIW scheduler groups operations into a VLIW instruction, which
executes in one clock period. A vector scheduler, however, groups vectorizable operations
that can execute in one chime. But rather than actually grouping these operations into one
instruction, a vector scheduler merely specifies the order in which these operations are to
execute to produce the parallelism found by the scheduler.

To facilitate scheduling vectorizable operations, I use a chime table to keep track of
when operations are scheduled to execute on which functional unit. A comparable table is
also used in schedulers for VLIW architectures, and could be called generically a functional
unit reservation table. In the context of vector scheduling, a chime table is a matrix where
each row represents one chime, each column represents a functional unit in the hardware,
and the ij'* entry represents an operation that is to be executed in the i** chime by the
j** functional unit. To generate an order, a scheduling algorithm places operations into
a chime table according to a set of rules that vary from scheduler to scheduler. Once all
operations are placed into a chime table, they are removed from the table in chime order,
so that their dependences are still preserved. The order of removal is the execution order
generated by a scheduling algorithm.

As with the examples in Figure 5.3 (on page 77), an estimate of the execution
time is given by the number of rows (or chimes) with at least one scheduled operation, and
an estimate of the minimal register requirements is given by the maximum number of live
values in a chime. These are estimates only because counting by chimes ignores both the
latencies of deeply-pipelined operations and the execution of any scalar operations, both of
which are part of the loop and strip overheads. Although this omission simplifies a vector
scheduling algorithm, these estimates are not unduly accurate. This is because in any one
chime, the latency of only one operation is actually exposed even though many operations
are executed, and an operational latency typically lasts only a fraction of a chime.

The type of scheduling algorithms I consider are called simple vector schedulers
[107], ones that schedule operations from the same iteration only. Other algorithms, such
as polycyclic scheduling,! trace scheduling, and loop unrolling, schedule operations from
different iterations to increase the amount of parallelism that occurs. For example, the
Cray-2 uses polycyclic vector scheduling to increase the amount of parallelism to compensate
for the lack of chaining hardware, which prevents flow-dependent operations from executing
in parallel [108, 32, 26]. In my study, I consider only simple vector schedulers because, as
the quantitative results of the next section show, significant improvement to performance
is still possible without having to resort to more complex scheduling algorithms.

The main difference between the two scheduling algorithms I use is how operations
are placed into a chime table. When examining these placement rules, there are three issues
to consider:

*Polycyclic scheduling is also known as software pipelining [76) or overlapped loop scheduling [28].
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1. the goal of the placement rules,
9. the order in which operations are processed, and

3. the strategy for finding a time slot in which an appropriate functional unit and regis-
ter(s) are available

Operations are first sorted into order by priorities and then placed into a chime table one
at a time in the sorted order.® What this placement strategy and these priorities are
depends largely upon what the goals of the scheduling algorithm are: whether to minimize
execution time or minimize register usage. Because minimizing execution time tends to
increase register usage and vice versa (as the examples in Figure 5.3 demonstrate), these
cannot be goals of equal priority. All three aspects — the goals, order, and strategy — of
placing operations into a chime table are different for the two scheduling algorithms I use.

Details about each algorithm are given in Figures 5.8 and 5.9. These figures explain
how the priorities and strategy exploit some aspect of the problem to achieve the primary
and secondary goals of the algorithm. Figure 5.8 describes the scheduling algorithm used
by the 1990 version of the cft77 compiler [62]. Figure 5.9 describes the algorithm that I
developed, which is a variant of list scheduling, a technique originally used for assigning
a set of partially-ordered tasks to a fixed number of processors in a parallel processing
system [1]. List scheduling is also used for scheduling scalar instructions [48] and in trace
scheduling, which is used for VLIW architectures [34]. Variants of list scheduling differ in
the priorities used to determine the order of scheduling, but the strategy is always the same:
after scheduling the (i — 1)** operations, schedule the i** one as early as possible under the
constraints of the partial order and availability of hardware resources. In choosing an order
and a strategy, I designed the list-scheduling algorithm to emulate what I had been doing
when I hand-scheduled several dependence graphs.

The major differences between the cft77 and list schedulers are summarized in
Figure 5.10. The differences in order and strategy between these two schedulers directly
reflect the differences in their goals. The ¢ft77 scheduler emphasizes register usage over
execution time because it must generate production code for a vector architecture with
only eight vector registers. Nonetheless, the number of registers provided in hardware is
an input parameter to this algorithm to avoid needlessly increasing execution time in an
attempt to use fewer registers. In contrast, the list scheduler I developed does not consider
limiting register usage to match the number of registers provided in hardware because I am
more interested in examining the best performance with no constraints imposed by limited
register capacity. Although the final step is designed to reduce register usage, this step
should not increase the execution time of the resultant order.

Because the goals of both schedulers are different, we would expect the list sched-
uler to produce orders that execute in less time than those of the cft77 scheduler, as demon-
strated by the examples in Figure 5.3. What this qualitative description does not indicate
is how much better the list scheduler is, nor does it indicate how often the list scheduler

5Not all scheduling algorithms have such a clear separation between order of processing and placement.
For example, in the algorithm described by Gibbons and Muchnick, the order of processing is affected by
the strategy for placement in that the criteria for choosing the next operation to be scheduled is based on
what has already been scheduled [48]).
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Indicate that all the functional units are being used in the first chime of the chime
table so that operations without any predecessors (typically LOADs) can be scheduled

properly.
Given a dependence graph, schedule each operation in order of

1. appearance by statement in the source code, and

2. within a statement, decreasing maximal path distance from an operation with
no successors (typically a STORE)

by choosing the first chime ¢ from the end of the chime table for which one of the
following is true:

1. the number of live values in chime c— 1 is equal to the number of vector registers
in the hardware,

2. a predecessor has been scheduled in chime ¢,
3. all appropriate functional units are being used in chimec—1,0r

4. an operand to the operation is being used by an operation already scheduled in
chime c—- 1.

Figure 5.8: Cft77 Scheduling Algorithm

This figure describes how the scheduling algorithm used by the 1990 version of the cft77 compiler
places operations of a dependence graph into 2 chime table. The primary goal of this scheduling
algorithm is to minimize register usage; its secondary goal is to minimize execution time. As an
example of its application, this scheduling algorithm produces the execution order on the left in
Figure 5.3 for the dependence graph in Figure 5.1.

The first enumerated list indicates how priorities are assigned to operations to determine the
order in which they are scheduled. The goal of this list is to minimize register usage, which is
done by keeping the lifetimes of many values as short as possible. Executing operations in order of
appearance in the source code causes values to be used shortly after they are produced.

The second enumerated list outlines the strategy for placing operations into a chime table.
The goal of this list is to minimize execution time without unduly increasing register usage. The
first item prevents register usage from exceeding the physical capabilities of the hardware, and the
last three items minimize execution time by interleaving the execution of operations from adjacent
statements. The fourth item of this list reflects the fact that the execution of operations that use
the same value is necessarily sequential in the Cray Y-MP, regardless of the availability of functional
units. Sequential execution is necessary because a vector register has only one read port, whereas
parallel execution of multiple successors requires a vector register with multiple read ports. The

fourth item shows this sequential execution from the viewpoint of one of the successors.
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Given a dependence graph, schedule each operation in order of

1. decreasing maximal path distance from an operation with no successors (typically
a STORE), and

2. for operations with the same maximal path distance, decreasing number of suc-
cessors

by choosing the first chime ¢ such that
1. all ancestors have been scheduled before or in chime ¢,
2. an appropriate functional unit is available in chime c, and

3. operands to the operation are not being used by an operation already scheduled
in chime c.

Reschedule operations without any predecessors (typically LOADs) by choosing the
latest chime c such that

1. all successors have been scheduled after or in chime ¢, and

2. an appropriate functional unit is available in chime c.

Figure 5.9: List Scheduling Algorithm

This figure describes how a list-scheduling algorithm places operations of a dependence graph
into a chime table. The primary goal of this scheduling algorithm is to minimize execution time;
its secondary goal is to minimize register usage. As an example of its application, this scheduling
algorithm produces the execution order on the right in Figure 5.3 for the dependence graph in
Figure 5.1.

The first enumerated list indicates how priorities are assigned to operations to determine the
order in which they are scheduled. The goal of this list is to minimize execution time, which is done
by giving the highest priority to operations that many other operations indirectly depend upon.
For operations with the same maximal path distance, higher priority is given to those with more
directly-dependent operations. In other words, higher priority is given to an operation whose value
is used by more operations.

The second and third enumerated lists outline the strategy for placing operations into a chime
table. The goal of the first of these lists is to minimize the execution time. The reason for item
number three has to do with the single read port of a vector register, and the explanation for its
inclusion is the same as the one given for the cft77 scheduling algorithm in Figure 5.8. The goal
of the last list is to shorten the lifetimes of values in order to reduce register usage. This is done
by placing an operation as close as possible to the operations that use its value. Only operations
without any predecessors are rescheduled because they have the most flexibility when placed in 2
partially-filled chime table. This rescheduling should not affect the execution time of the resultant
code.

An algorithm similar to this one has been implemented in a version of the ¢ft77 compiler that

is more recent than the one used for my studies. In addition to the above, the newer cft77 version
also takes into account register usage to avoid generating an excessive number of register spills.




95

| | cft77 SCHEDULER [ LIST SCHEDULER ]
GOALS 1. minimize register usage 1. minimize execution time o]
2. minimize execution time 2. minimize register usage
ORDER as operations appear in the based on properties of the de-
source code pendence graph

STRATEGY || start at end of chime table | startat beginning of chime table
and work backwards, taking | and work forwards

into consideration the number
of vector registers available in
hardware

Figure 5.10: Comparison of Cft77 and List Scheduling Algorithms

This table summarizes the major differences between the cft77 and list scheduling algorithms.
Details about each algorithm are given in Figures 5.8 and 5.9, respectively.

is better. As a result, quantitative performance data is needed to justify changing the
algorithm used in the ¢ft77 compiler.

5.4 How Many Vector Registers?

Up until now, I have described qualitatively why more registers and a scheduling
algorithm that is different from the one used in the 1990 version of the ¢ft77 compiler
are needed to effectively use the functional units in the Cray Y-MP. In this section, I
present data that not only substantiates these observations but, more importantly, shows
how many registers are needed and how much of an improvement to performance is possible
with more registers and a different scheduling algorithm. The primary goal of this study is
to find a cost-effective number of registers and the secondary goal is to show that a different
scheduling algorithm uses more than 8 vector registers better than the ¢ft77 scheduler does.
The initial performance results presented in Section 5.1.2 suggest that the secondary goal
must be achieved before the primary one can be found. Consequently, I first present data
to show that the list-scheduling algorithm in Figure 5.9 uses more registers more effectively
than does the cft77 scheduler. I then present data by which to choose a cost-effective
number of registers, and then I discuss the impact of using this number of registers on the
the performance of vectorizable loops and an entire program. Finally, I explain how the
data shows that larger loops are more likely to need more registers for greater performance
and that register spills have minimal impact on execution time. All the presentations of
data use the basic graph structure described in Section 5.2.1, and the execution times used
in these graphs are listed in Figures 5.18 and 5.19 at the end of this section.

From the performance results described in Section 5.1.2, we already know that the
¢ft77 scheduling algorithm described in Figure 5.8 (in the previous section) does not use
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Figure 5.11: List Scheduler Using 64 Registers Vs. Cft77 Scheduler Using 8 Registers

To show that a different scheduler can use more registers more effectively than the scheduler
used in the 1990 version of the cft77 compiler, this graph compares the performance of the list
scheduler using 64 vector registers to that of the cft77scheduler using 8 vector registers. Section 5.2.1
describes the performance metrics and the basic layout of this graph, and Figures 5.18 and 5.19 list
the execution times plotted in it.

more than 8 vector registers effectively because little improvement to performance resulted
when using 64 registers, a number that is sufficiently large to avoid adverse performance
effects due to limited register capacity. Hence, the secondary goal of this study is easily
achieved by demonstrating that the list scheduling algorithm in Figure 5.9 of the previous
section can use 64 registers to significantly improve performance over that of the base
configuration. To generate the raw performance data, I replaced the scheduler in the cft77
compiler with the list scheduler. Figure 5.11 summarizes the improvements to performance
that result.

We would expect that using 64 vector registers should be at least as fast as using
8 registers, regardless of the scheduling algorithm. Yet, there are three loops that perform
worse than 5% when the list scheduler is used rather than the cft77 one. These data points
emphasize the fact that scheduling algorithms rely on heuristics, which cannot guarantee
that the best execution order is generated for every dependence graph. For the two worst
cases, which are 13% and 10% slower, the order for scheduling operations causes the chime
estimates to be one chime longer than that of the corresponding orders produced by the
¢ft77 scheduler. For the loop with the worst performance, Figure 5.12 illustrates how the
heuristic used by the list scheduler to choose the scheduling order just does mot work,
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whereas the heuristic used by the ¢ft77 scheduler is ideal. For the loop with the second
worst performance, two operations are scheduled in the “wrong” order because they had
equal priorities for scheduling, and I schedule such operations in a random order. Figure 5.13
demonstrates that using another heuristic to schedule operations with equal priority allows
list scheduling to generate an order that executes in a time comparable to one generated
by the cft77 scheduler.

Nevertheless, despite these poor data points, the list scheduler improves perfor-
mance significantly for the entire workload and for almost half the loops. These gains are all
the more impressive because the execution times include the time to execute loop and strip
overheads, for which the heuristics in the list scheduler did nothing special to compensate.
Overall, the relative improvement to performance for the entire workload is about 18%
when a different scheduler is used and 64 vector registers instead of 8. In addition, 21 of
the loops improve their performance by more than 5%, with 17 of these achieving a perfor-
mance improvement greater than 10%. Although one of the performance criteria is not met
(the median performance difference is only 8%), the distribution of the individual relative
differences is significantly better than the distribution resulting from the cft77 scheduler us-
ing 64 registers (shown in Figure 5.5), where performance improved by more than 10% for
only 5 of the 36 loops. Hence, Figures 5.5 and 5.11 show that the list-scheduling algorithm
uses more than 8 registers better than the ¢ft77 scheduler does, and that, at the very least,
changing the scheduling algorithm in the cft77 compiler is warranted.

I now have the necessary tools with which to obtain the primary goal, which is
to determine a cost-effective number of vector registers. Although I have shown that a
significant improvement to performance is possible with 64 vector registers, fewer registers
or even just a change in the scheduling algorithm could produce comparable performance
results. In Figure 5.11 above, I compare two scheduler&register combinations where all the
components differ; some combination between these two extremes could perform as well as
the list scheduler using 64 registers. To better judge what a cost-effective combination is, I
compare, in successive order, several pairs of scheduler&register combinations, Figure 5.14
summarizes these comparisons, which progressively compare the relative performance of the
following scheduler&register combinations:

cft77 scheduler and 8 vector registers,

list scheduler and 8 vector registers,

list scheduler and 16 vector registers,

list scheduler and 32 vector registers, and
list scheduler and 64 vector registers.

The first graph, Figure 5.14a, compares the performances of the two scheduling
algorithms, when both use 8 vector registers. This graph shows that the cft77 scheduler
does not always effectively use 8 registers; the list scheduler provides more than a 10% im-
provement for 7 loops. Hence, some of the improvement to performance seen in Figure 5.11
is attributable to a change of scheduling algorithm. Nevertheless, Figure 5.14a, in com-
bination with Figure 5.11, demonstrates that much of the improvement to performance is
attributable to both changing the algorithm and increasing the number of registers. Fig-
ure 5.11 shows that using more registers significantly improves performance, both overall
as well as for individual loops. Figure 5.142 shows that using only 8 registers with the
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Figure 5.12: Example Showing that List Scheduler Uses Wrong Heuristic

This figure demonstrates that the cft77 scheduler produces an execution order for the illustrated
dependence graph that is better than the execution order produced by the list scheduler because
the cft77 algorithm schedules operations in order of statement number rather than by maximal path
distance.
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Xs (3) X5 (3)
+s (2) +6 (2)
+2 (2) +2 (2)
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LOAD4 LOAD;g X5 |+s6 LOAD4 LOADl X5
LOAD, x7|+2|STOREg LOADs +6
xX7|+2 STOREs

Figure 5.13: Example Showing that List Scheduler Needs a New Heuristic

This figure demonstrates that another heuristic is needed to determine a scheduling order
among operations with equal priority. Because the illustrated dependence graph represents one
statement, the scheduling order used by both the ¢ft77 and list schedulers is based on maximal path
distance. The operations marked with an asterisk (*) have the same maximal path distance but are
scheduled in reverse order for each algorithm. As a result, the execution order produced by the ¢ft77
scheduler is better than the one produced by the list scheduler.

Operations can be grouped into a chain of operations which can be executed in one chime using
chaining hardware despite RAW dependences. For example, the operations LOAD3, LOAD,, x5, and
+¢ form such a chain. The scheduling order used by the list scheduler, however, does not allow this
chain to form whereas the order used by the cft77 scheduler does. A new heuristic that gives higher
priority to an operation in a chain that is already partially scheduled would allow the list scheduler

to generate the better execution order.
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Figure 5.14: Performance Comparisons of Various Scheduleré Register Combinations

These graphs compare the performances of various scheduler€register combinations whose
results are used to choose the most cost-effective one. The loops in graphs (b) and (c) that show
a performance degradation of 8% and 9% (as indicated by the DO’s) are unexpected because using
more registers should result in a relative difference in performance no worse than -5%. A closer
examination of the assembly code for these two loops revealed that the only difference between
using different numbers of registers is that the data is placed in different locations in memory,
possibly causing conflicts to occur in different memory banks. Although memory-bank conflicts
can cause up to a 5% variance in performance, these two data points indicate that sometimes the
variance can be greater. Section 5.2.1 describes the performance metrics and the basic layout of
these graphs, and Figures 5.18 and 5.19 list the execution times plotted in them.
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list scheduler produces more than a 5% performance degradation for 10 loops, 8 of which
show a performance degradation of 10% or more. Because other loops show significant
improvement, the relative difference in performance for the entire workload is small (—4%),
despite the significant degradation in performance of many individual loops. Thus, Fig-
ares 5.11 and 5.14a together show that, as long as an appropriate scheduling algorithm is
used, more than 8 vector registers are needed to effectively use the functional units of the
Cray Y-MP.

The last three graphs in Figures 5.14 demonstrate how the performance of the list
scheduler is affected by the number of registers in the hardware. Increasing the number of
registers from 8 to 16 improves the performance of the workload by 14% and improves by
more than 10% the performance of 10 out of the 36 loops. Doubling the number of registers
from 16 to 32 results in a fair improvement (8%) in the workload performance but provides
more than 10% performance improvement for only 2 of the loops. Finally, using 64 registers
instead of 32 results in relatively little improvement to performance in either the workload
or individual loops. Because the greatest gain in performance is obtained by increasing the
number of registers from 8 to 16, I conclude that 16 vector registers is enough to effectively
use the functional units in the Cray Y-MP.

Figure 5.15, which is a complementary graph to those displayed in Figure 5.14,
shows the improvement in performance of the list scheduler using 16 vector registers relative
to the cft77 scheduler using 8. The graphs in Figure 5.14 show the relative change in per-
formance as scheduleréregister combinations progressively change from the cft77 scheduler
using 8 registers to the list scheduler using 64. Whereas this illustrates which intermediate
combination achieves the greatest gain in performance, Figure 5.15 indicates the actual
improvement to performance over the cft77 scheduler using 8 registers. The overall im-
provement (9%) of the list scheduler using 16 registers is not as high as that (18%) of the
same scheduler using 64 registers. This is because the largest loop, which represents 24%
of the execution time of the workload, can still benefit tremendously by using more than
16 registers. However, the overall improvement of the list scheduler using 16 registers is
the same as that of the cft77 scheduler using 64. Moreover, the number of individual
loops (15) showing significant improvement in the former combination is noticeably higher
than that (5) of the latter combination, and almost matches that (17) of the list scheduler
using 64 registers. Consequently, although the list scheduler using 16 registers falls just
short of the performance criteria for justifying more hardware, this scheduleréregister com-
bination comes reasonably close and requires the least increase in hardware for the greatest
gain in performance.

The improvements to performance reported in this study are only for the vector-
izable portions of a program. To determine the improvement in performance of an entire
program, we can use Amdahl’s Law to calculate a program’s speedup Sk as a function of
both vector speedup k and fraction of time spent executing vectorizable code f:

1

Sp= ——7
1-f+4

Under the assumption that the CRI workload is representative of the vectorizable portion
of a program, I use the improvement in performance over the entire workload (1.09) as the
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Figure 5.15: List Scheduler Using 16 Registers Vs. Cft77 Scheduler Using 8 Registers

To show the improvement to performance of a cost-effective number of registers, this graph
compares the performance of the list scheduler using 16 vector registers to that of the cft77scheduler
using 8 vector registers. Section 5.9.1 describes the performance metrics and the basic layout of this
graph, and Figures 5.18 and 5.19 list the execution times plotted in it.
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Finally, when I explained the issues involved in this study, I made two observations
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for enhanced performance because these are more likely to have more operations that can
execute in parallel. Figure 5.14b supports this intuition in that only the loops on the right-
hand side of the graph show any significant improvement when the number of registers is
doubled from 8 to 16. These loops are the larger ones because loops with more operations
will tend to execute longer, and longer-executing loops are plotted on the right-hand side
of the graphs.

Second, in explaining why more registers are needed, I stated that avoiding register
spills is not an adequate reason because, once enough registers are provided, execution of
register-spill code has little impact on the execution time. To demonstrate this, I reproduce
Figures 5.14b and 5.14c in Figure 5.17 and use boxes to mark loops whose minimal register
requirement is greater than the base configuration for that graph. Because I did not include
any mechanism for matching register usage with what the hardware provides, the same
execution order and hence, the same minimal register requirement for a loop are produced
by the list scheduler, irrespective of the actual configuration of the register file. If more
registers are required than the hardware can provide, the cft77 compiler will generate extra
instructions to spill registers. For example, as Figure 5.17 illustrates, register-spill code is
generated for 17 loops when only 8 vector registers are provided in the hardware, and for
5 loops when 16 registers are available. Execution of this extra code could not be effectively
hidden when using only 8 registers, as indicated by the drastic improvement in performance
of several loops when the number of registers is doubled to 16. In contrast, execution
of register-spill code has little impact on performance for 3 of the 5 loops when using
16 registers, as indicated by the lack of improvement in performance for these loops when
the number of registers is doubled to 32. Hence, once enough registers are provided, register
spills can be accommodated with little impact on performance, and the better reason for
adding more registers is to allow more aggressive scheduling so that more parallelism occurs.

Figures 5.18 and 5.19 give the per-iteration execution times and minimal register
requirements for each loop. These data are used in the various graphs I presented in this
section.

5.5 Related Work

Three other groups of researchers have investigated scheduling algorithms for vec-
tor architectures that implement a restrictive form of chaining and for ones that implement
fully flexible chaining. (Chaining hardware is described in Chapter 2, Fundamentals of
Vector Architectures on page 11). The Cray-1is an example of a vector architecture with
restricted chaining and the Cray X-MP and Y-MP are examples of ones with fully flexible
chaining. Arya modeled the problem of finding an optimal execution order as an integer
programming problem, a technique which is expected to take considerably longer to execute
than heuristic approaches such as list scheduling (7). Bernstein, Boral, and Pinter extended
the work of Aho and Johnson to apply to vector architectures and presented an optimal
algorithm that always generates an order that executes in the shortest time for a given
number of vector registers in hardware [10, 3]. However, this algorithm is applicable only
for dependence graphs that are trees, which have no common subexpressions. Finally, Tang
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Figure 5.17: Register Usage of the List Scheduler

These graphs show when execution of code for register spilling can and cannot be effectively
hidden. A box (m) marks a loop whose minimal register requirement exceeds the register capacity
of the base configuration of a graph; a cross (x) marks all other loops. Section 5.2.1 describes the
performance metrics and the basic layout of these graphs, and Figures 5.18 and 5.19 list the data
used in them.
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LOOP || cft77 SCHEDULER LIST SCHEDULER STATIC
NUM- # Vector Registers Number of Vector Registers 'Rj UPPER
BER 8 | 64 8 | 16 | 32 | 64 BOUND
1 2.50 2.48 1.85 1.85 1.85 1.85 3 1.5
2 2.88 2.75 292 3.00] 292 3.02 4 1.0
3 3.96 3.94 268 | 2.89| 2.68| 2.68 4 2.0
4 4.20 4.23 509| 5.04| 5.06| 5.04 6 3.0
5 7.36 7.42 7.05 720 | 695 6.95 6 5.5
6 8.17 8.17 6.19| 6.19| 6.75| 6.69 5 4.0
7 8.39 8.14 8.31 8.09| 8.00| 8.01 6 9.0
8 8.66 8.70 849 | 833 | 845} 8.45 7 7.0
9 9.07 9.26 956 | 9.11 | 9.11 9.20 7 8.0
10 9.12 9.19 || 10.08 | 9.86 | 10.08 10.08 7 8.0
11 10.86 10.78 || 11.03 | 11.03 | 10.80 10.80 4 5.0
12 11.00 11.02 || 10.20 | 10.06 | 10.38 10.66 5 10.0
13 15.36 15.34 956 | 9.56| 9.49| 9.49 6 7.0
14 17.67 17.35 || 16.04 | 16.06 | 16.06 16.10 8 11.0
15 17.73 17.33 || 21.36 | 17.74 | 17.81 18.05 || 12 16.0
16 19.43 18.95 || 18.66 | 18.26 | 18.49 18.43 5 16.0
17 19.72 18.92 || 24.43 | 18.75 | 18.75 18.27 || 10 15.0
18 20.20 17.30 || 27.02 | 16.11 | 16.37 16.27 || 13 14.0

tminimal register requirement

For the 18 short
iteration using two scheduling algorithms with a different
Descriptions of the ¢ft77 and list sch
respectively. The column labeled R
produced for a loop by the list-scheduling
execution time for a loop based on functional-

Figure 5.18: Performance Data for the 18 Shortest Loops

is given in Figure 5.19.

edulers are given in

est loops in the CRI workload, this table gives the average execution time per
number of vector registers in the hardware.
Figures 5.8 and 5.9 (on pages 93 and 94),
lists the minimal register requirement of the execution order
algorithm. The rightmost column gives the minimal
unit usage. Data for the other half of the CRI workload
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LOOP cft77 SCHEDULER LIST SCHEDULER STATIC
NUM- # Vector Registers Number of Vector Registers RY || vprEr
BER 8 | 64 8 | 16 | 32 64 BOUND
19 20.58 20.09 18.73 17.72 17.73 17.73 || 10 12.0
20 21.19 20.58 21.13 20.60 20.60 2065 5 29.0
21 21.70 21.95 21.12 19.16 19.11 19.17 || 11 17.0
22 24.11 24.36 22.79 18.77 18.77 18.73 || 14 14.0
23 24.77 24.66 27.14 25.18 21.64 21.81 | 18 18.0
24 29.82 29.70 40.28 29.81 29.81 29.61 || 13 25.0
25 30.35 29.49 33.90 26.29 25.24 25.24 || 20 22.0
26 33.26 33.54 35.50 35.51 35.51 358014 7 32.0
27 34.39 34.50 35.85 24.43 24.47 24.77 || 13 17.0
28 36.69 37.10 34.77 34.59 34.10 34.25 || 10 24.0
29 40.51 36.91 38.06 35.47 34.47 3447 9 25.0
30 47.32 41.19 45.24 40.83 40.30 4041 || 18 37.0
31 49.13 43.35 42.61 43.45 42.00 42681 6 31.0
32 58.82 61.80 57.75 60.06 58.83 58.83 | 9 80.0
33 67.59 66.28 70.98 67.00 65.78 66.32 || 23 60.0
34 85.17 85.89 80.26 81.51 80.46 80.71 9 78.0
35 141.59 | 135.17 || 129.33 | 129.34 | 127.80 127.27 1 6 82.0
36 303.41 | 223.14 || 369.38 | 269.98 199.53 | 193.31 || 57 || 178.0
WORK-
Loap || 1266.68 | 1160.97 || 1325.34 | 1158.83 1076.15 | 1071.80 924.0

tminimal register requirement

Figure 5.19: Performance Data for the 18 Longest Loops and the Entire Workload

For the 18 longest loops in the CRI workload, this table gives the average execution time
thms with a different number of vector registers in the hardware.
(on pages 93 and 94),

iteration using two scheduling algori
Descriptions of the ¢ft77 and list schedulers are given in Figures 5.8 and 5.9
he column labeled R lists the minimal register requirement of the execution order
scheduling algorithm. The rightmost column gives the minimal
l-unit usage. Data for the other half of the CRI workload

respectively. T
produced for a loop by the list-
execution time for a loop based on functiona

is given in Figure 5.18.

per
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and Davidson investigated the impact on performance of vector scheduling techniques and
architectural features of the Cray-1 and Cray X-MP [107].

Two other research groups, Tang, Davidson, and Tang as well as Eisenbeis, Jalby,
and Lichnewsky have both presented polycyclic vector scheduling algorithms for the Cray-2,
which does not implement chaining [108, 32}. This scheduling technique compensates for the
Jack of chaining to improve performance but at the expense of using more registers. Both
research groups indicate that more than 8 vector registers would improve the performance
of the Cray-2 but do not investigate how many more would be enough.

The above studies differ from mine in that the researchers have emphasized the
algorithm aspect and have assumed that the hardware is fixed. In contrast to these studies,
Mangione-Smith, Abraham, and Davidson compared the performance of a scheduling algo-
rithm using different hardware configurations [81]. The purpose of their study, which is a
continuation of the work by Tang et al. and Eisenbeis et al., is to determine the dimensions
of a vector register file that allows all the loops in their workload to execute in the shortest
time when using a polycyclic schedule. Because their technique for determining the minimal
register requirement of a polycyclic schedule relies on the special structure of a dependence
graph that is a tree, the loops used in their study are all trees. In contrast, 75% of the
dependence graphs in the CRI workload contain common subexpressions. To determine
the minimum number of vector registers needed for a given loop, their algorithm implicitly
enumerates all polycyclic schedules for that loop. Based on these exhaustive searches, the
researchers conclude that optimal performance for their workload is possible when using
a vector register file with 32 registers and 4 elements each, or one with 16 registers and
16 elements per register.

5.6 Summary

In this chapter, I answered the question posed in the opening paragraph of this
dissertation:
How many vector registers are enough to effectively use
the functional units of the Cray Y-MP vector processor?

To do this, 1 examined how different numbers of vector registers affect the performance of
the Y-MP. I did not experiment with the number of elements per vector register because
1 hypothesized that this would not affect performance significantly. An undertaking for
the future is to verify that increasing the number of vector registers improves performance
more than does increasing the number of elements per vector register. In addition to
experimenting with register capacity, I also examined how different algorithms for scheduling
instructions affect performance.

An integral aspect of this investigation was the interaction between theoretical
knowledge and experimental data. The former guided the investigation by providing hy-
potheses that were verified by experimentation. For example, when the ¢ft77 scheduler
performed so poorly using 64 registers, 1 correctly hypothesized that a different scheduler
was needed rather than erroneously concluding that 8 registers were enough because I un-
derstood how scheduling instructions affects register usage and execution time. Moreover,
this knowledge led me to hypothesize that more registers could improve performance by
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allowing more parallelism to occur. The computational impracticality of enumerating all
possible execution order for a loop was another hypothesis that was verified by experimen-
tation, which in turn led to the use of scheduling algorithms that are based on heuristics.
Correctly interpreting some results is another example of the interaction between knowl-
edge and data. For example, The fact that the scheduling algorithms I used are based on
heuristics explains why the list scheduler does worse than the cft77 scheduler on some loops.

Theoretical knowledge alone, however, does not provide enough information to
make decisions; quantitative results are also needed. (Such results must be obtained by
experimentation because the current state of the art in performance analysis does not
include analytical formulas that can produce such data.) For example, knowing that finding
a definitive answer to the above question is an NP-hard problem does not necessarily rule
out choosing this method. However, after producing experimental data that showed that
current computers or even ones in the near future would require years to find the definitive
answer for the majority of the loops in the CRI workload, I chose an approach that is
computationally practical but cannot give a definitive answer.

Although theoretical knowledge provides a qualitative ranking, experimental data
is necessary to quantify how much better and how often performance is improved. For
example, the descriptions of the two scheduling algorithms indicate that the list scheduling
should outperform the ¢ft77 scheduler because of their differing goals, which are summarized
in Figure 5.10 (on page 95). Nonetheless, both algorithms rely on heuristics, which can be
either exploited or thwarted by different dependence graphs; Figures 5.3 (on page 77),
for example, demonstrates how the list scheduler generates a better execution order than
does the ¢ft77 scheduler, and Figure 5.12 (on page 98) illustrates the reverse. What these
qualitative descriptions and examples do not indicate is how much nor how frequently one
scheduling algorithm outperforms the other.

Another example demonstrating how quantitative results sharpen a qualitative
ranking concerns the usage of registers. Although more registers should allow more paral-
lelism to occur which, in turn, allows the functional units to be used more often, a quanti-
tative study is needed to indicate not only how many registers improve the performance by
how much but also how frequently such performance improvement occurs. To justify chang-
ing the scheduling algorithm in the ¢ft77 compiler or increasing the number of registers, a
quantitative study using a representative set of loops is needed to show not only that the
improvement to performance is large enough, but also that the improvement occurs often
enough.

Figure 5.20 summarizes the experimental data I produced to justify the proposed
changes. This figure shows the performance of various scheduler€register combinations rela-
tive to that of the cft77 scheduler using 8 vector registers. A scheduler&register combination
improves performance significantly if it improves performance for both the entire workload
and a majority of the individual loops. The rationale for prescribing both these criteria is
given in Section 5.2.1. Based on these criteria for acceptable improvement in performance,
the cft77 scheduler does not improve performance significantly for the CRI workload even
with an abundance of vector registers, whereas the list scheduler using only 16 regsiters
does. Although the list scheduler using 32 registers further improves the performance of the
entire workload, the distribution of improvement in performance for individual loops does
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RELATIVE DIFFERENCES IN PERFORMANCE (p)
SCHEDULING
ALGORITHM ENTIRE FIGURE FOR
AND DISTRIBUTION FOR INDIVIDUAL LOOPS WORK- PERFORMANCE

NUMBER OF LOAD GRAPH

REGISTERS p<=5% —5%<p<10% 10% < p
cft77 64 0 31 5 9% |55 (p-82) |
list 8 10 19 7 -4% 5.14 (p. 100)
list 16 3 18 15 9% 5.15 (p. 102)
list 32 3 16 17 18% —
list 64 3 16 17 18% 5.11 (p. 96)
static ) 3 2 31 37% 54 (p.81)
upper bound

Figure 5.20: Summary of Performances for Various Scheduler& Register Combinations

This table summarizes the performance of various schedulerfSregister combinations relative to
that of the scheduling algorithm implemented in the 1990 version of the ¢ft77 compiler using 8 vector
registers. The raw data for this performance summary are given in Figures 5.18 and Figures 5.19,
and Section 5.2.1 (pages 83 to 87) explains the metrics used to compare the performance of a
scheduler&register combination to that of the cft77 scheduler using 8 registers. Descriptions of
the ¢ft77 and list scheduling algorithms are given in Figure 5.8 and 5.9 (on pages 93 and 94),
respectively. Because these two scheduling algorithms are based on heuristics, it is possible that
either one outperforms the other for individual loops. For example, when using 64 registers, the
¢ft77 scheduler outperforms the list scheduler by more than 5% for 3 loops, whereas the list scheduler
outperforms the cft77 scheduler for other loops. Section 5.1.2 (pages 79 to 83) describes how the
static upper bound is calculated and also explains why this “upper bound” has worse performance
than the cft77 scheduler for some of the loops.

not change significantly for this scheduler&register combination relative to the distribution
for the same scheduler using 16 registers. Hence, because the improvement in performance
does not justify doubling the number of registers from 16 to 32, the answer to the question
posed in the opening paragraph of this dissertation is 16 vector registers, as long as an
appropriate scheduling algorithm is used.

In this chapter, I emphasized performance in order to show that more than 8 vector
registers can improve performance by more than 10%. Because increasing the number of
registers is a costly endeavor, I will examine the cost of doing so in the mext chapter.
Furthermore, in order to balance the improved performance with increased cost, I will also
investigate a special organization of 16 vector registers that requires only a 10% increase in
hardware.
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Chapter 6

Bus Usage and
Register Assignment

In the previous chapter, I showed that using more than 8 vector registers signifi-
cantly improves performance. However, because this analysis of performance excludes the
cost of implementing more vector registers I explain in this chapter why adding vector reg-
isters in a straightforward fashion is ill-advised and investigate a different organization for
a vector register file that is more cost-effective.

To introduce what this different organization is, I first analyze the hardware cost of
implementing more registers and suggest an organization that is less costly. Implementing
a new register file, however, is viable only if it can be used and used without degrading
performance. Accordingly, the bulk of this chapter addresses these concerns of utility and
performance. After introducing the new organization, I describe an assignment algorithm I
developed that uses vector register files with such an organization. I then present data to
evaluate how well my algorithm uses such configurations and finish with a discussion about
choosing a cost-effective one for the Cray Y-MP vector processor.

6.1 Cost/Performance Analysis

In the previous chapter, I presented data showing that doubling the number of
vector registers from 8 to 16 improved performance by 9%. Although implementing more
registers obviously increases the cost of hardware, a general rule-of-thumb is that a new
hardware configuration that increases the cost of implementation is acceptable if it im-
proves performance by at least as much as it increases the cost of implementation. To
determine whether doubling the number of vector registers is, in fact, an acceptable trade-
off between increased cost and improved performance, in this section I first analyze the
hardware cost of implementing more, and then I combine this cost analysis with the perfor-
mance analysis of the previous chapter to examine the tradeoff between increased cost and
improved performance for various configurations of a vector register file. Finally, based on
this cost/performance analysis, I outline the goals of this chapter’s study.

A vector register file actually consists of multiple banks of registers, each of which
has two buses: a read bus to an interconnection that sends operands to a set of functional
units, and a write bus from an interconnection that receives results from those functional
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units (see Figure 2.4 on page 13 in Chapter 2, Fundamentals of Vector Architectures).
Increasing the size of the register file in a straightforward fashion increases not only the
number of register banks but also the size of the interconnections. In Chapter 3, A Case
for Vector Architectures, 1 argued that the size of these interconnections is negligible when
compared to the registers themselves. So the cost of implementing more vector registers in
a straightforward fashion is determined mainly by the register cells. But this cost analysis
applies only to a single-chip VLSI implementation. A different cost analysis is needed for
a multi-chip implementation, which is how the Cray Y-MP vector processor is built, where
the relative sizes of register banks and interconnections are quite different from their relative
sizes in a single-chip implementation.

The function of an interconnection is to transfer large amounts of data between
vector registers and functional units. Wawrzynek and von Eicken have shown that in a
single-chip, CMOS implementation such functionality is provided relatively easily by using
metal lines and multiplexors that take up a negligible amount of extra space [117, 118]. On
the other hand, in a multi-chip implementation with 64-bit data buses, this functionality
requires numerous pins to provide a physical path between vector registers and functional
units.! For example, each bus of a vector register requires 64 pins and each input or output
bus from a functional unit needs 64 pins. Because large numbers of pins are required and
because one chip can accommodate only a relatively small number of pins, many chips
are needed to implement these two interconnections. In fact, the number of chips needed
to implement both interconnections is 1.5 times the number of chips that implement the
8 vector registers in the Cray Y-MP.

Given that 8 vector registers account for 10% of the chips in an implementation of
one Y-MP processor and the accompanying interconnections account for 15% of the chips,
doubling the size of the vector register file from 8 to 16 registersin a straightforward fashion
results in a 25% increase in the chip count. Hence, in a multi-chip implementation, such
as that of the Cray Y-MP vector processor, more than half the cost of implementing more
registers is due to increasing the size of the interconnections. Because doubling the number
of vector registers produces a 9% improvement in performance, using 16 does not appear
to be an acceptable tradeoff between increased cost and improved performance.

(Although this analysis covers only the cost of a processor and ignores the cost
of the memory and I/O systems of a computer, the main purpose for this cost analysis
is to motivate the investigation of a special organization of registers that reduces the cost
of adding more registers. As I demonstrate later in this chapter, in addition to being
less expensive to implement, this special organization has comparable performance to a
traditional one with the same number of registers. Consequently, although the cost of
adding more registers relative to an entire computer is less significant, the cost/ performance
ratio can still be improved when using this special organization.)

One possible solution for improving the tradeofl between increased cost and per-
formance gain is to change the number of elements per vector register, which is also known
as the vector length. Halving the vector length from 64 to 32 while doubling the number
of vector registers from 8 to 16 results in a 15% rather than 25% increase in chip count.
Halving the vector length again to 16 results in only a 10% increase in chip count. A reason-

1 am indebted to Wei-Chung Hsu for this information.
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able vector length, however, is needed to hide both the latency of vectorizable operations
and the execution of scalar operations. Moreover, when functional units are reserved for
some number of clock periods greater than the vector length, as is the case in the Cray Y-
MP processor, the performance penalty of this extra delay can be amortized by using an
appropriately long vector length. As a result, although a vector length of 16 appears to
be an acceptable tradeoff between increased cost and improved performance, sustainable
performance may be adversely affected when the vector length is shortened so much.

Because the size of an interconnection is determined by the number of buses at-
tached to it, another possible solution for improving the cost/performance tradeoff is to
have more than one vector register share a bus. As Figure 6.1 shows, although adding more
vector registers still increases the hardware cost, the rise in cost is much less for this new
configuration than for a traditional one with the same number of registers. Another way to
describe this new configuration is that it partitions the vector registers into banks, where
each bank has its own read and own write buses. Based on this description, I call such a
configuration a partitioned vector register file.2

Both the Ardent Titan, a commercial vector computer, and the Fujitsu VPU, a
VLSI implementation of a vector processor, have implemented a partitioned vector register
file. In addition to being partitioned, these vector register files are also reconfigurable in
that the number of vector registers and their vector length can be varied under software
control. The vector register file in the Ardent Titan can be viewed as a partitioned one with
four banks, each of which contains 2048 elements [31]. The number of vector registers in a
bank can vary from 1 to 2048, depending upon the vector length which can vary from 2048
down to 1. The vector register file in the Fujitsu VPU also has four banks, each of which
contains 256 elements [64]. The number of vector registers per bank can vary from 2 to 16
depending upon the vector length which can vary from 128 down to 16.

Figure 6.2 shows a rudimentary analysis of the tradeoff between increased cost and
improved performance among various configurations of partitioned register files, where the
performance of a partitioned register file approximates the performance of a traditional one
with the same number of registers. Based on this approximation for performance, using
16 registers appears to be an acceptable cost/performance tradeoff if 4 or 2 registers were
to share a bus. Likewise, a partitioned register file with 32 registers and 4 or 8 buses, which
improves performance by nearly 18%, is nearly an acceptable tradeoff between increased
cost and improved performance, although it is not as cost-effective as one with 16 registers.
In contrast, using 64 registers will never achieve an acceptable cost/performance tradeoff
because, even though performance is improved by about 18%, the relative increase in cost
is, at best, more than three times higher no matter how many registers share a bus. One
other interesting configuration to consider from a cost standpoint is a partitioned register
file with 4 buses and 8 registers. This yields an acceptable cost/performance tradeoff as
long as performance does not degrade more than 7.5%; the best result is achieved when no
performance degradation occurs at all.

Based on this initial cost/performance analysis, using a partitioned register file

2Because 1 always deal with vector objects in this chapter, I use the term element to refer to a register
in a vector register, the term vector register interchangeably with register, and the term partitioned vector
register file interchangeably with partitioned register file.
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NUMBER 8 0% 10% 30% T70% 150%
OF BUSES 16 25% 45% 85% 165%
32 5% 115% 195%

Figure 6.1: Relative Differences in Chip Count Among Vector Register Files

This table gives the relative difference in chip count among various traditional and partitioned
vector register files with different numbers of buses and registers and with varying amounts of
partitioning. The number of elements per vector register is kept constant at 64. Figure 6.13, which
is presented in a later section, gives a cost analysis of vector register files where vector length is
varied.

The difference in chip count is relative to the total chip count (C) for the current implementation
of a Cray Y-MP processor, which uses 8 buses and 8 registers. Given that 8 vector registers account
for 10% of the total chip count and the number of chips needed to implement the two interconnections
is 50% more than the number needed for the 8 vector registers, the relative difference in cost of a
partitioned register file with B buses and R registers is:

(B8 x 1.5+ £58)0.10C _
- =

B R
(—8- x 1.5+ i 2.5) 0.10

Because the difference in cost is relative to the cost for 8 buses and 8 registers, using 4 buses and
16 or fewer registers actually results in a decrease in the overall chip count.

Based on data in Figure 6.2, which shows the tradeoffs between increased cost and improved per-
formance for partitioned register files with 16, 32, and 64 registers, the two relative chip counts high-
lighted in bold above correspond to configurations that could provide an acceptable cost/performance

tradeoff.
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Figure 6.2: Cost/Performance Comparisons for Various Partitioned Register Files

This figure combines cost data from Figure 6.1 and performance data summarized in Figure 5.20
from the previous chapter in order to compare the relative increase in chip count with the relative
improvement in performance when implementing more than 8 registers.

In addition to showing the cost of implementing traditional vector register files where each
register has its own bus, I have also shown the cost of implementing various partitioned register
files where more than one register shares a bus. Because of this sharing, a partitioned register file
imposes more restrictions on accessing vector registers. Moreover, because each performance line is
based on using a traditional vector register file, the performance in this analysis represents an upper
bound on the improvement possible for the indicated number of registers.

A general rule-of-thumb for justifying a more costly implementation is if a comparable increase
in performance can also be achieved. The above figure shows that implementing 64 registers is never
cost-effective, whereas using 8 or 4 buses with 16 registers appears to be an acceptable tradeoff

between increased cost and improved performance.
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with 16 registers appears to be an acceptable tradeoff between increased cost and improved
performance. But there is little point in implementing a partitioned register file if it can’t
be used. Moreover, in the cost/performance analysis described above, I assumed that
the performance using a partitioned register file is the same as the performance using a
traditional one with the same number of registers. This assumption, of course, is not
necessarily true. Although a partitioned register file is less costly to implement, such a
configuration, because multiple registers share a bus, imposes more restrictions on accessing
vector registers. As a result, the performance of a partitioned register file could be less than
that of a traditional one with the same number of registers.

These two shortcomings provide several goals for this chapter’s study. One goal is
to design an algorithm that can use a partitioned register file. Another goal is to evaluate
how effective the algorithm is and to determine whether the performance of a partitioned
register file is comparable to that of a traditional one with the same number of registers.
A third goal of this study, which is appropriate only if the first two are successful, is to
provide data that determines whether a partitioned register file with 16 registers, in fact,
yields an acceptable tradeoff between increased cost and improved performance.

Finally, to provide an intuitive understanding of my results, I make an important
observation that gives a clue to both how and how well a partitioned register file can be
used. To use a partitioned register file effectively, I take advantage of the fact that:

only a subset of simultaneously live values are
actually used at any given time

For example, in Figure 5.3 (on page 77 in the previous chapter) in the fourth chime of the
execution order on the left, only three out of five live values are actually being used. Values
that are live at the same time must be stored in different registers to avoid generating spill
code. However, if they are never used at the same time, they can be stored in registers that
share the same bus. For example, using the execution order on the left in Figure 5.3, the
values produced by +s and LOAD;; can share the same bus but not the values produced by
+, and LOAD;;. In other words, registers store live values, buses transfer values that are
being operated on, and there are more live values than active ones at any given time. In
the rest of this chapter, I present graphical representations of register and bus usages to
model the usage of a partitioned register file, and present data showing that the number
of simultaneously active values is sufficiently small that a partitioned register file is an
acceptable cost/performance configuration for implementing more registers.

6.2 Assignment Algorithm for
a Partitioned Register File

In this section, I describe the algorithm I developed to use a partitioned register
file where more than one register shares a bus. Because most people tend naturally to focus
on on the execution of operations, they often consider the use of registers (and buses) from
the perspective of the operations that use these resources. In other words, an operation
reads one or two operands from registers and produces a result that is stored in a different
register, which in turn is read as an operand for one or more additional operations.
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This point of view about operations, however, does not provide the proper frame
of reference for determining how to use registers and buses. To do so, focus must instead be
placed upon the operands and results, which are seen as values, each of which is produced by
some operation. A value is stored in a register from when it is first produced by an operation
to when it is last read by another operation. Moreover, a value is transferred on a bus when
it is first produced as a result and for each time that it is read as an operand. This point of
view shows that values are assigned to registers and buses to use these resources properly.
In other words, using a partitioned register file consists of two assignment problems:

1. assigning values to registers without causing any register conflicts, and

2. assigning values to buses without causing any bus conflicts.

Access conflicts, such as WAR or WAW register dependences, are to be avoided because they
add extra chimes to execution time. These two problems are related in that assignments for
either one are made under the additional constraint that a fixed number of registers share
a bus.

One of the goals of this study is to determine whether the performance of a par-
titioned register file is comparable to that of a traditional one with the same number of
registers. In the context of these assignment problems, this goal is equivalent to deter-
mining whether the number of buses must increase with the number of registers in order
to avoid any access conflicts. The algorithm I developed thus attempts to minimize the
number of buses and registers assigned. Minimizing register usage, however, can increase
bus usage, and vice versa. Because increasing the number of buses requires more hardware,
higher priority is given to minimizing the number of buses assigned. Hence, my algorithm
really consists of two algorithms executed in sequence: the first one assigns values to buses
and then, for each assigned bus, the second algorithm assigns values to registers that share
a bus.

My algorithm is also influenced by the ¢ft77 compiler (in which it would execute)
and by practical considerations in the hardware. The input to this algorithm is an execu-
tion order for a dependence graph, rather than the dependence graph itself, because register
assignment occurs after scheduling in the ¢ft77 compiler. Moreover, because a dependence
graph corresponds to a basic block, I consider only local register assignment.? Finally, in
a practical hardware configuration, the number of registers per bus is fixed and equal to
the number of registers divided by the number of buses. This quotient is an independent
parameter that allows my algorithm to be used for a partitioned register file with an arbi-
trary but fixed amount of partitioning. Additionally, to keep the implementation simple,
the number of registers per bus is a power of two.

To keep this algorithm simple, I do not consider the possibility of register spilling.
Moreover, although the hardware allows assignments of the form Vi<-Vi op Vj, my algo-
rithm never uses such assignments; instead, it always assigns a different register for each
value read or produced by an operation. 1 address both these omissions in a later section
when I evaluate the effectiveness of this algorithm.

3] outline the various types of algorithms for register assignment when I discuss related studies in Sec-
tion 6.5.
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To model the use of a partitioned register file, my assignment algorithm is based
on the optimal graph coloring problem, which poses the question:

What is the minimum number of colors needed to color
a graph such that no adjacent vertices are assigned the
same color? [46)

The formulation of register assignment as a graph coloring problem was independently
developed by Ershov and Chaitin et al. for assigning scalar registers globally [35, 18]. When
an assignment problem is modeled as a graph coloring problem, the colors represent the
resources to be assigned and the graph, called an interference graph, indicates when an
assignment will result in 2 conflict. In an interference graph, a vertex is a value and an edge
represents a potential resource conflict. In other words, an edge identifies two values that
would interfere with each other if they were assigned to the same resource.

To present my assignment algorithm, I first define two interference graphs. Then,
I examine the structure of these interference graphs to determine whether this problem is
NP-hard. Although coloring an arbitrary graph is known to be NP-hard, coloring interval
graphs can be done in polynomial time [46). After showing that one graph has this special
structure and the other does not, 1 describe how these interference graphs are used to
assign values to a partitioned register file, and how the special structure of the one graph
guarantees that the minimum number of registers is used per bus.

6.2.1 Two Interference Graphs

In my assignment algorithm, I use two interference graphs: a live interference graph
for assigning registers, and an active interference graph for assigning buses. Figure 6.3
shows a small example of these two graphs and illustrates how coloring them produces
an appropriate assignment of values to registers and to buses. Both the live and active
interference graphs for a dependence graph have the same set of vertices, namely the values
produced by operations in a dependence graph. In the execution order used for the example
in Figure 6.3, a value is represented by an arrow, whereas in the corresponding interference
graphs a value is identified by the operation that produces it. Although the vertices are the
same in associated live and active interference graphs, the set of edges that connect vertices
differ.

Whether two vertices are connected in 2 live interference graph depends on register
usage. Because two values assigned to the same register will conflict if the values are live
at the same time, an edge is placed in a live interference graph between two values that
are simultaneously live in order to model how register conflicts can occur. In the execution
order of Figure 6.3, all values are live at the same time because their associated arrows
occur in the same chime. Hence, there is an edge among all the values in the corresponding
live interference graph.

In a similar fashion, whether two vertices are connected in an active interference
graph depends on bus usage. Because two values assigned to the same bus will conflict if the
values are either read or written at the same time, an edge is placed in an active interference
graph between two values that are simultaneously read or simultaneously written in order
to model how bus conflicts can occur. In the execution order of Figure 6.3, a value is
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Figure 6.3: Live and Active Interference Graphs

This figure illustrates the part of the live and active interference graphs associated with the
second chime of the execution order on the right in Figure 5.3 (on page 77 in the previous chapter).
This portion of the execution order is reproduced above. A vertex in an interference graph represents
a value, identified in the above figure by the operation that produces it. An edge represents a
potential resource conflict between its incidental vertices.

This figure also illustrates how coloring these graphs provides a conflict-free assignment of values
to registers and buses, where more than one register can share a bus. The individual interference
graphs in the middle of the above figure demonstrate how coloring the live interference graph assigns
values to registers (denoted above as the four “colors” RO, R1, R2, and R3) and how coloring the
active interference graph assigns values to buses (denoted above as the three “colors” BO, B1, and
B2). Once colored, these two graphs together indicate which values can be stored in registers that
share the same bus without causing any resource conflicts that increase execution time.
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written into a register if the beginning of its arc appears in that chime, and a value is read
from a register in a chime if the end of its arc appears in that chime. Because the values
+, and LOAD;; are read in the same chime, there is an edge between these two values in
the corresponding use interference graph. Furthermore, there are edges between the values
LOAD,, LOAD;,, and *;2 because these are all written in the same chime.

In an active interference graph, there is no conflict between a read that occurs si-
multaneously with a write. This distinction is important for two reasons. One, it accurately
reflects what the hardware can do. Secondly, it reduces the number of edges in the active
interference graph, thus increasing the probability that fewer buses can be used.

Figure 6.3 also demonstrates how coloring these two interference graphs gives a
conflict-free assignment of values to registers and buses where more than one register shares
a bus. To color the live interference graph in Figure 6.3, a minimum of four colors are
needed. In other words, a minimum of four registers (denoted RO, R1, R2, and R3) are
needed to store these values without any access conflicts among registers. To color the
active interference graph in Figure 6.3, 2 minimum of three colors are needed. In other
words, a minimum of three buses (denoted BO, B1, and B2) are needed to use these values
without any bus conflicts. Together, the live and active interference graphs indicate which
values can be assigned to registers that share a bus. For this example, the values +; and
LOAD, can be stored in different registers that share a bus without any register or bus
conflicts. Conversely, the values +2, LOAD;;, and *;; must be stored in different registers
that use different buses to avoid access conflicts among registers or buses, a condition that
also holds for the values LOAD,, LOAD,;, and *;2.

Although values that are simultaneously live are not necessarily simultaneously
active, the reverse is true; values that are simultaneously active must also be simultaneously
live. As a result, the set of edges for an active interference graph is a subset of the edges
in the associated live interference graph. This fact allows my algorithm, when it assigns
values to buses, to keep track of values that are live at the same time.

When constructing these interference graphs, a compiler needs accurate informa-
tion about the lifetimes and usage times of values before it can properly assign registers and
buses. To obtain this information, 2 compiler simulates the execution of the vectorizable
operations of a dependence graph to determine the time intervals in which values are written
and read. In this section, however, I ignore the effects of operational latencies for the sake
of simplicity, even though this does not accurately reflect what the hardware actually does.
A simulation that uses detailed timing information about the execution of vector instruc-
tions produces interference graphs that more closely reflect what actually happens in the
hardware, particularly for a processor that supports fine-grain parallelism. More accurate
interference graphs in turn allow a compiler to assign registers and buses so that access
conflicts will definitely not occur during execution. The accuracy of the length and relative
positioning of time intervals does not affect how the assignment algorithm works but rather
how many buses and registers are needed to avoid access conflicts. Consequently, an im-
plementation of this assignment algorithm must include the effects of operational latencies
when these interference graphs are constructed.

To summarize, live and active interference graphs, which model potential register
and bus conflicts respectively, are constructed from an execution order of a dependence
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graph. These interference graphs have the same set of vertices, which are the values pro-
duced by operations in the dependence graph. However, in a live interference graph, there
are edges between values that are live at the same time, whereas in an active interference
graph there are edges between values that are used in the same way at the same time.

6.2.2 Structure of Live and Active Interference Graphs

Although coloring an arbitrary graph is known to be NP-hard, coloring interval
graphs can be done in polynomial time [46]. Hence, to determine whether this particular
assignment problem is NP-hard, in this subsection I examine the structure of the interfer-
ence graphs by using alternative representations of these graphs. The traditional diagram
of a graph, which uses symbols for the vertices and lines for the edges, ignores the temporal
condition when values are live or active with respect to each other. Alternative represen-
tations, which are illustrated in Figure 6.4, capture this timing information to reveal any
special structure of these interference graphs.

A live interference graph is an interval graph,® so named because it can be repre-
sented by a set of intervals on the real line:

Given a collection of intervals Iy,..., I, on the real line, an interval graph is a
graph where each vertex represents an interval, and there is an edge between
vertices i and j if and only if the intervals I; and I; overlap [49].

When drawn as an interval graph, the lifetime of the ith value is represented by the interval
I;; when the ith value is produced or last read is indicated by the placement of I; on the
real line. Figure 6.4 shows a live interference graph drawn both in the traditional manner
and as an interval graph. Not all graphs can be drawn as interval graphs. For example, the
following graph cannot be represented by a set of intervals on the real line in the manner
described above nor can it be constructed as the live interference graph for any aependence
graph:

An active interference graph, on the other hand, is an intersection graph:

Given a collection of sets S1,. .., S, of intervals on the real line, an intersection
graph is a graph where each vertex represents a set, and there is an edge between
vertices i and j if and only if some intervals in S; and §; overlap [82].

When drawn as an intersection graph, the set S; contains the time intervals in which the it
value is either written or read, and the placement of these intervals on the real line indicates
when the ith value is actually active. Figure 6.4 shows an active interference graph drawn
both in the traditional manner and as an intersection graph.

Unfortunately, an intersection graph has no special structure because any arbitrary
graph can be described as an intersection graph:

‘In graph theory, the name of a graph typically reflects some special structure in that graph, whereas,
for compilation purposes, the name of a graph commonly reflects what that graph represents.
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Figure 6.4: Alternative Representations for Live and Active Interference Graphs

This figure shows how the live and active interference graphs in Figure 6.3 can be drawn as
a collection of time intervals on the real line. These alternative representations capture the timing
information ignored by the traditional drawing of a graph. A line in the graphs illustrated here
represents a different component of a graph; a line in the traditional drawing represents an edge,
whereas one in an interval or intersection graph represents a vertex. To draw an active interference
graph as an intersection graph, I use a dashed interval to represent when a write occurs and a solid
interval to represent when a read occurs. Edges in interval and intersection graphs are not explicitly
drawn in but are, instead, implicitly represented by overlapping intervals. In the above figure, I
ignore the effects of operational latencies for the sake of simplicity and assume that values active in

the same chime are active at exactly the same times.
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Any finite graph can be considered the intersection graph of a collection of sets:
an edge is an element in the sets and the set associated with a vertex contains
the edges incident to that vertex [82].

For example, the following figures represent three different forms of the same graph where
a number labels an edge and a set labels a vertex:

0 (1,2) == (1.4) ':_':l' R
I zl |4 Hty
—_ HHY

2,3}/ (3.4} - —

The figure on the left represents the traditional way a graph is drawn, whereas the middle
one shows how a collection of four sets represents the same graph and the figure on the
right represents the graph drawn as a collection of overlapping intervals. To put this in
the context of my assignment problem, an active interference graph is an arbitrary graph.
Moreover, any intersection graph corresponds to a sequence of loads and stores from which
an active interference graph can be built:

The leftmost interval on the real line in each vertex S; of an intersection graph
corresponds to a load, while the rest of the intervals in S; correspond to stores
that are dependent on §;’s load. The order in which these loads and stores are
executed is the same as the order in which the intervals from all the vertices
appear from left to right on the real line.

Hence, coloring an active interference graph is NP-hard.

In addition to revealing the structure of my interference graphs, interval and inter-
section graphs also serve as convenient visual aids for developing an assignment algorithm
and debugging its implementation. Although extremely small graphs can be drawn in the
traditional fashion, this becomes rather messy when the number of vertices or edges reaches
even a modest quantity, such as seven, and many of my interference graphs have substan-
tially more vertices and edges than this; these graphs can be easily drawn as either interval
or intersection graphs on a single page. For example, Figure 6.5 shows the live and active
interference graphs for one of the loops in the CRI workload that has 47 values.

In this subsection, I emphasized the usage of intervals on the real line to represent
my interference graphs. On the other hand, a computer uses yet another representation of
a graph that is described in the previous subsection. All of these different representations
portray the same graph with varying amounts of information captured in the description. In
addition to revealing the structure of these graphs, the conceptual representations described
above enable a human to better understand this assignment problem. Furthermore, I use the
special structure of the interval graph to prove (in the next section) that a polynomial-time
algorithm uses the minimum number of registers possible to assign values to registers.

6.2.3 Assigning Values to Buses and Registers.

In this subsection, I describe the algorithm I developed to use a partitioned register
file. The ideal goal of this algorithm is to use the minimum number of buses and registers
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Figure 6.5: A Large Example of Live and Active Interference Graphs

This figure demonstrates large live and active interference graphs that are constructed from a
loop in the CRI workload. Each graph contains 47 values. A value in the live interference graph
is represented by a dotted line, whereas a value in the active interference graph is represented by a
collection of short intervals that are horizontally aligned. A dashed interval indicates when a value
is written and a solid interval indicates when it is read. As an indication of the complexity of these
graphs, the seventh value has at least 33 edges in the active interference graph to represent potential
conflicts in read accesses.
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without causing any access conflicts, such as WAR or WAW register dependences, which
add extra chimes to execution time. However, because 1 demonstrated that coloring an
active interference graph is NP-hard, finding the minimum number of buses and registers
for my assignment problem is also NP-hard.

Nevertheless, as with the scheduling problem described in the previous chapter,
algorithms based on heuristics can minimize bus and register usage, although there is no
guarantee that the minimum has been achieved. Although I would ideally like to minimize
both the number of buses and the number of registers, this is not always possible due to
conditions that oppose minimizing each quantity. Moreover, because increasing the number
of buses requires more hardware than increasing the number of registers, higher priority is
given to minimizing the number of buses.

My assignment algorithm actually consists of two algorithms, executed in sequence.
Because minimizing bus usage has higher priority, the first algorithm assigns values to buses
and then, for each assigned bus, the second algorithm assigns values to registers that share a
bus. To bound their execution time, these algorithms do not backtrack nor do they re-assign
buses or registers in an attempt to use fewer resources. The organization of assignment
algorithms is similar to that of scheduling algorithms in that values are processed in a
particular order, and a bus or register is chosen based on some strategy. What the order
and strategy are depends largely upon what the goal of an algorithm is.

Figure 6.6 gives the algorithm that examines an active interference graph to assign
values to buses so that bus conflicts are avoided. Because the number of registers per bus
is fixed in the hardware, my algorithm also inspects the associated live interference graph
to ensure that no more than that number of registers would be needed per bus to avoid
register conflicts. Its basic strategy is to use buses as often as possible and introduce a new
bus only if all available ones have been used or if too many values that are simultaneously
live have already been assigned to those buses.

Because the goal of this algorithm is to minimize the number of buses that are
assigned, it would seem judicious to first process values that have more potential conflicts
under the rationale that a value with more edges is more likely to be in a part of the
graph that is highly connected. But because this rationale is not always justified, my
algorithm instead assigns values in the order they are created, an order that corresponds to
the execution order of the operations that produce the values. Although it is not possible
to always use the minimum number of buses, assigning values in order of creation time
guarantees that the minimum number of registers per bus will be used, which in turn
increases the chances of using fewer buses. As I will explain in the following paragraphs,
this guarantee is possible because of the special structure of a live interference graph.

Figure 6.7 gives the algorithm that examines a live interference graph to assign
values to registers so that access conflicts among registers are avoided. Algorithms similar
to this one are described in standard compiler texts [2, 51). In a fashion similar to the
algorithm for bus assignment, the basic strategy for assigning registers is to use registers
as often as possible and to introduce a new register only if all currently available ones
have been used. An important characteristic of this algorithm is that it will always assign
the minimum number of registers for any live interference graph and do so in a time that
is polynomially proportional to the number of values in the graph. In contrast, other
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Given an execution order of a dependence graph, assign a bus to each value in order
of creation time by choosing the first bus b such that:

1. no neighbor in the active interference graph is assigned to bus b, and

2. no more than R/B — 1 neighbors in the live interference graph are assigned to
bus b.

If no such bus exists, choose a new bus that has not yet been assigned.

Figure 6.6: An Algorithm for Assigning Values to Buses in a Partitioned Register File

This algorithm assigns buses to values that are produced and used in a particular order for a
dependence graph. The creation time of a value is when a value is produced by its operation and,
hence, corresponds to when that operation begins executing. The goals of this algorithm are to
avoid conflicts due to register and bus accesses where multiple registers share a bus, and, in doing
so, to minimize the number of buses and registers used.

Information in the interference graphs is used to avoid access conflicts. Bus conflicts are guar-
anteed not to occur by choosing a bus not already assigned to a value that is used in the same way
at the same time. When values are simultaneously active in the same way is recorded in the active
interference graph. Access conflicts among registers are guaranteed not to occur by choosing a bus
not already assigned to R/B values that are simultaneously live with the value being processed,
where R is the number of registers in hardware and B is the number of buses. Such information is
recorded in the live interference graph.

Minimizing the number of buses and registers is accomplished in separate ways. The number
of buses used is minimized by choosing a new bus only when all previously assigned ones will cause
a bus conflict if chosen. The number of registers used is minimized by processing values in the order
in which their associated operations are executed. Assigning values in this order causes the number
of values simultaneously live with the value being processed to be a true reflection of the minimum
number of registers needed at that point. As explained in the accompanying main text, this true
reflection arises as the result of the special structure of the live interference graph. However, unlike
the algorithm in Figure 6.7, more than the minimum number of registers may be used because higher
priority is given to minimizing the number of buses, which tends to increase the number of registers

used.
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Given an execution order of a dependence graph, assign a register to each value in
order of creation time by choosing a register r such that:

1. register r is among those that have already been assigned to at least one of the
previously processed values, and

2. no neighbor in the live interference graph is assigned to register 7.

If no such register exists, choose a new register that has not yet been assigned.

Figure 6.7: An Algorithm for Assigning the Minimum Number of Registers

This algorithm assigns registers to values that are produced and used in a particular order for
a dependence graph. The goals of this algorithm are to avoid conflicts due to register accesses and,
in doing so, to use the minimum number of registers.

Register conflicts are guaranteed not to occur by choosing a register that is not already assigned
to a simultaneously live value.

The number of registers used is minimized by choosing a new register only when all previously
assigned ones will cause conflicts if chosen. In addition, because values are assigned in the order of
their creation times, the minimum number of registers is always assigned, a fact that is proven in

the accompanying text.

polynomial-time algorithms do not always use the minimum number of colors. Such an
algorithm results from a slight modification of the algorithm in Figure 6.7, where registers
are assigned in order of the number of potential conflicts a value has instead of by its
creation time. To illustrate that one algorithm is optimal and the other is not, Figure 6.8
shows the assignments produced by these algorithms for the same live interference graph.

The following two paragraphs prove why the modified algorithm is not an optimal
one and the algorithm in Figure 6.7 is. These proofs are based on the following condition
for optimality:

If a value, which is about to be processed, is live at the same time as some other
values that have already been processed, then these other values must also be
simultaneously live with each other.

If this condition is always satisfied by an algorithm, then the number of registers used by
such an algorithm equals the maximum number of simultaneously live values, which is the
minimum number of registers needed for an execution order to avoid any register conflicts
(as I explained in Section 5.1.1 of Chapter 5, Register Usage and Instruction Scheduling).
This condition, however, is sufficient but not necessary for an algorithm to be optimal.
For example, Ford and Fulkerson describe a different algorithm that does not satisfy this
condition but is nonetheless optimal [43, pages 64-67).

The modified algorithm does not always satisfy the optimality condition because
it is possible to process a value after assigning registers to values that are simultaneously
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Figure 6.8: One Example of Two Algorithms that Assign Values to Registers

This figure demonstrates how two slightly different algorithms that assign values to registers
use different numbers of registers for the same live interference graph. For this example, values are
labeled A through K. The assignment on the left is produced by the algorithm listed in Figure 6.7,
whereas the assignment on the right is produced by the same algorithm but with a minor modifica-
tion: the order in which values are assigned is based on the number of potential conflicts a value has
rather than its creation time. The number of potential conflicts a value has is equal to the number
of edges incident upon it.

Not only does the assignment on the left use one fewer register, but it also uses the minimum
number possible; using fewer than three registers for this live interference graph would result in
register conflicts. Moreover, the algorithm that produces the assignment on the left will always
use the minimum number of registers for any live interference graph, whereas the slightly modified

algorithm will not.
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live with it but not with each other. Such a situation is illustrated for the value F in the
assignment on the right in Figure 6.8. For this example, value F is live at the same time
as the values D, E, and G but these other values are not all simultaneously live with each
other. Nonetheless, by the time value F is processed, its three neighbors have been assigned
to different registers as follows:

Because value G and another value, C, have the most number of potential con-
flicts but are not simultaneously live, these two values are assigned to register RO
first. Although value C could have been assigned a register different than RO, re-
call that a goal of these algorithms is to minimize the number of registers. When
value C is assigned its register, there is not enough information to know that a
different register could have been used without increasing the overall number of
registers. Without this information, which becomes available after processing
more values, and given the algorithm’s goal, value C is assigned the register RO.

The next values to be assigned registers are values D, E, and F, which all have the
same number of potential conflicts. I have arbitrarily chosen to process values D
and E first, which are assigned to two new registers, R1 and R2, because these
two values are simultaneously live with each other and with value C.

Consequently, because different registers are first assigned to all three values that are live
at the same time as value F, value F is assigned to a fourth register even though a different
assignment can use only three registers. Although I chose an arbitrary order in which to
process values D, E, and F, any assignment order for these three values results in a less
than optimal assignment for the same reason: all neighbors of the last of these three values
to be assigned are not all simultaneously live with each other but, nonetheless, have been
assigned to different registers.

In contrast, the algorithm in Figure 6.7 always satisfies the optimality condition.
For example, when the value F in Figure 6.8 is assigned to a register using this algorithm,
only two of its neighbors in the graph, values D and E, have already been assigned to
registers. More importantly, these two values are not only simultaneously live with value F
but also with each other. In general, the optimality condition is satisfied for any live
interference graph because such a graph is an interval graph. Moreover, because values
are assigned to registers in the order of their creation times, if a value has a lifetime that
overlaps those of other values already assigned to registers, then the lifetimes of these values
must overlap as well. Thus, the optimality condition is always satisfied when processing a
value, and this algorithm always uses the minimum number of registers needed to avoid any
register conflicts.

The proofs described above highlight the importance of the relative positions of
the endpoints of lifetimes, and algorithms that do not use this information tend to be less
than optimal. For example, the algorithm based on the number of potential conflicts is not
optimal. Although a potential conflict provides information about the relative position of
two lifetimes, it says nothing about the relative positions of the endpoints of these lifetimes.
Another example of an algorithm that does not use this information is one in which the
length of a value’s lifetime is the basis for the order of assignment [76). Such an algorithm
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will also produce a less than optimal assignment for the live interference graph illustrated
in Figure 6.8.

Conversely, several algorithms that make use of the relative positions of the end-
points of lifetimes are optimal, such as the algorithm based on the creation times of values;
another is the one described by Ford and Fulkerson. Other examples that make use of
the relative position of the endpoints are variations on the assignment order used for the
algorithm in Figure 6.7. Other sequences that are possible are:

1. in the reverse order of when values are first produced,
9. in the order of when values are last read, or
3. in the reverse order of when values are last read.

Although different orders are used, the altered algorithms still satisfy the optimality condi-
tion and, hence, are optimal.

In summary, assigning values in the order of their creation time always produces
an optimal register assignment. Although this does not always produce an optimal bus
assignment, assigning values in this order guarantees that, when a value is processed, the
number of its neighbors in the live interference graph assigned to a particular bus is also
the minimum number of registers needed at that point. This, in turn, increases the chances
of assigning fewer buses. Using creation time instead of number of potential conflicts or
lengths of lifetimes has implementation benefits as well because values do not have to be
sorted into an order different from that of the given execution order. Moreover, because
values with more potential conflicts tend to have longer lifetimes and, hence, are executed
earlier, an algorithm based on creation time still has some of the benefits of one based
on a count of potential conflicts. In a later section, I will present some quantitative data
showing that an algorithm based on creation time uses slightly fewer buses than one based
on a count of potential conflicts.

I have intentionally given high-level descriptions of my algorithms so that a pro-
grammer has as much freedom in implementing these algorithms without affecting their
stated goals. In particular, the description of the algorithm for assigning registers is delib-
erately nonspecific about which register to choose when there are several candidates (see
Figure 6.7). The choice of a register is left as an implementation detail because this informa-
tion is not used when proving that the algorithm is optimal in its register usage. Asa result,
other reasons can be used to dictate the choice of a register without affecting the number of
registers assigned. On the other hand, because little can be shown mathematically about
bus usage, the algorithm for assigning buses does specify which bus to choose, namely the
first bus that was ever assigned and that satisfies the conditions for avoiding access con-
flicts (see Figure 6.6). Because the data I produced for showing how many buses are used
is based on this algorithm, altering the choice of bus may affect how many buses are used.
If a different rule for choosing a bus is preferred for other reasons, further experimentation
is needed to determine the impact of bus choice on bus usage.
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6.3 Experimental Framework

In this section, I briefly describe the performance metric and the methodology I
use to carry out the studies in this chapter. Other aspects of the experimental framework,
such as the architectural platform, the performance tools, and the workload are described
in Chapter 4, Common Ezperimental Framework.

6.3.1 Performance Metric

For this study I should ideally have compared the execution times of the CRI work-
load using register files with various degrees of partitioning. But because the Y-MP sim-
ulator does not model a partitioned register file, and because I did not have access to the
source code for the simulator, I compare instead the number of conflict-free assignments
my algorithm produces for the CRI workload using various configurations of vector register
files. Unlike execution time, a count of conflict-free assignments cannot indicate how much
worse an assignment with conflicts performs relative to one that is conflict-free. Because
this performance metric is less informative than execution time, decisions based on counts
of conflict-free assignments are more conservative than ones based on execution time.

Nonetheless, a count of conflict-free assignments is a suitable alternative for a
performance metric. This is because an execution order for a dependence graph will be
executed in the same amount of time using a partitioned register file or a traditional one
as long as an assignment for that configuration is conflict-free. Furthermore, this metric
can be collected at compilation time unlike at execution time, which requires executing the
generated code on the Y-MP simulator. As a result, a count of conflict-free assignments
provides a quick method for evaluating the effectiveness of the algorithm and any of its
variants.

6.3.2 Methodology

To determine the minimum number of buses needed to effectively use the functional
units of the Cray Y-MP vector processor, I use the heuristic algorithm presented in the
previous section and compare the performance of its assignments for a different number
of registers and buses. Such a comparison cannot definitively give the minimum number
of buses needed because this assignment problem is NP-hard; finding the optimal answer
for such a problem is practically infeasible for the same reasons that finding the optimal
answer for the scheduling problem, another NP-hard problem, is practically infeasible (see
Section 5.2.2 in Chapter 5, Register Usage and Instruction Scheduling). In additional,
a heuristic algorithm has the advantage that it will increase compilation time minimally
when it is used in a compiler.

6.4 How Many Buses?

In a previous section, I explained how to assign values to a partitioned register file
by using an algorithm that attempts to minimize the number of buses and registers assigned.
In this section, I present data to evaluate how well a partitioned register file can be used
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Figure 6.9: Data for Evaluating the Usability of a Partitioned Vector Register File

This table lists the percentage of dependence graphs for which my algorithm produces an
assignment with no conflicts for the indicated number of buses and registers. For example, for 94%
of the dependence graphs in the CRI workload, my algorithm uses 8 buses or less, and 16 registers
or less to produce a conflict-free assignment. Because one of the goals of this study is to determine
whether the number of buses can remain at 8, which is the number of buses the Cray Y-MP currently
implements, I have highlighted the data for 8 buses.

and to determine how many buses and registers provide an acceptable cost /performance
configuration for the Cray Y-MP vector processor.

6.4.1 Performance Evaluation of Algorithm
and Partitioned Register Files

Figure 6.9 tabulates the fraction of dependence graphs that have a conflict-free
assignment using partitioned register files that have anywhere from 4 to 128 registers and
from 4 to 32 buses. This data shows that the count of conflict-free assignments does not
change significantly among the various configurations of vector register files with 16 or
more registers. From this observation, I conclude that a partitioned register file performs
comparably to a traditional vector register file with the same number of registers as long as
enough registers are provided.

This data also shows that, with only 4 buses, there are many dependence graphs
that do not have a conflict-free assignment, even when an abundance of registers is provided.
Hence, 4 buses are clearly not enough to effectively use the functional units of the Cray Y-
MP processor. Although a partitioned register file with 4 buses is attractive from a cost
viewpoint, such a configuration is never an acceptable choice because of its consistently
poor performance. Moreover, because the coverage is so poor, this data also suggests that,
in general, a partitioned register file with 4 buses is an inadequate design for a vector
processor with a configuration of functional units comparable to the Y-MP. In particular,
the partitioned register files for the Ardent Titan and the Fujitsu VPU, which both use
4 buses, may be ineffective for their respective configuration of functional units, although
further investigation is needed to verify this hypothesis.

On the other hand, doubling the number of buses from 4 to 8 results in a large
increase in the number of conflict-free assignments, and most of the dependence graphs have
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a conflict-free assignment when 16 or more registers are provided. Moreover, because there
is little improvement when the number of buses is doubled from 8 to 16, this data shows
that 8 buses are enough to effectively use the functional units of the Cray Y-MP processor.

Although no assignment algorithm can guarantee to use the minimum number of
buses, I stated in a previous section that assigning values in the order of their creation time
instead of by the number of their potential conflicts will tend to use fewer buses. This is
because assigning values by creation time guarantees that at least the minimum number
of registers per bus will be used, which in turn increases the chances of using fewer buses.
Quantitative evidence of this is given in Figure 6.10, which indicates the number of buses
assigned by these two algorithms for a partitioned register file with 8 buses and 1, 2, or
4 registers sharing a bus. Regardless of the amount of partitioning, assigning on the basis
of creation time uses fewer than 8 buses for a greater fraction of the dependence graphs
in the CRI workload. Although this is not a crucial difference—both algorithms produce
a comparable number of conflict-free assignments for 8 buses—assigning values by creation
time is nonetheless the better choice not only because it uses slightly fewer buses, but also
because it is easier to implement.

6.4.2 Making a Stronger Case for 8 Buses and 16 Registers

From the data in Figure 6.9, it is clear that 8 buses are enough, but the ap-
propriate number of registers—16 or 32—is less obvious. Because these numbers do not
reflect execution time, there is no way of knowing whether increasing the number of reg-
isters from 16 to 32 would result in a significant improvement in performance. A stronger
case for 16 registers and 8 buses, however, could be made by increasing the number of
conflict-free assignments for this configuration. To do this in a systematic fashion, in this
subsection I examine in greater detail the seven dependence graphs for which my algorithm
generates an assignment with conflicts for any clues that would result in more conflict-free
assignments. Once I find a method that produces a conflict-free assignment for one of these
dependence graphs, I use that method on the rest of the dependence graphs to see whether
more conflict-free assignments are produced overall.

For two of the seven dependence graphs, my assignment algorithm uses more than
8 buses for different reasons. For one of these dependence graphs, more than 8 buses are
assigned because my algorithm doesn’t happen to produce the best assignment, emphasizing
the heuristic nature of this algorithm. But assigning values to buses in the order of their
final reads or death times, rather than their creation times, does produce a conflict-free
assignment for 8 buses and 16 registers. Using death time instead of creation time as the
basis for assignment for all the graphs in the CRI workload, however, does not change the
overall number of conflict-free assignments when using 8 buses and 16 registers. This is
because both these algorithms are based on heuristics and neither will always produce the
best assignment; although assigning values by death times produces a better assignment for
some dependence graphs, assigning values by creation times produces a better assignment
for other dependence graphs.

More than 8 buses are assigned for the second dependence graph because, as
I discovered upon closer examination, its associated active interference graph contains a
complete graph with 9 vertices. Although no assignment algorithm can use fewer than
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Figure 6.10: Comparing the Effectiveness of Two Assignment Algorithms

This figure compares the effectiveness of two slightly different assignment algorithms by summa-
rizing the number of buses each uses for partitioned register files with 8 buses and 1, 2, or 4 registers
sharing a bus.

A point (b, p) on a curve means that a particular algorithm uses b or fewer buses for p percent
of the dependence graphs to produce a conflict-free assignment using a specific partitioned register
file. Hence, each curve is the cumulative distribution of dependence graphs that have a conflict-free
assignment using a particular algorithm for a specific partitioned register file. The solid curves
indicate the number of buses used by the algorithm listed in Figure 6.6, and the dashed curves
indicate the number of buses used by the same algorithm but with a slight modification: values are
assigned based on the number of potential conflicts rather than their creation times. The bottom two

curves are the cumulative distributions of the two algorithms when assigning 8 buses and 8 registers,
the middle two curves are the distributions when assigning 8 buses and 16 registers, and the top
pair of distributions are for 8 buses and 32 registers.

These distributions show that, regardless of the amount of partitioning, assigning on the basis of

creation time uses fewer than 8 buses for the most number of dependence graphs in the CRI workload.
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9 buses for this interference graph, interference graphs correspond to a particular execution
order of a dependence graph, and a different execution order allows my algorithm to produce
a conflict-free assignment for this dependence graph using 8 buses. This different execution
order is generated by a slight modification to the scheduling algorithm, in which operations
are processed in their statement order rather than in the order of their path distance.
Although changing the scheduling algorithm may affect the execution time of the loops,
this is only relevant if the change increases the overall number of conflict-free assignments
when using 8 buses and 16 registers. As with the previous attempt, the heuristic nature of
the scheduling and assignment algorithms prevents this method from always producing the
best results. In fact, applying this change to all the dependence graphs reduces the overall
number of conflict-free assignments by one, thereby suggesting poorer performance for the
entire CRI workload.

Although my algorithm uses more than 8 buses for two dependence graphs, it gen-
erates assignments with conflicts for the other five dependence graphs because their minimal
register requirement is greater than 16. For these five dependence graphs, a conflict-free
assignment for 8 buses and 16 registers is possible only if their minimal register require-
ment is reduced. Because this requirement is associated with a particular execution order,
one method of reducing it is to use a different scheduling algorithm to generate different
execution orders for the same set of dependence graphs. Using the modified scheduling algo-
rithm described in the previous paragraph thus reduces the minimum register requirement
to less than 16 for two of the five dependence graphs. Unfortunately, as I mentioned in the
previous paragraph, the total number of conflict-free assignments decreases by one. Using
execution orders generated from other variations of the scheduling algorithm also produces
comparable results. Hence this alternative is not an improvement.

Another approach to reducing the minimal register requirement is to allow register
assignments of the form Vi<-Vi op Vj or Vi<-Vj op Vi, where two different values, an
operand and a result, are assigned to the same register Vi. For the sake of brevity, from this
point on I use Vi<-Vi op Vj to represent both forms of this type of assignment. Although
the hardware allows such assignments, my modeling of assignment does not because all
values associated with an operation are considered to be simultaneously live and hence
are assigned to different registers. Allowing simultaneously live values to share a register
could reduce the minimal register requirement and perhaps increase the number of conflict-
free assignments when using 8 buses and 16 registers. Although including a feature that
recognizes when two simultaneously live values can actually share a register complicates
the algorithm somewhat, this additional complexity is justified nonetheless if substantially
fewer registers and buses can be used as a result.

An assignment of the form Vi<-Vi op Vj should only be used when there is no
possibility of causing a register or bus conflict. Because a value is produced by an operation,
such as a load or multiply, no conflicts will occur between two simultaneously live values,
y and z, only if their associated operations, op, and op., satisfy the conditions listed in
Figure 6.11. The relative positions of two such values in the live and active interference
graphs look like this:
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[ CONDITION | REASON FOR CONDITION |

1. operation op, is dependent on minimum requirement for using
operation opy Vi<-Vi op Vj

2. op, is the final read of the | to avoid register conflicts
value y

3. op, is not executed in the same | to avoid bus conflicts due to
chime as op, writes

4. any operation reading value z | to avoid bus conflicts due to
does not execute in the same | reads
chime as op.

Figure 6.11: Conditions for Using Vi<-Vi op Vj

This table lists the conditions that identify two simultaneously live values, y and 2, that can
be used in assignments of the form Vi<-Vi op Vj or Vi<-Vj op Vi without causing any register
or bus conflicts. Because a value is produced by an operation, such as a load or multiply, these
conditions actually apply to the value’s associated operations, opy and op..

The important aspects of this diagram are that the last read of the value y (indicated by
a solid interval) occurs simultaneously with the write of the value z (indicated by a dashed
interval), and all other accesses of either value occur at other times. Although this diagram
illustrates the last three conditions in Figure 6.11, it does not indicate that operation op; is
dependent on operation opy, information that is kept in the associated dependence graph.

If the conditions above are satisfied, the value z can be assigned to the same register
assigned to the value y without causing any register or bus conflicts, and the instructions
for their associated operations look like this:

vi {=- “e opy

Vi <- Vi op;

Two values that satisfy the above conditions can be merged in the associated interference
graphs and treated as a single value for the purposes of assignment. Thus, to incorporate
assignments of the form Vi<-Vi op Vj into my algorithm, the interference graphs, after be-
ing built, are modified by combining values that satisfy the above conditions. The modified
graphs are then used as before to assign buses and registers.

Although combining live values decreases the number that are simultaneously live
in the interference graph, this merging also has the negative effect of increasing the connec-
tivity in the active interference graph. The data in Figure 6.12 shows that the reduction
in the minimal register requirement is insufficient grounds for countering the negative im-
pact of this increased connectivity. The first set of data in graph (a) shows that such an
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assignment can be used fairly often, especially for the larger dependence graphs. For ex-
ample, from 10 to 20 values can be merged for nine dependence graphs and 102 values for
one dependence graph. Although this first set of data looks promising, the second set in
graph (b) shows that the resultant reduction in the number of registers is not substantial.
At best, the minimal register requirement is reduced by 3 for two dependence graphs; most
others show no change or at most a reduction of 1 register.

Finally, the third set of data in table (c) shows that using Vi<-Vi op Vj actually
decreases the number of conflict-free assignments when 8 buses and 16 or more registers
are uses as well as and when 4 buses and 8 or more registers are used. This is because
merged values result in longer lifetimes which in turn reduce the number of registers that
become available for re-assignment at any given time. Furthermore, allowing the re-use of
a register in this fashion is never better than always using three distinct registers for the
values that are read and written by an operation. Although there are other reasons for using
Vi<-Vi op Vj (for example, in the vector version of a scalar reduction where the operand
and result actually represent the same value), I conclude from this set of data that using
such an assignment does not improve the register nor bus usage, and hence there is little
reason to incorporate such a capability into the assignment algorithm.

A third approach to reducing the minimal register requirement is to spill registers.
In other words, rather than combining values in the interference graphs as was done in the
preceding method, a value is split into two when registers are spilled to reduce minimal
register requirement. However, a judicious choice of which values to spill and when to do
so is necessary if this technique is to work. Although the minimal register requirement can
be reduced by choosing candidates from the largest set of values that are live at the same
time, the actual act of spilling a value requires using a bus, and hence adds more edges to
the active interference graph. In order to produce a conflict-free assignment, the reduction
in register conflicts must be more than the potential increase in bus conflicts.

Data from the previous chapter suggests that spilling registers is a promising ap-
proach. Even though five of the dependence graphs have a minimal register requirement
greater than 16,1 showed in the previous chapter that with a traditional vector register file
16 are enough to improve performance and that adding more registers results in only a nom-
inal improvement in performance. This is because the algorithm for register assignment in
the ¢ft77 compiler generates code for register spilling to accommodate the requirements of
the larger dependence graphs. Moreover, because a vector architecture supports fine-grain
parallelism, these extra instructions can execute in parallel with the original instructions
without increasing execution time.

Incorporating register spills into my algorithm involves changing the dependence
graph to show which values are to be spilled and when the extra spill operations are to
be executed. However, this entails extensive changes because more information must be
integrated than what was done for the other changes I have described. For example, using
a different order for scheduling or assigning is an easy change because it does not require
examining the interaction among sets of values. A more complicated change is allowing
assignments of the form Vi<-Vi op Vj, which requires examining the interaction between
pairs of dependent values before the interference graphs can be suitably modified. Intro-
ducing register spills is even more complex because it requires examining the interaction
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Figure 6.12: Impact on Assignments When Using Vi<-Vi op Vj

The figures above show three sets of data for evaluating the effectiveness of allowing assignments
of the form Vi<-Vi op Vj, whereby simultaneously live values that have specific characteristics can
be assigned to the same register without causing any conflicts.

Because two such values are treated as a single value for the purposes of assignment, the first
histogram, graph (a), indicates how often such an assignment can be used in a dependence graph.
Allowing simultaneously live values to share a register could reduce the minimal register requirement,
and the second histogram, graph (b), shows the size of this reduction for each dependence graph.
Finally, the third set of data, table (c), gives the fraction of dependence graphs for which my
algorithm produces a conflict-free assignment when using Vi<-Vi op Vj for the indicated number
of buses and registers.

The first set of data shows that assignments of the form Vi<-Vi op Vj can be used fairly often.
Despite this promising result, the second set of data shows that the minimal register requirement
for a dependence graph is not reduced substantially. Finally, the third set of data shows that
using Vi<-Vi op Vj does no better than not using this type of assignment, and actually decreases
the number of conflict-free assignments when more than one register shares a busin a partitioned
register file with 4 or 8 buses (indicated by the percentages in italics).




139

among several values that are live or active at the same time in order to choose candidates
for spilling and to modify the dependence graph appropriately. Because of such extensive
changes and because, as I argue in the next subsection, using 32 registers with 8 buses is a
reasonable choice for now, I omit a quantitative evaluation of this method, leaving such an
undertaking for the future.

6.4.3 Choosing a Partitioned Register File

In summary, the experiments in the previous subsection show that increasing the
number of conflict-free assignments for 8 buses and 16 registers in a systematic fashion is a
difficult task. Although the data in Figure 6.9 is unable to provide a strong case for either
16 registers or 32 registers when using 8 buses, the relative priorities of performance and
cost also influence the choice of which configuration to implement.

If cost is more important than performance, then this data suggests that a configu-
ration of 8 buses and 16 registers is the better choice. Because different heuristics produce a
conflict-free assignment for different dependence graphs, performance could be improved by
sequentially applying these techniques until a conflict-free assignment is found. The draw-
back to this approach is a potential increase in compilation time. However, experimental
evidence shows that over 90% of the cases would need to use only the original algorithm, and
doing so should not significantly increase the average compilation time. Another alternative
is to include register spilling into the assignment algorithm, although further investigation
is needed to evaluate the effectiveness of this technique.

On the other hand, if performance is more important than cost, then the better
choice is a configuration of 8 buses and 32 registers. Based on the cost/performance analysis
in Figure 6.2 (on page 115), however, this configuration is not an ideal tradeoff between
cost and performance. In fact, a partitioned register file with 8 buses and 32 registers is
slightly more costly to implement than a traditional one with 16 buses and 16 registers.
Nonetheless, three factors favor the partitioned organization.

First, using 32 registers results in a greater improvement in performance than
when using 16 registers (18% versus 9%). Moreover, a partitioned register file with 8 buses
and 32 registers has slightly more conflict-free assignments than a traditional register file
with 16 buses and 16 registers.

Second, a register file that provides more registers rather than more buses is better
able to accommodate a wider range of dependence graphs. Because the number of functional
units provided by hardware limits the number of values that can be simultaneously active,
minimal bus requirements are influenced more by the configuration of functional units and
less by a program’s characteristics. In other words, a dependence graph with even an
inordinate number of operations is unlikely to require more than 8 buses because the number
of simultaneously active values is limited by the number of vectorizable operations that can
execute in parallel, which in turn is limited by the number of functional units. Based on the
data in Figure 6.9, 8 buses appear to be enough for the current configuration of functional
units in the Cray Y-MP.

In contrast to bus requirements, the need for a register depends on how operations
interact with each other. This means that minimal register requirements are influenced less
by what hardware provides and more by the dependence patterns in a program. Providing



140

VECTOR REGISTER FILE
8rR 16rR 16r 32R
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Figure 6.13: Cost Analysis of Vector Register Files with Varying Vector Lengths

This table gives the relative difference in chip count of some traditional and partitioned vector
register files when varying the number of elements per vector register, which is also known as the
vector length. This cost analysis is an extension of the one given in Figure 6.1, which assumes a
constant vector length of 64. No increase in chip count indicates a configuration where the total
number of registers and buses is the same as the current implementation of a Cray Y-MP processor,
which uses a total of 512 registers and 8 buses.

32 registers instead of 16, but at the same hardware cost, allows a partitioned vector register
file to more easily accommodate larger dependence graphs, which, although unlikely to
require more than 8 buses, are likely to require more than 16 registers.

The third factor that favors the partitioned organization is that the cost of imple-
menting 8 buses and 32 registers can be lessened by reducing the vector length. Whereas the
cost /performance analysis in Figure 6.2 assumes that the vector length remains constant
at 64, Figure 6.13 shows how the increase in cost is affected by the vector length. When
the vector length is 32, a partitioned register file with 8 buses and 32 registers is, in fact,
less costly to implement than a traditional one with 16 buses and 16 registers. A further
reduction in vector length to 16 makes the partitioned organization even more attractive.
However, as explained at the beginning of this chapter, sustainable performance may be
adversely affected if the vector length is shortened too much. As a result, although this cost
analysis looks promising, further studies are needed to measure how shorter vector lengths
affect performance.

6.5 Related Work

I presented one algorithm for assigning registers and one for assigning buses,
whereas most researchers emphasize only register assignment. Two groups of researchers,
Eisenbeis, Jalby, and Lichnewsky as well as Mangione-Smith, Abraham, and Davidson,
have both presented assignment algorithms for vector registers (33, 81]. Although these
two algorithms are optimal in that they always assign the fewest number of vector registers
for a given execution order, a polycyclic vector scheduler produces the execution order. In
contrast, my assignment algorithm, which is also optimal, uses an execution order produced
by a simple vector scheduler. Both the assignment and scheduling algorithms I use are less
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complex than those developed for these other studies.

Although my algorithm is used for a vector architecture in this chapter, it can also
be used for other architectures. The underlying architecture affects when values are live
and active, information that is used to construct the interference graphs. Once constructed,
however, the assignment of values to registers can be done using the algorithm I described.
In general, assignment algorithms for one type of architecture can often be adapted to other
architectures. In contrast, algorithms for different types of program fragments cannot be
transformed as easily and as a result, algorithms presented in the literature can be catego-
rized by the type of program fragment they operate on (96). In the following paragraph, I
present this categorization of assignment algorithms to contrast my algorithm with others.

One category of algorithms operates on a single expression at a time, where the
expression is represented by a tree, which is a dependence graph with no common subex-
pressions [87, 98, 99, 3]. Another class of algorithms, which are known as global register
assigners, operates on the entire program, which is represented by a control flow graph
whose vertices are basic blocks [9, 18]. The third category of algorithms, which are known
as local register assigners, operates on a single basic block at a time. This type of program
fragment, which can be represented by a dependence graph with common subexpressions,
falls between the types for the other two classes of algorithms. Algorithms for local register
assignment can be further classified into two sub-categories based on whether the execution
order is fixed [100] or not. The algorithm I presented, as well as the two assignment algo-
rithms for polycyclic vector schedules mentioned above, fall into the second sub-category.
In this dissertation, for the sake of brevity, I have used the terms local register assignment
and register assignment to refer to this sub-category rather than the whole category.

Because part of my investigation was to determine the minimum numbers of reg-
isters to implement in hardware, I designed my algorithm to use the fewest registers for a
given execution order. For practical register assignment, however, the number of registers
in hardware is fixed and when the minimal register requirement of an execution order ex-
ceeds that number, extra memory references must be generated to spill registers. Hence, in
addition to assigning values to registers, an algorithm for a production compiler must also
choose an appropriate register to spill so as to minimize the number of extra memory refer-
ences. Not surprisingly, most algorithms for local register assignment handle the problem
of register spilling. Although my algorithm for assigning registers does not directly address
this problem, it can be easily extended to do so. I discuss the merits of doing this when I
describe future studies in Section 7.2 of Chapter 7, Concluding Remarks.

As part of my presentation, 1 gave a proof that my algorithm always assigns
the minimum number of registers. Researchers rarely examine this aspect in much detail,
focusing instead on minimizing the number of extra memory references. An exception is
Freiburghouse, who describes an optimal algorithm that differs from mine in two ways
[44]. First, rather than constructing a live interference graph, Freiburghouse computes
usage counts, which are the number of times each value is referenced. The second and
more important difference is how the optimality of the algorithm is proven. Although
Freiburghouse did not give a proof, he refers to Gries who independently developed this
same algorithm to allocate temporary variables to memory locations on the stack rather
than to registers [51, pages 299-304]. The optimality of this algorithm, which is actually
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attributed to Dantzig and Reynolds [27], relies on a stack to keep track of available registers
and does not allow any choice for a register.

In contrast, the proof showing the optimality of my algorithm emphasizes the im-
portance of assigning values in order of their creation times and does not rely on which
register to choose when there are several candidates. Because of the similarities between
my algorithm and Freiburghouse’s, this proof can also be used to prove the optimality of
his algorithm, hence removing the necessity for a stack to keep track of available registers.
A consequence of this proof is that a register can be chosen for other reasons. For example,
this extra degree of freedom allows available registers to be assigned using a first-in, first-
out queue rather than a last-in, first-out stack without affecting the optimality of either
algorithm. Assigning registers in such a round-robin fashion increases the probability that
the same register will be assigned to values whose lifetimes are temporally far apart. This
in turn makes the register assignment less sensitive in terms of performance to mismatches
between what the compiler thinks the hardware does and how the hardware actually be-
haves.

As part of my algorithm, I modeled the assignment of registers as a graph coloring
problem. This technique has been applied to global register assignment by Ershov et al.
(35, 36], who uses the term incompatibility graph instead of interference graph, and by
Chaitin et al. {18), who coined the term interference graph. Assigning registers globally and
locally are two different problems. The interference graph for global register assignment
can be described as an intersection graph [78], which is an arbitrary graph, whereas the one
for local register assignment is an interval graph, which has a special structure. Although
other researchers have also recognized the fact that an interval graph arises when assigning
registers locally [11), T am unable to find a reference that specifically describes the use of
graph coloring for local register assignment.

Unlike the other applications of graph coloring for register assignment, I use not
one but two interference graphs at the same time. These two graphs arose from the special
organization of the partitioned vector register file. The live interference graph I use is similar
to the interference graph constructed for global register assignment in that liveness is the
basis for interference. However, the range of a live value for global register assignment is
slightly different because a value’s life can span multiple basic blocks, thus producing an
intersection graph rather than an interval graph. The active interference graph I use is a
new construction.

The inspiration for the development of this chapter’s assignment algorithm is, of
course, the partitioned vector register file. In addition to reducing the cost of implementing
more vector registers, this configuration is also an inexpensive method for implementing
a reconfigurable vector register file, as is the case in the Ardent Titan and the single-chip
vector processor by Fujitsu [31, 64). Although the Fujitsu’s FACOM vector processors also
provide a reconfigurable register file, descriptions of its implementation do not indicate
whether or not it is a partitioned vector register file [85]. Nonetheless, despite the existence
of these commercial implementation, I do not know of any publication that describes the
details of an algorithm that can effectively assign values to a partitioned register file.

In addition to developing the assignment algorithm, I also examined the perfor-
mance impact of partitioned register files and concluded that such configurations are not



143

necessarily an impediment to performance. There are relatively few studies that examine
the appropriate balance between number of registers and number of buses. The most re-
lated ones are those that investigated the performance impact of different organizations of
register files in VLIW or superpipelined scalar architectures [105, 15, 37]. These studies
compared the performances of monolithic and distributed register files, whereas I compared
the performances of various configurations of a partitioned register file, an organization that
falls between the other two with respect to accessibility and hardware cost.® A conclusion
that could be drawn from these studies is that, in order to get the best performance, the
number of result buses must be equal to the number of register sets in a distributed register
file. However, the amount of parallelism supported by the architectures in these studies
is small in comparison to the amount supported by the vector architecture I used. Once
enough parallelism is supported by the entire architecture of a processor, I showed that the
number of buses can be less than the number of register banks without adversely affecting
performance.

6.6 Summary

In this chapter, I examined in greater detail the tradeoff between improved per-
formance and increased cost when implementing more vector registers. In a multi-chip
implementation, such as the Cray Y-MP processor, the number of chips is a good measure
of hardware cost. Using this metric, I showed that doubling the number of registers from 8
to 16 results in a 25% increase in the number of chips when implemented in a straight-
forward fashion, while providing only a 9% improvement in performance. The reason for
this high cost is that the implementation of a vector register file actually consists of register
banks, which store data, and interconnections, which link register banks to functional units.
Doubling the number of registers in a straightforward fashion requires doubling both these
types of components.

Because the size of an interconnection is determined by the number of buses at-
tached to them, an obvious hardware solution that improves the tradeoff between increased
cost and performance gain is to have more than one register share a bus. This new con-
figuration, which I call a partitioned vector register file, is another example of partitioning
a register file to reduce cost at the expense of increased restrictions on accessing registers.
Just as a traditional vector register file, which is also partitioned, is less costly to implement
than a monolithic one with the same number of ports, a partitioned vector register file is
less costly to implement than a traditional one with the same number of vector registers.

Although the restricted access to registers is not a problem in a vector register file,
the restricted access to vector registers in a partitioned vector register file does present a
challenge. Figure 6.14 presents an overview of the algorithm I developed that circumvents
the restricted access of this new configuration. My algorithm has two goals. One goal is to
avoid access conflicts, such as WAR or WAW register dependences, which would degrade
performance. This is accomplished by always assigning values that are active at the same
time to different buses and assigning values that are live at the same time to different

5Section 2.2.2 (pages 11 to 16 in Chapter 2, Fundamentals of Vector Architectures) explains the organi-
zational differences between monolithic, partitioned, and distributed registers files.
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registers. Another goal is to assign as few buses and registers as possible to help determine
the minimum number of buses and registers needed in a partitioned register file that is cost-
effective. This goal is accomplished not only by re-assigning buses and registers whenever
possible but also by assigning values in the order in which they are produced. Although it
would seem more judicious to process values based on their number of potential conflicts, 1
showed that assigning values in order of creation time has some advantages.

Finally, I presented data to demonstrate the effectiveness of the algorithm I devel-
oped and to choose a partitioned register file that is cost-effective. Because the Y-MP sim-
ulator does not model a partitioned register file, my performance metric is the number of
conflict-free assignments produced by my algorithm rather than execution time. Although
the data clearly shows that 8 buses are enough, the appropriate number of registers—
16 or 32—is less obvious. As a result, the final choice is also influenced by the relative pri-
orities of performance and cost. If cost is more important than performance, then choosing
16 registers is more appropriate and methods for improving performance, such as combining
different heuristics in a cascading fashion or using register spilling, should be investigated
further. On the other other hand, if performance has higher priority over cost, then 32 regis-
ters is the better choice. Cost can be reduced by shortening the vector length from 64 to 32,
although further studies are needed to measure the resultant impact on performance.



145

dependence graph
{from program)

I Scheduling Algorithm (Section 5.3) I

detailed timing

information about execution order of
executing vector

instructions a dependence graph
(from hardware)

\

construct live and active
interference graphs
(Section 6.2.1)
$ = number of
: active
registers live
that share 1nterte;:§§§ interference
a bus graph
(from hardware) 4—‘\ T v

assign values o buses
(Figure 6.6)

bus assignment

\

for each assigned bus b,
assign values to registers
that share bus b

(Figure 6.7)

Assignment Angrithm (Section 6.2)

register and bus assignment
for a partitioned register file
with S registers per bus

Figure 6.14: Algorithm for Assigning Values to a Partitioned Register File

This figure is an overview of the assignment algorithm I developed for using a partitioned
register file where more than one register shares a bus. Details of the individual components are given
in the indicated sections and figures. Figure 4.2 (on page 67 in Chapter 4, Common Ezperimental
Framework) shows where the functions in the above diagram are performed in the cfi77 compiler.
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Chapter 7

Concluding Remarks

In this chapter, I summarize my work by highlighting the contributions in this
dissertation. I conclude with a discussion of studies for future work.

71 Contributions of Dissertation

Each of the four major chapters in this dissertation contains contributions to the
areas of processor design and code optimization. These contributions fall into one of three
categories: improvements to previous work, syntheses of published material, and extensions
to the state of the art.

7.1.1 Improvements to Previous Work

Chapters 2, 5, and 6 contain improvements to previous work. The first of these
improvements is in Section 2.2 of Chapter 2, Fundamentals of Vector Architectures (pages 6
to 17), where I used a common framework to compare how different architectural classes
support fine-grain parallelism. Jouppi and Wall have done a similar comparison for these
architectural classes but focussed mainly on how multiple operations are initiated {70]. My
comparison adds to theirs by including techniques for the simultaneous delivery of operands
and results. Another improvement is the classification of implementations for a multiported
register file in Section 2.2.2 (pages 11 to 16). Other researchers in processor design have
classified register files into shared and split ones, which I call monolithic and distributed,
respectively (105, 15). I expanded this classification to include a partitioned register file, of
which a vector register file is an example.

A third improvement is in Chapter 5, Register Usage and Instruction Scheduling,
for which I developed a vector scheduling algorithm that is better able to use more vector
registers than the scheduling algorithm used in the version of the ¢ft77 compiler I used
during my work term at Cray Research, Incorporated in the fall of 1990. Described in
Figure 5.9 (on page 94), my algorithm is a list scheduling one that has been modified for
a vector architecture and is similar to Tang and Davdison’s simple vector scheduler [107).
List scheduling algorithms have previously been used for VLIW and scalar architectures
[34, 48]. An algorithm similar to the one I developed has been implemented in 2 version of
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the ¢ft77 compiler more recent than the one I used for my studies [62].

The fourth and final improvement is in Chapter 6, Bus Usage and Register As-
signment, for which I developed an optimal algorithm that assigns values to the minimum
number of registers for a given execution order of a dependence graph. Although other op-
timal algorithms have been published for this problem, the proof of their optimality relies
on the use of a stack and does not allow any choice for a register [44, 51, 27]. In contrast,
I based the proof for my algorithm, which is presented in Section 6.2.3 (pages 123 to 130),
on a necessary but not sufficient condition for optimality that is completely independent of
register choice. As a result, my algorithm emphasizes the importance of assigning values
in the order of their creation times and does not specify which register to choose when
there are several candidates, a choice that can be left as an implementation detail without
affecting the optimality of my algorithm.

7.1.2 Syntheses of Published Material

The next set of contributions, which appear in Chapters 2 and 3, provide new
observations of already published material. The first contribution that synthesizes known
material concerns stripmining, which is the classic technique for executing long loops with
vector instructions, and loop unrolling, which is a standard compiler optimization for exe-
cuting a loop with scalar instructions. In Section 2.3.2 of Chapter 2, Fundamentals of Vector
Architectures (pages 24 to 29), I showed that using vector instructions in a stripmined loop
is, in fact, a compact form of loop unrolling, an observation that was made parenthetically
by Jouppi and Wall {70].

Another contribution from this chapter is the presentation of the properties of a
vectorizable program fragment. Because it is the responsibility of a compiler to identify such
parts, most descriptions of a vectorizable program fragment are given from the perspective
of a compiler. However, such presentations also include what cannot be vectorized because
of inadequate compilation technology. In contrast, to illustrate the restrictions imposed
by vector hardware, I derive the properties of a vectorizable program fragment based on
characteristics of vector hardware (in Section 2.3.1, pages 17 to 24).

The third and largest contribution is the synthesis of observations and data in
Chapter 3, A Case for Vector Architectures. Although some of these have been published
before and others are obvious, I transform these individual items into arguments that to-
gether advocate the implementation of vector architectures over superscalar ones in CMOS
VLSI technology. Following is a list of the more convincing arguments:

e In Section 3.1.3 (pages 38 to 44), I showed how the partitioning of a vector register
file provides 8 times as many registers but requires only 1.25 times as much area as a
monolithic register file with 64 registers and comparable bandwidth.

o In Section 3.2.1 (pages 46 to 51), I used data from Wall’s parallelism study to show
that vectorizable program fragments are rich in parallelism and are, furthermore, most
likely to be the more time-consuming programs in a workload [115].

o In the subsequent section, Section 3.2.2 (pages 51 to 54), to demonstrate the effective-
ness of this type of parallelism, I explained how 25 times as many instructions could
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be executed if the hardware were to make full use of the intrinsic parallelism in Wall’s
workload. The use of parallelism to increase the size of a workload rather than reduce
execution time was first documented by Gustafson [54]).

o Finally, because it would be unwise to completely ignore the effects of Amdahl’s Law,
I presented data in Section 3.2.3 (pages 54 to 58) showing that a superpipelined ar-
chitecture, such as the Cray Y-MP scalar processor, can take advantage of the limited
parallelism in non-vectorizable program fragments. Moreover, 2 different interpreta-
tion of data published by Weiss and Smith [119] shows that, for vectorizable program
fragments, vector hardware in combination with superpipelined hardware provides
significant improvement in performance over superpipelined hardware alone. Jouppi
and Wall have also argued for the use of superpipelined hardware, albeit without any
vector hardware, to support fine-grain parallelism [70, 69).

= 1.3 Extensions to the State of the Art

The last and most significant set of contributions appear in Chapters 5 and 6.
These contributions extend the state of the art with a compiler algorithm for a new register
organization and with empirical data that strengthen qualitative observations. One of these
contributions is in Chapter 6, Bus Usage and Register Assignment, for which I developed
an assignment algorithm for a vector register file where more than one register shares a
bus. In Section 6.1 (pages 116 to 130),1 modeled the problem of locally assigning values to
such a register file as a problem of coloring two graphs, thus building upon previous work
that uses graph coloring to model the problem of globally assigning registers (35, 36, 18].
Based on definitions from graph theory, I also demonstrated how alternative representations
for graphs reveal any special structure that these graphs may have [82, 49]. In addition, I
extended my algorithm to allow assignments of the form Vi<-Vi op Vj and presented data
showing that the reuse of registers in such an assignment has minimal impact on overall
register usage (Section 6.4.2 (pages 133 to 139)).

In addition to a new algorithm, I also contributed to the state of the art by carry-
ing out experiments that validated hypotheses concerning the effectiveness of the compiler
algorithms I developed and the register organizations I studied. The infrastructure for
these experiments, which was provided by Cray Research, Incorporated and is described in
Chapter 4, Common Ezperimental Framework, consists of the following three items:

1. a development version of a production vectorizing compiler,

9. a simulator that models the Y-MP vector processor, an architecture which has fully
flexible chaining capabilities, and

3. a set of 36 vectorizable loops that are extracted from actual applications.

Both Chapters 5 and 6 contain contributions in the form of empirical data.

In Section 5.1 of Chapter 5, Register Usage and Instruction Scheduling (pages 72
to 83), I hypothesized that both more than 8 vector registers and a scheduling algorithm
different from the one used in the 1990 version of the ¢ft77 compiler are needed to improve
performance. Although two research groups have also hypothesized the need for more
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registers and a third has carried out experiments to determine how many, their research
centers around using polycyclic vector scheduling for vector architectures without chaining
capabilities [108, 32, 33, 81}. The empirical data I presented in Section 5.4 (pages 95 to 104)
not only validated my hypotheses but also sharpened the qualitative descriptions I presented
by indicating how many more registers are needed to improve performance by how much
and how frequently.

In Section 6.1 of Chapter 6, Bus Usage and Register Assignment (pages 111 to 116),
I observed that only a subset of simultaneously live values are actually used at any given
time and hypothesized that partitioning a vector register file would reduce the cost of
implementing one with minimal loss in performance. The data I presented in Section 6.4
(pages 131 to 140) not only indicates the effectiveness of my assignment algorithm but
also shows that the subset of simultaneously live values is small enough for the majority
of loops in the CRI workload to effectively use a partitioned vector register file. Moreover,
this data indicates that my hypothesis is true once enough partitions are provided, thus
providing quantitative evidence that partitioning is a cost-effective method for improving
performance. I do not know of any other published work that provides data demonstrating
the effectiveness of a partitioned vector register file.

7.2 Future Studies

Although my investigations varied the number of registers and buses in a vector
register file, the number of elements per vector register remained constant at 64. More
simulation studies are needed to determine the effect of longer and shorter vector lengths
on performance. One experiment could verify the hypothesis that increasing the number of
vector registers improves performance more than does increasing the number of elements
per vector register. Another experiment could determine if performance does not decline
significantly when the vector length is shortened to 32 elements per vector register in order to
demonstrate that a register organization with 8 buses and 32 registers provides an excellent
tradeoflf between increased cost and improved performance.

The assignment algorithm I presented did not include any contingency for when
number of registers or buses assigned exceeds what is provided in hardware. A study
for the future is to modify the algorithm to handle this case and evaluate the impact on
performance of spilling registers in a partitioned vector register file. Of particular interest
to such a future study is a register organization with 8 buses and 16 registers, the one for
which I was unable to produce strong performance data in Section 6.4 of Chapter 6, Bus
Usage and Register Assignment (pages 131 to 140).

Although my algorithm for optimally assigning registers does not directly address
the problem of spilling registers, it can be easily extended to do so. What is unclear
is whether it would remain optimal. Horwitz et al. as well as Prabhala and Sethi have
developed algorithms that spill registers using the minimal number of memory references
for a given number of registers in hardware [60, 95]. These algorithms, however, apply to
index registers and stack registers, respectively. For general purpose registers, Hsu, Fischer
and Goodman have presented an optimal algorithm for register spilling that is an extension
of the algorithm by Horwitz et al. [63]. Because the algorithm is based on enumeration,
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however, it can become computationally impractical for large programs. Because none of
these algorithms model the problem of spilling registers as a graph coloring one, a project
of theoretical interest is to determine whether my optimal algorithm for locally assigning
registers can be extended to spill registers using the minimal number of memory references
for a given number of registers in hardware.

In Chapter 5, Register Usage and Instruction Scheduling, 1 showed that, although
a list scheduling algorithm outperforms the one used by the 1990 version of the ¢ft77 com-
piler, the reverse is true for a few dependence graphs, two of which are shown in Fig-
ures 5.12 and 5.13 (on pages 98 and 99). An undertaking for the future is to develop an
algorithm that performs as well as the list scheduler but never does worse than the ¢ft77
compiler. One possibility is an algorithm that schedules operations in an order that is
the reverse of the order used by either the ¢ft77 or list scheduler and that uses a place-
ment strategy similar to the cft77’s one. Although such an algorithm produces the same
execution order as does the ¢ft77 scheduler for the dependence graphs shown in in Fig-
ures 5.12 and 5.13, more simulation studies are needed to determine whether it performs as
well or better for the rest of the CRI workload. Because both the order and the strategy
differ in the list and c¢ft77 schedulers, another study for the future is to determine which
— order or strategy — has more impact on performance. Because there are dependence
graphs for which either makes a difference, a potential line of investigation is to analyze
actual dependence graphs for any special structures.

The investigations in this dissertation explored various register organizations but
always used the configuration of functional units from the Cray Y-MP. Another project
for the future is to compare the performance of different configurations of functional units,
varying both the number and types. An extension to this proposed study and those in
this dissertation is to determine the appropriate numbers of buses and registers needed
to use different configurations of functional units effectively in an attempt to establish a
rule-of-thumb that would provide this ratio analytically. Such a study would also verify my
hypothesis that a partitioned vector register file with 4 buses is an inadequate design for
the configurations of functional units in the Ardent Titan and Fujitsu VPU. Because binary
compatibility is not affected by a change of functional units, an interesting value to quantify
is the impact on performance when using an execution order scheduled for a configuration
different from what is provided in hardware.

The vector architecture I used implements fully flexible chaining. A final sugges-
tion for future work is to combine this work with work done for vector architectures that
implement no chaining (108, 32, 33, 81] in order to examine the interaction among levels of
chaining, register organization, and scheduling algorithm. For cost reasons, it may be desir-
able to reduce the level of chaining. One example is to prevent vector memory instructions
{from chaining with non-memory ones in order to simplify the memory system. Although
less chaining provides less opportunity for parallelism to occur, sophisticated scheduling
algorithms, such as polycyclic vector scheduling, can be used to increase the amount of par-
allelism but at the expense of more registers. Interesting values to compare are the numbers
of registers and buses needed to compensate for the lack of chaining and the numbers needed

when there is chaining.
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