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ABSTRACT 
 

The implications of decision analysis (DA) on 

engineering design are well known. Recently, the 

authors proposed decision topologies (DT) as a visual 

method for making design decisions and proved that 

they are consistent with normative decision analysis. 

This paper addresses the practical issue of assessing 

DTs for a decision maker (DM) using their responses, 

particularly under uncertainty. This is critical to 

encoding decision maker preferences so that further 

analysis and mathematical optimization can be 

performed using the correct set of preferences. We 

show how multiattribute DTs can be directly assessed 

from DM responses. Four methods are shown to 

evolutionarily assess DTs among which one that 

requires the DM to rank alternatives and another where 

a utility function is first assessed. It is also shown that 

preferences under uncertainty can be easily 

incorporated. In addition, we show that topologies can 

be constructed using single attribute topologies 

similarly to multi-linear functions in utility analysis. 

This incremental construction simplifies the process of 

topology construction. The reverse problem of inferring 

single attribute DTs is also presented. The proposed 

assessment methods are used on a design decision 

making problem of a welded beam.  

 

1. INTRODUCTION 
Engineering design does not happen in vacuum, 

instead it is a decision making process. This notion is 

well documented in the engineering design literature 

(e.g., Howard (1989), Thurston (1991) and Hazelrigg 

(1998). However, despite all possible benefits, 

widespread adoption of prevalent decision making tools 

is impeded by the complexity of these tools to the 

average person. Most practicing engineers implement 

“best practices” when it comes to making design 

decisions because to them the required effort seems 

higher than the gained benefit - much to the 

disappointment of researchers in design decision 

making. Even when a DM is convinced of the benefits, 

errors are introduced when eliciting preferences, 

affecting the quality of decisions to be made. These 

errors may result from problems associated with stated 

and revealed preferences (Train, 2003). It is also 

possible that the facilitator (expert helping the decision 

maker making the decision) overwhelms the DM when 

assessing utility functions. This problem is exacerbated 

when preferences over multiple attributes are collected, 

particularly when the DM is not comfortable or 

experienced in giving responses to lottery questions.  

To alleviate some of the roadblocks to successful 

implementation of DA in design, the authors recently 

proposed an alternative called Decision Topologies 

(DTs). DTs offer many advantages (Pandey and 

Mourelatos, 2013) over classical methods of encoding 

preferences and making decisions. They are also 

entirely consistent with decision analysis at the 

discretization limit (described later). In this paper, we 

make theoretical advances in DTs by focusing on their 

assessment directly or from a utility function. Our goal 

is to bring a theoretically sound method to the level that 
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it can be used in actual engineering design decision 

making. We propose four methods to construct DTs if 

the decision maker: 

 

1. Provides ranking of alternatives involving multiple 

attributes. 

2. Answers lottery questions.  

3. Provides single attribute utility functions or decision 

topologies. 

4. Has provided MADTs and an attribute is to be 

removed from consideration. 

 

The paper is arranged as follows. Section 2 

discusses the decision topologies and Section 3 presents 

theoretical results in DT assessment. The design of a 

welded beam is presented in Section 4 demonstrating 

the topology assessment and how it is used in decision 

making. Finally, Section 5 concludes and discusses 

directions for future work. 

 

2. DECISION TOPOLOGIES 
Decision topologies are block diagrams similar to 

the reliability block diagrams used in reliability 

engineering. In reliability engineering, a system is 

operational if its block diagram representation has a 

continuous path from one side of the diagram to 

another. The decision topology extends this notion to 

decision making. If there are no paths from one end to 

the other, the DT is assigned a score of zero. Otherwise, 

all paths from one side of the diagram to the other are 

counted providing an overall score for the DT. This 

score is a positive linear transformation of the decision 

maker’s utility function, a claim that has been 

substantiated in Pandey and Mourelatos (2013). We 

provide a sketch of the proof here for continuity.  

 

2.1 Consistency with decision analysis 

We prove that DTs are consistent with decision 

analysis by showing that the behavior of any 

continuously differentiable utility function which is 

monotonic in attributes can be modeled by decision 

topologies. This is in addition to binary attributes, 

which can be trivially incorporated.  

In a single attribute case, the objective of decision 

making methods is to assign a score corresponding to 

an attribute level. We can represent the decision 

topology associated with an attribute visually as shown 

in Fig. 1. The decision topology consists of blocks 

where each block tests the binary condition that the 

attribute level is greater than a partition 
j

iy of the 

attribute. If this is true, the block is considered active. 

The raw score for an attribute level iy is equal to the 

number of paths from right to left (or left to right) 

through the active blocks. For example, if
max
ii yy   

all blocks will be active because all inequalities are 

satisfied. Similarly, if 
min
ii yy   none of the blocks 

will be active. For
maxmin

iii yyy  , a number of 

blocks less than 
im will be active. Fig. 2 shows 

pictorially the score from a DT as the attribute level is 

steadily increased and the blocks become progressively 

active. As shown, this increase is step-wise. 

 

 
 

Figure 1. A decision topology for a single attribute case  

 

How the score varies with respect to an attribute 

depends on the chosen partitioning for the attribute. A 

non-uniform partitioning should be used to draw the 

topology. If the density of partitions around a particular 

value of 
iy  is proportional to the derivative of the 

utility function at that value of
iy , the normalized score 

will be equal to the utility value (Fig. 2). This is 

guaranteed if im since the score approaches the 

Riemann sum under the utility density function 

(derivative of the utility function). A rigorous proof is 

given in Pandey and Mourelatos (2013).  

 

 
Figure 2. Comparison of a utility function with a decision 

topology score when the first partitioning is proportional 
to the local value of the derivative of the utility function 

 

If we assume that the multiattribute utility function 

is continuously differentiable and increasing in 

individual attributes, the proof is straightforward. Let’s 
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start with the point  minmin
1 ,..., nyy  where the utility 

function and the score  minmin

1 ,..., nyyS  are both zero. If 

the attribute vector is perturbed by a small amount 

 ndydy ,...,1
 in any general direction that keeps the 

attributes in the range of negotiability, the new utility 

can be approximated by 

 

          

 

n

n

nn

dy
y

U
dy

y

U

dyydyyU













...

,...,

1

1

min

1

min

1

 .                            (1) 

 

As in the single attribute case, if the first 

partitioning at every point along any attribute is 

proportional to the partial derivative along that 

attribute, we have 

 

         
 
 nn

nn

dyydyyU

dyydyyS





min

1

min

1

min

1

min

1

,...,

,...,
 .                (2) 

 

The approximation of Eq. (2) improves as the 

partitioning becomes finer. As we move on a path from 

 minmin
1 ,..., nyy  towards any point  t

n

t yy ,...,1
, the 

decision topology makes successive linear 

approximations of the utility function, and 

 

             t

n

tt

n

t yyUyyS ,...,,..., 11  .                 (3) 

 

Eq. (3) proves that if the partitioning of the 

attribute space is sufficiently fine, and the distribution 

of the partitions at any point along any direction is 

proportional to the partial derivative of the utility 

function along that direction, the decision topologies 

will provide the same score with the value of the utility 

function. An algorithm we have developed, called 

Evolutionary System Topology Approximation (ESTA) 

to evolve decision topologies from limited data can find 

creative arrangements of blocks which can concisely 

represent the tradeoff information (Pandey and 

Mourelatos, 2012a). Furthermore, the partitioning does 

not even have to be fine in order to approximate a 

utility function well. These claims are substantiated in 

the results section. 

 

2.2 Clarifications 

A decision topology is not simply a decision tree. It 

is a visual representation of the entire decision-making 

situation. The main function of decision topologies is to 

replace the utility function and make decision making 

visual. Decision trees quickly become intractable as 

more nodes are added. However, decision topologies 

provide a good picture of the decision situation without 

becoming intractable. In addition, uncertainty can be 

incorporated in the decision topology by definition. 

Similarly to calculating the expectation of a utility 

function in decision analysis, we can calculate the 

expectation of the score provided by the decision 

topology. To assess topologies that incorporate 

preferences under uncertainty, we simply evolve 

topologies using tests that are influenced by 

uncertainty.  

 

3. ASSESSING DECISION TOPOLOGIES 
Our previous work (Pandey and Mourelatos, 

2012b) has shown that system topologies and hence 

decision topologies, can be provably deduced using the 

Evolutionary System Topology Approximation (ESTA) 

algorithm. Initially developed for reliability engineering 

studies, ESTA requires input-output test data. In 

assessing a system topology, a test provides input and 

output information. The input includes the component 

states (working / nonworking) and the output indicates 

if these states lead to system failure or not. If multiple 

such “tests” (t) and the corresponding system responses 

given by vector r are available, we can use them to 

approximate the system topology as follows.  

First a set of candidate topologies T is created from 

a set of feasible topologies Tf. Each of these topologies 

is evaluated using the tests and the response is stored in 

the vector s. A candidate topology may output a failed 

system state or a working system state, for a given 

input. If this output matches the output of the original 

system, the score for the topology is incremented, 

otherwise it is decremented. The method then evolves 

better performing topologies to achieve a good 

concordance between a candidate topology and the true 

system. It is proven in Pandey and Mourelatos (2012b) 

that for sufficient number of tests, the ESTA algorithm 

will return the actual system topology T
*
. For that, the 

following optimization problem is solved: 

 

                trts ,,maxarg* TFT
T

               (4) 

        s.t. 
fTT   

 

where the function F is the measure of similarity 

between the responses to the tests provided by a 

topology and the actual response of the system. For 

example, in the case study of Section 4 we use a 

Spearman’s rank correlation coefficient for F. 

 

Method 1: Decision maker provides rankings 
If the alternatives are deterministic, the utility 

functions and therefore the MADTs, only need to 

capture the tradeoff behavior between the attributes and 

not the risk attitude of the DM. In this case, we propose 

having the decision maker rank different multiattribute 

tuples according to their tradeoff preferences. The 
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ESTA can then be used to approximate the 

multiattribute decision topologies (MADT) by 

maximizing the Spearman’s rank correlation between 

the ranking provided by the DM and that provided by a 

candidate topology. The output of the algorithm is the 

topology that provides the highest rank correlation with 

the rankings of the decision maker. While ESTA has 

provable convergence, we may not run the simulation 

long enough because of time constraints. The results 

even in this case are very good as our recent work has 

shown (Pandey and Mourelatos, 2012b). 

Only a minor modification to the original ESTA 

(Pandey and Mourelatos, 2012b) was made in order to 

assess decision topologies from decision maker 

responses. The decision maker is asked to rank multiple 

alternatives and many different attribute combinations 

are acquired. These tests must be ideally unique so that 

the more different combinations we use, the more we 

can learn about the actual utility function. If a particular 

attribute combination is however, encountered more 

often than others in the tests, the ESTA will use this 

information to better represent the utility function in 

that region of the attribute space. The ESTA aims to 

find a topology that will give the highest Spearman’s 

rank correlation between it and that provided by the 

decision maker.   

 

Method 2: Decision maker answers lottery 
questions 

Lottery questions are used to elicit the decision 

maker’s preferences over uncertain choices. A standard 

question is: “Would you prefer option A or a lottery 

which gives option B with probability p and option C 

with probability (1-p)”. In case the decision maker 

answers lottery questions, we first fit a multiattribute 

utility function which will provide a ranking of 

alternatives and then we apply method 1 directly. 

Another way to implement ESTA is by minimizing the 

root mean square error between the normalized 

topology score and the utility value as 

 

              tuts  ,minarg* TT
T

              (5) 

     s.t. 
fTT   

 

where s  is the vector of normalized scores provided by 

a topology T corresponding to each alternative in t, and 

u is the vector of utility values for the same alternatives 

in t. This approach can be also used to model the risk 

attitude of the decision maker. Despite using utility 

functions, the visual benefits of DTs are retained. If 

there is little confidence in utility function modeling 

because of non-fulfillment of independence conditions, 

we can assess the DTs directly by including uncertain 

choices in the alternatives presented to the DM 

similarly to the lottery questions in the DA literature. 

The DM is offered a combination of deterministic and 

lottery alternatives and he/she is asked to rank them. 

Table 1 shows for example, a small subset of ranking 

questions. 

As in the case of system topology generation 

(Pandey and Mourelatos, 2012b), ESTA creates a set of 

candidate decision topologies. The rankings created by 

a candidate topology are then compared with that given 

by the decision maker based on the Spearman’s rank 

correlation metric. For uncertain alternatives, we 

calculate the expected score for a candidate topology. 

This approach is not different from that of ESTA. It 

also retains its convergence properties. The relative 

number of uncertain and deterministic options in the 

alternatives is a function of the amount of effort the 

assessor and DM are willing to invest, similarly to any 

utility assessment procedure (Thurston, 2001). Our 

approach guarantees that the DT assessment will 

improve with an increasing number of asked questions. 

The assessor must ensure that the questions are 

different from each other so all regions within the 

ranges of negotiability are properly modeled.  

 
Table 1. Sample ranking questions to assess decision 

topologies directly from DM responses 

 
Rank alternatives A-E in the order of your preference: 

A  A

n

A

A yy ,...,1y  

B 
20% chance of  BP

n

BP

BP yy ,...,1y  and 80% 

chance of  BQ

n

BQ

BQ yy ,...,1y  

C  C

n

C

C yy ,...,1y  

D 

 D

n

D

D yy ,...,1y where
Dy1 ’s are uniformly  

distributed between  minmin

1 ,..., D

n

D yy and 

standard deviation  maxmax

1 ,..., D

n

D yy  

E  E

n

E

E yy ,...,1y  

 
 

Method 3: Decision maker provides single 
attribute utility functions or decision 
topologies (SADTs) 

In general, the assessment of single attribute utility 

functions is much easier compared to multiattribute 

utility functions. Using Method 2, single attribute utility 

functions can be used directly to obtain SADTs.  

We now address the issue of assessing 

multiattribute decision topologies (MADTs) from 

SADTs. It is well known that the multilinear expression 

of Keeney and Raiffa (1994) requires that the attributes 

are preferentially and utility independent. These 

conditions can somewhat be relaxed so that other 
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functional forms can be used to obtain MAUFs from 

SAUFs directly, as shown in Abbas (2009).  

Abbas showed that utility copulas can be used to 

model MAUFs as joint distributions. Functionally, 

many utility functions have some of the same properties 

as joint CDFs (constrained between 0 and 1, and 

increasing in all attributes). Therefore copulas can be 

used to model utility functions just as they are used to 

model CDFs. The SAUFs can be also combined using a 

utility copula to get a multiattribute utility copula 

(which is technically a MAUF). Certain functional 

forms where the mixed derivative of the MAUF is 

negative - not true for probability distributions - can 

also be modeled using utility copulas as Abbas (2009) 

has shown. In addition, the requirement that probability 

copulas are zero when one of the variables is at its 

lowest level is not an impediment because there are 

utility copulas that do not need to satisfy the grounding 

condition (see Abbas, 2009). SADTs can be thus used 

to generate MADTs. As a result, when SADTs are 

available, one has access to the proper discretization of 

the concerned attributes. Recall that these discretization 

points define the blocks used in DTs. To assess 

MADTs, we can simply use the blocks identified in the 

SADTs without having to obtain the “right” 

discretization. The case study of Section 4 demonstrates 

this method. 

 

Method 4: Single attribute decision topologies 
(SADTs) are needed when a MADT or MAUF is 
available  

If preferential and utility independence conditions 

are satisfied we can obtain MAUFs from SAUFs. The 

inverse problem is also encountered when one or more 

attributes must be removed from the attribute set. For 

the case of maximizing utility functions over attributes, 

we define a SAUF as 

 

                
 

 nM
x

nM
jix

jj
xxU

xxU
xU

i

i

,...,lim

,...,lim

1

1
,




 .              (6) 

 

This can be achieved in a topology by simply removing 

the blocks for other attributes and connecting the ends 

together. The attribute discretization does not affect this 

method. 

It is of particular interest to accurately assess DTs 

if the DM provides responses using a combination of 

the above techniques. It is preferred to use multiple 

methods in order to avoid biases and modeling errors 

creeping into an assessment. We can use the utility 

functions if available (method 2), to get a ranking of 

alternatives. These rankings can then be combined with 

raw rankings if available. If there are discrepancies, the 

DM can be made aware of them. If single attribute 

utility functions are available, we can use them to get 

the correct partitioning of each attribute as shown 

before. ESTA can then be used to get DTs using the 

available rankings and partitioning.  

 

4. CASE STUDY 
In this section, we apply the four DT assessment 

methods of Section 3 using a modified welded beam 

design example (Deb, Pratap and Moitra, 2000) where 

the bound constraints  x5g  and  x6g  are added as 

shown in the Appendix.  

The problem involves minimization of the cost (C 

in dollars) and the deflection (D in inches) of the weld. 

Although our focus is not on the optimization part, we 

use the information from the generated Pareto front that 

the cost (C) and deflection (D) attributes can be feasibly 

realized in the ranges of [10, 260] and [0.001, 0.05], 

respectively. In this example, we are only concerned 

with finding a topology consistent with the utility 

function. 

We first define an exponential utility function over 

each attribute individually as 

 

        
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           (8)  

and combine the above utilities into a multiattribute 

function using the following multilinear form 

               DCDCDC UUUUUUU 2.05.07.0,  .      (9) 

We assume that these utility functions are unknown 

to the DT assessor even though they model the decision 

maker’s preferences correctly. Notice that the U of Eq. 

(9) does not satisfy the grounding condition; i.e., it is 

not equal to zero when one of the attributes is at its 

lowest possible level. In addition, it exhibits a negative 

mixed derivative and a direct comparison with 

probability copulas is therefore, not correct. Utility 

copulas must be used instead. Our results show that a 

topology can be still approximated well using only a 

limited number of DM responses. 

We generate survey questions using the utility 

functions of Eqs (7) and (8). However, using the proof 

discussed earlier in Section 2, we obtain the SADTs 

directly from the derivative characteristics of the two 

utility functions plotted in Fig. 3. For the SADTs to 

work, we must only partition the domain proportionally 

to the derivative of the utility functions. Table 2 shows 

this partitioning. We observe that more points are 

placed in regions where the function has a higher slope. 
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As such, this case study utilizes a combination of the 

four proposed methods of Section 3; i.e, single attribute 

utility functions (Methods 3 and 4) and provided 

rankings from utility functions (Methods 1 and 2). 

 

 
(a) 

 

 
(b) 

Figure 3. Utility functions associated with the two 

objectives. Note that the utilities are decreasing with 
attributes. This does not affect the applicability of the 

method 

                                                               

Table 3 shows the training set. The DM is asked to 

rank the alternatives in the order of desirability. This 

step simply utilizes the multiattribute utility function of 

Eq. (9). For the case of uncertain alternatives, an 

expected criterion is used. Some of the alternatives are 

probabilistic as shown in the table. The total number of 

alternatives is significantly less than that used in our 

previous work (Pandey and Mourelatos, 2013). This is 

possible because we have already extracted useful 

derivative information from the SAUFs (Fig. 3). 

 
Table 2. Partitioning of the ranges of negotiability of the 

two attributes using the derivative information of Fig. 3 

 

Cost ($) Deflection 

(in) 

20 0.005 

120 0.025 

190 0.038 

230 0.045 

250 0.049 

 

 

 

Table 3. Ranking provided by the DM for the 15 alternatives 

 
 

No.  Cost ($) 

Deflection 

(in)  Cost ($) 

Deflection 

(in) 

Ranking 

provided 

D
et

er
m

in
is

ti
c 

 

o
u

tc
o
m

es
 

 

1  234.71 0.0088    9 
2  218.69 0.0446    13 
3  247.67 0.0486    15 
4  226.93 0.0468    14 
5  158.32 0.0149    3 
6  148.45 0.0138    2 
7  204.12 0.0024    7 
8  76.60 0.0208    1 
9  235.91 0.0144    10 

10  124.81 0.0316    5 

  Probability Outcome 1 Probability Outcome 2  

P
ro

b
a

b
il

is
ti

c 

o
u

tc
o
m

es
 

11 0.15 86.25 0.0488 0.85 193.03 0.0066 6 
12 0.65 238.29 0.0218 0.35 109.56 0.0484 11 
13 0.2 157.75 0.0092 0.8 137.72 0.0439 8 
14 0.8 228.69 0.0218 0.2 174.44 0.0473 12 
15 0.3 139.40 0.0407 0.7 99.52 0.0261 4 
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Figure 4. MADT generated using the responses of decision maker 

 

Using the ranking information of Table 3, the 

ESTA algorithm was run to create a topology that 

provides the same rankings (or close to it) as in Table 

3. ESTA maximizes the Spearman’s rank correlation 

between the rankings of Table 3 and the scores from 

a candidate topology. The evolutionary part of ESTA 

was run with a population size of 350 and a 

probability of mutation of 0.1. The total run-time on 

an Intel dual-core machine was less than a minute. 

Fig. 4 shows the topology generated by ESTA. The 

topology provides a Spearman’s rank correlation of 

0.97, which is excellent.  

Table 4, shows the adjacency matrix, R, 

associated with the topology of Fig. 4. The above 

topology can also be evaluated visually or using a 

linear algebra method (Pandey et al. 2012). The size 

of matrix R is    22  nn . It has an entry of 1 if 

there is an arrow from the block corresponding to the 

column to the block corresponding to the row, and 0 

otherwise. If certain blocks are not active, an updated 

matrix R’ is obtained by deleting the corresponding 

columns. The score of the topology considering all 

active and inactive blocks, is the (1, n+2)
th

 entry of 

the (I-R)
-1

 matrix. The proof of this method is 

provided in (Pandey et al., 2012). 

 
Table 4. Adjacency matrix R for the topology of Fig. 4 

 
  Cost ($) Deflection (in)  

   O <20 <120 <190 <230 <250 <0.005 <0.025 <0.0375 <0.045 <0.049 I 

 O 0 1 1 1 0 0 0 0 0 0 1 0 

C
o

st
 (

$
) 

<20 0 0 0 1 0 0 1 0 0 0 0 0 

<120 0 0 0 0 1 0 0 0 0 0 0 0 

<190 0 0 0 0 0 0 0 0 0 1 0 0 

<230 0 0 0 0 0 0 0 0 0 0 0 1 

<250 0 0 0 0 0 0 0 0 0 1 0 0 

D
ef

le
ct

io
n

 (
in

) 

<0.005 0 0 0 1 0 1 0 0 0 0 0 0 

<0.025 0 0 0 0 0 0 0 0 0 0 0 1 

<0.0375 0 0 0 0 1 0 0 1 0 0 0 0 

<0.045 0 0 0 0 0 0 0 0 1 0 0 1 

<0.049 0 0 1 0 0 0 0 0 0 0 0 1 

 I 0 0 0 0 0 0 0 0 0 0 0 0 

I 

O 

C<20 

C<250 

C<120 

C<190 

C<230 

D<0.045 

D<0.0375 D<0.025 

D<0.049 

D<0.005 
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Table 5 shows the score (column 2) and the 

ranking (column 3) provided by the best MADT 

found by ESTA (Fig. 4). The rankings have a very 

high rank correlation coefficient of 0.97 with the 

rankings provided by the utility function (column 4). 

This high correlation guarantees that the decisions 

made using the MADT, even under uncertainty, will 

be the same with those made by the decision maker. 

 
Table 5. Ranking comparison between the MADT 

score and the DM score 

  

Alternative MADT 

score 

MADT 

rank 

DM 

rank 

1 3 12 9 

2 2 13 13 

3 1 15 15 

4 1 14 14 

5 7 3 3 

6 7 2 2 

7 4 6 7 

8 9 1 1 

9 3 11 10 

10 5 5 5 

11 3.85 7 6 

12 3 10 11 

13 3.8 8 8 

14 3.4 9 12 

15 5.8 4 4 

Spearman’s rank 

correlation 
0.97 

 
 
 

5. DISCUSSION 
 

In this paper, we proposed four practical 

methods to assess multiattribute decision topologies 

(MADTs) which are then used to make design 

decisions. Our recent work has shown that MADTs 

can be visual and theoretically sound replacements of 

utility functions. This paper addressed a challenge 

encountered in any decision making method where 

the preferences of the DM must be assessed. We 

showed that the MADTs can be directly assessed 

using rankings provided by the decision maker using 

the ESTA evolutionary method we have previously 

proposed.  

Our approach works whether we use rankings 

provided by the decision maker, their multiattribute 

utility function, or a combination of single attribute 

utility functions or topologies. Even lottery responses 

can be easily incorporated in MADTs thereby 

allowing us to model preferences under uncertainty. 

The theoretical basis behind the assessment methods 

we proposed was also discussed.  

The methods were used on the design of a 

welded beam. The decision topology utilized only 15 

alternatives (5 of them uncertain). The Spearman’s 

rank correlation between the ranking provided by the 

DM and the ranking from the topology was found to 

be very high. This is evidence of the validity of both 

the proposed DTs and the DT approximation 

algorithms. Future work will focus on applications of 

the algorithms in design decision making problems 

where a visual method will be of value. 
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APPENDIX 
 

The mathematical formulation of the welded beam example is given below. 

 

                            Minimize 












bt
D

ltblhC

3

2

1952.2
)(

)14(04811.010471.1)(

x

x

                   

 

                            subject to:     5,,1,0  igi x  

                            where:  Tbtlh ,,,x , and 

                           13600)(1  xx g   30000)(2  xx g bhg )(3 x  

                          xx cPg  6000)(4
,  Tg 5,10,10,10)(5  xx and   xx 

T
g 0,0,1.0,125.0)(6

  

In the above expressions: 
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