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                                                              Abstract 10 

Reduction of computational error is a key issue in computing Lagrangian trajectories 11 

using gridded velocities. Computational accuracy enhances from using the first term (constant 12 

velocity scheme), the first two terms (linear uncoupled scheme), the first three terms (linear 13 

coupled scheme), to using all the four terms (nonlinear coupled scheme) of the two-dimensional 14 

interpolation. A unified ‘analytical form’ is presented in this study for different truncations. 15 

Ordinary differential equations for predicting Lagrangian trajectory are linear using the constant 16 

velocity/linear uncoupled schemes (both commonly used in atmospheric and ocean modeling), 17 

linear coupled scheme and nonlinear using the nonlinear coupled scheme (both proposed in this 18 

paper). Location of the Lagrangian drifter inside the grid cell is determined by two algebraic 19 

equations, which are solved explicitly with the constant velocity/linear uncoupled schemes, and 20 

implicitly using the Newton-Raphson iteration method with the linear/nonlinear coupled 21 

schemes. The analytical Stommel ocean model on the f-plane is used to illustrate great accuracy 22 

improvement from keeping the first-term to keeping all the terms of the two-dimensional 23 

interpolation.       24 

                           25 

  26 
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1. Introduction  27 

Oceanic and atmospheric motion can be represented by Eulerian and Lagrangian 28 

viewpoints. The former gives time-dependent three-dimensional (Eulerian) fields of velocity, 29 

temperature, salinity, and other variables, which are commonly represented in satellite 30 

observations, modeling, simulation, and prediction at numerical grid points.   The latter provides 31 

continually changing characteristics (temperature, salinity, velocity, etc.) along the fluid 32 

particles’ trajectories (i.e., Lagrangian trajectories), which are commonly represented in in-situ 33 

oceanographic measurements by Argo floats, drifters, and gliders. Employing the Lagrangian 34 

trajectories, water masses can also be distinguished in terms of origin and/or destination and be 35 

traced (Vries and Doos 2001). The two types of velocity are convertible. Routine ocean data 36 

assimilation systems (Galanis et al. 2006; Lozano et al. 1996; Song and Colberg 2011; and Sun 37 

1999) and data analysis methods such as optimal interpolation (OI) (Gandin 1965) and optimal 38 

spectral decomposition (OSD) (Chu et al. 2003 a, b), can be used for converting Lagrangian 39 

drifter data into gridded Eulerian-type data, and evaluating ocean models (e.g., Chu et al. 2001, 40 

2004).  Several new phenomena were discovered after the conversion. For example, with the 41 

OSD method new signals have been identified such as fall–winter recurrence of current reversal 42 

from westward to eastward on the Texas–Louisiana continental shelf from near-surface drifting 43 

buoy and current-meter (Chu et al. 2005), and propagation of long baroclinic Rossby waves at 44 

mid-depth (around 1,000 m deep) in the tropical north Atlantic from the Argo floats (Chu et al. 45 

2007).  46 

Consider water particles flowing with ocean currents in three-dimensional space (x, y, z) 47 

and time t, discretized into grid cells with the spacing of (Δx, Δy, Δz) and time step of Δt, with 48 

the discrete Eulerian velocity filed represented by    49 
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         ˆ ˆ ˆ ˆ( , , , ) [ ( , , , ), ( , , , ), ( , , , )i j k l i j k l i j k l i j k lx y z t u x y z t v x y z t w x y z tv                                 (1a) 50 

Here, the subscripts (i, j, k, l) represent the spatial and temporal discretization. The superscsript 51 

‘^’ means the Eulerian gridded fields.   Common interpolation methods can be used to get four 52 

dimensional continuous velocity field from gridded field (1a),   53 

                            v(x, y, z, t) = [u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)].                                (1b) 54 

The position of each fluid particle, R(t) = [x(t), y(t), z(t)], is specified in the Lagrangian system. 55 

The connection between the Eulerian and Lagrangian approaches leads to the ordinary 56 

differential equations,
                                                    

57 

                            
( , , , ),   ( , , , ),   ( , , , ),

dx t dy t dz t
u x y z t v x y z t w x y z t

dt dt dt
                 (2a)                  58 

which determines the trajectory of the particle if the position is specified at some initial instant in 59 

its path history. Such calculation has also been used as the semi-Lagrangian scheme in ocean 60 

numerical modeling (e.g., Chu and Fan 2010). Thus, the interpolation (1b) is the key in 61 

calculating Lagrangian trajectories from gridded velocity fields.  For steady gridded velocity 62 

fields, the analytical solution exists for the Lagrangian trajectory (2a) inside one grid cell with 63 

(1b) a highly truncated linear interpolation in space (see Section 2 for explanation) (Doos 1995; 64 

Blanke and Raynaud 1997).  Follow-up research has been extended from steady to unsteady 65 

velocity fields with the Lagrangian trajectories being calculated from time-varying gridded 66 

velocity fields (Vries and Doos 2001).  67 

 Two sources of uncertainty exist in determining the Lagrangian trajectories from Eulerian 68 

flow field: (a) the knowledge of the smoothness; and (b) the error in the integration of the 69 

ordinary differential equations (2a).  There is a need to estimate uncertainties due to the limited 70 

knowledge of the Eulerian velocity (see Section 2).  To illustrate this point, consider the case that 71 

we only have access to the average of the velocity in a cell. In this case the trajectories within the 72 
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cell are straight lines, called the constant velocity (CV) scheme.  With more knowledge about the 73 

Eulerian velocity, for example, Vries and Doos (2001) used low order truncation in spatial 74 

interpolation [see (5a) and (5b) in Section 2] to simplify [u(x, y, z, t), v(x, y, z, t)] in (2a) by 75 

      1 0 2 1 3 2 0 2 1 3( , ) ( ) ,   ( , ) ( ) ,
dx t dy t

L x t t t x L y t t t y
dt dt

          (2b) 76 

where u depends on (x, t) only and v depends on (y, t) only. Such a treatment leads to the 77 

existence of analytical solutions. The following coefficients in (2b) vanish  78 

                                                 2 3 2 3 0,  79 

when the Eulerian flow field is steady. The two functions in (2b) are represented by  80 

                        1 1 0 1 2 2 0 1( , ) ( ) ,   ( , ) ( ) ,L x t L x x L y t L y y                             (2c) 81 

In reality, for a 2D Eulerian flow field, the velocity components u(x, y, t), and v(x, y, t) in (2a) 82 

are not necessarily taken the functions (L1, L2) given by (2b). Questions arise: What is the 83 

Lagrangian trajectory if the Eulerian velocity components (u, v) depend on (x, y) [more 84 

realistic]? Is there any improvement with such a change? In other words, what is the 85 

improvement for a steady Eulerian flow field if 1( )L x  is changed into u(x, y) and 2 (y)L is 86 

changed into v(x, y)? What is the improvement for an unsteady Eulerian flow field if L1(x, t) is 87 

changed into u(x, y, t) and  L2(y, t) is changed into v(x, y, t) for an unsteady Eulerian flow field? 88 

To show the accuracy progressive in calculation of Lagrangian trajectories,  a systematical 89 

analysis is presented in this study for a steady Eulerian flow field, and will be presented in 90 

another paper in the near future for an unsteady Eulerian flow field. Division of steady and 91 

unsteady Eularian flow fields is due to the mathematical complexity. 92 

The rest of the paper is outlined as follows. Section 2 describes the establishment of 93 

continuous velocity inside a grid cell. Section 3 depicts the calculation of Lagrangian trajectory 94 
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from side to side of a grid cell. Section 4 shows the identification of starting grid cell. Section 5 95 

describes the Lagrangian trajectory across the grid cell. Section 6 introduces the Stommel ocean 96 

model for the evaluation. Section 7 shows the accuracy progressive from high to no truncation of 97 

the two-dimensional interpolation. Section 8 presents the conclusions.  98 

2. Establishment of Continuous Velocity Inside a Gridded Cell   99 

For simplicity without loss of generality, a steady-state two-dimensional gridded data is 100 

considered.  Let the water particle be located at (called a starting point, not necessary at the grid 101 

point) 0 0 0( , )x yR   inside the grid cell: [ 0 1, 0 1 i i j jx x x y y y ] and let it move using the 102 

gridded data. Due to spatial variability of the gridded velocity data, the Lagrangian velocity 103 

changes with time although the Eulerian flow is steady. Let the velocity be given at the four 104 

corner points of the grid cell, Fi,j, Fi+1,j, Fi,j+1, Fi+1, j+1. Here, F represents (u, v).  For a two-105 

dimensional interpolation, the velocities inside the ij grid cell can be given by the corner points,  106 

                             0 1 1 2 1 3 1 1, i j i jF x y a a x x a y y a x x y y .                     (3) 107 

Let the Lagrangian drifter travel from (x0, y0) to (x1, y1) with the travel time of τ (Fig. 1), and the 108 

Lagrangian velocity components u(x, y) and v(x, y) be represented by  109 

                                 1 1 0 0
0, 0 0

1 0

, ,
( , ) ( )

u x y u x y
u x y u x y x x

x x
,                                   (4a) 110 

                                 1 1 0 0
0 0 0

1 0

, ,
( , ) ( , )

v x y v x y
v x y v x y y y

y y
.                                   (4b) 111 

Substitution of (3) into (4a) and (4b) leads to   112 
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0, 0

1 0 1 0 1 0 1 0
0 0 1 0

0
1 0 1 0 1 0 1 0 1 0

0 1 1 1 0 0

0 11 0 0 0

( , ) ( )

, 1 1 , 1
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, 1 , ,

,, ,

i

j i j

ji

u x y u x y
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x y x y
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x y x y

u x y u xu x y u x y
x

0 0 1 0

1 0
0

1 0
0 0 1 0 0 1 1 1

, 1,
1 0 1 0

0 1 00
, 1 1, 1

,

, , , ,i j i j

i j i j

i j i j

y y y
y x x x x
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x y x yu u
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            113 

2
1 0

1 0 0
0 1 00 0

y yu u u y y x x
x y x x x y

,                                                (5a) 114 

2
1 0

0 0 1 0 0
0 1 00 0

( , ) ( , ) x xv v vv x y v x y x x y y
y x y y x y

,                     (5b) 115 

where   116 

                   0 1 0 01 0 0 0

0 0

, ,, ,
,   ,ji F x y F x yF x y F x yF F

x x y y
              117 

                 
2

, 1, , 1 1, 1
1 0 1 0

0

,   ,   i j i j i j i j
i j

F F F FF x x x y y y
x y x y

,                    118 

are given from the gridded velocities as well as the starting velocity [u(x0, y0), v(x0, y0)] with the 119 

starting position (x0, y0). Vries and Doos (2001) only keep the first term in the bracket of the 120 

right hand side of each equation in (5a) and (5b) and argued that inclusion of last two terms was 121 

impossible to give a general analytical solution although it may be important in the case of 122 

strongly curved streamlines.  123 



8 
 

Eqs.(5a) and (5b) can be rewritten into a more general form, 124 

               0 0 0 0, , ,   , ,o x o yu x y u x y A x x v x y v x y A y y ,                         (6) 125 

where  126 

                        

2
1 0

1 0
0 1 00 0

2
1 0

1 0
0 1 00 0

( ),

( ).

x

y

y yu u uA y y
x y x x x y

x xv v vA x x
y x y y x y

                                           (7) 127 

Substitution of (6) into (2a) leads to  128 

                               0 0( , ) , ,o x

dx t
u x y u x y A x x

dt
                                               (8a) 129 

                              0 0( , ) ,o y

dy t
v x y v x y A y y

dt
,                                                (8b) 130 

which have the following solutions,  131 

                  0 0 0 0 0 0( ) , ,     ( ) , ,   if  0x yx t x u x y t y t y v x y t A A ,                          (9)           132 

                                   0 0
0

0

,
( ) ( 1),     if  0,

/
xA t

x

u x y
x t x e A

u x
                                       (10a) 133 

                                   0 0
0

0

,
( ) ( 1),   if  0

/
yA t

y

v x y
y t y e A

v y
.                                        (10b) 134 

The solutions (9), (10a), and (10b) imply that the Lagrangian drifter never moves if the starting 135 

velocity equals zero, i.e., u0 = u(x0, y0) = 0, and v0 = v(x0, y0) = 0.  136 

For a sufficiently short travel time τ with the Lagrangian drifter still being inside the ij 137 

grid cell, the location (x1, y1) can be easily obtained if Ax =0, Ay = 0, or (Ax , Ay) are given [i.e., 138 

keeping the first term in the right-hand side of (7)],   139 

                  1 0 0 0 1 0 0 0, ,     , ,   if  0, 0x yx x u x y y y v x y A A ,                              (11a)     140 
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0 0
1 0

0

,
( 1),

/
xAu x y

x x e
u x

0 0
1 0

0 00

,
( 1),   if  ,

/
yA

x y

v x y u vy y e A A
v y x y

.   (11b) 141 

For more general cases [keeping the first two or all terms in the right-hand side of (7)], the 142 

location (x1, y1) satisfies the following two non-linear algebraic equations,  143 

                                                    0 0
1 0 1 1

0

,
exp ( , ) 1 ,

/ x

u x y
x x A x y

u x
                                  (12a) 144 

                                          0 0
1 0 1 1

0

,
exp ( , ) 1 ,

/ y

v x y
y y A x y

v y
                                  (12b) 145 

which are solved by the Newton-Raphson iteration method.  146 

3. Lagrangian Trajectory from Side to Side of a Grid Cell   147 

Various truncation of (3) leads to accuracy increase in calculating the Lagrangian 148 

trajectory (inside the ij grid cell) from the gridded velocities at the four corners of the ij grid cell. 149 

If only the first term in the right-hand side of (3) is used, i.e., Ax = 0, Ay = 0, the two ordinary 150 

differential equations (8a) and (8b) become 151 

                                                  0 0 0 0( , ),   ( , )
dx t dy t

u x y v x y
dt dt

,                                          (13)   152 

whose solutions are  153 

                                        0 0 0 0 0 0( ) , ,      ( ) ,x t x u x y t y t y v x y t ,                             (14)    154 

which is called the constant velocity (CV) scheme since the velocity components [u(x0, y0),    155 

v(x0, y0)] are constant during the movement of the  Lagarangian drifter inside the ij grid cell.  156 

If the first two terms in the right-hand side of (3) are used, i.e.,  157 

                                 
0 0

,    x y
u vA A
x y

.                                                     (15) 158 
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the two differential equations (8a) and (8b) do not depend on (x1, y1) and have analytical 159 

solutions (Doos 1995; Blanke and Raynaud 1997; Vries and Doos 2001),  160 

                    0 0 0 0
0 0

0 0

, ,
( ) ( 1),     ( ) ( 1)

/ /
yx A tA tu x y v x y

x t x e y t y e
u x v y

.                    (16)  161 

It is called the linear uncoupled (LUC) method.  162 

If the first three terms in the right-hand side of (3) are used, i.e.,  163 

1 0 1 0
1 1 1 1

0 01 0 1 00 0

( , ) ,    ( , ) ,x y
y y x xu u v vA x y A x y

x y x x y x y y
            (17) 164 

the two differential equations (8a) and (8b)  depend on (x1, y1), which represents  the end point of 165 

the trajectory. It is called the linear coupled (LC) scheme since the two velocity components 166 

[u(x1, y1), v(x1, y1)] depend on both x1 and y1 linearly.  If all the four terms in the right-hand side 167 

of (3) are used, i.e.,  168 

              
2

1 0
1 1 1 0

0 1 00 0

( , ) ( )x
y yu u uA x y y y

x y x x x y
,                                    (18a) 169 

              
2

1 0
1 1 1 0

0 1 00 0

( , ) ( )y
x xv v vA x y x x

y x y y x y
,                               (18b) 170 

the two differential equations (8a) and (8b)  also depend on (x1, y1).  It is called the nonlinear 171 

coupled (NLC) scheme since the two velocity components [u(x1, y1), v(x1, y1)] depend on both x1 172 

and y1 nonlinearly.  During the integration of (8a) and (8b), the location (x1, y1) is determined 173 

from solving the two nonlinear algebraic equations (12a) and (12b) using the Newton-Raphson 174 

iteration method. 175 

4. Identification of Starting Grid Cell  176 

Let a Lagrangian trajectory start from the initial location (x00, y00).  If   177 

                                            00 1i ix x x ,                                                                 (19a) 178 
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                                           00 1j jy y y ,                                                                 (19b) 179 

the point (x00, y00) is located inside the ij grid cell. As the trajectory hits the side or corner of the 180 

initial grid cell at the location (x0, y0), it is important to determine which the next grid cell is for 181 

the advance of the trajectory. The location (x0, y0) is called the starting point of the next grid cell. 182 

The Lagrangian trajectory is always calculated across the grid cell from (x0, y0) at the left or right 183 

side (Fig. 2), the upper or lower side (Fig. 3), and the grid point (Fig. 4).   184 

Let Fig. 2 be taken as an example for the illustration since Fig. 3 is similar but in the y-185 

direction. For  0 0u  (Fig. 2a), the point (x0, y0) is located at the left (right) side and will move 186 

to the right (left) grid cell if u0 > 0 (u0 < 0).  For 0 0u  and 0 0v  (Fig. 2b and 2c), 187 

determination of the next grid cell depends on both signs of [ 0v , 0( / )u y ]. Solutions (9), (10a), 188 

and (10b) require one component of (u0, v0) non-zero. For u0 = 0, v0 must be non-zero. With v0 > 189 

0, the starting point (x0, y0) is located in the right cell for 0( / ) 0u y ,  and in the left cell for 190 

0( / ) 0u y    (Fig. 2b). With v0 < 0, the starting point (x0, y0) is located in the right cell for191 

0( / ) 0u y , and in the left cell for 0( / ) 0u y    (Fig. 2c). For  0 0u  and 0 0,v  the 192 

trajectory stays at (x0, y0) forever. 193 

 For (x0, y0) located at the corner of the grid cell (i.e., at the grid point such as at x0 = xi, y0 194 

= yj (Fig. 4),  the point (x0, y0) will move to the upper right cell for   (u0 > 0,    v0 > 0),  the upper 195 

left cell for (u0 < 0,  v0 > 0),  the lower left cell for (u0 < 0,  v0 < 0), and  the lower right cell for 196 

(u0 > 0,  v0 < 0). With v0 = 0, the  point (x0, y0) will move to the upper right cell for [u0 > 0,  197 

0( / ) 0v x ], the upper left cell for [u0 < 0,  0( / ) 0v x ],  the lower left cell for [u0 < 0,  198 

0( / ) 0v x ],  and the lower right cell for [u0 > 0,  0( / ) 0v x ]. With u0 = 0, the point (x0, 199 

y0) will move to the upper right cell for [v0 > 0,  0( / ) 0u y ], the upper left cell for [v0 > 0,  200 
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0( / ) 0u y ], the lower left cell for [v0 < 0,  0( / ) 0u y ],  and the lower right cell for [v0 < 201 

0,  0( / ) 0u y ]. 202 

5. Lagrangian Trajectory Across Grid Cell 203 

The solutions (9) or (10a, b) are valid within a given grid cell. If (x1, y1) hits the corner 204 

point or side of the grid cell (xb, yb), i.e., (x1 = xb, y1 = yb), this ending point (xb, yb) is treated as 205 

the starting point for the next grid cell, and determined by the travel time in the x-direction  206 

                   

0

0 0

0

0 0

,                                              for 0, 0
,

,1 ln 1 ,   for   0, 0
, ,

b
x y

x
b x b b

x y
x b b

x x A A
u x y

x x A x y
A A

A x y u x y

               (20a) 207 

and y-direction,  208 

 

0

0 0

0

0 0

,                                                  for 0, 0
,

,1 ln 1      for   0, 0
, ,

b
x y

y
b y b b

x y
y b b

y y A A
v x y

y y A x y
A A

A x y v x y

                   (20b) 209 

The Lagrangian trajectory hits the corner of the ij grid cell [i.e., one of the four grid points (xi, 210 

yj), (xi+1, yj), (xi+1, yj), (xi+1, yj+1)] if x y .  The Lagrangian trajectory hits the side of the cell 211 

if x y . For x y , it hits the upper  side if v0 > 0 and hits the lower side if v0 < 0.   For212 

x y , it hits the right side if u0 > 0 and hits the left side if u0 < 0 (Fig. 5).    213 

For the Lagrangian trajectory hitting the cell side, one of xb  and  yb  takes the grid point 214 

location (one of xi, xi+1, yj, yj+1) and the other is obtained from solving an algebraic equation with 215 

the constraint of   x y , 216 

  0 0 0 0 0 0, , 0  ,     b bv x y x x u x y y y                                                           (21a) 217 
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for the CV scheme,  218 

                 0 0 00 0 0 0 0

0 0 0 0 0 0

,, ,
exp

, , ,
b yb x x

y

y y A x yx x A x y A x y
u x y v x y A x y

,                              (21b) 219 

for the LUC scheme,  220 

00

0 0 0 0

,,
, ln 1 , ln 1 =0,

, ,
b y b bb x b b

y b b x b b

y y A x yx x A x y
A x y A x y

u x y v x y
    (21c) 221 

for the LC and NLC schemes. Since one of (xb, yb) is given, (21a) and (21b) are linear algebraic 222 

equations, which is solved easily and explicitly. However, (21c) is a nonlinear algebraic 223 

equation, which is solved using the Newton-Raphson method. After (xb, yb) being obtained, the 224 

travel time is determined, and in turn the Lagragian trajectory is obtained before hitting the 225 

grid cell side (or corner) using (10a) or (10b) for  0 t  (i.e., dashed curve in Fig. 1). 226 

It is also noted that during the integration the velocity components (u, v) are set to zero 227 

under the conditions,   228 

                   10 1 10 10   if  10 s ,    0   if  10 su vu v
x y

.                                (22) 229 

The relative displacement components ( / , /x x y y ) are rounded with the accuracy of 10-9.   230 

6. Stommel Ocean Model on the f-Plane 231 

Stommel (1948) designed an ocean model to explain the westward intensification of wind 232 

driven ocean currents. Consider a rectangular ocean with the origin of a Cartesian coordinate 233 

system at the southwest corner (Fig. 6). The x*- and y*- axes point eastward and northward, 234 

respectively. Here, the superscript ‘*’ denotes dimensional variables. The boundaries of the 235 

ocean are at x* = 0, λ; and y* = 0, b. The ocean is considered as a homogeneous and 236 

incompressible layer of constant depth D when at rest. When currents occur as in the real ocean, 237 
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the depth differs from D everywhere by a small perturbation. Due to the incompressibility, a 238 

streamfunction ψ* is defined by 239 

                                                                      
* ** ,   *
* *

u v
y x

,                                             240 

where u* and v* are components of the velocity vector in the x* and y* directions. The surface 241 

wind stress is taken as -F cos(πy/b). The component frictional forces are taken as -Ru and -Rv, 242 

where R is the frictional coefficient. The Coriolis parameter f is also introduced. For a constant f, 243 

an equation was derived for the streamfunction ψ*, 244 

                                               
2 2

2 2

** sin( )
* *

y
x y b

,                                          (23) 245 

where / ( )F Rb . The rigid boundary conditions are given by 246 

                                 (0, *) ( , *) ( *,0) ( *, ) 0y y x x b .                                       (24) 247 

The independent and dependent variables are non-dimensionalized by   248 

                        * 2 2*/ 0.5,  / 0.5,  * / ( )x x y y b b .                                      (25) 249 

For simplicity without loss of generality, the dimensional parameters (λ, b) are chosen such as 250 

/ 1b . The analytical solution of Eq.(23) in the non-dimensional form is given by  (Fig. 6b) 251 

                              
1

1 1

1 1( , ) sin 1 x xe ex y y e e
e e e e

 ,                                       (26) 252 

with 0 1,  0 1x y  and the maximum value,  253 

                                   
1/2 1/2

max 11 2 e e
e e

.                                                                         (27) 254 

The non-dimensional velocity components of the Stommel model (uS, vS) are given by  255 
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1

1 1

1

1 1

1 1( , ) cos 1 ,

1 1( , ) sin .

x x
S

x x
S

e eu x y y e e
y e e e e

e ev x y y e e
x e e e e

                           (28) 256 

7. Accuracy Progressive among the Four Schemes 257 

The non-dimensional ocean basin is discretized by 0.02x y . The velocity components 258 

are calculated at the grid points (ui,j, vi,j) (i = 1, 2, …, 51; j =1, 2, …, 51) using (28). With the 259 

gridded Eulerian velocity fields (ui,j, vi,j), the continuous velocity fields   [u(x, y), v(x, y)] are 260 

obtained using (6) with four different methods (CV, LUC, LC, and NLC). Since the Stommel 261 

model on the f-plane is symmetric (Fig. 6) the initial location is selected by 262 

                                             00 000.14,    0.0x y .                                                       (29) 263 

which is 2.5 times away from the boundary than from the center of the circulation. Eq.(26) 264 

shows that the stream-function at (x0, y0) is given by  265 

                                                 0 (0.14,  0.0) 0.1045 .                                                (30) 266 

Since the Stommel ocean model has the steady-state analytical solution, the Lagrangian drifter is 267 

supposed to move along any closed streamline (Fig. 7a), which means that the Lagrangian 268 

trajectory coincides with the streamline and should be closed. The two differential equations (8a) 269 

and (8b) are integrated using the four schemes (CV, LUC, LC, NLC) for computing Ax(x, y) and 270 

Ay(x, y) with the Lagragian trajectory moving around the ocean basin up to 100 circles.  271 

First, the analytical streamline (Fig. 7a) is used to evaluate the accuracies of the CV, 272 

LUC, LC, and NLC schemes (Figs. 7b-e). The Lagrangian trajectory is not a closed circle using 273 

the CV, LUC, and LC schemes. Using the CV scheme, it hits the ocean boundary after 8.375 274 

circles (Fig. 7b), using the LUC scheme, it hits the ocean boundary after 26 circles (Fig. 7c), 275 
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using the LC scheme, it does not hit the ocean boundary after 100 circles (but not a closed 276 

streamline with ψ-value changing to 0.032 after 100 circles) (Fig. 7d). However, using the NLC 277 

scheme, it is exactly the same as the analytical streamline after 100 circles (ψ-value kept as 278 

0.1045) (Fig. 7e). Since ψ = 0 at the lateral boundary, the following criterion 279 

                                                610 ,                                                                        (31) 280 

is used to identify the Lagragian trajectory hitting the lateral boundary.  281 

 Second, the initial streamfunction 0  is used to evaluate the four methods. The smaller 282 

the difference of the numerical ψ-value against 0 , the more accurate the scheme would be. Fig. 283 

8 shows the dependence of the ψ-value versus the circle of the Lagrangian trajectory around the 284 

ocean basin. The zero value of the streamfunction indicates the ocean boundary. The ψ-value 285 

reduces from 0.1045 to 0 at the 8.375th (26th) circle using the CV (LUC) method; and to 0.032 at 286 

the 100th circle using the LC method.   The ψ-value keeps 0.1045 after 100th circle using the 287 

NLC method.  288 

  Third, the relative root mean square error (RRMSE) of the streamfunction is used to 289 

evaluate the accuracy,  290 

                                                       RRMSE a

a

,                                                         (32) 291 

where ψa is the  analytical streamfunction. The comparison is conducted with three different 292 

initial locations (Table 1) with associated ψa–values (0.1045, 0.08752, 0.06143) (Fig. 9). For the 293 

same initial location (x00, y00), RRMSE increases from 0 to 1.0 in 5-8 circles using the CV 294 

method, and in 17 circles using the LUC method, increase from 0 to around 0.7 in 100 circles 295 

using the LC method. RRMSE keeps near 0 in 100 circles using the NLC scheme (Fig. 10a). For 296 

the same method, RRMSE increases as the initial location changing towards the boundary (from 297 
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Case 1 to Case 3 in Table 1). To further investigate the performance of the NLC method, 298 

RRMSE (in 10-3) is plotted in one circle for the three initial locations (Fig. 10b).  The oscillation 299 

of RRMSE is noted with the largest (smallest) amplitude for Case-3 (Case-1). The minimum 300 

RRMSE values occur when the trajectory passing four points (0, y-), (x-, 0), (0, y+), (x+, 0) with 301 

either u = 0 or v = 0. The 2-D calculation becomes 1-D calculation, and greatly decreases the 302 

RRMSE.    303 

 The CPU time comparison is based either on the first 5 circles (Table 2) or first 100  304 

circles (or hitting the boundary) (Table 3) of the Lagrangian drifter around the streamline of the 305 

Stommel model. Since the Stommel model is steady state, the Lagrangian trajectory coincides 306 

with the Eulerian streamline. The calculated Lagrangian trajectory has less (more) deviation to 307 

the streamline using more (less) accurate scheme with accuracy decreasing from the NLC, LC, 308 

LUC, to CV scheme (see Fig. 7).  Thus, the Lagrangian drifter moves the shortest distance per 309 

circle using the NLC scheme and longest distance using the CV method. Except the CV scheme 310 

(consuming the least CPU time - 0.0031 s per circle),  for the first 5 circles, the NLC scheme 311 

consumes less  CPU time per circle (0.03432 s) than the LUC scheme (0.06552 s) and the LC 312 

scheme (0.03744 s) (Table 2), and up to 100 circles (or hitting the boundary),  the NLC scheme 313 

consumes comparable CPU time per step (0.000660 s) as the LUC scheme (0.000636 s) and the 314 

LC scheme (0.0000646 s). The lowest CPU time per circle and per step using the CV is caused 315 

by the simplest calculation of the Lagrangian trajectory [i.e., Eq.(9)].  316 

8. Conclusion 317 

(1) Two sources of uncertainty in determining the Lagrangian trajectories from the 318 

Eulerian velocity are identified: (a) the knowledge of the smoothness; and (b) the error in the 319 

integration of the ordinary differential equations.  This study especially shows the process of 320 
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establishing series of accuracy progress schemes (CV, LUC, LC, NLC) with different knowledge 321 

of smoothness for calculating Lagrangian trajectory using the gridded velocity field through 322 

different truncations of a two-dimensional interpolation. All the four schemes are within the 323 

same analytical framework using two coefficients (Ax, Ay) with the time-dependence of the 324 

Lagrangian trajectory analytical: linear for the CV scheme, and exponential for the rest schemes 325 

(LUC, LC, NLC).   326 

(2) Accuracy increases with the change of the two coefficients (Ax, Ay).  When Ax = Ay = 0, 327 

the Lagragian velocity components use the starting velocity (u0, v0) (the CV scheme), the 328 

accuracy is the lowest. When (Ax, Ay) are truncated at the first term of the right-hand side in  Eq 329 

(7),    the Lagragian velocity component u depends on x, and v depends on y only (the LUC 330 

scheme), the accuracy is the lower. When (Ax, Ay) are truncated at the first two terms of the right-331 

hand side in  Eq (7),   the Lagragian velocity components (u, v) depend on (x, y) linearly (the LC 332 

scheme), the accuracy is higher. When (Ax, Ay) keep all the three  terms of the right-hand side in  333 

Eq (7),   the Lagragian velocity components (u, v) depend on (x, y) nonlinearly (the NLC 334 

scheme), the accuracy is the highest. The Lagrangian trajectory is obtained explicitly using the 335 

CV and LUC schemes and implicitly using the LC and NLC schemes with the Newton-Raphson 336 

iteration method.  337 

(3)  The non-dimensional (length of 1.0 in both x and y directions) Stommel ocean model 338 

(steady-state with analytical solution) on the f-plane is used for the evaluation. The Lagrangian 339 

trajectory is calculated from the initial location at the  distance of 0.14 to the center of the ocean 340 

basin using the four schemes (CV, LUC, LC, and NLC) from the gridded velocity data obtained 341 

from the analytical Stommel ocean model.  The Lagrangian trajectory is accurately determined 342 

with no deviation from the steamline even after the Lagrangian drifter moving around the ocean 343 
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basin 100 circles using the NLC scheme; less accurately determined with deviation from the 344 

streamline using the LC scheme; inaccurately determined with evident deviation from the 345 

streamline (hitting  the ocean boundary after 26 circles)  using the LUC scheme; and very 346 

inaccurately determined with large deviation from the streamline (hitting  the ocean boundary 347 

after 8.375 circles)  using the CV scheme. The CV scheme consumes the least CPU time. The 348 

NLC scheme consumes comparable CPU time as the LUC and LC schemes.   349 

(4) High accuracy with no evident increase of CPU time makes the NLC scheme a 350 

promising schemefor calculating Lagrangian trajectory from gridded velocity data especially 351 

with strongly curved streamlines.  352 

(5)  Calculation of Lagrangian trajectories from 2D gridded velocity field described here 353 

is easy to extend to 3D gridded velocity field by changing 2D grid cell into 3D grid volume.  For 354 

the procedure identified in Section 4, the trajectory starts from a surface (or grid point) of the 355 

grid volume (x0, y0, z0) rather than a side (or grid point) of the grid cell (x0, y0), and ends at a 356 

surface (or grid point) (xb, yb, zb) rather than a side (or grid point) of the grid cell (xb, yb).  The 357 

starting point for the next grid volume is determined by equalizing the three travel times (τx, τy, 358 

τz) [similar to (20a), and (20b)], x y z , which provides two algebraic equations of (yb,  zb) 359 

for the CV scheme [similar to (21a)], the LUC scheme [similar to (21b)], and the LC and NLC 360 

schemes [similar to (21c)].  The two algebraic equations are solved by 2-D Newton-Raphson 361 

method. 362 

(6)   The semi-Lagrangian method combines both Eulerian and Lagrangian points of view. 363 

The fluid variable is discretized on an Eulerian grid, but is advanced in time using the equation 364 

similar to Eq.(2a). The algorithms in the context of calculations of drifter trajectories (e.g., the 365 
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CV, LUC, LC, NLC schemes) can be applied to the semi-Lagrangian methods in ocean 366 

modeling. 367 

(7) The limitation of this study is that only an analytical steady ocean model, i.e., the 368 

Stommel model, is used for evaluating the four schemes. In the context of practical application to 369 

the trajectories of drifters driven by oceanographic fields, it will be useful to examine the 370 

properties of these algorithms in the near future under somewhat more realistic conditions; for 371 

instance output from an eddy resolving ocean model (i.e., unsteady Eulerian gridded flow field).  372 
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Table 1.  Three initial locations and associated analytical ψa-values.  428 

 429 

 430 
 431 
 432 
 433 
 434 
 435 
 436 
 437 

 438 
 439 
 440 
Table 2. Comparison of CPU (unit: s) for the first 5 circles among the four methods. 441 

 CV LUC LC NLC 

CPU  for 5 circles  0.0156 0.3276 0. 1872 0. 1716 

CPU per circle 0.0031 0.06552 0.03744 0.03432 

 442 

 443 

Table 3. Comparison of CPU (unit: s) for the Lagrangian trajectories either hitting the boundary 444 
or up to 100 circles among the four methods. 445 

 CV LUC LC NLC 

Circles  either hitting 
the boundary or 100 8.375 26 100 100 

Total CPU  0.0312 
 
2.8704  
 

8.2057 3.6036    

CPU  per circle 0.0037 0.1104 0.0821 0.0360 

Total steps 1176 4517 12696 5200 

CPU per step 0.0000265 0.000636 0.000646 0.000660 

 446 
447 

Case  x0 y0 
ψa-value 

1 0.14 0.0 0.1045 

2 0.24 0.0 0.08752 

3 0.34 0.0 0.06143 
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Figure Captions 448 

Fig. 1.   Illustration of a Lagrangian trajectory [x(t), y(t)] (dashed curve) from (x0, y0) to (x1, y1) 449 
inside the ij grid cell. 450 

Fig. 2.  Determination of initial grid cell with the initial location of the Lagragian trajectory      451 
(x0, y0)  located at x0 = xi for (a) 0 0u , (b) u0 = 0, v0 > 0, and (c) u0 = 0, v0 < 0.  452 

Fig. 3. Determination of initial grid cell with the initial location of the Lagragian trajectory       453 
(x0, y0)  located at y0 = yj for (a) 0 0v , (b) v0 = 0, u0 > 0, and (c) v0 = 0, u0 < 0. 454 

Fig. 4.  Determination of initial grid cell with the initial location of the Lagragian trajectory     455 
(x0, y0) located at x0 = xi,  y0 = yj. 456 

Fig. 5.  Determination of the side of the grid cell for the Lagrangian trajectory crossing.  457 

Fig. 6. Stommel ocean model on the f –plane: (a) ocean geometry, and (b) streamfunction (m2/s) 458 
(after Stommel 1948). 459 

Fig. 7. Calculated Lagragian trajectories with the initial location (0.14, 0.00) and  ψ0 = 0.1045 460 
using (a) analytical solution, (b) CV scheme, (c) LUC scheme, (d) LC scheme, and NLC scheme. 461 

Fig. 8.  Temporal evolution of ψ-values of the Lagrangian trajectory calculated with the four 462 
schemes. It is noted that the time is represented by the number of circles around the ocean basin. 463 

Fig. 9. Streamlines with three different initial locations: (0.14, 0.00) (solid curve, ψ0 = 0.1045), 464 
(0.24, 0.00) (dotted curve, ψ0 = 0.08752), and (0.34, 0.00) (dashed curve, ψ0 = 0.06143).  465 

Fig. 10. (a) Temporal evolution of RRMSE of streamfunction  of the Lagrangian trajectory 466 
calculated with the four schemes using the four schemes with three different initial locations. (b) 467 
Zoom-in temporal evolution of RRMSE of streamfunction of the Lagrangian trajectory 468 
calculated with the NLC scheme (vertical scale is nearly three orders magnitude smaller).  It is 469 
noted that the time is represented by the number of circles around the ocean basin. 470 

 471 

 472 

 473 

 474 

 475 
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 476 

 477 

 478 

Fig. 1.   Illustration of a Lagrangian trajectory [x(t), y(t)] (dashed curve) from (x0, y0) to (x1, y1) 479 
inside the ij grid cell.  480 
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 481 

 482 

Fig. 2.  Determination of initial grid cell with the initial location of the Lagragian trajectory      483 
(x0, y0)  located at x0 = xi for (a) 0 0u , (b) u0 = 0, v0 > 0, and (c) u0 = 0, v0 < 0.  484 
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 488 

 489 

Fig. 3. Determination of initial grid cell with the initial location of the Lagragian trajectory      490 
(x0, y0)  located at y0 = yj for (a) 0 0v , (b) v0 = 0, u0 > 0, and (c) v0 = 0, u0 < 0. 491 

 492 

 493 

 494 

 495 
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 496 

 497 

Fig. 4.  Determination of initial grid cell with the initial location of the Lagragian trajectory     498 
(x0, y0) located at x0 = xi,  y0 = yj. 499 

 500 

 501 

 502 

 503 

  504 
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   505 

                  506 

 507 

 508 

Fig. 5.  Determination of the side of the grid cell for the Lagrangian trajectory crossing.  509 

  510 
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 511 

 512 

 513 

Fig. 6. Stommel ocean model on the f –plane: (a) ocean geometry, and (b) streamfunction (m2/s) 514 
(after Stommel 1948).   515 
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 516 

 517 

Fig. 7. Calculated Lagragian trajectories with the initial location (0.14, 0.00) and  ψ0 = 0.1045 518 
using (a) analytical solution, (b) CV scheme, (c) LUC scheme, (d) LC scheme, and NLC scheme.  519 
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                               520 

 521 

 522 

 523 

 524 

Fig. 8.  Temporal evolution of ψ-values of the Lagrangian trajectory calculated with the four 525 
schemes. It is noted that the time is represented by the number of circles around the ocean basin. 526 

 527 

  528 
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 529 

 530 

 531 

Fig. 9. Streamlines with three different initial locations: (0.14, 0.00) (solid curve, ψ0 = 0.1045), 532 
(0.24, 0.00) (dotted curve, ψ0 = 0.08752), and (0.34, 0.00) (dashed curve, ψ0 = 0.06143).  533 

 534 

 535 
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 536 

Fig. 10. (a) Temporal evolution of RRMSE of streamfunction  of the Lagrangian trajectory 537 
calculated with the four schemes using the four schemes with three different initial locations. (b) 538 
Zoom-in temporal evolution of RRMSE of streamfunction of the Lagrangian trajectory 539 
calculated with the NLC scheme (vertical scale is nearly three orders magnitude smaller).  It is 540 
noted that the time is represented by the number of circles around the ocean basin. 541 


