
Estimating Performance of

Single Bus, Shared Memory Multiprocessors

Garth Gibson

Computer Science Division
Electrical Engineering and Computer Science Department

University of California, Berkeley
Berkeley, CA 94720

Submitted in partial satisfaction of the requirements of
the Masters of Science degree in Computer Science,
type. II, from the University of California at Berkeley.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAY 1987 2. REPORT TYPE

3. DATES COVERED
 00-00-1987 to 00-00-1987

4. TITLE AND SUBTITLE
Estimating Performance of Single Bus, Shared Memory Multiprocessors

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Given standard characteristics of processors and memory, we present two simple ways of estimating the
performance of shared memory multiprocessors. At the cost of a few simple arithmetic operations, a
computer designer can estimate the range of performance using our "4-point bound" model. If more
accuracy is required, we show that a one page program can estimate performance within 3% of
trace-driven simulation, while reducing software development time, disk space, and CPU time by orders of
magnitude. To demonstrate the use of our models, an application to the SPUR multiprocessor design is
presented.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

45

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Table of Contents

1 Introduction 1

2 Definitions and Related Work .. 4

3 Effective Uniprocessors Experiment ... 5

3.1 Optimistic Estimate ... 6

3.2 Pessimistic Estimate .. 7

3.3 4-Point Bound ... 9

3.4 A Simple Queueing Model ... 11

3.5 Trace-Driven Simulation .. 12

4 Results 15

5 Discussion 17

6 Additional Metrics Explored.. 19

6.1 Optimistic Estimates ... 20

6.2 Pessimistic Estimates 20

6.3 4-Point Bounds .. 21

6.4 Simple Queueing Models 22

6.5 Trace-Driven Simulation Results .. 23

7 Example: Application to the SPUR Multiprocessor Design 23

7.1 SPUR Multiprocessor Performance Estimation .. 23

7.2 Design Tradeoff Analysis in SPUR .. 27

8 Future Work ... 31

9 Summary .. 31

10 Acknowledgments.. 32

11 Bibliography... 32

12 Appendix A: Raw Data .. 35

13 Appendix B: More on Pessimistic Estimations .. 37

13.1 A Lower Bound: The Paranoid Bound ... 37

13.2 A Family of Pessimistic Models ... 38

13.3 What Does This Mean? .. 39

Estimating Performance of
Single Bus, Shared Memory Multiprocessors

Garth Gibson

Computer Science Division
Electrical Engineering and Computer Science Deparunent

University of California, Berkeley
Berkeley, CA 94 720

Abstract: Given standard characteristics of processors and memory, we present two simple ways of estimating

the performance of shared memory multiprocessors. At the cost of a few simple arithmetic operations, a com

puter designer can estimate the range of performance using our ''4-point bound'' model. If more accuracy is

required, we show that a one page program can estimate performance within 3% of trace-driven simulation,

while reducing software development time, disk space, and CPU time by orders of magnitude. To demonstrate

the use of our models, an application to the SPUR multiprocessor design is presented.

1. Introduction

Multiprocessor computers have long been attractive because of their cost-performance advantages

[Fuller76]. Unfortunately, their success has been hampered by the difficulties of parallel programming, partie-

ularly when the system interconnection has to be considered explicitly [Deminent82]. Consequently, many

researchers and designers look to shared memory for simplifying parallel programming [Baskett86, Bell85].

Faced with designing a memory system for multiple processors, a computer architect must estimate the

contention for shared memory. This can be done with hardware monitors, trace-driven simulation,

distribution-driven simulation or mathematical models. The most accurate estimate would come from measur-

ing a similar system. However, even when a similar system is available, trace-driven simulation is often pre-

ferred, because it allows for the evaluation of alternative designs by repeatable experiments [Smith85].

Because trace-driven simulation represents at least one real workload, it is often preferred over distribution-

driven simulation or mathematical models. Finally, either simulation technique usually induces more

confidence than mathematical models, because they make fewer simplifying assumptions.

Trace-driven simulation, however, is not without its disadvantages [Clark83,Clark85,Smith85]. Obtain-

ing processor reference traces is no small matter. It usually involves a software project to construct a simula-

tor that will produce traces and it may require modifications to the operating system or microcode. It is typi-

cally difficult to trace system effects such as VO, interrupts, context switches and interactions between multiple

processes. The very act of tracing may affect the system being traced and thus, the trace itself. And once the

traces have been obtained, a further software project is required to construct a simulator that will process the

traces and mimic a target system to record important events. Since the target system may not exist, there is no

simple way to verify the correctness of this simulator. Finally, analyzing traces demands significant CPU time,

sometimes measured in units as large as ''CPU weeks''.

The advantage of mathematical models, such as queueing networks [Allen80, Kleinrock75], is their rela-

tively low cost. By modeling event durations as random variables, these models may be used to explore many

design choices in CPU seconds. Rules of thumb provide even cheaper alternatives to simulation, if the elimi-

nation of large classes of design choices is critical. At the cost of reduced accuracy, "back of the envelope"

calculations based on rules of thumb can be invaluable [Bentley84].

Effective UniProcessors

9

8

6

5

4

3

2

point 1

6 11 16

Processors

Figure 1
This paper presents a simple stochastic model and a "4-point bound" rule of thumb that

predict the potential speedup of shared memory multiprocessors. Both compare well with

results obtained by trace-driven simulation. This figure shows speedup, as measured in

terms of effective uniprocessors.

2

In this paper we present two models for predicting potential shared memory multiprocessor perfor

mance. Our premise is that mathematic models are acceptable alternatives to simulation if their performance

estimates are close to trace-driven simulation estimates regardless of structural differences and simplifying

assumptions. Figure 1 demonstrates our models.

(1) The "4-point bound" is a rule of thumb that gives "back of the envelope" calculations for perfor

mance bounds. The pessimistic edge of the bound differs from the optimistic edge by no more than

35%.

(2) A simple queuing model that is similar to the "interactive computer system" model of [Allen78], and

predicts performance to within 3% of trace-driven simulation estimates in orders of magnitude less

CPU time.

The most frequently used performance metric in this paper is effective uniprocessors (EU). Effective

uniprocessors is a measure of speedup; it is the ratio of time it would take a uniprocessor to process N copies

of the workload to the time it takes theN-way multiprocessor to process the workload once per processor.

While our models are applicable to parallel programs, we do not examine parallel programs in this

paper. Parallel program interactions, data sharing and synchronization, can slow the rate that useful work is

done, so our results predict potential speedup. We also exclude I/0 traffic from our study, as we assume the

impact of I/0 traffic on a high speed memory system is small.

Our memory system model is intended for multiprocessors with per processor writeback caches and

memory systems constructed around standard backplane buses such as the VME, Multibus-2, NuBus, or

Futurebus. These buses do not overlap subsequent accesses and provide fair arbitration (except that the VME

arbitration is fair for at most 4 processors). In such a system memory traffic will be dominated by transfers of

cache blocks resulting from cache misses (that stall the processor). So in our simple memory system a proces

sor stalls while awaiting memory service; memory services one request at a time; read and write events have

constant. equal durations; and arbitration is fair (for example, first come, first serve).

In the next section we introduce some definitions and reference related work. Section 3 details the

models, trace-driven simulation and the comparison experiment for estimating effective uniprocessors. The

results of this experiment are presented in section 4 and discussed in section 5. In section 6, we present an

3

analogous development and evaluation of two other performance metrics, bus utilization and average wait for

memory service. Section 7 presents a sample application of our simple queueing model on the SPUR mul-

tiprocessor [Hill86]. We conclude with a discussion of future work, a summary and acknowledgements in sec-

tions 8, 9 and 10. The first appendix provides raw data taken from the trace-driven simulation experiment for

the interested reader. In the second appendix we examine the pessimistic estimate of the 4-point bound to

determine its relationship to a true lower bound on performance.

2. Definitions and Related Work

Our multiprocessor has N processors, each with an average computation time between successive

memory requests, compute time1
, of tcompwu. In a system with caches local to each processor, this is the mean

time between cache references that require memory service (misses or writeback events) excluding the

memory service time. Computer designers can estimate tco,..u from the processor speed, the rate a processor

references its cache, the cache miss ratio, the miss overhead, and the fraction of dirty blocks replaced in a

writeback cache. Memory service time, the duration that the bus and memory are occupied servicing a

processor's request, is lrransfu. Computer designers can estimate trrQIISfer from the memory speed, the bus

speed, and the cache blocksize. In queueing theory terminology, tcompwu and trrQIISfer are called 1/A. and 1/J..L,

respectively.

A further note on our metric, effective uniprocessors, is needed. Since the same workload is being pro-

cessed on all processors, the ratio of execution times is the reciprocal of the ratio of processor utilizations:

uniprocessor execution time _ T 1 _ WIT N _ multiprocessor utilization
multiprocessor execution time - TN - W7Tl- uniprocessor utilization

In this expression, Tis the total cycles and W is the total cycles that the processor is busy (fixed by the work-

load). This gives us another way to measure effective uniprocessors, the ratio of the execution time of N units

of a workload on a uniprocessor to a unit per processor on a N-way multiprocessor, when the workload on

each processor is identical: N times the ratio of the per processor utilization in the multiprocessor to the

uniprocessor utilization.

1 Our compute time parallels the think ti~ in the interactive computer system model [Allen80].

4

The same optimistic estimate of shared memory multiprocessor performance has been developed many

times [Reyling74, Kinney78, Dubois85, Baskett86]. Each of these models is a special case of Kleinrock's sys-

tem saturation point, N* = tcompuu +trra11Sfer [K.leinrock75]. The optimistic edge of our 4-point bound uses this
lrransfer

approach, also known as bottleneck analysis [Denning78].

A pessimistic estimate of shared memory multiprocessor performance has also been developed [Reyl-

ing74]. In Reyling's analysis, every time a processor requests memory service, it is assumed that the processor

must wait for every other processor to access memory. This is similar to our paranoid bound given in the

second appendix. In contrast, the pessimistic estimate in our 4-point bound will demonstrate empirically that

on average a processor waits for no more than half of the other processors before getting memory service.

Marsan et al present performance analyses to compare four slightly different single bus, message pass-

ing multiprocessor architectures where shared memory is used to pass variable length messages [Marsan82].

They model two of their architectures with a simple M/M/1//N queueing model [K.leinrock75]. The M/M/1/N

has also been used without validation to model contention for a shared I/0 bus [Kinney78]. We also use the

M/M/1//N queue, but we model a cache-based shared memory system rather than a private memory, message

passing system or a shared I/0 system. Using exponential distributions (i.e., M/M/1//N) in queueing models

instead of non-exponential distributions (i.e., GI/G/1//N) allows substantial simplifications and often accurately

estimates the more complex non-exponential model [Buzen77].

Queueing models with more complex structure can often offer more accurate performance estimates, but

they usually also cost more to solve. Researchers in queueing theory are investigating approximations for

some complex models, to reduce the cost of extracting performance estimates [Chandy78]. This research is

primarily concerned with the accuracy of approximations relative to models and does not directly address the

applicability of their models as predictors of shared memory multiprocessor performance [Marsan83, Tows-

ley86].

3. Effective Uniprocessors Experiment

In this section we describe our models and trace-driven simulation experiment In each model the

parameters, number of processors (N), memory service time (t~ransfer), and mean computation time between

requests to memory (tcompuu) are assumed to be fixed by the model user.

5

We begin with the 4-point bound. It is built from two curves, an optimistic estimate and a pessimistic

estimate. These estimates rely on simple arithmetic only.

3.1. Optimistic Estimate

The 4-point bound's optimistic edge is based on Kleinrock's system saturation point and is similar to

several published models [Reyling74, Dubois85, Baskett86]. In this model, processors schedule their requests

to avoid waiting for the bus. Since there is never any contention, this model's effective uniprocessors esti-

mates will always be better than what is actually obtained. One way to achieve this behavior is to have a con-

stant compute time, tcomfJUk , as shown in Figure 2.

To calculate the saturation point, notice that each processor requests trransf er service from memory every

tcompuu+trransfer. so the memory is idle for I= tcompUU+trransfer-Ntrransfer between successive requests from a

processor. The system saturates when the memory is never idle, I = 0. Kleinrock names this point

N* = tcompuu+trransfer , the system saturation point.
trransfer

While N ::::; N* there is no contention, so the multiprocessor utilization will be the same as the uniproces-

sor utilization and effective uniprocessors is N. Once the system is saturated, we would expect that effective

compute

transfer

compute -----,u
transfer

compute-----,

transfer

I .__.....

request period

Figure 2

trransfer -
u

Processor

2

3

One way to minimize contention is to have each processor request memory precisely at

the time its predecessor releases memory. This figure shows a 3 processor system with

memory service time trransfer = 1 and compute time tcomp..u = 3 under optimistic condi

tions. Because there is no contention, memory is idle (I) 1 out of the 4 cycles between

successive requests from a processor. The example in this figure is directly comparable to

the pessimistic example in Figure 4.

6

Effective UniProcessors

N*

1

Figure 3

N*
Processors

By the optimistic estimate, effective uniprocessors shows linear growth until there are

N* = tcompuu+ttran.rfer processors. At this point, the memory system is saturated, and ef
ltransfer

fective uniprocessors does not increase as more processors are added.

uniprocessors should not increase with additional processors. This model verifies our intuition. Each addi-

tional processor causes every processor to wait for the additional processors' service times (N -N*)ttransfer. So

each processor in the multiprocessor is working for tcompu:e out of each tcompute +ttransf er +(N -N*)ttransf er.

Effective uniprocessors, while the memory is saturated, is therefore:

EU = N mul~processor u~i!iza~on =
umprocessor utzlzzatzon

N !compute
tcompuu+ltransfer+(N -N•)!transfer =

tcompuu
lcompUle+ltransfer = N*

!transfer

Effective uniprocessors, as shown in Figure 3, is summarized as: EU = min[N, N* J .

3.2. Pessimistic Estimate

The optimistic edge of the 4-point bound minimizes contention for memory. A corresponding pessimis-

tic edge maximizes contention for the same parameter values, N, !transfer and tcompUle by issuing all memory

requests with no intervening computing at the beginning of the execution then doing all the computing. We

call this the paranoid bound. Unfortunately, it is an unreasonable model. A more reasonable model gathers

requests into groups and has all processors begin each group simultaneously by issuing all of the requests then

doing the processing for that group. This establishes a family of models based on the number of requests per

group where the paranoid bound is the extreme model with all requests in one group. The most optimistic of

these models has one request per group and we use it for the lower bound edge of our 4-point bound. We

7

Processor

::: 1Ul«f~4
CPU queued on memory request period

Figure4

One pessimistic model that has maximum contention occurs if processors have deter

ministic compute durations such that all processors always request memory simultaneous

ly. In this figure, as in Figure 2, the 3 processors have an average tcompute = 3 and a con

stant service time oftrrQNfer = 1. But now memory is idle (!)for 2 cycles between succes

sive requests and each processor is taking 25% longer to complete its computation (re

quest period = 5).

examine this family of pessimistic bounds in more depth in the second appendix of this report.

2

We can maximize contention within a group if all processors request memory simultaneously, as shown

in Figure 4. Thus all compute periods must be timed to end together. To ensure that every processor gets the

same amount done on average, we use a round robin arbitration scheme (so that tcompute is the same for each

processor). For example, processor 1 uses memory immediately on its first request, must wait for 2trransfer on

its second request, then waits for trransfer in its third request period, before using memory immediately again in

N*

1

Effective UniProcessors

1

Figure 5

N*
Processors

N'

By the pessimistic estimate, effective uniprocessors does not reach the saturation value of

N* until there are N' processors.

8

its fourth request period.

In Figure 4 we see that over N requests, each processor computes for I, I +!transfer, I +2ttraJtSfer,

I +(N -l)ttran.rfer. So the average compute time between requests, a fixed parameter, is used to determine the

idle time, I, as follows:

1 N-1 . N-1 N-1
lcompuu = N 1~ (I +l ltra~~~fer) =I+ -r ltran.rfer , SO I = lcompuu--r lrran.rfer

Saturation is reached when memory is never idle, e.g., tcompuu = (N-1)ltran.rfer12. By solving for N we

2tcomput8 +ltran.rf er
find the number of processors that first saturate the pessimistic model is - - We name this point

ltran.rf er ·

N', as shown in Figure 5 relative toN*.

While N ~N', a request period is I+Nttran.rfer or, using the value of I determined above,

tcompu18 +(N + 1)ttran.rf er 12. During this time each processor gets tcompuu work done. So effective uniprocessors,

N times the ratio of multiprocessor utilization to uniprocessor utilization, is:

EU=

N lcompuu

lcompute +(N + l)ltransfer12 _ N (tcompute +!transfer)
- N+l

lcompuu+-r ltransfer lcompuu

At N', the pessimistic and optimistic estimates have both reached saturation and have the same effective

uniprocessors. For N > N' the. requirement to compute an average of tcompuu between requests prohibits

simultaneous requests, so we define the pessimistic estimate to match the optimistic estimate. Therefore, the

equation for the pessimistic estimate of effective uniprocessors is:

-mm N+l , . Eu _ · [N(tcomput8+ltran.rfer) N*]
lcompute+-r ltransfu

3.3. 4-Point Bound

The 4-point bound is a rule of thumb. Its value is its simplicity, so we select four points from the

optimistic and pessimistic estimates to enscribe a region that should contain the actual effective uniprocessors

performance curve. Figure 6 shows the region and 4 points with the following coordinates (first coordinate is

9

N"

1

Effective UniProcessors

1

Figure 6

N*
Processors

3

N'

The region formed by JOznzng the 4 points (1,1), (N* ,N*), (N',N*), and

(N", (N*)21(1+3tcompuU 12ttrtJASf~r)) contains the effective uniprocessors curve for a simple

shared bus multiprocessor with N processors, merrwry service time of trrtJASfer, and mean

. be .~ N" = tcompuze+trrtJASfer and
computatzon tween merrwry requests OJ tcompuze . ,

trrtJASjer

N' = 2tcompuze +ttraM[er .
trrtJASj er

number of processors, the second, effective uniprocessors):

Point 1: (1, 1) is just the uniprocessor performance.

Point 2: (N* ,N*) = (tcompuze +ttrtJASfer , tcompuze+trrtJASfer) is the optimistic estimate at its saturation.
ftrtJAS[er trrtJASj~r

Point 3: (N',N*) = (2tcompuze +trrtJASfer , tcompuze+trrtJASfer) is the pessimistic estimate at its saturation.
ttraM[er trrtJASjer

Point 4: is the pessimistic estimate at N" ,

(N*, \{'*)2)=(tcompuze+ttrtJASfer,
2

(tcompuze+trraM[er?)=(N*,N*

1 + tcompuze trrtJASjer ttrtJASjer + 3trrtJASjer tcompute /2
2trraMfer

1 + trrtJAS[er
lcompute)

3 + trraM[er
"'T tcompute

S. b th d · · 0 lrraM[er th EU al · 4 . b
mce o tcompure an lrraMfer are pos1Uve, < t < oo, so e v ue at pomt IS etween

compultl

j N* and N*· This allows the further pessimistic simplification,

Point4: (N*, tN*l

Once again, the attraction of the 4-point bound is that we can estimate shared memory multiprocessor

performance at the cost of just a half dozen additions, multiplications and divisions.

10

3.4. A Simple Queueing Model

In this section we discuss a very simple queueing model of a shared memory multiprocessor with a finite

population of processors. In queueing theory this model is called the M/M/1//N queue [K.leinrock75]. It has

been applied to computers as the interactive computer system model for predicting response time in a

timesharing system [Allen78] and for predicting performance in a message passing multiprocessor [Mar-

san82]. A more precise model called the machine interference [Saaty61] (or machine repairman) model,

M/G/1//N in the terminology above, could be used in place of the M/M/1//N. However, the M/M/1//N is com-

putationally simpler and our results will show that its estimates have more precision than we would expect of

its parameters.

In the 4-point bound, memory service time and processor compute time are deterministic. In our simple

queueing model, memory service time and processor compute time take stochastic values; that is, their values

are selected based on probabilities. Service time is distributed as an exponential random variable with mean

ttran.sf•r. Compute time is distributed as an exponential random variable with mean tcompuu. The memory

module uses a first come, first serve method for processing requests and processors that are waiting for

memory service are idle. The solution to this model is given in terms of the proportion of time that there are n

processors waiting for service, p,., [Kleinrock75].

p,.=Fu,.
Uj

'

N'
where u,. = (N -~)! [

ltrans[er] "
tcompuld

To compute effective uniprocessors from p,., first compute the average number of processors waiting on

memory,LN,

Effective uniprocessors is the ratio of N times the per processor utilization in the multiprocessor to the

uniprocessor utilization. However, N times the per processor utilization in the multiprocessor is the number of

active processors, N -LN, and the uniprocessor utilization is the number of active processors in a uniprocessor,

1-Lr. Thus the M/M/1//N queue predicts an effective uniprocessors of:

EU = (N -LN)I (1-L r) = (N -LN) tcompute+ltransfer
lcompUle

11

input tcompuJ«, t11'a11Sfer, N

sum= 1; L = 0; temp= 1;
for(i=1; i <= N; i++) {

temp = (N-i+ 1) * temp * t11'a11Sf er I tcompllle;
sum= sum + temp;
L = L + i * temp;

}
L=Lisum;

printf("Effective Uniprocessors= %1:\n ", (1 + trrrJMfer I tcompwe) * (N- L));
printf("Bus Utilization= %1:\n", 1 - 1 I sum);
printf("Average Wait on Memory= %1:\n", L * tcompwe I (N- L));

Figure 7
Simple code (suitable for a programmable hand calculator) to compute the number of ef
fective uniprocessors, bus utilization and average wait (stall) during a request for memory
service using the simple queueing model given the number of processors (N). mean

memory service time (tlraM/er) and mean time from completion of a request to generation
of the next request by a processor (tcompwe). This estimates effective uniprocessors, bus
utilization and average wait within 3%, 4% and I Oo/o, respectively, of trace-driven simula

tion.

Figure 7 shows a small program that calculates effective uniprocessors and other performance metrics

for this simple queueing model.

3.5. Trace-Driven Simulation

To evaluate the accuracy and cost of the simple queueing model and the 4-point bound, a trace-driven

simulation program was written. It processes memory request traces and simulates a simple, single bus and

memory. It handles one processor request at a time and allocates the same duration for read and write events.

Table 1: Processor Reference Trace Sources

Name Architecture # References Description

OPSYS IBM 370 1,000,000 System reference trace of a collection of users calls
into the MVS operating system [Smith85,Wood86]

DATABASE M68000 12,582,912 User and system reference trace of SYNAPSE data-
base machine executing a synthetic load composed of
the database query and update benchmark TP1

LISPCO.MP2 SPUR 20,000,000 User reference trace of SPUR LISP compilation
(simulated) of a portion of itself (register allocation)
[Taylor86]

12

The workload is homogeneous; each processor executes the same trace starting from different points and

wrapping around to its place of origin.2 The traces were generated by the application of a cache simulator pro-

gram, Dineroiii [Hill83], to the set of three processor reference traces described in Table 1. Notice that in this

table a reference means that a processor requests a datum from its cache rather than directly from memory. If

the cache does not have that datum, the cache issues a memory request. We call the post-cache trace a

"memory request trace".

Although a queuing-novice might expect that traces from deterministic machines would be anything but

stochastic, queuing theory provides the basis for expecting our experiment to agree with the stochastic models.

First, the processor reference pattern is ''thinned'' by the cache to a series of misses that occur more randomly

than the original processor references. Second, by wrapping a long trace around on itself and beginning at dif-

ferent points, the sequences can be approximated as independent Third, merging independent random

sequences tends to make the merged sequence appear Poisson (in agreement with our simple model).

Table 2 shows eight cache configurations, chosen to generate a varied selection of memory traffic, that

were applied to each of the three traces. The resulting memory request traces, described in Table 3, vary in

length from a few thousand requests to several hundred thousand requests. The standard metric of cache per-

formance, the miss ratio, is the ratio of the number of cache misses to the number of processor references into

the cache. It does not include writeback events (a modified block replaced in the cache must be written back

to memory). The request ratio, is a more appropriate metric for estimating memory traffic. It is the ratio of

the number of requests for memory service by the cache to the number of processor references into the cache.

Table 2: Cache Configurations

Number Size (B) Organization BlockSize (B) Associativity ReQiacement

1 512K Mixed 128 4 LRU

2 256K+256K I & D Split 32 4 LRU

3 512K Mixed 8 4 LRU

4 128K Mixed 32 1 -
5 32K Mixed 128 4 LRU

6 128K Mixed 4 4 LRU

7 64Kr64K I & D Split 8 2 LRU

8 16K Mixed 256 4 RANDOM

2 We use this "wrap around" approach so that we can be sure that the same amount of work, Win the earlier discussion

of our effective uniprocessors metric, is done by each processor, while avoiding unrealistically symmetric request sequences.

This is similar to techniques for spreading memory module requests derived from a single address trace [Baskett76].

13

Table 3: Memory Request Traces (Post Cache Simulation)

Trace Miss Request Number A vg References Coefficient Output

Name Ratio Ratio ofReqs Per Request of Variation Size

OPSYS.l .003 .004 3,638 275.9 6.5 .08MB

OPSYS.2 .007 .Oll 10,472 96.5 6.0 .21MB

OPSYS.3 .017 .024 23,506 43.5 11.7 .45MB

OPSYS.4 .016 .023 22,579 45.3 3.2 .46MB

OPSYS.5 .022 .028 27,605 37.2 2.3 .59MB

OPSYS.6 .031 .045 44,534 23.5 11.0 .84MB

OPSYS.7 .021 .031 30,618 33.7 5.8 .58MB

OPSYS.8 .043 .053 53,392 19.7 2.0 1.12MB

DATABASE. I .001 .001 17,164 734.1 4.5 .40MB

DATABASE.2 .004 .005 65,858 192.1 6.7 1.42MB

DATABASE.3 .006 .009 115,086 110.3 l1.5 2.26MB

DATABASE.4 .Oll .013 167,092 76.3 3.7 3.57MB

DATABASE.5 .008 .009 116,468 109.0 3.5 2.62MB

DATABASE.6 .034 .043 535,601 24.5 12.8 10.37 MB

DATABASE.? .025 .028 345,985 37.4 9.2 6.72MB

DATABASE.8 .012 .015 190,766 67.0 3.6 4.22 MB

LISPCOMP2.1 .002 .002 45,115 444.3 2.6 1.04MB

LISPCOMP2.2 .006 .009 176,952 114.0 3.8 3.76MB

LISPCOMP2.3 .015 .025 494,821 41.4 6.8 9.65 MB

LISPCOMP2.4 .019 .024 485,684 42.2 3.7 10.20 MB

LISPCOMP2.5 .018 .020 404,397 50.5 4.1 8.91 MB

LISPCOMP2.6 .028 .039 785,815 26.5 6.6 15.28 MB

LISPCOMP2.7 .029 .041 827,717 29.0 4.0 16.13 MB

LISPCOMP2.8 .032 .036 715,431 29.0 4.0 15.59 MB

Total 5,706,296 116.4 MB

Our comparison of trace-driven simulation to the models uses three different relative speed

configurations. As shown in Table 4, fixed times between processor references of 100 nsec and 200 nsec was

used. Also, memory speeds were varied by considering memory that takes the same length of time to get each

(32 bit) word of a packet (cache block) and memory that provides the second and subsequent words of a

packet faster than the first word.

Table 4: Processor and Memory Latencies (nsec)

Configuration Processor Initial Word Subsequent Word
Inter-reference Latency Latency

A 100 400 100
B 100 400 400
c 200 400 100

The time unit need not be nanoseconds, as long as all parameters are evaluated in terms

of the same time unit.

14

In the trace-driven simulator, we calculate a compute period by multiplying the number of references

since last memory request by the average time between processor references. For the purpose of computing

tcompuu for the models, the appropriate entries in column 53 of Table 3 and column 2 of Table 4 are multiplied

together.

Table 3 reports the coefficient of variation on the processor references per memory request. The

coefficient of variation is a measure of the regularity of the request sequence and its value indicates a similarity

to stochastic distributions [Allen80]. If the coefficient of variation is near 1 then modeling compute time as an

exponential random variable would be natural, but this is not the case for our data. Instead the request

sequence has a considerably more skewed distribution. Since our simple queueing model assumes compute

time is exponential, we might suspect that its performance estimates may be inaccurate. However, memory

service time in the trace-driven simulator is constant (it has a coefficient of variation of 0) and queuing theory

indicates that a highly regular service distribution will tend to compensate for a highly irregular interarrival

distribution (Marshall68]. Our results will show this to be valid for our data.

4. Results

For each memory request trace (3 processor reference traces times 8 cache configurations) and each

relative speed configuration (A, Band C) trace-driven simulation was performed for a uniprocessor, 2-, 3-, 6-,

10-, and IS-processor system. Simulation consumed 1 CPU day of a VAX 8650 plus 1 CPU week of a SUN 3

(M68020). Based on the relative speed of these machines for this program4
, this is equivalent to 592 CPU

holiTS of a SUN 3 as shown in Table 5. The simple queueing model was then run for each of the 432 data

points. The complete set of performance estimates were generated by the simple queueing model in 75 CPU

Table 5: Resource Comparison

Resource Simple Model Simulation Ratio

Code Size (lines) 50 2500 1/50

Size of Input Data .011 MB 116MB 1/10545

Execution Time (CPUhours) .021 592 1/28190

3 The entries in this field have had 1 added to them to account for restarting the instruction causing the request in the

trace-driven sinlulator.
4 For the bus sinlulating program that compiled the results we present, a VAX 8650 was 17 times faster than a SUN 3

without floating point assist.

15

seconds on a SUN 3. However, it should be noted that the trace-driven cache simulation that we used to gen-

erate our memory request traces (and tcornpur.) consumed approximately 33 CPU hours on a SUN 3.

I . d l I
MRE = max I szm -.mo e I

1,15 szm
I I

ARE =-k 1 ~ sim -model ~
I szm I

To evaluate the accuracy of the simple queueing model, Table 6 presents two measures of error: the

maximum relative error, MRE, and the average relative error, ARE. The maximum relative error is the largest

ratio of the difference between the simulation and model estimate curves to the simulation value. The average

relative error is the average value of this ratio. For the 72 data points we have explored, the average relative

error in effective uniprocessors is unifonnly ~ 3%, and the maximum relative error is unifonnly ~ 6%.

In Figure 8, 3 sample comparisons of the 72 combinations are shown. These were selected to show

good, medium and poor perfonnance. On each graph, the optimistic (topmost line without symbols) and

Table 6: Accuracy of Simple Queueing Model's Effective Uniprocessors Estimates

Maximum Relative Error Average Relative Error

Trace.cache A B c A B c
OPSYS.l 6% 4% 1% 3% 2% 0%

OPSYS.2 4% 5% 1% 2% 2% 0%

OPSYS.3 6% 6% 3% 3% 3% 1%

OPSYS.4 2% 3% 3% 1% 1% 2%

OPSYS.S 2% 1% 2% 1% 0% 1%

OPSYS.6 3% 3% 3% 1% 1% 2%

OPSYS.7 2% 2% 4% 1% 1% 1%

OPSYS.8 1% 0% 2% 1% 0% 1%

DATABASE.! 1% 2% 0% 1% 1% 0%

DATABASE.2 2% 2% 1% 1% 1% 0%

DATABASE.3 2% 4% 0% 1% 2% 0%

DATABASE.4 3% 3% 2% 1% 1% 1%

DATABASE.S 3% 3% 3% 1% 1% 1%

DATABASE.6 3% 3% 1% 2% 2% 1%

DATABASE.? 2% 2% 2% 1% 1% 1%

DATABASE.8 3% 1% 3% 1% 0% 1%

LISPCOMP2.1 2% 2% 1% 1% 1% 0%

LISPCOMP2.2 1% 1% 1% 1% 1% 1%

LISPCOMP2.3 2% 2% 1% 1% 1% 1%

LISPCOMP2.4 2% 2% 2% 1% 1% 1%

LISPCOMP2.5 2% 1% 2% 1% 0% 1%

LISPCOMP2.6 3% 3% 2% 1% 1% 0%

LISPCOMP2.7 3% 3% 3% 2% 2% 1%

LISPCOMP2.8 1% 0% 1% 1% 0% 2%

16

pessimistic (lower line without symbols) estimates are shown with the simulation (data points marked by X)

and simple queueing model (data points marked by circles) curves. The good news is that it is difficult to dis-

tinguish the model from the simulation.

5. Discussion

We found the accuracy of the simple queueing model better than we sought, for we believe most com-

puter designers are satisfied by 10% accuracy. It appears that the exponential distribution assumptions for

compute time and service time are affecting the effective uniprocessor performance measure even less than

Buzen's results suggest [Buzen77]. The model predicts effective uniprocessors within 3% of our trace-driven

simulation and requires 1/30,000 the CPU cost and 1/10,000 the storage cost The traces could have been

shorter, inducing savings in CPU time and storage space, but longer traces are generally preferred [Clark85].

We believe that for most traces that are "long enough" to be interesting, the savings of the model will be at

Effective UniProcessors

USPCOMP2.3 C USPCOMP2.4 C DATABASE.& B
................................. . -

16 7

1.20

6

= .142

trransf•r = .073

u lw-,/ .. //
4 tcompuu

1.10
trransfer = 3.836
tcompuu

6

2
N*

N* N* N' jN'

1 1 1.00

1 6 11 16 1 6 11 16 1 11

Processors

Figure 8
These three curves show the 4-point bound, simple queueing model and bus simulation

predictions for effective uniprocessors across the spectrum of performance. The first

graph shows very good growth; N* is not reached until about 15 processors. The second

graph shows a medium growth reaching N' by 15 processors and the third graph shows

very poor growth, N* and N' occurring at less than 2 processors. Notice that the pes

simistic estimate exceeds trace-driven simulation and the simple queueing model near N',

as in the second and third graph. When the performance is extremely poor, as in the third

graph, it can happen that the pessimistic estimate is never pessimistic. See the second ap

pendix for more discussion of pessimistic estimates.

17

16

least three orders of magnitude. Such time savings facilitate the analysis of a greater amount of data in the

design process. In Section 7, we present an example application of the simple queueing model for quickly

evaluating potential system performance of large benchmarks in the SPUR multiprocessor. The results of this

application, shown in Figure 9, would have taken over five SUN 3 CPU days of SPUR trace-driven simulation

instead of the 18 SUN 3 CPU seconds needed by the simple queueing model.

The first appendix reports raw data from the simulations. From this we can see that different processor

reference traces, such as DATABASE.5A and LISPCOMP2.5A, have quite large differences in effective

uniprocessors: 3.9 vs 2.4 at 6 processors and 4.0 vs 2.4 at 10 processors. Given this sensitivity to processor

reference trace, we believe that the difference between trace-driven simulation and queueing model perfor-

mance estimates is "in the noise". That is, given values for cache miss ratio, fraction of misses replacing

Perfonnance of Benchmarks

90 in SPUR MIPS

80

70

60

50

40

30

20

10

o+-----~------~------~
0 6 12 18

Number of Processon;

Figure9

tsim10

fk.boyer

weaver25

boyer2
Typical
weaver200
tsim100
Itt

s1c.fft
USPCOMP2

Given estimates of the SPUR uniprocessor characteristics derived from a set of USP

benchmark programs [Taylor86], we have spent 18 SUN 3 CPU seconds to derive the

equivalent of over 5 SUN 3 CPU days of trace-driven simulation. The SPUR system per

formance is reported in aggregate SPUR MIPS assuming that all processors have the

same average compute time, tcomput•, as the uniprocessor benchmark. Multiprocessor

MIPS are computed as the product of effective uniprocessors and uniprocessor MIPS.

Uniprocessor MIPS are computed as the average number of instructions executed

between memory requests divided by (tcompw.+trransfer). assuming a 150 nsec processor

cycle time. See Section 7 for more details.

18

dirty blocks, cache reference rate, and memory transfer times, a computer designer can easily calculate the

appropriate tcompuu and lrransfer and estimate system performance using our simple queueing model. The

difference in effective uniprocessors between one estimate and another based on a different benchmark pro-

gram will often be much larger than the 3% error in the model.

The 4-point bound brackets the trace-driven simulation estimates quite well except near pessimistic

saturation (N'). At N', the pessimistic model consumes 100% of the bus bandwidth because it is a determinis-

tic model. But simulation and the queueing model will not consume 100% of the bus bandwidth because their

requests are less orderly. So near N' the pessimistic estimate crosses the simulation. Empirically, however,

we find that simulation approaches saturation at N ', so it seems that the 4-point region remains a good bound.

In the second appendix, the relationship between the pessimistic estimate and a lower bound is discussed in

more detail.

Note that the simple queueing model's effective uniprocessors prediction is expressed entirely in terms

of the ratio of trransfer to lcompuu. The 4-point bound can be reorganized so that it too is expressed entirely in

terms of this ratio. This agrees with Patel's study of multiprocessors with delta network or crossbar intercon-

nects [Patel82]. In queueing theory, this ratio is usually referred to asp.

This ratio, ~transfer , is perhaps the simplest performance indicator of all. Borrowing from the pessimis-
compuu

tic estimate, suppose a computer design team wants to build a shared memory, single bus multiprocessor with

the performance of at least K uniprocessors each with efficiency at least a (so that at most K Ia processors are

needed). They will succeed if they vary one or both of the memory system speed or the processor request rate

for memory so that !compute ~ K 12-p -a/2) . For example, if they choose 80% efficiency, they must achieve
lrransfer -a

!compute ~ 2.5K- 3.
t transfer

6. Additional Metrics Explored

In the preceding sections, our analysis of shared memory multiprocessor performance has focussed on

the effective uniprocessors metric. But effective uniprocessors is not the whole story in multiprocessor perfor-

mance. Because effective uniprocessors is a ratio between two speeds, both affected by design changes, it is

often the case that slowing down the processor will straighten the effective uniprocessors curve. For example,

19

if the SPUR processor design team generates 100 nsec per cycle processors, then the curves in Figure 9

saturate more quickly, but this faster system will achieve a higher total MIPS than the 150 nsec cycle system

unless both are saturated. Thus other measures of performance are needed to fully evaluate a design. Two

other measures, bus utilization (BU) and average wait on memory (A W), were also evaluated in this experi-

menL This section presents the equivalent 4-point bound and simple queueing models for these two metrics.

6.1. Optimistic Estimates

The optimistic estimate for effective uniprocessors presented in Section 3.1 is recast for bus utilization

and average wait in this section. Recalling Figure 2, in each request period the bus is busy for Nttransfer and

the request period lasts for lrransfer+tcompuU. So when the bus is not saturated,

BU = Ntrransferl(lrransfer+lcompuu) = N IN". .
Because this model does not experience contention until the bus is saturated, the average wait is ltratvfer

while N g{". Once saturated, each processor waits for the additional processors' service times,

(N-N")ttransfer, before accessing memory. So the average wait is

AW = ltransfer+(N -N")!transfer = Nltransfer-tcompute.

The equations for BU and A W are

BU = min [1.0, :.] and AW =max [trransfer ,Ntrransfer-tcompute] .

6.2. Pessimistic Estimates

Recall the pessimistic estimate for effective uniprocessors given in Section 3.2. In Figure 4, request

periods are of length Nttransfer+l where I= tcompuu-(N-1)ttransfer12. So while the bus is not saturated,

BU = Nttransferl(tcompute+(N + l)ttransfer12). Notice that atN = N', the bus saturates.

The wait for memory service depends on the order of service in this model, but after N requests each

processor has waited for !transfer. 2ttransfer. · · · Nttransfer· Averaging, as we did in Section 3.2,

AW = (N + 1)ttransfer12.

Recall that the pessimistic model cannot be constructed when N>N'. In this region we define the pes-

simistic estimate to agree with the optimistic estimate. The equations for pessimistic BU and A W are

20

BU - . [1 0 Nttrans6er l and
-mm · 'lcompuu+(N+l ltransfer12

Aw
[

(N+1)trransfer N]
=max 2 , lrransfer-lcompUU ·

6.3. 4-Point Bounds

We can construct regions described by 4 points for the bus utilization and average wait on memory

metrics analogous to the 4-point bound for effective uniprocessors given in Section 3.3. For bus utilization,

the 4 points are:

Point 1: (1, ...J.) = (1, lrransfer)
N lrransfer+lcompUk

Point 2: (N•, 1.0) = (lrransfer+tcompuu , 1.0)
!transfer

Point 3: (N', 1.0) = (lrransf;r+2tcompu~e , 1.0)
transfer

Point 4: (N•, lrransfer+tcompuu) = (lrransfer+lcompuu ltransfer+lcompuu)

lrransf er + l.Stcompuu ltransf er ' lrransf er + l.StcompUk

As we did in Section 3.3, the bus utilization at point 4 is always greater than or equal to 2/3, so we can

simplify further with:

Point4: (N• ,2/3)

Examining the the bus utilization equation or its 4-point bound, we see that in these simple estimates,

bus utilization is directly proportional to effective uniprocessors. That is, the graphs are identical and the ordi-

nate axis is simply different by a factor of N•.

For average wait for memory, the 4 points are:

Point 1: (1, lrransfer)

Pol.nt 2 .. (N• t) (ltransfer+lcompuu)
, trans/ er = t , ltrQIISf er

transfer

· 3 (N') (lrransfer+2tcompute)
Pomt : , ltransfer+lcompuu = t , ltransfer+lcompuu

transfer

P · 4 (N• 5) (ltrQIISfer+lcompute 5)
oznt : .trransfer+. lcompuu = t , ltrQIISfer+. !compute

transfer

Figure 10 shows the 4-point bounds on bus utilization and average wait for memory.

21

Bus Utilization Average Wait for Memory Service

1.0

1
N"

3

~~--------~--------~--~
1 N*

Processors

N'

Figure 10

trrfJIIS[er

lrransfer
1

1 N*
Processors

The region formed by joining the four points (1, J•), (N* ,1.0), (N', 1.0),

(N* lrransfer+tcompuu) fi b ·r · d h 4 · (1 (N*
• ttraMfer+ l.Stcomput• • or us Utl zzatwn. an t e pomts • ttra11Sfer), • trransfer),

(N', ttra11Sfer), (N*, trrfJIIS[er+.5tcome-),for average wait for memory, contains the curves for

these two shared memory multiprocessor performance metrics.

6.4. Simple Queueing Models

N'

The simple queueing model given in Section 3.4 for estimating effective uniprocessors is also applicable

to bus utilization and average wait for memory metrics. In Figure 7, code for the simple queueing model

shows computation for these two metrics.

The first, bus utilization is. the proportion of time that the bus is active. This is 1 minus the proportion of

time that there are no processors waiting for memory. In the terminology of Section 3.4, p 0 is the proportion

of time that there are no processors waiting for memory. Then the bus utilization must be 1-po.

To derive the average wait for memory service, we use Little's Law [Kleinrock75], LN = Aro, where A is

the average rate of arrival of requests at the bus and ro is the average wait for memory service. To compute A

notice that while there are n processors waiting for memory, there are (N -n) processors computing. The pro-

cessors that are computing each generate requests at the rate of lltcompure. Using the assumption that compute

time is exponential, the rate of requests for memory is the sum of the individual rates of active processors,

(N -n)ltcompuu. So the average rate of arrival of requests at the bus, A, is:

A.= ~ (N -n) p,. = N 'f p,. _ 1 f n p,. = N (1) _ 1 (LN) = (N -LN)
11~ lcompUU lcompuu ,.~ lcompuu ,."-;1) lcompute lcompute lcompute

So by Little's Law, AW = ro = !:+-- = LN tcompute
11. N-LN

22

6.5. Trace-Driven Simulation Results

The bus utilization and average wait for memory estimates from the simple queueing model were com

pared to trace-driven simulation in the experiment described in Section 3.5. Accuracy is measured by the

maximum relative error and average relative error as defined in Section 4 and is shown in Table 7.

The results for bus utilization are very similar to those for effective uniprocessors; the average relative

error is uniformly~ 4% and the maximum relative error is uniformly~ 5%. For the average wait for memory

service we see larger errors; the average relative error is as high as 10% and the maximum relative error is as

high as 18%. This occurs because the average wait for memory metric is more sensitive to approximations of

the interrequest and service distributions than effective uniprocessors or bus utilization (which are both utiliza

tion metrics) [Buzen77). For this reason, the application to the SPUR multiprocessor in Section 7 derives esti

mates for SPUR MIPS from effective uniprocessors even though it may be more intuitive to use average wait

for memory service.

7. Example: Application to the SPUR Multiprocessor Design

7.1. SPUR Multiprocessor Performance Estimation

SPUR is a shared memory multiprocessor workstation intended as a parallel processing testbed system

[Hil186]. It uses a modified NuBus backplane (nominal bus cycle time of 100 nsecs) [Gibson85] and standard

memory and peripherals. Its 4th generation Berkeley RISC processor has been designed and simulated at the

register transfer level [Taylor86]. On top of this simulator, a LISP compiler and LISP system have been ben

chmarked (see Table 9). The simulator executes at the rate of 20,000 SPUR instructions (about 25,000

memory hierarchy references) per VAX 8650 CPU second, so benchmarking is an expensive investment. As

shown in Table 9, a number of programs were examined (for reasons other than for this study), providing data

that we can use to estimate potential multiprocessor performance.

The SPUR processor executes one instruction per cycle unless stalled. It is stalled for 1 cycle by a store

operation, for 2 cycles whenever the on-chip instruction buffer does not contain a fetched instruction, for 1

cycle whenever a load or store operation contends with an instruction buffer miss at the second level cache,

and if floating point overlap is turned off, during floating point operations. It is also stalled whenever the

23

Table 7: Accuracy in Bus Utilization Metric
Maximum Relative Error A vera~re Relative Error

Trace.cache A B c A B c
OPSYS.l 2% 4% 5% 1% 1% 2%
OPSYS.2 1% 3% 4% 0% 1% 1%
OPSYS.3 3% 4% 2% 2% 2% 1%
OPSYS.4 4% 3% 4% 1% 1% 3%
OPSYS.5 4% 1% 4% 1% 0% 1%
OPSYS.6 4% 4% 4% 2% 2% 3%
OPSYS.7 4% 4% 3% 2% 1% 3%
OPSYS.8 2% 0% 4% 0% 0% 1%
DATABASE. I 1% 2% 0% 1% 1% 0%
DATABASE.2 2% 2% 2% 1% 1% 1%
DATABASE.3 1% 1% 1% 0% 1% 1%
DATABASE.4 4% 3% 3% 2% 1% 2%
DATABASE.5 3% 3% 4% 1% 1% 2%
DATABASE.6 4% 4% 5% 2% 2% 4%
DATABASE.? 4% 3% 4% 2% 2% 3%
DATABASE.8 3% 1% 4% 1% 0% 1%

LISPCOMP2.1 2% 2% 1% 1% 1% 1%
LISPCOMP2.2 2% 2% 2% 1% 1% 1%
LISPCOMP2.3 3% 2% 3% 2% 1% 3%
LISPCOMP2.4 3% 3% 4% 1% 1% 3%
LISPCOMP2.5 3% 1% 2% 1% 0% 1%
LISPCOMP2.6 4% 4% 4% 2% 2% 3%
LISPCOMP2.7 4% 3% 4% 2% 1% 3%
LISPCOMP2.8 2% 0% 4% 0% 0% 1%

Accuracy in Average Wait for Memory Metric
OPSYS.1 18% 10% 9% 8% 2% 5%
OPSYS.2 11% 9% 5% 6% 3% 1%
OPSYS.3 16% 16% 14% 9% 7% 4%
OPSYS.4 9% 4% 12% 2% 1% 6%
OPSYS.5 4% 1% 5% 1% 0% 1%
OPSYS.6 9% 9% 13% 3% 3% 7%
OPSYS.7 10% 9% 12% 4% 2% 7%
OPSYS.8 2% 0% 3% 0% 0% 1%
DATABASE.1 16% 9% 11% 9% 4% 6%
DATABASE.2 11% 6% 15% 9% 3% 8%
DATABASE.3 13% 12% 4% 8% 9% 3%
DATABASE.4 12% 7% 16% 5% 2% 10%
DATABASE.5 9% 4% 13% 3% 1% 6%
DATABASE.6 5% 5% 8% 2% 2% 6%
DATABASE.? 9% 6% 14% 4% 2% 9%
DATABASE.8 5% 1% 7% 1% 0% 1%
LISPCOMP2.1 12% 5% 12% 8% 2% 7%
LISPCOMP2.2 7% 4% 11% 4% 1% 7%
LISPCOMP2.3 4% 2% 8% 2% 1% 5%
LISPCOMP2.4 6% 3% 10% 2% 1% 4%
LISPCOMP2.5 4% 1% 7% 1% 0% 2%
LISPCOMP2.6 2% 2% 3% 2% 2% 2%
LISPCOMP2. 7 3% 2% 4% 2% 1% 2%
LISPCOMP2.8 2% 0% 4% 0% 0% 1%

24

%load

%store

lst$mr

1&2$mr

Table 8: Glossary for SPUR Benchmark Characterization Variables

% variables are shown as percentages in Table 9 but are intended as fractions elsewhere

fraction of instructions that load data into processor registers

fraction of instructions that store data from processor registers

fraction of instructions not found in the on-chip instruction buffer

fraction of instructions and data not found in either the on-chip instruc

tion buffer or the off -chip mixed cache

%writeback fraction of misses in the off-chip mixed cache that replace a modified

block (requiring the modified block to be written back to memory in a

separate memory request)

%float

avgfloat

fraction of instructions that are executed by the floating point coproces

sor

average number of processor cycles that a floating point operation exe

cutes after the cycle it is issued

Benchmark
#SPUR

%load %store
miss ratios %write

%float
avgfloat

instrs 1st$ 1&2$ back stall

puzzle* 33.3 M 20.8 0.1 .065 .0001 6.3 9.2 3.8

LISPCOMP2 20.0M 21.0 5.0 .217 .0193 21.7 0.6 5.0

weaver25 25.0M 17.5 1.7 .199 .0063 10.7 11.6 4.7

weaver200 49.5M 19.2 2.3 .183 .0121 15.4 10.3 4.7

rsimlO 17.3 M 12.1 2.8 .245 .0049 42.0 1.85 4.4

rsimlOO 51.6M 13.7 3.6 .247 .0129 27.2 1.5 5.2

boyer2 17.7M 23.5 10.1 .202 .0078 65.9 0.0 5.1

slc.boyer 23.3M 13.4 2.3 .177 .0096 18.3 0.6 5.1

fft 35.5 M 8.5 2.8 .228 .0066 66.5 3.3 3.7

slc.fft 8.9M 21.3 4.6 .194 .0173 22.1 1.1 4.8

ttt 3.2M 23.0 7.2 .245 .0128 29.9 2.8 4.7

average 25.2M 17.3 4.2 .214 .0110 32.0 3.4 4.7

Table 9
Data available about the SPUR uniprocessor performance for a set of USP programs.

USPCOMP2 is used in the analysis of our models and is the SPUR lisp compilation of the

register allocation portion of itself Weaver25 and weaver200 are different length execu

tions of the OPS5 layout router program. RsimlO and rsimlOO are different length execu

tions of the circuit simulation of a 10 bit counter. Boyer2 is a theorem proving program,

fft is the execution of a FFT algorithm, ttt is the OPS5 tic tac toe game, and puzzle is a

small puzzle solving program. Slc.boyer and slcfft are the SPUR lisp compilation of

boyer2 andfft respectively. The fraction of floating point instructions may be higher than

the benchmarks should require because SPUR uses the floating point coprocessor to do

integer multiply. Even so, these programs could not be called floating point intensive.

* The average values exclude puzzle because it is simply too optimistic.

25

Program fcompute ftrtmSf«r p N• N' N= 1 N=6 N= 10
MIPS BU MIPS BU MIPS BU

puzzle 11603 8 0.001 1451.3 2901.7 4.5 0.00 26.8 0.00 44.7 0.01

USPCOMP2 61 8 0.131 8.6 16.2 3.2 0.12 17.4 0.63 24.6 0.90

weaver25 249 8 0.032 32.1 63.3 3.1 0.03 18.6 0.19 30.9 0.31

weaver200 122 8 0.066 16.2 31.4 3.0 0.06 17.8 0.36 28.6 0.58

rsim10 214 8 0.037 27.7 54.4 3.8 0.04 22.4 0.21 37.0 0.36

rsim100 95 8 0.084 12.9 24.8 3.4 0.08 19.4 0.45 30.4 0.70

boyer2 100 8 0.080 13.5 26.0 3.6 O.D7 20.7 0.43 32.7 0.68

slc.boyer 118 8 0.068 15.8 30.6 4.0 0.06 23.5 0.37 37.8 0.60

fft 143 8 0.056 18.8 36.6 3.6 0.05 21.4 0.31 34.8 0.51

slc.fft 67 8 0.119 9.4 17.7 3.3 0.11 18.5 0.59 27.0 0.86

m 91 8 0.088 12.4 23.7 3.1 0.08 17.9 0.46 27.9 0.72

average 126 8 0.064 16.7 32.5 3.4 0.06 20.0 0.35 32.4 0.57

typical 104 8 0.()77 14.0 27.0 3.4 0.07 19.6 0.41 31.1 0.66

Table 10
The model parameters, tcomput«, ttransf «r, (expressed in processor eye les) and their ratio

p = trrtmSfer ltcompuze are shown here for each of the SPUR lisp benchmarks. From these we

show the 4-point bound metrics N•, the maximum number of effective uniprocessors, and

N', the number of processors that ensure that the system is at saturation. Then we show

the simple queueing model predictions of system MIPS and bus utilization for 1-, 6-, and

10-processor systems. System MIPS is computed as effective uniprocessors times unipro

cessor MIPS. The typical benchmark corresponds to a hypothetical program with charac

teristics given by the averages in Table 9. Because the typical result is more pessimistic

than the average result and because it seems more intuitive to use an average mix of

characteristics instead of an average mix of benchmarks, the remainder of this section

will use the typical result to represent overall performance. Notice that this table justifies

our exclusion of puzzle because it is phenomenally optimistic. It will be included else

where to indicate the ideal.

second level cache does not have the data and must issue a memory request (with an average on-board over-

head of 7.5 processor cycles and 2.5 bus cycles).

Using the data in Table 9, we calculate the compute time between memory requests as follows:

The blocks of the second level cache in SPUR are 8 words (32 bytes). We assume memory that takes

400 nsec to deliver the first word of a block and 100 nsec to deliver subsequent words and we assume a pro-

cessor cycle time of 150 nsec. An application of our simple queueing model then estimates effective unipro-

cessors. We convert effective uniprocessors to SPUR MIPS by multiplying by uniprocessor SPUR MIPS,

which is estimated as the average number of instructions executed between memory requests divided by the

uniprocessor inter-request time (trransfer+tcompur•). Finally, the average number of instructions between

requests is estimated as

26

5

4

3

2

Marginal Benefit of an Additional Processor

in SPUR MIPS

6 12 18

Number of Processors

Figure 11

puzzle

rsim10

weaver25

fft

slc.boyer
weaver200

Typical
boyer2
rsim100
trt
slc.fft
USPCOMP2

The marginal benefit of an additional processor is the increase in system M!Ps resulting
from the addition of an equally loaded processor. Notice that the typical benchmark gets
about 2.5 SPUR MIPS from the 12th processor, so even the last processor in a SPUR sys
tem may be expected to add rrwre than 70% of a uniprocessor to the system.

11(1& 2$mr (1 + %writeback) * (1 +%load +%store)).

The resulting multiprocessor performance estimates for these programs on SPUR are graphed in Figure

9 and, in Table 10, we show the parameters, tcompuu, trraMfer, their ratio p = trransferltcompure, and performance

estimates, N*, N', and the total MIPS and bus utilization for the uni-, 6- and 10-processor systems. In Figure

11, the marginal benefit of an additional processor is shown for each benchmark. This is useful for determin-

ing when the addition of a processor is no longer cost effective.

7.2. Design Tradeoff Analysis in SPUR

The preceding section shows that the analysis of SPUR multiprocessor performance is highly dependent

on processor stalls. It is educational to examine the potential performance improvements that arise from

reductions in processor stalls. But reducing processor stalls requires architectural changes; thereby, requiring

27

Table 11: SPUR Design Changes Considered

lOOnsSPUR decreases the processor cycle time from 150 nsec to 100 nsec. This is the most difficult change to

make because both cache access times, all processor and coprocessor component speeds and board

logic speeds must all scale down by 2/3. We also expect this change to pay off with the largest per-

formance gain.

noSTstall eliminates stalls for store instructions. This might be done by delaying each written word in a buffer

until the next write operation (VAX 8800).

fastFP overlaps all floating point operations with integer operations. In SPUR users can request overlap

where possible if they are prepared to deal with a limited imprecise interrupt problem.

lcycleffimiss reduces the instruction buffer miss stall to 1 cycle. This might be done in SPUR if the instruction

buffer adds a forwarding path and the execution unit changes to accept late instructions. Unfor-

tunately, this change will probably defeat instruction buffer prefetching; thereby, raising the instruc-

tion buffer miss ratio.

nom eliminates the instruction buffer and adds a 1 cycle stall to each load or store instruction to accom-

modate instruction fetch. Currently the instruction buffer delivers an instruction to the execution

unit in well less than a cycle. Making this this change without stretching the cycle time or number of

pipeline stages would be difficulL

2Woimprovem decreases the instruction buffer miss ratio by 20% while maintaining the same total number of board

cache misses.

50%improvem decreases the instruction buffer miss ratio by 50% while maintaining the same total number of board

cache misses. Perhaps the best way to get good increases in instruction buffer performance is to dou-

ble its size and double the number of words brought in from the board cache on each fetch or pre-

fetch. Of course, this calls for more chip space and pins.

20%improveB$ decreases the board cache miss ratio by 20% while maintaining the same total number of blocks writ-

ten back.

50'roimproveB$ decreases the board cache miss ratio by 50% while maintaining the same total number of blocks writ-

ten back. Two ways to achieve substantial decreases in the board cache miss ratio are to double the

cache size or make it two way set associative. The first costs board space and the second may in-

crease the processor cycle time.

64bitBus doubles the width of memory and backplane transfer words.

modifications to simulation software and re-simulation of portions of the system. To reduce the cost of this

design evaluation process, we employ our simple queueing model.

Design Change tcompuu p N• N' MIPS
N=l N=2 N=3 N=6 N=lO N=20 N=>N'

SPUR as is 104 .fJ77 14 27 3.4 6.7 10.0 19.6 31.1 46.3 47.2

lOOnsSPUR 105 .114 10 18 4.8 9.6 14.2 27.0 39.9 47.2 47.2

noSTstall 102 .fJ79 14 26 3.4 6.8 10.2 20.0 31.6 46.4 47.1

fastFP 95 .084 13 25 3.7 7.3 10.8 21.1 33.1 46.7 47.1

1 cycleffimiss 92 .087 12 24 3.8 7.5 11.2 21.7 33.9 46.9 47.2

noiB 89 .090 12 23 3.9 7.7 11.5 22.3 34.6 47.0 47.3

20%improvem 99 .081 13 26 3.5 7.0 10.5 20.5 32.3 46.6 47.2

50%improveffi 91 .088 12 24 3.8 7.6 11.3 22.0 34.3 46.9 47.2

20%improveB$ 121 .066 16 31 3.5 6.9 10.3 20.2 32.6 53.0 55.6

50%improveB$ 162 .049 21 41 3.6 7.2 10.7 21.2 34.8 63.5 76.0

64bitBus 104 .051 21 40 3.5 6.9 10.3 20.4 33.4 60.4 70.7

Table 12
This table reports performance estimates for 10 design changes to the SPUR multiproces

sor. The parameter trransfer is 12 bus cycles except in the widebus case where it is 8 bus

cycles. Total system MIPS are reported from simple queueing estimates of effective

uniprocessors. The maximum system MIPS occurs when the bus is saturated (as it will

certainly by with more than N' processors) and is reported in the last column.

28

In Table 11 we describe 10 SPUR design changes, some of which should be thought of as goals for the

redesign of processor components.5 Each of the benchmarks in Table 9, except for the unrealistically optimis-

tic puzzle program, was re-evaluated for each design change. The simple queueing model used 7.4 SUN 3

CPU minu.tes to compute new performance estimates. The equivalent simulation time would have been over

7.2 SUN 3 CPU weelcs. Table 12 shows the average parameter values and performance estimates for each

design and Figure 12 shows the percent improvement in SPUR MIPS of the average performance for each

design change.

From the 4-point bound we know that the maximum speed up in a system will be N•, so the maximum

system MIPS is

50%

100nsSPUR

40%

30%

20%

nom
50%improveffi

lcycleffimiss
10

%

fastFP

Percent Improvement in SPUR MIPS

for Typical Benchmark

SPUR design range

6 12 18

Number of Processors

Figure 12

50% improveS$

64bitBus

20%improveB$

Each of the 10 design changes considered has its percent improvement over SPUR

graphed here. If a 10% improvement across the design range is required before a change

is implemented, then only a reduction in the cycle time is a clear candidate.

5 There are many other design changes that the SPUR design team has discussed. These are merely one selection that is

easily explored with the data provided about the lisp benchmarks.

29

N" U 'MIPS _ tcompute + ttrans[er 10-6
fU - ttrtl11S[er (tcompute +ttransfer) 1&2$mr(l+%writeback) (l+%load +%store)

and this is independent of the processor cycle time (if processor performance is unaffected by decreases in the

cycle time) and many of our design changes as is shown in Table 12. This means that a faster uniprocessor

will not allow the system to achieve a higher overall MIPS rate, but that it will achieve the maximum with

fewer processors. The practical caveat is that bus cycle times are dependent on bus length and this is increased

when large number of processors are interconnected.

In Figure 13 the marginal benefit of an additional processor is shown for the typical benchmark in the

basic SPUR design and under each design change.

From these results we might conclude that:

• decreasing the processor cycle time is, as expected, the best way to increase the performance of the

system in the SPUR design range,

5

4

3

2

Marginal Benefit of an Additional Processor

in SPUR MIPS

50%improveB$
64bitBus

20%improveB$
SPUR as is

0+-------~--------~------~~~

noSTstall
20%improveiB
fastFP
lcycleiBmiss
50%improveiB 0 6 12 18
noiB

Number of Processors

Figure 13
This graph presents the marginal benefit of an additional processor for each of the 10

design changes and the original SPUR design. As we would expect, in a shared bus en

vironment faster processors become cost inefficient more quickly.

30

• improvements to the instruction buffer that do not stretch the cycle time are a good way to speed up a

uniprocessor SPUR,

• improvements to the board cache miss ratio or the memory bandwidth are the best way to speed up a

many processor SPUR,

• removing the 1 cycle stall on store instructions is not worth much,

• and decreasing processor demands on external memory or increasing memory bandwidth are two good

ways to make additional processors cost effective in large systems.

8. Future Work

Our study uses independent processor workloads to evaluate potential system performance. Unfor-

tunately, a multiprocessor used for parallel processing may suffer data sharing penalties from two sources:

locks and cache consistency.

Contention for locks may cause processors to context switch or spin polling the data across the back-

plane, introducing higher memory traffic rates in both cases, or spin in place waiting for some form of IPC sig-

nal, possibly lowering memory traffic rates. It is not yet clear how to estimate the effect of locks without

information on the mechanism and distribution of lock contention.

Cache consistency solutions sometimes require extra backplane transfers [Katz85]. To assess the effect

of cache consistency solutions techniques, information is needed on the distribution of consistency related

transfers.

When cache blocks are small, a significant portion of the bus bandwidth is lost while memory is access-

ing the first word of a block. By packet switching both the memory request and response [Fielland84,

Frank84] in a multiple memory unit system, some of this bandwidth can be regained. Since the bus is not held

while the memory is active, the simple queueing model may not be appropriate in this case.

9. Summary

A rule of thumb, the 4-point bound, is a very simple tool for eliminating large numbers of design

choices. When greater accuracy is needed a simple queuing model, the M!M/1//N queue in queueing theory

terminology, provides estimations of effective uniprocessors and bus utilization metrics within 4% of trace-

driven simulation using orders of magnitude less CPU time and disk space. Both of these models are based on

the ratio of the mean memory service time and the mean processor compute time between memory requests,

31

~transfer , rather than on the individual values of these means or their corresponding distributions.
compuu

10. Acknowledgments

Thanks to K.ris Anderson, Mark Hill, Wen-Mei Hwu, Brent Welch, and David Wood for their valuable

comments on a draft of this paper. Special thanks to Mark and David for the many discussions on this

material, particularly those that led to the paranoid bound in the second appendix. Special thanks are also due

to my advisors in this work, Dave Patterson and Alan Smith.

The OPSYS trace was provided by Bill Harding and the Amdahl Corporation. The DATABASE trace

was provided by Joe Hull, Mark Francis, Rollie Schmidt and the Synapse Computer Corporation.

We would like to thank Richard Newton and DEC for the use of their VAX 8650 computer time. And

for keeping the SPUR simulator running hour after hour, we would like to thank George Taylor and Ben Zorn.

Principal funding this work is provided by a Natural Sciences and Engineering Research Council of

Canada Postgraduate Scholarship, by the Defense Advanced Research Projects Agency under contract

N00039-85-C-0269 and by computer resources provided under DARPA contract N00039-84-C-0089.

11. Bibliography

[Allen78] A.O. Allen, Probability, statzstzcs, and queueing theory with computer science applications,

Academic Press, New York, 1978.

[Allen80] A.O. Allen, "Queueing models of computer systems," IEEE Computer, April1980, pp 13-24.

[Baskett76] F. Baskett, A.J. Smith, "Interference in multiprocessor computer systems with interleaved

memory", CACM, vol19, no 6, June 1976, pp 327-334.

[Baskett86] F. Baskett, J.L. Hennessy, "Small shared-memory multiprocessors," Science, vol 231, February

1986, pp 963-967.

[Bell85] C.G. Bell, "Multis: a new class of multiprocessor computers," Science, vol 228, April 1985, pp 462-

467.

[Bentley84] J. Bentley, "The back of the envelope," CACM, vol27, no 3, March 1984, pp 180-183.

[Buzen77] J.P. Buzen, D. Potier, "Accuracy of exponential assumptions in closed queueing models," Proc.

1977 SIGMETRICS/CMG Int. Conf Comput. Perf Modeling, Measurement, Washington DC,

November 1977, pp 53-64.

[Chandy78] K.M. Chandy, C.M. Sauer, "Approximate methods for analyzing queuing network models of

computing systems," Computing Surveys, vol10, no 3, September 1978, pp 281-317.

[Clark83] D.W. Clark, "Cache performance in the V AX-11/780," ACM Transactions on Computer Systems,

vol1, no 1, February 1983.

[Clark85] D.W. Clark, J.S. Emer, "Performance of the V AX-11{780 translation buffer," ACM Transactions

on Computer Systems, vol3, no 1, February 1985.

[Deminent82] J. Deminent, "Experience with multiprocessor algorithms," IEEE Transactions on Computers,

32

vol C-31, no 4, April1982.

[Denning78] P. Denning, J. Buzen, "The operational analysis of queueing network models", Computing Sur

veys, vol10, no 3, September 1978, pp 225-261.

[Dubois85] M. Dubois, "A cache-based multiprocessor with high efficiency," IEEE Transactions on Comput

ers, vol C-34, no 10, October 1985.

[Gibson85] G. Gibson, "SpurBus specification," Proceedings ofCS292I: Implementation ofVLSI Systems, ed.

R.H. Katz, University of California, Berkeley, September 1985. Also Computer Science Division

technical report UCB/CSD 86/259.

[Fielland84] G. Fielland, D. Rogers, "32-bit computer system shares load equally among up to 12 proces

sors," Electronic Design, September 1984, pp 153-168.

[Frank84] S.J. Frank, "Tightly coupled multiprocessor system speeds memory-access times," Electronics, vol

57, no 1, January 1984, pp 164-169.

[Fuller76] S.H. Fuller, "Price/performance comparison of C.mmp and the PDP-10," Proceedings of the 3rd

Annual Symposium on Computer Architecture, Pittsburgh, Penn., January 1976, pp 195-202.

[Hill83] M.D. Hill, "Evaluation of on-chip cache memories," Unpublished Master's Report, University of

California, Berkeley, December 1983.

[Hill86] M.D. Hill, SJ Eggers, J. Lams, G. Taylor, et al, "Design decisions in SPUR," IEEE Computer, vol

C-19, no 11, Nov 1986.

[Katz85] R.H. Katz, S.J. Eggers, D.A. Wood, C.L. Perkins, R.G. Sheldon, "Implementing a cache consistency

protocol," Proceedings of the 12th International Symposium on Computer Architecture, Boston,

Mass., June 1985, pp 276-283.

[Kinney78] L.L. Kinney, R.G. Arnold, "Analysis of a multiprocessor system with a shared bus," Proceedings

of the 5rdAnnual Symposium on Computer Architecture, January 1978, pp 89-95.

[Kleinrock75] L. Kleinrock, Queuing systems, vol1, Wiley, New York, 1975.

[Marsan82] M.A. Marsan, G. Balbo, G. Conte, "Comparative performance analysis of single bus multiproces

sor architectures," IEEE Transactions on Computers, vol C-31, no 12, December 1982, pp 1179-

1191.

[Marsan83] M.A. Marsan, G. Balbo, G. Conte, F. Gregoretti, "Modeling bus contention and memory interfer

ence in a multiprocessor system," IEEE Transactions on Computers, vol C-32, no 1, January 1983,

PP 60-72.

[Marshall68] K.T. Marshall, "Some Inequalities in Queuing," Operations Research, vol 16, no 3. 1968, pp

651-665.

[Patel82] J.H. Patel, "Analysis of multiprocessors with private cache memories," IEEE Transactions on Com

puters, vol C-31, no 4, April1982, pp 296-304.

[Reyling74] G. Reyling Jr., "Performance and control of multiple microprocessors systems," Computer

Design, March 1974, pp 81-86.

[Saaty61] T L. Saaty, Elements of Queuing Theory, McGraw-Hill, 1961, pp 323-329.

[Smith85] AJ. Smith, "Cache evaluation and the impact of workload choice," Proceedings of the 12th Inter

national Symposium on Computer Architecture, Boston, Mass., June 1985, pp 64-73.

[Taylor86] G.S. Taylor, P.N. Hilfinger, J.R. Lams, D.A. Patterson, B.G. Zorn, "Evaluation of the SPUR lisp

architecture," Proceedings of the 13th International Symposium on Computer Architecture, Tokyo,

Japan, June 1986, pp 444-452.

[Towsley86] D. Towsley, "Approximate models of multiple bus multiprocessor systems," IEEE Transactions

on Computers, vol C-35, no 3, March 1986.

[Wood86] D.A. Wood, SJ Eggers, G. Gibson, M.D. Hill, J.M. Pendleton, S.A. Ritchie, G.S. Taylor, R.H.

Katz, D.A. Patterson, "An in-cache address translation mechanism," Proceedings of the 13th

33

International Symposium on Computer Architecture, Tokyo, Japan, June 1986, pp 444-452.

34

12. Appendix A: Raw Data

Some of the bus simulation results are presented in Tables 13 and 14. The values found in these tables

are not important to the accuracy of the models, but may interest readers. The SPUR project uses cache

configuration 4. Its processor and memory speeds are not firm at the moment, but should fall between

configurations A, B and C (see Section 7). These tables list the value of effective uniprocessors, bus utilization

and average wait on memory in nanoseconds for the 6-processor and 10-processor systems for each request

trace and speed configuration. We also report the trace p = ttr=f•rl tcompute, the uniprocessor execution time in

seconds and the uniprocessor bus utilization. Notice that there is insufficient information in these tables to

compare cache designs.

Config A (1 DOns per ref, 400ns 1st word, 1 OOns 2nd- word)

Uni Uni At 6 Processors At 10 Processors

Trace. Cache p Sim Bus Bus Avg Bus Avg

Sees Util EU Util Wait EU Util Wait

OPSYS.1 0.130 0.11 0.12 5.5 0.62 6719 8.3 0.91 10731

OPSYS.2 0.124 0.11 0.11 5.5 0.61 2148 8.2 0.88 3656

OPSYS.3 0.138 0.11 0.12 5.5 0.66 1046 8.0 0.94 1926

OPSYS.4 0.265 0.13 0.21 4.4 0.92 3320 4.7 1.00 7561

OPSYS.5 0.968 0.20 0.50 2.0 1.00 17973 2.0 1.00 32369

OPSYS.6 0.213 0.12 0.18 4.9 0.87 1156 5.6 1.00 2716

OPSYS.7 0.178 0.12 0.16 5.1 0.78 1294 6.5 0.99 2722

OPSYS.8 3.452 0.46 0.78 1.3 1.00 38924 1.3 1.00 66124

DATABASE. I 0.049 1.32 0.05 5.9 0.28 4296 9.8 0.46 5263

DATABASE.2 0.063 1.34 0.06 5.9 0.35 1513 9.6 0.57 2027

DATABASE.3 0.054 1.33 0.05 5.9 0.31 737 9.7 0.50 954

DATABASE.4 0.157 1.46 0.14 5.4 0.74 2239 7.0 0.96 4935

DATABASE.5 0.330 1.68 0.25 3.9 0.97 11485 4.0 1.00 25193

DATABASE.6 0.204 1.53 0.18 4.8 0.84 1208 5.7 0.99 2685

DATABASE.? 0.160 1.47 0.14 5.3 0.75 1167 6.9 0.97 2554

DATABASE.8 1.015 256 0.51 2.0 1.00 34200 2.0 1.00 61399

USPCOMP21 0.081 216 0.08 5.8 0.44 4997 9.3 0.70 7290

USPCOMP2.2 0.105 221 0.10 5.7 0.55 1882 8.6 0.82 3256

USPCOMP23 0.145 230 0.13 5.4 0.69 1151 7.3 0.94 2299

USPCOMP24 0.284 258 0.23 4.2 0.94 3540 4.4 1.00 7886

USPCOMP25 0.713 3.46 0.42 2.4 1.00 16670 24 1.00 31051

USPCOMP2.6 0.189 239 0.16 4.9 0.81 1157 6.0 0.98 2537

USPCOMP2.7 0.238 2.50 0.20 4.5 0.89 1625 5.0 1.00 3604

USPCOMP28 2.345 6.86 0.71 1.4 1.00 38004 1.4 1.00 65203

Table 13: Raw Data for Configuration A

Configuration A sets the mean time between processor references into its caches at 100

nsec, the memory latency on the first word of a block to 400 nsec and the memory latency

on subsequent words in a block to 100 nsec.

35

Config B (lOOns per ref, 400ns 1st word, 400ns 2nd- word)

Uni Uni At 6 Processors At 10 Processors

Trace. Cache p Sim Bus Bus Avg Bus Avg

Sees Util EU Uti! Wait EU Uti! Wait

OPSYS.l 0.468 0.15 0.32 3.2 1.00 49338 3.2 1.00 101236

OPSYS.2 0.342 0.13 0.26 3.9 0.97 10400 3.9 1.00 23421

OPSYS.3 0.207 0.12 0.17 5.1 0.85 1918 5.9 1.00 4614

OPSYS.4 0.728 0.17 0.43 2.4 1.00 15372 2.3 1.00 28565

OPSYS.5 3.468 0.46 0.78 1.3 1.00 73770 1.3 1.00 125367

OPSYS.6 0.213 0.12 0.18 4.9 0.87 1156 5.6 1.00 2716

OPSYS.7 0.267 0.13 0.22 4.3 0.92 2550 4.7 1.00 5707

OPSYS.8 13.046 1.47 0.93 1.1 1.00 152322 1.1 1.00 255122

DATABASE.! 0.176 1.48 0.15 5.2 0.77 26541 6.5 0.98 58733

DATABASE.2 0.172 1.48 0.15 5.2 0.76 6866 6.6 0.97 14983

DATABASE.3 0.082 1.36 0.08 5.8 0.44 1253 9.3 0.69 1854

DATABASE.4 0.433 1.81 0.30 3.3 0.99 12471 3.3 1.00 25463

DATABASE.5 1.183 2.76 0.54 1.8 1.00 66593 1.8 1.00 118190

DATABASE.6 0.204 1.53 0.18 4.8 0.84 1208 5.7 0.99 2685

DATABASE.? 0.241 1.57 0.20 4.5 0.90 2378 5.0 1.00 5388

DATABASE.8 3.836 6.16 0.80 1.3 1.00 147600 1.3 1.00 250399

LISPCOMP2.1 0.290 2.58 0.23 4.2 0.94 37735 4.4 1.00 84664

LISPCOMP2.2 0.289 2.58 0.23 4.1 0.94 9834 4.4 1.00 21719

USPCOMP2.3 0.217 2.45 0.18 4.7 0.86 2253 5.5 0.99 4999

LISPCOMP2.4 0.782 3.60 0.44 2.2 1.00 15690 2.2 1.00 28881

LISPCOMP2.5 2.554 7.22 0.72 1.4 1.00 72451 1.4 1.00 124051

USPCOMP2.6 0.189 2.39 0.16 4.9 0.81 1157 6.0 0.98 2537

LISPCOMP2.7 0.357 2.74 0.27 3.6 0.97 3148 3.7 1.00 6584

USPCOMP2.8 8.862 20.39 0.90 1.1 1.00 151404 1.1 1.00 254203

Config C (200ns per ref, 400ns 1st word, lOOns 2nd- word)

OPSYS.l 0.065 0.21 0.06 5.8 0.35 5405 9.4 0.56 7626

OPSYS.2 0.062 0.21 0.06 5.9 0.34 1708 9.5 0.55 2230

OPSYS.3 0.069 0.21 O.o7 5.8 0.38 860 9.4 0.60 1200

OPSYS.4 0.132 0.23 0.12 5.6 0.66 2034 7.9 0.93 3938

OPSYS.S 0.484 0.30 0.33 3.0 0.99 14458 3.0 1.00 28743

OPSYS.6 0.106 0.22 0.10 5.7 0.56 796 8.7 0.84 1279

OPSYS.7 0.089 0.22 0.08 5.8 0.48 867 9.0 0.75 1380

OPSYS.8 1.726 0.56 0.64 1.6 1.00 37049 1.6 1.00 64247

DATABASE. I O.OZ5 2.58 0.02 6.0 0.14 3916 10.0 0.24 4216

DATABASE.2 0.031 2.60 0.03 6.0 0.18 1329 9.9 0.30 1474

DATABASE.3 0.027 2.59 0.03 6.0 0.16 665 9.9 0.26 753

DATABASE.4 0.079 2.72 0.07 5.9 0.43 1585 9.4 0.69 2301

DATABASE.5 0.165 2.94 0.14 5.3 0.76 6856 6.8 0.98 15275

DATABASE.6 0.102 2.78 0.10 5.7 0.55 767 8.6 0.82 1330

DATABASE.? 0.080 2.72 0.08 5.9 0.45 801 9.3 0.71 1190

DATABASE.8 0.507 3.81 0.34 2.9 1.00 27755 2.9 1.00 54801

LISPCOMP2.1 0.041 4.16 0.04 6.0 0.23 4190 9.9 0.38 4879

USPCOMP2.2 0.053 4.21 0.05 5.9 0.30 1478 9.7 0.49 1858

USPCOMP2.3 0.073 4.30 0.07 5.8 0.40 824 9.4 0.65 1161

USPCOMP2.4 0.142 4.58 0.13 5.5 0.69 2155 7.4 0.94 4454

USPCOMP2.5 0.356 5.46 0.27 3.7 0.97 12252 3.8 1.00 26103

USPCOMP2.6 0.094 4.39 0.09 5.7 0.51 774 8.8 0.78 1269

LISPCOMP2.7 0.119 4.50 0.11 5.6 0.61 1028 8.0 0.89 1928

USPCOMP2.8 1.172 8.86 0.55 1.8 1.00 35208 1.8 1.00 62408

Table 14: Raw Data for Configuration Band C

Configuration B sets the mean time between processor references into its caches at 100

nsec, the memory latency on the first word of a block to 400 nsec and the memory latency

on subsequent words in a block to 400 nsec. Configuration C sets these values to 200, 400

and 100, respectively.

36

13. Appendix B: More on Pessimistic Estimations

As noted in Section 5, the pessimistic estimate described in Section 3.2 does not give a strict lower

bound on effective uniprocessors. This appendix presents a model that does give such a lower bound and

relates it to the pessimistic estimate.

13.1. A Lower Bound: The Paranoid Bound

A lower bound on multiprocessor throughput performance (both MIPS and effective uniprocessors)

occurs when the execution time of theN workloads, one per processor, is maximized. The execution time can

be broken down into the time the memory is busy and the time it is idle. If each workload contains R memory

requests then the portion of run time that the memory is busy is NRttransfer units long. Since all processors are

computing when the memory is idle and since the total computation time per processor is Rtcompuze, the max-

imum time that the memory is idle must be ~ Rtcompuze. So the maximum multiprocessor execution time is

NRtlrtJIISfer + Rtcompute.

A lower bound on effective uniprocessors is then

EU > N£Uniprocessor Run Time) _ N(ltransfer+tcompuze)
- Ultij)rocessor Run Time - NtrrtJASfer+tcompuze

since the uniprocessor execution time is fixed at R (trrtJASfer+tcompuze) per workload. This maximizes the

memory idle time, so it also gives rise to a lower bound on bus utilization

BU > Ntrransfer
- N trraASf er +tcompute

and we see that the bus is never saturated. To bound average wait for memory service, notice that if arbitration

is fair, the most a processor could wait for service is a transfer time for each of the other N-1 processors plus

its own. SoAW ~NtrrtJASfer·

We name the implicit model giving rise to these lower bounds, shown in Figure 14, the paranoid bound.

It is interesting to evaluate the paranoid bound at N• and N '.

EU (N•) = N•
1 2- -;-;o-

N

37

Effective UniProcessors

9

8

7

6

5

4

3
/

/
2 /

/

/

,. 0 .. 0

/ ~

~"'~,..,/·
/

/ Paranoid Bound
/

/

0~------~----~----~
6 11 16

Processors

Figure 14
A sample of the paranoid bound's estimation of effective uniprocessors is shown in this

figure with the corresponding trace-driven simulation, 4-point bound and simple queueing

model estimations. Although the paranoid bound is a true lower bound, this example

demonstrates its weaknesses in practice. In this example, the ratio, trransf er ltcompwe, is

.142.

EU (N') = N~ = --'-N_* --
2_7, 3+trransfer

tcompule

2 + trransfer
tcompure

Sotheparanoidboundexceeds±N• atN• andexceedsj-N• atN',sinceO< ~rransfer <oo.
compule

13.2. A Family of Pessimistic Models

The pessimistic estimate of Section 3.2 and the paranoid bound are related; there is a family of models

that have the pessimistic estimate as their most optimistic member and the paranoid bound as their limiting

pessimistic model.

We construct our family of pessimistic models by extending the pessimistic estimate. Let requests be

organized into groups, r requests to a group, such that at the beginning of each request period all processors

38

simultaneously initiate r back-to-back (no intervening computation) requests. Then processors compute (with

duration rtcompuu) until the next request period. Referring to Figure 4, this means that the pessimistic estimate

hasr=l.

Using the arguments of Section 3.2, we get the following equations6
:

N (saturation knee) = 1 + 2r ~compute
transfer

EU (not saturated) = N (tcompute +ttransf er)
N-1

tcompuu + Nttransfer- ----r;:-ttransfer

BU (not saturated)= -----N----'tlrtVIS;.;;;;;.;.;._fe;..:..r.....,...-.-----N-1
tcompw. + N t ITtVIS fer - ----r;:- t transfer

AW (not saturated)= r~ 1 Nttransfer + N2~ 1 t~ransfor

As we have noted, the pessimistic estimate has r = 1. If we let r go to oo then these equations give rise to

the paranoid bound. Figure 13 shows a sample of the effective uniprocessors estimates of these models rela-

tive to the corresponding optimistic estimate.

13.3. What Does This Mean?

Table 15 shows the (interpolated) number of processors that cause the pessimistic estimate to exceed

trace-driven simulation, for the simulation runs that had poor enough performance to show an estimate for

some N"?N'. Table 15 also shows the relative error (positive implies the model exceeds simulation) of the pes-

simistic estimate (r = 1), r = 2 model and the paranoid bound (r = oo) at N '.

Empirically, the pessimistic estimate of Section 3.2 (r = 1) is a closer estimate of effective uniprocessors

at N' than any of the other pessimistic models unless the system can't support multiple processors

(N'::;; 2 or 3). If performance near N' is particularly important then perhaps the r = 2 estimate at N' should be

joined with the r = 1 estimate at N• to give a more pessimistic bound (notice that near N' each processor may

be achieving as little as 50% utilization).

The paranoid bound gives weak but strict lower bounds on effective uniprocessors at N• and N' of

1 N* d 2 N• . 1 "2" an j , respecuve y.

6 Notice that when r = 1/2, these equations give the same estimates as the optimistic estimate. It is not clear to us why

one request every two request periods should model the best possible performance for arbitrary N.

39

11

10

9

8

7

6

5

4

3

2

Effective UniProcessors

r= 3
r=4
r=5
r = 10

1+----?----~--~----~--~
1 11 21 31 41 51

Processors

Figure 15
This graph shows effective uniprocessor estimates for the optimistic estimate against the

corresponding family of pessimistic models. Notice that for r > 100, all the models give

nearly the same estimate for effective uniprocessors, all approximately the paranoid

bound's estimate. Also notice how much the pessimistic model estimates for r = 1 and r =

2 differ relative to the difference between the optimistic estimate and the pessimistic esti

mate (r = 1). In this example, the ratio, tcrt111Sfcrltcompuu, is .1.

40

Trace.CacheConfig N' Cross ErroratN
Over r= 1 r=2 r=oo

OPSYS.1B 5.3 4.9 3% -14% -26%

OPSYS.2B 6.8 7.1 0% -18% -30%

OPSYS.3B 10.7 11.0 -1% -19% -32%

OPSYS.4A 8.6 8.0 4% -15% -28%

OPSYS.4B 3.7 3.2 8% -9% -21%

OPSYS.5A 3.1 2.3 6% -9% -21%

OPSYS.5B 1.6 1.0 12% 3% -5%

OPSYS.SC 5.1 4.1 8% -10% -23%

OPSYS.6A 10.4 10.0 2% -17% -30%

OPSYS.6B 10.4 10.0 2% -17% -30%

OPSYS.7A 12.2 12.1 2% -17% -30%

OPSYS.7B 8.5 7.9 4% -14% -28%

OPSYS.8A 1.6 1.0 12% 3% -5%

OPSYS.8B 1.2 1.0 7% 3% 0%

OPSYS.8C 2.2 1.0 7% -5% -15%

USPCOMP2.1B 7.9 7.6 3% -15% -28%

USPCOMP2.2B 7.9 7.4 4% -15% -28%

USPCOMP2.3A 14.8 14.1 2% -17% -30%

USPCOMP2.3B 10.2 9.6 2% -17% -30%

USPCOMP2.4A 8.0 7.4 5% -14% -27%

USPCOMP2.4B 3.6 2.9 8% -8% -20%

USPCOMP2.5A 3.8 3.2 9% -8% -21%

USPCOMP2.5B 1.8 1.0 10% 0% -9%

USPCOMP2.5C 6.6 6.2 4% -15% -27%

USPCOMP2.6A 11.6 10.7 4% -15% -28%

USPCOMP2.6B 11.6 10.7 4% -15% -28%

USPCOMP2.7 A 9.4 8.2 5% -14% -27%

USPCOMP2.7B 6.6 5.5 6% -13% -26%

USPCOMP2.8A 1.9 1.0 9% -2% -11%

USPCOMP2.8B 1.2 1.0 9% 4% -1%

USPCOMP2.8C 2.7 2.1 8% -7% -18%

DATABASE.1B 12.4 12.4 1% -18% -31%

DATABASE.2B 12.6 12.5 2% -17% -30%

DATABASE.4A 13.7 13.3 2% -17% -30%

DATABASE.4B 5.6 4.7 5% -13% -26%

DATABASE.5A 7.1 6.8 3% -15% -28%

DATABASE.5B 2.7 2.1 7% -8% -19%

DATABASE.SC 13.1 12.9 2% -17% -30%

DATABASE.6A 10.8 10.0 4% -15% -29%

DATABASE.6B 10.8 10.0 4% -15% -29%

DATABASE.7A 13.5 12.8 3% -16% -29%

DATABASE.7B 9.3 8.5 4% -15% -28%

DATABASE.8A 3.0 2.3 5% -10% -21%

DATABASE.8B 1.5 1.0 12% 3% -4%

DATABASE.8C 4.9 4.1 8% -10% -23%

Table 15: Various Pessimistic Estimates Accuracy atN'
This table shows the trace-driven simulations that have N' less than 15 (the maximum

number of processors simulated). For each simulation, the value of Nat which the pes

simistic estimate exceeded the simulation estimate of effective uniprocessors is shown.

Then the accuracy of the r=l, r=2 and r=oo pessimistic estimates at N' are given (positive

exceeds the simulated value). Although the r=l estimates in general exceed simulation

estimates at N', ihey are also generally closer than the r=2 estimates unless performance

is especially poor (N' ~ 2or 3).

41

