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ABSTRACT

This document provides an in-depth critical analysis of three recent non-standard
analytical techniques and algorithms. This analysis continues this author's ongoing
study of the foundations of extant decision analysis techniques for the purpose of
identifying those that are mathematically sound and robust. These techniques have
been selected because they have been proposed for application in the military and
intelligence arenas where decisions can have great strategic importance. Our analysis
indicates that all rest on doubtful mathematical foundations to the extent that they
would not be advisable to use for defence related decision making.
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A Critique of Three Decision Support Techniques

Executive Summary

In recent years a wide variety of decision support tools have been developed many of
which incorporate non-standard mathematical methods, especially for the modelling of
uncertainty with methods other than probability theory. Although some of these non-
standard methods have been published in refereed journals, there is still a need for
further in-depth critical analysis beyond the critical review of the referee. This need
becomes more imperative if these tools are to provide a basis for critical or strategic
decision making.

The three techniques reviewed in this report are the Causal Influence Logic incorporated
in the SIAM tool developed by the Science Applications International Corporation
(SAIC), the Subjective Logic of Audun Josang, and the Recursive Noisy OR Operator of
John Lemmer and Don Gossink. These three techniques have been selected for critical
analysis because they have been proposed for application in the military and
intelligence arenas where decisions may have great strategic importance.

The following analysis of those techniques indicates that many of the claimed benefits
are non-existent, and moreover, the presence of various arbitrary equations can only
lead to arbitrary and non-rigorous results. Consequently, we conclude that it would
not be advisable to apply these techniques, or software based on them, to defence
decision making. Generally speaking, it would be prudent to examine carefully any
new algorithms or techniques proposed for defence decision making before
committing to software investments.
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1. Introduction

In recent years a wide variety of decision support tools have been developed many of
which incorporate non-standard mathematical methods, especially for the modelling of
uncertainty with methods other than probability theory. Although some of these non-
standard methods have been published in refereed journals, there is still a need for further
in-depth critical analysis beyond the critical review of the referee. This need becomes
greater if these tools are to provide a basis for making strategically important defence
decisions. The objective of this report is to determine if an adhoc, obtuse or non-standard
mathematical technique exceeds the limits of what could be called reasonable
mathematical reasoning, while not necessarily adhering strictly to pure mathematical
logic. The three techniques reviewed in this report are the Causal Influence Logic
incorporated in the SIAM tool developed by the Science Applications International
Corporation (SAIC), the Recursive Noisy OR Operator of John Lemmer and Don Gossink,
and Subjective Logic of Audun Josang.

2. Uncertainties in Decision Support Models

2.1 Levels of Uncertainty

Conceptual models and their embedded techniques may contain many different types of
uncertainty (U) that limit their fitness to the real world and can compromise their
application. This author has previously described [1] several levels of such uncertainties
that may exist in analytical models. These levels are briefly described below.

These levels of potential U are decomposed in the following schema where higher
numerical values actually represent lower levels of uncertainty. The U levels are grouped
into two main classes A and B : the first class A is associated with the inherent model
structure and its mechanisms, and the second class B concerns the U introduced by the sets
of data/information that is processed by the model.

Class A Uncertainties

Level 1:  Uncertainty in Objective or Problem Definition --

Uncertainty of the purpose of the analysis may be related to mistaken perceptions,
confusion, lack of information, or complexity. Personal factors such as experience, skill
and bias can influence the cognisance of a problem and some analytical methods such
as personal construct theory, cognitive mapping or the soft systems methodology, may
assist in consolidating the problem definition and variable identification. This level of
U may also be invoked when a concept used to describe a problem is given a different
interpretation by different individuals.
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Level 2 Uncertainty in Model Conceptualisation --
At this level a conceptual model is adopted as the computational framework. A range
of questions must be answered to define the broad characteristics of the model and fit
it to reality in an adequate manner. Such considerations are:

What paradigm : Single or multiple models? Random variables or not?
What structure: ~ Where are the boundaries? How detailed and what model
granularity? Hierarchical or complex system inductive model?

Uncertainty can arise at this level if the choices made to answer these questions are
inept and do not describe the problem characteristics with an adequate degree of
verisimilitude. An example of U introduced at this level is when a probabilistic
inferencing model is adopted where the characteristics of the problem would suggest
that an inductive type information integration model would be more appropriate for
decision making. Although it may not always be clear as to what represents an
“adequate” fit, and because there may also be multiple adequate fits, there can still be
cases of greatly oversimplified models based on unreasonable assumptions.

Level 3:  Uncertainty in Computational Macro-Structure --
This level refers to the U introduced by model components such as the inferencing or
clustering techniques, or type of nodal squashing function in neural nets, or
information aggregation procedures. Overall, this level addresses uncertainty as the
level of validity or rigour in the mathematical equations used in a model.

Level 4:  Uncertainty in Computational Micro-Structure and Parameters --
This level refers to the U introduced by analytical method components such as
arbitrary parameters as in squashing function gain and bias in the fuzzy cognitive
mapping technique, aggregation optimism/ pessimism degree parameters, or the prior
conditional probabilities in a Bayes Net.

Class B Uncertainties

Two additional levels of U pertain to the individual information elements themselves
and the set of information elements available.

Level 5:  Uncertainty in Sample Evidence --
Quantity - the amount of information affects measure estimation.
Quality - conflicting information in a sample also affects estimation.

Level 6:  Intrinsic Uncertainty within Information Elements --
This is U inherited from variable definition and measurement.
A qualitative concept associated with a variable may be inherently vague, and
measurements pertaining to any type of variable may be approximate, subjective, or
indirect.

The uncertainty of interest in the three techniques analysed in this report belongs mainly
to Level 3 uncertainty, concerning the rigour of the computational structure. The
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uncertainty in the information that these techniques actually process would be Level 6
uncertainty.

2.2 Higher-order Uncertainty Forms in Input Information to Models

Input information to models may also be qualitative and be based on subjective opinion of
experts, for example subjective beliefs; this Level 6 U may then require special equations to
cater for the lower input information content. This report will not describe the many
methods that have been proposed for representing this type of elemental information but a
detailed description of the development of belief functions theory can be found in [2]. The
focus of this analysis will be mainly on the equations in these three particular techniques
used to process this type of elemental information. However, a separate report by this
author [3] does investigate different ways to distinguish and represent hybrid U forms in
elemental information inputs.

2.3 Interdependent Model Elements

A real world characteristic that presents significant challenges to analytical techniques in
models is the presence of interactions between aspects of the real world that need to be
captured in the model. Modelling such interactions can then introduce Level 2 U which is
associated with the adequacy of the fit of a model to the real world characteristics of a
problem. The Recursive Noisy OR is one technique that has been proposed to address
situations where input information elements may not be independent and are
synergistically interactive.

2.4 References on Uncertainty in Models

[1] Warren, L (2006) Structural Uncertainties in Numerical Induction Models, DSTO Technical
Report, DSTO-TR-1895.

[2] Vastava, S. and Mock, T. (2002) Belief Functions in Business Decisions, New York:
Physica-Verlag.

[3] Warren, L (2007) On Modelling Hybrid Uncertainty in Information, DSTO Research Report
DSTO-RR-0325.
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3. Detailed Critique of Causal Strength Logic

3.1 Introduction

SIAM is a computer tool developed by Science Applications International Corporation
(SAIC) and based on some work published in 1994 by a group of people at the C3I Center
at George Mason University [4]. The underlying model is a type of causal influence
diagram called an “Influence Net” to which an analytical process called Causal Strengths
Logic (CAST) is applied. The following comments are based on the original report [4] as
well as a report by Rosen and Smith [5] which is said by SAIC to provide the technical
details of the method. The tool adopts a 5 step algorithm without the need to elicit sets of
local conditional probabilities at each node as are required in pure probabilistic Bayes
Nets. For simplicity, “causal strengths” [0,1] between parent and child pairs of binary
state nodes are elicited from domain experts, instead of conditional probabilities for the
complete set of different parent states for each child node. This report examines the
foundations of the CAST algorithm within the SIAM tool.

3.2 The CAST Causal Inferencing Logic

For models that are composed of inter-related sets of binary (ON/OFF) random variables,
n parent nodes require conditional probabilities for 2" parent state combinations for each
child state, if probabilistic inferencing is to be applied as in a Bayes Net. However, in many
real world problems with minimal data, it is difficult to get meaningful values for all these
probabilities rather than simply being guesses. For this reason, various simplified
approaches have been proposed, such as the CAST algorithm, to sidestep the need to use
the complete set of conditional probabilities. Thus, CAST only requires estimates of parent
to child node causal influences, and the probabilities that the leaf nodes in the model are
ON or OFF.

The CAST algorithm “causal influences” (C) need to be elicited for each parent/child pair.
These may be promoting (+) or inhibiting (-) influences on a child state when a parent
node is either TRUE (ON) or FALSE (OFF), yielding ON and OFF C values (h,g,) for each
parent/child pair (as in Figure 1), i.e. a parent concept can still influence a child node state
by promoting or inhibiting it even when the parent is in an OFF state. A probability called
“b” also needs to be elicited for the algorithm, which is the probability that the child
occurs due to a cause other than any of the parent nodes depicted.

Cy,» = 0 Means Parent A hasnoinfluenceon Child X
C,,» =1 Means Parent A totally determines or promotes the Child X
C,,» = —1 Means Parent A totally inhibits Child X

The exact meaning of causal influence between a Parent A and Child X is difficult to
ascertain from the CAST literature but it is hinted at in an early paper [5, p.4]. In the
following quotation from that reference P(C) is the prior probability that child (C) is ON.
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Although computationally equivalent to the conditional probabilities of a child node
given a parent node, the interpretation is somewhat different... The value assigned to
Cc/a indicates that if A is valid then the probability of C increases by
(Cc/a) (1-P(C)).

In this expression it is difficult to understand why the amount the P(Child=ON) is
updated by should be a proportion (the causal strength) of the prior probability that the
child is OFF. This seems to be an attempt to compute a “turning-on” strength or
probability as a function of the degree of probability that the child is OFF. However, this
concept and function does not appear in the equations presented in [6] so this early
explanation of causal strength in the CAST literature may have been discarded, although
this is unclear because of the incomplete nature of the CAST literature.

Child State

S=OFF

S=ON S=ON

Parent States (S)

Figure 1: Causal Strengths (h, g)

There are five main steps in the CAST algorithm which lead to an estimate for P(X=ON)
from the conditional probability of the Child occurring for each of the 2" Parent node ON
or OFF sets (as determined by equations 4.1 and 4.2).

Step 1: Aggregate promoting parent influences strengths

Promoting state influences (+) C, zl—H (1-C,) 1)
Step 2: Aggregate inhibiting parent influence strengths

Inhibiting state influences () C_ =1-[](1-|C,) @)

Step 3: Aggregate overall influence (O) as the net causal influence, from the promoting
and inhibiting parents in that parent state set, using equations below.
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1-0= - when C: > C 3)

1-0= - when C. > C. 3)

These can be rearranged for explanatory purposes as below.

C, -C

O=———"  whenC. > C (3.1)
1 -C._
C._-C,

O=——" whenC. < C (3.2)
1 -C,

Rosen and Smith [6] explain the above equations as follows.

In order to combine the aggregated positive and negative causal strengths, we introduce the
following axiom:

Cancellation Axiom:

Let (1-C.) denote the potential of a child’s occurrence being promoted due to a set of parents, and let
(1- C.) denote the potential of a child’s occurrence being inhibited by a set of parents. Then, there is
an overall influence, O, that represents the net influence of the set of parents. The overall influence
is given by the ratio of the agqregated Promoting and Inhibiting influences. Heuristically, this
axiom asserts that the accumulated influence of all parents (specified in the conditioning case) is
partitioned into: a portion that balances out the “opposing side;” and the remaining overall
influence.

The meanings of (3), (3.1) and (3.2) are not clear and the question could be asked of the
above explanation: Why should (1-C) be the potential of one type of influence (promoting
or inhibiting) when the aggregate influence of that type is C?

Obviously, the complement is referring to the amount of one type of influence not yet
activated, and the ratio of these two unactivated types of influences as in (3), equals the
unactivated overall net influence. Although this is termed an axiom, the meaning and
rationale is questionable. What equation (3.1) effectively computes is O, as the fraction of
the net degree of promoting influence over the degree that the child state will not be

inhibited, i.e. the difference (C, — C_ ) as a fraction of the degree child is not inhibited.

And similarly for (3.2). This is somewhat similar to the conditional probability:
P(Promoted instantiation | Not Inhibited) = [P(Promoted)~P(Not Inhibited)]/ P(Not
Inhibited).

But Cs are explicitly stated in [6] not to be probabilities. Furthermore, the numerator is
incorrect if they are assumed to be probabilities since the subtraction of two unrelated

UNCLASSIFIED



UNCLASSIFIED
DSTO-TN-1254

probabilities in (3.1) and (3.2) is inadmissible. So the axiomatic meaning of (3) is
questionable, as is the O value so computed.

Example O computation by (3.1):

For Figure 1: C.=065 C: =093 by (1) and (2)
C, -C
1-C
~0.93- 0.65
1 - 065
0.28

0.35
0.8

O:

Step 4: Compute probability of child for the jth set of parent states:
P (X/ parent state set) by equations 4)

The power set of all parent ON and OFF combinations represents all possible combined
parent state sets. For each node in each set take the “h “or “g “ value as determined by the
node’s ON or OFF state. For each string of + and - values compute C- from (1) and C. from

(2). Then determine overall influence (O) from (3.1) or (3.2) i.e. 2" values for O.

Then substitute O and “b” into (4) where b,is an input called the baseline probability of child
which is the probability that X occurs through some cause other than by any of the parent
nodes on the map. Thus a probability b is combined with a non-probability when
determining P(X) for every Parent State Set.

P(X)/j th Parent State Set = by + (1-b:)0; for O; 20 (4.1)
= bx + O] - bx O]

And = b (1-]0j]) for 0; <0
= by - b OJ | (42)

Step 5: Compute P(X= ON) by Aggregating All Parental State Set Influences

After using (1) to (4) to compute P(X) Jeach Parent State Set for all 2" Parent State Sets with
combinations of ON and OFF activations, the overall P(X) at each node is computed by (5).
This is Jeffrey’s rule for mutually exclusive sets of parent states (but not necessarily
mutually exclusive parent states).

2n
P(X) =Y P(X |jth Parent State Set) x P( j" Parent State Set ) (5)
1

j=
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As Rosen and Smith state in [6], in real world situations it would probably not be feasible
to calculate the complete joint probability matrix. So for simplicity the joint probability of
Parent states in the set are computed assuming the Parent states are unconditionally
independent by using the multiplication rule (as in the example below in [6] for Y = OFF,
and Z,A,B,C,D = ON).

P(j" Parent State Set) =
P(-Y,Z,AB,C,D)=P(=Y)P(Z2)P(A)P(B)P(C)P(D) (6)

Evidence Propagation

Observation and evidence will determine that some nodes are ON and some are OFF.
Probabilities are assigned to these nodes which then enable the parent state set
probabilities to be updated using (6). Subsequently, P(X) of all directly affected children
and their children are updated using equations (1-4) as previously described and then (5).

3.3 Some Questionable Features of CAST

Some questionable features of the causal inferencing logic in SIAM follow.

3.3.1 Ambiguous meaning of Causal Strengths

Although Chang [4], one of the original developers of what is now called CAST logic, and
also Rosan and Smith [6], state that causal strengths “C” are not probabilities, they are also
described in [5] as being “computationally equivalent to conditional probabilities”. However, in
equations (3.1) and (3.2), C cannot be interpreted as probabilities because the numerator
would be an inadmissible probability expression as the subtraction of two unrelated
probabilities, because probabilities can only be subtracted when one is a subset of the
other, and this is not the case for C: and C. . Furthermore, C is treated as a probability in
equations (1) and (2) which are equivalent to the probabilistic Noisy OR expression.

In other types of strictly deterministic causal inferencing mechanisms, such non-
probabilistic causal strengths have a clear meaning, which determine the strength of a
parent’s stimulus as a proportion of its state activation level [0,1]. But those types of
mechanisms (neural nets, system dynamics and fuzzy cognitive maps) require
deterministic mechanisms for causal inferencing that are very different to the CAST logic.
Thus, the latent ambiguity of the CAST causal strengths means that the expressions that
use them will also be ambiguous and of limited meaning.

However, operations performed on causal strengths when they are probabilities of events
or states, by implication must conform to probability laws. For example, they must be
combined with logical meanings such as AND, OR, EXOR etc and cannot be used in
algebraic expressions that are inadmissible probabilistic equations. So if C were to be
interpreted as elicited probabilities then:

e C.represents probability of X due to at least one of the promoting parents.
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e C represents probability of NOT X (inhibited) due to at least one of the inhibiting
parents.

3.3.2 Overall Influence from Combination of C+ and C-

The next step in CAST is to combine C+ and C- to get a net influence by equations (3).
Chang [4, p.9] explains the rationale for equations (3) thus:

Basically this procedure partitions the stronger influence into two parts. The first part is set
equivalent to the weaker influence of opposite sign, and the second part is the net remaining causal

influence. If C, >C_then C, =1-(1-0)(1-C_), where O is the overall influence.

: : C, -C
After rearranging, this becomes (3.1): O =1-¢c
Chang’s explanation is also difficult to understand, nor does the Cancellation Axiom of
Rosen and Smith [6] clarify this equation.

But whichever ambiguous meaning is ascribed to C, equations (3) are of little meaning for
the following reasons:

If Cs are considered as probabilities as derived by equation (2), the numerators in (3.1) and
(3.2) are inadmissible by probability laws, so the expressions would be meaningless and
cannot be interpreted as conditional probabilities.

If Cs are not probabilities, equations (3), as well as Chang’s and Rosen and Smith’s
explanations, are still questionable.

Thus aggregate O influence computation at Step 3 is very questionable which renders all
subsequent computations based on it of dubious merit.

Alternatively, a purely probabilistic approach could be applied to compute O as follows.

Assume that for each parent state set we compute P(X=ON) and P(X=OFF) from the
appropriate {h,g} values for the promoting and inhibiting parent state values (as follows).
Then the probability expression for computing a probabilistic overall O would be as
follows.

When C+ > C-:
The aggregate influence O is the P (X = ON) from Promotors and Inhibitors
= P (Caused by Promotors) AND P (Not inhibited by Inhibitors)
= C(1-C) )

For example, for parent state set in Figure 1, the appropriate causal influence string is
{0.3,-0.3,-0.5, 0.9 }. Then with C+ and C.in (7):
C: =1-(1-0.3)(1-09) = 1 - (0.7)(0.1) =1 - 0.07 = 093
C =1 (1-03)(1-05) = 1 - (0.7)(0.5) =1 -0.35 = 0.65
Thus O= C (1-C) =093(1-0.65) = 0.325
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Hence the recommendation would be to replace (3) by (7).

3.3.3 Combining Map and Non-map Causes on a Child Node

When O; >0, the probabilistic meaning of (4) for aggregating map and non-map causes for

each 2" state sets is that P(X) is the probability that X is caused by non-map causes “b”,
OR is caused by map causes, AND NOT by non-map causes (i.e. only by aggregate map
influences O). Thus, O is assumed to be a probability measure in expression (4) which
applies for non-mutually exclusive events.
i.e. P (X|jth Parent State Set) ) = P (caused by one or more Parent State sets)

+ P (due to some external cause) - P (caused by both)

Then P(X) is aggregated across all Parent State Sets by (5),

2“
P(X) = Y P(X|j" Parent State Set) x P( j" Parent State Set) as by (5)
j=1
Unfortunately, this summation across 2" Parent State sets by (5) includes ‘b” too many
times and would be an excessive estimate of P(X). The non-map causal probability “b”
should only be included once as shown in (9) below, with the jth Parent State set
probability being determined simply as in (8) as follows.

P(X|jth Parent State Set) = O; 8)

Then, still adopting the assumption that the parent states are unconditionally
independent, the P(jth Parent State Set) would be determined by multiplication of
individual Parent state probabilities. For the previous example as appears in [6]:

P(-Y,Z,A/B,C,D)=P(=Y)P(Z)P(A)P(B)P(C)P(D)

Next,

2“
P(X) =Y P(X | j" Parent State Set) x P( j" Parent StateSet) + b - b3() )

j=1

Thus, if we applied standard probabilistic reasoning, then (4) with the spurious fractional
probabilities, and (5) with the excessive inclusion of “b”, could be replaced by the above
two new equations (8) and (9) respectively.

3.3.4 Dangers of the Independent Parent Assumption

While parents are conditionally independent, they are not unconditionally independent
since they may have one or more common parents themselves. This means that knowledge
of the state of one parent of a child may be derived through knowledge of another parent
of the same child, by indirect inferencing on what the state of the common parent to those
two parents must be. In other words, knowledge of the two parent states may be linked
through knowledge of a common parent state, i.e. not independent states.
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As Rosen and Smith clearly state in [6], it is not realistic to try to elicit the full set of parent
child conditional probabilities in real problems, so they adopt the independence
assumption. Unfortunately, it is impossible to gauge the effect of this assumption since
there would exist no true set of conditional probabilities to compare the values so
computed.

3.4 Conclusions of the CAST Analysis

Chang and his colleagues have attempted to combine some non-probabilistic inferencing
measures, as used in some expert systems, with probabilistic inferencing measures
resulting in some dubious expressions with no clear meaning. And even though the
numerical results of CAST are constrained to [0,1], as probabilities must be, the computed
result of equation (3) for overall influence O does seem to be highly questionable.
Nevertheless, the first problem in computing the overall influence O could be remedied by
replacing equations (3) with (7). Another problematic feature is the combination of map
and non-map causes with the excessive use of “b”. However, this could also be remedied
by replacing (4) by (8) and (5) by (9).

3.5 References for CAST Analysis

[4] Chang, K., Lehner, P., Levis, A., Zaidi, S., Zhao, X. (1994) On Causal Influence Logic.
Technical Report of George Mason University (GMU /C3I-154-R).

[5] Rosen, J. and Smith, W. (1994) Cooperative Security Issues: Assessing the effect of
situational influence measures, Proc. 1994 Symposium on C2 Research and Decision
Aids, Monterey CA , pp 510-524.

[6] Rosen, J. and Smith, W. (1996) Influence Net modeling with causal strengths: An
evolutionary approach, Proc. 1996 Command and Control Research and Technology
Symposium.

4. Detailed Critique of the Recursive Noisy OR Operator

4.1 Introduction

This critique examines a paper by Lemmer and Gossink [7] that proposes a generalised
version of the probabilistic disjunctive OR operator, called the Recursive Noisy OR
(RNOR), which avoids the independent event requirement of the traditional OR operator.
The assertion is that the recursive RNOR operator can be applied to estimate the
probability of an event which can have either independent causes, or interdependent and
interactive causes. To commence, a summary of the method used to develop the
generalised operator will be described and examined to determine how the independency
constraint has been relaxed.
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4.2 Summary of the Derivation of the Generalised OR Operator

The steps in the RNOR derivation are described below and demonstrated for the case of
three events(x;,X,,X;) . The same logic then applies to RNOR derivations with higher
numbers of events.

1. The standard Noisy OR or NOR is:
NOR (X, X,...X,) = 1— H(l— p(x,)) where p(x;) probability of event x; cause
i=1
Then for three causal events x;, X,,X;:

NOR (X, X;,%;) =1 - (1= p(x) ) A= p(x,) ) (- p(X;) ) (1)

2. Next create a fraction by raising right side of (1) rearranged to the power (n-1) and let
the denominator be right side of (1) rearranged raised to power (n-2). Thus, right side of
(1) rearranged is unchanged and this step yields the general equation Al in Appendix A of

[7].

1-NOR(x,,, %)= L0=PC)) A= p(x;) ) (A= p(x,) )12 . 2
[A-p(x)) A= p(x;) )= p(X) )]

3. Next rearrange the numerator of right side of (2) as follows.
LNOR () = AZPO9) A-P04)) (- p(X)) A p0X)) (- P(%)) (- P(X)) (g
(1-p(x)) (1= p(x)) (1= p(x,))

4. Innumerator on right side of (3) insert (1 - standard NOR) for the relevant event pairs.
(1-p(x,)) (1-p(x3)) (1= p(x,))

5. The format of this equation is then called the RNOR whereby the disjunctive OR for
higher numbers of events can be recursively determined from the disjunctive OR
combinations of lower nu