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Abstract 

Large distributed systems have properties that, from the point of view of security. dis­

tinguish them from LAN-based systems. We describe these differences, and show that the 

security mechanisms found in current distributed systems are not well-suited to large sys­

tems. We propo5-e a secure communication architecture for large systems that puts security 

below the transport level. We argue that this is preferable to putting it at higher levels, 

and that in fact it can simplify and improve the performance of transport protocols. 

1. Introduction 

Future widE--area data networks will offer end-to-end bandwidth exceeding that avail-

able on current local-area networks [24] We hypothesize that these networks will be used 

to build large-scale distributed systems having the following properties: 

Sharing of resources (processing power, data. communication services) over long dis-

tances is possible, is well-integrated (perhaps transparently 1 in the system. and is 

efficient. 

The system spans individuals and organizations that may wish to share resources. but 

that do not trust each other. They demand strict control over their own resources and 

ability to function autonomously. 

Resource access uses diverse communication protocols, including both requestlreply 

and stream-oriented protocols. 
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• Hardware components in general have no physical security. Hosts, including those 

acting as aetwork gateways, can be loaded with arbitrary kernel software by mali-

cious users. 

Most existing and proposed distributed systems make security-related assumptions that are 

incompatible with one or more of the above properties of large-scale systems. A sampling 

of these assumptions: 

All system-level components trust one another. Once a user is authenticated to the 

local kernel 1via a password mechanism, perhaps! access to remote resources requires 

no further authentication. Examples are V [11), Eden [3) and Cronus [ 4). 

The system is controlled by a single administrative agent, so that it is possible to 

have universally trusted name andlor key servers. Examples are Sun UNIX [25), 

Mach [23]. and Grapevine [9, 10). 

The systerr. is restricted to a single local area network that. like the Ethernet :I 9], 

guarantee;:; that either every host on the network correctly receives a packet. or that 

no host receives it. Thus a packet cannot be modified by a malicious host. The sys­

tem may span networks connected by gateways if these gateways are physically 

secure. 

There is a single administrative agent that can punish security violators, e.g. by firing 

them. Therefore detection, rather than prevention, is sufficient. 

Resource sharing across administrative domains is possible, but is poorly integrated 

(e.g. is restricted to mail and file transfer). Typically there are no global naming or 

authentication mechanisms, and a user must have independent accounts and pass­

words on each host. An example is Berkeley UNIX [6). 

The network is physically secure, or the network interfaces are assumed to contain 

tamper-proof logic, as in Amoeba [20). 



To reiterate. a large-scale distributed system, as we have defined it, fails to satisfy 

any of the above assumptions, and thus bas security problems that are not present in 

current distributed systems. 

In this paper. we propose a mechanism for secure communication in large-scale distri­

buted systems. The mechanism is called Authenticated Datagram Protocol (ADP). It is 

positioned below the transport layer, at the level of datagram communication between 

hosts. Potentially all network communication passes through ADP. We are currently 

building a distributed system called DASH that uses ADP [7]. 

ADP will be shown to have these properties: 

It satisfies the requirements of large-scale distributed systems. 

It can provide several levels of end-to-end security. 

It has se,·eral advantages over designs in which the security mechanism is at a higher 

leve 1 of the protocol hierarchy. 

The rest of the paper is organized as follows. Section 2 describes the abstraction 

offered by ADP. 5€-ction 3 gives its design, and section 4 discusses its implementation. Sec­

tion 5 compares ADP to other designs for secure network communication, and section 6 

offers some conclusions. 

2. The ADP Abstraction and Interface 

2.1. The Security Model 

Security principals in ADP are called owners. Each owner has a umque symbolic 

name and a unique private/public-key pair. The mechanisms by which naming authority is 

delegated and by which name to public-key mapping is done are outside the scope of this 

paper. We assume, however, that they are done in such a way that an individual or organi­

zation can control both its own naming and the resolution of outside names. 
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The system consists of a set of hosts, each running an operating system kernel. At 

any point, a host has a kernel owner. The ownership of a kernel is established at boot time, 

before network communication takes place; it might be done manually or from a ROM. 

The kernel may support multiple user processes, each of which has an associated 

owner, perhaps different from the kernel owner. A kernel possesses the private keys of its 

kernel owner and of all owners of user processes it has executed. 

Kernel ownership may change over time, e.g. as different people boot a public works­

tation. A crash-free period under a single kernel owner is called a kernel session. 

A kernel i~ security-correct if 

Cl) It limits information flow out of local processes to that explicitly requested by the 

processes. 

:21 It performs name resolution correctly. 

'3 1 It correctly executes the algorithms of ADP, as described below. 

14 i Only the owner of the kernel can read the secret keys it contains. 

These conditions all require some form of logical correctness on the part of the kernel; 

methods of ensuring this are outside the scope of this paper (see [5]1. Condition 4 is met if 

either of the following holds: 

a I The host is physically accessible only to its current owner. 

bl There is no mechanism for reading the kernel's secret key storage. This is not the case 

if there is a "reset button" that jumps into a ROM monitor without first destroying the 

keys, or if a hardware failure generates a memory dump to a file or device readable by any­

one other than the kernel owner. 

An owner X is kernel-trustworthy if whenever X owns a kernel, it is security-correct. 

An owner X is placing kernel trust in an owner Y if X executes user processes on a 

host with kernel owner Y. 
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2.2. The Function of ADP 

ADP is a kernel module that provides an authenticated datagram service to the rest 

of the kernel. It does not implement any particular authorization scheme nor does it pro-

vide other security guarantees such as confinement or freedom from denial of service. With 

ADP as a basis. the kernel may provide higher-level services for user processes. For exam-

ple, DASH supports a general clienl'server model in which ADP underlies both user access 

protocols and kernel-level protocols for service location and authorization. 

ADP aBo.-.;: suppression of message replays beyond a known time, and automatically 

eliminates duplicate delivery of messages, in the case where the underlying network gen-

erates duplicate:;_ It does not provide reliable or sequenced message delivery. 

ADP demultiplexes messages on the basis of ports, which are kernel-level communica-

tion endpoints. Each port bas an ID that is unique over a kernel session. 

ADP provi~t-s the following interfaces to the kernel: 

2.2.1. Message Reception 

A client~ indicate to ADP that it is willing to receive messages on a port using 

register_p o rt 
port: j:>orLID; 
locaLowner: name; 
max.___age: time; 

/'"' port being registered *I 

;x owner of port */ 

r bound for replay elimination x. 

ADP can then deliver messages to the port. It will tag each such message with the 

name of its sendE:r. On each host, there is a distinguished port that is owned by the kernel 

owner and has a well-known port ID. In DASH, this port is used for kernel-level communi-

cation that initiates user-level communication. 

ADP provides authentication; more precisely, when ADP delivers a message tagged 

with the owner-name X, it guarantees that the following bold: 
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If X has placed kernel-trust only in kernel-trustworthy owners, then the mesaage 

resulted from a call to ADP _send (see below) at the request of a process owned by X, 

and was directed to this port. Furthermore, if the max_age argument was present on 

port registration, the message was generated no more than that long ago. 

2.2.2. Message Sending 

The ADP primitive to send a secure message is: 

ADP_send; 
message: string; 
locaLowner: name; 
remote_host: name; 
remote_port: port_ID; 
privacy: boolean; 
max....delay: time; 

ADP _send sends the given message to the named port on the destination host. 

Local_owner mu:::t be currently running a process on this host. 

If the owner of the remote host is kernel-trustworthy, and the named port exists. then 

the message will be delivered only to that port, and will be tagged with the name of the 

sending owner. 

ADP optionally provides privacy: more precisely, ADP guarantees that if the calling 

kernel is security-correct, the following holds: 

If the privac_.,.. flag is set, the text of the message will be readable only by kernels with 

the same owner as the remote host. 

The max_de/ay argument is a hint to the kernel that the message can be buffered for 

up to that amount of time before it is transmitted. This is used to encourage encryption 

piggybacking (see section 3.1). 

ADP also provides the following primitives: 
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flag = establisiLchannel(remote_kerneLowner, remote.Jtost: name;) 

flag = loca.Lauthenticate(remote_owner, remote.Jtost: name;) 

flag = reaote_authenticate(locaLowner, remote_host, remote_owner: name;) 

These are used by the kernel to do boot-time "advance authentication". 

EstablisiLchaJUlel returns true iff the remote owner claims ownership of the named host, 

and accepts a secure channel (see section 3.2.1 l. LocaLauthenticate and 

remote_aothenticate authenticate a local owner to a remote host, and vice versa. 

2.3. End-to-end Security 

ADP satisfies the requirements of large-scale systems. In particular, it does not 

require kernels to trust each other or owners to trust all kernels or physical security. Nei­

ther does it restrict sharing of resources in any way. Other functions like authorization can 

be efficiently bi..i.i:: on top of ADP [7]. Properties of ADP related to other requirements of 

large-scale sy~tt:r::. ~ are discussed in section 4. 

In our mocie: l of distributed computation, an owner who runs a process on a kernel 

with a different owner has no privacy from that owner. If the kernel is not security-correct, 

it can alter or publicize any data accessible to the user process. Hence no additional secu­

rity is obtained by doing encryption at higher kernel levels or in user processes. The host­

to-host security r.rovided by ADP, together with the security-correctness of the kernel, are, 

in our model. as much end-to-end security as is possible without using external mechan­

isms. As will bt shown in section 3.3, ADP can also be used to provide other levels of end­

to-end security. 

3. The Design of ADP 

The design of ADP can be summarized as follows: it uses host-to-host secure channels 

and demand-dri~en authentication, caching authentication information where possible (see 

Figure 11. 
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Figure 1. Authentication Caching in ADP. 

The ADP module on each host maintains, for each aecure channel, two lists of owners: 

(1) Owners that it has authenticated to the other end of the channel 

(2) Owners authenticated to it by the other end of the channel 

This authentication caching means that expensive PKE-based authentication need be done 

only the first time an owner is involved as a sender or receiver on a particular secure chan-

Del 

In many cases, patterns of communication (in terms of local and remote owners and 

addresses) are predictable; for example, a workstation wiJJ always communicate with local 

file servers. It is then possible for a kernel to establish secure channels, and do authentica-

tion on those channels, in advance of user demand (e.g. at boot time). 



The security functions of ADP reduce to secure channels and owner authentication. 

In general, both must be implemented cryptographically; in some cases, a cheaper solution 

may be possible 

3.1. Messages 

ADP makes use of an underlying network layer that provides an insecure datagnm 

service. This could vary according to the remote host involved; for example, the lntern£:t 

Protocol might be used [26] for a distant host, while a simpler network protocol wo-;.ld 

suffice for a host on the same LAN. In some cases ADP must handle fragmentation of k=.g 

messages; this will not be considered here. 

An ADP message consists of an ADP header and zero or more user messages. Tt:.e 

ADP header can contain a secure channel request or acknowledgement, zero or n:::-e 

"authentication ~ignatures", zero or more authentication requests. a sequence numbe:- a 

timestamp (used for replay elimination 1, and a cryptographic checksum [2, 15] of the er:::_:-.:: 

ADP message. Each user message has a header containing the port number, and the :r:.~~­

sage data. A detailed description of the ADP message format can be found in [8]. 

If user messages do not require privacy, encryption can be limited to the check sur:. in 

the ADP header Furthermore, on a broadcast LAN like Ethernet the checksum caL be 

replaced by an encrypted sequence number. In either case, it may be possible to piggyf: :.~k 

multiple user messages into a single ADP message, thereby reducing the encryption C-"::t 

per user messagt: The max_dela_·• parameter of ADP _send allows ADP clients to indic:.<:e 

that messages can be delayed, thereby encouraging piggybacking. 

ADP does duplicate elimination by putting sequence numbers in ADP messages. cd 

maintaining a bitmask per secure channel describing the recent history of received n:-=.:o­

sages. Any messages before the start of the bitmask are ignored. Timestamps are usee to 

eliminate "replays", i.e. messages removed by a malicious kernel and resent after a lmg 

delay. 



3.2. Cryptographic Implementation 

Cryptography can be used to provide secure channels and for authentication (using 

signatures). Our implementation uses a bootstrapping mechanism to combine tbe advan­

tages ofpublic-key [16,22] and single-key [21] cryptography. 

As a basis for authentication in large distributed systems, public-key schemes have 

several advantages compared to single-key schemes [17]. In large-scale distributed systems 

replication is essential for performance, availability, and fault-tolerance. Key server repli­

cation in a single-key scheme increases its vulnerability to attack on secrecy, wherea~ it 

reduces the vulnerability of public-key systems. 

Current public-key encryption algorithms are too slow to consider using them to 

encrypt each mes!>age sent. On the other hand, single-key operations are fast enough to be 

employed for each message. In ADP a public-key scheme is used to bootstrap into a single­

key scheme. 

3.2.1. Cryptographic Implementation of Secure Channels 

When a host X needs to establish a secure channel to a host Y, it sends a channel 

establishment request to Y. This request contains random strings S and T encrypted -".-ith 

the public key of the owner of Y. S will be used as the secret single-key of the secure 

channel, and T will be used to authenticate owners from Y to X. X marks the secure 

channel as being tentative until it receives an acknowledgement. The secure channel 

request is included with ADP messages sent while the channel is still tentative. 

Y sends to X a random string R to be used for signatures sent from X to Y in the 

secure channel acknowledgement and in every ADP message until the first signature is 

received. 

If two hosts simultaneously try to establish a channel with each other, the one .-ith 

the lexicographically greater name determines the channel key. 
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3.2.2. Cryptographic Implementation of Owner Authentication 

Public-key encryption is used for signatures [1, 13,14]. An owner's signature is the 

random string agreed upon during secure channel establishment, encrypted with the 

private key of the owner. To check the validity of a signature, the receiver of a signature 

obtains the public key of the owner from the name server, decrypts the signature with the 

public key, and checks if the resulting string is the correct random string. 

3.3. Trust Domains 

Suppose a group of hosts and the communication channels between them are physi­

cally secure, and that the owners with access to the hosts all place kernel-trust in one 

another. 

Call such a group a trust domain. Encryption-based security mechanisms are neces­

sary only for communication across the domain boundary. Suppose also that all communi­

cation across the boundary is routed through one or more hosts called domain gateu::::.s. 

Then it is possible to have a special ADP module on a domain gateway that handles packet 

forwarding. It handles secure channels and authentication on behalf of hosts within the 

domain, transparently to kernel and user level clients and to higher level protocols. This 

has the following advantages: 

Efficiency: communication within the domain bas no security overhead. Only the 

domain gateway does encryption, so only it need have encryption hardware. 

Flexibility: domain configuration may be changed at any time. Only the implementa­

tion of secure channels and owner authentication changes. Kernel and user clients, 

and higher level protocols do not see any changes. 

4. Comparison with Other Architectures for Secure Communication 

We have proposed putting security in a layer just above (or part oO the network layer. 

We now list the advantages of this approach in three parts: 
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1) general advantages of ADP 
2) specific advantages relative to transport layer security 

3) specific advantages relative to upper layer security 

4.1. General Advantages of ADP 

Putting security at the level of host to host datagrams has several advantages: 

It simplifie~ transport level protocols. When a host crashes, its secure channels are 

destroyed Thus remote host crashes are detected at the host-to-host level at the time 

of secure channel establishment. In combination with the elimination of duplicates 

and the limiting of replay delay, this means that 3-way handshakes can often be elim-

inated frorr. transport-level protocols. 

Three-way handshakes can be eliminated from stream and request/reply protocols. A 

short trans-zction then requires just two messages, as opposed to at least 6 in TCP and 

4 in securt: RPC. 

Security functions need not be duplicated in multiple transport protocols or user pro-

grams. 

There art: two public-key operations per owner per remote host per kernel session. 

Often these operations can be done at boot time or during idle periods. There are no 

per-proces~ or per-operation public-key operations, resulting in a substantial perfor-

mance gain 

As was shoYm in section 3, security at the host-to-host datagram level allows hetero-

geneity in implementation and flexibility to change the implementation without the 

need to change any of the higher level protocols. 

Since messages from all client processes and higher level protocols pass through ADP, 

a number of these messages destined to a common remote host can all be combined 

into a singlt: datagram and authenticated once using the channel secret key. This can 

reduce the number of single key operations. 



4.2. Advantages over Transport Layer Security 

Secure RPC [10], SUN secure RPC (25], and secure TCP (18] involve the addition of a 

security mechanism to an existing communication protocol. Two popular communication 

paradigms are request/reply [12] and fu)] duplex byte stream [27]. We examine secure RPC 

as an instance of security in the request'reply paradigm and secure TCP as an instance of 

security in the full duplex byte stream paradigm. 

4.2.1. Secure RPC 

Wben a client issues its first RPC request to a remote server, the RPC mechanism 

establishes a "secure conversation" between the two processes. This consists of agreeiD.f on 

a secret conversation key to be used for encrypting RPC requests and replies. Thert are 

several disadvantages of such a scheme: 

For each con\·ersation, the RPC system must maintain a long-term state consistiL; of 

a conversation key and the sequence number of requests within a conversation. 

A 3-way handshake is necessary to agree upon the conversation key. The cost of t!:.is 

3-way handshake is small if it is amortized over many RPC's. If, however. then ~e 

lots of short-lived processes making just one or two remote procedure calls the p€rf::­

mance penalty due to a 3-way handshake is substantial. This can reduce ti.e 

efficiency of RPC for short transactions. 

If public keys are used to authenticate the client and the server processes to &:h 

other, there will be four public-key operations for each conversation. If the conversa­

tion consists of a single RPC, the relative cost is substantial. 

There is a single-key encryption and a decryption for each RPC request, reply, and 

acknowledgement. Since messages from different processes use different secure cb.ul­

nel keys, it is not possible to reduce encryption cost by piggybacking messages from 

different processes that are all destined to the same host. 
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4.2.2. Secure TCP 

TCP is a DARPA Internet transport protocol [27) providing full duplex byte stream 

connections between processes on different hosts. The secure TCP design described in [18] 

consists of an initial agreement upon a secret key to be used during the TCP connection 

after the end points are authenticated to each other. There are several disadvantages asso­

ciated with this scheme: 

A TCP connection is between ports whereas the principals in authentication are users. 

Existing TCP architecture would require modification to incorporate the notion of 

users. 

Four public-key operations are performed for each TCP connection. 

Encryption cost reduction by piggybacking is impossible since keys are not per host­

pair. 

4.3. Advantages over Upper-level Security 

There are disadvantages in adding secure communication mechanisms above the tran­

sport level: 

Transport level protocols like TCP do connection establishment using 3-way 

handshake~. A secure communication mechanism requires its own handshake to 

agree upon keys after the transport level has established its connection. This duplica­

tion of handshaking entails a high message overhead. 

Transport level protocols do error detection using (insecure) checksums. Secure com­

munication mechanisms above do their own cryptographic checksumming. This is an 

unnecessary duplication of effort. 

Transport levels do sequencing. An intruder can change the transport level headers 

and hence the transport level sequence number. Thus an upper-level security 

mechanism must also do sequencing, again producing an unnecessary duplication of 
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effort. 

• H a.n intruder sends a false message with the correct transport level sequence number, 

the transport level protocol will accept it as the next message and reject the true mes­

sage which may arrive later. The secure communication mechanisms above will reject 

the false message correctly but will never get the true message. False acknowledge­

ments at lower levels can disrupt the sequencing. The only way to recover from such 

situation is to re-establish the connection at both the transport and the secure com­

munication levels. This has the potential for a lot of unnecessary tearing down of con­

nections and the associated performance overhead. 

Replayed and unauthenticated messages are detected only at the upper level. These 

messages are unnecessarily processed at all lower levels of the protocol hierarchy. 

Public-key operations cannot be reduced because authentication is not per-host. and 

single-key operations cannot be reduced by piggybacking. 

5. Conclusion 

We have described the security requirements of large-scale distributed systems and 

have shown that existing mechanisms for secure communication do not address these 

needs. The ADP architecture offers efficient end-to-end secure communication in large­

scale systems by providing authentication and privacy at the level of host-to-host 

datagrams. ADP has numerous advantages over designs in which security mechanisms are 

placed at other protocol levels. 

ADP has been implemented as part of an ongoing research project in large-scale dis­

tributed systems <DASHJ. Experiments are currently being conducted to explore the perf0r­

mance of ADP in a wide range of message queueing policies and load conditions. 

We would like to thank Domenico Ferrari, Shin-Yuan Tzou, Brian Bershad, Bruno 

Sartirana and Kevin Fall for their contributions to DASH and ADP. 
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