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ON NEGATIONS AND ALGEBRAS IN FUZZY SET 
THEORY 

Introduction. 

Departament de Matematiques i Estadistica 
Universitat Politecnica de Catalunya 

Diagonal 649 08028 Barcelona (Spain) 

In Zadeh's definition of Fuzzy Sets [1] the operations are defined pointwise by max, 
min and 1-j, and Fuzzy Sets on an universe X with these operations form a De Morgan 
Algebra. In (}Qguen's generalization [2], that is, in Fuzzy Sets taking values on a lattice, 
intersection and union are defined pointwise by the lattice operation and negation is defined 
in several ways depending on the required properties. Usually, negation is defined as dual 
automorphism, or as involution, or as intuitionistic negation. Some of this negations on [0,1] 
and on the lattice of Fuzzy Sets are studied ( see [ 4], [5], [6], [10] and [11]) and some of the 
Algebras of Fuzzy Sets defined by these operations and their isomorphisms are also studied 
(see [7], [8] and [9]). 

In this repport a general overview on negations on Fuzzy Sets, and on Algebras of 
Fuzzy sets taking values on a distributive lattice and their isomorphisms is given. 

The paper contains an introduction and three sections. In the first one a characteriza­
tion of the different types of negations on the lattice of Fuzzy Sets is given. In the second 
one a isomorphic classes of Algebras of Fuzzy Sets are studied and in the third one the spe­
cial case of Fuzzy Sets taking values on [0,1] is analised. 

First at all, we must give some dfinitions, denotations and remarks which will be used 
from now on in this paper : 

- The Center of a distributive lattice L is the set of complemented elements which form a 
complemented sublattice of L , that is, a Boolean Algebra. 

- L = (L,J.. ,V) denotes a complete and distributive lattice with universal bounds 0 and 1 
such that Center (L) = {0,1}. 

- P(X) = (PtX), n, U ,C) denotes, as usual, the Boolean Algebra of classical subsets of a 
set X. 

- F(X) = (F(X), n, U) denotes the lattice of Fuzzy Sets on an universe X taking values on 
a distributive lattice L with the operations defined by (A n B)(x) = A(x) A B(x) and 

(A U B)(x) = A(x) V B(x) 

* Visitor Scholar at the Computer Science Division at the Univemity of California at Berkeley. Research 
partially supported by the Comissib lnterdepartamental de Recerca i lnnovacib Tecnolbgica 
(C.LR.I.T.) of the Generalitat de Catalunya and by N S F Grants IST-8320416 and DARPA Contract N 
00039-83-C-0243 
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-ax, ax, 811 , a: and a: denotes the Fuzzy Sets ofF(X) defined by 
ax (y)= 0 if x :1 y and ax (x)= 1 (singleton or atom of P(X)) 
ax = C( ax) ( antiatom of P(X)) 
8 11(x) = a for every xtX ( constant ) 
a: = a% A 8a and a: = a% v 811 

- H, denotes the automorphism of F(X) or P(X) defined by [H,(A)](x) = A(s -l (x)) 
- n denotes a negation of any type. Specification will be given if necessary. 
It i~ interesting to remind that: 

(a) The condition Center(L)= {0,1} imply Center( F(X)) = P(X) 
(b) Any AEF(X) satisfy A = Uux a~<z> 

1. Negations on Fuzzy Sets 

First at all, we remind the basic definitions and properties of negations on lattices (see [12]). 
Definition 1. A decreasing mapping n: L - L is said to be : 

A dual automorphism if n satisfy the De Morgan laws 
An intuitionistic negation if n 2 ~ Id and n(1)= 0 

An involution if n 2 = Id 

The main properties of these negations are the following: 
A) Dual automorphism satisfy : 

(i) For any S C L such that Va 1 sa E L , n( Varsa) = A ars(n(a)) 

(ii) For any S C L such that A arsa E L , n( A arsa) = Vars(n(a)) 

(iii) n(O) = 1 and n(l) = 0 

(iv) n is one-to-one and onto 

B) Involutions satisfy : 

(i), (ii), (iii), (iv) and 

(v) n 2 = Id 

C) Intuitionistic negations satisfy : 

(i), (iii) and 

(vi) For any S C L such that Aarsa E L , n(lla 1sa) ~ Varsn(a) 

(vii) n(L) is a complete meet-subsemilattice containing X and (/). 
(viii) nln<L> is an involution n such that n(L) = n (n(L)) 
(ix) Let L' be a complete meet-subsemilattice of L that contain X and (/) and let n be an 

involution on L' . Then, there exists an unique intuitionistic negation n on L such that 
niL· = nand n(L) = L'. This negation is defined by 

n(a) = n(l\ {bEL' I b ~ a}) (*) 

D) A mapping n: L - L is an involution if, and only if, it is an intuitionistic negation and a 
dual automorphism. 
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E) Any dual automorphism non P(X) is defined by n = Co H,. 
F) Any involution n on P(X) is defined by n = Co H, being s a permutation of X such that 
s1 = Id 

On the lattice F(X) of Fuzzy Sets, negations can be characterized by the following 
definitions and propositions : 

Proposition 1. Any negation n on F(X) is univocally determined by the values of n( a: ) 
for l!very xrX and every aEL . 

Proof. 

For any A EF(X) I A = Unx a:<:r) and SO, n(A) = nux n(a:<:rl) . 

Definition 2. A negation n on F(X) will be said to satisfy : 

-The Extension Principle (E.P.) if nlnrJ = C. 

-The Generalized Extension Principle (G.E.P.) if niP<Xl is a dual automorphism of 
P(X). 

Proposition 2. Any dual automorphism satisfy the Generalized Extension Principle. 

Proof. 

If A E P(X) I then (j) = n(X) = n(A u C(A)) = n(A) n n(C(A)) and dualy , 

X = n(A) U n(C(A)). Then, for any uX , {n(A)(x), n(C(A))(x)} = {0, 1}. So n(A) and n(C(A)) 
belongs to P(X). 

On the other hand if n is a dual automorphism, n -l is also a dual automorphism. So, 
given any A E P(X), there exists B = n -l (A) such that n(B) = A being B a classical subset 
of X. 

Theorem 1. Any dual automorphism non F(X) can be defined by 

[n(A)](x) = n:r (A(s -l (x))) (1) 

beings a permutation of X and { n:r I xrX } a family of dual automorphisms of L. 
Proof. 

H { n, I uX } is a family of dual automorphisms and if s is a permutation of X, then n 
defined by (1) is a dual automorphism as an easy computation show. 

Reciprocally, let n be a dual automorphism of F(X). Then : 

- n define a permutation s of X because by proposition 2, nlnrl is a dual automorphism of 
P(XJ. So, nlntl = Co H, . 

-For any :uX we define n:r : L -+ L by n:r(a) = [n(8 4 )](x) 

- For every x, it is easy to proof that n:r is a dual automorphism. 

- a satisfy (1) being the family { n:r I xEX } and the permutation s those defined above 
because, 

aDd 

I n1(0)= 1, if y -:J s(x) 
ny (a: (s-t (y))) = n

1
(a), if y = s(x) 
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So, the theorem is proved. 

Corollary 1. Any involution non F(X) can be defined by 

[n(A)] (x) = n" (A(s(x))) (2) 

being s an involutive permutation of X and being { n" I xtX } a family of dual automor­
phisms of L such that ns(>:l = n"- 1 . 

Proof. 

The· proof is an easy consecuence of theorem 1 taking into acount that in this case n 2 = Id 
which imply 8

2 = Id, that is, s = 8-
1

. 

Theorem 2. Any intuitionistic negation non F(X) satisfying the G.E.P. can be defined by: 

[n(A )](x) = n" (A (5(x))) (3) 

being s an involutive permutation of X and { n" I nX } a family of order-preserving map­
pings from L to itself such that n" o ns(%) ~ I d , ns(%) o n" ~ Id and n" (1) = 0 , for every XEX 

Lemma 1. Let { n" I XEX } be a family of order-reversing mapping from L to itself such 
that n" (1)= 0 and let s be a permutation of X. The mapping n from F(X) to itself defined 
by (3), is an intuitionistic negation if, and only if, s is involutive and n"o ns(>:l ~ Id and 
ns(>:l o n" ~ Id for every xtX . 

Proof of the lemma. 

Applying n to the elements of type a: , we have, 

I ny (0) = 1 if y :;e 8(x) 
[n(a: )](y) = ny <a: (s -

1 (y ))) = ny (a) if y = s(x) 

_n 
1(a) 

So, n(a:) = a,<~) and 

2 _n ,(a) 
1 I ny(l)= 0 if y :;C 8

2 
(x) [n (a~ )](y) = ny (a,~':.>z (8- (y))) -

A ,.. - ny (n,(%) (a)) if y = 8 2(x) 

S 2 ( a ) - n,21zi (n.,zl (all 
o, n a" - a,2(2:) 

If n is an intuitionistic negation, then n 2(a:) ~ a: and this imply 82 = Id and 
n 82(2:) o ns(%) ~ I d 

The reciproc can be proved by a simple computation. 

Proof of the theorem. 

(a) The negation n define a permutation s of X such that s2 = ld because, if n satisfy the 
G.E.P., n I P<X> = Co H, . 

(b) For every xEX , we define n" : L- L by 

n" (a) = [n(a~%) )](x) 

which imply 

Then, 
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11 (•) 11 if X ~ S(y) 
[n(cr; )](x) = (a,~f' )(x) = nx (a) if x = s(y) 

and, (n (cr; (x)) = nx (cr; (s(x))) 

(c) So, n is defined by (2) being the family { nx I xEX } and the permutation s, those 
defined in (a) and (b). 

(d) umma 1 prove that sand the family { nx I uX } satisfy the required properties. 
Corollary 2. A negation n of F(X) satisfy the E.P. if, and only if, there exists a family 
{ nz I xEX } of negations of F(X) such that [n(A)] (x) = nx (A(x)) (4) 

Proof. 

It is easy to prove that n satisfy the E.P. if, and only if, s= ld. So (4) is obtained from 
(1), (2) and (3) taking into account this condition. 

2. Algebras of Fuzzy Sets: isomorphic classes. 

First at all, we recall the characterization of the automorfisms of the lattice F(X) (see [7] 
and [8]) 

Definiton a. An automorphism h of F(X) is said to be pointwise functionally expressable 
(p.f.e.) by the family { hx I xEX } of automorphisms of L if it is defined by 

[h(A)](x)= hx(A(x)). 

Proposition a. Any automorphism H of F(X) can be defined by H = ho H 1 , that is , 

[H(A)](x) = hx(A (t -l(x))) (4) 

being t a permutation of X and { hx I xEX } a family of automorphisms of L which define h. 
Proof. 

If h is a p.f.e. automorphism defined by the family { hx I x£X } of automorphisms of L 
and if tis a permutation of X, the mapping H defined by (4) is an automorphism of F(X) as 
an easy computation show. 

If H is an automorphism of F(X), then: 

(a) H defines a permutation t of X because H IP<X> is an automorphism of P(X) and so, it is 
equal to H 1 for some permutation t of X. 

(b) For any uX , we define hx: L -+L by hx(a) = [H (cr:-l<x)J(x) . It is easy to proof that 
every hx is an automorphism of L. 

(c) H = H 1 o h being h the p.f.e. automorphism defined by { hx I x£X } because, 

1
0 ify~t- 1 (x) 

[H(cr:)J(y) - ht(x)(a) if x = t(y) 

and so 

Definition 4. Two permutations s and s' of X are said to have isomorphic orbital graphs if 
there exists a permutation t of X such that to s = s' o t. 



- 6 -

Definition 5. For any xtX and any permutation s of X, the s-orbit of xis the sequence 
x, s(x), s2(x) , .... sn(x) , ... This s-orbit is said to be of order n if sn(x) = x and s•(x) :1. x for 
any k < n. 

Definition 6. Two mappings f and g from L to itself are said to be equivlents (f = g ) if 
there exists an automorphism h of L such that f o h = hog . 

The following definition and theorems give us the Algebras of Fuzzy Sets and charac­
terize their isomorphisms . . 
Definition 7. An Algebra CF(X), n.U ,n) is said to be: 

-A Symmetric Algebra if n is a dual automorphism 
-An Intuitionistic Algebra if n is an intuitionistic negation 
-A De Morgan Algebra if n is an involution. 
Let n and n' be negations on F(X) defined by the permutations s and s' and by families 

{ nx I uX } and { n' x I xtX } that satisfies the required conditions for each type of nega­
tions. 

Theorem 3. Two Symmetric Algebras ( F(X), n, U ,n) and (F(X), n, U , n' ) are iso­
morphic if, and only if, the orbital graphs of s and s' are isomorphic and, for every xtX with 
s-orbit of finit order m, the following equivalence is satisfied, 

Proof. 

Any isomorphism H of these algebras satisfy: 
(i) H(A U B) = H(A) U H(B) 

(ii) H(A n BJ = H(A) n H(B) 

(iii) H(n(A)) = n'(H(A)) 

By proposition 3, conditions (i) and (ii) are satisfied if, and only if, H = h o H 1 being t 
any permutation of X and h a p.f.e. automorphism defined by any family { hx I xEX } of 
automorphisms of L. 

So, look for an isomorphism His equivalent to look for a permutation t and a family 
{ hx I xtX } of automorphisms of L such that 

(3.1) 

By proposition 1, it is enough to compute the equality (3.1) for the elements of type a: for 
every xEX and for every acL. 

and 

(3.2) 

(3.3) 

Then, H is an isomorphism if, and only if, (3.2) equal to (3 .3) which is equivalent to, 

to s = s' o t (3.4) 
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h(t 0 s)(r) 0 n,(r) = n' (s' 0 t)(%) 0 ht(;c) for every xtX (3.5) 

It follows from (3.4) that if H exists, then the orbital graphs of s and s' are isomorphic. 

On the other hand it is necessary to study condition (3.5) for every type of elements 
xEX respect to the permutation 8 : 

(a) If x is invariant by s, that is, if s(x) = x. 

In this case condition (3.5) is satisfied if, and only if, nx - n't<rl 

(b) • If I has an s-orbit oJ order m 

In this case condition (3.5) is equivalent to the following 8i8tem of equations (taking 
into account condition (3.4) and sm (x) = x) 

which is equivalent to 

h(los)(r)O ns(r) = n'(los)(r)O ht(r) 

h(tos2)(r)o n,2(;c) = n'(tos2)(r)o h(tos)(r) 

So, there exist functions h(tosll)(rl fork = 1,2, ... , m-1 verifying (3.6) if, and only if, 

(c) x has an s-orbit of infinit order 

(3.6) 

(3.7) 

(3.8) 

In this case, condition (3.5) is always satisfied. Given any automorphism f = h1<r> all 
the automorphisms of the family { h(t 

0 
s•)(%) I k EN } satisfying condition (3.5) can be calcu­

lated by recurrence. 

So, the theorem is proved. 

Given an involutive permutation s of a set X, we will denote by I and S the subsets of 
X defined by I = { xtX I 8(x) = x } and S = { xtX I 8(x) =1. x }. The subsets S, I forms a 
partition of X because 8 is involutive. 

Lemma 2. The orbital graphs of two involutive permutations s and s' of a set X are iso­
morphic if, and only if, the sets I, S have the same cardinal then the sets I' and S' respec­
tively. 

Proof. 

If a and s' satisfy the conditions of the lemma any permutation t of X such that t(l)= I' 
and t(S)= S' satisfy s' o t = to s . 

Corollary 2. Two De Morgan Algebras (F(X), n.U,nl and (F(X), n.U.n') are isomorphic 
if, and only if, 

(i) Cardinal(!)= Cardinal(!') and Cardinal(S) = Cardinal(S'), 

(ii) For every x E I , nx = n't(;cJ being t a permutation of X such that t(l) = I' and t(S) 
S'. 

Proof. 
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The proof is an easy consecuence of theorem 3 and lemma 2 taking into account that 
for every element x E S , nx o n,<r> = I d. 
Theorem 4. Two intuitionistic Algebras (F(X), n.U,n) and (F(X), n.U,n') are iso­
morphic U: and only if, 

(i) Cardinal(I) = Cardinal(P) and Cardina](S) = Cardinal (S') 
(ii) For every x E I, nr = n't<r> 

(iii)' For every x E S, the_re exist two automorphisms f,g of L such that 

fonx = n't<zlog and gons(z) = n'(tos)(z)O( 

Proof. 

A mapping H from (F(X), n.U,n) to (F(X), n.U,n') is an isomorphism of this alge­
bras if conditions (3.4) and (3.5) are satisfied. So the theorem is an easy consecuence of this 
conditions and lemma 2. 

3. Negations on [0,1] : conjugated classes. 

Let n:[O,l] - [0,1] be a negation on the unit interval. 
Proposition 4. A function n:[0,1] - [0,1] is a dual automorphism if, and only if, n is a con­
tinuous, one-to one and onto function. 

Graphically, n is any stricly decreasing curve joining the points (0,1) and (1,0). 
Proposition 5. A function n:[0,1] - [0,1] is an involution if, and only if, n is a continuous, 
one-to-one and onto function such that it is symmetric respec toy= x. 
Proof. 

If n is involutive, then n(n(x)) = x for any uX. Then (x, n(x)) is a point of the graph 
of n if, and only if, (n(x),x) is a point of the graph of n. So n, is symmetric respec to the line 
y =X. 

Graphically, an involution can be defined by any strictly decreasing curve joining (0,1) 
and any point (a,a) of the line y = x. The graph of n is the line above defined and its sym­
metric respect toy= x. 

Definition 8. A non-increasing function n: [0,1] - [0,1] is said to be quasi-symmetric 
respec to y = x if : 

(i) For any x of [0,1] such that n is continuous and strictly decreasing n(n(x))= x. 
(ii) If n discontinuous at a, then n is a constant function on (n( a+ ), n( a- )) with value a. 
(iii) If (a,b) is a maximal open interval such that n is constant with value k, Then n is 

discontinuous at k and n( k + ) = a and n( k- ) = b. 
Proposition 6. A function n:[0,1] - [0,1] is an intuitionistic negation if, and only U: n is 
decreasing, left-continuous, quasi-symmetric respect toy = x and n(O)= 1, n(1) = 0. 
Lemma 3. If n is an intuitionistic negation, then n is left-continuous. 
Proof. 

Let { x, } a non-decreasing sequence such that limi-- x, = VieNX1 = x . Then {n(x,)} is 
a non-increasing sequence auch that n(x) = n(V .,Nx,) = 1\ ,eNn(xi) . So limi_n(xi) = n(x) 
and this imply that n is a left continuous function. 
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Lemma 4. Let n be an intuitionistic negation. Then : 
(a) If x £ n([O,l]), then n(n(x)) = x. 

(b) If n is discontinuous at a £ [0,1], then n is a constant function on (n(a +),n(a -)) with 
value a. 

(c) If (a,b) is a maximal open interval in which n is a constant function, then n is discon­
tinuous at n(b) and n( n(b)+ ) = a, n(( n(b)-) = b. 

Proof. 

(a) This statement is an easy consecuence of property (viii) of negations. 
(b) If n is discontinuosus at a , I= (n( a+ ),n( a- )) do not belong to n([0,1]). Then by pro­

perty (ix) of negations, n is a constant function on this interval. 
By lemma 3, n is left continuous at n(a-). Then n(x)= n(n(a-)= n2 (a) for any x £I. 
We are going to prove that n 2 (a)= a. 

-By definition n 2 (a) ~ a. 

-If n 2(a) >a , then n( n2(a)) :Sn(a +)<n(a -)=n(a) , that is, n 2(n(a)) < n(a) in 
contradiction with the definition of n. 

(c) By the left continuity of n, for any x of (a,b), n(x)= n(b). 
Because (a,b) is maximal, if n 2(b)>b ,then n(n 2(b)) < b that is, n 2(n(b)) < n(b) in 
contradiction with the definition of n. So, n 2(b) = b . 
- Ifx > n(b), then n(x) ~ a because if n(x) < a, then n 2(x)~n(a) = n(b) < x which is 
a contradiction. So, n(n(b) +) :s a . 

-By the left continuity n(n(b) -) = n 2(b) = b . 

Then n is discontinuous at n(b) and n(n(b) +) :s a and n(n(b) -) = b . However, by (b) 
n is a constant function on the interval (n(n(b) + ),(n(n(b)-)) containing (a,b). 
So, n(n(b)+) =a because (a,b) is maximal. 

So, the theorem is proved. 

It is interesting to remark that graphically any intuitionistic negation function can be 
defined by any non-increasing function joining (0,1) and a point (a,a) of the line y= x. The 
graph of n is formed by the curve defined above and its quasi-symmetric respect to y = x. 
Remark. 

-Any dual automorphism or involution non [0,1] has an unique level of symmetry or fixed 
point a, that is, there exist a unique a £ [0,1] such that n(a) = a which is denoted by an . 
- H n is an intuitionistic negation function, two different cases are possible: 
A) There exists a fixed point by n which is denoted by an . 

B) There exist an interval (a,b) called interval of symmetry, such that n is a constant func­
tion in (a,b] with value a and n(a) = b. 

Proposition 6. Two algebras ([0,1],max,min,n) and ([0,1],max,min,n') are isomorphic if, 
and only if, there exists a continuous strictly increasing function f:[O,l] - [0,1] such that 
(on = n'of. 
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Proof. 

f is an isomorphism of these algebras if: 

(1) f{max(a,b)) = max(f{a),ftb)) 

(2) f{min(a,b)) = min(f{a),f{b)) 

(3) f{n(a)) = n' (f{a)) 

- (1) and (2) imply that f is no-decreasing. Then, f must be a continuous strictly increasing 
funetion because it is an isomorphism .So, f is an isomorphism if, and only if, satisfy the 
conditions of the proposition. 

In other words, the proposition says that two algebras are isomorphic if n and n' are 
equivalent (see definition 6 ), that is, n and n' are in the same conjugated class respect to 
the grup of continuous strictly incresing functions from [0,1] to itself, which is denoted by 
C[0,1]. 

The following propositions characterize this conjugate classes. 
Definition 9. Given a function f:[0,1] - [0.1], a point x of [0,1] is said to be: 

- negative respect to f if f(x) > x , 

- positive respect to f if f(x) < x , 

-invariant respect to f if f{x) = x. 

Given a negation function n the set of negative, positive and invariant points respect 
ton are denoted by Nn , Pn and In respectively, and the set of negative, positive and invari­
ant points respect to n 2 are denoted by Mn+ , Mn- and Sn respectively. 
Theorem 5. Two dual automorphism n and n' are equivalents if, and only if, there exists a 
function fofC[0,1] such thatf(Mn+) = Mni:, f(Mn-) = Mn-: and f<Sn) = Sn·. 
Lemma 5. Ifn' = {o11Dr 1

, then f<Mn+) = Mni:, f<Mn-) = Mn-; and f(Sn) = Sn·. 
Proof. 

If XEM n+ then f(x)EM nt because (n' )2 = fon 'br 1 and so (n' )2(f(x)) = f<n 2(x)) < f(x) . 
The proof of the other cases is doing in a similar way. 

Lemma 6. If n is a dual automorphism, then: 

(1) Sn is a closed set and M: and Mn- are open sets in the usual topology of [0,1], 
(2) For any XEM n+ (M n-) , there exists a maximal open interval (a,b) such that 

(a,b) CMn+ (Mn-) and a,bESn . 

(3) If xeM n+ , then n(x)EM n- and reciprocally. 

(4) If XES n , then n(x)ES n . 

Prof£. 

Conditons (1) and (2) are consequence that n2 is a continuous function. 
Conditions (3) and (4) are consequence that n is a strictly decreasing function. 

Lemma 7. If there exists h: [O,an·J- [O,an] such that h- 1o n 2 o h = (n') 2 
, then there 

exists f E C[0,1] such that n' = r 1o no f. 
Proof. 

We define f by the formula, 
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I h(x) if x E [O,an·] 
f(x) = (no ho (n')- 1)(x) otherwise 

An easy oomputation show that the theorem is true. 

Lemma 8. If (a,b) is a maximal open interval of M n-+; ( M n-: ) and (c,d) is a maximal open 
interval of Mn+ ( M; ), there exists a function h: (a,b)- (c,d) such that (n') 2 = h- 1 o n 2 o h 
on the interval (a,b). 

ProOf. 

If x E (c,d), then: 

x ,n2(x) , .... ,(n 2 )m(x), .... - c 

x, (n2)- 1(x), ...... ,(n 2)-m, .... - d 

So,(c,d) = Umrz(n 2)m[x,n 2(x)) 

Similarly, ify E (a,b) C Mni:, then (a,b) = Umrz((n') 2)m[y,(n') 2(y)) 

Let g a strictly increasing and bijective function from [y, (n') 2 (y)) to [x, n 2 (x)). 

We define h: (a,b) - (c,d) by 

h(z)= . I g(z) if z E [y,(n') 2(y)) 

(n 2)m(g(z')) tf z' E [y,(n') 2(y)) and z = ((n') 2)m(z') 

An easy computation show that h satisfy the required condition. 

Proof of the theorem. 

Lemma 5 prove that the condition is necessary. 

If there exists f satisfying the conditions of the theorem, then { II I interval maximal of 
Mn+ or Mn- or Sn } form a partition of [0,1]. 

We are going to construct a function h:[O, an ] - [0, an· ] such that 
(n') 2 = hon2 oh- 1 (*) 

This function h is constructed for any pair of intervals I, f(l) in the foiiowing way: 
-If [a,b] ESn , then [f(a),f(b)] ESn·· In this intervals n 2 = ld[a,b] and (n') 2= Id[f(a),{(b)] 
So any strictly increasing function from [a,b] to [f(al,fl:b)] satisfy (*) on the interval [a,b]. 
- If (a,b) C( Mn+ U Mn->nNn , then, by lemma 8 there exists a function 
ha:(a,b) - (f(a),f(b )) such that (*) is satisfied on (a,b). 

So, we can define hE C[0,1] by 

I x if XESn 

h(x) = ha(x) if u(a,b) C(Mn+ UMn->nNn 

This function obviously satisfy (*) and by lema 7 this imply that n and n' are equivalents. 
Corollary 3 Two involutions n and n' on [0,1] are equivalent. 

Proof. 

For any involution n , Mn+ = Mn- = dJ and Sn = [0,1]. So, the theorem say that any 
pair of involutions are equivalent. 

Let n be an intuitionistic negation on [0,1]. We denote by D the set D = {a E [0,1]1 n is 
discontinuous at a }. 
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Theorem 6. Two intuitionistic negations n and n' are equivalents if, and only if, there 
exists a function f of C[O,l] such that fl:D) = D' and fl:n( a+ ), n( a- )) = 
(n'(f(a) +),n'(f(a) -n for every a ED. 

If n' = h o n h - 1 , then: 

(i) If n is a constant function on an interval I with value p, then n' is a constant function 
on hU) with value h(p) 

(ii) • If n is discontinuous at a, then n' is discontinuous at h(a) and n'(h(a) +) = h(n(a +)) 
and n'(h(a) -) = h(n(a -)). 

(iii) If n has a fixed point an , then n' has a fixed point h(an) and if n has an interval of 
symmetry (s,t) , then n' has an interval of symmetry (h(s), h(t)). 

The proof is an easy computation. 

Lemma 10. Let n and n' be intuitionistic negations such that : 
(i) n([0,1]) = n' ([0,1]) 

(ii) for every x l n([0,1]) , n(x) = n'(x) Then, n and n' are equivalents. 

Proof. 

The conditions of the lemma imply that n and n' have the same intervals in which the 
negations are constant functions (this intervals are the complement of n([O,l]) and n'([O,l]) 
respectively ) with the same value and also imply that n and n' has the same points of 
discontinuity with the same jumps. So both negations have the same interval of symmetry 
or both negations has point of symmetry. We are going to study the different cases: 
(1) If n and n' have the same interval of symmetry or the same fix point p. 

In this case Nn = Nn· and we define the function fby 

I x, if X E NnU<Pn-n([O,l])), 

f(x) = p, if x = p 
n'(n(x)), if x E Pnnn([O,l]) 

It is easy to prove that f E C[O,l] and n' = fo no r- 1 • 

(2) If n and n' have points of symmetry an and an· such that an ::/. an· . 

In this case let a be the point a = 11{ bt n([O,l]) In is continuous and strictly decreas­
ing on [ b, an ] }. Then n and n' will be decreasing bijections from [a, n(a)] to itself. So, we 
can define the function f E C[O,l] by 

n'(n(x)), if XE (Pn -(an,n(a))) nn([O,l]) 

f(x) 
h(x), if XE (a,an) 

n'(h(n(x))), if XE (an,n(a)) 

x, otherwise 

being h any increasing bijection from (a , an ) to (a , an· ). 

An easy computation show that n' = f on o f- 1 • 

Proof of the theorem. 
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The condition is necessary by lemma 9. 

It n and n' are intuitionistic negations satisfying the conditions of the theorem we are 
going to prove that n' and f 0 n 0 r 1 satisfy the conditions of the lema 10. 

By lemma 9, n' and {o no ,- 1 have the same points of discontinuity with the same 
jumps. So n'([0,1]) = ( fo no f- 1

) ([0,1]) . If x l n'([0,1]) , then x belongs to an interval I in 
which n' and f o no r 1 are constant functions. This interval is (f(a),f(b)) being (a,b) an 
in~rval in which n is a constant function and n'(x) = n'(f(b)) , ( f o no f- 1 )(x) = f(n(b)). 
Because n is discontinuous at b , {o no f- 1 and n' are discontinuous at f(b) with the same 
values. 

So, this two negations satisfy the conditions of lemma 10, which imply n equivalent to 
n' by transsitivity. 
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