
'

.···~ :._.-
I

I

'
..

..
: t ...

I

Aspects of Cache Memory and
Instruction Buffer Performance

Mark Donald Hill

Report ~o. UCB/CSD 87/381

!'o,·ember 1987

Computer Science Dh·ision (EECS)
University of California

11. Berkeley, California 94720

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
NOV 1987 2. REPORT TYPE

3. DATES COVERED
 00-00-1987 to 00-00-1987

4. TITLE AND SUBTITLE
Aspects of Cache Memory and Instruction Buffer Performance

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Techniques are developed in this dissertation to efficiently evaluate direct-mapped and set-associative
caches. These techniques are used to study associativity in CPU caches and examine instruction caches for
single-chip RISC microprocessors. This research is motivated in general by the importance of cache
memories to computer performance, and more specifically by work done to design the caches in SPUR, a
multiprocessor workstation designed at U.C. Berkeley. The studies focus not only on abstract measures of
performance such as miss ratios, but also include, when appropriate, detailed implementation factors, such
as access times and gate delays. The simulation algorithms developed compute miss ratios for numerous
alternative caches with one pass through an address trace, provided all caches have the same block size,
and use demand fetching and LRU replacement. One algorithm (forest simulation) simulates
direct-mapped caches by relying on inclusion, a property that all larger caches contain a superset of the
data in smaller caches. The other algorithm (all associativity simulation) simulates a broader class of
direct-mapped and set-associative caches than could previously be studied with a one-pass algorithm,
although somewhat less efficiently than forest simulation, since inclusion does not hold. The analysis of
set-associative caches yields two major results. First, constant factors are obtained which relate the miss
ratios for set-associative caches to miss ratios for other set-associative caches. Then those results are
combined with sample cache implementations to show that above certain cache sizes, direct-mapped caches
have lower effective access times than set-associative caches, despite having higher miss ratios. Finally,
instruction buffers and target instruction buffers are examined as organizations for instruction memory on
single-chip microprocessors. The analysis focuses closely on implementation considerations, including the
interaction between instruction fetches, instruction prefetches and data references, and uses the SPUR
RISC design as the case study. Results show the effects of varying numerous design parameters, suggest
some superior designs, and demonstrate that instruction buffers will be preferred to target instruction
buffers in future RISC microprocessors implemented on single CMOS chips.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

183

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ASPECTS OF CACHE MEMORY AND
INSTRUCTION BUFFER PERFORMANCE

Mark Donald Hill

Computer Science Division
University of California

Berkeley, CA 94720

ABSTRACT

Techniques are developed in this dissertation to efficiently evaluate direct-mapped

and set-associative caches. These techniques are used to study associativity in CPU

caches and examine instruction caches for single-chip RISC microprocessors. This

research is motivated in general by the importance of cache memories to computer per

formance, and more specifically by work done to design the caches in SPUR, a multipro

cessor workstation designed at U.C. Berkeley. The studies focus not only on abstract

measures of performance such as miss ratios, but also include, when appropriate, detailed

implementation factors, such as access times and gate delays.

The simulation algorithms developed compute miss ratios for numerous alternative

caches with one pass through an address trace, provided all caches have the same block

size, and use demand fetching and LRU replacement One algorithm (forest simulation)

simulates direct-mapped caches by relying on inclusion, a property that all larger caches

contain a superset of the data in smaller caches. The other algorithm (all associativity

simulation) simulates a broader class of direct-mapped and set-associative caches than

could previously be studied with a one-pass algorithm, although somewhat less

efficiently than forest simulation, since inclusion does not hold. ·

The analysis of set-associative caches yields two major results. First, constant fac

tors are obtained which relate the miss ratios for set-associative caches to miss ratios for

other set-associative caches. Then those results are combined with sample cache imple

mentations to show that above certain cache sizes, direct-mapped caches have lower

effective access times than set-associative caches, despite having higher miss ratios.

Finally, instruction buffers and target instruction buffers are examined as organiza

tions for instruction memory on single-chip microprocessors. The analysis focuses

closely on implementation considerations, including the interaction between instruction

fetches, instruction prefetches and data references, and uses the SPUR RISC design as

the case study. Results show the effects of varying numerous design parameters, suggest

some superior designs, and demonstrate that instruction buffers will be preferred to target

instruction buffers in future RISC microprocessors implemented on single CMOS chips.

25 November 1987

ASPECTS OF CACHE MEMORY AND

INSTRUCTION BUFFER PERFORMANCE

Copyright© 1987

by

Mark Donald Hill

All rights reserved.

Acknowledgments

Many people deserve thanks for their help in making this dissertation possible. I want like to thank my

committee, Alan Smith, David Patterson and Ronald Wolff, for their many insightful suggestions that enhanced

the quality of my research and this presentation of il In particular, I'd like to thank Alan Smith for his stern

evaluation of my work that contributed considerably to making the final product better, and David Patterson for

his many years of cogent advice and for providing an environment conducive to productive research.

Thanks also to: Sue Dentinger and Susan Eggers for critiquing drafts of my entire thesis, Jim Thompson

and David Wood for improving drafts of Chapters 1 and 2, Valerie King for assisting me with the proofs in

Chapter 2, Ken Lutz for assisting me in developing the cache hit implementations, my friends and colleagues on

the SPUR project for numerous inspiring technical conversations, and all my friends and family for encouraging

me these many years.

I want to acknowledge and thank those who provided trace data: Dick Sites at Digital Equipment Corp.;

Anant Agarwal at Stanford; Alan Smith, George Taylor, and David Wood at Berkeley; Joe Hull and Rollie

Schmidt at Synapse; John Lee and Bill Harding at Amdahl; and Robert Henry at Washington.

The material presented here is based on research supported in part by the" Defense Advanced Research Pro

jects Agency monitored by Naval Electronics Systems Command under Contract No. N00039-85-C-0269, the

National Science Foundation under grants CCR-8202591 and MIP-8713274, by the State of California under the

MICRO program and by ffiM Corporation, Digital Equipment Corporation, Hewlett Packard Corporation, and

Signetics Corporation.

Finally, a special thanks to el amor de mi vida and Cafe Roma.

j

'

Table of Contents

CHAPTER 1. Introduction•...•.•........••................................. 1

1.1. Cache Memory•.•.••...•.•....••.••••...•.•.•••.....•.••••...•...•••••..........•..•..•.•.•.•••..•... 1

1.2. Computer Performance Architecture .. 3
1.3. SPUR .. 3
1.4. Thesis Overview•...•........•..........•••.••••••••••••••.••...•••.••.....•.••.•••••.•••..•••..•..••.•••..•..•.... 3
1.5. References .. 6

CHAPTER 2. Simulation Techniques for Direct-Mapped and Set-Associative Caches 8

2.1. Introduction ••...•.•..•.....•.••................•.....•....•••••...............•..•...•.••••..•.....•••••••.....••.••.•..•...•.. 8

2.2. Background ..•.••....•.................•.•........•............•....•.........•..•••.•..•..•..•.•••..............••.••.•••...•. 9

2.2.1. Set Associative Caches ... 9

2.2.2. Stack Algorithms .•...................•..............•....•...•.••.....•...••••••••.••.•...•••••.••..•...•.•..••••.••.... 9

2.2.3. Linked-List Stack Simulation ..•...........•......•...........•....•••••.•...•...••••......•.....••..•••••..•••• 11
2.2.4. Other Stack Simulation lnlplementations ... 13
2.3. Inclusion in Set-Associative Caches .. 13
2.4. Simulating Direct-Mapped Caches with Inclusion .. 16
2.5. Simulating Set-Associative Caches without Inclusion .. 19

2.6. Comparing Actual Simulation Times .. 29

2. 7. Conclusions•..............•••....•.....•..•..•.......................•...•...........•....•.......... 37

2.8. References ...•..........•..•••...........••............••..•...•........•..•............ 39

CHAPTER 3. The Effect or Set-Associativity on Cache Memory Performance 40

3.1. Introduction ..•.....•••••.••....••....•...••..••.••.........•........................... 40
3.1.1. Cache Performance Metrics•...•....•...•..••••.....••.•.•.......••.•.•.•.................................. 41
3.1.2. Methods•...........•...•................................•••..•..•....•.•.•..........•....•.............•............... 42
3.1.3. Previous Work•......................••...•...............•.••....•..•..............•.....••............... 43
3.2. Analysis with Miss Ratio•..•....•.....•••.......•...............•......••....•..............••...... 47

3.2.1. Raw Miss Ratios ..•................••••................•...••••.•..••...... 48
3.2.2. Smith's Model of Set-Associativity••..........•..•.•.•.•........•...............•......•.•...•...... 58

3.2.3. Ratios of Set-Associative Miss Ratios .•.•.•••..........••••............•..........•.......•....•.........•• 60
3.3. Analysis with Effective Access Time••.•.•••.•.•••.••••.•.•...•........•....•.•..•....•••.•••......•... 73

3.3.1. Incorporating Previous Miss Ratio Analysis ••..•....•.•..••..••..••....•.••......•.....•.....•...••..•. 73

3.3.2. A Cache Architecture .•........................•••....••....••••••.•.•..••...............•...••.•••••.••••••••••.... 80
3.3.3. Comparing Effective Access Times•..•.•.......••.•.•......•.•.•...••............•................... 83

3.3.3.1. TTL Caches•......•................•••••..•..........•...•...•............•......•........•.•...•...... 84
3.3.3.2. ECL Caches•.....................•....•...•...••..•..................•.......••.....••......... 91

3.3.3.3. CMOS Caches•...............••...............••......•.............••........•............ 98

3.3.4. A Hybrid Design•... 104
3.4. Summary and Conclusions .. 107

3.5. Appendix: Cache Implementations•...•.•........... 108
3.5.1. AS TTL Logic and Static CMOS RAMs .. 110
3.5.2. Emitter Coupled Logic•... Ill

ii

3.5.3. Custom CMOS ..•.......................••...•.......•.......... 115

3.6. References ..•..••...•....•.••......... 117

CHAPTER 4. Instruction Memory on a Singlfo-Chip RISC .. 119

4.1. Introduction ..•...................•...•........•.............................. 119

4.1.1. Instruction Memory Background••...........•.......•..•....•............. 119

4.1.2. Why Limit Study to Single-Chip RISCs? ..••......•.. 122

4.1.3. Methods ...•......... 124

4.2. Instruction Buffers ... 127

4.2.1. SPUR m Architecture and Implementation ... 127

4.2.2. IB Evaluation ...•............................ 129

4.2.2.1. m Size, Associativity, and Block Size .. 130

4.2.2.2. Off-Chip Bandwidth and Prefetching••............................•. 131

4.2.2.3. Reducing m Miss Penalty•..........•...•...............•.......................•.... 137

4.2.2.4. An Improved SPUR IB ..•..... 140

4.3. Target Instruction Buffers .. 141

4.3.1. SPUR Tm/PB Architectwe and Implementation ... 141

4.3.2. TIB/PB Evaluation .. 143

4.3.2.1. Tm Size, Associativity, Indexing, and PB Size .. 144

4.3.2.2. Off-Chip Bandwidth .. 147

4.3.2.3. An Improved SPUR TIB .. 149

4.4. ms vs. TIBs ... 151

4.4.1. One-Cycle External Cache ... 151

4.4.2. Multiple-Cycle External Cache .. 153

4.5. Conclusions .. 159

4.6. Appendix: SPUR Instruction Buffer Implementation ... 160

4.7. References .. 165

iii

List of Figures

CHAPTER 1. Introduction•..............•........•.....•..••••..•... 1

1-1. SPUR Workstation System ·····················-··· 4
1-2. SPUR Processor•....•.........••... 5

CHAPTER 2. Simulation Techniques ror Direct-Mapped and Set-Associative Caches 8

2-1. Set-Associative Mapping ..•.. 10

2-2. Stack Simulation Example ···-······································· 11
2-3. Stack Simulation Storage•.........................••...•. 12

2-4. Stack Simulation•......•........•.............•...•.......................................•..... 12

2-5. Forest Simulation Forest ·························-··-·-············-·-···········............................... 16

2-6. Forest Simulation Example ···································-···-···-·· 17

2-7. Forest Simulation Storage ···-·················· 17

2-8. Forest Simulation ···-·· 18

2-9. Simulating Cache Designs ··--············ ·-·· 20
2-10. Concurrent Stack Simulation ... 21

2-11. Concurrent Stack Simulation with Shared Storage ... _ 22

2-12. All-Associativity Simulation Example ················-·· 23
2-13. All-Associativity Simulation Storage .. 23

2-14. All-Associativity Simulation ... 24

2-15. All-Associativity Simulation with Set Hierarchy Example __ 25

2-16. All-Associativity Storage w/ Set Hierarchy•.............................. 25

2-17. All-Associativity Simulation w/ Set Hierarchy ... - .. 26

2-18. Random Replacement Does Not Work ... 28

2-19. Single Direct-Mapped Cache Run-Times ... 31

2-20. Single Set-Associative Cache Run-Times ... 32

2-21. Run-Times for a Series of Direct-Mapped Caches ... 33

2-22. Run-Times for Small Direct-Mapped Caches ... - .. 34

2-23. Simulating a Design Region with Stack Simulation ... 35

2-24. Run-Times for Simulating Twelve Similar Caches ·······················-···················· .. ·-· 36

CHAPTER 3. The Effect or Set-Associativity on Cache Memory Performance 40

3-1. Cumulative Cold Misses for .. mu12" ... 46

3-2. Cold-start Miss Ratios for Some User Traces ... 48

3-3. Cold-start Miss Ratios for .. mu12" ... 49

3-4. Cold-start Miss Ratios ···- 50
3-5. More Cold-start Miss Ratios .. 51

3-6. Cold-Start Miss Ratios for "2nd500k" .. 52

3-7. Warm-start Miss Ratios for .. 2nd500k" ... 52

3-8. A Comparison to Other Miss Ratio Data .. 57

3-9. Smith's Predictions for .. mul2" ... 60

3-10. Smith'sMissRatioPredictions ... 61

3-11. Cold-Start Miss Ratio Spreads for "mul2" .. 62

iv

3-12. Cold-start Miss Ratios Spreads .. 63

3-13. Mixed Miss Ratio Spreads for "2nd500k" ...•... 64

3-14. Miss Ratio Spreads for "2nd500k" ..•..... 65

3-15. Miss Ratio Spreads for "atum"•........•............•......•.............•...•........ 68

3-16. Equal Effective Access Times•....•...............................•...... 74

3-17. Mixed Cache Miss Ratio Differences ··-······· 75
3-18. More Miss Ratio Differences ..•......•.......•.•.......... 76

3-19. DM vs. 2-Way Mixed Cache Crossovers .. 77

3-20. More Mixed Cache Crossovers ..•.....•...•.........................•.... 78

3-21. Instruction Cache Crossovers ··-················ 79
3-22. Data Cache Crossovers ...•...........•......•......•................•....... 80

3-23. A Direct-mapped Cache•........................•................................ 82

3-24. A Set-Associative Cache ... 83

3-25. An Alternative Set-Associative Cache•........•......•...................••..•......... 84

3-26. Effective Access Times for TIL Mixed Caches ... 85

3-27. More TIL Effective Access Times ...•.........•.•..... 86

3-28. Effective Access Times for ECL Mixed Caches ... 92

3-29. More ECL Effective Access Times ... 93

3-30. Effective Access Times for CMOS Mixed Caches ... 99

3-31. More CMOS Effective Access Times ... 100

3-32. Times for MRU Mixed Caches•.......•.. 105

3-33. More MRU Effective Access Times•.................•... 106

3-34. Effective Access Times for Slower MRU Caches .. 107

3-35. Set-Associativity Logic ···-···························· 109

CHAPTER 4. Instruction Memory on a Single-Chip RISC .. 119

4-1. BTB vs. TIB and m ... 123

4-2. Trace Samples vs. Arithmetic Average ... 127

4-3. SPUR Instruction Buffer Architecture .. 128

4-4. SPUR m Performance ... 133

4-5. Vary External Buses .. 134

4-6. Vary Prefetch Algorithm ... 136

4-7. Vary Prefetch Algorithm w/Doubleword Bus ···-······· 137
4-8. Ideal IB Miss ... 138

4-9. Vary Miss Time ... 139

4-10. Vary More Miss Times .. 141

4-11. SPUR TIB Architecture ... 142

4-12. Ideal TIB Hit .. 143

4-13. Ideal TIB Miss ...•.................•..... 144

4-14. Averages for SPUR TIB 14 7

4-15. Various LSB of TIB Index•... 148

4-16. Vary External Buses .. 149

4-17. Vary Block Size w/ One Singleword Bus ... 150

4-18. Vary Block Size w/One Doubleword Bus .. 151

4-19. IB vs. Tffi with Different Buses .. 152

4-20. Actual vs. Approximate ... 156

4-21. 2 Cycles for First Word; 1 for Subsequent Words .. 157

4-22. 2 Cycles for First and Subsequent Words ... 158

4-23. 3 Cycles for First Word; 1 for Subsequent Words .. 158

4-24. 3 Cycles for First and Subsequent Words•................•........... 159

4-25. IB Fetch State Diagram ... 161

4-26. IB Prefetch State Diagram ...•... 162

4-27. IB Hit ... 163

4-28. Ideal IB Miss ...•................................... 163

4-29. A Slow IB Miss ... 164

v

4-30. m Hit with Prefetching ..•....•....•............•..•........•..•...•...... 165

4-31. Ideal IB Miss with Prefetching•.....••••.•••..••..•.•.••.•......•.•.......•.•... 165

vi

List of Tables

CHAPTER 1. Introduction ... 1

1-1. Selected Basic CPU Cache Tenninology ..•....................... 2

CHAPTER 2. Simulation Techniques for Direct-Mapped and Set-Associative Caches 8

2-1. Program Address Traces•.................................•.......................................•......... 30

2-2. MVS Run-time vs. Simulation .•.......•..•............... 38

CHAPTER 3. The EfTect of Set-Associativity on Cache Memory Performance 40

3-1. Address Traces Used•.........•..••....... 43

3-2. Data on Traces ..•.........••..... 44

3-3. Data on More Traces ...•........................... 45

3-4. Mixed Cache Miss Ratios .. 54

3-5. Instruction Cache Miss Ratios•........................••..................... 55

3-6. Data Cache Miss Ratios 56

3-7. Three Miss Ratio Components .. 58

3-8. Average Miss Ratio Spreads for .. 2nd500k" ... 66

3-9. Relative to DM Miss Ratios for .. 2nd500k" .. 67

3-10. Average Miss Ratio Spreads for ''a tum" ... 68

3-11. Relative to DM Miss Ratios for .. atum" .. 69

3-12. Design Target Miss Ratios for 16-byte Blocks ... 70

3-13. Design Target Miss Ratios for 32-byte Blocks ... 71

3-14. Design Target Miss Ratios for 64-byte Blocks•................... 72

3-15. TIL Cache Access Times ... 85

3-16. Times for Fast TIL Mixed Caches ... 87

3-17. TimesforSlowTILMixedCaches ..•..................... 88

3-18. Times for TIL Instruction Caches ...•............................ 89

3-19. Times for TIL Data Caches ...••..................•........................ 90

3-20. Crossover for TIL Caches .. 91

3-21. EO. Cache Access Times ... 91

3-22. Times for Fast ECL Mixed Caches ... 94

3-23. Times for Slow ECL Mixed Caches .. 95

3-24. Times for EO. Instruction Caches•.. 96

3-25. Times for EO. Data Caches•... 97

3-26. Crossover for EO. Caches•..•.....................................•....... 98

3-27. CMOS Cache Access Times ...•...........•...•......... 98

3-28. Crossover for CMOS Caches ...•.......... 101

3-29. Times for CMOS Mixed Caches•....................................•........................ 102

3-30. Times for CMOS Instruction Caches .. 103

3-31. Times for CMOS Data Caches•.. 104

3-32. Selected AS TIL Parts .. 111

3-33. Cache Timing Paths with AS TTL .. 112

3-34. TIL Cache Access Times ... 112

vii

3-35. Selected ECL lOOK Parts ..•...............•...........•...•..••......... 113

3-36. Cache Ti.Jning Paths with ECL lOOK .. 115

3-37. ECL Cache Access Times•...........•.•.........•..........•.•..••.........••...... 115

3-38. Cache Ti.Jning Paths with Custom CMOS••...........••..........................•...•..•••••.. 116

3-39. CMOS Cache Access Times ... 116

CHAPTER 4. Instruction Memory on a Single-Chip RISC .. 119

4-1. One-Cycle External Memory .. 124

4-2. Multiple-Cycle External Memory ... 125

4-3. m Miss Ratios ·································-···-····················· 131
4-4. m Effective Access Ti.Jnes .. 132

4-5. Prefetch Algorithms ... 135

4-6. Tm Miss Ratios•.•..•.•....•.....••....•...........••..••...••..•..•......••......•......•... 145

4-7. TIBIPB Effective Access Ti.Jnes .. 146

4-8. SPUR m vs. SPUR Tm•..............•........•.......................•......................... 153

4-9. m Ti.Jnes w/ Multiple-Cycle External Caches ... 154

4-10. Tm Times w/ Multiple-Cycle External Caches .. 155

viii

1 Introduction

This thesis consists of three self-contained chapters that examine cache evaluation techniques, the

effects of associativity on cache perfonnance, and tradeoffs in the design of on-the-CPU-chip instruc

tion caches. Each of chapters 2, 3 and 4 is a self contained presentation; in this introductory chapter, I

provide a general overview of the problems considered. Here I explain what caches are and why they

work, discuss the motivation behind my studies, present the system that inspired the studies, and give

an overview of the thesis.

1.1. Cache Memory

A cache is small, fast buffer in which a system tries to keep those parts of the contents of a larger,

slower memory that will be used soon. The purpose of a cache is to improve system cost-perfonnance

by providing the capacity of the large slow memory with close to the access time of the small, fast

cache. This is possible only if most memory references can be serviced rapidly by the cache without

the intervention of the slower memory. In most cases, the cache is successful, because of temporal and

spatial locality, two properties of most real reference streams [Denn70]. Temporal locality states that

future references are likely to be made to the same locations as recent requests, while spatial locality

states that future references are also likely to be made to locations near recent references. Caches take

advantage of temporal locality by retaining recently referenced infonnation, while they exploit spatial

locality by loading and retaining (blocks of) infonnation surrounding recent references.

A CPU cache is a cache of main memory [Smit82]. Like caches in general, CPU caches are fas

ter and smaller than the memory they buffer. CPU caches are usually five to 20 times faster and 50 to

1000 times smaller than main memory. Because of their need for extremely high speed, CPU caches

are managed entirely by hardware, and for this reason, CPU cache access and management policies

must be relatively simple. Table 1-1 provides some succinct definitions for the basic CPU cache termi

nology used throughout this thesis. Other terms will be defined the first time they are used.

2

Tenn Definition

reference A request by the prxessor to read or write a memory location. (synonyms: re-

quest, access, processor reference, memory reference)

cache A small, fast memory that holds active parts of a larger, slower memory. The

capacity of a cache is the cacM size.

hit, miss References found in the cache are said to hit; those not found to miss.

memory A larger, slower memory that provides data on cache misses.

block frame A location in the cache that holds cached da1a, an associated address tag and

state bits. The capacity of a block frame is the block size. (synonym: block)

block Data from memory that fills a block frame. (synonyms: line, sector)

sub-block A datum transferred from memory to the cache. The tenn is not used in the typ-

ical case when the transfer size is equal to the block size. (synonyms: sub-

sector, block)

fetch The method used to determine when and which datum should be brought into

algorithm the cache. (synonym: prefetch policy)

demand fetch A fetch algorithm that loads data only in response to cache misses. (synonym:

no prefetching)

pre fetching Fetch algorithms that sometimes load data before it is referenced.

placement The method used detennine where a block may reside in a cache; often selects

algorithm the set of a reference. (synonyms: placement policy, cache organization)

set A collection of block frames in which a block can reside.

associativity The number of block frames in each set. (synonyms: set size, degree of associ-

ativity)

n-way A placement algorithm that divides a cache's block frames into more than one

set-associative set of n block frames each (associativity n), where n is greater than one.

direct-mapped A placement algorithm with single-block sets (associativity one). (synonym:

one-way set-associative)

fully-associative A placement algorithm with one set.

replacement The method used to detennine which block to replace when a new block is load-

algorithm ed. With set-associative placement, only blocks that reside in the set of the new

block are considered for replacement. (synonym: replacement policy)

LRU A commonly used replacement algorithm that replaces the least recently used

block., that is, the one last referenced longest ago.

Table 1-1. Selected Basic CPU Cache Terminology.

CPU caches have been studied extensively (for a bibliography see [Smit86]), because properly

designed caches have proven effective at increasing the performance or lowering the cost of many sys

tems. CPU caches continue to be worth studying, because their importance to system cost-performance

is increasing, and because technological improvements are altering the characteristics of well-designed

caches. I expect the importance of CPU caches to increase in the coming decade as technological

improvements widen the gap between CPU cycle times and main memory access times and as multipro

cessors come into common use. An effect of the changing characteristics of CPU caches is that the foci

of many early cache studies are no longer relevant

The method I use to study CPU caches, trace-driven simulation, is commonly used to evaluate

CPU caches. A trace-driven simulator is a program that models one or more caches in response to a

trace, which is a dynamic series of processor references. The merits of trace-driven simulation are dis

cussed in Chapter 3 and by Smith [Smit82, Smit85].

3

1.2. Computer Performance Architecture

The first goal in the design of any computer system is to make it operate correctly. A second goal

is to achieve some level of performance at minimal cost. I concentrate on this second goal and refer to

it as computer performance architecture.

A difficult problem for computer performance architects modeling a system is to select the

appropriate level of abstraction. Models at too low a level of abstraction are tedious and time

consuming to build, and have limited generality. Building a complete register-transfer description of a

multiprocessor before one has established that the interconnection network has adequate bandwidth, for

example, suffers from these problems. Models at too high a level of abstraction can leave out details

that are important in practice. RISC processors, for example, have proven to be effective despite

register-transfer models that show that they must execute more instructions than do processors with

more complex instruction sets [Patt85]. These models mispredict, because they assume that alternatives

have the same cycle time and similar implementation costs, when in fact RISCs often have shorter cycle

times and reduced implementation costs. Another problem computer performance architects face is that

the appropriate level of abstraction does not remain constant; it begins high and then decreases as a sys

tem design develops.

The performance evaluation in this thesis is motivated by analysis done to design the caches in

SPUR (a multiprocessor workstation described in the next section). In this thesis I use a level of

abstraction higher than was used for the SPUR design studies, but lower than is used in many studies

where all implementation considerations are ignored. I increase the level of abstraction so that these

studies apply to similar caches in similar systems. I do not, however, raise the level of abstraction to

the point where it can be said that my results apply to all caches. I believe the drawback of this reduced

generality is more than compensated for by the increased realism and accuracy of the work.

1.3. SPUR

SPUR (Symbolic Processing Using RISCs) is a multiprocessor workstation being developed at

U.C. Berkeley as a vehicle for conducting parallel processing research [Hi1186]. A goal of the design

effort was to build a straight-forward system, and then use that system as a framework for retrospec

tively studying less conservative system components. For this reason, pan of this thesis re-examines

the SPUR cache and instruction buffer (IB). Figures 1-1 and 1-2 show the SPUR system and a SPUR

processor.

Each SPUR processor contains two caches. The first, the SPUR cache, is a 128K-byte board-level

cache. It caches instructions and data in direct-mapped 32-byte blocks to reduce system bus traffic,

memory contention, and effective memory access time. The SPUR cache is tagged with vinual

addresses, rather than physical addresses, so that address translation is not necessary on cache hits. On

cache misses, vinual addresses are translated into physical addresses before accessing shared memory.

The second cache in the SPUR processor, the SPUR instruction buffer (IB), is a 512-byte instruc

tion cache on the CPU chip. It contains 16 direct-mapped blocks of eight instructions each (32 bytes).

Valid bits are associated with each instruction word. On a miss, only a single instruction is loaded.

Prefetching is used to load instructions into the rest of the block, in parallel with subsequent processor

references.

1.4. Thesis Overview

Chapters 2, 3 and 4 are written as stand-alone discussions rather than as strongly integrated parts

of a whole. For the reason, they can be read separately and in any order.

Chapter 2, Simulation Techniques for Direct-Mapped and Set-Associative Caches. discusses

methods for the trace-driven simulation of numerous alternative single-level caches. New simulation

algorithms are needed, because the established method, stack simulation [Man70], is not efficient for

simulating numerous caches of restricted associativity (e.g, the direct-mapped and two-way set

associative cache designs I studied for SPUR).

PROCESSOR PROCESSOR

I I
... 6 to 12 ... I I CACHE CACHE

SPUR BUS

SHARED
1,()

DEVICE
000

MEMORY

Figure 1-1. SPUR Workstation System.

SPUR (Symbolic Processing Using RlSCs) is a workstation for conducting parallel processing research. SPUR

contains 6 to 12 high-performance homogeneous processors connected with a shared bus. Each processor is a

general-pwpose RISC processor that provides IODle support for Common Lisp and IEEE floating-point. The

number of processors is large enough to permit parallel processing experiments, but small enough to allow packag

ing as a personal workstation. Each of the custom processors contains a large cache to reduce the bandwidth re

quired from the bus and shared memory. Standard NuB US 1,() devices and gateways to other busses are also at

tached to the SPUR Bus to complete the system. (Adapted from Figure 1 in [Hill86].)

4

Chapter 2 begins by examining inclusion and set-hierarchy, two properties of a collection of

caches that facilitate the efficient simulation of alternative designs. Inclusion holds when all larger

caches always contain a superset of the data in smaller caches [Man70]. Mattson et al. show when

inclusion holds for caches with the same block size, demand fetch and a fixed number of sets. I extend

their results to show when inclusion holds for caches with a variable number of sets. Set-hierarchy, a

property I introduce, holds if data that map to the same set in larger caches always maps to the same set

in smaller caches. I find that inclusion and set-hierarchy hold for many series of direct-mapped caches,

but that only set-hierarchy holds for most series of set-associative caches.

I develop an efficient algorithm for simulating direct-mapped caches, called forest simulation,

that uses inclusion and set-hierarchy, and extend a previously published algorithm for set-associative

caches, called all-associativity simulation, that does not use inclusion, but can use set-hierarchy. I

implement stack, forest, and all-associativity simulation, and find that all-associativity simulation is

fastest for evaluating numerous large direct-mapped and set-associative CPU caches, while forest simu

lation is fastest if only direct-mapped caches are being studied.

One impact of the worlc. in Chapter 2 is that the efficiencies achieved enabled the scope of Chapter

3's studies (described below) to be expanded.

Chapter 3, The Effect of Set-Associativity on Cache Memory Performance, uses miss ratio and

effective access time to evaluate caches of varying associativity. I examine associativity, because few

studies have concentrated on it, and because technological advances are altering the balance between

the benefits of higher associativity and the costs of implementing it

I use the algorithms developed in Chapter 2 to compute the miss ratio of many caches with

numerous traces. My results confirm the well-known facts that increasing associativity reduces miss

ratio by amounts that diminish as associativity gets larger. I show further, by examining the ratios of

miss ratios, that decreasing associativity causes relative changes in miss ratio that do not vary

22

CPU " FPU
«> 4

3l 64 64
ADDRI!SS BUS

-"
< >

31
DATA BUS

31 64

cc !I CACHE
RAMS

~
!I v 3l

SPUR BUS

Figure 1-2. SPUR Processor.

A SPUR processor is implemented on a single board that contains three custom VLSI chips and 200 standard chips.

The three custom chips are the CPU, the cache controller (CC) and the floating-point c:oprocessor (FPU). Qff.the

shelf chips are used to hold the state, address tags, md data of the SPUR cache (CACHE RAMS), and to connect

functional components together (not shown).

The CPU chip is a custom VLSI chip with a reduced instruction set. Like RISC n [Kate83J, the SPUR CPU uses a

simple and uniform pipeline, hard-wired control, and a large register file; it attempts to issue a new instruction

every cycle. The SPUR CPU differs from RISC n because of the addition of a 512-byte instruction buffer, a fourth

execution pipeline stage, a coprocessor interface. and support for Lisp tagged data.

The CC chip manages the SPUR cache, a 128K-byte. direct-mapped, mixed cache with 32-byte blocks. This in

cludes handling cache accesses by the CPU, performing .ddress translation, accessing shared memory over the

SPUR Bus, and maintaining cache consistency.

The final custom chip is the floating-point coprocessor, which supports the full IEEE standard 754 for binary

floating-point arithmetic without microcode con1rol. Common operations are executed by the FPU under hard

wired control. Infrequent operations cause !raps and are handled by software. (Adapted from Figure 2 in [Hill86).)

5

significantly as caches get larger, but that do change with cache type and block size. I also use these

ratios of miss ratios to extend Smith's design target miss ratios to caches of varying associativity

[Smit85, Smit87].

Miss ratio comparisons of cache of varying associativity have generally ignored implementation

concerns. For small caches (less than 32K bytes), ignoring implementation details is reasonable, since

the miss ratio change cause by varying associativity is large. As cache size increases, however, absolute

miss ratios become small, and therefore the difference in miss ratios between designs becomes less

important than their access time differences.

I use effective access time to take into account the effects of varying implementation delays.

Effective access time is the average latency, as seen by the processor, on its references. I show that a

direct-mapped cache with a higher miss ratio but a smaller access time than a set-associative cache can

have a superior effective access time. Next by incorporating the above miss ratio results with three

implementation examples, I show that some practical direct-mapped caches of 32K bytes and larger

have lower effective access times than comparable set-associative caches.

6

The impact of the work in Chapter 3 is that for large caches, as was found for RISCs, the imple

mentation advantages of simplity can overwhelm the architectural advantages of more complex designs.

This work also illustrates the benefit of lower levels of abstraction; had I ignored implementation details

and assumed that all caches have the same access time, I would have reached an incorrect conclusion.

Chapter 4,/nstruction Memory on a Single-Chip RISC, examines the design of instruction buffers

and target instruction buffers to reduce the effective instruction access time of a single-chip implemen

tation of RISCs. I evaluate instruction memories with a trace-driven simulator that includes a detailed

model of a RISC pipeline and the potential interference between instruction fetches, instruction pre

fetches and data references.

An instruction buffer is a cache for instructions only. Among other things I find that the perfor

mance of an instruction buffer is strongly affected by its size and ability to rapidly fetch and prefetch

instructions from off of the CPU chip. I propose improvements to the SPUR instruction buffer, applica

ble to instruction buffers on other RISC CPU chips, which halve its miss ratio and reduce effective

access time by 20 percent.

A target instruction buffer holds one or more instructions at recent branch targets, but does not

try to cache all recently executed instructions (e.g., the AMD 29000 Branch Target Cache [Adva87]).

As with instruction buffers, I find that target instruction buffer performance improves when instructions

can be fetched and prefetched more rapidly from off-chip. In contrast to instruction buffers, I discover

that target instruction buffer performance does not improve rapidly as buffer size is increased.

Finally, I compare instruction buffers and target instruction buffers in CPUs connected to single

and multiple-cycle off-chip memories. With single-cycle off-chip memories, I show that target instruc

tion buffers give comparable or better performance, unless on-chip memory size is large(~ 8K bytes).

As off-chip memories become relatively slower, the performance of instruction buffers improves rela

tive to that of target instruction buffers, because instruction buffers rely more on caching and less on

prefetching than do target instruction buffers.

The impact of the work in Chapter 4 is: (1) it provides detailed assistance to the designers of

instruction memory on RISC CPU chips, and (2) it demonstrates that instruction buffers will be pre

ferred to target instruction buffers in future CMOS microprocessors, where available buffer size will be

large and single-cycle off-chip accesses unlikely. Nevertheless, target instruction buffers may be

appropriate for other technologies, such as Gallium Arsenide.

l.S. References

[Adva87] Advanced Micro Devices, Am29000 User's Manual (1987).

[Denn70] P. J. Denning, Virtual Memory, Computing Surveys, 2, 3 (September 1970).

[Hill86] M.D. Hill, S. J. Eggers, J. R. Larus, G. S. Taylor, G. Adams, B. K. Bose, G. A. Gibson, P. M.

Hansen, J. Keller, S. I. Kong, C. G. Lee, D. Lee, J. M. Pendleton, S. A. Ritchie, D. A. Wood, B. G.

Zorn, P. N. Hilfinger, D. Hodges, R. H. Katz, J. Ousterhout and D. A. Patterson, Design Decisions in

SPUR,JEEE Computer, 19, 11 (November 1986).

[Kate83] M. G. H. Katevenis, R. W. Sherburne, D. A. Patterson and C. H. Sequin, The RISC II Micro

Architecture, Proc. VLSI83 Conference, Trondheim, Norway (August 1983).

[Matt70] R. L. Mattson, J. Gecsei, D. R. Slutz and I. L. Traiger, Evaluation techniques for storage hierarchies,

IBM Systems Journal, 9, 2 (1970), 78- 117.

[Patt85] D. A. Patterson, Reduced Instruction Set Computers, Comm. ACM (January 1985), 8-21.

[Smit82] A.], Smith, Cache Memories, Computing Surveys, 14,3 (September, 1982), 473- 530.

[Smit85] A. J. Smith, Cache Evaluation and the Impact of Worldoad Choice, Proc. Twelfth International

Symposium on CompuJer ArchileclJUe (June 1985).

[Smit86] A. J. Smith, Bibliography and Readings on CPU Cache Memories and Related Topics, Computer

Architecture News (January 1986), 22-42.

7

[Smit87] A. J. Smith, Line (Block) Size Choice for CPU Caches, IEEE Trans. on Computers, C-36, 9

(September 1987).

2

2.1. Introduction

Simulation Techniques for

Direct-Mapped and

Set-Associative Caches

8

Design and research questions regarding memory hierarchies are often investigated with trace

driven simulation of several design alternatives. For this reason, Manson et al. developed the stack

simulation technique for simulating many caches with one pass through an address trace [Matt70] t.

Stack simulation can evaluate alternative caches of many sizes if all have the same number of sets, the

same block size, do no prefetching, and use a stack replacement algorithm (e.g., LRU and RANDOM).

Caches in a single stack simulation all have different associativities, however, since associativity is

cache size in blocks (which varys in a stack simulation) divided by the number of sets (which is fixed).

Design and research questions regarding CPU caches often examine caches of differing sizes, but fixed

associativity [Smit78], [0ar83], [Good83], [Haik84], [Hill84] and [Puza85]. Consequently the evalua

tion of alternative CPU cache designs can require numerous stack simulations.

To reduce the number of simulations required, I have developed efficient one-pass trace-driven

simulation algorithms for evaluating caches having differing numbers of sets. In some cases I reduce

simulation time by using inclusion [Matt70]. I say cache C2 includes cache C1 if cache C2 contains a

superset of the blocks in cache C 1 after any series of references. A simulation of alternative cache

designs can take advantage of inclusion by searching for a reference in cache C 1 first, cache C 2 second,

and then in other caches that include cache C 2• When a reference is found, a hit can be recorded for that

t Manson et al. describe stack simulation with the terminology of virtual memory, e.g., pages and memory

sizes. I use the terminology of CPU caches -- blocks (lines) and cache sizes -- because direct-mapped and

set-associative placement is typically used only for CPU caches. I use cache 10 refer 10 any memory used 10

buffer the active blocks of a slower memory, and use CPU CDCM 10 refer specifically to a cache that buffers

blocks from main memory.

9

cache and (implicitly) for all caches that include that cache. Mattson et al. show when inclusion holds

for caches with the same number of sets, and use inclusion to make stack simulation efficient.

Here I show when inclusion holds for caches having differing number of sets. I find inclusion

mlds between practical direct-mapped (one-way set-associative) CPU caches, but that it does not hold

in general between practical set-associative CPU caches. Since direct-mapped caches are important

(see Chapter 3 and [Bell74, Patt83, Stre76]), I develop an algorithm, called forest simulation, for simu

lating alternative direct-mapped caches that takes advantage of inclusion. Since set-associative caches

are also important, I describe an algorithm, called all-associativity simulation, for simulating alterna

tive set-associative caches that does not take advantage of inclusion. I allow alternative caches to use

arbitrary functions to map references to sets. I also show that faster simulation times can be achieved

when the functions that map references to sets obey a property called set hierarchy (described in Sec

tion 2.3). My algorithm is a generalization of an algorithm for simulating set-associative caches that

map references to sets with bit selection [Matt70, Trai71]. A cache that uses bit selection contains a

power of two number of sets and selects the set of a reference with the least-significant bits of the

reference's block number.

The rest of this paper is organized as follows: section 2.2 discusses background; section 2.3 proves

results about inclusion for set-associative caches; sections 2.4 and 2.5 develop forest and all

associativity simulation algorithms; and sections 2.6 and 2.7 contain experimental results and conclu

sions.

2.2. Background

This section reviews set-associative caches, introduces stack algorithms, describes and analyzes

linked-list stack simulation and describes more efficient methods of stack simulation.

2.2.1. Set Associative Caches

A fully-associative cache allows any block to reside in any block frame. An n-way set-associative

cache of c blocks uses a set-mapping function 1 to partition all blocks in main memory into a number

of equivalence classes, and allows at most n blocks from each equivalence class to be simultaneously

resident. The block frames that hold blocks from one equivalence class are called a set. The number of

block frames in a set, n, is called the associativity (or degree of associativity or set size). The number

of equivalence classes in the image of 1, called the number of sets, is always equal to c In, the number

of blocks in a cache divided by its associativity. The advantage of a set-associative cache with respect

to a fully-associative cache of the same size is that n block frames rather than c block frames must be

searched on each reference. The disadvantage of a set-associative cache is that it restricts which blocks

can be simultaneously resident For example, ann -way set-associative cache cannot contain the n+l

most-recently-referenced blocks that map to one set Figure 2-1 illustrates set-associative mapping and

discusses my notation for caches.

The most-commonly used set-mapping function is bit selection, because it can be implemented

with no logic or delay. In bit selection, several low order bits of the block number are used to select the

set Bit selection requires that the number of sets be a power of two. For example, the set of block x is

a cache with 2; sets that uses bit selection is 1 (x) = x rem 'i, where x rem 2; is the remainder of dividing

X by 2;.

2.2.2. Stack Algorithms

The seminal paper on memory hierarchy simulation is Mattson et al. [Matt70]. It introduces stack

simulation as an efficient technique for evaluating a series of fully-associative caches and obey the

inclusion property. Since a set-mapping function partitions blocks into equivalence classes and set

associative caches do not allow blocks from different classes to interact, each set of a set-associative

cache operates as an independent fully-associative cache. For this reason stack simulation can be

applied to a set-associative caches that use the same set-mapping function.

block nmnber block offset

Set-mapping
function

Decoder

Associativity (A=n)

.__ _ __._ __ _, · · · L-1 ----~1 set[O]

.__ _ __._ __ _, · · ·I I set[l]

L..--~---..J • .. I I set£21

Figure 2-1. Set-Associative Mapping.

Nmnber

of Sets

(S=c/n)

This figure illustrates set-associative mapping in an 11-way set-usociative cache of c blocks with set-mapping

function I. H a block .x is present, it is in one of the 11 block frames in set I (.x) (one row). The number of ele

ments in a single set is the associativity (degree of associativity, set size, A). The number of values in the image of

I (number of rows) is the number of sets in the cache (S =c In). The usociativity times the nmnber of sets is al

ways equal to the cache's size in blocks. A cache is direct-mapped if A =1; it is fully-associative if S =1.

I denote the above cache with "C(A=n. S=cln. F=O.'' where A, S and F are cache parameters "associa

tivity," "nmnber of sets" and "set-mapping function." When comparing caches I omit listing parameters that do

not vary. For example, I use "C(A=l)" and "C(A=2)" to contrast a direct-mapped and a two-way set-associative

cache that are otherwise similar. When differences are clear, I use subscripts for distinguishing caches (e.g., "C 1"

and "C 2"). Finally I use "c;" (lower case) to represent the number of blocks in cache "C;" (upper case). Thus

"C;" represents all attributes of cache C;, while "c;" represents only the number of blocks in cache C;.

10

Stack simulation is efficient because it takes advantage of inclusion , which is the property that,

after any series of references, each larger cache simulated contains a superset of the blocks resident in

all smaller caches. Inclusion may seem trivially true, but it is not. For example, a series of caches

managed with FIFO (first in first out) replacement do not always obey inclusion. Consider a series of

references to blocks 1, 2, 3, 1, and 4. At the end of this sequence, a two-block cache will contain blocks

1 and 4 while a three-block cache will contain 2, 3, and 4, but not block 1.

Assuming no prefetching and fixed block size, Manson et al. show that inclusion holds between

caches using the same set-mapping function for a class of replacement algorithms called stack algo

rithms. LRU, RANDOM and OPTIMUM [Bela66] are the principal, interesting stack algorithms.

A stack simulation of caches C (A =lc, F =I) for lc = 1 to n uses a stack of n nodes for each set in the

image of 1, and an array of n distance counters. If I assume LRU replacement, each stack conceptually

lists the most-recently-referenced n blocks for its set. Stacks in simulations of other stack replacement

algorithms list blocks in order of descending priority, where priorities are defined so that blocks with a

lower priority are preferred for replacement with respect to blocks with a higher priority. Each counter

distance[k] contains the number reference so far to the k-th most-recently-referenced block. For each

reference .x, stack simulation perfonns three steps: FIND, UPDATE and METRIC.

FIND Locate block .x in stack 1 (..r). I say a reference is found at distance k if it is the k -th ele

ment in the stack, and at distance infinity (oo) if it not found.

METRIC Increment counters distance[k] and N, where N is the number of references. At the end of
1:

simulation, the miss ratio of cache C (A =lc ,F =I) is 1 - :I: distance [lc]IN. Metrics can be also
i•!

be maintained by keeping counters only for specific cache sizes of interest This will save

space, but increase the time required to detennine what counter(s) to increment

UPDATE Update the stack to reflect the contents of all caches after the reference to .x. See Mattson

et al. for what is required with an arl>itrary stack algorithm. For LRU, .x must be moved

11

from it old position (if any) to the top of stack f (.x), all blocks .x passes must be moved

down one position, and all other blocks must not move. H .x was not previously referenced,

.x must be inserted at the top of stack f(.x), and all other blocks in stack f(.x) must be

moved down one position.

2o2.3. Linked-List Stack Simulation

Here I describe stack simulation with the stack for each set implemented with a linked-list This

is commonly done for CPU cache simulations, because it is simple to implement and has adequate per

formance since the referenced block is usually found in the first few elements of the stack. I assume

LRU replacement, because it is commonly used; the arguments that follow can also be extended to

other stack replacement algorithms. Figure 2-2 shows an example eight-entry stack before and after a

~re~
.

(a) Before (b) After

Figure 2-2. Stack Simulation Example.

The left stack (a) shows an LRU stack for one set after a series of references to that set. Information in the stack

reveals that block 6 is in this set of a direct-mapped cache (one block per set); blocks 6 and 5 are in a two-way set

associative cache; blocks 6, 5, and 3 are in a three-way cache; ... ; and blocks 0 through 7 are in 111 eight-way cache.

Let the next reference that maps to this set be to block 4. The blocks in bold are examined to find block 4. The

search stops when block 4 is fowtd or the stack is exhausted. Since block 4 is located (coincidentally) at stack

depth 4, a miss is recorded for all caches smaller than four blocks, md a hit is recorded for all caches 4 blocks or

larger. The right stack (b) shows the stack after it has been updated with LRU replacement; the blocks in bold have

moved.

The pseudo-code in Figures 2-3 and 2-4 illustrate the storage and the per-reference processing

required by linked-list stack simulation. The implementation of FIND (not shown) merely walks down

the link-list f (.x) until reference .x is found or the linked-list is exhausted. H .x is found, the implemen

tation of UPDATE (also not shown) changes two pointers to move .x to the head of the linked-list f (.x).

Otherwise, it allocates a new node for .x, either from a free list or by reclaiming the last block in the list,

and puts the node at the head of the linked-list

The analysis of the time to simulate each reference is some constant, 0 (1), that includes the time

to read the reference, plus the number of iterations within FIND. Let Bt be the probability that a refer

ence is found at stack depth k, let B .. be the probability that the reference is not found, i.e., this is the

first reference to that block, and let N be the number of references in the trace. FIND uses k iterations

to find a reference at stack distance k, and 0 (N B ..) iterations for stack distance oo where 0 (N B ..) is the

size of the entire stack. In practice, the average stack size is much smaller than the number of unique

blocks in the trace, N 0.., because the unique blocks are distributed across a 100 of more sets. The time

I

integer max_assoc -- maximum stack size

function f(x) - a set-mapping function

integer number_of_stacks - number of sets induced by f(x)

integer N - number of references
l

- distance counts so that m(C(F=f, A=k) = 1 - ~ distanceUJIN

integer distance[1 :max_assoc]

define stacknode_type {
integer block_number
stacknode_type *next

stacknode_type *stack[O:number_of_stacks-1] - top of stack pointers

-- pool of dynamically linked stacknodes

stacknode_type stacknodes[1 :number _of_stacks*max_assoc]

Figure 2-3. Stack Simulation Storage.

For each reference x {
read(var x)
N++
stack_number = f(x)

-- Walk down stack until x is found or stack is exhausted.

-- If found, return stack distance and pointers to stacknode containing x.

-- Otherwise set stack distance to max_assoc+1and point to LRU stacknode.

found = FIND(x, stack_number, var stack_ distance,

var previous_node_pointer, var node _pointer)

-METRIC
if (found) distance[stack_distance]++

-- If was found, move the stack node of x to the top of its stack.

-- Otherwise, store x in LRU stacknode and move it to the top of its stack.

UPDA TE(x, stack_number, found, previous_node_pointer, node _pointer)

Figure 2-4. Stack Simulation.

to process a reference is of order:

~kS1 + 0 (NS_)S_ + 0 (1).
t=l

12

Eq. 2-1.

1be first tenn, called the mean stack distance, is the average number of distinct blocks since the last

reference to the referenced block. If one is simulating only caches with associativity s kma.x, then no

stack node need to be retained beyond distance kma.x. This reduces the simulation time to:

lmaz

~kSt +kma.x* ~ St +kma.x*S_+O(l).
Eq. 2-2.

la! l..-.....+1

Bounding stack size can significantly reduce simulation time of set-associative CPU caches, where

kmax rarely exceeds eight. However, for fully-associative caches, kmax is equal to the number of

13

blocks in the largest cache simulated. The run-time of linked-list stack simulation of fully-associative -
caches will be poor if either :I: at or a .. is large.

t._+1

An analysis of the exact storage requirP.d for bounded linked-list stack simulation of even large

CPU caches is uninteresting, because the storage required is small relative to modem main memories.

For example, the storage required by the linked-list stack simulation pseudo-code in Figure 2-3 for

simulating a direct-mapped 128K-byte cache, a two-way set-associative 256K-byte cache, a four-way

512K cache and a eight-way 1M cache with 32-byte blocks is approximately equal to the number of

blocks in the 1M-byte cache (32K) times 8 bytes per block, and is less than 300K bytes.

2.2.4. Other Stack Simulation Implementations

Bennett and Kruskal [Benn75] examine the paging behavior of a large data base. They find mean

stack distances of 12 to 328 entries for varying page sizes. Bennett and Kruskal propose an algorithm

for stack simulation using an m-ary tree and a hash table where the run-time per reference is approxi

mately logarithmic in the number of blocks since the last reference to the current block. In contrast, the

time per reference for linked-list stack simulation is linear in the number of distinct blocks since the last

reference of the current block. Bennett and Kruskal conclude that their algorithm is of order ten times

faster than linked-list stack simulation for mean stack distances of 150 entries. The storage require

ments of the algorithm are large, but this is not important since the memory required is small relative to

modem main memory sizes. The tree size is linear in the length of the address trace, N, and the hash

table must be larger than the number of distinct blocks (Na ..). A simulation of 10 million references

with 200,000 unique blocks requires only 3M bytes of storage if it uses two bits per reference and two

words per unique block. Olken [Olke81] changes Bennett and Kruskal's algorithm by replacing their

m-ary tree with an A VL tree (see [Thom87]).

Bennett and Kruskal's algorithm and Olken's algorithm use a hash table to learn about a block's

history. A hash table can also be used in linked-list stack simulation to see if a block has ever been

referenced. This reduces the time to process a previously unreferenced block from Jcmax to a constant,

reducing simulation time to:

a...x -
:I: 1r. at + lr.mo.x* :I: at + o <a->+ o (1).
t=l t....boa+1

This change will significantly improve performance only if both lanax and a .. are large, that is, both the

degree of associativity and the fraction of the references to previously unreferenced blocks are large.

Thompson et al. [Thom86] examine each of these algorithms, and conclude that linked-list stack

simulation performs best for most CPU cache simulations. Consequently, I will compare the perfor

mance of forest and all-associativity simulation with linked-list stack simulation only, and use stack

simulation to refer to linked-list stack simulation.

2.3. Inclusion in Set-Associative Caches

Here I prove several theorems about inclusion for set-associative caches using (possibly) differing

set-mapping functions. Recall that Mattson et al. [Matt70] discuss inclusion only in caches that use the

same set-mapping function, and hence have the same number of sets (e.g., all are fully-associative). In

this section, as in the rest of this chapter, I assume that all caches have the same block size, do no pre

fetching, and use LRU replacement I want to use inclusion to rapidly simulate alternative single-level

cache designs. Consequently when I discuss a large and a small cache, I am considering using one or

the other in a memory system, not using both as components in a cache hierarchy.

Consider two caches, C 1(A =n t.F=f 1) and C i._A =n 2,F=f i), with c; blocks, associativities of n;, and

set-mapping functions/;. for i=l,2. An important condition necessary for cache C2 to include (the

blocks of) cache C 1 is that all blocks mapping to the same set in C 2 map to the same set in C 1• That is,

for all blocks x and y :

14

I call this condition set hierarchy, because it means that f 2 induces a finer partition on all blocks than

does f 1. Assume also that each set-mapping function maps a large number of blocks (~*max(n~onz))

to each set Set-mapping functions used in real caches, including bit selection, trivially meet this res

triction.

For cache C2 to include cache C1, C2 must be at least as large as C1, otherwise inclusion will be

violated as soon as C 1 is full. For cache C 2 to include a different cache C 1, C 2 must be stricti y larger

than C 1. I consider two caches to be equivalent if they always contain the same blocks, i.e., are identi

cal up to placement of sets. Suppose cache C 1 and cache C 2 are the same size. For cache C 2 to include

cache C1, it must always contain a superset of cache C1's blocks. Since cache C2 contains the same

number of blocks as C 1, it must always contain exactly the same blocks, and therefore is not a different

cachet. For this reason I sometimes refer to cache C 2 as the "larger" cache.

Theorem 1

Cache C2(A=n2.F=fz) includes cache C 1(A=n~tF=/ 1) if and only if 1 2(x)=l-b) implies

I 1(x)=f 1(y) (set hierarchy) and n2<:!:n 1 (non-decreasing associativity).

Proof

>. Suppose cache C2 includes cache C 1 and f 2(x1)=/ 2(xz)= ···=I 2(x:z,..) for some 2n2 blocks x1,

••. , x:z,. •. The x1 'sexist, because I assume each set-mapping function maps a large number of blocks to

each set. To demonstrate that both set hierarchy and non-decreasing associativity are necessary for

inclusion, I show that one of the x1 's must be in cache C 1 but not in larger cache C2 if either (1) set

hierarchy is false or (2) set hierarchy holds, but the larger cache has the smaller associativity.

(1) With set hierarchy false, let the 2n 2 x1 's be chosen so that at least one block, y, maps to a dif

ferent set in cache C 1 than does x1 (i.e., f 1 (y)c~:f 1(x 1)). Either (a) less than n2 of the x/s map to fl(x 1) or

(b) n2 or more of the x1 's map to f 1(x1). For (a), reference x1 and the <:!:n 2 blocks that do not map to

f 1(x1). Inclusion is now violated since x1 is in cache C 1, but not in larger cache C2. It is in cache C 1

since all other blocks referenced map to other sets; it is replaced in nz-way set-associative cache C 2,

since at least n2 other blocks mapping to its set are more-recently-referenced. For (b), reference y and

the <!: n 2 blocks that do map to f z(x 1). Inclusion is now violated since y is in cache C 1, but not in the

larger cache C 2•

(2) Since set hierarchy holds and f z(x 1)=/ 2(xz)= · · · =! 2(x,. .. 1), I know that

f 1(x 1)=/ 1(xz)= · · · =! 1(x,. .. 1). Reference x1 through x,. .. 1 in succession. Inclusion is now violated since

x1 is in n1-way set-associative cache C 1 (n 1>n 2 implies n 1~:z+l), but not in nz-way set-associative cache

C2.

<=. Suppose set hierarchy and n2 <!:n 1. Initially both caches are empty and inclusion holds,

because everything (nothing) in cache C 1 is also in cache C 2• Consider the first time inclusion is

violated, i.e., some block is in cache C 1· that is not in cache C 2• This can only occur when some some

block y is replaced from cache C 2, but not from cache C 1. A block y can only be replaced from cache

C 2 if n 2 blocks, x 1 through x,... all mapping to I 2(y), are referenced after it. By set hierarchy,

f (y)=f (x1)= · · · =! (x,..). Since n2<:!:n1o y must also be replaced in cache C 1.

QED.

Theorem 1 states that inclusion holds between two set-associative caches only if the two caches

obey set hierarchy and non-decreasing associativity. In Section 2.5 I show that set hierarchy and non

decreasing associativity are too restrictive to pennit inclusion to hold between many pairs of set

associative caches, and then I describe an algorithm for simulating numerous set-associative caches

does not try to take advantage of inclusion.

t This only shows that the caches contain the same blocks when they are full. Since I assume no prefetching,

it is easy, but uninteresting, to show that they also contain the same blocks when filling.

15

I next show that the includes relation is a partial ordering of the set of set-associative caches (with

the same block size, that do no prefetching, and use LRU replacement). A partial ordering differs from

a total ordering (e.g., "s" on the set of real numbers), because some elements may not be comparable

(i.e., neither C 2 includes C 1 nor C 1 includes C ~- While establishing includes as a partial ordering is

mostly of theoretical interest, it does enable tr:msitivity to be used in the proof of Theorem 3.

Theorem2

The includes relation is a partial ordering of the set of caches.

Proof
I must show that includes is reflexive (C 1 includes C 1), antisymmetric ((C2 includes C 1 and C 1 in

cludes C ~ implies C 2 = C 1) and transitive ((C 3 includes C 2 and C 2 includes C 1) implies C 3 includes C 1).

Reflexive. A cache includes another if it contains a superset of the blocks of the other. Oearly C 1

includes C lt since two identical caches always contain the same blocks.

Antisymmetric. Suppose C 2 includes C 1 and C 1 includes C 2• Therefore cache C 2 must always

contain a superset of the blocks in cache C 1, and cache C 1 must always contain a superset of the blocks

in cache C 2• Since superset is antisymmetric, both caches must always contain the same blocks, and

therefore are equivalent.

Transitive. Suppose C3(A=n 3,F=/ 3) includes C2(A=n 2,F=/ i) and CiA=n 2,F=f i) includes

C1(A=n~tF=f 1). By Theorem 1, n~2• n-?-Jt 1, I 3(x)=f 3{:j) implies I -J.x)=f 2(y), and I -J.x)=f -J.y) implies

f 1(x)=f 1{:j), for all blocks x and y. Since both relations "2:" and implies are transitive, n 3~ 1 and

I 3(x)=j 3{:J) implies I t<x)=f tl:J). By Theorem 1, C3 includes c t·
QED.

Next I consider caches using set-mapping functions of the form "h (x) rem s," where h (x) is a

hash function whose image if the set of all block numbers, ''rem'' is the remainder operator, and s is

the number of sets in a cache. I show that set hierarchy holds between two such caches if and only if

the number of sets in the larger cache is a multiple of the number of sets in the smaller cache.

Theorem3

Set hierarchy holds, that is, f 2(x)=/ 2(y) implies f 1(x)=f 1{:j), for set-mapping functions of the form

h(x) rem s; if and only if s 1 divides s 2•

Proof
=>. Suppose set hierarchy holds, that is, h (x) rem s 2 = h (y) rem s 2 implies

h(x) rem s 1 = h {:j) rem s 1• Suppose s 1 does not divide s 2, then s 2 rem s 1 = lc where lc :;t 0. Let h (x) = s 1s2

and h {:j) = s 2(s 1 + 1). I know that there exist some block numbers x and y for which the above is true,

because I require the image of hash function h be the set of all block numbers. For these values of h (x)

and h{:j), h(x)rems 2 =h{:j)rems2 =0, but h(x)rems 1 =0 and h{:j)rems 1 =s2 rems 1 =lc where k :;tO.

Thus, h(x) rem s 2 = h{:j} rem s 2 is true while h(x) rem s 1 = h{:j) rem s 1 is not. A contradiction. There

fore, s 1 must divide s 2 for set hierarchy to hold.

<=. Suppose s 1 divides s2• By definition of divides, s 2 = ns 1 for some integer n. If

h(x) rem s 2 = h {:j) rem s2, then h (x) = x's 2 + lc and h (y) = y's2 + lc for some integers x', y' and lc. Substi

rution yields h (x) = x'ns 1 + .t and h {:j) = y'ns 1 + lc. By definition of remainder,

h(x) rem s 1 = h(y) rem s 1 = lc. Thus h(x) rem s2 = h{:j) rem s2 implies h(x) rem s 1 = h(y)rem Stt or set

hierarchy holds.

QED.

Theorem 3 allows us to prove that inclusion holds for many practical direct-mapped caches,

including those using bit selection. Consider a series of direct-mapped caches, C;, where each cache

uses set-mapping function /;(x) = h(x) rem c; and each c; divides c;+t· By Theorem 3, set hierarchy

holds between each pair of caches. Since set hierarchy holds and all associativities are equal (to one),

16

inclusion holds between each pair of caches by Theorem 1. Since inclusion is a partial ordering

(Theorem 2), inclusion holds between all caches in the series. The above applies to series of direct

mapped cache that use bit selection, because for such caches h(x)=x and each c; divides c;+1 because

both are powers of two. Consequently inclusion holds between direct-mapped caches that use bit selec

tion.

Since inclusion holds for many direct-mapped caches and inclusion can be used to make simula

tions run more rapidly, I develop an algorithm for simulating direct-mapped caches that obey inclusion,

which I present in the next section.

2.4. Simulating Direct-Mapped Caches with Inclusion

This section introduces forest simulation for evaluating direct-mapped caches that have the same

block size and obey inclusion. Like stack simulation, forest simulation takes advantage of inclusion by

searching for a block from the smallest to largest cache. When a block is found, a hit can be implicitly

recorded in all larger caches. Forest simulation is so named because it uses a forest (a set of disjoint

trees) rather than a stack to store cache blocks.

Let the direct-mapped caches be named C" C z, ••. , CL. Assume that each cache C; has c; block

frames and uses set-mapping function rem c;. While forest simulation works for arbitrary set-mapping

functions that obey set hierarchy, it is easier to describe it with set-mapping functions of the fonn

remc;. Let 1Sc 1 <cz< ··· <cL and c; divide c;+1 for i=l,L-1. By the argument presented after

Theorem 3, inclusion holds for these caches.

The key data structure in forest simulation is a forest of L levels. The number of trees in the forest

is equal to the number of blocks in the smallest cache, c1• The c; nodes oflevel i represent the blocks

in cache C; . The branching factor between two levels is equal to the cache size of the larger level,

divided by the cache size of the smaller level, c;+11c;. The leaves represent the blocks in the largest

cache, cL. This forest can be implemented a heap containing twice as many nodes as there are blocks in
L

the largest cache, since c;+11c; s 2 for all i implies I:c; is less than 2*cL. For example, the heap location

of block x a cache of c blocks using set-mapping function f can be calculated with f (x) +c. Figure 2-5

shows an example forest simulation forest.

Figure 2-5. Forest Simulation Forest.

This figure displays the forest for caches of size 1, 2. 4, and 8 blocks. This forest contains only one tree, because

the smallest cache contains only one block. This tree is a binary tree, because each cache in this example is twice

as large as the next smaller cache. In this example I assume blocks are mapped to block frames with bit selection.

Each node holds the information for one block frame in a direct-mapped cache. The block at the root of the tree

has no block number bits constrained, because a one-block direct-mapped cache can hold any block. This is illus

trated with a t representing arbitrary high-order bits of the block number and three z 's representing dora' t-cares for

the three low-order bits. 1be tags txzO and t:al in the nodes of level two indicate that the blocks that can reside in

these nodes are constrained to have even and odd block numbers, respectively. Similar rules with more bits con

strained apply to the rest of the levels.

Forest simulation works as follows and as is illustrated in Figure 2-6. On each reference, the algo

rithm selects the tree corresponding to the set of the reference in the smallest cache. Then it searches

reference

(a) Before

(b) After
Figure 2-6. Forest Simulation Example.

The top tree (a) depicts the forest of Figure 2-5 after a series of references. Information in the tree tells us that

block 6 is in a cache of size one block; blocks 6 and 5 are in a direct-mapped cac.he of size two; blocks 4, 6, 5 and 3

are in a direct-mapped cache of size four; and blocks 0 through 7 are in a direct-mapped cache of size eight.

Let the next reference be to block 4. A path from the root to a leaf is determined using the set-mapping fimction

for each cache (here bit selection is assumed). A search begins at the root and stops when block 4 is found. All

nodes encountered in the search that do not contain block 4 are modified to do so. 'The blocks in bold are examined

to find block 4. Since block 4 is located at level 3, caches 1 and 2 miss and caches 3 and 4 hit.

The bottom tree (b) shows the tree after this reference as been processed. The nodes in bold now contain the refer

enced block.

integer L - number o.f direct-mapped caches

-- set-mapping functions that obey set hierarchy,

-- i.e., fi+l(x)=fi+l(y) => fi (x)=fi (y) for i=1, L-1.

fimction f1(x), ··~ fL (x)

integer c 1, ... , cL -- cache sizes (in blocks)

integer N - number of references
i

- distance counts so that m(C(F=f;. A=1) = 1- l:distance[i]/N
j•l

integer distance[l:L]

integer forest[1:2•crJ -- the forest

define block(x, i) . = (f; (x) + C;) - for accessing the forest

Figure 2-7. Forest Simulation Storage.

17

For each reference x {
read(var x)

N++

-FIND
found = FALSE
for i=lto Lor found {

y = forest[block(x, i)]

if(x=y)

else

found=TRUE
--METRIC
distance{ i] ++

--UPDATE
forest[block(x, i)] = x

Figure 2-8. Forest Simulation.

18

for the referenced block beginning at the root of the tree. Tile path of the search is determined by the

set of the reference in each cache. Any time a node is encountered that does not contain the reference,

the node is updated to contain it. The processing of a reference stops when the reference is found, or

after a leaf node has been modified. If the reference is found at level i, a counter distance[i] must be

updated.

Figures 2-7 and 2-8 show the pseudo-code for forest simulation. Forest simulation is efficient

because it uses inclusion and direct-mapping. It uses inclusion in the same way as stack simulation, i.e.,

by ending the processing of a reference when it is found in a cache, regardless of how many larger

caches are being simulated. Direct-mapping implies that a block can reside in only one block frame in a

cache. Forest simulation benefits from direct-mapping by examining only that one block frame per

cache. In contrast, a simulation of set-associative caches must often search more than one block frame

per cache size of interest.

As with stack simulation, the exact storage required for a forest simulation of CPU caches is small

relative to main memory sizes. The storage required is dominated by the size of the forest, which can

be implemented in a heap of 2cL nodes, where cL is the number of blocks in the largest cache simulated

(see Figure 2-7). The storage required for simulating direct-mapped caches with 32-byte blocks of sizes

128K, 256K, 512K and 1M byte, for example, is approximately SOOK bytes, given node sizes of four to

eight bytes.

Next I show the time used to process one reference in a forest simulation of L direct-mapped

caches, ci , is:
L-1

1 + I:rrlj + 0(1)
Eq. 2-3.

where 1nj is the miss ratio of cache Ci and each iteration requires unit-time. The power of this analysis

is limited, however, because several constant factors are difficult to calibrate.

The time to simulate each reference is determined by how many times the loop in Figure 2-8 is

executed for each reference, plus a constant amount of overhead for reading trace addresses. Forest

simulation executes one iteration per cache (level in the forest) up to a maximum of L levels. If one

iteration requires unit-time, the execution time per reference is:

1* (1-m 1) + 2* (m 1-ml,) + · · · + i* (1nj_1-1nj)

+ · · · +L*(fTIL-t-md+L*'"L +0(1).

19

Rearranging tenns yields:
L

1- mt + l:i(m;-1-m;) +Lin£+ 0 (1)

L L

= 1- mt + l:i(m;_t) -l:i(m;) +LmL + 0(1).

L

This equation can be simplified by manipulating the third tenn, l:i (m;_1), so that the m;_1 's are changed
i•2

into m; 's. This manipulation changes the index variable from i to j, replaces j 's with i + 1 's, simplifies,

and changes summation bounds to yield:
L L L L~

l:i(m;-1) = l:i(mj-1) = l: (i+1)(m;+l-1) = l:{i+1)(m;)
i-=2 js2 i+1s2 i,.l

L
= l:(i+1)(m;) + 2m 1- (L+1)mL·

Substituting this result back the time per reference equation produces:

L L

1- m 1 + (l:(i+1)mi + 2m 1- (L+1)md -l:imi +Lin£+ 0 (1),
i=2 i=2

which reduces to:
L

1 + m 1 + l: 1*m; - In£ + 0 (1).
i=2

Readjusting summation limits yields a run-time per reference for forest simulation of:

L-1

1 + l:m; + 0 (1).
i•l

The miss ratios for L direct-mapped caches can also be computed with L separate or concurrent

stack simulations of individual caches. In separate simulations, cache C 1 is simulated with all refer

ences, then cache C 2 is simulated with all references, and so forth, until cache CL is simulated with all

references. In concurrent simulation, all L caches are simulated at the same time with each reference

processed by all the caches before the next reference is processed. Concurrent simulation is faster than

separate simulation, but requires more storage. It is faster, because each trace address is read once

rather than L times. It uses more storage, since blocks for all caches must be simultaneously resident.

Since I care about run-time and not about stora~e, I consider only concurrent simulation further.

In concurrent simulation each address is read once, and unit processing is required for each level.

The run-time per reference is, therefore:

L + 0(1).

This time is greater than the time for forest simulation,
L-1

1 + l:m; + 0{1),

for practical (not equal to one) miss ratios.

2.5. Simulating Set-Associative Caches without Inclusion

Stack and forest simulation will simulate a series of caches with one pass through an address

trace. Both methods are "efficient." because they take advantage of inclusion. Since inclusion does

not hold for caches of all sizes and associativities (see Theorem 1), algorithms using inclusion must

constrain the series of caches simulated (see Figure 2-9). Here I describe an algorithm, which I call

all-associativity simulation , that does not use inclusion, but can simulate set-associative caches with

20

the same block size, that do no prefetching, and use LRU replacement, with one pass over an address

trace. With it, I can cover the design space of Figure 2-9 in 3 simulations (one per block size) instead of

15 runs of stack simulation. The algorithm described here permits the set-associative caches use of

arbitrary set-mapping functions. A literature search revealed that a version of all-associativity simula

tion, where all set-mapping functions use bit selection, was developed by researchers at IBM

[Matt70, Trai71]t.

Associativity

Stack Simulation

I
I
1- ----L-, "'

Associativity

Forest Simulation

Figure 2-9. Simulating Cache Designs.

This figure displays a portion of the cache design space: cache size, block size lind usociativity. 1be solid lines on

the left connects cache designs that can be simulated with a single stack simulation. Circles indicate simulations of

single cache designs. The solid lines on the right connect cache designs that can be simulated with a single forest

simulation.

Covering portions of the cache design space can require many simulations even though stack and forest simulation

simulate several caches at a time. In this example, 15 stack simulations are needed, and 3 forest simulation cover

half the space but can't simulate the rest of iL Alternatively, three all-associativity simulations (one per block size)

cover the same space.

All-associativity simulation does not take advantage of inclusion, because inclusion does not hold

for many groups of set-associative caches. For example: (a) direct-mapped and two-way set-associative

caches of any size do not include any four-way set-associative caches, because the former have smaller

associativities; (b) a four-way set-associative cache of c blocks does not include a direct-mapped cache

of c 12 blocks even if both use bit selection, because~ rem c 14 = y rem c 14 does not imply .x rem c 12 = y

rem c 12 (e.g., .x=O and y=c /4); and (c) it is not possible for a cache C 2 to include a different cache C 1 of

the same size, because cache C 2 can never contain any blocks not in cache C 1 and still contain all the

blocks of cache C 1•

I now develop all-associativity simulation from stack simulation through successive refinements.

An all-associative simulation run can simulate caches that use different set-mapping functions, /; (.x),

and have different capacities. The same caches can be simulated with concurrent stack simulations.

This approach requires a stack simulation for each different set-mapping function. For instance, if the

t Traiger and Slutz also describe how to simulate alternative caches with different block sizes.

Stack
fully-assoc

Stack
Orem2

Stack
lrem2

Figure 2-10. Concurrent Stack Simulation.

1bis figure displays how the stacks for caches with one (fully-associative) or two sets using bit selection if 1 (x)=0

and f zf..x)=x rem 2) could look during a simulation. The stack for one set contains a list of all the block nwnbers

recently referenced, listed from most-recently-referenced to least-recently-referenced. I call this stack a fully

associalive stack, because it models fully-associative caches. The stacks for two sets contain similar lists for the

even and odd block numbers. '1!- stacks are required to simulate with bit selection for '1!- sets. A block resides in a

cache of c blocks with one set if and only if the block is in the fully-associative stack a1 a distance of less than or

equal to c . A block resides in a cache of c blocks with two sets if and only if it is in the appropriate stack al a dis

tance of less than or equal to c rl... A block resides in a cache of c blocks with '1!- sets if and only if it is in the ap

propriate stack al a distance of less than or equal to c n!- .

21

caches to be simulated use bit selection with 0, 1, and 2 bits, the following stack simulations are

sufficient: a stack simulation with one stack for caches with f 1(x) = 0, a stack simulation with two

stacks for caches with f 2(x) = x rem 2, and a stack simulation with four stacks for caches with

f 3(x) = x rem 4. Figure 2-10 illustrates how the stacks for one and two sets with bit selection could look

during concurrent stack simulation. In this example both sets of stacks contain the same nodes. In

practice when stack sizes are bounded by the largest cache size of interest, the sets of stacks will (usu

ally) contain slightly different nodes. For example, node 8 would be missing from stacks for two sets if

caches of interest are restricted to eight total blocks (four per set). Nevertheless, many blocks will be

shared by both caches, since similar caches have similar hit ratios.

Storage can be reduced in this simulation by allocating a single node per block and including in

the node a next pointer field for each group of stacks being simulated. Figure 2-11 illustrates how the

nodes of the single fully-associative stack can be linked with a second set of next pointers to fonn the

stacks for caches with two sets.

While reducing storage is not important, this node sharing holds the key to reducing time.

Observe that all the pointers in the stack point down. This is always the case for LRU replacement,

because the order of two blocks in any stack is a function of references to those two blocks, independent

of all other references. For example, stack 0 rem 2 in Figure 2-10 indicates that block 6 was referenced

more recently than block 4. Block 6 must also be above block 4 in the fully-associative stack, because

intennediate references to blocks 3 and 5 do not effect whether block 6 was referenced more recently

than block 4. Since all pointers point down, the fully-associative stack contains all the infonnation

r--

r--

r

r-L
I I

I

\J'V

Stack
fully-assoc

--,
-1 I

I I
I I

Stack
Orem2
~

Stack
1 rem2
~

Figure 2-11. Concurrent Stack Simulation with Shared Storage.

This figure illustrates how a single set of nodes can be used to rqresent the stacks for caches using bit selection

with one and two sets. A second no.t pointer field must be added to each node so that it can be linked into a

second stack. The stacks for stack simulations with L diff«2'ent set-mapping functions can share one group of

nodes if each node contains storage for L different no.t pointers. This reduces storage requirements with respect

to using separate stacks, but does not reduce simulation time.

22

necessary to detennine the order of nodes in all other groups of stacks. Thus, the stack for reference x

with set-mapping function 1 (x) can be constructed by finding all blocks y in the fully-associative stack

where l(y)=l(x) and listing these blocks in the same order as they are encountered in the fully

associative stack.

The goal of this research is to find stack distances, and hence miss ratios, however. not construct

all the groups of stacks. The following algorithm computes stack distances for set-associative caches of

different capacities and set-mapping functions 11 through h directly from the fully-associative stack.

When simulation completes, each counter distance[i, k] holds the number of references to stack dis

tance k with set-mapping function I;. For each reference to block number x {

}.

Zero the L total_above counters.

Look at nodes y in the fully-associative stack until x is found or the stack exhausted. If y=x {

Increment the L total_ above counters. move x to the top of the stack, and increment

distance[i, total above[i]J fori=ltoL.

} else {

For i=liDL, increment total_above[i] ifl;(x)=l;(y).

}
If the stack is exhausted without finding x, push x on the top of the stack.

Figure 2-12 illustrates the algorithm operating on one reference. Figures 2-13 and 2-14 give

pseudo-code for this algorithm.

All-associativity simulation can be improved further if I restrict the I; 's so that the set hierarchy

condition holds. Recall that this condition is:

Full y-Assoc Two Sets Four Sets

f(x) = 0 f(x) = x rem 2 f(x) =x rem 4

Stack Block 2 Same Total_ Same Total_ Same Total

fully-assoc found? set? above[l] set? above[2) set? above(3]

no yes 1 yes 1 yes 1

no yes 2 no 1 no 1

no yes 3 no 1 no 1

no yes 4 yes 2 no 1

no yes 5 yes 3 no 1

no yes 6 no 3 no 1

yes yes 7 yes 4 yes 2

Stack =7 =4 =2
Distance:

Figure 2-12. All-Associativity Simulation Example.

This figure illustrates how all-associativity simulation processes a reference to block 2 for caches with set-mapping

functions / 1(x)=O, fz(x)=x rem2, and /3(x)=x rem4. Counter tolal_above[i] always contains the

number of blocks encountered so far stack /i (2), since block 2 is referenced. Each row of the figure shows that

total_above[i) is incremented in response to blocky in the stack if and only if /i (y) = fi (2).

Processing stops when the reference is found (block 2). The stack distance of block 2 in a cache with set-mapping

functionfi is total_above[i]. The stack distances found for block 2 are 7, 4, and 2, respectively.

integer L - number of set-mapping functions

function f 1(x), ... , fL(x) -- arbitrary set-mapping functions

integer N - number of references

integer max_assoc -- maximum associativity for metrics

•
-- distance counts so that m(C(F=i. A=k)) = 1 - I:distance[i.k]IN

integer distance[l:L, l:max_assoc]

define stack:node_type {
integer block_number

stacknode_type *next

jsl

stacknode_type *stack - top of stack pointer

stacknode_type stacknodes[l:O(N*o.)) - pool of dynamically linked stack:nodes

Figure 2-13. All-Associativity Simulation Storage.

/i+l(x)=fi+l(y) implies /i(x)=fi(y).

23

In all-associativity simulation with arbitrary /i 's, it is necessary to know which of any two blocks are

more recently referenced. Consequently, a total ordering of the previously referenced blocks must be

For each reference x (
integer total_above[l:L] -distance counren for X

for i=l to L (total_above[i] = 0 }
read(var x)
N++

-FIND
found= FALSE
previous_node_pointer • NUll.
node _pointer • stack
while ((NOT found) AND (nodc_poirucr-NUlL)) (

y = node_pointer->block_number

if(x=y) (

}
else (

-METRIC
if (found) {

found=TRUE
for i=l to L (total_above(i]++ }

for i=l to L {
if (f; (x)==f; (y)) total_above(i)++

)
previous_node_pointer • node_pointer
node _pointer- node_pointer->fteltt

for i=l to L (
-References to distances beyond max_assoc are implicit misses.

if (total_above[i} S max_assoc) distance[i. total_above[ill++

-· If was found, move the stack node of x to the top of the lUlCk.

-· Otherwise, store x in a new stacknode and move it to the top of the lUlCk.

UPDA TE(x, found, previous_node_pointer, node _pointer)

Figure 2-14. All-Associativity Simulation.

maintained with a fully-associative LRU stack. Since the set hierarchy condition also implies:

I t(:c)*l 1(y} implies l;(:c)*f;(y} for i=l,L,

24

two blocks in different I 1-stacks will never be compared. This means all-associativity simulation with

set hierarchy need only maintain the LRU stacks for each element in the image of 11• Simulating with

multiple stacks is faster than simulating with one, because the average number of active blocks one

must look through to find a block is mtaller, since active blocks are spread across many stacks. This

reduction is significant since, the number of stacks for practical CPU cache simulations is often greater

than 100. The number of stacks used in a simulation of the V AX-Itnso·s cache, for example, is 512.

Another benefit of set-hierarchy is that a simulation need not examine I; (:c F=/; (y) fori =L down to

I, since /;.1(:c)=/;.1(y) implies l;(:c)=f;(y). Instead of iterating through all L set-mappings. one can

begin withh and stop as soon asf;(:c)=f;(y). For instance, if :candy are in the same set in the largest

cache simulated, i.e., fL(:c'pfL(y}, the number of iterations is reduced from L to one. Additional time

can be saved if one increments above[i] only for the largest i for which :c andy map to the same set,

rather than incrementing total_above[i] for each i where f;(:c'pf;(y). When :c is fmmd or the stack

Stack Number of Above[O] Above [I] Above[2]
fully-assoc LSB matched

2 0 0 1

0 1 0 1

0 2 0 1

1 2 1 1

1 2 2 1

0 3 2 1

found 3 2 2

Stack 3+2+2 2+2 2
Distance: ·7 ·4 ·2

Figure 2-15. All-Associativity Simulation with Set Hierarchy Example.

This figure illustrates how all-associativity simulation with set hicnrchy processes a reference to block 2 by scan

ning the stack until block 2 is found (or the stack is exhausted). Far each block before the reference is found: (a)

The algorithm calculates the largest set-mapping function,/;, for which the reference and the stack node .rein the

same set. For bit selection, the calculation reduces to computing the nmnber of Jeast-significiDll bits that match

between the block numbers of the reference snd the stack node. (b) it increments above [i]. Once the reference is
L

found, above [L] is incremented, the reference's stack distance with set-mapping function/; is l: above [k].
t-i

integer L - number of set-mapping functions

-- set-mapping functions that obey set hierarchy,

-- i.e., fi+l (x)=fi+l (y) => f; (x)=f; (y) for i=l, L-1.

function f1(x), fL (x)

integer number_of_stack.s - nmnber of sets induced by f1(x)

integer N - number of references

integer max_assoc - maximum associativity for mettics
t

- distance counts so that m(C(F=i. A=k)) • 1 -l:distance[i,k]IN
i•l

integer distance[l:L. l:max_assoc]

define stacknode_type {
integer block_nmnber
stacknode_type -next

stacknode_type •stack[O:nmnber of stack.s-1] - 1.0p of stack pointers

stacknode_type staclcnodes[t:O(N•5..)] - pool of dynamically linked stacknodes

Figure 2-16. All-Associativity Storage w/ Set Hierarchy.

25

For each reference x {

exhausted,

integer above[l:L] -distance counters for x

for i=l to L (above{i] = 0)

read(var x)

N++
stack_number = f1(x)

-FIND
found= FALSE

previous_node_point.er =NUll.

node_point.er = stack[stack_nurnber]

while ((Naf found) AND (node_poinla=NUU.)) {

y = node_point.er->bloclc_nurnber

if(x==y) {

)
else {

-- METRIC
if (found) {

found=TRUE
above[L)++

mau:h = FALSE
for i=L down to 1 or malch (

if (f; (x)==f; (y)) (

mau:h=TRUE
above[i)++

previoUSJlode_point.er =node _pointer

node_point.er = node_point.er->next

total_above = 0
for i=L down to 1 {

total_above = total_above + above{i]

-- References to distances beyond max_assoc are implicit misses.

if (total_above S max_assoc) distance[i. total_above]++

-- If was found, move the stack node of x to the top of its stack.

-- Otherwise, store x in a new stacknode and move it to the top of the stack.

UPDA TE(x, stack_number, found, previous_node_point.er, node_point.er}

Figure 2-17. All-Associativity Simulation w/ Set Hierarchy.

L

total_above [i] = l: above [k].
i-i

26

Figure 2-15 gives an example of all-associativity simulation using set hierarchy. Figures 2-16 and 2-17

give the pseudo-code for this improved algorithm.

All-associativity simulation can be made to run even faster in practice if the fi 's are all bit selec

tion. Bit selection set-mapping functions make it easy to compute the largest i for which x andy map

to the same set. The computation reduces to finding the minimum of L and the number of least

27

significant bits that match between z and y.

I have defined all-associativity simulation for set-associative caches that use LRU replacement I

now show that it does not wort with two other commonly-implemented replacement algorithms, FIFO

and RANDOM. AU-associativity ·simulation does not work with FIFO replacement. because all

associativity simulation is based on stack simulation. and FIFO is not a stack algorithm (see Section

2.2.2).

Figure 2-18 shows by example that all-associativity simulation does not work with RANDOM

replacement even though RANDOM is a stack algorithm. 1be example illustrates the following general

problem. Any replacement algorithm may reorder blocks in the set of a reference between the top of

stack and the original position of the reference, so long as no blocks other than the reference move up.

In all-associativity simulation. multiple set-mapping functions are concurrently simulated. 1berefore,

some blocks can be in the set of a reference with one set-mapping function and not in the set of a refer

ence with aoother set-mapping function. Incorrect behavior occurs any time blocks not in the set of the

reference are reordered. LR U prevents such blocks from being reordered by never changing the order

of unreferenced blocks.

While I have shown that all-associativity simulation fails with FIFO and RANDOM, I have not

shown that all-associativity simulation fails with all replacement algorithms other than LRU. One way

to show this is to prove the following. Consider an all-associativity simulation with two set-mapping

functions, I 1 ~1 :z. (Recall that all-associativity simulation reduces to stack simulation if only one set

mapping function is used.) The stacks in all-associativity simulation are updated incorrectly in response

to a reference z if blocks not in 1 1 (z) or not in 1 2(z) are reordered. While I have not done it. one can

demonstrate that LRU replacement is necessary for all-associativity simulation by showing that any

replacement algorithm which obeys the above constraint never reorders any unreferenced blocks, and is

therefore equivalent to LRU.

The storage for all-associativity simulation is dominated by storage for the stack nodes (see Figure

2-16). Like unbounded stack simulation. the storage required is proportional to the number of unique

blocks in a trace, N 6... Even for a long trace, however, the storage required is small relative to modem

main memory sizes. A simulation of 10 million references with 200 thousand unique blocks requires

only 1.6M bytes of storage if it uses two words per block. While stacks in stack simulation can be

bounded by the largest associativity of interest, stacks in all-associativity simulation cannot be bounded,

because these stacks are used to construct stacks for other set-mapping functions. Consider a fully

associative stack and stacks for even and odd blocks. The fully-associative stack cannot be bounded,

because the first odd block can reside at an arbitrary large distance in the fully-associative stack.

The run-time (per reference) of all-associativity simulation with set hierarchy centers around how

many times the "while" loop is executed (see Figure 2-17). LCt 51 be the probability that a reference is

found at stack depth k, and let S.. be the probability that a reference is not found. References at stack

distance k are found in k iterations. References at stack distance oo are found by looking through the

entire stack t. 1be size of the stack is equal to the number of distinct blocks previously referenced,

which is 0 (JI S.), where N is the number of blocks in the address trace. On each iteration in all

associativity simulation, a stack node must be compared to the reference to see if they are the same. If

not. additional work is required to find the maximum i for which the reference and the stack node are in

the same set Let the average amount of this extra wort be called match_ compute . Whenever a refer

ence is found at distance k, unit work must be done on k iterations and mazch_compute work on all but

the last iteration. In addition, each reference must be read from a trace file, L above counters initialized

and summed to form the stack distances. I gather the per-reference overhead in 0 (1). Thus, time to

process a reference is of order:

t As discussed in Section 2.2.4, a hash table c:an be used to suppress lbe secch for previously unreferenced

blocks.

Stack
fully-assoc

Stack
Orem2

,..I.,
L- f- _.
..--'It-,
L- ~-

~

(b)

Stack
fully-assoc

Stack
lrem2

,..I.,
L- ~- _.

v

Stack
Orem2
~

r--'lt-1

L-f-.J
ro-'lt-1

l-J/-.J
~

Stack
1rem2
~ ,..-'It-,

L- ~- _.

~

Stack
fully-assoc

Stack
Orem2
--r-

r--'lt-,

I L-J/-.J
• ..--'It-,

L -f- _.
v

(b')

Figure 2-18. Random Replacement Does Not Work.

Stack
1 rem2
--r-

.--'lt-,

i L -~- ...

This figure shows that all-associal.ivity simulation does not work with R.ANOOM replac:ement. Pllrt (a) illustrates a

fully-associative stack after a series of references Oeft), md the pair of stacla for even and odd blocks implied by

the fully-associative stack (right). Among other things, the slacks imply that a two-block fully-associative c.che

contains blocks 0 and 2. and a two-block direct-mapped cache contains blocks 1 and 2.

Let block 1 be referenced. RANDOM replacement in the two-block fully associative c.cbe requires that block 0 or

block 2 be replaced with equal probability. Pm (b) shows block 0 replaced, while pet (b') shows block 2 re

placed. The stacks in part (b) are consistent, since R.ANOOM replacemcnl coincidentally replaces the least recent

ly used block.

The state of the fully-associal.ive stllek in put (b'). however, implies that block 0 is in the two-block direct-mapped

cache. The state of the stacks is inconsistent. since block 0 was not originally in the two-block direct-mapped

cache, block 0 was not referenced, and prefet.ching is not allowed. lberefore the fully-~al.ive stllek under

RANDOM replacement carmot be used to infer the positions of blocks in the even and odd stacks, which demon

strates that all-associativity simulation does not work with R.ANOOM replacemenL

-

28

I:6l • [t + (1-1)*match_comp.ae] +
i•l

Eq. 2-4.

6_ •o (N 6_)• [l+match_compute 1 + 0 (L) + 0 (1).

The first tenn is the time to process previously referenced blocks; the second is for previously unrefer

enced blocks; the third and final tenns are for manipulating counters and reading the reference, respec

tively.

To see how this run-time compares with stack simulation, let us assume the all set-mapping func

tions are bit-selection. For this to be possible with a 32-bit address, L must be less than 32. If the low

order bits of block numbers for recently-referenced blocks are independent and equally likely to be zero

or one, then the expected number of least-significant bits that match is less than 1 (1/2 + 1/4 + 1/8 + ...).

Since the loop computing match iterates until a mismatch is found, the expected number of iterations is

two t. Substituting two for match_compute yields:

tOn some machines IMlch can be computed with a fixed number of instructions (e.g~ applying the V AX-11

instruction FIND-FIRST -SET to the exclusive-OR of the addresses being compared. [Digi81]).

29

-I: ~j;. [31 - 2] + 3*0 (N &_)* &.. + 0 (32) + 0 (1),
Eq. 2-5.

l•l

which should not be more than three times greater than the time for stack simulation (Equation 2-1);

-l:k~t + O(NS..)*&..+ 0(1).
l•l

In practice the relative difference in run times should be smaller, because I expect that the 0 (32)

tenn to be small compared to other terms, ~1 to be near one (the direct-mapped hit ratio near one) often

saving any match_compute overhead, and the per-reference overllead 0(1) to be relatively large.

2.6. Comparing Actual Simulation Times

Here I compare the simulation times of implementations of stack, forest. and all-associativity

simulation. While the exact quantitative results of this section do not necessarily apply to other imple

mentations, there is no reason to believe that gross comparisons do not generalize. Tile advantage of

this data over the run-time analysis presented earlier is that these results apply to at least one set of

implementations of these algorithms.

I have implemented stack, forest and all-associativity simulation in C under UNIX 4.3 BSD.

Stack and forest simulation were added to a general cache simulator, called Dinerol/1 [Hill85).

Dinerom originally contained 1250 C statements, as measured by the number of source lines containing

a semicolon or closing brace. Adding stack simulation increased total code size by 150 statements,

adding forest simulation, 220 statements. Stack simulation is implemented using linked lists and

without using a hash table to detect previously unreferenced blocks (see Section 2.2.4). Tile forest

simulation implementation restricts the set-mapping functions to be the block number modulo the cache

size in blocks, a generalization of bit selection. I implemented all-associativity simulation in a separate

program, called Tycho , containing 800 C statements and having far fewer options than Dinerom.

Tycho restricts the set-mapping functions to be bit selection. My implementations of these algorithms

are available to interested researchers free of charge.

I estimate simulation time with the elapsed virtual time (user plus system) returned by the UNIX

4.3 BSD system call getrusage on an otherwise unloaded Sun-3n5 with 8M of memory and no local

disk. Trace data is read from a file server via an ethemet I give the results for four traces from four

different architectures, described in Table 2-1, despite finding that results are fairly insensitive to pro

gram traces. All caches simulated have 32-byte blocks, do no prefetching, use LRU replacement, are

mixed (data and instruction cached together), and use bit selection.

I begin by verifying that implementations of the three algorithms have similar run-times for simu

lating a single cache, using two methods. First, I ran each implementation using a trace of 1 million

identical addresses so that all references, expect the first. hit at distance one. Results show that the

elapsed virtual times of forest and stack simulation differ by 0.1 percent, while all-associativity simula

tion is 3 percent faster. All-associativity simulation is faster, because it is implemented in a different

program, Tycho. It is not surprising that Tycho is slightly faster than Dinerolll, because Dineroiil is a

general cache simulator. Even though Dinerolll's additional features are not used in these simulation

runs, Dinerom uses some execution time to fall through the if statements that guard the additional

features.

Second, I compare the algorithms simulating a 16K-byte direct-mapped cache ~th each of four

traces (See Table 2-1). Figure 2-19 displays these results, which are similar to those above. In addition,

Figure 2-20 shows that a stack and an all-associativity of a single 16K-byte four-way set-associative

cache are also comparable.

Since my implementations of these algorithms have similar run-times for simulating single

caches, the comparisons of multiple cache simulations that follow are meaningful, because I know that

simulation time differences are not due to per reference overbeads.

Trace Architecrure; Comments
Name Ooerating System

mvs IBM370; MVS System calls from an Amdahl standard MVS

workload [Smit85].

synapse_devel Single-68000 Synapse N+ 1; User and system crace of a synthetic

Synthesis development w<rtload co~isting of editing,

compiling, linking and executing a collec-

lion of programs, as well as executing com-
mon system utilities(_.. 1 list, etc).

mul2.000 VAX-11; VMS User and system trace of a two-job mul-

liprogrammed workload gatheled with mi-

aocode modifications [Agar86].

unoptupas MIPS; Unix BSD User crace of unoptimized version of the

Pascal front-end for the MIPS system com-

piling a n.B simulator.

Table 2-1. Program Address Traces.

This table descnbes the four traces from four architectures used to evahwe stack. forest mel 111-asociativity limu

lation. Results 1re fairly insensitive to program traces. More details em be found in [AguS6, Smil85]

30

Next I verify my expectation that forest simulation is faster than stack and all-associativity simu

lation for simulating a series of direct-mapped caches. Figure 2-21 shows the nmn.ing times for one nm

of the three algorithms simulating 16K. 32K. 64K. and 128K-byte direct-mapped caches. Forest and

all-associativity simulation require only one run to simulate the four caches, while stack simulation uses

four runs. Forest simulation is between 1.3 and 4.4 percent faster than all-associativity simulation. A

single stack simulation run cannot simulate more than one direct-mapped cache, instead, one run per

cache is required. Lines labeled .. S/4" show the stack simulation times required to simulate the 128K

byte direct-mapped cache. The stack simulation time for the series of four direct-mapped caches is at

least four times as great

The reason that the simulation times for single runs of the three algorithms are similar for this

series of direct-mapped caches is that the miss ratios are relatively small, less than 5 percent. For exam

ple, the miss ratios for trace mvs for direct-mapped caches from 16K to 128K-bytes are 7.0, 4.6, 2.6,

and 1. 7 percent. On each direct-mapped cache hit, the reference is foWld at the top of the stack by each

algorithm, and therefore simulation times have little opportunity to differ. Consequently I re-ran the

algorithms on smaller direct-mapped caches. 1be mvs miss ratios for these caches, from lK to 8K

bytes, are 20.1, 16.9, 13.3, and 9.8 percent As Figure 2-22 indicates, the simulation time differences

did indeed increase. Forest simulation is between 8 and 24 percent faster than all-associativity simula

tion.

I now verify my expectation that all-associativity simulation is faster than stack simulation for

simulating caches when size and associativity are independently varied, because all-associativity simu

lation needs fewer simulations to do the job. I choose to simulate the twelve caches of size 16K, 32K,

64K and 128K-bytes, and associativity one, two and four, because these sizes and associativities are

typical of CPU caches. Figure 2-23 illustrates the six stack simulations necessary to cover this region

of the design space. The run-times in Figure 2-24 show that the time for the all~associativity simulation

is comparable to that of one of the six stack simulations required, and hence, all-associativity simulation

covers this region of the cache design space about six times faster.

31

soo _______ _E!!1-------;

I I
: : ·····------:···-----:
f i
: : s

mu12.000
200 ----r·---~---~

: : :
• • 0

: : :
E : : :
1 ' I f r50

-----; : 1
v400
• p
• •
4300

v

i :-F

:~=~~~~~=-r
2 ! :

v i LF
i 100 : 0 • s i

r

' •200 • I

T
i

JD100
•

_T _______ i
0~----------~----------~
0.0 sooooo.o

Rcfc:n:nc:a Pmc:sled
1000000.0

E
1
• 300
p
• • 4

v
i200
r
t
D

• 1

T 100
ID

•

_____ §1lli'J1!"~l!;X~-----l

: : s i o_F

---------+----- :.;:::A

i , i
: ¥ : -----------------\·--- _.-·------~

0 ~ I
--~--------~

0~--------~----------~ 0.0 sooooo.o
Rcfen:ncea Pmc:sled

1000000.0

r ------:-----:-----

' : i
: ~ !
I l
! 50 -----r-

E
I

•

• 300
p
• • 4

v
i:aoo
r

' II

• 1

T too I
ID

•

100000 200000
Ref-~

_____ unQP!~~------:

! !
: :
i : s
: o""F

~

·------c ---~~
---~-------~

1000000.0

Figure 2-19. Single Direct-Mapped Cache Run-Times.

This figure displays the elapsed virtual time in seconds for a stack ("S"), 1 forest (.. F") md m all-associativity

simulation ("A") of 1 16K-byte direct-mapped cache with each of the four traces, revealing that all three algo

rithms perform similarly. Note that trace wud2 .000 is one-third the length of the other three traces.

soo

~400
• p
I
e
d300

mvs .. ___________ _
! I l !

·····-·-··L.L ____ j _______ j
l i i i

E
1
• 1SO
p
I
e
d

mu12.000 --------1·---------·-r-·----1

I I I ----- i __ l _____ l

32

v
i
r
t
D20()

• 1

T

--------t-----t--!--- : '

~~]:---=~~:::~1==1
J•oo ----~ --r------ i_,

! so ------------r-
i
m100
e

: : :
: : :

0~----~--~----~----~

0.0 250000.0 sooooo.o 750000.0 1000000.0
.Ref<::ra>ee~ Procaaed

E
1

400

• 300
p
I
e
d

v
!200
t
u
• 1

I 100
m
e

-··-···---~~:~~~! :----··-··:
: : : :

! ! i i
l i i ! s

-·--------i------i _____ j____ __.J_
: ; ! , :
: : : :
: : : / :
: i : ~ !
: : I' :

! : ~: ;
·······----!·········-··f··-·· r···j····-----·j

: : . : :

I : / I I
e :i" I I I

······--····t·· ·····---~-------···-1··----··j

~ ! I
0~----~-----r: ____ _.: ____ ~:
0.0 250000.0 sooooo.o 750000.0 1000000.0

Refc:n::ncea Procaaed

E
1

e

400

• 300
p
• e
d

v
i200
r
t
u

• 1

T 100
l
m
e

0~----~~----~------~

0 100000 200000
.Ref- Procaaed

---- (1~-~---1

300000

: : ! : s
···---t---t----t--· :.Jo.

! ! j / i

-----~---r- r---J
---------r··· ··--r------T----1

l l l
0~----~----~----~----~

0.0 250000.0 sooooo.o 750000.0 1000000.0
.Ref-~

Figure 2-20. Single Set-Associative Cache Run-Times.

This figure displays the elapsed virtual time in seconds for a stack ("S") and an all-associativity simulation

("A") of a 16K-byte four-way set-associative cache with each of the four traces, showing both algorithms perfonn

similarly. A forest simulation is not included, because forest simulation operates on direct-mapped caches only.

33

mvs
soo --------··r·-------r------r--1

! i ! ! ~ 400 ------------:--------:--------:------:

r 1 1 l l_A
e i i i '~ _F
cl 300 ------------~--------:----------~---~ ' v : : : ~- : . : : ; ~.: :
1 ! ! j,: 5,14 !
~ i i .F.~i- i ! 200 -----------r·--------r~: ···r·-----1
i : f : : -: '"' -------4- ___ T_l ___ l
0~--~~--~----~----~

mul2.000 ______ T____________ l-------1
: : :
i i ! E I • f

! 1SO ·--------1-----+-------j

i I I l
V ! ! :_A

llOO -----~--1----;- F

~ ~ -------t- --r-l
0.0 250000.0 500000.0 750000.0 1000000.0 300000

Rdc:rax:eaPmceaed

400 -----------~-P-~i~~~! ... ;------j
j j ! j A

---(i_T ___ l
E
1

i ~ ~ ·=F E
1 i i i ~-A

• 300
p ------r-T---t- • 300

p
: : : ". F ·------t·----r-----t----.,-· '
! ! : I' ! • c

cl
: : : ~ :
! ! ~ 5,14 :
! ! ~·- 1

I
e
cl

v
!200 ----r---,- v

i200
t

: : I' : :

--------i------t-··;r.· ·-t---------j
t
D

• 1

t
D

• 1

: : / : :
t I f o . . ' . . ' . . ' . . ' . . ' . . ' . ' ' . . ' . . '

-----------I ---------~-------·--1·--------1 T 100
: ;; . : :

---r ---TT-l T 100
m
e

I I I
0~--~~--~-----P----~
0.0 250000.0 500000.0 750000.0 1000000.0

Rde:r<nec:~Pmceaed

m
c

250000.0 sooooo.o 750000.0 1000000.0
Rdc:rax:eaPmceaed

Figure 2-21. Run-Times for a Series of Direct-Mapped Caches.

This figure displays the elapsed virtual time in seconds for one nm of stack ("S/4"), forest ("F") and all

associativity simulation ("A") evaluating 16K. 32K. 64K. and 128K-byte direct-mapped caches with each of the

four traces. Forest and all-associativity simulation require one nm to simulate the caches, whereas stack simulation

needs four nms, one nm per cache size. The forest simulation performs slightly faster than all-associativity simula

tion, and considerably faster than stack simulation for this series of direct-mapped caches. Stack simulation is infe

rior, because it requires four separate simulation nms. Lines "S/4" show the fastest of these four nms.

500 -------r~~---T--1
~ 400 ------------~-----------~--------i----~-" . : : : / :
p ! i i If t
a ! ! ! / : F
e : : : ~ ,-'t-
d 300 ------------t----------l-----------r---:.-~--1
v ! ! ;'! / !
i ! ! / J,-~ !
r : : ~ .,·: :
l : : / / : :

: 200 ------------t------------~--: .. :·-j---·-·i
1 : / : ·"' : :

: ~ ,:i(: :
T ! /J" i ! !
i : ~/" : : :
m 100 ----------j..-: -: --! .. -.-:
e ~f ! l !

~-*' l l l l
t• ! l : ! ,. : : : :

0 . : : : :

0.0 250000.0 500000.0 750000.0 1000000.0
Rd c:renca Proc:aaed

400 -----------r~~l~~~L-r-----1
! : ! j._A

E i 1 1 / ~ F
1 : : : ~ /:-
1 300 ----------4-------+--------4---r-1
p : ; ! ~ / :
I i ! _j. ~~· !
~ i i ;-} i

: : /II: :
v ! ! ;' / l l
: 200 ···········-f-···-···-f·T.I": ; ___ i

: it./ : :
! ! ,. i 1
• t /#' I l

1 ! f" l l l
i ~- i i i

T 100 ------------i-1=--------i----------i--------i
~- ' ' .

m
e ;·: ! i i

, i i i i
ll l l ! l

/" l l l l
0 • : : : :

0.0 250000.0 500000.0 750000.0 1000000.0
Rdc:renca Pmcsled

34

mul2.000
200 ---------------1·---------------r-··----------J

~ I I I
~ ISO ·······-·······1-·-·---l-------····1
d ! ! ~-" v : : .1' I

i 100 ------------.J---------~----··7!.:f-F
r i i " ,/ i
~ : : / ·" : . : .., , .. "' :
1 i .,--...... -. l

! ,.,_, .. "' j j
T so -------------1--..r5..L-------r--------·-i
m ¥_./ ! !
e ,.If' : :

~-" : : :
,.~- 1 1 1 ,. : : :

0 • ' ' '

0 100000 200000 300000
Rdc:nmcea Procsaed

.00 ------r~QP~~~-----··r--··-----~
E j i i ~-A
1 i . ! i / ~-F I 30() ____ ._ ___ _. ___ ... _. J..,.:l

p : : : / ;" :
I ! : ! ~ / !
e : : j. ;-" :
d i i II}· !
v i i /_;·: i
i 200 ------~-----------~---JI.~---!-------! r : : / ;' : :
' : ~/ : :
: l / ,y· l l
1 i ,_,·: ! i

: /.' i : 1
T 100 ------------~:t~---·-·i··--·---·--+··----··i
~ 1.. : : :

f" l l l l
;· l l l l

/ i l i i
0 • : : : :

0.0 250000.0 sooooo.o 750000.0 1000000.0
Rdc:renca Pmceaacd

Figure 2-22. Run-Times for Small Direct-Mapped Caches.

Similar to Figure 2-21, this figure displays the elapsed virtual time in seconds for a forest and an all-associativity

simulation of 1K, 2K, 4K, 8K-byte direct-mapped caches. Simulation time differences are larger here than in Fig

ure 2-21, because the miss ratio here are larger.

Cache

Size

(bytes)

Associativity

Figure 2-23. Simulating a Design Region with Stack Simulation.

This figure displays the stack simulations necessary to simulate the twelve caches of size 16K. 321{, 64K and

128K-bytes, and associativity one. two and four. Bold lines connect caches that can be simulated with a single

stack simulation. Bold circles indicate the simulation of a single cache. A stack simulation is required for each

different nmnber of sets. Six separate simulations are required:

•128 sets (16K-byte with four-way)

• 256 sets (16K-byte with two-way and 32K-byte with four-way)

• 512 sets (16K-byte with direct-mapped. 32K-byte with two-way and 64K-byte with four-way)

elK sets (32K-byte with direct-mapped. 64K-byte with two-way and 128K-byte with fom-way)

• 2K sets (64K-byte with direct-mapped and 128K-byte with two-way)

•4K sets (128K-byte with direct-mapped).

35

mvs
500 ---·--·--·-:····--------:-···-----·-:-·-·--;

: : : :

! ! ! !
f 400 -·--·-·----~---------·-i···-----~----·--~
a i i i l A

: : : T-

f ; ! : , :
e • , • ~ .
d ! ! ! , 'SJ(i

mul2.000

• >10 ----r-·-·--r---~
1 : : :

a 1SO ····---~----~------~
p i . ! !
a : : :
e : : :
d : : i

36

300 ··········-:··-···--·:····-····-:·r-··· -
v i i y
i : : II :

V
! i .t_A
I t "" o

i 100 ·····-----~---~--.c ... : _S/6
r i i " :
l : : ~ : : r --·--t~:t ---~.·-----;.i
i ! ~, i I I

~
100 ------~- -----r-r--1
0~----~--~----~----~
0.0 250000.0 500000.0 750000.0 1000000.0

Rcfcrencao Proc:eaod

400 -----------r.E~l~~~Lr··-----1
! ! i j,_A

E : : : " , SJ6
t I i i ; :-
• 300 ······---···---··-·-__. ___ ,. --i r ! ! i,. i
e i i r i
d : : ""' : : ! , : :
y ! ! "" i i
~ 200 -----------:----------:·7 -----:-------:

; I ~ I I
~ 100 -----------· --r··-~--~

0~----~--~----~----~
0.0 250000.0 500000.0 750000.0 1000000.0

Rcfcrencao Proc:eaod

r : : *" :
l : : "" :
a : : , :
• : lr :
1 ! ;' I • i
T i C" i
i 50 ··-------;--;J.. -··-+---------;
m • : !

e I I
0~------r-----~~----~

0 100000 200000 300000
Rc:f- Proc:eaod

400 ---------r~p~i~-----r--·--1
! i ! ~-A

E : : : , :
1 i ! ! II :
a 300 __, .. ____. ____ ._....,....... _S/6

p ! ! : .J :

I : : :' :
e : : r :
d ! ! ,. : :

i : , . :
y : : ,;' : :
~ 200 -------:-·--:-;-- ---:-----:

l i ~ i i
u : , . ; :
• t I I

1 : ,. : : :
: ,. : : :

r too --------·-·i-*' -----i-.................... l ---·-1
~ <: ! ! !

. I I !
250000.0 500000.0 750000.0 1000000.0

Rc:fereDCe~ Proccaed

Figure 2-24. Run-Times for Simulating Twelve Similar Caches.

This figure shows the elapsed virtual time in seconds for one one of stack ("S/6") and all-associativity simulation

("A") evaluating caches of 16K. 32K. 64K and 128K bytes with associativity one, two, and fom with each of the

four traces. While all-associativity simulation requires only one nm to evaluate the twelve caches, stack simulation

need six nms. The stack simulation lines illustrale the time for the fastest of the six stack simulation times. Conse

quently, the total stack simulation time is at least six times greater than the time displayed by this line. All

associativity simulation is clearly superior to stack simulation for simulating a design region where cache size and

associativity are independently varied.

I conclude by examining how well the run-time analysis done for stack simulation in Section

2.2.3, for forest simulation in Section 2.4 and for all-associativity simulation in Section 2.5 predicts

actual simulation times. I illustrate this comparison with simulation times from trace mvs.

All three algorithms simulate single direct-mapped caches in 1.00 + 0 (1) per reference.

Forest simulation requires the following run-time per reference for L direct-mapped caches (Equa

tion 2-3):
L-1

1 + l:m; + 0(1).
i•1

This equation reduces to the following when four caches are simulated:

3
1 + l:lnj + 0 (1).

37

Since the miss ratios with mvs are 7.0, 4.6, 2.6, and 1.7 percent for 16K to 128K-byte direct-mapped

caches, the predicted run-time per reference of forest simulation with these caches is 1.14 + 0 (1).

Bounded stack simulation requires the following run-time per reference (Equation 2-2):

-..x -
l:kSt +bnax* l: St +bnax*S.+0(1).
k•l l-.boia+ 1

This equation reduces to the following for caches up to four-way set-associative:

• •
l:kSt +4* U-l:Stl + 0(1).
k•l k•l

The S's for a simulation of a four-way set-associative, 16K-byte cache with trace mvs are: S1 =0.8661,

~ = 0.0502, ~ = 0.0200 and s. = 0.0128. Consequently the predicted run-time per reference for that stack

simulation is 1.28 + 0 (1).

All-associativity simulation requires the following run-time per reference (Equation 2-4):

-I:St * [k + (k-1)*match_compute] + S.*O (N S.)• [1+match_compute] + 0 (L) + 0(1).
t=l

This equation reduces to the following for simulating four different numbers of sets provided that I

assume match_ compute is 2 (see discussion preceding Equation 2-5):

-l:St • [3*k - 2] + 3* S. *0 (NS.) + 0 (4) + 0 (1).
i=l

An all-associative simulation of mvs with direct-mapped caches of size 16K through 128K bytes has

sl = 0.9305, ~ = 0.0336, ~ = 0.0198 and s4 = 0.0073; therefore its run-time per reference is:

-
1.28 + l:St * [3*k - 2] + 3* S.. *0 (N S..) + 0 (4) + 0 (1).

k=S

I can compute a lower bound on the run-time by assuming that all blocks not found at stack distances

one through four are found at distance five, and that the 0 (4) term can be ignored. These assumptions

yield a run-time per reference of at least 1.39 + 0 (1).

Table 2-2 displays the run-time predictions calculated above versus actual simulation times for the

mvs trace. Results show that:

(1) Run-time predictions correctly order different runs of the same algorithm, but not runs of different

algorithms.

(2) All simulations of a single cache, with expected run-time 1.00 + 0 (1), require about 300

IJ,S/reference on a Sun-3n5 (5 minutes/1M-references).

(3) All simulations are dominated by the constant term 0 (1). A change that increase~ a run-time

prediction from 1.00 + 0 (1) to 1.10 + 0 (1) leads to a simulation time increase of about one percent.

2. 7. Conclusions

Mattson et al. demonstrated when inclusion holds and how to take advantage of it for simulating

alternative single-level cache designs having the same number of sets [Matt70]. I examine inclusion

and simulation algorithms for caches having differing numbers of sets, because alternative CPU cache

designs rarely have the same number of sets.

Since I find inclusion usually holds for direct-mapped CPU caches (e.g., those that use bit selec

tion), I describe an algorithm for rapidly simulating alternative direct-mapped caches that uses inclu

sion. This algorithm, called forest simulation , is considerably faster than stack simulation for

Algorithm
Cache Degree of MVS Runtime/ MVS s/1M- Nonnalized

Size (bytes) Associativity Reference Reference ToDM-16K

Forest 16K 1-way 1.00+ 0(1) 307.6 1.0

16K to 128K 1-way 1.14 + 0(1) 321.0 1.044

1K to 8K 1-way 1.51 + 0(1) 326.1 1.060

Stack 16K 1-way 1.00+ 0(1) 309.2 1.0

128K 1-way 1.00+ 0(1) 308.6 0.998

16K to 128K 1- to 4-way 1.12 + 0(1) 312.1 1.009

16K 4-way 1.28 + 0(1) 312.5 1.011

1Kto8K 1- to4-way 1.47 + 0(1) 327.2 1.058

All- 16K 1-way 1.00+ 0(1) 300.8 1.0

associativity 16K 4-way 1.28 + 0(1) 309.2 1.028

16K to 128K 1-way > 1.39 + 0(1) 332.3 1.105

16K to 128K 1-,2- & 4-way > 1.39 + 0(1) 366.6 1.219

1K to 8K 1-way >2.65 +0(1) 402.9 1.339

Table 2-2. MVS Run-time vs. Simulation.

This table shows the ron-time predictions and simulation times of forest. stack IDd all-associativity simulations for

various cache configurations with the mvs trace. The third and fifth stack simulations, not used in previous figures,

use 512 and 32 stacks, respectively.

Run-time tredictions correctly order simulation nms of each algorithm, but not simulation nms of different algo

rithms. A least squares fit shows that the simulation time per reference is dominated by the constant term. The fit

for forest simulation is 31.7*x + 279.7 seconds/1M-references whm-e x is the first tc:nn of the run-time predic

tion. The fit for stack simulation is 34.6*x + 273.2 sec:onds/lM-refen:nces. Consequently a simulation with

run-time 1.10 + 0 {1) is likely to be one percent slowez- than a simulation with nm-time 1.00 + 0 (1).

evaluating multiple direct-mapped caches.

38

Since I find inclusion usually does not hold for alternative set-associative CPU cache designs, I

describe an algorithm for simulating alternative set-associative caches that does not use inclusion. This

algorithm, called all-associativity simulation, can be made faster be taldng advantage of set hierarchy,

a necessary, but not sufficient condition for inclusion, since I find set hierarchy usually holds between

set-associative caches (e.g., those that use bit selection). With set hierarchy, the time to run most all

associativity simulations is within 30 percent of the time of one stack or forest simulation. Thus while

forest simulation enables the rapid simulation of direct-mapped caches, all-associativity simulation

facilitates the rapid simulation of direct-mapped and set-associative caches.

The principal impact of this work is that all-associativity simulation with set hierarchy allows a

similar or wider cache design space to be examined in comparable or less simulation time than required

with stack simulation. As shown in Figure 2-23, six stack simulations are needed to simulate mixed

caches of one block size with associativities of one-, two-, and four-way, and sizes 16K, 32K, 64K and

128K-bytes. With six all-associativity simulations, requiring comparable time for practical CPU

caches t, one can evaluate mixed, instruction-only and data-only caches of two block sizes and

numerous associativities and sizes. In particular the use of all-associativity simulation facilitated the

evaluation of the large number of alternative CPU cache designs I consider in the next chapter.

t E.g., CPU caches that are less than or equal to 32-way set-associative and use bit selection lO map refez-

ences to sets.

39

2.8. References

[Agar86] A. Agarwal, R. L. Sites and M. Horowitz. ATIJM: A New Technique for Capturing Address Traces

Using Microcode, Proc. Thirteenth lnternalional Symposium on Computer Architecture (June 1986).

[Bela66] L. A. Belady and J. Gecsei, A Study of Replacement Algorithms for a Virtual-Storage Computer,

IBM Systems Journal, 5, 2 (1966).

[Bell74] J. Bell, D. Casasent and C. G. Bell, An Investigation of Alternative Cache Organizations, IEEE

Trans. on Computers, C-23,4 (April1974), 346-351.

[Benn75] B. T. Bennett and V. J. Kruskal, LRU Stack Processing, IBM Journal of R & D (July 1975).

[Clar83] D. W. Clark, Cache Performance in the VAX-nnso. ACM Trans. on Computer Systems, 1, 1

(February, 1983), 24- 37.

[Digi81] Digital Equipment Corp., VAX Architecture Handbook (1981).

[Good83] J. R. Goodman, Using ~he Memory to Reduce Processor-Memory Traffic, Proc. Tenth

International Symposium on Computer Architecture, Stockholm, Sweden (June 1983), 124-131.

[Haik84] I. J. Haikala and P. H. Kutvonen, Split Cache Organizations, CS Report C-1984-40., Univ. of

Helsinki (August 1984).

[Hill84] M. D. Hill and A. J. Smith, Experimental Evaluation of On-Chip Microprocessor Cache Memories,

Proc. Eleventh lnternalional Symposium on Computer Architecture, Ann Arbor, MI (June 1984).

[Hill85] M. D. Hill, Dinerom Documentation, Unpublished Unix-style Man Page, University of California.

Berkeley (October 1985).

[Matt70] R. L. Mattson, J. Gecsei, D. R. Slutz and I. L. Traiger, Evaluation techniques for storage hierarchies,

IBM Systems Journal, 9, 2 (1970), 78- 117.

[Olke81] F. Olken, Efficient Methods for Calculating the Success Function of Fixed Space Replacement

Policies, Masters Report, Lawrence Berkeley Laboratory LBL-12370, University of California,

Berkeley (May 1981).

[Patt83] D. A. Patterson, P. Garrison, M. D. Hill, D. Lioupis, C. Nyberg, T. N. Sippel and K. S. V. Dyke,

Architecture of a VLSI Instruction ~he for a RISC, Proc. Tenth International Symposium on

Computer Architecture, Stockholm, Sweden (June 1983), 108-116.

[Puza85] T. R. Puzak, Analysis of Cache Replacement Algorithms, Unpublished Ph.D. Dissertation, Dept of

Electrical and Computer Engineering, University of Massachusetts (February 1985).

[Smit78] A. J. Smith, A Comparative Study of Set Associative Memory Mapping Algorithms and Their Use for

Cache and Main Memory, IEEE Trans. on Software Engineering, SE-4, 2 (March 1978), 121-130.

[Smit85] A. J. Smith, Cache Evaluation and the Impact of Worlcload Choice, Proc. Twelfth International

Symposium on Computer Architecture (June 1985).

[Stre76] W. D. Strecker, Cache Memories for PDP-11 Family Computers, Proc. Third International

Symposium on Computer Architecture (January 1976), 155-158.

[Thom86] J. G. Tilompson, A. J. Smith and F. Olken, Efficient Trace-Driven Analysis Techniques for Memory

Hierarchies, University of California, Berkeley, (June 1986). Draft

[Thom87] J. G. Thompson, Efficient Analysis Of Caching Systems, Computer Science Division Technical

Report UCB/Computer Science Opt 87/374, University of California, Berkeley (October 1987).

[frai71] I. L. Traiger and D. R. Slutz, One-Pass Techniques for the Evaluation of Memory Hierarchies, mM

Technical Report RJ 892 (#15563) (July, 1971).

3

3.1. Introduction

The Effect of Set-Associativity

on Cache Memory Performance

40

This chapter uses the algorithms developed in Cbapter 2 to study direct-mapped and set

associative caches. While there have been a considerable number of papers on cache analysis, few con

centrate on the effects of changing associativity or discuss implementation considerations. I do both in

order to show that large direct-mapped caches often have smaller effective access times than set

associative caches, despite having larger miss ratios. For this reason I argue that large, simple caches

are superior to more complex cache designs when caches become sufficiently large.

I use miss ratio and effective access time to measure the performance of caches that use LRU

replacement and do no prefetching. Analysis with miss ratio shows that the miss ratio of a direct

mapped cache is roughly proportional to the miss ratio of a two-way set-associative cache of the same

size. This result implies that the absolute miss ratio difference between the two cache designs will

decrease as both caches get larger. In particular, the data show that decreasing the degree of associa

tivity from two to one (direct-mapped) increases the miss ratio by 20 to 40 percent relative to the two

way set-associative cache.

Analysis with effective access time combines cache implementation details and the above miss

ratio analysis. An examination of cache implementations shows that direct-mapped caches have faster

cache access (hit) times than do set-associative caches, principally because direct-mapped caches do not

have to multiplex together multiple candidate words. As cache sizes increase, the access time differ

ence becomes more important than the miss ratio difference, causing the effective access time of a

direct-mapped cache to improve relative to that of a set-associative cache of the same size. I find, for

example, that the effective access times of direct-mapped caches are similar (within five percent) or

slightly better than those of set-associative caches for cache sizes of 32K bytes and larger.

41

Before analyzing caches with miss ratio and effective access time, I discuss cache performance

metrics, my methods and previous work.

3.1.1. Cache Performance Metrics

The most commonly-used cache performance metric is miss ratio [Smit82]. 1be miss ratio for a

cache C ist:

m (C) = the number of misses with cache C
the nwnber of processor memory references

Miss ratio is used because it is easy to define, interpret, compute [Matt70], and pemaps most important,

is implementation-independent This independence facilitates cache performance comparisons between

caches not yet implemented and those implemented with different technologies and in different kinds of

systems. Unfortunately some comparisons of dissimilar caches with miss ratio can lead to misleading

results. A miss ratio comparison, for example, between the Cray-1 instruction buffers [Siew82] and the

Motorola 68020 on-chip instruction cache [MacG85] is meaningless because the technologies and

worldoads have little in common.

Since miss ratio comparisons contrast the number of misses, they can be misleading if the penalty

for a miss varies. For instance, increasing cache block size often reduces the number of misses and

hence the miss ratio, but it often also increases the number of cycles needed to load a block. The actual

change in cache performance will depend on how much the number of misses decreases and on how

much the time to service a miss increases [Smit87].

Another commonly-used cache performance metric is effective access time, t., (C). Effective

access time is the average latency, as seen by the processor, required by the memory system to service a

memory reference. In this chapter, I model it as:

t.,(C) = t_..(C)+m(C)•t-'l'(C)

where m(C), tUIC~o.(C) and ,_'l'(C) are the miss ratio, access time and average miss penalty for cache

C. Many cache memory analyses with effective access time assume that r_..(C) is the same for all

caches studied. I do not make this assumption in my analysis, because I expect cache access time

differences to be important in the analysis of large caches where miss ratios and miss ratio differences

are small. The results of Section 3.3.3, indeed, show that ignoring access time differences when com

paring large caches of varying associativities can lead to incorrect conclusions.

The principal advantage of using effective access time over using miss ratio is that using effective

access time allows caches with different hit and miss times to be more accurately compared. One can,

for example, determine whether increasing cache block size improves performance. The principal

disadvantage of effective access time is that implementation details must be examined and assumptions

must be made for the values of tU~CM(C) and ,_'l'(C). Performance estimates with any implementation

assumptions are less general, and those with incorrect assumptions are misleading.

Caches can also be compared with system performance metrics, such as benchmark execution

time or effective number of processors. While these metrics are useful for comparing similar alterna

tive caches within the context of an existing system, they seldom produce conclusions that generalize to

other designs, because of the difficulty of isolating cache effects from other system effects. For this rea

son I compare caches with miss ratio and effective access time, but not with system performance

metrics.

t I use m (C), ralher than m , to emphasize that the miss ratio is a fimction of a cache organization. C
represents all attributes of a cache. I will use C (A= 1) md C (A =2) to denote two similar caches with dif

ferent associativity.

42

3.1.2. Methods

I analyze caches with trace-driven simulation for the same reasons as Smith [Smit82, Smit85].

The principal advantage of trace-driven simulation is that numerous caches parameters can be varied

across of a wide range of values in repeatable experiments, while its principal disadvantage is that

workload samples must be relatively short, due to disk space and simulation time limits. The traces I

use, containing a total of tens of millions of references, represent only tens of CPU seconds on a VAX-

11n80-class machine. The algorithms developed in Chapter 2 mitigate problems with simulation time

limits by reducing total simulation time through simulating 50 cache configurations concurrently almost

as fast as was required to simulate an individual cache.

A second disadvantage of trace-driven simulation has been the lack of the traces that include

operating system and multiprogramming effects. However, I have been able to obtain traces that

include these effects (see Tables 3-1, 3-2 and 3-3). Consequently, I use these traces directly rather than

trying to model operating system references and multiprogramming effects.

Unfortunately the most of traces in Table 3-1 are made of several SOOK-reference samples. To

calculate overall miss ratios I derive steady-state miss ratios from short traces, which may not fill up

large caches, and average the results from individual traces. Two estimates of the steady-state miss

ratio are the cold-start and warm-start miss ratios [East75, Stre83]. The cold-start miss ratio, calcu

lated by counting misses from an initially empty cache, gives an upper bound on the expected steady

state miss ratio. The wann-start miss ratio, calculated after a cache is warm, has an expected value

closer to the steady-state miss ratio, but is based on less data since the beginning of each trace is

ignored. A cache is warm if its future miss ratio is not significantly affected by the cache recently being

empty [Agar87a]. Consequently, a full cache is clearly warm. Few trace references are discarded wait

ing for a small cache to become wann, since a small cache fills rapidly. Large caches, however, can

require millions of references to fill up.

To save simulation time and enable the use of short trace samples, Agarwal et al. have defined a

new method of determining when a cache is wann [Agar87a]. They plot cumulative cold misses versus

cumulative memory references, where a cold miss is a miss that fills an empty cache block frame.

They observe that most cumulative-cold-miss lines rise rapidly, hit a knee, and then rise slowly. They

define a cache to be wann after the knee is encountered, since beyond this point the effect on the miss

ratio of the cache being recently empty is small. Figure 3-1 shows an example of this method. The

number of cold misses in the 128K-byte cache during the second half of the trace is about 200. Thus,

residual cold-start effects cannot affect the miss ratio by more than a negligible 0.0008 (200/250K). I

analyzed my traces, described in Table 3-1, and found that most caches are warm at or before 250K

references. For this reason, I will compute steady-state miss ratios using the second 250K references of

each 500K-reference trace sample.

The second problem in dealing with numerous traces is that of combining results to give overall

numbers. I approach summarizing miss ratios by using the arithmetic mean of the miss ratios from rea

sonable trace samples. I omit from the mean traces with very low miss ratios (e.g., user-only traces)

and traces from non-32-bit architectures. The arithmetic mean is reasonable for this task, because it

represents the miss ratio of a workload consisting of an equal number of references from each of the

traces.

I also examine the ratio of miss ratios between caches of one associativity and twice that associa

tivity. Given a collection of traces a ratio of miss ratios can be calculated two ways, as the ratio of

averages or as the average of ratios. Let mi(A=j) be the miss ratio for a cache of associativity j with

trace i. The ratio of miss ratios between a direct-mapped and two-way set-associative cache, for exam

ple, is A VERAGE[mi(A=l)] I AVERAGE[mi(A=2)] calculated as the ratio of averages and

AVERAGE[mi(A=l)/mi(A=2)] calculated as the average of ratios, where AVERAGE computes the

mean of it arguments. The principal advantage of average of the ratios, the latter method, is that it

allows traces with unrealistically low miss ratios, but reasonable ratios of miss ratio to be included.

Smith uses the average of ratios to examine caches of varying block size [Smit87]. One disadvantage of

the average of the ratios, however, is that ratios with small denominators can have a large influence on

43

Trace Architecture; Comments
Name Operating System

fortran IBM 370; (FortG compiler) A collection of samples from four fortran user traces: a factor

analysis, analysis of satellite information, a numerical analysis

and an FFT [Smit82].

mul2 VAX-11; VMS A collection of four samples of a user and system trace of

spice, a circuit simulator, and alloc, a microcode address allo-

cator, running concurrently. This trace of multiprogrammed

operation was gathered with microcode modifications on a
VAX 8200 [Agar86].

mul8 VAX-11; VMS A collection of three samples of a user and system trace of an

eight-job multiprogrammed workload gathered with micro-

code modifications [Agar86]. The programs being run under

VMS are spice, alloc, a Fortran compile, a Pascal compile, an

assembler, a string search in a file, jacobi (a numerical bench-

mark) and an octal dump [Agar86].

ue V AX-11; Ultrix A collection of three user and system traces of synthetic mul-

tiprogrammed workloads with 2, 10 and 20 identical tasks

[Agar86]. The task is a program called utep, which simulates

an interactive user.

mvs IBM370; MVS A collection of system calls from two Amdahl standard MVS

workloads [Smit85].

synapse_devel Synapse N+l (68000); Syn- User and system trace of a synthetic development workload

thesis consisting of editing, compiling, linking and executing a col-

lection of programs, as well as executing common system util-

ities (directory list, etc).

2nd500k VAX-11 & IBM 370; VMS A trace whose miss ratios are the arithmetic average of the

&MVS miss ratios from second 500,000 references of mul2, mu18, ue,

mvsl and mv2. Mvsl and mvs2 are the two parts of the mvs

trace. These five traces include tracing of system code with

context switching. The first three also include user code; the

latter two do not.

a tum VAX-11; VMS & MVS A collection of 23 of 33 trace samples gathered from A TUM

and distributed by Dick Sites of DEC [Agar86]. It includes

samples that are part of mul2 , mul8 and ue, and other sam-

pies that have lower absolute miss ratios (often around

0.0050), but reasonable ratio of miss ratios.

Table 3-1. Address Traces Used.

This table describes the traces used in these studies. References [Agar86, Smit82, Smit85].

the average ratio. I find empirically in Section 3.2.3 that the two methods produce comparable results,

and therefore use the more convenient method, the ratio of averages, for most ratios of miss ratios I cal

culate.

3.1.3. Previous Work

Many papers have discussed associativity as part of a more general analysis; these include:

[Lipt68], [Matt71], [Kapl73], [Be1174], [Stre76], [Smit82], [Haik84], [Alex86] and [Agar87a]. Most

concentrate on caches smaller than 32K bytes. My associativity results are consistent with basic associ

ativity results in these papers. In addition I extend analysis to larger caches. I discuss several of the

more-recent of these papers below; technological changes have reduced the usefulness the earlier

Trace Instruction Length (1000's Size
Name References (%) of references) (K-bytes)

fortran :)6 1213 80

59 1213 65
56 1213 36
S4 882 18

mul2 56 372 94
52 386 204
53 383 169
56 367 165

mul8 51 408 218
S4 390 196
46 429 194

ue 56 358 205
57 372 191
55 364 221

mvs 52 1000 200
53 1000 340

synapse_devel 62 1048 1378
68 1048 124
68 1048 100
68 1048 105

mul2_2nd500K 53 500 218
mul8_2nd500K 51 500 292

ue_2nd500K 55 500 277
mvs1_2nd500K 52 500 163
mvs2 2nd500K 55 500 201

Table 3-2. Data on Traces.

This table presents data on the lddress traces used. The first column gives the name of each trace. The second

gives the fraction of all references that are instruction references. In these simulations I do not distinguish between

data reads and writes. The third column gives the length of the address traces in 1000's of references. The final

columns gives the number of distinct bytes referenced by the trace, whel'e any refel'ence in an aligned 32-byte

block touches the whole block. The size is computed by multiplying the numbel' of 32-byte blocks touched by 32.

papers.

44

While many papers discuss associativity, only one by Smith [Smit78] concentrates exclusively on

associativity. In this paper, Smith proposes a model which effectively explains most of the miss ratio

differences between caches of varying associativity, and then he validates this model for some set

associative caches. In Section 3.2.2, I explain the model and show that it applies to a wider range of

caches, including large direct-mapped caches.

Several recent papers present considerable data on caches, in general, which needs to be con

sidered when designing cache studies. The most comprehensive survey of cache design and perfor

mance to date is by Smith [Smit82]. Smith surveys aspects of cache design, including cache prefetch

algorithms, associativity, block size, replacement algorithms, write-through vs. copy-back, approximat

ing multiprogramming, 1/0 through the cache, and splitting the cache by data vs. instructions or user vs.

supervisor. He also justifies the trace-driven simulation and uses it develop numerical results for all of

the cache aspects surveyed. He presents results, based primarily on user-only traces, for caches as large

as 64K bytes. Large caches (~ 32K bytes) with restricted associativity (two-way set-associative or

direct-mapped), however, are not studied in order to reduce simulation time; for example, his default

Trace Instruction Length (1000's Size
Name References.(% _l of references) (K-bytes)

decO so 362 120
so 353 12S

fora 52 388 144
forf 52 401 128

53 387 152
53 414 105
52 368 205

fsxzz 51 239 104
ivex 60 342 210
macr 55 343 199

memxx 49 445 139
mul2 52 386 204

53 383 169
56 367 165

mul8 51 408 218
54 390 196
46 429 194

null 58 170 55
sa vee so 432 94

61 228 54
ue 56 358 205

57 372 191
55 364 221

Table 3-3. Data on More Traces.

Like Table 3-2, this table presents data on the address traces used. I refer to this collection of traces as atwn, since

all were gathered with ATUM [Agar86]. Data for traces rrw/2, nud8 and ue is repeated here, since these trace

samples are used separately and together with the rest of the atwn lnlceS.

64K-byte cache is 32-way set-associative.

45

Smith extended his survey of caches in 1985 by examining the impact of trace selection on miss

ratio results [Smit85]. He warns cache designers that miss ratio predictions from small, user-only traces

are usually optimistic, and presents some design target miss ratios for mixed (unified), instruction and

data caches with 16-byte blocks and fully-associative placement to serve as "rules of thumb" for cache

designers working with "a 32-bit architecture running fairly large programs and a mature (i.e., large)

operating system.'' Smith derives the design target miss ratios from his own opinions, based on the data

in the paper, his other direct experience with cache design and his knowledge of the cache literature. I

find these design target miss ratios consistent with my results, and I extend them to caches of varying

associativity.

In another paper Smith concentrates on cache block size [Smit87]. He isolates the effects of block

size from other factors by using as his principal metric the ratio of the miss ratio of a cache with one

block size to the miss ratio of a cache with twice that block size. He uses these ratios to extend his

design target miss ratios to caches with block sizes from 4 to 128 bytes, and combines these miss ratios

with some cache access and miss times to show that the effective access times of caches connected to

high-performance microprocessors are minimized for blocks size between 16 and 64 bytes, and that

larger blocks are suitable for mainframes with higher memory bandwidth.

w/ SPUR Cache
4000 ---------1···-----·l·--·······l···--·---1···--1

c : : : : :
u i i : . i

;3000 ----··-t··------1 -----r---- j -- i
i : : : : , : : : :
e ! i ! !

2000 ----- : -----{-----~--~---l c I ; : : :

0 : : : :

1 : : ! !
d : : : :

: : : :

M I f ! !
! 1000 -------t------1-------i-----t-----.j
I i f ! : i
e
I

: : : : i
: : : : :

; i ~ i !
: : : : :

o+---~--~--~----~~
0 I 00 200 300 400 500

Proco&aor Ref- (1000.)

46

w/lnfinite Cache
'1000 ---T·------T·---·-·r··--------- 1

~ 600) --------+---t----- ; -----·--t-----1
: i ! ! ! i
1 5000 --·--+--- . --+----+-----1
i ! . ! ! !
y 4000 ------+--- ----i--------t---+--------1
• ! ! ! ! !
c ! ! ! i i
T 3000 ------+ ----+-----~------+-------~
cl ' ~ f ~ i
M . : : : :
• :1)()() ··---- : -..J .. ---·--1-----J.-----·J
1

: i ! : i

: ! ! J f !
: 1000 ·-------+--1------·-t··------+---------1

! ! ! I l
o+---~---P--~--~~~

0 100 200 300 400 soo
Procaa« Ref_,.. 0000.)

Figure 3-1. Cumulative Cold Misses for "mul2 ".

This figure shows cumulative cold misses versus processor references for two cache sizes with trace rrud2. A cold

miss fills a previously empty cache block frame. A cache is full if a cold miss has occurred at each block frame; a

cache is warm if the rate of cold misses is smlll relative to the ova-Ill miss ratio.

The left plot shows that 3129 of the 4096 cold misses in the SPUR c~ehe (128K-bytes, direct-mapped. 32-byte

blocks) occur by 250K references, and the subsequent rate of cold miss is small (only 198 in the next 250K refer

ences). Therefore, for this triCe, a 128K cache is warm afta- 250K references.

The right plot shows misses in an infinite cache, for which Ill misses are cold misses. An infinite cache is a cache

so large that it never replaces any blocks. The slowa- rate of misses in the second half of the trace is due to the

cache getting warm or a variation in input trace behavior. Since other traces exhibited a slowa- rate of cold misses

after 250K references, I conclude that even an infinite CIChe is getting warm after 250K references.

The study of large caches requires the consideration of operating system and multiprogramming

effects. Clark takes these effects into account by directly monitoring an operating computer. a VAX-

11{780 [Clar83]. His method allows long workload samples to be used. but constrains the caches meas

ured to be the 780's cache (8K bytes. two-way set-associative. 8-byte blocks) or half of the 780's cache

(4K bytes, direct-mapped. 8-byte blocks). For this reason Clark can say little about large caches. The

paper is. however, an excellent. detailed study of the 780's cache.

Haikala and Kutvonen present trace-driven simulation results, based six traces of compilers run

ning on the stack-oriented Burroughs B7800 [Haik84]. Part of this paper examines associativity.

finding results consistent with my miss ratio results. Without specifically examining cache implementa

tions. the authors also claim that two-way set-associativity is best for most caches, given the marginal

performance improvement and greater implementation complexity of higher associativity. My results

agree with this conclusion for the small cache sizes (S 16K bytes). but find direct-mapped caches offer

similar or better performance at large cache sizes. for implementation reasons that Haikala and Kut

vonen do not consider.

Alexander et al. use trace-driven simulation to study small and large caches (Alex86]. They

gather two 3 million-reference traces by using a hardware monitor to read 4K addresses directly off the

backplane of a SYS32 computer. holding its real-time clock and uploading the 4K addresses to another

computer for subsequent simulation. releasing the clock. and repeating. The SYS32 computer uses a

National 32016 microprocessor, runs a derivative of 4.1 BSD Unix. and has 1M byte of main memory.

Even though Alexander et al. collapse consecutive 16-bit references into 32-bit references. their results

are optimistic. While Clark finds miss ratios for the 780's cache of 10 to 17 percent. Alexander et al.

47

predict 5 to 6 percent While Smith predicts a miss ratio of 4 percent for a 32K-byte cache (unified,

fully-associative, 16-byte blocks) [Smit85], Alexander et al. predict 0.9 to 1.7 percent for a similar

cache. Other data gathered with a hardware monitor also predicts a 3 to 4 percent miss ratio for the

above cache [Smit82].

Agarwal et al. use traces gathered by modifying the microcode of the VAX 8200 to study large

caches and try to separate operating system and multiprogramming effects [Agar87a]. They briefly

examine associativity, where they find that associativity in large caches impacts multiprogramming

workloads more strongly than uniprocessor workloads. They find for one workload that decreasing

associativity from 2-way to direct-mapped increases the multiprogramming miss ratio by 100 percent

and the uniprograrnming miss ratio by 43 percent. While the quantitative changes are much larger than

I observe, the more important qualitative conclusion they make is that large cache results are misleading

unless operation system and multiprogramming effects are taken into account.

Fmally, few cache studies have considered implementation details or analyzed caches with effec

tive access time. Four papers that do are: (1) a paper by Kaplan and Winder [Kapl73], which stresses

the value of assessing caches with effective access time and instructions per cycle; (2) Smith's paper on

block size [Smit87] (described earlier in this section), where Smith uses his design target miss ratios

and some implementation assumptions to determine optimal block sizes; (3) a paper by Agarwal et al.

on designing an instruction cache on a single-chip RISC processor [Agar87b], which I describe in the

next chapter on on-chip instruction memory; and (4) a paper by Chang, Chao and So, discussed below,

which investigates a cache with a non-uniform access times [Chan87].

Chang, Chao and So examine designing a physically-tagged, single-cycle, 128K-byte cache for a

System/370 CPU, implemented with several large CMOS chips on a multi-layer ceramic module. To

achieve a single-cycle access time without lengthening the cycle time too much, they found it necessary

to access the cache and translation buffer in parallel. A straight-forward implementation of such a

128K-byte cache requires it to be 32-way set-associative so that it can be indexed with address bits from

within the page offset (that are not changed by address translation). Estimates showed, however, that

the access time of this cache, "which involved two chip-crossings, a cache directory look-up, a com

parator and several multiplexors, would be about 30% longer than the targeted CPU cycle time''

[Chan87]. To reduce average access time, Chang, Chao and So considered building a 32-way set

associative cache with a one-cycle access to the most-recently-used (MRU) block of each set and a

two-cycle access to all other cache blocks. The collection of blocks accessed in one cycle, called the

MRU region, can be thought of as a direct-mapped 4K-byte cache within a cache. Additional analysis

revealed, however, that performance could be further improved by reducing associativity from 32-way

to four-way, thereby increasing MRU size to 32K bytes, but requiring two more index bits. Since these

index bits are not in the page offset, they are not available until after address translation. This problem

did not impact the access time of Chang, Chao and So's cache, because they were able to use these bits

to control a four-to-one multiplexor at the end of the cache lookup.

While Chang, Chao and So give convincing evidence that an MRU cache is superior to set

associative caches, they present no evidence on how it compares with a large direct-mapped cache. In

Section 3.3.4 I examine MRU-cache designs with respect to direct-mapped caches when address trans

lation does not interact with a cache lookup (e.g., when a virwally-tagged cache is used). I find that the

advantage of the MRU scheme is modest, and that the advantage can be easily overwhelmed by imple

mentation disadvantages.

3.2. Analysis with Miss Ratio

In this section, I examine direct-mapped and set-associative caches with miss ratio results from

trace-driven simulation. I first present the raw miss ratios and suggest a way to divide a miss ratio into

three components to bolster one's intuition regarding which cache design changes can reduce the miss

ratio. Then I use a method proposed by Smith in 1978 for predicting set-associative miss ratios from

LRU distance probabilities [Smit78]. I show that this method accurately predicts the miss ratios of

direct-mapped and set-associative caches from the miss ratios of all fully-associative caches. Finally, I

48

examine the relative miss ratio increase caused by reducing associativity, which I call miss ratio

spread, and use it to extend Smith's design target miss ratios to caches of varying associativity.

3.2.1. Raw Miss Ratios

In the course of this research I have simulated over 150 cache configurations with traces of over

30 different programs, running alone or in a multiprogrammed workloads. The traces used are

described in Tables 3-1, 3-2 and 3-3. Initially, I examine mixed (i.e., cache data and instructions

together) caches that do not prefetch blocks, use LRU replacement, and have a 32-byte blocks. I vary

associativity (1- to 8-way set-associative and fully-associative) and cache size (256, 512, ... , 256K and

infinite). An infinite cache never replaces a block so its miss ratio is a lower bound on the miss ratio

with a given block size. Later I also vary cache type (to instruction only and data only)~ block size

(to 16 and 64 bytes).

M
i
s
I

R
• t
i
0

030 ---------~-----1
0.020 ·----------- I -----~

0.015 ---------·-+·----··-·····-~ : :

0..20 a-•••-• •- ---+--------~

: I
M
i
I
I

I I
~

0.10 ··-·····--·--··· •••.. ···-·----!
R
• t
i
0

0.010 -- --- i ---~

i

---r--------1
: 24sr. inf

~;::;::=~.ill;[!_a i
0.000+-____ .,_ ___ _.,.

0.00
100 1000 10000 10000

Cache Size (bytes)

Figure 3-2. Cold-start Miss Ratios for Some User Traces.

100000
Cache Size (bytes)

This figure shows cold-start miss ratios for various caches. Each miss ratio is the arithmetic average of the miss ra

tios from four System/360 FORTRAN user traces (see Table 3-2). Each cache is mixed (i.e., cache data IIJld in

structions together), does not prefetch blocks, uses LRU replacement, has a 32-byte block size and is simulated

from a cold-start. Cache associativity and size are varied. The associativities studied are one-way set-associative

(direct-mapped. labeled '1'), two-way set-associative ('2'), fom-way set-associative ('4'), eight-way set

associative ('8') and fully-associative (a dashed line, 'fa'). The cache sizes examined are 256 to 256K bytes and

infinite (a dashed line, 'inf). An infinite cache, which never replaces an active block, has the lowest miss ratio pos·

sible for a given block size (so long as prefetching is not permitted).

While useful for examining small caches (S 8K bytes), these user-only traces provide little information about larger

caches, since their large cache miss ratios rapidly approach the infinite cache miss ratio.

1000000

The results with single-process, user-only traces are illustrated by using four FORTRAN traces

(see Figure 3-2). Results for small caches, s 8K bytes, confinn the data of others that as cache size or

associativity is increased, miss ratios get smaller, but at a decreasing rate [Alex86, Smit82, Smit85].

The miss ratios for large caches, especially those greater than 32K bytes, are virtually identical and near

the infinite cache miss ratio of 0.0014, which implies that all large caches perfonn near the infinite

cache miss ratio. Results for other single-process, user-only traces, including VAX Unix traces

[Smit85] and MIPS traces are not shown, because they also suppon the conclusion that increasing cache

size beyond 64K bytes is not worthwhile. To see that this conclusion is wrong, I next examine caches

with traces where the effects of operating system references and context switching are included.

M
i
I
I

R
• t
i
0

0.30 ------------------------~

0.20 ------ ------ ---r-----------1

I --.. ---i

M
i
I
I

R
• t
i
0

49

0.060 -----------------~------------··:

I I
o.oso . --- I ------1
~ ··- -~-~~-=~~

··1·-----1
i
:248 fa

0.10 ·----~
- ~ 2 . :

• - • - • 1 48 '!'
0.010 --·····--·-··········t···-------·---·-····1

0.00
100

f

•-•-t-·-·--+-inf I I
0.000+------i..-------i

1000
Cache Size (bytes)

10000 10000

Figure 3-3. Cold-start Miss Ratios for "mu12".

100000
Cache Size (bytes}

This figure shows cold-start miss ratios for various caches, using an average of three samples from the "mul2"

V AX-11 user/system trace. It examines the same cache configurations as Figure 3-2.

Results for large caches are more believable than for the FORTRAN user-only traces since most miss ratios are

larger than the infinite cache miss ratio.

1000000

Figure 3-3 portrays typical results with system references and multiprogramming effects included.

Figure 3-3 shows that as cache size or associativity is increased, miss ratios get smaller, but at a

decreasing rate, for caches up to 256K bytes. Figures 3-4 and 3-5 illustrate results for other workloads.

Miss ratios from individual traces vary widely. A greater quantitative understanding of the data

can be facilitated by examining average miss ratios, if one remembers that the underlying data are vari

able. I have computed average miss ratios with the miss ratios from the second 500,000 references of

traces mu/2, mu/8, ue, mvsl and mvs2. For brevity, I refer such an average miss ratio as the miss ratio

for trace 2nd500k. Each of the traces is from a 32-bit architecture, includes operating system refer

ences, and has non-trivial miss ratios with large caches. Figure 3-6 shows miss ratios for mixed caches

with 32-byte blocks.

The miss ratios in Figure 3-6 and the other miss ratios presented so far are pessimistic relative to

steady-state miss ratios, because they are cold-start, not wann-start miss ratios. To obtain more accu

rate estimates for steady-state miss ratios, I calculate warm-start miss ratios by not counting misses and

references in the first 250K references of each trace. This approach is justified in Section 3.1.2. Figure

3-7 and Tables 3-4, 3-5, and 3-6 display wann-start miss ratios.

The miss ratios for trace 2nd500k are consistent with other data from other sources, as illustrated

in Figure 3-8 [Agar87a, Smit82, Smit85, Smit87]. At larger cache sizes, some miss ratios are more pes

simistic than Agarwal et al. 's. These miss ratios are also consistent with 10 to 17 percent miss ratio

Oark found for the v AX-11n8o cache (two-way set-associative 8K-byte cache with 8-byte blocks) by

monitoring the hardware [Oar83]. I repon a 8 to 9 percent miss ratio for a two-way set-associative

8K-byte cache with 16-byte blocks. Since Smith expects an 8-byte miss ratio to be 72 percent larger

than the 16-byte miss ratio [Smit87], I predict a reasonable 14 to 16 percent miss ratio for the 780

cache.

When examining miss ratio data for numerous cache organizations, I have found it useful tp parti

tion misses, or miss ratios, into three components intuitively based on the cause of the misses, but cal

culated from the miss ratios of related caches. For some cache C:

¥
l
I
I

R
a
t
i
0

M
i
s
I

R
a
t
i
0

040 ·---·---~------1

010 ---------r-· .. ----~2.. ..
0.00

100

·-·-~-·-·-~inf
1000 10000

Cache Sizle {byles)

040 ·-·--·--·-r---1
j i

0.30 ---------- ------~---------,
.
' . ' . . .
' . . '

..... ····---·------· .
.

.
010 ----r--- \ ..
0.00

100

·-·-~-·-·-t4-inf
1000 10000

Cache Si1.1e (byles)

fa

¥
l
I
I

R
a
t
i
0

M
i
I
I

R
a
t
i
0

OJJSO ---·----r--·--·-·1
.,., - ·-l-----1

: :
0.030 -- - -- --r-----1

L_ ______ j

so

0.020 ---------·--······ i

·-·-·t·- 2 i
4g. ia

.
0.010 ----r··----1
0.000+-----r------i

10000 100000
Cache Size (bytes)

1000000

0.070 --------------1----------1
0.060 ---- ---~---~

-- i -------1
---r-----------1

:: -~~==---~- ···-·-:.~:~::,; • -• -.1. - ,!! 'I"

M10 -----·--··-r·-----1
0.000+-----..;.....-----i

10000 100000 1000000
Cache Size (bytes)

Figure 3-4. Cold-stan Miss Ratios.

For "mul8" (top) and "ue" (bottom).

(1) The compulsory component of the miss ratio arises from misses to previously-unreferenced

blocks. This component is equal to the miss ratio of an infinite cache with the same block size as

cache C. Compulsory misses cannot be avoided with demand fetching and a fixed block size.

(2) The capacity component of the miss ratio arises from misses due to the finite size of cache C. It

equals the miss ratio of a fully-associative cache similar to cache C (i.e. same size. block size and

replacement algorithm), less cache C 's compulsory miss ratio. Capacity misses cannot (usually)

be avoided by caches of a given size and replacement algorithm, because full-associative place

ment usually yields a smaller miss ratio than set associative placement.

(3) The (set-)conflict component of the miss ratio arises from misses due to too many active blocks

mapping to some sets. It is equal to the miss ratio of cache C, less the sum of the compulsory and

capacity miss ratios. While both the compulsory and capacity miss ratio must be non-negative,

~
1
I
I

R
• t
i
0

M
i
I
s

R
a
t
i
0

0.~ ···---···~-------~

030 ·--- ·-···~----~

0.00
100

0.15

0.05

·-·-·-·-•-llll..-inf
1000 10000

Cache Size (bytes)

0.00+-----...P...----...
100 1000 10000

Cache Size (bytes)

M
i
I
I

R
• t
i
0

fa

M
i
I
I

R
• t
i
0

51

0.080 --------------T----------------1
0.070 ·--- ·-----i------------1
0.060 --- -- ----+---------i

l !
.. --+-----------1

\ i i
\ : :

M40 ·---- ... ·:. c==J
0.020 ·---------- 'I .••• ---------1:

~

0.010 ·······=···=···-r-··- t
0.000+-----i-------t

10000 100000 1000000
Cache Size (bytes)

~ -----~-----~

~ ·-· --- ~---~

. •i
0.010 ·-·--·---·r·----~

0.000+-----.;---------
10000 100000 1000000

Cache Size (bytes)

Figure 3-5. More Cold-start Miss Ratios.

For "mvs" (top) and "synapse_devel'' (bottom).

the conflict miss ratio can be less than zero. In practice, negative conflict miss ratios, meaning a
set-associative cache has a lower miss ratio than a fully-associative one, occur only for small
instruction caches where locality is manifested predominantly as looping behavior [Smit83].

While dividing the miss ratios in these three components does oot allow other cache miss ratios to
be predicted, it does provide some insight into how the miss ratios of similar caches relate, and it allows
the following negative statements to be made for caches of fixed block size: (1) If the conflict miss ratio
is small, increasing the associativity cannot significantly improve the miss ratio. (2) If the conflict and
capacity miss ratios are small, nothing can be done to improve the miss ratio. (3) Nothing can be done
to improve miss ratios below the compulsory miss ratio.

Table 3-7 illustrates this method for trace "ue." I will examine compulsory, capacity and conflict
misses with other traces in other papers. Results for this trace show that capacity misses dominate until

M
i
I
I

R
• l
i
0

M
i
5
s

R
• t
i
0

0.40 ·------------------·
' ' ' '

0.30 ··-----

0.20 ····-----------

.
'

0.10 ········---·T___ -) ,.,
: : inf

·-·-~-·-·-"+--

M
i
I
I

R
• t
i
0

52

0.070 ·---·-------···--··--·---··-----• 0
' ' . .
' ' --- --------T---------1 0.060

o.oso ---r·------------1
0.040 ---- -- ----r----------------1
0.030 ... ·----------1

1 i

-----~--···---~~~
0.020

0.010

l l
0.000+-----.r------i

0.00
100 1000 10000 10000 100000

Cache Size (bytes}
1000000

Cache Size (byte.)

Figure 3-6. Cold-Start Miss Ratios for ''2nd500k''.

This figure shows the cold-start miss ratios with trace 2NI.500k for mixed ~hes with 32-byte blocks. Miss ratios

for 2nd500k. are the arithmetic average of miss ratios of five different traces that include system and multiprogram

ming effects. The general shape of these average miss ratio lines are consistent with the shape for the individual

traces. Consequently, averaging the individual miss ratios is not misleading.

0.40 o.oro -··---T-··----·~ ----··--·------··-·-·---------·-------.
' ' . '
'

0.30

.
0.10 ··-------r·· .. --~2-18

·-·-·-·-·- inf o.oo+--~--:;.;.._~_.;;.._..,__~r-

100 1000 10000
Cache Size (bytes)

M
i
I
I

R
• t
i
0

0.030 --------

0.020 ------------- ····----·--------
1 1

0.010 ---·-------··-------·-------·-·-·t·- 2 :
"4'8iir1

0.000+-----oi------i
10000 100000

Cache Size (bytes}
1000000

Figure 3-7. Wann-stan Miss Ratios for "2nd500k".

This figure shows the warm-start miss ratios with trace 2nd500k for mixed caches with 32-byte blocks. Caches are

considered warm after 250K references. For these traces, warm-start miss ratios are 0.5 to 1.0 percent smaller (ab

solute) than cold-start miss ratios (see Figure 3-6). Consequently the relative decrease is only important for large

caches.

53

cache size exceeds 64K bytes, at which time conflict misses dominate. Results for large caches, how

ever, are unstable, since small miss ratio variations can introduce large relative changes in the size of

miss ratio components. A large conflict miss ratio does not necessarily imply that associativity should

be increased, since conflict misses can be reduced either by increasing associativity (set size) or by

increasing cache size (the number of sets). Many conflict miss ratios for eight-way set-associative

caches are near zero, since eight-way set-associative caches and fully-associative caches perfolll1. simi

larly. Little significance should be attached to the fact that some are negative by absolute amounts of

0.0006 and less.

Warm-Start Miss Ratios for Mixed Caches

Cache Size Degree of Block Size (bytesl
(bvtes) Associativitv 16 32 64

256 1-way 0.3330 0.3093 0.3420
256 2-way 0.2864 0.2422 0.2406

S12 1-way 0.27S8 0.2470 0.2521
S12 2-way 0.2386 0.1981 0.1852
S12 4-way 0.2325 0.1872 0.1672

1024 1-way 0.2178 0.1882 0.1822
1024 2-way 0.1898 0.1S50 0.1381
1024 4-way 0.1787 0.1432 0.1283
1024 8-way 0.1747 0.1393 0.1242

2048 1-way 0.1714 0.1398 0.1276
2048 2-way 0.1491 0.1169 0.1016
2048 4-way 0.1394 0.1081 0.0919
2048 8-way 0.1355 0.1044 0.0881

4096 1-way 0.1297 0.1033 0.0920
4096 2-way C.! 123 0.0866 0.0723
4096 4-way 0.1064 0.0815 0.0667
4096 8-way 0.1022 0.0786 0.0640

8192 1-way 0.0983 0.0767 0.0666
8192 2-way 0.0826 0.0636 0.0521
8192 4-way 0.0769 0.0591 0.0481
8192 8-way 0.0755 0.0576 0.0464

16384 1-way 0.0716 0.0556 0.0469
16384 2-way 0.0594 0.0457 0.0369
16384 4-way 0.0543 0.0418 0.0334
16384 8-way 0.0510 0.0395 0.0318

32768 1-way 0.0520 0.0407 0.0338
32768 2-way 0.0426 0.0333 0.0263
32768 4-way 0.0388 0.0302 0.0233
32768 8-way 0.0374 0.0289 0.0222

65536 1-way 0.0360 0.0280 0.0230
65536 2-way 0.0291 0.0228 0.0182
65536 4-way 0.0263 0.0211 0.0170
65536 8-way 0.0252 0.0205 0.0165

131072 1-way 0.0272 0.0210 0.0171
131072 2-way 0.0194 0.0144 O.ot13
131072 4-way 0,0171 0.0129 0.0104
131072 8-way 0.0160 0.0123 0.0100

262144 1-way 0.0196 0.0142 0.0108
262144 2-way 0.0155 0.0107 0.0078
262144 4-way (\.0137 0.0091 0.0065
262144 8-way 0.0132 0.0085 0.0060

Table 3-4. Mixed Cache Miss Ratios.

This table shows warm-start miss ratios for mixed caches with LRU replacement and no prefetching on trace

2nd.500/c, which is an average of user/system traces from the Y AX-11 and system traces from the mM 370. The

miss ratios for 256-byte caches with associativity 4 and 8 and 512-byte caches with associativity 8 were not simu

lated to reduce simulation time. All caches are warmed-up for 250K references.

54

Warm-Start Miss Ratios for Instruction Caches
Cache Size Degree of Block Size(~ es)

(bvtes) Associativity 16 32 64

256 1-way 0.2343 0.1663 0.1265
256 2-way 0.2215 0.1511 0.1112

512 1-way 0.1966 0.1398 0.1080
512 2-way 0.1789 0.1219 0.0918
512 4-way 0.1739 0.1221 0.0940

1024 1-way 0.1545 0.1051 0.0766
1024 2-way 0.1432 0.0958 0.0690
1024 4-way 0.1399 0.0935 0.0671
1024 8-way 0.1391 0.0931 0.0675

2048 1-way 0.1224 0.0833 0.0607
2048 2-way 0.1156 0.0769 0.0543
2048 4-way 0.1107 0.0737 0.0525
2048 8-way 0.1099 0.0735 0.0526

4096 1-way 0.0938 0.0633 0.0461
4096 2-way 0.0857 0.0582 0.0411
4096 4-way 0.0818 0.0557 0.0396
4096 8-way 0.0791 0.0541 0.0387

8192 1-way 0.0681 0.0461 0.0332
8192 2-way 0.0577 0.0402 0.0291
8192 4-way 0.0510 0.0359 0.0268
8192 8-way 0.0483 0.0339 0.0259

16384 1-way 0.0463 0.0313 0.0221
16384 2-way 0.0361 0.0248 0.0178
16384 4-way 0.0329 0.0225 0.0162
16384 8-way 0.0307 0.0207 0.0147

32768 1-way 0.0295 0.0201 0.0143
32768 2-way 0.0224 0.0153 0.0108
32768 4-way 0.0202 0.0139 0.0098
32768 8-way 0.0190 0.0132 0.0094

65536 1-way 0.0192 0.0128 0.0090
65536 2-way 0.0139 0.0092 0.0065
65536 4-way 0.0119 0.0080 0.0056
65536 8-way 0.0109 0.0074 0.0054

131072 1-way 0.0143 0.0094 0.0065
131072 2-way 0.0102 0.0064 0.0042
131072 4-way 0.0091 0.0056 0.0036
131072 8-way 0.0089 0.0054 0.0034

262144 1-way 0.0121 0.0078 0.0052
262144 2-way 0.0093 0.0057 0.0036
262144 4-way 0.0088 0.0053 0.0033
262144 8-way 0.0088 0.0052 0.0032

Table 3-5. Instruction Cache Miss Ratios.

11Us table shows warm-start miss ratios for instruction caches with LRU replacement and no prefetching on trace

2nd500k.

55

Warm-Start Miss Ratios for Data Caches

Cache Size Degree of Block Size (bvtes)
Cbvtes) Associativitv 16 32 64

256 1-way 03073 0.3075 0.3415
256 2-way 0.2684 0.2656 0.2815

512 1-way 0.2476 0.2A44 0.2726
512 2-way 0.2094 0.2032 0.2129
512 4-way 0.1923 0.1845 0.1942

1024 1-way 0.1952 0.1877 0.1947
1024 2-way 0.1597 0.1529 0.1543
1024 4-way 0.1427 0.1358 0.1401
1024 8-way 0.1384 0.1308 0.1334

2048 1-way 0.1519 0.1423 0.1420
2048 2-way 0.1177 0.1089 0.1078
2048 4-way 0.1067 0.0991 0.0967
2048 8-way 0.1023 0.0946 0.0928

4096 1-way 0.1099 0.1010 0.1004
4096 2-way 0.0870 0.0791 0.0751
4096 4-way 0.0798 0.0730 0.0699
4096 8-way 0.0769 0.0696 0.0654

8192 1-way 0.0854 0.0762 0.0744
8192 2-way 0.0678 0.0599 0.0552
8192 4-way 0.0607 0.0528 0.0482
8192 8-way 0.0588 0.0509 0.0463

16384 1-way 0.0636 0.0564 0.0534
16384 2-way 0.0530 0.0464 0.0407
16384 4-way 0.0496 0.0418 0.0361
16384 8-way 0.0484 0.0396 0.0334

32768 1-way 0.0476 0.0425 0.0392
32768 2-way 0.0397 0.0359 0.0310
32768 4-way 0.0370 0.0342 0.0282
32768 8-way 0.0358 0.0336 0.0271

65536 1-way 0.0341 0.0288 0.0259
65536 2-way 0.0280 0.0243 0.0217
65536 4-way 0.0254 0.0224 0.0206
65536 8-way 0.0241 0.0217 0.0206

131072 1-way 0.0267 0.0211 0.0184
131072 2-way 0.0212 0.0157 0.0127
131072 4-way 0.0195 0.0142 0.0116
131072 8-way 0.0189 0.0134 0.0110

262144 1-way 0.0221 0.0161 0.0125
262144 2-way 0.0192 0.0131 0.0096
262144 4:way 0.0185 0.0123 0.0086
262144 8-way 0.0183 0.0120 0.0082

Table 3-6. Data Cache Miss Ratios.

This table shows warm-start miss ratios for data caches with LRU replacement md no p-efetching on trace

2nd500k.

56

M
i
I
I

R
a
t
i
0

57

16-byte blocks

. .J.£l!~.l!!r-~-----~

0.15

L----- ~-------1 a1s

M
i
I
I

0.10 ·- ~-------~ a1o R
• t
i
0

0.05 aos ----------·j
c:bld

lann
aoo+---------~--------~

1000

Figure 3-8. A Comparison to Other Miss Ratio Data.

10000
Cac:ho Size ~)

100000

This figure compares cold-start ("cold") and wann-ltart ("warm") miss ratios for trace 2nd500/c in eight-way

set-associative mixed caches, having 16-byte (left) and 32-byte (right) blocks, to miss ntios from other 10urces.

Lines labeled "[Smit85]" (left) and "[Smit87]" (right) show Smilh's design target miss ratios for fully

associative caches. The line labeled "[Agar87a]" (left) shows four-way set-associative miss ratio results from
Figure 18 in lhat paper. Finally,lhe line labeled "[Smit82]" (also left) shows eight-way set-associative miss ratios

from Figure 33 of lhat paper, which were galhered monitoring an Amdahl470.

This figure shows lhat the miss ratios of composite trace 2nd500K are reasonable.

Three Miss Ratio Comoonents

Cache Size Degree of Miss Miss Ratio Comj)Onents (Relati'tle Percent)

(bvtes) Associativitv Ratio Comuulsorv Caoacirv Conflict

1024 1-way 0.1913 0.0090 S% 0.140S 73% 0.0419 22%

1024 2-way 0.1609 0.0090 6% 0.1405 87% 0.0115 7%

1024 4-way 0.1523 0.0090 6% 0.140S 92% 0.0029 2%

1024 8-way 0.1488 0.0090 6% 0.1405 94% ..0.0006 ..()%

2048 1-way 0.1482 0.0090 6% 0.1032 70% 0.0361 24%

2048 2-way 0.1223 0.0090 7% 0.1032 84% 0.0102 8%

2048 4-way 0.1148 0.0090 8% 0.1032 90% 0.0027 2%

2048 8-way 0.1128 0.0090 8% 0.1032 91% 0.0006 1%

4096 1-way 0.1089 0.0090 8% 0.0730 67% 0.0270 25%

4096 2-way 0.0948 0.0090 9% 0.0730 77% 0.0129 14%

4096 4-way 0.0868 0.0090 10% 0.0730 84% 0.0049 6%

4096 8-way 0.0842 0.0090 11% 0.0730 87% 0.0022 3%

8192 1-way 0.0868 0.0090 10% 0.0521 60% 0.0257 30%

8192 2-way 0.0693 0.0090 13% 0.0521 75% 0.0082 12%

8192 4-way 0.0650 0.0090 14% 0.0521 80% 0.0040 6%

8192 8-way 0.0629 0.0090 14% 0.0521 83% 0.0018 3%

16384 1-way 0.0658 0.0090 14% 0.0375 57% 0.0194 29%

16384 2-way 0.0535 0.0090 17% 0.0375 70% 0.0070 13%

16384 4-way 0.0494 0.0090 18% 0.0375 76% 0.0029 6%

16384 8-way 0.0478 0.0090 19% 0.0375 78% 0.0014 3%

32768 1-way 0.0503 0.0090 18% 0.0279 SS% 0.0134 27%

32768 2-way 0.0412 0.0090 22% 0.0279 68% 0.0043 11%

32768 4-way 0.0383 0.0090 23% 0.0279 73% 0.0014 4%

32768 8-way 0.0377 0.0090 24% 0.0279 74% 0.0008 2%

65536 1-way 0.0386 0.0090 23% 0.0192 SO% O.ot05 27%

65536 2-way 0.0296 0.0090 30% 0.0192 65% 0.0015 5%

65536 4-way 0.0279 0.0090 32% 0.0192 69% ..0.0002 -1%

65536 8-way 0.0275 0.0090 33% 0.0192 70% ..0.0006 -2%

131072 1-way 0.0261 0.0090 34% 0.0041 16% 0.0130 SO%

131072 2-way 0.0195 0.0090 46% 0.0041 21% 0.0064 33%

131072 4-way 0.0164 0.0090 55% 0.0041 25% 0.0033 20%

131072 8-way 0.0151 0.0090 59% 0.0041 27% 0.0021 14%

Table 3-7. Three Miss Ratio Components.

This table illustrates the effect of dividing the miss ratios for trace ''ue" into compulsory, capacity md conflict

misses. All miss ratios are warm-start md for a mixed cache with 32-byte blocks. Under each miss ratio com

ponent, the first number is the component's absolute size. while the second is its relative contribution to the ovel'all

the miss ratio. Results for large caches are \DlStable, since small miss ratio variations can cause a large perturbation

in a component's relative size.

3.2.2. Smith's Model of Set-Associativity

58

In 1978 Smith [Smit78] proposed that set-associative miss ratios can be estimated from fully

associative ones by assuming that active blocks independently map to sets and are equally likely to map

to any set. This technique is not important for estimating such miss ratios, however, since all

associativity simulation allows all set-associative miss ratios to be calculated with a single simulation

per cache type and block size (see Chapter 2). Rather the technique is important, because it shows that

the principal cause of conflict misses is that a random mapping of active blocks to sets does not yield an

exactly even mapping of active block to sets (i.e, each of s sets does not get 1/s-th of the active blocks).

Here I show empirically that Smith model's is valid for small and large caches of any associativity

including direct-mapped. Smith validated his model for caches having 64 sets and 32-byte blocks with

59

APL and FORTRAN traces from the mM 360/91. Therefore, data on caches larger than 16K bytes are

limited to those with associativities of eight-way and larger. His results show very good predictions for

all but one case. In the final case, Smith conjectures that the predictions are pessimistic, because the

simultaneous use of adjacent blocks in the simulation causes fewer collisions than were predicted by the

model's random mapping of blocks to sets.

Smith's model is based on LRU stacks, which is a list of blocks from most-recently-referenced to

least-recently-referenced (see Chapter 2). Recall that fully-associative caches using LRU replacement

can be modeled with a single LRU stack, and that the hit ratio of an i -block fully-associative cache is

the sum of the probabilities that a reference is made to distance 1 (first in the LRU stack), distance 2, ... ,

or distance i [Matt70]. Let the probability of finding a reference at distance i be referred to as distance

probability d;. Similarly, a set-associative cache with s sets can be modeled with s LRU stacks, and

the hit ratio with i -way set-associativity is the sum of the probabilities of hits to any stack at distances 1

through i, each denoted with di(s).

Smith's model estimates set-associative miss ratios from fully-associative miss ratios by estimat

ing set-associative distance probabilities from fully-associative ones. In particular, he estimates di (s)

with Bayes Rule to be a function of d1 for j = i, i+1, i+2. · · ·. Bayes Rule states that the probability of

some event is equal to the sum of the probabilities of that event given each of a number of mutually

exclusive events, whose union is the sample space. Smith observes that the d1 's are probabilities of

mutually exclusive events, whose union is the sample space. 1berefore:

di(s) = I: Prob(s-set-associalive distance i I fully-associative distance j)*d1.
j•l .

Consequently, one can estimate set-associative distance probabilities from fully-associative ones if one

can estimate Prob(s-set-associalive mstance i I fwlly-associalive mstance j) for all relevant i and j.

Since there are always k-1 blocks above a block at distance k in an LRU stack, another way of stating

the above probability is as the probability that i-1 blocks are above of a reference ins LRU stacks

given j-1 blocks are above it is a single LRU stack. Thus, finding Prob(s-set-associative distance i

I fully-associative distance j) reduces to calculating how often exactly i-1 of the j-1 more recently

referenced blocks map to the same set as the current reference. Oeariy, this probability is zero if j <i,

since there are not i-1 more recently-referenced blocks that could map to the set of a reference. If j"?:i

on the other hand, Smith makes the simplest assumption, namely, that active blocks independently map

to one of s sets with probability lis. The assumption is not strictly true in practice because of spatial

locality, which makes it more likely that the recently-referenced blocks map to adjacent sets. Neverthe

less, the assumption is useful for predicting set-associative behavior. The probability that a more

recently-referenced block maps to the same set as the referenced block is lis, because the independence

assumption applies to both blocks. Since all the more recently-referenced biocks are independent of

each other, the probability that exactly i-1 of the j-1 more recently-referenced blocks are in the set of

the reference can be estimated with a binomial distribution to be:

Prob(s-set-associative mstance i I fully-associative mstance j) =

[~-1] (.!.);-1 (s-1 y-o.; ·~
•-1 s s J

Therefore, by Bayes rule:

where Cl;(s) denotes Smith's estimate of d;(s).

Some intuition for this approximation can be gained by examining its prediction for the hit ratio

of an s -block direct-mapped cache, d 1 (s):

al(s) = dt+(s-1)d2+(s-1)2d3+ ... +(s-1y-ld·+ ...
S S S I

60

This equation predicts a hit if the block referenced is the most-recently-referenced block, or if it is the

second most-recently-referenced block and the most-recently-referenced block maps to another set, or if

it is the third most-recently-referenced block and the first and second most-recently-referenced blocks

map to other sets, etc.

M
i
s
s

R
a
t
i
0

030 ___________ l ___ .. ___________ l
\ i i

0.20 ·•••·•·· ~ '1 ··-r····················•••j
. .
.

M
i
s
s

R

0.10 --------------1'

a
t
i
0 0.020 .•••••....••..•• ···--t·······i

24
1
4Ss8 is 1

25 24s48s8

0.00+-----...P...-----i

no10 ----------~---------------1
0.000+-----;-------i

100 1000 10000 10000
Cache Size (bytes)

Figure 3-9. Smith's Predictions for "mul2".

100000
Cache Size (bytes)

This figure shows Smith's predictions (dashed lines. labeled with 's') and actual set-associative miss ratios with

trace 11Wl2 for mixed caches with 32-byte blocks. All predictions are accurate, particularly those for higher associ

ativities.

1000000

Figures 3-9 and 3-10 show set-associative miss ratios (solid lines) and Smith's predictions (dashed

lines). These figures and predictions for other traces (not shown) yield three conclusions:

(1) Smith's predictions are accurate. Let the relative error between Smith's prediction and an actual

miss ratio be the predicted miss ratio less the actual miss ratio, all divided by the actual miss ratio.

In most cases the relative error is less than five percent, and only rarely is it greater than ten per

cent.

(2) Smith's predictions tend to be more pessimistic than actual miss ratios (see Figure 3-10). I agree

with Smith that this is because spatial locality makes blocks selected with bit selection less likely

to collide than blocks selected with random mapping.

(3) The relative error gets smaller as associativity is increased, which I expected, since many-way

set-associative caches have miss ratios nearly identical to fully-associative caches.

3.2.3. Ratios of Set-Associative Miss Ratios

In the last sections we saw that many factors affect the miss ratio of set-associative caches. Next I

isolate the effects of associativity by examining the relative effect of changing associativity in simula

tions based on individual traces and averages of traces.

A new metric I use here is miss ratio spread, which between an n -way set-associative cache,

C(A=n), and a similar 2n-way set-associative cache, C(A=2n), is the ratio of the miss ratios, less one,

or:

m(C(A=n)) -l = m(C(A=n))-m(C(A=2n))

m(C(A=2n)) m(C(A=2n))

where m(C(A=i)) is the miss ratio of an i-way set-associative cache. The use of miss ratio spread

M
i

R
a
t
i
0

M
i
s

R
a
t
i
0

o.~ ---····-···T····-·-·-····-··1
~ : ;

0.30 ···-····--- ~--······-·t··············-·········i

~ ! !
' : :
' ! i
9_,. -----------·-·------·--! 0.20··········-····· ,..,, :

~. ~' ::.:::. i " '
0.10 ···----·······!·-·······- h.,.,.,,,,,

0.00+------i------t
100 1000 10000

Cache Size (bytes)

0.~ ·······---······!-····-·--····!

0

is 1
0.10 [................ " .. 2s24s4sss

0.00
100 1000

Cache Size (bytes)
10000

M
i
s
s

R
a
t
i
0

M
i
s

R
a
t
i
0

61

:: :~=:===r~~~==:::J ' : :
\ : :
' : : 0.060 , 1 1

~ : :

O.MO - ··- ~-:F==::~~]
0.030 0 ... i

0.020 l.. 4 :48s8

0.010 1" 1

0.000+------i------;
1 0000 100000 1000000

Cache Size (bytes)

0.080 '''lf"""""""'"'"'"""""T'""""""""""""'"''''"''1

' : :
\ : :

0.070 ·-··· ,---------------r----------------------1
~ \ : :

\ : i
0.060 ---- - ------------r·-------------------1

0.050 ----- -- ., t--····----------------1
\ i i

0.040 ·- ~--+----------------------~

\ : :
~ i

. ~-----................ .
: l(l

': ' :
\ ' :

0.020 --- --x::h·-----·--i

1 :

. -..,"'~~2~s2~i ~ 0.010 t--··· 4S48s8

0.000
10000 100000

Cache Size (bytes)
1000000

Figure 3-10. Smith's Miss Ratio Predictions.

For "ue" (top) and "mvs" (bottom).

facilitates examining the effects of associativity by reducing the effects of other parameters, like cache

size and block size.

Figures 3-11 and 3-12 show miss ratio spreads for various traces (with cold-start, mixed cache,

32-byte blocks and LRU replacement). I smooth the data with a weighted average of adjacent spreads

(recommended in [Cham83]). Let mrs (c) be the miss ratio spread for a cache of c blocks. The

smoothed spread, mrs'(c), is 0.15*mrs(c!4) + 0.20*mrs(cl2) + 0.30*mrs(c) + 0.20*mrs(2c) +

0.15*mrs (4c). I selected weights to reduce variation between adjacent spreads, without suppressing

larger trends. End points are estimated using remaining points with weightsrincreased proportionally to

sum to 1.0. For example, for a 1K-byte cache, mrs'(lK), is [0.30*mrs(1K) + 0.20*mrs(2K) +

0.15*mrs (4K)]/[1.0-0.15-0.30].

M
i
s
s

R
a
t
i
0

s
p
r
e
a
d

0.40

0.30

·--------------T·------------··yif·-----------l
! il \ j
i ~ I i
' f, I '
1 1! 2_to~1

---------------+------------ ~-----l.--------- i M
i
s
s

62

·-~ -·-·--r···--T·········-~

: "'": :
: / ~ :

0.30 ------------·-·t··--·-·;t••••••i··-,---------·-·j
........ '""- : / : \ :

-.;...t : \ i I I * I
______ ~ ___ __ -___ .. __ -~ -~·-·-··-+-···-·!

R
a
t
i

l l x_2s_4_1s
0.20

i }C. i i
0.10

i 4 toi2 ---1
8_tof4

0.00+-------i----i-------t
1000 10000 100000 1000000

Cache Size (bytes)

0

s
p
r
e
a
d

0.20 ---------------r--------------~----------------1

: X.: :
...X. 1)(/ ~ i

0.10 _______ii.."""·t·_::;c;·"---------~---,------------j

0.00
1000

...,r, : \ :
,. i ,...X. i L 4s_t<i_2s

.... • '1- •

' : ~~ i
,.. ~ I ' I

1 ~ x_Ss_t<j-4s

10000 100000 1000000
Cache Size (bytes)

Figure 3-11. Cold-Start Miss Ratio Spreads for ''mul2' '.

This figure shows cold-start miss ratios spreads (the ratio of miss ratios of caches with different associativity, less

one) for mixed caches using 32-byte blocks and LRU replacement with trace mul2. The left plot shows smoothed

(solid lines) and actual miss ratios spreads (dashed lines). Each smoothed value is the weighted average of the ac

tual value and the actual values to two points below and above (see text for a more exact description of data

smoothing). The data imply that the miss ratio spreads are smaller between caches of greater associativity and that

there is no strong relationship between miss ratio spread and cache size.

The right plot displays miss ratios spreads of set-associative miss ratios calculated from fully-associative miss ra

tios using Smith's method. It shows that Smith's predictions yield miss ratios spreads that are quite similar to actu

al miss ratio spreads, which illustrates that even small relative miss ratio changes are explained by Smith's model.

Quantitative results vary, but two qualitative trends are present. First, as evident in the original

miss ratios, the miss ratio spread between direct-mapped and two-way set-associative caches is greater

than that between two-way and four-way caches, which is greater than that between four-way and

eight-way caches. Second and not so obvious in the original miss ratios, there is no general correlation

between miss ratio spread and cache size.

To study the effects of cache type and block size on miss ratio spread, I now restrict simulation

analysis to the composite trace 2nd500k. Figures 3-13 and 3-14 show cold- and wann-start miss ratio

spreads for mixed, instruction and data caches with 32-byte blocks. Since wann-start miss ratio spreads

are qualitatively similar to cold-start spreads, and warm-start spreads are arguably more realistic, I use

only warm-start numbers in the rest of this section. I calculate the miss ratio spread with the ratios of

averages, defined in Section 3.1.2.

Miss ratios spreads show surprisingly little systematic variation with changing cache size. For

this reason I can reduce data further by averaging miss ratio spreads for caches of different sizes. Aver

age miss ratios spreads are presented in Table 3-8. Table 3-9 shows the same data expressed in miss

ratio change relative to direct-mapped miss ratios. The miss ratio spreads between direct-mapped and

two-set-associative instruction caches, however, do show systematic variation with cache size (see Fig

ure 3-14). For this reason averaging across varying instruction cache sizes can be misleading.

The data in Table 3-8 exhibit several trends.

(1) As is known, miss ratio spreads are larger between caches of more restricted associativity. Mixed

caches with 32-byte blocks, for example, have miss ratio spreads of 4, 10 and 25 percent as associ

ativity is successively halved from eight-way.

M
i
s
s

R
a
t
i
0

s
p
r
e
a
d

M
i
s
s

R
a
t
i
0

0.40 ··---------··--I·------------··r··------·------~

:~ l l r: \ l l
I I ' I I

-,-~--;- T.-r:-.:::J=:
0.20 ---.W.---······t···········..k.. .

:4 '\ 'x 2Jot'

0.30

0.10 ······i················i
\ : :
' : i
k. i 4_tol2

l-X 8 tol4
',.. :.t(- t

0.00+----i----=~--....
1000 10000 100000 1000000

Cache Size (bytes)

0.40

0.30

M
i
s
s

R
a
t
i
0

M
i
s
I

R
a
t
i
0

s
p
r
e
a
d

63

0.30 --·············y···············y···············!
: JC..: :
: / i.. :

¥oi ' :
1!.,.. 2_toll
I l i

0 • '

0 20 ..••••••••. • • .:. ..•••••••..•••• .:. ••••.•.•••••••• :
• I i ! j

I : : :

0 10
-----~~· __ L ________ L _______ l

• I ' .,, I

.. v : 4 toi2
i 'X l - T

xl : :
/ :, : :

0

: lC.. 8 toi4

~"t(l -:
0.00+-..;;...---i----i---~

1000 10000 100000 1000000
Cache Size (bytes)

0.60

'If
0.50

0.40

0.30

s 0.20 s
p

0.20 r p
r
e e
a a
d d

0.10

o.oo.J---....P.---;....---i 0.00

1000 10000 100000 1000000 1000 1000000
Cache Size (bytes)

Figure 3-12. Cold-start Miss Ratios Spreads.

For "mul8" (top-left), "ue" (top-right), "mvs" (bottom-left) and "synapse_devel" (bottom-right).

(2) Miss ratio spreads do not vary much with changing cache type. Halving associativity in two-way

set-associative caches with 32-byte blocks, for instance, increases miss ratio 25 percent, regardless

of cache type. Results with other traces, however, suggest that some instruction cache miss ratio

spreads are lower than those for mixed and data caches (see Table 3-10 and [Cho86]).

(3) Miss ratio spreads are positively correlated with block size. Halving associativity in two-way

mixed set-associative caches, for example, increases the miss ratio 22, 25 and 32 percent with 16,

32 and 64-byte blocks.

The above miss ratio spreads were calculated with ratio of averages rather than with the average

of ratios. These methods are distinguished in Section 3.1.2. I now explore whether there is any

significant difference between miss ratio spreads computed with the two methods using warm-start miss

ratios from 23 of 33 trace samples gathered by Agarwal, Sites and Horowitz and distributed by DEC

M
i
I
I

R
a
t
i
0

s
p
r
e
a
d

64

0.40 o.so --·-··---·-----T·------------··y·············--1

i i, i
i :,1 i
: : \ :

0.40 -·------·---·-·t··-------------r-··t·----------~

--------·---------·---··-----------·--·-···----· ' ' '

1 1 " i ' •I I '
0.30 ···············+···············+··,-----·······!

! ;, I !
i ,: 2 to! 1

M
i
I

: j \ !
i ,: 2_to.Ll
i ,: ;

1 • - r
0.20~ ~--~--;::~=-----~-r----1

0.10
: '(: :

··-·········-··t--···"'"··· ····~----····-·ll'.::.to.f-2

8_tot4

0.00+-----i----i-----i
1000 10000 100000 1000000

Cache Size (bytes)

R
a
t
i
0

s
p
r
e
a
d

0.30 -------·---·-·--t----·-·······- ~·--------------t

! I ~ !
I~ ~

0.20...-..... ~.-::: ...•... ~--~-+---···········-l
: I(:

! I i
i I 4_to+2

---.-...~--···A-····-·········-i
'1(: i 0.10

i ,X 8 to!4
• - +:':. "4 ... 1

o.oo+---......,----t-----1

IC.

1000 10000 100000 1000000
Cache Size (bytes)

Figure 3-13. Mixed Miss Ratio Spreads for "2nd500k".

This figure shows cold- and wann-stan miss ratio spreads for mixed caches using 32-byte blocks and LRU replace

ment with trace 2nd5fX!k. whose miss ratios are the arithmetic average of the miss ratio of several traces.

For the most part. miss ratio spreads vary little with changing cache size. The only major exception to this rule is

the miss ratio spread between direct-mapped and two-way set-associative 128K-byte caches. I expect the cause of

this aberration lies in the particular traces and trace lengths used, not in some property of 128K-byte caches. No

such aberration is present, for example, in the miss ratio spreads of Figure 3-15. Wann-start miss ratios spreads are

on balance greater, but the difference is often small and sometimes negative.

[Agar86]. I use a different set of traces, which I will call atum, than before to see if additional results

will corroborate the miss ratios spreads found with 2nd500k.

Figure 3-15 and Table 3-10 show miss ratio spreads for atum. Since results for the two methods

are nearly identical, either method may be used. Results here are also comparable to miss ratio spreads

found with 2nd500k. The spreads between two-way set-associative and direct-mapped mixed and data

caches, however, are a little higher here than they were with 2nd500k (27 to 31 percent vs. 25 percent);

while spreads between two-way set-associative and direct-mapped instructions caches are 21 to 25 per

cent here and 25 percent for 2nd500k.

I conclude this section by extending Smith's design target miss ratios [Smit85, Smit87] to caches

of more restricted associativity. I use Smith's fully-associativity miss ratios to approximate eight-way

set-associative miss ratios, and compute other set-associative miss ratios using smoothed miss ratio

spreads calculated with the average of ratios for atum. Tables 3-12, 3-13 and 3-14 show my extended

design target miss ratios.

In this section I have examined the relationship between the miss ratios of caches with different

associativities, and find that the relative difference, the miss ratio spread, does not change dramatically

as caches get larger. Consequently the absolute miss ratio difference decreases as cache gets larger,

since each miss ratio gets smaller. The next chapter shows that when the absolute miss ratio difference

becomes sufficiently small, an interesting change occurs: the effective access time of a direct-mapped

cache can be smaller than that of a set-associative cache of the same size, even though the direct

mapped cache has the larger miss ratio. This change occurs when implementation differences, that have

previously been ignored, become more important than absolute miss ratio differences.

M
i
s
s

R
a
t
i
0

s
p
r
e
a
d

M
i
s

R
a
t
i
0

s
p
r
e
a
d

Oo30

Oo20

OolO

Oooo ... --...... r----r----i
1000 10000 100000 1000000

Cache Size (bytes)

0.40 _ ____
0 0 • . ' . . .

X. : : :

0.30 oooyo~ooo•~---------------i---------------1

~ i I
:~ :
~ i

ooooooooooo•••-~•o••••x:-- __ \ ____________ :

~ -- l 2_oot'
Oo20

I 1~ i i
0.1 o 'IE.:,;.,.,_., ----;;.:;· ------------r---------------

1
4_tof2

8_tof4
0.00+----r---.;....---i

1000 10000 100000 1000000
Cache Size (bytes)

M
i
I
s

R
a
t
i
0

s
p
r
e
a
d

M
i
s

R
a
t
i
0

s
p
r
e
a
d

65

OoSO

Oo40

Oo30

0020

0.10

oooo ---...... r----r-...... --i
1000 10000 100000

Cache Size (bytes)
1000000

Oo40 ---------------1·-------------r·--------------~

i !1 i
i iII i

0.30 GDO.,..•O•D~ l J~ ! i
' : I I :

I ,._ ~l i i
i. ': 2_to+1

---------------+----"'·-----~-~---------------1
l --~ l l

Oo20

xi : :
I :' i i

---111:---- : ~-----------~~-------------l
'1t : : ' 4 toi2

: ' - ~
: •,',... X :
=~ .r"' :
' IC 8_tot4

Oooo+----r---.;....---i

OolO

1000 10000 100000 1000000
Cache Size (bytes)

Figure 3-14. Miss Ratio Spreads for "2nd500k".

Cold-start (left), wann-statt (right), instruction caches (top) and data caches (bottom).

Miss Ratio Spreads w/16-byte Blocks

Cache Associativity Change

Type 8-to-4 4-to-2 2-to-1

Mixed 4% 9% 22%
Instruction 4% 9% 23%*

Data 3% 9% 23%

Miss Ratio Spreads w/ 32-byte Blocks

Cache Associativity Change

Type 8-to-4 4-to-2 2-to-1

Mixed 4% 10% 25%
Instruction 4% 9% 25%*

Data 4% 10% 25%

Miss Ratio Spreads w/64-byte Blocks

Cache Associativity Change

Type 8-to-4 4-to-2 2-to-1

Mixed 4% 11% 32%
Instruction 4% 9% 27%*

Data 5% 10% 31%

Miss Ratio Spread SUMMARY

Block Size Associativity Change

(bytes) 8-to-4 4-to-2 2-to-1

16 4% 9% 23%
32 4% 10% 25%
64 4% 10% 30%

Table 3-8. Average Miss Ratio Spreads for ''2nd500k''.

The top three tables summarize average wann-start miss ratio spreads for various types of caches with various

block sizes. The average is taken across miss ratio spreads for lK-byte to 256K-byte caches. The average is

meaningful when miss ratios spreads do not change systematically with cache size. Figure 3-14 shows, however,

that the warm-start miss ratio spread between a two-way set-associative and a direct-mapped instruction caches

vary from 10 to 40 percent as cache size increases from lK bytes to 256K bytes. For this reason, these averages,

denoted with asterisks in the above table, are suspect

The final table collapses results from different cache types (mixed, instruction, and data) to give overall miss ratio

spreads that are only functions of associativity and block size. This compression is reasonable since the data show

little variation with changing cache type. Other data. however, in Table 3-10 and in [Cho86] suggest that instruc

tion spreads can be smaller than those for mixed and data caches.

66

Vs. DM Miss Ratios w/ 16-byte Blocks

Cache Associativity Change

Type 1-to-8 1-to-4 1-to-2

Mixed -27% -24% -18%

Instruction -27% -24% -18%
Data -28% -25% -19%

Vs. DM Miss Ratios w/ 32-byte Blocks

Cache Associativity Change

Type 1-to-8 1-to-4 1-to-2

Mixed -30% -27% -20%

Instruction -28% -25% -19%

Data -29% -27% -20%

Vs. DM Miss Ratios w/ 64-byte Blocks

Cache Associativity Change

Type 1-to-8 1-to-4 1-to-2

Mixed -34% -31% -24%

Instruction -29% -26% -20%
Data -34% -30% -23%

Vs. DM Miss Ratios SUMMARY

Block Size Associativity Change

(bytes) 1-to-8 1-to-4 1-to-2

16 -27% -24% -18%
32 -29% -26% -20%

64 -32% -29% -22%

Table 3-9. Relative to DM Miss Ratios for ''2nd500k''.

The top three tables present the data of Table 3-8 is a slightly different manner. Instead of showing the relative

miss ratio change from doubling associativity, the miss ratio spread, this table shows the relative miss ratio change

that results from increasing associativity from one. All changes are negative since set-associative caches have

smaller miss ratios than direct-mapped (DM) caches.

The final table collapses results from different cache types (mixed, instruction, and data) to give overall numbers

that are only functions of associativity and block size.

67

M
i
s

R
a
t
i
0

s
p
r
c
a
d

68

0.40 0.40 --······--------·--·------------·---------------. _ _
' ' .
' ' ' ' ' '

. . .
' ' '

. . . . ' ' ' ' .
' ' ' ' ' . ' ' . ' ' ' ' ' ' ' ' ' ' ' ' ' . ' ' ' . . ' . . ' ' . . ' : :... 2 toi 1

i ~ - T
v l : M

i
I
I

,j ..._ :-.. 2 toil

----------:-::::~~~::[~]
0.30

0.20

~ ~~ ! !
i : :

R
a
t
i
0

_____________ }_,;_.. ----·.ii+------------=----1
I I Jr : :

-~~-L --------!-- ______ j

0.30

0.20

.... : : ,_;_..,.,.._ pc. 4 to i 2
..... J •••.••••• ,i..l. ,. ... ~------------:-___ j

-,i f'J.. ... "t(i : 0.10

s
p
r
e
a
d

0.10
r.-_ · : 4 to!2 T ,.,.: ... r ----------7 ---1

..xJ !,.. 8 toi4

- +:::,

I ! '~ i X. i
. ; 8_tor

0.00+---~,.....--....;.----i

-,(!
0.00+---~;---....;.----i

1000 10000 100000 1000000 1000 10000 100000
Cache Size (bytes) Cache S izc (bytes)

Figure 3-15. Miss Ratio Spreads for "atum ".

'This figure shows warm-start miss ratio spreads for mixed caches using 32-byte blocks and LRU replacement with

atum. Spreads are calculated as the ratios of averages Oeft) and average of ratios (right). Solid lines show data

smoothed as before.

Miss Ratio Spreads
(averal{e of ratios)

Cache Associativity Change

Type 8-to-4 4-to-2 2-to-1

Mixed 5% 11% 31%
Instruction 5% 13% 25%

Data 5% 11% 29%

Miss Ratio Spreads
(ratio of the averal(es)

Cache Associativity Change

Type 8-to-4 4-to-2 2-to-1

Mixed 4% 10% 29%
Instruction 3% 9% 21%

Data 4% 9% 27%

Table 3-10. Average Miss Ratio Spreads for '' atum' '.

These tables show average warm-start miss ratio spreads with 32-byte blocks and atum, calculated as the ratios of

averages (top) and average of ratios (bottom).

1000000

Vs. DM Miss Ratios
(averaKe of ratios)

Cache Associativity Change

Type l~to-8 1-to-4 1-to-2

Mixed -35% ~32% -24%
Instruction -32% ~28% -20%

Data -33% -30% -22%

Vs. DM Miss Ratios
(ratio of the averaKe)

Cache Associativity Change

Type 1-to-8 1-to-4 1-to-2

Mixed -32% -30% -23%
Instruction -26% -24% -17%

Data -30% -28% -21%

Table 3-1 L Relative to DM Miss Ratios for "atum ".

These tables re-present the data of Table 3-10 by showing the relative miss ratio change resulting from increasing

associativity from one (DM), instead of miss ratio spreads.

69

Design Target Miss Ratios
for Mixed Caches w/ 16-byte Blocks

Cache Associativity

Size 8-way 4-way 2-way DM
1024 0.210 0.219 0.239 0.288
2048 0.170 0.179 0.197 0.240
4096 0.120 0.126 0.140 0.172
8192 0.080 0.084 0.093 0.116

16384 0.060 0.063 0.069 0.088
32768 0.040 0.042 0.046 0.059

Design Target Miss Ratios
for Instruction Caches w/ 16-byte Blocks

Cache Associativity

Size 8-wav 4-wav 2-way DM
1024 0.200 0.211 0.234 0.271
2048 0.150 0.159 0.179 0.210
4096 0.100 0.106 0.120 0.143
8192 0.060 0.064 0.072 0.089

16384 0.050 0.053 0.060 0.076
32768 0.030 0.032 0.036 0.046

Design Target Miss Ratios
for Data Caches w/ 16-byte Blocks

Cache Associativity

Size 8-way 4-way 2-w~ DM
1024 0.160 0.170 0.192 0.244
2048 0.120 0.127 0.143 0.183
4096 0.100 0.106 0.117 0.148
8192 0.080 0.084 0.092 0.116

16384 0.060 0.062 0.068 0.084
32768 0.040 0.041 0.045 0.055

Table 3-12. Design Target Miss Ratios for 16-byte Blocks.

In this table I extend Smith's design target miss ratios [Smit85, Smit87] to caches of varying associativity by multi

plying Smith's numbers by miss ratio spreads calculated from the average of ratios with atum (such as spreads in

the left-hand plot of Figure 3-15).

These miss ratios may serve as "rules of thumb" for cache designers working with "a 32-bit architecture running

fairly large programs and mature (i.e., large) operating system.

70

71

Design Target Miss Ratios
for Mixed Caches w/32-byte Blocks

Cache Associativity

Size 8-W!ly_ 4-wav 2-way DM
1024 0.162 0.170 0.188 0.244
2048 0.124 0.130 Oo146 0.188
4096 0.082 0.087 0.097 0.126
8192 0.050 0.053 0.059 0.077

16384 0.036 0.038 0.042 0.055
32768 0.024 0.025 0.028 0.037

Design Target Miss Ratios
for Instruction Caches w/32-byte Blocks

Cache Associativity

Size 8-way 4-way 2-way DM
1024 0.134 0.140 0.155 0.179
2048 0.098 0.103 0.117 0.138
4096 0.063 0.067 0.076 0.091
8192 0.037 0.039 0.045 0.056

16384 0.029 0.031 0.035 0.045
32768 0.017 0.018 0.021 0.027

Design Target Miss Ratios
for Data Caches w/32-byte Blocks

Cache Associativity

Size 8-way 4-way 2-way DM
1024 0.138 0.146 0.166 0.216
2048 0.094 0.101 0.114 0.149
4096 0.070 0.075 0.084 0.109
8192 0.053 0.056 0.062 0.081

16384 0.039 0.041 0.045 0.058
32768 0.025 0.026 0.028 0.037

Table 3-13. Design Target Miss Ratios for 32-byte Blocks.

72

Design Target Miss Ratios
for Mixed Caches w/64-byte Blocks

Cache Associativity

Size 8-way 4-wav 2-way DM
1024 0.137 0.144 0.162 0.229
2048 0.098 0.104 0.118 0.163
4096 0.059 0.063 0.072 0.099
8192 0.033 0.035 0.040 0.055

16384 0.023 0.025 0.028 0.038
32768 0.014 0.015 0.017 0.023

Design Target Miss Ratios
for Instruction Caches w/64-byte Blocks

Cache Associativity

Size 8-way 4-way 2-way DM
1024 0.098 0.104 0.115 0.133
2048 0.068 0.072 0.082 0.097
4096 0.043 0.046 0.053 0.063
8192 0.023 0.025 0.028 0.035

16384 0.018 0.019 0.022 0.029
32768 0.010 0.011 0.012 0.016

Design Target Miss Ratios
for Data Caches w/ 64-byte Blocks

Cache Associativity

Size 8-way 4-way 2-way DM
1024 0.140 0.150 0.170 0.227
2048 0.083 0.089 0.102 0.138
4096 0.054 0.058 0.067 0.090
8192 0.039 0.042 0.047 0.064

16384 0.026 0.028 0.031 0.042
32768 0.017 0.018 0.020 0.027

Table 3-14. Design Target Miss Ratios for 64-byte Blocks.

73

3.3. Analysis with Effective Access Time

In this section I analyze caches with the metric effective access time to show that the effective ac

cess times of large direct-mapped caches are often smaller than those of slower set-associative caches of

the same size. Consider a direct-mapped cache, CIt and a set-associative cache, C 2, where the direct

mapped cache has a larger miss ratio (m (C 1) > m (C ~), but a smaller access time (tciJCiw (C 1) < tciJCiu (C ~).

I model effective access time as:

t•JJ (C) = tciJCiw (C)+ m (C)*t,..1110ry (C)

where m (C), tciJCiw (C) and t,..1110ry (C) are the miss ratio, cache access time and cache miss penalty in a

system with cache C. If I also assume that t,..1110ry is the same for both caches, then the relationship

between their effective access times is:

?
lciJC!v (C 1) + m (C t)*t,..1110ry = tC«Iu (C ~ + m (C ~*t,..1110ry

where : means either or neither side can be larger. Re-arranging terms yields:

?
(m (C 1)-m (C ~)*t,.._ry = lc«lu (C ~- lc«lu (C t),

or

Therefore, a direct-mapped cache's effective access time is smaller than that of a set-associative cache

if the difference in their miss ratios times the miss penalty is less the the difference in their access times.

Figure 3-16 illustrates this relationship.

To see if any practical direct-mapped caches have effective access times smaller than those of

set-associative caches, I must find practical values for miss ratio differences and access time differ

ences. I next use the miss ratios gathered in the last section to find reasonable miss ratio differences;

then define a cache architecture and implement it in three technologies to find some practical access

time differences; and finally I combine these assumptions to show that practical direct-mapped caches

can have smaller effective access times than set-associative caches of the same size.

3.3.1. Incorporating Previous Miss Ratio Analysis

Figure 3-16 shows that direct-mapped caches can have lower effective access times than set

associative caches for appropriate miss ratio differences and access time differences. In Section 3.2 I

studied cache miss ratios with trace-driven simulation. I can use these miss ratios now to find example

values for miss ratios differences.

Figures 3-17 and 3-18 illustrate warm-start miss ratio differences with trace 2nd500k. The data show

that, except for small instruction caches, the absolute miss ratio difference between caches of various

associativities gets smaller as cache size increases. Consequently, I expect that direct-mapped caches

may to do better as cache sizes increase.

Since the miss ratio difference is a function of cache size, I can incorporate it into a graph like

Figure 3-16 by replacing the axis labeled "Miss Ratio Difference" with one labeled "Cache Size," and

by shifting parameters around to facilitate presentation. This data is displayed in Figures 3-19, 3-20, 3-

21 and 3-22.

M
i

R
a
t
i
0

D
i
f
f
e
r
e
n
c
e

74

0.10

0.08

M
i

R
a
t
i

0.03 ------~~-~!!!'~~--~---~ _050

0.04

_0.50

4 6 8 10
Mila Penalty (cycles)

0

D
i
f
f
e
r
e
D
c
e

Figure 3-16. Equal Effective Access Times.

This figure illustrates the relationship between the effective access times of a direct-mapped cache, C 1, and a set

associative cache, C 2, where the direct-mapped cache has a larger miss ratio but a smaller access time than the

set-associative cache, and both caches suffer the same penalty on a miss. The x-axes show various miss penalties,

t_mory; the y-axes show various miss ratio differences, llm = m (C 1}-m (C :z); and the lines are labeled with

values of the access time difference, lltcaclu = lcaclu (C :z)- lcaclu (C 1) with lctJC/u (C 1) defined to be 1.0 (cycle),

for which the effective access times are equal, i.e., ltff (C 1) = lcff (C :z). The relationship displayed is:

llm*t-mory = fllcaclu.

The left plot illustrates small caches with large miss ratio differences, while the right plot shows larger caches with

lower miss ratios differences. For a particular cache, llm and t_mory define a point in one of the plots that can be

translated into a lllctJCiu by interpolating. A direct-mapped cache is preferred for implementations with an access

time difference greater than that fllcaclu .

The points labeled "A" and "B" give the location of a direct-mapped 128K-byte mixed cache with 32-byte

blocks using warm-start miss ratios from trace 2nd500K, assuming a fast ten-cycle miss penalty ("A") and a slow

twenty-cycle miss penalty ("B "). For a cache at design point "A," these plots imply that a direct-mapped cache

has a better effective access time than a set-associative cache of the same size if their access time difference

exceeds 5 percent.

_0.40

_0.20

Results show that direct-mapped cache performance improves with respect to set-associative

cache performance as cache size increases, if the access time difference does not change. Consider a

mixed cache with 32-byte blocks and a 20-cycle miss penalty. An 8K-byte direct-mapped cache has a

smaller effective access time than a two-way set-associative 8K-byte cache only if the set-associative

cache is at least 26 percent slower on cache hits; at 64K-bytes, the crossover occurs at 10 percent

slower.

In the rest of this chapter I examine cache implementations to see if practical set-associative

caches can have access times sufficiently slower than direct-mapped access times to make their effec

tive access times larger than those of the direct-mapped caches.

c
0
n
f
1
i
c
t

M
i
I
I

R
a
t
i
0

0.050 ~oo•••••••oo•••-••••••••••••o.,-•••••••••••••••

' ' '
' ' ' ' ' .
' ' ' ' ' ' ' ' ' ' . .
' ' ' . ' '
' ' '
' ' ' ' . .
' ' ' ' . '

·· ····-···r-····T···--·-·1

······ ··-···[~=r--:~~::·:1

0.040

0.030

··+···~:·1
o.ooo!--=::C~~~~

1 ()()() 10000 100000 l 000000
Cache Size (bytes)

Figure 3-17. Mixed Cache Miss Ratio Differences.

The figures shows the difference between miss ratio for caches for various associativities ("1," "2" and "4") and

eight-way set-associative miss ratios. The y-axis is labeled "Conflict Miss Ratio" to emphasize that direct

mapped. two-way set-associative, and four-way set-associative miss ratios are larger than eight-way set-associative

miss ratios, because two many active blocks maps to some sets (see Section 3.2.1). All caches are mixed and have

32-byte blocks; miss ratios are warm-start miss ratios from trace-driven simulation with trace 2nd500/c. Miss ratio

difference between caches of varying associativity are represented as the distance between lines. The miss ratio

difference between direct-mapped and two-way set-associative caches, for example, is simply the difference

between corresponding points on the lines labeled "1" and "2." On average, this distance decreases are cache

sizes increases.

75

c
0
n
f
1
i
c
t

M
i
s

R
a
t
i
0

0.020
.......................... _ _. ____ .,. ________ _ ' ' . . '

' ' '
0.015

··--·······r--·r·----~-
.T ·-·-··T-······-~

-·······-l
O.QOOF:Z....--i---......f=:ta..__,~

c
0
n
f
1
i
c
t

M
i
s
I

R
a
t
i
0

76

0.060

0.040

. 0.020 ~ .. --------

o.ooo.J.----1--~==*=;:::t:...-..;11_,

1000 10000 100000
Cache Size (bytes)

1000000 1000 10000 100000
Cache Size (bytes)

1000000

Figure 3-18. More Miss Ratio Differences.

This figure presents miss ratio differences for instruction (left) and data (right) caches. See the caption of Figure

3-17 for how this data is derived. Note that they-axis scale for instruction caches is significantly different than that

for mixed or data caches. I expected instruction caches to have smaller conflict miss ratios, since instruction refer

ences exhibit greater spatial locality. It is interesting, however, that the miss ratio differences for these instruction

caches do not monotonically decrease with cache size. It remains be to seen whether this behavior in an anomaly.

A
c
c
e
I
I

T
i

m
e

D
i
f
f
e
r
e
n
c
e

0.70 __ __
0.60

. . .
-------------1·------------··r··-------------1

0.50 m•• t··------.. --.. ·--r--------·----·-1
! ! l

-------r ---------------~---------------·1

0.30

·:--:::=l~::~_~l
M=2tJ

..._....~~M;!P
o.oo+----;.---;-...;;:;;;....."""

1000 10000 100000 1000000
Cache Size (bytes)

Figure 3-19. DM vs. 2-Way Mixed Cache Crossovers.

This figure combines the equation presented in Figure 3-16 with warm-start miss ratio differences shown in Figure

3-17 to show when direct-mapped mixed caches are preferred to two-way set-associative mixed caches. Each line

is labeled with a miss penalty. The label "M=20" means that a cache miss costs 20 times the time to access a

direct-mapped cache. The x-axis shows cache sizes in bytes, while they-axis shows the access time difference

between a two-way set-associative cache and a direct-mapped cache, where the direct-mapped cache has access

time of 1.

Given a particular direct-mapped cache and a particular two-way set-associative cache of the same size, this graph

can be interpreted as follows: select the point in plane defined by the size of the two caches and their access time

difference; if this point is above the expect miss penalty, then the direct-mapped cache is preferred.

The exact location of these lines may be different with miss ratio data from other traces. Nevertheless, this graph

shows that, as cache size increases, direct-mapped caches are preferred at smaller access time differences.

77

A
c
c
e

T
i

m
e

D
i
f
f
e ,.,
r
e
n
c
e

fl

78

0.30 0.080 _ -................................. -.............................. __ ., _________
A 0.070 _ _
c

0.20

c
e 0.060

T 0.050
i

m
e 0.040

D
i
f 0.030
f
e
r

0.020 e
n

.-...
~ !

.
·------- -- ----r --------------r--· ----· ------1

··--···· T··::~-~~r:::=~:~l
---- ----r--··-··-------1

c
e

··--·-··r····-··1
i M=20

: M=:iO
0.010 ••m• .,., +"'"'""'"''"'"'"'"'"''""'"'"'~

l-~.:::::EE~M~~r
: M=~O

0.00
"1-:~"+--t_'M=~

0.000+---+----;.-----i
1000 10000 100000 1000000 1000

Cache Size (bytes}

Figure 3-20. More Mixed Cache Crossovers.

1 ()()()() l 00000
Cache Size (bytes}

This figure compares two-way vs. four-way set-associative mixed caches (left) and four-way vs. eight-way set

associative mixed caches (right) in the same way Figure 3-19 compared direct-mapped vs. two-way set-associative

mixed caches. Caches of smaller associativity, two-way (left) and four-way (right), are preferred for points above

the appropriate miss penalty line.

1000000

A
c
c
e
s
s

T
i

m
e

D
i
f
f
e
r
e
n
c
e

0.090

0.080

0.070

0.060

0.050

0.040

0.030

0.020

0.010

0.000
1000

A
c
c
e

T
i
m
e

D
i
f
f
e
r
e
n
c
e

10000 100000
Cache Size (bytes)

0.20 _ _ ___ ,. __
' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' ' ' ' . .
' ' ' ' ' '
' ' ' ' ' ' ' . ' ' . '
' ' ' ' ' ' ' . ' . . .

·· --··--r·---T-··--···1

·-T-·-····1

0.15

0.10

-------~---- -·---------i
i M=~

0.05

M=lP
M=Sj

0.00+-----i..-----i----...
1000 l 0000 100000

Cache Size (bytes)

A
c
c
e
s
I

T
i
m
e

D
i
f
f
e
r
e
n
c
e

1000000

0.050 ~ _ _ ~
' ' ' . . ' ' . ' .
' 0 •

' ' ' ' ' '
' ' ' ' ' .
0 0 0 . ' ' . ' ' . ' '

0.040 ' ' ' -........................... .,
' ' ' . . ' ' . . '
' ' ' ' . ' . '
' ' ' ' . ' ' .

0.030 ·------·

0.020 ------

t··------------1

0.000+---.....;.---....... ~_.~.

79

1000000 1000 10000 100000 1000000
Cache Size (bytes)

Figure 3-21. Instruction Cache Crossovers.

For direct-mapped vs. 2-way (top), 2- vs.4-way (bottom-left) and 4- vs.8-way (bottom-right).

A
c
c
e
s
s

T
i

m
e

D
i
f
f
e
r
e
n
c
e

A
c
c
e

T
i
m
e

D
i
f
f
e
r
e
D
c
e

0.70 ·············--1··-··--·--·--·-r····-····-···-·1

0.60 ··-·· ······-T···········--T········-····-1

0.50 ..•..•. ······r···-···--····r·······-····-1
0.40 ---------- ---r---------·-··r··--------···l

:: -·- ·····- ··-~:~:T~~::~l
M=lP

--... ~~~!P o.oo+---....;..---r-....:=;:;.;.;...;.j
1000 10000 100000 1000000

Cache Size {bytes)

80

0.20 ···············1··-·-··········r·············--l
A
c
c
e
s
I

T
i
m
e

D
i
f
f
e
r
e
n
c
e

: : :

0.15
I I I

0.10

nos ····-·· ··t--······-r···-···<

o.ool--~.::::!:=E~~-llllid
1000 10000 100000 1000000

Cache Size {bytes)

Figure 3-22. Data Cache Crossovers.
For direct-mapped vs. 2-way (top), 2- vs.4-way (bottom-left) and 4- vs.8-way (bottom-right).

3.3.2. A Cache Architecture

This section develops a generic cache architecture to serve as a framework for the cache imple
mentations described in Section 3.5. I concentrate on direct-mapped cache access logic and set

associativity logic, because the delay through this logic determines cache access time and directly af
fects effective access time. Set-associativity logic is the additional logic required by a set-associative
cache to multiplex alternative data words together.

Assume a single 40-byte virtual address space of aligned four-byte words, addressed with 32-bit
byte-addresses. The memory system, therefore, accepts the 32-bit addresses, discards the two low-order
bits, and uses the upper 30 bits to select one of 230 words. Let virtual memory be divided into 4K-byte
pages that are mapped to physical page frames by a method that does not determine tcoclw (C). Address
translation does not determine tcoc1,.(C), for example, if it is done with a translation buffer in parallel

81

with cache lookup, as is called "typical" by Smith [Smit82], or if the cache uses virtual address tags

and address translation is done only for cache misses, as in SPUR [Wood86a]. Since I am not interested

in address translation per se, I assume without loss of generality that the caches in the rest of the paper

are accessed with virtual addresses and store virtual address tags. By assuming that the memory system

does not support unaligned accesses and that address translation time is hidden, I minimize cache access

time and accentuate cache access time differences. Cache access time differences in systems where

cache accesses are slowed by unaligned accesses or address translation will be relatively smaller.

A direct-mapped cache is simpliest to build, because the cache location of a referenced word is a

function of the address of a reference only. A direct-mapped cache lookup requires two parallel actions

(see Figure 3-23). One action is to read the word in the cache where the referenced word could reside,

and pass it directly back to the CPU. The second action is to read the address tag and state bits for that

word to see if the address tag matches and whether the block is valid. A bit is then sent to the CPU

indicating a hit if a valid match has occurred, or indicating a miss otherwise. A direct-mapped cache

lookup is simpler than a set-associative cache lookup. In a set-associative cache lookup, reading the

data and reading the tags are not independent; instead the tags influence the data selected.

An N -way set-associative cache, with N equal to two, four, or eight, is a commonly-used cache

organization. An N -way set-associative cache allows any one of the N blocks in the set of a reference

to be replaced on a miss. While this flexibility often yields lower miss ratios, it requires that N blocks

be searched on each reference. To keep a set-associative cache access time similar to that of a direct

mapped cache, each of the N tags in a set must be read in parallel and compared to the tag of the refer

ence in parallel. This associative lookup and comparison adds significant cost, as measured in chip

count and board area, to a set-associative cache relative to a direct-mapped one.

Figure 3-24 shows the basic structure of anN -way set-associative cache. Each bank has the same

structure as a direct-mapped cache. In addition, some logic is needed to combine the results of theN

banks. This logic, which I call set-associativity logic, can take the form of OR-gates and multiplexors

(Figure 3-24), or wired-ORs and tri-state buffers (Figure 3-25). The delay through this logic is deter

mined by one of three timing paths: (1) Match[i] to MatchOut, (2) Match[i] through Select to

DataOut and (3) Data[i] to DataOut.

The distinction between the logic within the N banks and the set-associativity logic is not as clear

in many implementations as it is in Figures 3-24 and 3-25. For example, theN comparators and the

encoding logic can be combined into a single N -way comparator that directly controls the multiplexor.

Nevertheless, a set-associative cache requires some additional circuitry and time beyond that used by a

direct-mapped bank to produce MatchOut and DataOut.

The access time of a set-associative cache is greater than or equal to that of a direct-mapped cache

of the· same size. It cannot be less since a direct-mapped cache can alway be implemented with the

same structure as the set-associative cache, with Select detennined by address bits rather than by the

match logic. Designers of the Titan I, for example, found direct-mapped and four-way set-associative

access times equal, since their critical paths ran to MatchOut and not to DataOut, and the four

Match[i] 's can be wire-ORed in ECL in zero-time [Niel86]. For this reason and because a set

associative cache has a lower miss ratio, they implemented the four-way set-associative cache.

The access time of a set-associative cache is much greater than that of a direct-mapped cache of

the same size when the time to detennine which bank hits is much larger than the time to read data from

a bank. In a direct-mapped cache, data can be read out of the cache, passed to the CPU, and execution

resumed even before MatchOut is detennined, as long as the CPU can back out of execution begun

with incorrect data. This optimistic use of cache data is being used in a research machine [Dion86],

where it enables the cache access time and the machine cycle time to be reduced by approximately

one-third, and is rumored to be used in some commercially-available workstationst. This technique

cannot be used in a straight-forward set-associative cache, because the data returned to the processor is

t The manufacturer declined to confirm these reports, and requested anonymity.

A~ss Latch tag
~----r-----~~_.~--~

-------------,
b

Tag
Memory addrl--'_ ..

Data

Memory

1 "valid"
data

I

I 1 32
(___________________ ------------------

Match Out DataOut

Figure 3-23. A Direct-mapped Cache.

The figure shows the three components of the access logic (not the miss logic) for a direct-mapped cache that

selects the set (block frame) of a reference using the fastest method. i.e., bit selection. The first component, the

data memory, holds all the cached data and instructions. Its size is, by definition, the cache size. Conceptually, it

is organized as if it were one word wide and accessed with an address formed by concatenating the index and block

fields of the address. If it is implemented as a wider memory, some or all of the bits in the block field shift from

addressing memory chips to selecting a word after the memory chip access. A block-wide data memory is often

preferred when unaligned memory references are permitted. The second component, the tag memory, which holds

the address tag and state bits associated with a cached block, is the cache size in blocks deep and is addressed by

the index field. The state is often composed of just a valid bit and a dirty bit. The last component, the match log

ic, produces a single bit indicating whether the referenced block is present. This bit is asserted only if the tag read

from the tag memory is equal to the tag field of the address and the state read from the tag memory is "valid."

The address of a reference to a direct-mapped cache is divided into several fields, which from least- to most

significant are: 2 bits that are discarded, since I assume aligned word references; b = log2(block size in words)

bits of the block (offset); i = log2(cache size in blocks) bits of the index; and t = 32- i - b- 2 bits of the

(address) tag.

A direct-mapped cache lookup requires two parallel actions. One action, called data-loo/aqJ, consists of accessing

the data memory with the index and block address fields and passing the word read to DataOut. The second action,

called tag-loo/aqJ-match, requires two steps. First the tag memory is accessed using the index address field.

Second, the tag and state read from the tag memory is compared by the match logic to assert MatchOut when a

cache hit is detected.

82

not selected until after the Match[i]' s are computed. A way speed up a set-associative cache on aver

age is to optimistically return data from the most-recently-used block in the selected set [Chan87]. I

discuss this approach in Section 3.3.4.

Finally, the access time of a set-associative cache can be a little larger than that of a direct

mapped cache of the same size if the set-associative access is slower only by the delay through the set

associativity logic. The access time difference is exactly equal to the delay through the set-associativity

logic if the delay through the C direct-mapped cache is exactly equal to the delay through N parallel

direct-mapped banks of C IN blocks. My examination of memory chips suggests that the two delays are

often comparable, particularly since the direct-mapped caches can use larger memory chips that are not

much slower and whose use reduces the load on address drivers. I also found this relationship to hold

for bank delays in the SPUR cache.

Address

Bank[O]

Match[OJ Data[OJ

.---

Match Out

Address

Bank[l] Bank[N~l]

Match[l] Data[I) 000 Match[N-1) Data[N-1]

1 - - - - 32 - - - - - - - r---- 32-,
I

000

32 bit-wide N-10-l MUX

I

32 I
---~-~-~---------~

DataOut

Figure 3-24. A Set-Associative Cache.

This figure shows cache access logic for anN -way set-associative cache" This logic consists of N direct-mapped

banks and logic to combine the N results into a single match signal and data word.

Each bank in an N ·way set-associative cache of C blocks can be thought of and implemented as a direct-mapped

cache of C IN blocks" On a reference, the address is passed to all the direct-mapped banks. In parallel, each bank

selects a block. sends 32-bits of data to Data[i], and computes Match(i], which is asserted on valid tag matches.

The set of a reference consists of the N blocks selected by theN banks.

After theN direct-mapped caches compute MaJch{i] 'sand Data[i]' s, the additional logic shown in the dashed

box is necessary to produce a single MatchOUl signal and DataOUl word" MaJchOUl, which is asserted on a cache

hit is the logical OR of theN Match[i] signals. One way to compute it is with a single N -input OR gate. Select,

an internal signal, is the number of the bank that matched and can be any value if none matched. Select can be

computed with anN -bit encoder or with a single level of log2(N) N /2-input OR gates" DataOUl must be driven

to the value of the bank that matched and can be any value if none matched. One way to compute DaJaOut is with

a32-bit-wideN -to-1 multiplexor (MUX).

83

In the next section, I compare caches implemented in AS TIL, ECL lOOK and custom CMOS to

illustrate that implementation factors should be considered when comparing caches with effective

access time. For the reasons give above, I will assume that set-associative caches are slower than

direct-mapped ones by exactly the delay through set-associativity logic" More details regarding cache

implementations can be found in Section 3.5.

3.3.3. Comparing Effective Access Times

Here I compare the effective access times direct-mapped and set-associative caches implemented

in AS TTL, ECL lOOK and custom CMOS to show that effective access time comparisons which ignore

access time differences can be misleading" In particular, I find that direct-mapped caches oflarge, prac

tical sizes can yield similar or lower effective access times than those of set-associative caches of the

same size.

Let the 5-percent size be the minimum cache size for which the effective access time of a direct

mapped cache is similar to that of set-associative caches of the same size. I arbitrarily define "similar"

to be "within 5 percent." because a 5 percent difference in effective access time translates into no more

than a 5 percent difference in workload execution time, since computers do not spend all their time

Address

t+i+b

Address 000 Address

Bank[O] Bank[I] Bank[N-1]

R,..

I

32 I

-----------------~

DataOut

Figure 3-25. An Alternative Set-Associative Cache.

This figure shows cache hit logic for anN -way set-associative cache using alternative implementation style. The

32-bit wideN -to-1 multiplexor and select logic has been replaced with N 32-bit-wide tri-state buffers. This alter

native does not have to encode Sekct. Instead, each Bank[i] independently enables its tri-state buffer to drive

Data[i] to DataiJut if its Match[i] is asserted. At most one bank drives DataOul since more than one bank can

not match. H no banks match. DataiJut is undefined. TheN Data[i] 's are connected to each other and DataOut

with one 32-bit bus. To first order and for small values of N, e.g., N s; 8, the delay to DataOul with this design is

independent of N.

Alternative logic using wired-OR is also illustrated here for computing MatchOut. Each Match[i] is computed

twice (in parallel) by duplicating the final OR-gate in the match logic (not shown). One copy drives the tri-state

enable or multiplexor select, and the other is wired to the other Match[i] 's. In TTL, the Match[i] 's that are wire

ORed together must be produced with OR-gates using open-collector outputs ("oc"). In ECL. any outputs can be

wire-ORed. Two copies of each Match[i] are necessary so that the wire-ORing does not affect which data is

selected.

84

waiting for memory. Similarly, let the crossover size be the minimum cache size for which the effec

tive access time of a direct-mapped cache is less than that of set-associative caches of the same size.

The 5-percent size is interesting when direct-mapped caches "cost" less than set-associative caches (in

design or debug time, chip area, chip count, power consumption, etc.) making similar performance ade

quate. The crossover size is interesting when direct-mapped and set-associative caches cost the same.

Since both cases can occur, I present both the 5-percent and crossover sizes for various technologies,

cache types and miss penalties.

3.3.3.1. TTL Caches

Effective access times for numerous TIL caches are presented in Figures 3-26 and 3-27 and in

Tables 3-16 through 3-19. Results use warm-start miss ratios from trace average 2nd500k, the access

time assumptions in Table 3-15, "slow" and "fast" miss penalties. The slow miss penalty, 12 cycles

plus one cycle per word, is the same as the miss penalty in SPUR, which services misses with an

extended version of a standard 32-bit backplane bus. The fast miss penalty, 6 cycles plus one cycle per

doubleword, corresponds to using "fast" miss logic and a special-purpose 64-bit memory interconnect.

Caution should be used when comparing caches of radically different sizes, because cache access times

are affected by large changes in cache size.

Degree Cache Access Time
of %increase

Associativity (ns) from A=l
1 100.0 0.0
2 109.0 9.0
4 109.0 9.0
8 109.0 9.0

Table 3-15. TIL Cache Access Times.

This table lists TTL cache access times, based on the assumptions of Section 3.5. The direct-mapped cache_ has an

access time of 100 ns with a critical path to Match. The critical path though the set-associativity logic is from

Match to DataOv.t. The length of this path is minimized by using tri-state drivers rather than explicit multiplexors.

Caches with associativities two, four and eight have the same access times, 109 ns, because, to first-order, the delay

through tri-state buffers is not affected by how many of them are operating in parallel.

160 ----------------------------r·--------------------------1

1 i i j"• --------.. -:------------1
~ 140 ·------r-------------1
~ 130 -,--:----------------------------1

:~ : :
·~ :
·' j

T 120 ----------------------------1--- :;;:,.""-a:::Z------------l
1 : -~~8 :

~ l 1 l
~ 110 --------------r--.... -.... -.... --1
1001+-----------~--------~

E 225 ----------------------------r·--------------------------1

l ~ ---.. --+------------1
! 8_~:\ \ i i

\\ : :
e \:,' : ;
A 175 ··--------...-\~ -----------t----------------------------1
c \x' i i

~:, \ : :
: ~· l :
: 150 --------------------~::,,. L__ _________________________ j
T

~., :
~,, :

i :"'..... i
m : &,,., :
e ; ~ .. ~ ;

~~~ -----------.. ---r----- .. ----------~ 
100+-----------+---------~ 

85 

10000 100000 1000000 10000 100000 1000000 
Cache Size (bytes) Cache Size (bytes) 

Figure 3-26. Effective Access Times ·for TTL Mixed Caches. 

This figure shows effective access times for TIL mixed caches with 32-byte blocks. The left plot shows effective 

access times with a "fast" miss penalty of ten 100 ns cycles; the right plot shows times with a "slow" twenty

cycle miss penalty. Miss ratios are based on warm-start simulations with trace average 2nd500k, while cache ac

cess times on are based on TTL implementation assumptions from Section 3.5. This data is displayed in tabular 

form in Tables 3-16 and 3-17. 

For the fast miss penalty (left), direct-mapped cache effective access times are within five percent or better than 

those of set-associative caches for all sizes shown. For the slow miss penalty (right), direct-mapped caches do rela

tively worse, since they miss more often than do set-associative caches. Nevertheless, direct-mapped effective ac

cess times are within 5 percent of a two-way set-associative times for all sizes shown. 

Perhaps the most striking feature of the data is how little changes in associativity affect the effec

tive access times of these caches. For example at a given size, most cache configurations in Figure 3-26 

have effective access times that differ by less than five percent I highlight this for each cache size in 

Tables 3-16 through 3-19 by displaying effective access times in bold that are within five percent of the 

minimum time (indicated with an asterisk). Symbolically, a ratio of relative effective access time 
changes to relative miss ratio changes is: 



i 140 
--~~--------------r·---------------1 

~ ' : : 
t 130 ··-g l.------------------l----------------------------1 
i -'.\\ i i 

~ "_ I I 
; 120 .... ,.'\" ______ t··--------------------------l 

T 
i 

~110 

n 
s 
) 

'\~ ... i i 
•::--.:..... : 

T•·=4 l 
------------------· -----------------1 

~ 170 ·---------------------------r··-------------------------
1 

! 160 ""'2:it -------------------··i··----------------------·-··j 
c 4 ~' : : 
t s-·' : : 
i 150 ---~\-, -----------------·--------------------------·-1 
v .. \ : : 

\\ : : 
\\ : : 

A 140 ----------::~\ -------------i----------------------------l 
c .. "'. 1 i 
c It::~. : i 
e ··::~. : : 
: 130 _________________ : •• ~:·------! ------------------------····j 

e 

T • '~ : 

~ :: ______________ :-r~-~---:~~~-:::~1 
100+-----------~--------~ 

86 

100 
10000 100000 

Cache Size (bytes) 
1000000 10000 100000 

Cache Size (bytes) 
1000000 

160 

E 
f 

! 150 
c 
t 
i 
; 140 

A 
c 
; 130 

T120 
I 

m 
e 

( 110 
n 
s 
) 

·---------------------------r--··-----------------------1 

4 i i 
--11:::~~- -----2"·---------r·---------------------------j 

·-.;-.\ i i 
~~. ! i 

;'t-------··r·------------··----------··-? 
:~ ! ! 
,~ i i 

~-: ____________________________ : 
'"'i : 
.,~, i 

~.~ : 

~~~-~~-:-~~~:--r~---;:-~~:--:~~--:1 

~ 225 --------------------------·r·-------------------------1

f 2 : :
~ 200 ____ ,., __ -·----------------1-----·----------------------i
t 4 ' : :

"1(. ' : :
i s_.:, , : :
: ··.:':'.~" i i

-----------~:-~ ----------i----------------------------i A 175 '\ : :
c ., : :

: \ ! !
; 150 ·-----------------------·\~----------------------------!

~ r~., .. _- i

100+------~-~----~·

l'~ ---------------l----------------1
100+-------i-------t

10000 100000
Cache Size (bytes)

1000000 10000 100000 1000000
Cache Size (bytes)

Figure 3-27. More TIL Effective Access Times.

Fast misses (left), slow misses (right), l-eaches (top) and D-caches (bottom).

f11cf! I lcf! = [...!!!_] [f11caclltt + f:.m*t-mory]

t:.m I m t.f! t:.m

Reducing associativity from 8-way to direct-mapped in a 128K-byte mixed cache with the fast penalty,

for example, increases the miss. ratio by 71 percent (see Table 3-4), but decreases effective access time

by 0.25 percent:

111•1! I tef/ = [0.0123] [-Q.09 + 0.0087* 10] = -Q.25%
t:.m I m 1.210 0.0087 71%

The effective access time change here is so small, because the both caches are large and almost always

hit, i.e., tcac~~tt is large relative to m*t-ry. For small caches, on the other hand, relative changes in miss

ratio are important since m*t-_,ry is large compared to tctJC~~tt.

Effective Access Times (ns) for Mixed Caches
in AS TIL with a miss penalty of

600.0 + 12.5*block size ns
Cache Size Degree of Block Size (bvtes)

(bvtes) Associativitv 16 32 64

16384 1-way 157.3 155.6 165.6
16384 2-way 156.5 154.7 160.6
16384 4-way 152.4 150.8 155.7
16384 8-way 149.8 148.5* 153.5

32768 1-way 141.6 140.7 147.4
32768 2-way 143.1 142.3 145.9
32768 4-way 140.1 139.2 141.6
32768 8-way 138.9 137.9* 140.1

65536 1-way 128.8 128.0* 132.2
65536 2-way 132.2 131.8 134.5
65536 4-way 130.1 130.1 132.8
65536 8-way 129.1 129.5 132.1

131072 1-way 121.8 121.0* 124.0
131072 2-way 124.5 123.4 124.8
131072 4-way 122.7 12U 123.5
131072 8-way 121.8 121.3 123.0

262144 1-way 115.7 114.2* 115.1
262144 2-way 121.4 119.7 120.0
262144 4-way 120.0 118.1 118.0
262144 8-way 119.5 117.5 117.3

Table 3-16. Times for Fast TIL Mixed Caches.

This table shows effective access times for TIL mixed caches with 16-, 32- and 64-byte blocks, asswning a "fast"

miss penalty. Miss ratios are based on warm-start simulations with trace average 2nd500k, while cache access

times on are based on TIL implementation assumptions from Section 3.5. The smallest effective access time at

each cache size is indicated with an asterisk; effective access times within five percent of this time are display in

bold.

87

A second trend present in the data is that the effective access times of direct-mapped caches

improve relative to those of set-associative caches as cache size increases, confirming the expectation of

Section 3.3.1. This trend occurs since the term that gives direct-mapped caches worse performance than

set-associative caches, llm*t--ry, decreases as caches get larger (see Figure 3-17), while the term that

gives direct-mapped caches better performance, tl.tcGJ:Jw, remains constant The term !lm*t--ry gets

smaller, because t:.m gets smaller. One way to explain diminishing values of llm is by factoring it into

the product of diminishing miss ratios and relatively-constant miss ratios spreads. Alternately, this

trend can be explained by noting that direct-mapped effective access times are proceeding asymptoti

cally toward 100 ns, whereas set-associative times are approaching 109 ns.

A- third trend is that direct-mapped caches do relatively worse when t __ ry is increased, as was

anticipated is Section 3.3.1 where Figure 3-19, for example, showed that increasing the miss penalty

increases the access time penalty necessary for crossover. This trend can also be explained by examin

ing the above equations or simply by observing that direct-mapped caches should be more adversely

affected by an increased miss penalty, since they miss more often that do set-associative caches.

A fourth trend is that direct-mapped caches do relatively better for instruction caches as compared

to mixed and data caches. This can be attributed to generally lower instruction cache miss ratios and

miss ratio spreads. As discussed earlier, instruction caches have lower miss ratio spreads, because

instruction references exhibit more spatial locality and lower set-conflicts. Figure 3-21 also show that

the crossover points for instruction cache occur at a much small access time differences than do the

crossover points for mixed and data caches (see Figures 3-19 and 3-22).

Effective Access Times (ns) for Mixed Caches
in AS TIL with a miss penalty of

1200.0 + 25.0*b/ock size ns

Cache Size Degree of Block Size (bvtesl

<bvtes) Associativitv 16 32 64

16384 1-way 214.6 211.2 231.3
16384 2-way 204.0 2005 212.2
16384 4-way 195.8 192.5 202.4
16384 8-way 190.6 188.1* 198.0

32768 1-way 183.3 181.4 194.8
32768 2-way 177.2 175.7 182.7
32768 4-way 171.1 169.3 174.1
32768 8-way 168.8 166.8* 171.3

65536 1-way 157.6 156.0 164.3
65536 2-way 155.5 154.6 160.0
65536 4-way 151.1 151.2 156.6
65536 8-way 149.3* 149.9 155.1

131072 1-way 143.6 141.9 148.0
131072 2-way 140.0 137.7 1405
131072 4-way 136.3 134.7 138.0

131072 8-way 134.6 133.6* 137.0

262144 1-way 131.4 128.4 130.3
262144 2-way 133.8 130.4 130.9
262144 4-way 131.0 127.2 127.1
262144 8-way 130.1 126.1 125.7*

Table 3-17. Times for Slow TIL Mixed Caches.

This table shows effective access times for TIL mixed caches, assuming a "slow" miss penalty. See the caption

of Table 3-16 for more details.

88

Finally, Table 3-20 shows the minimum cache sizes for which direct-mapped caches have similar

(5-percent size) or better (crossover size) effective access times than two-way, four-way and eight-way

set-associative caches of the same size. The values of these sizes are sensitive to small changes in

assumptions, which can move the exact place where these almost parallel lines cross. Nevertheless,

results show that direct-mapped caches have similar or better effective access times at cache sizes now

considered practical.

89

Effective Access Times (ns) for Instruction Caches
in AS TIL with a miss penalty of

600.0 + 12.5*block size ns
Cache Size Degree of Block Size (bytes)

lbvtes) Associativity 16 32 64

16384 1-way 137.0 131.3 130.9
16384 2-way 137.9 133.8 133.9
16384 4-way 135.3 131.5 131.7
16384 8-way 133.6 129.7 129.6*

32768 1-way 123.6 120.1 120.0*
32768 2-way 126.9 124.3 124.2
32768 4-way 125.1 122.9 122.8
32768 8-way 124.2 122.2 122.2

65536 1-way 115.4 112.8 112.6*
65536 2-way 120.2 118.2 118.1
65536 4-way 118.5 117.0 116.9
65536 8-way 117.8 116.4 116.5

131072 1-way 111.5 109.4 109.1*
131072 2-way 117.2 115.4 114.9
131072 4-way 116.3 114.6 114.1
131072 8-way 116.1 114.4 113.7

262144 1-way 109.7 107.8 107.3*
262144 2-way 116.4 114.7 114.1
262144 4-way 116.1 114.3 113.6
262144 8-way 116.0 114.2 113.5

Effective Access Times (ns) for Instruction Caches
in AS TIL with a miss penalty of

1200.0 + 25.0*block size ns
Cache Size Degree of Block Size (bvtes)

fbvtes) Associativirv 16 32 64

16384 1-way 174.1 162.6 161.9
16384 2-way 166.8 158.5 158.7
16384 4-way 161.7 154.1 154.4
16384 8-way 158.2 150.3 150.1*

32768 1-way 147.2 140.1 140.1
32768 2-way 144.8 139.6 139.3
32768 4-way 141.3 136.8 136.6
32768 8-way 139.4 135.4 135.3*

65536 1-way 130.7 125.7 125.2
65536 2-way 131.3 127.5 127.2
65536 4-way 128.1 124.9 124.8
65536 8-way 126.5 123.8* 124.0

131072 1-way 122.9 118.8 118.2*
131072 2-way 1253 121.8 120.9
131072 4-way 123.5 120.2 119.2
131072 8-way 123.2 119.7 118.5

262144 1-way 119.4 115.5 114.5*
262144 2-way 123.9 120.4 119.1
262144 4-way 123.1 119.6 118.1
262144 8-way 123.1 119.5 118.0

Table 3-18. Times for TTL Instruction Caches.

90

Effective Access Times (ns) for Data Caches
in AS TTL with a miss penalty of

600.0 + 12.5*block size ns

Cache Size De~eeof Block Size (bytes)
(bytes) Associativity 16 32 64

16384 1-way 150.8 156.4 174.7
16384 2-way 151.4 155.4 166.0
16384 4-way 148.7 150.8 159.6
16384 8-way 147.7* 148.6 155.8

32768 1-way 138.1 142.5 154.9
32768 2-way 140.8 144.9 152.4
32768 4-way 138.6 143.2 148.5
32768 8-way 137.6* 142.6 146.9

65536 1-way 127.3* 128.8 136.3
65536 2-way 131.4 133.3 139.4
65536 4-way 129.3 131.4 137.9
65536 8-way 128.3 130.7 137.8

131072 l~way 121.3 121.1* 125.8
131072 2-way 125.9 124.7 126.8
131072 4-way 124.6 123.2 125.2
131072 8-way 124.1 122.4 124.4

262144 1-way 117.7 116.1* 117.5
262144 2-way 124.3 122.1 122.4
262144 4-way 123.8 121.3 121.1
262144 8-way 123.6 121.0 120.5

Effective Access Times (ns) for Data Caches
in AS TTL with a miss penalty of

1200.0 + 25.0*block size ns
Cache Size Degree of Block Size (b rtes)

(bvtes) Associativity 16 32 64

16384 1-way 201.7 212.8 249.4
16384 2-way 193.8 201.9 222.9
16384 4-way 188.4 192.5 210.2
16384 8-way 186.4* 188.3 202.5

32768 1-way 176.2 185.0 209.8
32768 2-way 172.6 180.8 195.8
32768 4-way 168.1 177.3 188.0
32768 8-way 166.2* 176.3 184.8

65536 1-way 154.5 157.5 172.6
65536 2-way 153.8 157.6 169.9
65536 4-way 149.6 153.8 166.7
65536 8-way 147.5* 152.5 166.7

131072 1-way 142.7 142.2 151.6
131072 2-way 142.9 140.3 144.7
131072 4-way 140.2 137.3 141.5
131072 8-way 139.2 135.9* 139.8

262144 1-way 135.3 132.2 134.9
262144 2-way 139.7 135.1 135.9
262144 4-way 138.6 133.6 133.1
262144 8-WllY_ 138.2 133.1 132.0*

Table 3-19. Times for TIL Data Caches.

Minimwn TIL Cache Size where Direct-Mapped Caches
have Similar or Smaller Effective Access Times

CacheTvoe Miss Time 5-Percent Size Crossover Size

Mixed fast 16K 64K
Instruction fast SlK 32K

Data fast 16K 64K

Mixed slow 64K >256K
Instruction slow 32K 128K

Data slow 64K 256K

Table 3-20. Crossover for TTL Caches.

This table shows 5-percelll and crossover sizes for TTL caches. The 5-percent size is the minimum cache size

where the effective access time of a direct-mapped TIL cache is within five percent or is smaller than the smallest

effective access time for that cache size. The crossover size is the minimwn cache size where the effective access

time of a direct-mapped TIL cache is smaller than the effective access times for two-way, four-way and eight-way

set-associative caches of that cache size.

Results for the fast miss time show that the direct-mapped and set-associative cache effective access times are

within five percent of all cache sizes shown. Results with the slow miss time show that direct-mapped cache effec

tive access times are similar to those of set-associative caches for cache sizes greater than 32K bytes.

3.3.3.2. ECL Caches

91

Now I consider implementing caches in ECL to examine whether the conclusions reached with

TTL caches generalize. The ECL access time assumptions are discussed in Table 3-21 and Section 3.5.

I report results for smaller caches, however (2K to 32K bytes instead of 16K to 256K bytes), since my

experience suggests that, at any point in time, ECL caches tend to be smaller than TTL caches, because

ECL logic tends to consume more power than TfL logic and ECL RAMs tend to be less dense than

CMOS RAMs. I assume the same miss penalties measured in numbers of cycles, but will assume a

30.0 ns rather than a 100 ns cycle time. Consequently, I expect that a faster, more expensive ECL cache

will be interfaced to a faster, more expensive memory system. The ECL Titan-1 cache miss penalty of

13 cycles for a 16-byte block, for example, is between my fast and slow miss penalties [Joup86]. ECL

effective access times are displayed in Figures 3-26 and 3-27 and Tables 3-22 through 3-25.

Degree Cache Access Time
of %increase

Associativity_ (ns) from A=l
1 30.0 0.0
2 33.5 11.7
4 34.4 14.7
8 34.4 14.7

Table 3-2L ECL Cache Access Times.

This table lists ECL cache access times. based on the assumptions of Section 3.5. The direct-mapped cache has an

access time of 30 ns with a critical path to MaJch. The critical path though the set-associativity logic is from

MaJch to DaJaOwl. I implement this logic with multiplexors, because using driver chips adds too many chips to

the cache implementation. In a four-way set-associative cache, for example, using drivers adds 32 chips, while us

ing multiplexors adds 12. If board area is available for the 20 extra chips, using multiplexors is still preferred,

since the 20 chip positions can be filled with memory chips to significantly increase cache size.

The TTL results do generalize to ECL caches, with two minor differences. First, 5-percent sizes

and crossover sizes (see Table 3-26) are smaller for ECL than for TTL, because my assumptions show

adding set-associativity logic to an ECL cache causes a larger relative increase in cache access time

than adding such logic to a TTL cache. Set-associativity logic slows ECL caches by 12 to 15 percent,

f'" ········--·-····-·T·--······-·-····-·1
f 1 : :
~0 ______ :l ___ ------------------~-----------------------------~
t 4~ i i
i ~-' ! !
v 8::~.\ ! i
e ·:-., • .

·:,\, i :

c
c
e
s
•so
T
i

m
e r ···-·-······---···r-····---·-·-·1
30+-------------~----------~

1000 10000
Cache Size (bytes)

100000

92

f :: ~~~=-=~~~=r~=~=~~==:::
e 2~ : :
~ 100 -----4~-- -------------f----------------------------1
i si~, i i
: 90 -----------'~\'" ---------i----------------------------i

\~- i i
Ac 80 ----------------~-- ---l----------------------------1

~\ : :
c ·~:~ i i
: 70 ______________________ ::\;~ --------------------------1
I t-:~ l
T60 ----------------------------[-::~\:~::··-------------!
1
m
e

: ·~~· !
so ----------------------------r---------------------------1

~ 40 --------------------------·-r-·--------------------------1

30+-----------~----------~
1000 10000

Cache Size (bytes)
100000

Figure 3-28. Effective Access Times for ECL Mixed Caches.

This figure shows effective access times for ECL mixed caches with 32-byt.e blocks. Cache access times of 30.0,

33.5, 34.4 and 34.4 ns for direct-mapped. two-, four- and eight-way set-associative caches are based on ECL imple

mentation assumptions from Section 35; miss penalties are the same as TIL miss penalties, measured in 30.0 ns

rather than 100 ms cycles. 'Ibis data is displayed in tabular form in Tables 3-22 and 3-23.

Direct-mapped effective access times are similar to set-associative ones with a fast miss penalty (left), and slightly

worse with a slow miss penalty (right).

and TLL caches by only 9 percent. The differences in 5-percent and crossover size underscores the sen

sitivity of these sizes to small changes in implementation assumptions, rather than conclusively show

ing that ECL and direct-mapped caches are well-matched. Second, if set-associativity logic added the

same relative delay to ECL and TIL cache times, for example 9 percent, then ECL direct-mapped

caches would be less attractive than TIL direct-mapped caches, because ECL caches are smaller than

TTL caches, and, as argued earlier, the preference toward direct-mapped caches increases with cache

size.

t' ·-··:_·--···-·-····T---·-···-·····--
f \ !
e
c
t
i
:so
A
c
c
e
s

T40
I

m
e

n

~\ i
--------------- ~--------~------------------------------:

\~ : :

\~ i i
-~ ! !

·i i
·,.\. l
'··.:, l
: ..• :

-----------------------------1---- --~-------·--------~
I .,~- - I

: ~ .. 8 :
l -2 l

! I I
30+-----------~----------~

1000 10000
Cache Size (bytes)

100000

80 --------------------------·-·r··-----------------------1

f ! I r ··---·-r--·-·-----l
A6(J ----------j--·-··--··········-·--········i
c: ·.... l :
~ :~., i i
s ·~.· .. ~~: i r ··--·--···---·>f<r;;····-·-----l

r ··-··-···----··-r-·-------1
30+-----------~----------~

1000 10000 1 ()()()()()
Cache Size (bytes)

93

t90 --···--·-····-·--···r··---·-······-·--···~

r ·····-··--···r--·····--·······~

:70 ---------·-r··------------------------- .

c: \~ l r \~: --T·---------------------------

• ..~ ... ~
Tso ···· • ----------------------------·r··... _ 4

r: i :::i :
(40 -----------------------------~------------------1. ;
n : :
s l l
) 1 i
30

1000 10000
Cache Size (bytes)

100000

! :: ==~-====~~::~:~~~=::=!
~ 100 ---··2:.1i""" ----------·-·t··--------------------------j
i 4.!!..' i i
: 90 ----·---t=~,-- ----------r---------------------------1

~\ l !
~ so .•....•..•... :~~--- .•.. !. !

•.)(' : :
c •:,' i :
e ··::-.' :
s 70 ---------------------~-a.-1 --------------------------!
s '·:·;... :

:'~' :

~: .::::=~:~=~~~~=r::~=~~~=::=i
~ 40 --------------------------·-r--···-----------------------~

30~----------~--------~
1000 10000

Cache Size (bytes)
100000

Figure 3-29. More ECL Effective Access Times.

Fast misses (left), slow misses (right), l-eaches (top) and D-caches (bottom).

Effective Access Times (ns) for Mixed Caches
in ECL 1 OOK with a miss penalty of

180.\J + 3.15*block size ns
Cache Size Degree of Block Size (bytes)

(bvtes) Associativitv 16 32 64

2048 1-way 71.1 71.9 83.6
2048 2-way 69.3 68.6 76.2
2048 4-way 67.8 66.8 73.0
2048 8-way 66.9 65.7• 71.4

4096 1-way 61.1 61.0 68.6
4096 2-way 60.4 59.5 63.9
4096 4-way 59.9 58.8 62.4
4096 8-way 58.9 58.0* 613

8192 1-way 53.6 53.0 58.0
8192 2-way 53.3 52.6 55.4
8192 4-way 52.8 52.1 54.6
8192 8-way 52.5 51.7* 53.9

16384 1-way 47.2 46.7 49.7
16384 2-way 47.8 47.2 49.0
16384 4-way 47.4 46.9 48.4
16384 8-way 46.6 46.3* 47.8

32768 1-way 42.5 42.2* 44.2
32768 2-way 43.7 43.5 44.6
32768 4-way 43.7 43.5 44.2
32768 8-way 43.4 43.1 43.7

Table 3-22. Times for Fast ECL Mixed Caches.

This table shows effective access times for ECL mixed caches with 16-, 32- and 64-byte blocks, assuming a ''fast''
miss penalty. Miss ratios are based on warm-start simulations with trace average 2nd500k, while cache access
times on are based on ECL implementation assumptions from Section 3.5. The smallest effective access time at
each cache size is indicated with an asterisk; effective access times within five percent of this time are display in
bold.

94

Effective Access Times (ns) for Mixed Caches
in ECL lOOK with a miss penalty of

360.0 + 1.5*block size ns
Cache Size Degree of Block Size (b /tes)

(bvtes) Associativitv 16 32 64

2048 1-way 112.3 113.9 137.2
2048 2-way 105.1 103.6 118.8
2048 4-way 101.3 99.1 111.6
2048 8-way 99.4 97.0* 108.4

4096 1-way 92.3 92.0 107.3
4096 2-way 87.4 85.5 94.2
4096 4-way 85.5 83.3 90.4
4096 8-way 83.4 81.6* 88.2

8192 1-way 77.2 76.0 85.9
8192 2-way 73.2 71.7 77.3
8192 4-way 71.3 69.9 74.8
8192 8-way 70.6 68.9* 73.4

16384 1-way 64.4 63.4 69.4
16384 2-way 62.0 60.9 64.5
16384 4-way 60.5 59.5 62.4
16384 8-way 58.9 58.1* 61.1

32768 1-way 55.0 54.4 58.4
32768 2-way 54.0 53.5 55.6
32768 4-way 53.0 52.5 53.9
32768 8-way 52.3 51.7* 53.1

Table 3-23. Times for Slow ECL Mixed Caches.

This table shows effective access times for ECL mixed caches, assuming a "slow" miss penalty. See the caption

of Table 3-22 for more details.

95

96

Effective Access Times (ns) for Instruction Caches
in ECL 1 OOK with a miss penalty of

180.0 + 3.75*block size ns
Cache Size Degree of Block Size (bytes)

(bvtes) Associativity 16 32 64

2048 1-way 59.4 55.0* 55.5
2048 2-way 61.2 56.6 56.3
2048 4-way 61.0 56.5 56.4
2048 8-way 60.8 56.4 56.5

4096 1-way 52.5 49.0* 49.4
4096 2-way 54.1 51.0 50.8
4096 4-way 54.0 51.1 51.0
4096 8-way 53.4 50.6 50.7

8192 1-way 46.3 43.8* 43.9
8192 2-way 47.4 45.6 45.7
8192 4-way 46.6 45.2 45.7
8192 8-way 46.0 44.6 45.3

16384 1-way 41.1 39.4 39.3*
16384 2-way 42.2 40.9 41.0
16384 4-way 42.3 41.2 41.2
16384 8-way 41.8 40.6 40.6

32768 1-way 37.1 36.0 36.0*
32768 2-way 38.9 38.1 38.0
32768 4-way 39.2 38.6 38.5
32768 8-wav 39.0 38.4 38.3

Effective Access Times (ns) for Instruction Caches
in ECL 1 OOK with a miss penalty of

360.0 + 1.5*block size ns
Cache Size Degree of Block Size (bytes)

fbvtes) AssociativitY_ 16 32 64

2048 1-way 88.8 80.0 81.0
2048 2-way 89.0 79.6 79.1
2048 4-way 875 78.6 78.5*
2048 8-way 87.1 78.5 78.6

4096 1-way 75.0 68.0 68.8
4096 2-way 74.6 68.4 68.0
4096 4-way 73.7 67.8 67.7
4096 8-way 72.4 66.9* 66.9

8192 1-way 62.7 57.7 51.9
8192 2-way 61.2 57.6 58.0
8192 4-way 58.9 56.0 56.9
8192 8-way 57.6 54.7* 56.1

16384 1-way 52.2 48.8 48.6
16384 2-way 50.8 48.4 48.4
16384 4-way 50.2 47.9 48.0
16384 8-way 49.2 46.8 46.7*

32768 1-way 44.2 42.0 42.0*
32768 2-way 44.2 42.7 42.6
32768 4-way 44.1 42.7 42.7
32768 8-way 43.5 42.3 42.3

Table 3-24. Times for ECL Instruction Caches.

97

Effective Access Times (ns) for Data Caches
in ECL lOOK with a miss penalty of

180.0 + 3.15*block size ns
Cache Size Degree of Block Size (bytes)

(bytes) Associativity 16 32 64

2048 1-way 66.4 72.7 89.7
2048 2-way 61.8 66.2 78.8
2048 4-way 60.0 64.1 75.0
2048 8-way 58.9* 62.8 73.4

4096 1-way 56.4 603 72.2
4096 2-way 54.4 57.2 65.0
4096 4-way 53.5 56.3 63.8
4096 8-way 52.9* 553 61.8

8192 1-way 50.5 52.9 61.2
8192 2-way 49.8 51.5 56.7
8192 4-way 49.0 50.2 54.6
8192 8-way 48.5* 49.7 53.9

16384 1-way 45.3* 46.9 52.4
16384 2-way 46.2 47.4 50.6
16384 4-way 46.3 46.9 49.6
16384 8-way 46.0 46.3 48.4

32768 1-way 41.4* 42.8 46.5
32768 2-way 43.0 44.3 46.5
32768 4-way 43.3 44.7 46.3
32768 8-way 43.0 44.5 45.8

Effective Access Times (ns) for Data Caches
in ECL lOOK with a miss penalty of

360.0 + 1.5*block size ns
Cache Size Degree of Block Size (bytes)

(bytes) Associativity 16 32 64

2048 1-way 102.9 115.4 1493
2048 2-way 90.0 98.9 124.0
2048 4-way 85.6 93.9 115.6
2048 8-way 83.5* 91.2 1123

4096 1-way 82.8 90.6 114.4
4096 2-way 75.3 80.9 96.6
4096 4-way 72.7 78.2 93.1
4096 8-way 71.3* 76.1 893

8192 1-way 71.0 75.7 92.5
8192 2-way 66.0 69.4 79.9
8192 4-way 63.6 66.1 74.9
8192 8-way 62.6* 65.0 73.3

16384 1-way 60.5 63.8 74.8
16384 2-way 58.9 61.4 67.7
16384 4-way 58.2 59.5 64.8
16384 8-way 57.6* 58.2 62.5

32768 1-way 52.9 55.5 62.9
32768 2-way 52.6 55.0 59.5
32768 4-way 52.1 54.9 58.1
32768 8-way 51.6* 54.6 57.1

Table 3-25. Times for ECL Data Caches.

Minirnwn ECL Cache Size where Direct-Mapped Caches
have Similar or Smaller Effective Access Times

CacheTvoe Miss Time 5-Percent Size Crossover Size

Mixed fast 8K 32K
Insttuction fast :S1K :S1K

Data fast 8K 16K

Mixed slow 64K* 256K*
Insttuction slow :S1K 32K

Data slow 32K 256K*

Table 3-26. Crossover for ECL Caches.

This table shows the minimwn cache size where the effective access time of a direct-mapped ECL cache is within

five percent or is smaller than the smallest effective access time for a given cache size. While these sizes are

slightly smaller for ECL than for TTL, the qualitative conclusions they yield are the same. Values marked with as

terisks are cache sizes beyond my estimate of current. reasonable ECL cache sizes.

3.3.3.3. CMOS Caches

98

Finally I consider custom CMOS caches implemented on the same chip as a microprocessor. I

report results for small caches (0.5K to 8K bytes) with shorter miss penalties than for TTL and ECL. I

assume a fast miss penalty of one 50.0-ns-cycle plus one cycle per double-word, and a slow penalty of

two cycles plus one cycle per word. These penalties are reasonable for on-chip caches interfaced to a

board-level cache rather than to main memory. Cache access times are displayed in Table 3-27. CMOS

effective access times are displayed in Figures 3-30 and 3-31 and Tables 3-28 through 3-31.

Degree Cache Access Time
of %increase

Associativitv (ns) from A-1

1 50.0 0.0
2 51.0 20
4 51.1 2.2
8 51.3 2.6

Table 3-27. CMOS Cache Access Times.

This table lists delays for set-associative caches similar to the SPUR insttuction buffer, a 512-byte direct-mapped·

instruction cache implemented in 1.8 micron CMOS. Times are calculated by Duncombe [Dunc86] and discussed

in Section 3.5. Since these VLSI assumptions are radically different than the MSI ones, comparing CMOS results

with TTL or ECL results is difficult.

CMOS results are different from TTL and ECL results for mixed and data caches, because they

show that direct-mapped caches yield significantly higher effective access times than do set-associative

caches. For mixed caches with 16-byte blocks, for example, the effective access times of direct-mapped

caches are 7 to 10 percent worse than set-associative times, assuming a slow miss penalty of 6 cycles.

Direct-mapped caches perform worse, because of (1) the larger miss ratio difference between these

smaller caches, and (2) the very small access time increases caused by adding set-associativity logic.

The increases due to CMOS set-associativity logic are between 2.0 and 2.6 percent, whereas the

increases for TTL and ECL range from 9.0 and 15 percent. Since my VLSI assumptions are radically

different than my MSI ones, comparing CMOS results with TTL or ECL results is subject to more error.

Nevertheless, while exact set-associative logic delays are subject to debate, it is clear that they should

be smaller than MSI delays, since adding a multiplexor on a custom chip adds just the multiplexor

delay, whereas adding a discrete multiplexor chip adds two chip crossings and possibly the delay

required to encode signals for the multiplexor's select input.

1 :: :::::~::~~~-=:~=T~=~=~=::~=1
e
c 2 : :
t 110 ----------"'-------- ------~----·-······················;
i ' : :
v ' : : ' : :
: 100 ··········---····4~:~:~ i--··-··-····--·····-····--··1

c '" :
c 90 ··········-·············-~-~--- ····-·-······--··--···l
e s]l' 1
s : :~' :
s : f'").' :

T so ············-·······-·······r·····~:~ ····-·····-···1
: .. ~' :

i : !
~ 70 --------------------------·r···-----------~~ -l

~ 60 -------------------------·-·r··········------------------1

50+-----------~--------~
100 1000 10000

Cache Size (bytes)

250

E
f
f
e
c
t 200
i
v
e

A
c
~ 150

T
i

~100

n
I
)

99

------------- -----r ------------------- 1

2.A
' ' ······· ····-·····4}·::··

·,' : ·,·i
sJ,~,

! • .. ~-t i
ag -----GDi. :;;.~c.,:: .. --------{

' ~~ .. t;...... l
... ~ l

50+-----------_.----------~
100 1000

Cache Size (bytes)
10000

Figure 3-30. Effective Access Times for CMOS Mixed Caches.

This figure shows effective access times for custom CMOS mixed caches with 32-byte blocks. Cache access times

of 50.0, 51.0, 51.1 and 51.3 ns for direct-mapped, two-, four- and eight-way set-associative caches are based on

custom CMOS implementation assumptions from Section 3.5; off-chip miss penalties are 5 and 10 cycles. This

data is displayed in tabular form in Table 3-29.

Direct-mapped effective access times are worse than set-associative ones regardless of miss penalty.

Results for CMOS instruction caches, on the other hand, are similar to results in the other techno

logies, namely, that direct-mapped instruction cache perfonnance is similar to that of set-associative

instruction caches. The behavior of instruction cache effective access times diverges from that of mixed

and data caches, because the miss ratio spreads for small instruction caches diverge from those of small

mixed and data caches.

~ ········--·-~:~~:~F::=~-~=:~
A8o -------·--------------, --i------------------------------1
c ' i i
c 8' !

t" ···········---······r -···-·-·j
t ···-·-··-·····---r-····-····-···1
50+-----------~----------~

100 1000 10000
Cache Size (bytes)

130

E
f 120 f

···-T·····~~~r~~=~~=~~:i
e
c
! 110
1
v
e 100
A
c
c 90 e
s
s

80
T
i

m
70 e

! :

\ i :
-------·-------'~-~ ----·--r---------·----------------·-1

-----------------4~::~~-, ;-------_-_-_-_-_-_-_-_·_-_-_-_-_-_-_-_-_-_-_-_-_-_~.i.
-------------------· -----, li:"""

''it' l
8~'"' i

----------------------------: •. !:.., . .._ __ • • -------------.:
l ··:,&. l
l ··,~... i

---------------·----·-·-·---t·-----------·~=~t;;:·· -~
: ... "':.&: : ... ,. :

n 60
s
)

----------------------------~--------··------------------,

SO+-----------~--------~
100 1000 10000

Cache Size (bytes)

100

--------------------------·-r··-------------------------1

------------ --------------t·------------------------- ··]

140

E
f 130
f

' ! : -- ""..... --·----!---- --------·- i
' : :

···-------------L~.\ --~----------------------------J
\ : : : --·----·-------------·---8-'J . ------·---.. -.-·--. ---- "1

·-·-----------------------=~-~ -----------------!
i ~ i -- ... -------:-···--·-------.. .. -------:
: ·~ :
: ·~ :

·------------------·-----·-·t··----------·-·--·-----:i·j

e
p20
i
~ 110

~100
c
e
I 90

T 80
i
m
e 70
(
n
I
)

60 ------- -----·------·--------r--------. -·---.. ·---------- "1

50+-----------~--------~
100 1000 10000

250

E
f
f
e
c
t 200
i
v
e

A
c
~ 150
s
s

T
i

~100

n
s
)

Cache Size (bytes)

-··-·--··-·---·r---·······-········1

'
' ___________________ .._ ___ _

4~\ ' ·,' :
·,_,~

'· ' 8_!;,,..' : ... '\-,.~
·------··-------------------:-------··: ... ---

~~~~'* ~ 
• :~.~ 1 

50+-----------~----------~ 
100 1000 

Cache Size (bytes) 
10000 

Figure 3-31. More CMOS Effective Access Times. 

5-cycle misses (left), 10-cycle misses (right), l-eaches (top) and D-caches (bottom). 



Minimum CMOS Cache Size where Direct-Mapped Caches 
have Similar or Smaller Effective Access Times 

CacheTvne Miss Time 5-Percent Size Crossover Size 

Mixed fast 4K 256K* 
Instruction fast S:0.5K 64K* 

Data fast 8K 128K* 
Mixed slow 32K* •• 

Instruction slow lK .... 
Data slow 16K* •• 

Table 3°28. Crossover for CMOS Caches. 

This table shows the minimum cache size where the effective access time of a direct-mapped CMOS instruction 

cache is within five percent or is smaller than the smallest effective access: time for a given cache size. Values 

marked with asterisks are cache sizes beyond my estimate of current, reasonable custom CMOS cache sizes; while 

two asterisks indicate that no crossover occurs for caches sizes of 256K bytes and less. 

For mixed and data caches, set-associative effective access times are smaller than direct-mapped ones for reason

able cache sizes. For instruction caches, all effective access times are similar. 

101 



Effective Access Times (ns) for Mixed Caches 
in Custom CMOS with a miss penalty of 

50.0 + 6.25•block size ns 
Cache Size Degree of Block Size (bvtes) 

(bytes} Associativitv 16 32 64 

512 1-way 91.4 111.7 163.5 
512 2-way 86.8 100.5 1343 
512 4-way 86.0• 97.9 1263 

1024 1-way 82.7 97.0 132.0 
1024 2-way 79.5 89.7 113.2 
1024 4-way 77.9• 86.9 108.9 

2048 1-way 75.7 85.0 107.4 
2048 2-way 73.4 80.2 96.7 
2048 4-way 71.0• 78.1 92.5 

4096 1-way 69.5 75.8 91.4 
4096 2-way 67.8 72.7 83.5 
4096 4-way 67.1• 71.5 81.1 

8192 1-way 64.7 69.2 80.0 
8192 2-way 63.4 66.9 74.5 
8192 4-way 62.6• 65.9 72.7 

Effective Access Times (ns) for Mixed Caches 
in Custom CMOS with a miss penalty of 

100.0 + 12.5•block size ns 
Cache Size Degree of Block Size (b es) 

(bvtes) Associativitv 16 32 64 

512 1-way 132.7 173.5 276.9 
512 2-way 122.6 150.1 217.7 
512 4-way 120.8• 144.7 201.6 

1024 1-way 115.4 144.1 214.0 
1024 2-way 108.0 128.5 1753 
1024 4-way 1()4.7• 122.7 166.6 

2048 1-way 101.4 119.9 164.8 
2048 2-way 95.7 109.4 142.4 
2048 4-way 92.9• 105.1 133.8 

4096 1-way 88.9 101.7 132.8 
4096 2-way 84.7 94.3 116.1 
4096 4-way 83.0• 91.8 111.1 

8192 1-way 79.5 88.3 109.9 
8192 2-way 75.8 82.8 97.9 
8192 4-way 74.2• 80.7 94.4 

Table 3-29. Times for CMOS Mixed Caches. 

This table shows effective access times for CMOS mixed caches with 16-, 32- and-64-byte blocks, assuming a 
"fast" miss penalty (top) and a "slow" miss penalty (bottom). Miss ratios are based on warm-start simulations 
with trace average 2nd500Jc, while cache access times on are based on CMOS implementation assumptions from 
Section 3.5. The smallest effective access time at each cache size is indicated with an asterisk; effective access 
times within five percent of this time are display in bold. 

102 



103 

Effective Access Times (ns) for Instruction Caches 
in Custom CMOS with a miss penalty of 

50.0 + 6.25*block size ns 
Cache Size Degree of Block Size{bfles) 

fbvtes) Associ ativitv 16 32 64 

512 1-way 79.5 84.9 98.6 
512 2-way 77.8 81.5 92.3 
512 4-way 77.2* 81.6 93.4 

1024 1-way 73.2 76.3 84.5 
1024 2-way 12.5 74.9 82.1 
1024 4-way 72.1* 74.5 81.3 

2048 1-way 68.4 70.8 77.3 
2048 2-way 68.3 70.2 75.4 
2048 4-way 67.7• 69.5 74.7 

4096 1-way 64.1 65.8 70.8 
4096 2-way 63.9 65.5 69.5 
4096 4-way 63.4• 65.0 68.9 

8192 1-way 60.2 61.5 64.9 
8192 2-way 59.7 61.0 64.1 
8192 4-way 58.7• 60.1 63.2 

Effective Access Times (ns) for Instruction Caches 
in Custom CMOS with a miss penalty of 

100.0 + l2.5*block size ns 
Cache Size Degree of Block Size (b) es) 

lbvteli AssociativitY 16 32 64 

512 1-way 109.0 119.9 147.2 
512 2-way 104.7 112.0 133.6 
512 4-way 103.3* 112.2 135.7 

1024 1-way 96.4 102.5 118.9 
1024 2-way 93.9 98.9 113.1 
1024 4-way 93.1* 97.9 111.5 

2048 1-way 86.7 91.7 104.6 
2048 2-way 85.7 89.4 99.8 
2048 4-way 84.3* 88.0 98.3 

4096 1-way 78.1 81.7 91.5 
4096 2-way 76.7 80.1 88.0 
4096 4-way 75.6• 78.9 86.8 

8192 1-way 70.4 73.1 79.9 
8192 2-way 68.3 71.1 77.2 
8192 4-way 66.4• 69.1 75.2 

Table 3-30. Times for CMOS Instruction Caches. 



104 

Effective Access Times (ns) for Data Caches 
in Custom CMOS with a miss penalty of 

50.1) + 6.25*block size ns 
Cache Size Degree of Block Size_[b~esl 

(bvtes) Associativitv 16 32 64 

512 1-way 87.1 111.1 172.7 
512 2-way 82.4 101.8 146.8 
512 4-way 79.9* 97.2 138.5 

1024 1-way 193 96.9 137.6 
1024 2-way 75.0 89.2 120.4 
1024 4-way 72.5* 85.0 114.1 

2048 1-way 72.8 85.6 113.9 
2048 2-way 68.7 78.2 99.5 
2048 4-way 67.1* 75.9 94.6 

4096 1-way 66.5 75.2 95.2 
4096 2-way 64.1 70.8 84.8 
4096 4-way 63.1• 693 82.5 

8192 1-way 62.8 69.1 83.5 
8192 2-way 61.2 66.0 75.9 
8192 4-way 60.2• 64.3 72.8 

Effective Access Times (ns) for Data Caches 
in Custom CMOS with a miss penalty of 

100.0 + 12.5*block size ns 
Cache Size Degree of Block Size (bvtev 

fbvtes) AssociativitY_ 16 32 64 

512 1-way 1243 172.2 295.4 
512 2-way 113.8 152.6 242.6 
512 4-way 108.8* 143.4 225.9 

1024 1-way 108.6 143.8 225.2 
1024 2-way 98.9 127.4 189.9 
1024 4-way 93.9* 119.0 177.2 

2048 1-way 95.6 121.1 177.8 
2048 2-way 86.3 105.5 148.0 
2048 4-way 83.1* 100.6 138.1 

4006 1-way 83.0 100.5 140.4 
4006 2-way 77.1 90.5 118.6 
4006 4-way 75.0* 87.6 114.0 

8192 1-way 75.6 88.1 116.9 
8192 2-way 71.3 80.9 100.7 
8192 4-way 69.3* 77.5 94.5 

Table 3-31. Times for CMOS Data Caches. 

3.3.4. A Hybrid Design 

The evidence presented so far suggests that direct-mapped caches have faster access times while 

set-associative caches have lower miss ratios. A cache design that tries to exploit both these advantages 

is called an MRU (most-recently-used) cache (see discussion of [Chan87] in Section 3.1.3). An MRU 

cache provides fast access to the most-recently-used block in a every set. and relatively slower access to 

other blocks. I refer to the collection of blocks that can be rapidly accessed as the MRU region. The 

MRU region for ann-way set-associative cache of size c has the same miss ratio as a direct-mapped 

cache of size c In. For this reason. the effective access time of an MRU cache can be modeled as: 

t.ff(CMRu(C=c.A=n)) = 



105 

tMRU +m(C(C=cln,A=l))* tuw +m(C(C=c,A=n))* t--ry 

where tMRu is the access time of the MRU region, tuw is the additional time required to reach the non

MRU blocks, t_WIO, is the miss penalty, and m(C(C=i,A=J)) is the miss ratio ofa1-way set-associative 

cache of size i . 

E 
f 
f 
e 
c 
t 
i 
v 
e 

A 
c 
c 
e 
s 
s 

T 
i 

m 
e 

1 ~0 ° ______________ 

1 
_______________ r ______________ 

1 . : : : 

, .. o --~'-.:~+·, ...... !d\r~"-···-·1 
'· ! ! ! 

1.30 °-----......... ---!----------------1---------------- t 
'xL ...ILJ.RU=64K i !..,........ i i 

..._ l l LJ.RU=l~K 1.20 ____________ :.,61 _______________ .T, _____________ oo1 

:-....,..~: : 

~LR+256K 

I.IO ··-·-···-r·······r·-·--··1 
1.00+---....... ---..... ---i 

1000 10000 100000 1000000 
MRU Region Size (bytes) 

E 
f 
f 
e 
c 
l 
i 
v 
e 

A 
c 
c 
e 
I 
I 

T 
i 

m 
e 

1"90 ---------------r---------------r·--------o·----1 

1 80 
______________ l,_ ____ ,a..~V..::~-~!:. _______ j 

e I I t I 

: / : i 
~~ : .- : i 

1.70 ::~::::~~!::::::::::::::1::::::::::::::::1 
1.60 ! ..._p.u=64K ! 

x._ i ,/ : : 
1.50 -------~--:;;.-:.:at-----·i·--------------·j 

i ! L.LRU=12BK 
1.40 ----------------;---------------r---------------1 

.._ ' I, , 
....: ..4 : i 

1.30 --------------:r--------r~I:RU'r256K 

120 --------------~-------------1 
1.10 ---------------r------------l·--------oo---1 
1.00+-__ __, ___ _,_ __ __, 

1000 10000 100000 1000000 
MRU Region Size (bytes) 

Figure 3-32. Times for MRU Mixed Caches. 

This figure shows effective access times for MRU mixed caches with 32-byt.e blocks, based on warm-start miss ra

tios from trace average 2nd500k., I assume that the MRU region is accessed in one cycle, one additional cycle is re

quired to access the rest of the cache, and cache miss penalty is 10 (left) or 20 (right) additional cycles. The x-axis 

shows different MRU region sizes, while each line represents a different "LRU" cache size in bytes. The right

most point in each line, where MRU and LRU sizes are equal, represents a regular direct-mapped cache. For ex

ample, the points on the line labeled "LRU=l28K" from right to U!ft represent a regular 128K-byte direct-mapped 

cache, a two-way set-associative 128K-byte cache with a 64K-byte MRU region, a four-way set-associative cache 

with a 32K-byte MRU region, etc. 

A four-way set-associative MRU cache is best, but the advantage is small with the faster miss penalty. 

Like direct-mapped and set-associative caches in the last section, I evaluate MRU caches with 

warm-start miss ratios from trace average 2nd500k. Results for mixed caches, shown in Figure 3-32 

corroborate the claim by Chang, Chao and So that the best organization for an MRU cache is four-way 

set-associative [Chan87]. It is not surprising that the minimum effective access time for MRU caches 

be found at such a small degree of associativity, since further increases in associativity reduce MRU 

size (and therefore increase the MRU miss ratio) without decreasing the LRU miss ratio much. Results 

for instruction caches and data caches are similar (see Figure 3-33). 

While MRU caches have smaller effective access times than direct-mapped caches, the difference 

may not be important and can be overwhelmed by implementation disadvantageso Four-way set

associative MRU mixed caches, for example, have 2 to 3 percent better effective access times than 

direct-mapped caches with the fast miss penalty of 10 cycles, and 5 to 9 percent better times with the 

20-cycle miss penalty. Thus, while MRU caches perform better than direct-mapped caches, they are 

worthwhile only if their implementation costs (chip area, board area, etc.) are not significantly larger 

than those of direct-mapped caches. 

Furthermore in some implementations, the access time to a direct-mapped cache will be less than 

that to an MRU region, since the blocks of a direct-mapped cache are selected directly with address bits, 

whereas the blocks of an MRU region are selected indirectly. In an MRU cache, several address bits are 



E 
f 
f 
e 
c 
t 
i 
v 
e 

A 
c 
c 
e 
s 
s 

T 
i 
m 
e 

E 
f 
f 
e 
c 
t 
i 
v 
e 

A 
c 
c 
e 
s 
s 

T 
i 

m 
e 

130 ---------r------r-------1 
··.... i i i 

120 -----'y~l;;;,..._l.Rr-=-----1 

~,, : ! : 
'X.. i x...juu=64K i "'' , . : ~ "'!·...,._...... : : ' : : : 

110 --------IT~i~ 

1.00+---.....;---+----i 
1 ()()() 1 ()()()() 1 ()()()()() 1 ()()()()()() 

MRU Region Size (bytes) 

~. .. ________ T _____ T ______ l 
1.50 • . • ... :.:~------·--r·-------------y---------------1 

···-.. .. l ._LRb=32K l 
1.40 ----~---·-··1.-:~:: ......... t ................ ! 

·,_ 
)C.. ! ! ! 

1.30 ........... :r-·.:;::.:;.·:~tT:::54K'"1 

"- i i LRU=t:zi!K 

120 --------~~+' .. 
110 ----------r-----r-----1 
1.00+---.....;---+----i 

1 ()()() 1 ()()()() 1 ()()()()() 1 ()()()()()() 
MRU Region Size (bytes) 

E 
f 
f 
e 
c 
t 
i 
v 
e 

A 
c 
c 
e 
I 
I 

T 
i 

m 
e 

E 
f 
f 
e 
c 
t 
i 
v 
e 

A 
c 
c 
e 
s 
I 

T 
i 

m 
e 

106 

~. .. ---------r------r---------1 
1.40 ···············t···-~.:-~f;;32K ....... j 

I 1 I I .... : .. : : ···---r· i i 
1.30 ---············r····---········r·········-·----1 

: lll...iLRU=64K : 
' I , , 

X. : / : : 
.. : .l : : 

1.20 ····---~.-.:;r.-······T:;::I:Ru=n~K 

"-~ ~ 1 /-LRVF256K 

i~ i 
uo -----------r---- --r----------1 
1.00+---.....;---+----i 

1 ()()() 1 ()()()() 1 ()()()()() 1000000 
MRU Region Size (bytes) 

l.90 ····-·········T·····-~~~:;;~-------1 

1 so .:·: ........... L ..... c ...... L .............. l 
. ··-..··-j··· l l 

1.70 ···--··········t·········--····1··--···--·······j 
t.60 ·--·ii---------t------·-----i±rm~icj 

.. ,..... ! ,x .. "' ! l 
1.50 -------------~--·: .......... 1 ................ 1 

i i.._LRU=12SK 
1.40 ............... t---------------;.----------------~ 

.. : .4: : 

:: -:::~~:::_t-=t-=~rS6K 
1.10 .............. l .............. 1"' .............. 1 
1.00+---.....;----i-----i 

1 ()()() 1 ()()()() 1 ()()()()() 1000000 
MRU Region Size (bytes) 

Figure 3-33. More MRU Effective Access Times. 

Fast misses (left), slow misses (right), l-eaches (top) and D-caches (bottom). 

used to select log2(a) bits associated with each set of a blocks; these bits are then used select the MRU 
block. Figure 3-34 shows that the advantage of MRU mixed caches is negated if they have 10 percent 
slower access times than direct-mapped caches. I expect access time degradations of 10 percent and 
larger in all MRU implementations where it is not possible to read out an entire set in parallel with 
reading the log2(a) bits, Results for other degradations can be calculated from the miss ratios in Table 
3-4. 

An MRU cache may still be preferred to direct-mapped one if the cache must be physically tagged 
or if reducing memory traffic is paramount, as are the case for the system in [Chan87]. MRU caches are 
faster than large, physically-tagged direct-mapped caches, because an MRU cache allows parallel 
address translation, whereas the direct-mapped cache does not. An MRU cache produces less memory 
traffic than a direct-mapped cache, because the MRU cache's overall miss ratio is lower. In future 



E 
f 
f 
e 
c 
t 
i 
v 
e 

A 
c 
c 
e 
s 

T 
i 

m 
e 

1.60 

1.50 

1.40 

1.30 

1.20 

1.10 

--~~~~---------1·------------··r··-------------~ 

....... : ... ,=-+-:~-----·--···t------·-·······1 
~ : ·.. : : 

....... ~:~.j ..... \, ... !.R~~~-~K ....... J 

r ... -~. i i 
.... i \ i : 

' ; \ : ! 
············-~---·····--·\···-················ 

--------~=:-~. r--------T\:uJrs6K 
---------r-------r-----------! 

1.00+---.....P----;-----t 
1 000 10000 100000 1000000 

MRU Region Size (bytes) 

E 
f 
f 
e 
c 
t 
i 
v 
e 

A 
c 
c 
e 
I 

T 
i 

m 
e 

107 

1·90 ---------------T·------------··r··------------·1 

1.80 -~-~:..: •• ~,,-.r:."-~::.:L~r=~-~15: ....... 1 

1.70 ............... +--------------·1---------···----i 
X. : : : 
., ... i ! i 

1.60 --·--······•-,.::-.-----........... ~---------------·~ l- ·,~U=64K l 
1.50 ............... t ............... i ................ j 

a. : : : 
"-.i _._ ~LRU=12BK 

:: ::~==:-~:~rK 
1.10 -------------··r---------------r-------------

1 
1.00 ...... --........ ----i-----t 

1 000 10000 100000 1000000 
MRU Region Size (bytes) 

Figure 3-34. Effective Access Times for Slower MRU Caches. 

This figure shows effective access times for MRU mixed caches with 32-byte blocks. Assumptions are similar to 

those of Figure 3-32, except that I set cycle times with MRU caches to be 10 percent slower than cycle times with 

direct-mapped caches to illustrate the advantage of MRU caches is negated if they are slower. 

multiprocessor systems, however, it is not clear to me whether MRU cache will be preferred to two
level cache designs, where small, fast caches minimize access time, and large, slow caches minimize 
memory traffic. 

3.4. Summary and Conclusions 

I have studied cache associativity with miss ratios and effective access times. My miss ratio 
results confinn that increasing associativity reduces cache miss ratios by diminishing amounts. I find 
that the ratios of miss ratios between of caches of different associativities, miss ratio spreads, do not 
change rapidly as cache sizes increase. Consequently as caches get larger, the absolute miss ratio 
difference between caches of different associativities becomes smaller. 

My effective access time results examine direct-mapped caches that have larger miss ratios, but 
shorter access times than set-associative caches. I show analytically that a direct-mapped cache yields 
smaller effective access time than a set-associative cache when the difference between their miss ratios 
times the miss penalty is less than the difference between their access times. I then use miss ratios from 
trace-driven simulation and implementation assumptions for TTL, ECL and custom CMOS caches to 
illustrate that direct-mapped caches can have smaller effective access times than set-associative caches 
in practice, as well as in theory. As cache size increases, I find that direct-mapped cache performance 
improves relative to set-associative cache perfonnance, because the miss ratio difference gets smaller, 
but the access time difference does not. In particular, I find that direct-mapped caches have similar or 
better effective access times than set-associative caches at many cache configurations of 32K-bytes and 
larger. In many cases, however, effective access times are sufficiently close that the cache organization 
used should be based more on cost differences than on perfonnance differences. 

My effective access time work also underscores that implementation considerations should not be 
ignored, unless we can show their effects to be negligible. While it seems reasonable to assume that all 
caches of the same size have the same access time, doing so leads to misleading results as miss ratio 
differences decrease. 



108 

More work of this type is merited, since I expect memory hierarchies to become more, not less, 

important to future computers. In particular, extending effective access time results to hierarchies of 

caches and caches in multiprocessors is valuable. Cache hierarchies will become necessary as the ratio 

between processor speeds and main memory speeds increases. Caches are also necessary in shared

memory multiprocessors to reduce traffic in interconnection networks. In the future, caches at different 

points in the system may be optimized for different functions. I expect that analysis using trace data of 

existing systems and considering constraints of real implementation technologies will prove as impor

tant to these future problems as it has to the single-level caches I have addressed. 

3.5. Appendix: Cache Implementations 

This appendix examines implementing direct-mapped and set-associative caches in Advanced 

Schottky TIL, ECL and custom CMOS. I begin by examining how to implement set-associativity 

logic, which combines the results of N direct-mapped banks into the results of anN -way set-associative 

cache, in generic OR-gates, NOR-gates and multiplexors (MUXs). Then for each technology, I discuss 

a direct-mapped cache to use as an operating point, design the set-associativity logic, and determine the 

cache access times for direct-mapped and set-associative caches implemented in that technology. 

Figure 3-35 shows possible implementations of the set-associativity logic for two-, four- and 

eight-way set-associative caches with OR-gates, NOR-gates and multiplexors. I use these descriptions 

in the rest of this appendix when I implement caches in specific technologies. The only non-trivial part 

· of these designs is the implementation of Select, which appears to require an encoder. A simpler design 

is possible, however, since at most one bank can match. 

Select can be implemented in a two-way set-associative cache by setting it equal to either 

Match[ I] or Match*[O], as the following truth table shows: 

Match Select [0] [1] 

0 0 x (cache miss) 
1 0 0 
0 1 1 
1 1 x (illegal) 

The truth table for Select in a four-way set-associative cache is: 

Match 
Select 

Select 
[0] [1] [2] [3) <0> <1> 

0 0 0 0 X X X 

1 0 0 0 0 0 0 
0 1 0 0 1 0 1 
0 0 1 0 2 1 0 
0 0 0 1 3 1 1 

Select can be computed with two parallel two-input ORs: 

Select <0> = Match [2] OR Match [3] 

Select< 1> = Match [1] OR Match [3], 

or with two parallel two-input NORs: 

Select <0> = Match [0] NOR Match [1] 

Select <1> = Malch [0] NOR Match [2]. 

The truth table for Select in an eight-way set-associative cache is: 



Match 
[0] [l] [2] [3] 

Match Out 

Match 
[OJ [1J 

Match Out 

Match 
(2] [3] 

Match 
[0] [2] 

Match Match Match Match 
[0] [1] [4J [5] [6] [7] [2J [3J [6J (7] [lJ [3] (5J [7J 

Match Out 

Data Out 

Data [OJ [1) [2J [3] 

Data Out 

Data [OJ [lJ [2] [3] [4] [S] [6] [7] 

32 32 32 32 32 32 32 32 

32 bit-wide 8-to-1 MUX 

32 

Data Out 

Figure 3-35. Set-Associativity Logic. 

The logic needed to combine two (top), four (middle) and eight (bottom) direct-mapped banks into a set-associative 
cache. 

Match Select 
Select 

(0] [1] [2] [3) [4) [5] [6] [7] <0> <1> <2> 

0 0 0 0 0 0 0 0 X X X X 

1 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 1 0 0 1 
0 0 1 0 0 0 0 0 2 0 1 0 
0 0 0 1 0 0 0 0 3 0 1 1 
0 0 0 0 1 0 0 0 4 1 0 0 
0 0 0 0 0 1 0 0 5 1 0 1 
0 0 0 0 0 0 1 0 6 1 1 0 
0 0 0 0 0 0 0 1 7 1 1 1 

Select may be implemented in a single logic level of of 4-input ORs or NORs. With ORs: 

Select <0> = Match [4] OR Match [5] OR Match [6] OR Match [7] 

109 



WithNORs: 

Select< 1> = Match [2] OR Match [3] OR Match [6] OR Match [7] 

Select <2> = Match [1) OR Match [3) OR Match [5] OR Match [7]. 

Select <0> = Match [0] NOR Match [1) NOR Match [2] NOR Match [3] 

Select <1> = Match [0] NOR Match [1] NOR Match [4] NOR Match [5] 

Select <2> = Match [0] NOR Match [2] NOR Match [4] NOR Match [6]. 

3.5.1. AS TTL Logic and Static CMOS RAMs 

110 

One technology for implementing a cache is off-the-shelf Advanced Schottky parts and static 
CMOS RAMs. This technology is attractive for implementing large board-level caches in personal 
workstations, as it is faster than other TTL families, but less power-consuming then ECL. I study 
caches in this technology by using the direct-mapped SPUR cache as an reference point, designing set
associativity logic, and combining the two together to fonn set-associative caches. 

The SPUR cache contains 128K bytes of data and instructions, is organized into 4K direct
mapped 32-byte blocks tagged with virtual addresses, is implemented with AS TTL parts and CMOS 
static RAMs, and has an access time of 100 ns [Hill86, Wood86b]. The SPUR cache is somewhat more 
complex than the generic direct-mapped cache described in Section 3.3.2, because it converts process
specific virtual addresses to global virtual addresses, pennits 40- and 64-bit accesses to aligned 64-bit 
words, and contains additional state infonnation and logic for maintaining cache coherency. These 
differences, however, are not relevant to this analysis since they do not affect cache access time. 

A two-, four- or eight-way set-associative cache can be constructed using the set-associativity 
logic of Figure 3-35, implemented with parts shown in Table 3-32, to connect two, four or eight 
directed-mapped banks. 

The fastest way to compute MatchOut in a two-way set-associative cache is to use eight 74AS240 
Octal Tri-State Buffers chips in the style of Figure 3-25. This implementation requires 9.0 ns for 
Match[il~DataOut and 6.5 ns for Data[i]-+DataOut. Alternatively eight 74AS 158 Quad 2-to-1 
MUXs can be used to achieve delays of 10.5 ns and 5.0 ns for Match[i]-+DataOut and 
Data[i]~DataOut, respectively. Consequently, the tri-state buffers are preferred unless Match[i] is 
available more than 3.5 ns before Data[i], which is unlikely. 

The fastest way to compute MatchOut from Match[O] and Match[ I] is with a 74AS02 2-input 
NOR gate in 4.5 ns t. Alternatively, the Match[i)' s can be wire-ORed if they are calculated with open
collector gates, such as the 74ALS33A 2-Input NOR. This solution is too slow, however, since even if 
the wire-ORing required no time, the open-collector gates produce Match[i] 1.5 ns later than the regu
lar NORs (12.0 ns minus 4.5 ns). 

The fastest way to compute MatchOut in a four-way set-associative cache is also with 74AS240 
Octal Tri-State Buffer chips. While sixteen chips are required, the delays for Match[i]~DataOut and 
Data[i]~DataOut remain at 9.0 and 6.5 ns. Alternatively, one 74AS02 Quad 2-Input NOR and eight 
74AS153 Quad 4-to-1 MUXs can be used, producing larger delays of 17.0 ns (4.5 ns plus 12.5 ns) and 
8.0 ns with fewer chips (9 vs. 16). The smallest time for Match[i]-+MatchOut is 6.0 ns, using a 
74AS802 4-Input OR. 

Similarly for an eight-way set-associative caches, using 32 74AS240 Octal Tri-State Buffer chips 
is faster than using four 74AS802 Triple 4-Input OR/NOR chips and 32 74AS151 Single 8-to-1 MUXs. 
With the multiplexors, the delays for Match[i]~DataOut and Data[i]~DataOut are 18.5 and 6.5 ns. 
The Match[i]~DataOut assumes that each Select bit is computed by four different gates, each driving 
eight loads, rather than being computed by one gate that must drive 32 loads. I also compute half of the 

t In all these implementations I ignore the polarity of inputs and outputs. 



Part Part Name Timing Path 
Worst-Case Reference 

Number Delav (ns) 

74AS832A Hex 2-lnput OR Data-.DataOut 5.5 [Texa84], p. 2-545 

74AS32 Quad 2-lnput OR Data-+DataOut 5.8 jTexa841~- 2-61 

74AS02 Quad 2-lnput NOR Data-+DataOut• 4.5 [Texa84], p. 2-11 

74ALS33A Quad 2-Input NOR w/ Data-+DataOut* 12.0 [Texa84], p. 2-64 
open-collector outputs (high to low) 

74AS802 Triple 4-lnput OR Data-+DataOut 6.0 [Texa84], p. 2-51 

/NOR Data-+DataOut* 6.5 (delay estimated) 

74AS240 Octal Buffers w/ Data-+DataOut* 6.5 [Texa84], p. 2-221 
3-state outputs Select-.DataOut* 9.0 

74AS158 Quad 2-to-1 MUX Data-+DataOut• 5.0 [Texa84], p. 2-135 
Select-+DataOut• 10.5 

74AS157 Quad 2-to-1 MUX Data-+DataOut 6.0 [Texa84],p. 2-135 
Select-.DataOut 11.0 

74AS153 Quad 4-to-1 MUX Data-+DataOut 8.0 [Texa84], p. 2-128 
Select-+DataOut 12.5 

74AS151 Single 8-to-1 MUX Data-+DataOut 11.0 [Texa84], p. 2-124 
Data-.DataOut* 6.5 [Nati84], p. 3-62 
Select-+DataOut 15.0 
Select-+DataOut* 12.0 

Table 3-32. Selected AS 1TL Pans. 

'This table lists infonnation on the Advanced Schottky OR/NOR gates useful for computing MatchOwt, Select, and 

DatalJut from the Texas Instruments TIL Data Book [Texa84] and the National Logic Data Book [Nati84]. Da

taOwt* on a multiplexor implies that the multiplexor inverts its output. 

The TIL Data Book gives only typical delays for the 74AS802 Triple 4-Input OR/NOR, because this part has nev

er been manufactmed [Lutz.86]. I choose to use the part anyway because doing associativity comparisons using a 

technology without a reasonable 4-input OR or NOR gate would unfairly bias results toward lower degrees of asso

ciativity. The worst-case delays used for this part are estimated by adding about 30 percent to the typical delays 

4.5 ns and 5.0 ns for the OR and NOR [Lutz86]. 

The propagation delay for the 74ALS33 Quad 2-lnput NOR with open collector output is 12.0 high to low and 33 

ns low to high, assuming a 680 ohm pull-up and a 50 pF load. I report only the high-to-low time, because this part 

would only be used to compute Select active low. 

111 

Select signals with NOR rather than OR gates to reduce the maximum number of loads driven by any 

Match[i] from twelve to six loads. MatchOut can be computed in 12.0 ns with a single additional 

74AS802 4-Input OR gate according to the following equation: 

MatchOut = Match [0] OR Match [1] OR Select <0> OR Select <1>. 

Adding set-associative logic to the SPUR cache will increase cache access time by the longest 

delay path through the additional logic, since both Data[O] and Match[O] are available at the same 

time (in 100 ns), and both DataOut and MatchOut are required immediately. As Table 3-33 shows, the 

implementation of the set-associative logic with the shortest critical path is the one that uses tri-state 

buffers. Table 3-34 shows that using this implementation produces setoassociative caches with 109.0 ns 

access times. 

3.5.2. Emitter Coupled Logic 

Another logic family suitable for high-perfonnance computers is Emitter Coupled Logic (ECL). 

ECL is considerably faster and more power-hungry than AS TTL. ECL machines usually reside in 

machine rooms, because their cooling requirements are too great to be handled with typical office cool

ing. ECL has been the technology of choice for mainframes for many years, and is now also 

commonly-used in super-minicomputers. In addition, ECL has also been used in at least two personal 

workstations: the Xerox PARC Dorado [Pier83] and the DEC WRL Titan I [Bask86]. I study ECL 



Degree Timin~gPath (ns) 
of Match[i] Match[i]-+Select Data[i] Comments 

Associativity -+MatchOut -+DataOut -+DataOut 

1 0.0 n/a 0.0 no logic 
2 4.5 9.0 6.5 OR, 3-State 
2 4.5 10.5 5.0 OR,MUX 
4 6.0 9.0 6.5 OR, 3-State 

4 6.0 17.0 8.0 OR,MUX 
8 12.0 9.0 6.5 OR, 3-State 
8 12.0 18.5 6.5 OR,MUX 

Table 3-33. Cache Timing Paths with AS TrL. 

This table presents delays for the three timing paths through Advanced Schottky TTL set-associativity logic. 

There is no path from Match(i] to DataOut in a direct-mapped cache. All Match/Jut's are computed with an ex

plicit OR or NOR-gate ("OR"). DataOut can be computed with tri-state buffers ("3-State ") or a multiplexor 

("MUX''). 

Degree Cache Access Time 
of %increase 

Associativitv (ns) from A=1 
1 100.0 0.0 
2 109.0 9.0 
4 109.0 9.0 
8 109.0 9.0 

Table 3-34. TrL Cache Access Times. 

This table lists delays for set-associative caches that are similar to the SPUR cache. The SPUR Cache is 128K 

bytes, organized as 4K direct-mapped 32-byte blocks. It has a access time of 100 ns with a critical path to Match. 

Since MatchOut and DataOut are required at the same time, the additional logic for set-associativity increases 

cache access time by the time for the Match(i]-+Sekct-+DataOut timing path. The length of this path is minim

ized by using tri-state drivers rather than explicit multiplexors. Caches with associativities two, four and eight have 

the same access times, 109 ns, because, to first-order, the delay through tri-state buffers is not affected by how 

many of them are operating in parallel. 

112 

caches by using a modified version of the caches in the Titan I as a reference point and designing set

associativity logic. 

The Titan I contains two identical 16K-byte ECL caches: one for instructions and one for data. 

Each cache is four-way set-associative with 16-byte blocks and uses random replacement [Niel86]. 

Address translation with 4k-byte pages is done in parallel with a cache lookup using a TLB per cache. 

The Titan I cache access time is 45 ns, using four rows of eight 15 ns 1K x 4 static ECL RAMs. Data 

from these chips can be combined with a four-to-one multiplexor, controlled either by address bits 

(direct-mapped) or by the Match[i] 's (four-way set-associative). The designers chose to implement the 

four-way set-associative cache, because it had a lower miss ratio, control of the multiplexor was not on 

the critical path in this implementation, and it restricted the cache index bits to be within the page 

offset, making it straightforward to do the cache lookup in parallel with address translation. Nielson 

reports the critical path is instead through the tag memory and match logic to the control that stalls the 

pipeline on a cache miss. 

The reference point I use for ECL is a Titan-I-like direct-mapped cache with a 30 ns access time. 

I assume the faster access time principally because ECL RAMs are now faster. In 1986 for example, 

the average access time for the four fastest 1 K x 4 static ECL RAMs from different manufacturers was 

8.6 ns [Hear86]. Even faster RAMs with further exaggerate access time differences between direct

mapped and set-associative caches. To facilitate comparisons between TrL and ECL I assume, as I did 



113 

for TIL, that both paths to MatchOut and DataOut are critical. 

The set-associativity logic for a two-way set-associative ECL cache can be implemented four 
ways: using 2-to-1 MUX/Latches, using OR-AND-INVERT gates, using selectively enabled Drivers, or 

using chip-select on the data memory chips. In all cases MatchOut can be computed in zero-time by 

wire-ORing together Match[O] and Match[ I], making the delay for Match[i]~MatchOut 0.00 ns. 

Table 3-35 shows selected ECL parts, useful for building set-associativity logic. 

Part Part Name Timing Path 
Worst-Case Reference 

Number Delav (ns) 

F100102 Quint 2-Input OR Data~DataOut 1.40 [Fair86], p. 3-7 
/NOR Enable~DataOut 2.20 

Fl00101 Triple 5-lnput OR Data~DataOut 130 [Fair86], p. 3-5 
/NOR 

F100117 Triple 2-Wide OR-AND Data~DataOut 2.60 [Fair86], p. 3-22 
/OR-AND-INVERT Enable~DataOut 1.40 

F100113 Quad Driver Data~DataOut 1.40 [Fair86], p. 3-16 
Enable~DataOut 1.90 

F100155 Quad MUX/Latch Data~DataOut 1.40 [Fair86], p. 3-96 
Select~DataOut 3.50 (transparent mode) 
Enable~DataOut 2.50 

F100171 Triple 4-lnput MUX Data~DataOut 1.70 [Fair86], p. 3-142 
Select-+DataOut 3.00 
Enable~ Data Out 2.40 

Fl00163 Dual 8-lnJ'Ilt MUX Data~DataOut 1.80 [Fair86], p. 3-118 
Select~DataOut 3.10 

Table 3-35. Selected ECL lOOK Parts. 

This table lists information on the ECL lOOK parts useful for computing MatchOw, Select, and DataOUl from the 

FlOOK ECL Data Book [Fair85]. All parts generate dual-rail outputs with symmetric propagation delay. Since 

ECL gates drive outputs high and require terminating resistors to pull outputs low, signals can be ORed by wiring 

them together. Worst-case case delays assume a dual in-line package, VEE= -4.2 V to -4.8 V, and a temperature of 
85°C. Delays for the F100155 Quad MUX/Latch assume that the latch is enabled so that data just passes through it 

(transparent mode). 

The first approach for computing DataOut is to use eight F100155 Quad MUX/Latches even 
though the latch is not used, i.e., it is left in transparent mode. Select is equal to either Match[l] or 
Match*[O]. If I use Match[l] to drive Select on four multiplexors, and Match*[O] to drive the other 

four, then no additional buffering is required, and DataOut can be computed with a delay of 3.50 ns 

from Select and a delay of 1.40 ns from Data. The delays through this logic are 3.50 ns for 

Match[i]~Select~DataOut and 1.40 ns for Data[i]~DataOut. 

A second way to implement the additional logic for a two-way set-associative cache is to build a 

32-bit wide 2-to-1 multiplexor from eleven F100117 Triple 2-Wide OR-AND-INVERT chips. The 
equation for a 2-to-1 multiplexor is: 

DataOut = (Data [0) AND Select*) OR (Data [1] AND Select). 

If Data*[O] and Data*[l] are available, the same function can be implemented with an OR-AND
INVERT gate as follows: 

DataOut = [(Data* [0) OR Select) AND (Data* [1] OR Select*)]*. 

Since these gates have a propagation delay of 2.60 ns, it appears that they are faster than the 

MUX/Latch whose delay is 3.50 ns from Select. However, it is not possible to have Match[l] and 

Match*[O], which are both equal to Select, drive 16loads each. Consequently, one level of buffering 
with four F100113 Quad Drivers is necessary so that each Match signal drives three loads, and each 

Select or Select* signal drives at most three loads. This buffering adds 1.40 ns to the delay, making 

this solution 0.10 ns slower than using the MUX/Latches, which requires about half as many chips. 



114 

A third way to implement the additional logic for a two-way set-associative cache is to build two 

32-bit wide "tri-state" buffers (see Figure 3-25) from sixteen F100113 Quad Driver chips. This design 

uses eight drivers per bank. The 32-bits of Data[i1 must be connected to the data inputs and Match[i1 

connected to the enables. The corresponding bits of the driver's output must then be connected together 

to produce DataOut* by a wired-OR. The delays through this logic are 1.90 ns for 

Match[i1---+Select---+Data0ut and lAO ns for Data[i1---+Data0ut. This method is faster than the first 
two, but uses more chips. 

The final way to implement the 32-bit wide multiplexor is with chip-select on the data RAMs. In 

this design, the outputs of the two banks of data memory chips, Data[O 1 and Data[ 11, are connected 

directly to DataOut. On a cache lookup, the data memory chips are addressed, but not enabled. At the 

same time, the tag memory is accessed and Match£01 and Match[ 11 computed. Match[i1 is then distri

buted to the chip-selects of all data memory chips in bank i. The delay from Match[i1 to DataOut for 

this technique is, therefore, the data memory chip delay from chip-select plus buffer delays incurred to 

distribute each Match[i]. This delay is greater than the 3.5 ns required by the explicit 2-to-1 multi

plexor design, since the delay from chip select required by most static ECL RAMS is at least that large 

[Hear86]. Nevertheless, multiplexing using chip-select may be attractive, since it saves chips and board 

area, but one must be aware of the limited drive capability of many RAM chips. 

The set-associativity logic for a four-way set-associative cache can be computed using multiplex

ors or drivers. The multiplexor implementation uses 12 ECL lOOK parts: one F100102 Quint 2-Input 

OR/NOR, and eleven Fl00171 Triple 4-Input MUXs. Select can be computed with two 2-Input 

OR/NOR (or with 5-input OR/NOR) gates in 1.40 ns (or 1.30 ns). However, each select bit must drive 

11 loads. Instead, I can compute Select twice in parallel with four 2-Input OR/NOR gates so that each 

gate drives no more than six loads. DataOut requires the eleven Triple 4-Input MUXs which have a 

delay of 3.00 ns from Select and a delay of 1.70 ns from Data. The delays through this logic are, there

fore, 4.40 ns for Match[i1---+Select---+Data0ut and 1.70 ns for Data[i1---+Data0ut. 

As with the two-way set-associative cache, DataOut can be computed using Fl00113 Drivers. 

The delays through this logic are 1.90 ns for Match[i1---+Select---+Data0ut and 1.40 ns for 

Data[i1---+Data0ut. However, 32 Fl00113 Driver chips are required (eight chips per bank times four 
banks). 

The set-associativity logic for an eight-way set-associative cache can also be computed using mul

tiplexors or drivers. The multiplexor implementation uses 18 ECL lOOK parts: two F100101 Triple 5-

input OR/NOR and 16 Fl00163 Dual 8-Input MUXs. Select can be computed with one level of three 

5-Input OR/NOR gates in 1.30 ns. I can reduce the fan-out from the select bits from 16 to 8 by using 

three NORs on a second F100101 to drive half of the multiplexor selects. DataOut requires the 16 

Dual 8-Input MUXs with a delay of 3.10 ns from Select and a delay of 1.80 ns from Data. The delays 

through this logic are 4.40 ns for Match[i]---+Select---+DataOut and 1.80 ns for Data[i1---+Data0ut. 

Again, DataOut can be computed using Fl00113 Drivers. The delays through this logic are 1.90 

ns for Match[i1---+Select---+Data0ut and 1.40 ns for Data[i1---+Data0ut. However, 64 Fl00113 Driver 

chips are required (eight chips per bank times eight banks). 

I now compute ECL cache access times by combining the assumptions for my direct-mapped 

operating point with the delays for the set-associativity logic, shown in Table 3-36. Table 3-37 gives 

these access times with the set-associativity logic implemented with explicit multiplexors, rather than 

with Fl00113 driver chips. I discard using the driver chips, since doing so adds 16, 32 and 64 chips to 

two-, four- and eight-way set-associative cache designs. This number of additional chips can be equal 

to the number of memory chips in the cache, since ECL RAMS are often four bits wide. Using multi

plexors, on the other hand, is more reasonable, since doing so adds only 8, 12, and 17 chips, allowing a 

larger or cheaper cache to be implemented. 



Degree Timing Path (ns) 

of Match[i] Match[i]~Select Data[i] Comments 

Associativity ~MatchOut ~DataOut ~DataOut 

1 0.00 n/a 0.00 no logic 

2 0.00 3.50 1.40 wired-OR, MUX 

2 0.00 1.90 1.40 wired-OR, Drivers 

4 0.00 4.40 1.70 wired-OR, MUX 

4 0.00 1.90 1.40 wired-OR, Drivers 

8 0.00 4.40 1.80 wired-OR, MUX 

8 0.00 1.90 1.40 wired-OR, Drivers 

Table 3-36. Cache Timing Paths with EO.. lOOK. 

This table presents delays for the three timing paths through the additional set-associativity logic when the logic is 

implemented with ECL lOOK. There is no path from MaJch{i] to DataOwt in a direct-mapped cache. MatchOwt 

is computed in zero-time by wiring the Match{i] 's together ("wired~OR"). DataOut can be computed with a 

multiplexor ("MUX") or with drivers whose outputs are wired together ("Drivers"). 

Degree Cache Access Time 
of %increase 

Associativity (ns) from A=l 
1 30.0 0.0 
2 33.5 11.7 
4 34.4 14.7 
8 34.4 14.7 

Table 3-37. ECL Cache Access Times. 

This table lists delays for set-associative caches that are similar to the SPUR design except that they are imple

mented in ECL with a 30 ns access time. In particular, this means that the critical path through the additional set

associative logic is through the Match[ i] ~ekct~DataOwt timing path. I assume a 30 ns access time rather than 

the 45 ns access time of the Titan L because faster static ECL RAMs are now available. 

3.5.3. Custom CMOS 

115 

CMOS is commonly used to implement microprocessors, because it consumes low static power 

and can be fabricated in large chips with good density. Most future microprocessors will include some 

on-chip cache memory to reduce memory reference latencies and off-chip data and instruction traffic 

(see Chapter 4). A cache on a processor chip will, of course, have to be implemented in the same tech

nology as the rest of the chip. Consequently, I expect custom CMOS caches to be common at the top of 

microprocessor memory hierarchies. As with TTL and ECL, I study CMOS caches by defining a 

direct-mapped operating point, designing set-associativity logic, and combining the two to form set

associative caches. 

I use the instruction buffer (IB) on the SPUR CPU chip as my CMOS cache reference point. The 

SPUR IB, described in detail in Chapter 4, is an instruction cache that contains 512 bytes (128 instruc

tions) organized into 16 direct-mapped blocks of eight instructions each. The SPUR IB implementation 

is described by Duncombe [Dunc86] and in the appendix of Chapter 4. It has an access time of 50 ns 

and a cycle time of 100 ns. An instruction cache similar to the SPUR IB, but designed in isolation, can 

have a shorter access time, because the SPUR IB had to conform to aspect ratio (the ratio of length to 

width of an implementation) and timing constraints dictated by the rest of the CPU. Nevertheless, I 

assume a 50 ns access time for my direct-mapped CMOS reference point, since no useful cache is 

designed in isolation. Agarwal et al. for example, also found that implementation concerns, such as 

aspect ratio, were important to the design of the MIPS-X CMOS instruction cache [Agar87a]. 



116 

The design of set-associativity logic for custom CMOS differs from the logic shown in Figure 3-

35 whenever signals do not have to cross chip boundaries. These differences affect access time in three 

places. First, a multiplexor in AS TIL and ECL lOOK is a separate chip, so increasing associativity 

from direct-mapped adds to the critical paLlt the time for the multiplexor circuit plus the time to go on 

and off the multiplexor chip. In custom CMOS, increasing the associativity only adds the delay for the 

multiplexor circuit. Consequently, increasing associativity has less of a negative effect on cache access 

time in custom CMOS than in AS TIL or ECL. 

Second, the Select inputs for an N -to-1 multiplexor in custom CMOS need not be encoded, into 

log:z(N) signals, because running theN Match[i] 's to the multiplexor takes only one, two, and five more 

wires for N equal to two, four, and eight However, standard multiplexor chips always encode these 

signals to save scarce pins even though the signals are often decoded once on the multiplexor chip. In 

this respect the output of an on-chip multiplexor is selected they same way a tri-state buffer is enabled. 

Finally, if the cache and the CPU are on the same chip, theN Match[i] 's do not have to be expli

citly ORed together to form MatchOut, rather all of the Match[i] 'scan be passed in the execution unit 

control where the OR delay can often be hidden in other overheads. In contrast when the execution unit 

is on a different chip(s), the Match[i] 's are usually ORed together to save pins. 

For the reasons given above, Duncombe found the delay for set-associative logic is small (see 

Table 3-38) [Dunc86]. I assume that a set-associative CMOS cache will be slower than a direct-mapped 

one due to these delays (see Table 3-39). On average I expect this to be true, but in any given imple

mentation, other implementation changes that accompany adding set-associativity, e.g., altering the 

aspect ratio of the data array, can cause larger positive or negative changes in access time. 

Degree Timing Path (ns) 

of Match[i] Match[ i]-+Select Data[i] 
Associativi_tv_ -+MatchOut -+DataOut -+DataOut 

1 0.0 n/a 0.0 

2 0.0 1.0 1.0 
4 0.0 1.1 1.2 
8 0.0 1.3 1.4 

Table 3-38. Cache Timing Paths with Custom CMOS. 

This table presents delays for the three timing paths through the additional set-associativity logic when the logic is 

implemented in custom CMOS. Results are based on multiplexor delays calculated by Duncombe [Dunc86]. I as

sume that ORing the Match{i] 'scan be hidden in control. Thus. the delays for all Match{i]-+MatchOut paths are 

zero. I further assume that all multiplexor select bits are not encoded. Thus, the delays for all 

Match{i]-+Select-+DataOut paths are just the multiplexor delays from selecL Finally, as always, the delay for all 

Data{ i] -+DataOut paths is the multiplexor delay from Data{ i]. 

Degree Cache Access Time 
of %increase 

Associativitv (ns) from A=l 

1 50.0 0.0 
2 51.0 20 
4 51.1 22 
8 51.3 2.6 

Table 3-39. CMOS Cache Access Times. 

This table lists delays for set-associative caches similar to the SPUR instruction buffer, a 512-byte direct-mapped 

instruction cache implemented in 1.8 micron CMOS. 



117 

3.6. References 

[Agar86] A. Agarwal, R. L. Sites and M. Horowitz, A TUM: A New Technique for Capturing Address Traces 

Using Microcode, Proc. Thirteenth Internalional Symposium on Computer Architecture (June 1986). 

[Agar87a] A. Agarwal, P. Chow, M. Horowitz, J. Acken, A. Salz and J. Hennessy, On-chip Instruction Caches 

for High Perfonnance Processors, Proc. Conf. on Advanced Research in VLSI, Stanford (March 

1987). 

[Agar87b] A. Agarwal, M. Horowitz and J. Hennessy, Cache Perfonnance of Operating Systems and 

Multiprogramming Workloads, submitted to Trans. Computer Systems (Aprill987). 

[Alex86] C. Alexander, W. Keshlear, F. Cooper and F. Briggs, Cache Memory Performance in a UNIX 

Environment, Computer Architecture News. 14, 3 (June 1986), 14-70. 

[Bask86] F. Baskett, Titan I, Dec. WRL, (January 1986). U.C., Berkeley Computer System Seminar. 

[Bell74] J. Bell, D. Casasent and C. G. Bell, An Investigation of Alternative Cache Organizations, IEEE 

Trans. on Computers, C-23, 4 (April1974), 346-351. 

[Cham83] J. M. Chambers, W. S. Cleveland, B. Kleiner and P. A. Tukey, Graphical Methods for Data Analysis, 

Duxbury Press, Boston, (1983). 

[Chan87] 

[Cho86] 

[Clar83] 

[Dion86] 

[Dunc86] 

[East75] 

[Fair85] 

[Haik84] 

[Hear86] 

[Hill86] 

[Joup86] 

[Kapl73] 

[Lipt68] 

J. H. Chang, H. Chao and K. So, Cache Design of a Sub-Micron CMOS System/370, 14th Annual 

International Symposium on Computer Architecture, Pittsburgh, PA (June 1987), 208- 213. 

J. Cho, A. J. Smith and H. Sachs, The Memory Architecture and the Cache and Memory Management 

Unit for the Fairchild CLIPPER Processor, Computer Science Division Technical Report 

UCB/Computer Science Dpt. 861289, University of California, Berkeley (April, 1986). 

D. W. Clark, Cache Performance in the VAX-lln8o, ACM Trans. on Computer Systems, 1, 1 

(February, 1983), 24- 37. 

J. Dion, Private Communication, Dec. WRL, (May 1986). 

R. R. Duncombe, The SPUR Instruction Unit: An On-Chip Instruction Cache Memory for a High 

Perfonnance VLSI Multiprocessor, Unpublished Master's Report, University of California, 

Berkeley (August, 1986). 

M. C. Easton, Measuring Cold-Start Miss Ratios, Computer Science RC 5692 (#24518), ffiM Watson 

Research Center (October, 1975). 

Fairchild, FlOOK ECL Data Book (1985). 

L J. Haikala and P. H. Kutvonen, Split Cache Organizations, CS Report C-1984-40., Univ. of 

Helsinki (August 1984). 

Hearst Business Communications, Inc., IC Master, Vol. II (1986). 

M.D. Hill, S. J. Eggers, J. R. Larus, G. S. Taylor, G. Adams, B. K. Bose, G. A. Gibson, P. M. 

Hansen, J. Keller, S. I. Kong, C. G. Lee, D. Lee, J. M. Pendleton, S. A. Ritchie, D. A. Wood, B. G. 

Zorn, P. N. Hilfinger, D. Hodges, R. H. Katz, J. Ousterhout and D. A. Patterson, Design Decisions in 

SPUR, IEEE Computer, 19, 11 (November 1986). 

N. Jouppi, Private Communication, Dec. Western Research Lab, (December 1986). 

K. R. Kaplan and R. 0. Winder, Cache-based Computer Systems, Computer, 6, 3 (March, 1973). 

J. S. Liptay, Structural Aspects of the System/360 Model 85, Part II: The Cache, IBM Systems 

Journal, 7, 1 (1968), 15d21. 

[Lutz86] K. Lutz, Private Communication, University of California. Berkeley, (July 1986). 

[MacG85] D. MacGregor and J. Rubinstein, A Perfonnance Analysis of MC68020-based Systems, IEEE 

MICRO, 5, 6 (December 1985). 

[Matt70] R. L. Mattson, J. Gecsei, D. R. Slutz and I. L. Traiger, Evaluation techniques for storage hierarchies, 

IBM Systems Journal, 9, 2 (1970), 78- 117. 

[Matt71] R. L. Mattson, Evaluation of Multilevel Memories, IEEE Trans. on Magnetics, MAG-7, 4 (December 

1971). 

[Nati84] National Semiconductors, National Logic Data Book (1984). 



118 

[Niel86] M. Nielson, Private Communication, Dec. Western Research Lab, (August 1986). 

[Pier83] K. A. Pier, A Retrospective on the Dorado, A High-Perfonnance Personal Computer, Proc. Tenth 

Symposium on Computer Architecture (June 1983), 252-269. 

[Siew82] D.P. Siewiorek, C. G. Bell and A. Newell, Computer Structures: Principles and Examples, McGraw 

Hill (1982). 

[Smit78] A. J. Smith, A Comparative Study of Set Associative Memory Mapping Algorithms and Their Use for 

Cache and Main Memory, IEEE Trans. on Software Engineering, SE-4, 2 (March 1978), 121-130. 

[Smit82] A. J. Smith, Cache Memories, Computing Surveys, 14, 3 (September, 1982), 473 - 530. 

[Smit83] J. E. Smith and J. R. Goodman, A Study of Instruction Cache Organizations and Replacement 

Policies, Proc. Tenth International Symposium on Computer Architecture, Stockholm, Sweden (June 

1983), 132-137. 

[Smit85] A. J. Smith, Cache Evaluation and the Impact of Workload Choice, Proc. Twelfth International 

Symposium on Computer Architecture (June 1985). 

[Smit87] A. J. Smith, Line (Block) Size Choice for CPU Caches, IEEE Trans. on Computers, C-36, 9 

(September 1987). 

[Stre76] W. D. Strecker, Cache Memories for PDP-11 Family Computers, Proc. Third International 

Symposium on Computer Architecture (January 1976), 155-158. 

[Stre83] W. D. Strecker, Transient Behavior of Cache Memories, ACM Trans. on Computer Systems, 1, 4 

(November, 1983). 

[fexa84] Texas Instruments, Inc., The TTL Data Book, Vol. 3, Advanced Low-Power Schottky, Advanced 

Schottky (1984). 

[Wood86a] D. A. Wood, S. J. Eggers, G. Gibson, M.D. Hill, J. Pendleton, S. A. Ritchie, R. H. Katz and D. A. 

Patterson, An In-Cache Address Translation Mechanism, Proc. Thirteenth International Symposium 

on Computer Architecture, Tokyo, Japan (June 1986). 

[Wood86b] D. A. Wood, S. J. Eggers and G. Gibson, SPUR Memory System Architecture, Unpublished Report, 

University of California, Berkeley (August, 1986). 



4 

4.1. Introduction 

Instruction Memory on 

a Single-Chip RISC 

119 

High-speed instruction memories, which hold instructions expected to be executed soon, are 

important to all computers, because they can cost-effectively bolster performance by reducing delays 

owing to instruction fetches. Instruction memories on single-chip RISC microprocessors are particu

larly important, because RISC chips must fetch numerous, simple instructions over a limited inter-chip 

datapath. Here I examine and compare two instruction memory organizations: instruction buffers 

(IBs), which are conventional instruction caches, and target instruction buffers (TIBs), which are 

buffers that hold one or more instructions at recent branch targets. TIBs should not confused with 

branch target buffers (BTBs). TIBs map branch target addresses to instructions at branch targets to 

reduce instruction fetch latency, while BTBs map branch instruction addresses to branch target 

addresses to reduce pipeline bubbles. 

I next discuss how and why instruction memories have been used, why I limit my study to single

chip RISCs, and explain my methods. Sections 4.2 and 4.3 then examine instruction buffers and target 

instruction buffers in detail. Sections 4.4 and 4.5 compare instruction buffers against target instruction 

buffers and draw conclusions. 

4.1.1. Instruction Memory Background 

High-speed instruction memories reduce instruction fetch delays by caching instructions, prefetch

ing instructions, or both. Caching instruction memories reduce effective instruction access time 

(instruction fetch latency) directly by rapidly servicing fetches for recently-used instructions, and 

indirectly by reducing inter-chip traffic. Such traffic can cause delays by making resources unavailable 

for other uses, such as data references. An overview of caching can be found in [Smit82]. Prefetching 

instruction memories reduce effective access time by hiding part of the latency of fetching instructions. 



120 

Prefetching is effective if most prefetches bring in instructions that are executed, and if the traffic gen
erated by the useless prefetches does not cause too many indirect delays. A discussion of prefetching 
can be found in [Smit78] and [Smit82]. 

Instruction buffers use caching and prefetching to reduce effective access time. I define an 
instruction buffer to be high~speed memory devoted to caching all recently executed instructions, and 
use the term interchangeably with instruction cache. Computers that use instruction buffers include: 
IBM System 370/ Model 158 with an IB of 32 direct-mapped, 8-byte blocks [Rau77]; the CDC 7600 
with an IB (called an instruction slave stack) that tried to hold the last 10 and next 2 dynamic instruc
tion words [Holg80]; and the Cray-1 with an IB of four 128-byte blocks [Lee84, Siew82]. Current com
mercial microprocessors with IBs include the Motorola MC68020 [Moto84] and the National NS32532 
[Alpe87]. 

Three key papers on IBs were written by Goodman [Good83], J. Smith and Goodman [Smit83], 
and Agarwal et al. [Agar87]. Goodman emphasizes that in addition to reducing effective access time, 
instruction buffers can be effective at reducing instruction traffic, and re-introduces loading partial 
blocks on misses as a method for further reducing instruction traffic. I expect loading partial blocks to 
be important for some single-chip instruction memories, and I have incorporated loading partial blocks 
in the SPUR IB design. Loading partial blocks is less important, however, for cache designs where the 
latency for loading the first word of a miss is much larger than the delay for subsequent words (e.g., 
Fairchild CLIPPER) [Smit87]. 

l Smith and Goodman [Smit83] use a loop model and trace-driven simulation to show that fully
associative placement with LRU replacement can lead to worse than expected performance in small 
instruction caches where locality is manifested predominantly as looping behavioro Consistent with 
their results, I find that direct-mapped instruction buffers offer comparable performance to more expen
sive set-associative buffers at many modest buffer sizes. 

Agarwal et al. [Agar87], were the first to publish a paper examining architectural and implementa
tion tradeoffs regarding instruction buffers on a single-chip RISC. I agree with their assertion that on
chip cache implementation concerns that affect cache hit and miss times are more important than many 
architectural concerns that affect only cache miss ratio. They found that cache hit time, cache size, and 
cache aspect ratio (the ratio of length to width of the cache implementation) are the most important 
implementation concerns. I found the same three concerns most important in the SPUR IB design. 
Agarwal et al. contrast three instruction buffer organizations: a set-associative cache with small blocks 
(S 16 bytes), a fully-associative cache with larger blocks (~ 32 bytes), and a large-block cache with 
several sets. The final organization containing 2K bytes with four sets and 64-byte blocks was selected 
for MIPS-X, principally because the other two organizations could not easily be implemented to meet 
the above concerns. In particular, the other two designs have too great a hit time. The small block 
cache is too slow, because the numerous address tags cannot be placed in the datapath; the fully
associative cache is too slow, because the instruction array cannot be accessed until after the block 
select signal is determined by the tag array read. 

Other instruction memory organizations place a greater emphasis on prefetching instructions and 
less emphasis on caching, which makes particularly good sense when off-chip bandwidth is plentiful. 
Tile simplest structure that supports prefetching is a prefetch buffer (PB). A PB is a FIFO that holds 
bytes sequentially forward from the current program counter. If all instructions are aligned and four 
bytes long, as in RISCs, a PB can be implemented as a FIFO of instruction words. Many computers 
have had PBs, including the IBM System/370 Model 158 [Rau77], DEC VAX-11n5o [Digi80] and 
DEC VAX-ttn80 [Digi80]. 

The use of a PB always increases instruction traffic, as instructions after the end of instruction 
runs are prefetched, but never executed. An instruction run is a dynamic series of sequential instruc
tions beginning with the instruction at the target of a PC-changing instruction and ending with a PC
changing instruction [Groh82]. Unconditional jumps, taken conditional branches, calls, and returns are 
examples of PC-changing instructions. I will loosely refer to all PC-changing instructions as branches. 
Instruction runs should not be confused with basic blocks. Basic blocks are found in static code, not in 



121 

dynamic instructions, and are tenninated by an instruction that may change the PC 

CPU perfonnance with a PB alone would be adequate if branches were rare. Since branches are 

not rare, however, additional steps are usually taken to reduce the effective access time of instructions at 

and after branch targets. Target prefetch buffers (TPBs) [Groh82] and target instruction buffers (TIBs) 

[Rau77] are instruction memories that hold instructions prefetched and cached, respectively, at branch 

targets. A target prefetch buffer holds several sequential instructions prefetched at the next predicted 

branch target Machines that use target prefetch buffers include the IBM System/370 Models 195 and 

168 [Holg80, Rau77]. One reason target prefetch buffers are not appropriate for single-chip RISCs is 

that they increase instruction traffic beyond that required by a PB alone, since prefetches must now be 

issued sequentially and at branch targets. In particular after a conditional branch has been detected, two 

instructions must be fetched per cycle for several cycles. Since it is unlikely this peak demand can be 

supported in a single-chip RISC, the use of a target prefetch buffer will not significantly reduce branch 

delay. For this reason I do not consider target prefetch buffers further. 

Using a target instruction buffer (fiB) with a PB reduces effective instruction access time and 

instruction traffic relative to using a PB alone. A TIB contains a number of instruction-run entries, 

similar to IB blocks. Each entry, also a called a block, contains a block valid bit, an address tag and 

several instruction words, possibly with word-valid bits. For valid blocks, the address tag contains the 

address of the first instruction in an instruction run This address tag contains more bits than that of an 

IB address tag, because instruction runs do not necessarily start on aligned block boundaries. If valid, 

the first instruction word contains the branch target instruction. Subsequent valid instruction words 

contain subsequent sequential instructions. The only single-chip RISC microprocessor that currently 

uses a TIB is the AMD Am29000t [Adva87]. 

A TIB and PB work together as follows: whenever the execution unit generates a non-sequential 

reference, processing on the last instruction run ceases and a TIB access is made. that either hits or 

misses. If it hits, the TIB provides the instruction to the execution unit and tells the PB to begin pre

fetching after the end of the TIB block. The TIB responds to subsequent sequential fetches until the its 

block is exhausted; further sequential fetches are handled by the PB. On TIB miss, an off-chip fetch is 

made to load the instruction into the TIB and pass it to the execution unit. In parallel, the PB is reset to 

prefetch at the next sequential address. The PB handles all subsequent sequential fetches; these instruc

tion are also loaded into the TIB until the TIB block is exhausted. 

Prefetching and caching, in general, are discussed by Smith in [Smit78] and [Smit82]. Among 

many other cache aspects, the latter paper summarizes and extends the work in [Smit78] on prefetching 

in unified CPU caches. Smith finds that prefetching is attractive for caches with block sizes of 256-

bytes and smaller if prefetch misses cost less than demand misses, prefetch operations do not impede 

nonnal cache operations, and prefetch logic does not significantly impact machine cost or cycle time. 

Prefetching works less well with larger blocks, because the data prefetched is less likely to be used as it 

further from the current reference, and a larger block must replace more currently-resident, potentially

useful data (memory pollution). Smith also finds that the only reasonable datum to prefetch in CPU 

caches is the block spatially after the current reference, and that, unless implementation concerns dictate 

otherwise, it is better to prefetch after every reference than to only prefetch after each miss. The 

research here differs from Smith's, because I consider prefetching of blocks containing only one or two 

instructions into instruction-only caches, rather than prefetching 32 bytes or more into unified caches. 

Prefetching and caching of instructions, in particular, are discussed by Rau and Rossman [Rau77], 

Grohoski and Patel [Groh82] and Low and Rugg [Low87]. Rau and Rossman model the perfonnance 

of an instruction memory hierarchy consisting of a PB in front of an IB or TIB in front of a memory. 

Their model recursively defines the delay for an instruction word as some maximum delay less the parts 

of that delay that overlap with the delays for previous instruction words. They use several instruction 

traces to drive a simulation of their model with the following additional assumptions: (1) instruction 

and data references never interfere, (2) instructions can be decoded in one cycle, and (3) the access 

t AMD calls their TIB a branch target cache. 



122 

times to the PB, mmB, and memory are 1, 2, and 10 cycles, respectively. They find TIBs are pre

ferred to IBs if buffer size is small, such as 64 bytes, and if enough prefetch bandwidth is available, 

such as 0.8 instructions per cycle (i.e., four simultaneous prefetches of two instructions each to a 10-

cycle memory). Otherwise, results show an IB is preferred to a TIB. Our results regarding when a TIB 

is preferred to an IB qualitatively agree with Rau and Rossmann's. 

Grohoski and Patel [Groh82] model a PB and target prefetch buffer in front of a memory with and 

without interference from data references. Their model is based on runs of instructions that begin either 

at an unconditional or a conditional branch target Their model's predictions and trace-driven simula

tion results closely agree for the two traces presented. Assuming 5-cycle memory, 2-cycle instruction 

decode and 5-cycle instruction execution, they found that increasing PB size from 0 to 1 word doubles 

throughput, increasing from it 1 to 2 words adds 6 percent more, and all further increases add less than 3 

percent to throughput. Target prefetch buffer results for these assumptions show that the existence or 

size of the target prefetch buffer affects instruction traffic, but not throughput 

Low and Rugg [Low87], in a recent class project at U.C Berkeley, examine TIBs and compare 

them to IBs, using trace-driven simulation with three SPUR traces and three 68000 traces. They assume 

perfect single-cycle sequential prefetching and examine buffer sizes from 128 to 2K bytes. They find 

that (1) their data predict a miss ratio for the AMD ~9000's TIB that is consistent with AMD's pub

lished data [Adva87], (2) a two-way set-associative TIB is "5 to 10 percent" better than a direct

mapped one, (3) TIB index choice is unimportant (see Section 4.2.2.1), and (4) 8-byte blocks should be 

preferred to 16-byte blocks. My results agree, except for (2). I find that the effective access times of 

two-way set-associative TIBs only 1 to 3 percent better than those of direct-mapped TIBs. I also find 

that many conclusions change, when IB versus TIB analysis is extended to systems without perfect 

single-cycle sequential prefetching. 

In this chapter I examine instruction memories for reducing effective instruction access time, i.e., 

the delay from dereferencing instruction addresses. Instructions memories can also be used to reduce 

pipeline bubbles, resulting from not knowing the next instruction address [Holg80]. Examples of such 

memories are a branch target buffer (BTB) [Lee84, McFa86] and a decoded instruction cache 

[Ditz87, Mcl...e82]. I do not examine such memories here, because I consider reducing pipeline bubbles 

to be orthogonal to reducing instruction fetch latency. Nevertheless, Figure 4-1 contrasts a BTB with a 

TIB and an IB, so that the three are not confused. 

4.1.2. Why Limit Study to Single-Chip RISCs? 

A study of instruction memory on a single-chip RISC microprocessor is merited, because RISC 

microprocessors are becoming more common [Adva87, Ditz87, Fuji87, Mous86], and because instruc

tion memory design is more critical for single-chip implementations of RISC architectures than it is for 

traditional architectures in other technologies. I choose to restrict the scope to this study to single-chip 

RISCs so that I can include selected implementation assumptions, which if ignored could lead to 

misleading results. 

For this discussion, I characterize a RISC architecture as one designed to issue an instruction 

every cycle [Henn84, Patt82]. A RISC architecture places more stringent demands on instruction 

memory than does a conventional CPU, since there are fewer cycles between instruction fetches, artd its 

performance decays more rapidly if effective instruction access time increases. SPUR, for example, 

uses one to two cycles per instruction, as compared to the VAX-11n80, which uses 10.6 [Emer84). 

SPUR, therefore, must fetch 0.5 to 1.0 instructions per cycle, whereas the V AX-Itnso must fetch only 

0.09 instructions per cycle. If effective instruction access time increases by two tenths of a cycle, SPUR 

slows down 10 to 20 percent, but the V AX-11n80 slows only 2 percent. 

Before the mid-1980s, the implementation of instruction memory on a single (VLSI) chip was 

made difficult primarily by limited chip area, and, to a lesser extent, by limited off-chip bandwidth. No 

microprocessors of that period devoted any significant area to instruction memory. Improved levels of 

integration now make including instruction memories possible and are increasing instruction memory 

sizes. For example, 256-byte instruction caches are used in the Motorola MC68020 [Moto84], first 



A branch target buffer (BTB), target instruction buffer (fiB), and instruction buffer (IB) are easily confused. I can 

reduce the confusion by discussing the following branch and related instructions: 

I define: 

100 branch TRUE, Oxl80 t absolute branch 

104 add r1, r2, r3 t add 

180 
184 

sub 
sub 

r1, r2, r3 
r4, r5, r6 

t subtract 
t a second subtract 

(a) branch instruction address- ''0x100'' 
(b) branch instruction- ''branch TRUE, Ox180'' 

(c) branch target address- ''Ox180'' 
(d) branch target instruction- ''sub r1, r2, r3'' 

A BTB's purpose is to reduce pipeline bubbles, resulting from waiting for the next instruction address (program 

counter) to be determined. A BTB maps a branch instruction address (a) to a branch target address (c). E.g.: 

Ox100 -> Ox180 

A TIB's purpose is to reduce effective instruction access time (instruction fetch latency) by caching the beginning 

of instruction runs. A TIB maps a branch target address (c) directly to a branch target instruction (d) and indirectly 

to subsequent instructions. E.g.: 

Ox180 -> ''sub r1, r2, r3, '' ''sub r4, r5, r6,'' ... 

An ffi's purpose is to reduce effective instruction access time by caching aligned blocks of recently-executed in

structions. An m maps an instruction address to an instruction, regardless of branch instructions. E.g.: 

Ox100 -> ''branch TRUE, Ox180'' 
Ox104 -> ''add r1, r2, r3'' 
Ox180 -> ''sub r1, r2, r3'' 
Ox184 ••> ''sub r4, r5, r6'' 

Since a TIB and an ffi serve a different function than a BTB, either a TIB or an m can be used after a BTB. If a 

TIB is used after a BTB, it can be cost-effective to combine the two into one memory that maps a branch instruc

tion address (a) to branch target instructions (d). Such a memory has also been called a BTB. 

Figure 4-1. BTB vs. TIB and lB. 

123 

shipped in 1985, and the recently-announced Motorola MC68030 [Moto86]; 512 bytes are used in the 

recently-announced AMD Arn29000 [Adva87] and National NS32532 [Alpe87]; and 2K bytes are 

present on two research microprocessors [Chow87, Joup86]. 

VLSI chips also have more limited external bandwidth than do board-level CPUs, principally 

because bus width is more constrained. Instruction memories for single-chip CPUs must therefore pay 

more attention to minimizing instruction traffic than did their board-level predecessors. Future techno

logical trends promise to make off-chip bandwidth, measured in instructions per cycle, more limited 

despite integrated circuit packaging that pennits more signal pins. Paradoxically, off-chip bandwidth 

diminishes as the chips get faster, because intra-chip cycle times get shorter more rapidly than inter

chip communication times, making single-cycle external accesses more difficult. Consequently, the 

perfonnance of future single-chip RISC instruction memories will be limited more by off-chip 

bandwidth than by chip area. 



124 

4.1.3. Methods 

I evaluate alternative instruction memories with numerous trace-driven simulations that directly 

compute miss ratios and effective access times. I use trace-driven simulation for many of the same rea

sons that justify it in Chapter 3 (see also [Smit82] and [Smit85]). In addition, the instruction memory 

descriptions used here include many details of the SPUR pipeline and external cache interface. I find 

that it is easier to write a simulation description of these details than to develop an analytic model. 

Furthermore, I do not have confidence in results based on a model that ignores these details, because I 

have found implementation details often affect architectural trade-offs in single-chip RISC micropro

cessors. 

Because caches here are small (S 8K bytes) and therefore have large miss ratios, cold-start effects 

and system and multiprogramming behavior are less important here than they are in large cache simula

tions. For this reason I ignore cold-start and system effects, and I model multiprogramming simply by 

flushing each cache every 30,000 references (23,800 instructions). This interval is larger than what is 

sometimes used to model multiprogramming in timesharing systems (e.g., 10,000 [Smit82]), but is 

smaller than what some researchers foresee for high-performance personal workstations with large main 

memories (e.g., SPUR) [Patt87]. In any case, results for these cache sizes are not sensitive to exact 

values of this parameter. 

Like the analysis of large caches, instruction memory analysis uses miss ratio and effective access 

time. Large cache analysis shows that design decisions should not be made using miss ratio alone; 

instead the following model of effective access time, t•ff (C), was employed: 

teff(C) = tcQC~w(C)+m(C)*t--ry(C) 

where C stands for all aspects of cache C, m (C) is the miss ratio of cache C, tcGCiw (C) is its hit time, and 

t,.mory(C) is its miss penalty. 

Here I use a more complex effective access time model to take into account delays from data 

references and prefetches that interfere with instruction fetch misses. I assume that data references have 

a higher priority than instruction fetches, which have a higher priority than prefetches. A data reference 

initiated at the same time as an instruction fetch will cause the instruction fetch to be delayed, while a 

prefetch will not delay an instruction fetch. If fetches are being made to a multiple-cycle external 

cache, then an instruction fetch can also be delayed by data references and prefetches issued in previous 

cycles. Tables 4-1 and 4-2 show possible interference between two references. 

Interference with One-Cy_cle External _(_Cache} Memory_ 

Initial Subsequent Reference 

Reference Data Fetch Prefetch 

Data no yes yes 
Fetch no no yes 

Pre fetch no no no 

Table 4-1. One-Cycle External Memory. 

This table shows the possible interference between a data reference, an instruction fetch. or an instruction prefetch 

with subsequent references using a one-cycle external cache. Data references can delay fetches or suppress pre

fetches, fetches can suppress prefetches, and no other interference is possible. 

In my trace-driven simulator, I model effective access time with any m by: 



125 

Interference with Multiple-Cycle External (Cache) Memory 

Initial Subsequent Reference 

Reference Data Fetch Prefet.ch 

Data yes* yes* yes* 
Fetch yes no yes 

Prefet.ch yes* yes yes 

Table 4-2. Multiple-Cycle External Memory. 

This table shows the possible interference between a data reference, an instruction fetch, or an instruction prefetch 

with subsequent references using a multiple-cycle external cache. The only interference not possible, between two 

instruction fetch misses, cannot happen since only one instruction fetch miss can be outstanding at a time. 

The interference in combinations indicated with "yes*" are modeled as "no" in Section 4.4.2, simulating a 

multiple-cycle external cache that is pipelined to accept a new reference every cycle. 

where: 

m(IB) 

t,g (IB) = IHrr + IMJSS *m (IB) 

+ tsuxKED *msuxKED + lwAFTJNG *mwAFTJNG + twASTED *mwASTED 

is the time for an IB hit, 

is the time for an IB miss, 

Eq. 4-1. 

is the time lost when an IB miss can't reference the external cache due to a data refer

ence in progress, 

is the time spent waiting for a prefetch in progress, 

is the time wasted waiting for a prefetch in progress to complete before starting a 

demand fetch, 

is the IB miss ratio, and 

m; 's are the fractions of instruction references when a type-i event occurs. 

Effective access time for the SPUR IB, which uses a single-cycle external cache and has a two

cycle miss penalty, reduces to: 

teff (SPUR-/B) = 1 + 2*m (IB) + 1 *msuxKED. Eq. 4-2. 

The effective access time model for a TIB is slightly more complex, principally because sequen

tial and non-sequential instructions are handled differently: 

where: 

f 11011-.rcq 

lTJB-Hn' 

lTJB-MISS 

lpB-Ifn' 

Ips-MISS 

tsuxKED 

I elf (TIB) = I ltDII-.rcq * (ITJB-Hn' + t11B-MJSS *m (TIB )) 
+ (1- I 11011-.uq )* (tps-lfrr + Ips-MISS *m (PB )) 

+ tsuxKED *msuxKED + twAFTING *mwAFTING + I wASTED *mwASTED 

is the dynamic fraction of non-sequential instructions, 

is the time for a TIB hit, 

is the time for a TIB miss, 

is the time for a PB hit, 

is the time for a PB miss, 

Eq. 4-3. 

is the time lost when a TIB miss can't reference the external cache due to a pending data 

reference, 



126 

is the time spent waiting for a pending prefetch, IWA/11NG 

twASTED is the time wasted waiting for a pending prefetch to complete before starting a demand 

fetch, 

m(TIB) 

m(PB) 

is the TIB miss ratio, 

is the PB miss ratio, and 

m; 's are the fractions of instruction references when a type-i event occurs" 

As with the SPUR IB, a model of effective access time for a SPUR TIB/PB is simpler, because 

using a single-cycle external cache reduces interference possibilities. SPUR TIB/PB 's effective access 

time is: 

teff (SPUR -TIB) = 1 + 2*/ 11011-.eq *m (TIB) 
+ 2* (1-/ 11011-.eq)*m (PB) 

+ 1 *msLOCKED + l*mwMI1NG 

Eq. 4-4. 

where tHrr 's are 1 cycle and tM1ss 's cost 2 cycles. m.....u;.., is non-zero, because the SPUR TIB/PB uses 

bypassing to reduce its miss ratio (to be described). 

Considerable trace-driven simulation was done during the design of the SPUR IB using traces of 

C programs from RISC II and Franz Lisp programs from VAX-11. The VAX-11 traces provided only 

coarse IB performance estimates, since the V AX-11 and SPUR instruction sets differ considerably. 

SPUR traces and, in particular, SPUR Lisp traces were not used because the software was not ready 

until after the IB had been partially implemented. Retrospective analysis indicates that RISC C pro

grams produced more optimistic IB performance results than SPUR Lisp programs have, since the 

former have fewer loads and stores (10-15 vs" 20-30 percent of instructions) and generally better local

ity in small instruction caches. 

For this reason, all results in this chapter use traces of SPUR Lisp programs. In particular I use 

the three large programs that currently run on SPUR's architectural simulator [Tayl87]. They are: 

(1) Slc, the SPUR LISP compiler [Zorn87], based on the SPICE LISP compiler [Whol85], compiling 

part of itself; 

(2) Rsim, a circuit simulator simulating a counter [Term83]; 

(3) Weaver, a production system written on top of OPS5 for VLSI chip routing [Joob85]. 

For each of these programs, I plotted the dynamic miss ratio versus time to select two 500K-instruction 

trace samples that have different, but somewhat pessimistic behavior. Figure 4-2 shows the miss ratios 

of the six samples and their arithmetic average. Since miss ratio variation across the trace samples is 

small, subsequent results are based on miss ratios and the effective access times for a composite trace, 

formed by concatenating the six trace samples. Since the length of samples is the same, the miss ratios 

and effective access times for the composite trace are equal to the arithmetic averages of miss ratios and 

the effective access times from the individual samples. I do not use the well-known Gabriel bench

marks [Gabr85] for this analysis, because all their code sizes are smaller than some instruction buffer 

sizes I examine. 

Finally a word regarding how effective access time affects cycles per instruction is warranted. 

While absolute changes in t•ff (SPUR -IB) translate directly into absolute changes in cycles per instruc

tion, relative changes in effective access time translate into smaller relative changes in cycles per 

instruction, because cycles per instruction is larger due to several factors unrelated to instruction 

memory. These additional factors dilute the relative impact of changes in effective access time on 

cycles per instruction< Reducing t6ff(SPUR-IB) from 1.3 to 1.2 (-7"7 percent), in SPUR for example, 

only reduces cycles per instruction by 5.9 percent, since Gibson reports that external cache misses, 

two-cycle stores, and several minor factors cost OA cycles per instruction regardless of instruction 

memory performance [Gibs87]. Nevertheless, relative changes in t6ff(SPUR-IB) can be use~ as a 

slightly exaggerated estimate of relative changes in cycles per instruction. 



D 
e 
m 
a 
n 
d 

M 
i 
s 
s 

R 
a 
t 
i 
0 

0.30 -------·lf'''''''''"'"'l'''''''''"''''"'''''''' 

\ . : ., . \;,: ,_.. 
~ , .. 
-~\·······-·········-·-··: 

·,~: .,, : 
~ .. : 

~ ~ : 

-..~' - i . ~ ·~ : 
··~ : \· i ''x : 
'~'- i 

: \ ' '· : 0 0.10 ···-······-····-····-···:····· .. ,. "'-··xslc_pessun 
i 'a.. \ '~llc med 

0.00 
100 

i ·-.'11 i -
i \ l\vo 
: \ tsun_notrans 
! -. fSlJil_med • . 
: \ _weaver_pessun 
~ ·._reaver_med 

1000 
Buffer Size (bytes) 

10000 

Figure 4-2. Trace Samples vs. Arithmetic Average. 

The figure shows demand miss ratio versus IB size for six trace samples and their arithmetic average ("A VG "). 

The arithmetic average is the individual miss ratios is equal to the miss ratio of a system where each sample ran 

equally frequently. 

4.2. Instruction Buffers 

127 

In this section I first describe the SPUR IB to document our design and a establish it as a design 

operating point. I then study alternate IB designs about this operating point. I find the effective access 

time of the 512-byte SPUR I~ to be 1.51 cycles per instruction (with 1.0 being ideal) and the most 

cost-effective improvement to be connecting the IB to the external cache via a 64-bit data bus rather 

than the 32-bit bus currently used. This change reduces effective access time by 12 percent at a cost of 

24 additional CPU pins t and the design time for a separate instruction array. Alternatively, effective 

access time can be reduced by 7.7 percent by doubling the IB size to 1K-bytes. Our results indicate that 

incorporating both changes and increasing the block size to 64 bytes produces a cost-effective 

"improved SPUR IB" with an effective access time of 1.21 cycles per instruction (20 percent better 

than the current SPUR IB). 

4.2.1. SPUR IB Architecture and Implementation 

The SPUR IB architecture, which evolved from February 1984 to March 1985, is shown in Figure 

4-3 [Dunc86, Katz85]. The unconventional feature of the SPUR IB is a valid bit associated with each 

instruction word in the IB so that any subset of these words may be valid. The SPUR IB uses this flexi

bility to reduce demand miss time by loading only the fetched instruction rather than the entire block, 

and to permit instruction prefetching to load the rest of a block in parallel with subsequent instruction 

fetches. Improving VLSI cache performance by loading partial blocks on misses is described in 

[Good83] and [Hill84]. Prefetching to fill up other parts of a block is introduced in [Hi1184]. 

The SPUR IB operates in three modes: disabled, enabled-without-prefetching and enabled-with

prefetching. The mode used is determined by the state of two bits in the KPSW (Kernel Processor 

Status Word). In disabled mode, the IB accepts an address from the execution unit, passes it to the 

external cache, receives the instruction from the external cache, and passes it to the execution unit 

t While the IB uses only 32 data bus pins, SPUR's data bus is 40 bits wide to support tagged Lisp data. 



8 instruction words per block 

H tagO lwvl ;nstruction-0 IH :~~. Il-l instruction-7 

H tag1 lwvl instruction-S Il-l :~~. IH instruction-15 

16 blocks 
0 0 0 0 
0 0 0 0 
0 0 0 0 

H tag 15 1-1 instruction-120 llwvl :~~ 0 11-1 instruction-127 

number of bits: 1 23 32 1 32 

Figure 4-3. SPUR Instruction Buffer Architecture. 

The SPUR instruction buffer (IB) is a 512-byte (128-instruction) instruction cache, divided into 16 direct-mapped 

blocks. Each block contains a block-valid bit (labeled bv ), a 23-bit address tag, eight word-valid bits (labeled wv) 

and eight 32-bit instructions words. The block-valid bit is set to indicate a valid address tag. The address tag holds 

the most significant 23 bits of a 32-bit address. Each word-valid bit indicates whether the corresponding instruc

tion word is valid. Associating valid-bits with each instruction word allows any sutrset of the instruction words in 

a block to be valid. 

128 

without using the IB tag or instruction memory. Disabled mode is used for initial chip testing, and for 
allowing chips with stuck-at -type errors in the IB tag or instruction memory to function correctly, albeit 
more slowly. 

In enabled-without-prefetching mode, the IB may cache instructions, but is not allowed to initiate 
any prefetches. An instruction access to the IB may cause a hit (tag match, block-valid bit and word
valid bit set), block-miss (tag mis-match or block-valid bit not set), or word-miss (tag match, block
valid bit set, but word-valid bit not set). On a hit, the instruction is immediately returned to the execu
tion unit, and the state of the IB is unaffected. On a block-miss, the instruction is fetched from the 
external cache and loaded into the corresponding instruction word, the tag is set to the instruction's 
address, the block-valid bit and corresponding word-valid bit are set, and all other word-valid bits are 
reset. On a word-miss, the instruction is fetched from the external cache, loaded into the corresponding 
instruction word and the corresponding word-valid bit is set. 

The normal operating mode of the IB in a working system is enabled-with-prefetching. In this 
mode the IB caches instructions in the manner just described, but adds to this a prefetch request to 
SPUR's single-cycle external cache on every cycle where that cache would otherwise be idle. These 
prefetches are "free" is the sense that they never interfere with other potentially more-useful external 
cache accesses. After an IB miss, prefetches are made to subsequent words within the block until 
another demand miss occurs. Instead of tenninating prefetching at the end of the block or when all 
instructions in the block are loaded (by wrapping around), the SPUR IB never terminates prefetching; 
instead it prefetches instructions in the block of the last demand miss over and over again, until another 
demand miss occurs, signaling a new useful prefetch location. The external cache may abort prefetches 
without providing data by asserting the ''data-not-available'' signal. The aborting of prefetches is use
ful for guaranteeing that a prefetch that misses in the external cache cannot cause protection exceptions, 
page faults or system bus traffic. 

The IB architecture also includes two systems operations, IB-reset and IB-flush, for abandoning 
fetches or prefetches and for invalidating the contents of the IB, respectively. I omit discussing these 
details, as they are not gennane to the SPUR IB 's performance. 

The appendix at the end of this chapter, Section 4.6, presents details of the SPUR IB's irnplemen~ 
tation, including diagrams of its control finite state machines (FSMs) and its phase-by-phase behavior 
on hits and misses. Additional infonnation on this subject and the circuits used is provided in 
[Dunc86]. The principal assumptions from the IBs implementation, rather than architecture, used in the 
IB analysis of Section 4.2.2 are that (1) instruction misses cost two additional cycles -~ a one cycle 



129 

external cache access plus one cycle on-chip, (2) instruction prefetches take one cycle for an external 

cache access, and (3) data references can block instruction fetch misses or suppress prefetches for one 

cycle. 

The implementation concerns that drove the SPUR IB design were that it have a one-cycle (or 

less) access time, and that it be as easy as possible to build. The one-cycle access time was required to 

enable the effective access of the IB to be less than that achieved by fetching instructions directly from 

the external cache. We wanted the SPUR IB, and all other SPUR system components, to be easy to 

build to facilitate the design and implementation of a complete system in four years. The project's plan 

was to build a system with straightforward components, and then to retrospectively study less conserva

tive component designs by varying parameters about operating points determined by the actual system 

components. 

The requirement for easy-to-build components affected the IB design in two general ways. First, 

whenever possible, we tried to re-use cells that had already been designed and tested. Second, we tried 

to keep simple the requirements for the IB control logic. 

The most important instance of re-using cells in the IB is implementing the IB instruction array 

with the memory cells of the register file. The advantages of doing this were that another memory cell 

did not have to be designed to meet the speed and clocking requirements of SPUR, the buffer and 

drivers of the register file could be used with little or no adaptation, and execution unit datapath logic, 

such as the adder cells, could be re-used in the IB datapath, since the pitch of both datapaths would be 

the same. Using the register file memory cells in the instruction array, however, reduces the potential 

capacity of the IB and restricts its aspect ratio. IB capacity is reduced because the register file cell: (1) 

is optimized for the register file, which is larger than the IB 's instruction array (138 by 40 vs. 128 by 

32), (2) supports dual-port read, which is not used by the IB, and (3) is fully-static. Lee estimates that 

optimizing the cell for the instruction array and removing one of the two metal word lines in each cell 

would reduce the IB memory array size by 20% [Lee87]. A much larger reduction is possible if a 3-

transistor dynamic cell is used in the IB arrayt. Lee estimates that the 3-T dynamic cell would be less 

than one-quarter the size of the 6-T static cell, principally because no well boundary need be present in 

the dynamic cell without pull-up transistors. This size red~ction would permit IB capacity increase by a 

factor of two to four. The aspect ratio of the register file cells constrains the IB array to be 32 bits wide. 

This restriction makes it difficult to either build a set-associative IB or to load more than 32 bits on a 

miss or prefetch. 

The most important instance of simplifying the IB logic was decision to partition it into two FSMs 

that control fetches and prefetches, respectively, and to allow the two FSMs to interact only on demand 

misses (see Section 4.6). This decoupling simplified control logic, but decreases IB performance, since 

the fetch FSM is unaware of what is being prefetched. Consequently, time can be wasted when the 

fetch FSM issues an external cache fetch for an instruction reference that had missed in the IB but has 

been subsequently loaded by a prefetch. The principal drawback of decoupled control logic can be 

reduced using bypass logic, but only at the cost of the complexity arising from more interaction 

between the two FSMs. 

4.2.2. m Evaluation 

This section examines the performance of IBs like the SPUR lB. I begin by varying three archi

tectural parameters: buffer size, associativity, and block size; then I examine the effects of changing 

prefetch algorithms and the bandwidth available for misses and prefetching; next I look at schemes for 

t It is more reasonable to use dynamic memory in them than in the register file for two reasons. First, them 

can be disabled during initial chip testing when one may want to nm parts slowly. The chip cannot be tested 

at a slow rate if register file cells lose their values. Second. dynamic cells in them array may be invalidated. 

rather than refreshed. since copies of all instructions still reside in main memory. Thus, the simplest m "re

fresh" circuitty is a counter that flushes them every 2 milliseconds. Normal memory-refresh circuits, on the 

other hand. are necessary for dynamic register file cells. 



130 

reducing the IB miss penalty; and finally I propose an improved IB. The miss ratios and effective 

access times discussed in the section are presented in Tables 4-3 and 4-4. I calculate effective access 

times from miss ratios using the equations given in Section 4.13, assuming a constant cycle time of 1.0. 

In general, effective access times are slightly greater than one plus twice the miss ratio. 

4.2.2.1. IB Size, Associativity, and Block Size 

The architectural feature that has the greatest impact on IB miss ratio is IB size. Figure 4-4 shows 

miss ratios and effective access times for IBs of size 256 to 8K bytes. Results show a linear reduction 

of the miss ratio of 0.043 for each doubling of direct-mapped IB size within this range. This trend does 

not continue for larger sizes; if it did, the miss ratio would be zero for a 32K-byte lB. Nevertheless, it 

underscores that for small IB sizes, increasing IB size has a large effect on IB miss ratio. Miss ratios 

are reasonable, since they are consistent with my extension of Smith's design target miss ratios for 

direct-mapped instructions caches, given in Chapter 3. 

The degree to which lower miss ratios for larger IBs translate into smaller effective access times, 

however, is related to how rapidly larger IB implementations can be accessed. The right plot in Figure 

4-4 shows effective access times for IBs of various sizes, assuming a constant CPU cycle time. The 

effective access times for 512 and 1K-byte IBs, for example, are 1.51 and 1.39 cycles. Thus, doubling 

IB size decreases effective access time by 7.7 percent if cycle time is unaffected. Eventually, however, 

the IB will be on the critical path that detennines the cycle time, and the IB size cannot be increased 

without increasing the cycle time. Duncombe [Dunc86] shows, for example, that a naive implementa

tion of a lK-byte SPUR IB, using the unmodified register file cell, could have a 14 percent slower criti

cal signal delay. This could lead to, at most, a 7 percent increase in SPUR cycle time. If this happened, 

the effective access time improvement from doubling IB size would be only 1.3 percent. 

Table 4-4 also shows that changing IB associativity is of minor importance t. While doubling the 

SPUR IB's associativity decreases its miss ratio from 0.2275 to 0.2151, this change yields only a 1.6 

percent (relative) reduction in effective access time. The magnitude of this change is small enough to 

be easily overwhelmed by access time differences between each of the implementations with different 

associativities. Duncombe [Dunc86] shows that several implementation changes, for example, in the 

memory array aspect ratio, can change critical single delays by over five percent At 2K and 4K bytes, 

doubling the associativity to two-way improves effective access time by a non-negligible 3.1 and 4.1 

percent Nevenheless, a small access time increase can wipe out this gain. 

Results also show 16-byte (four instruction) blocks should be avoided, because they yield effec

tive access times 2 to 10 percent greater than the other block sizes examined. Block sizes of 32, 64 and 

128 bytes yield comparable perfonnance with a singleword (32-bit) bus, and effective access times 

decrease slightly for increasing block size when a doubleword (64-bit) bus is used (with doubleword 

sub-blocks). Large blocks work well, because the latency for loading a block on a miss does not 

increase for larger blocks as additional words are loaded in parallel with subsequent instruction fetches. 

For a similar reason, Smith finds 64-byte blocks optimal for 128 to 2K-byte instruction caches when the 

cost of loading subsequent words is almost free (1/40-th the cost of loading the first word) [Smit87]. 

Since 32, 64 and 128-byte yield similar performance here, IB block size should be selected by examin

ing implementation considerations. One reason to prefer larger blocks is that they require fewer address 

tags, which saves chip area and can reduce IB access timeo 

t Results use random replacement since its performance is comparable to LRU replacement for small inslrUC

tion caches [Smit83] and it is slightly easier to implement than LRU replacement since nothing must be writ

ten on an m hit. LRU replacement, on the other hand, requires an LRU bit to be written in a two-way set

associative m, and even more complexity for associativities greater than two. The miss ratio for a 512-byte 

two-way set-associative m with LRU replacement is 0.2204 (not shown), slightly larger than the miss ratio 

with random replacemenL This corroborates J. Smith and Goodman's findings that random replacement is 

superior to LRU replacement in small instruction caches where loop behavior dominates. 



131 

Distinguishing Size (bytes) 

Attribute(!) 256 512 1024 2048 4096 8192 

SPUR IB 0.2731 0.2276 0.1748 0.1321 0.1008 0.0581 

Associativity 
1 0.2731 0.2276 0.1748 0.1321 0.1008 0.0581 

2 0.2661 0.2151 0.1607 0.1123 0.0787 0.0511 

4 0.2674 0.2091 0.1446 0.1074 0.0731 0.0464 

8 0.2675 0.2096 0.1422 0.1061 0.0705 0.0445 

Block Size (bytes) 
16 0.3075 0.2552 0.1994 0.1525 0.1160 0.0675 

32 0.2731 0.2276 0.1748 0.1321 0.1008 0.0581 

64 0.2617 0.2235 0.1705 0.1293 0.1001 0.0573 

128 0.2560 0.2264 0.1786 0.1334 0.1034 0.0608 

Associativity w/ Doubleword Bus 
1 0.1840 0.1495 0.1138 0.0854 0.0645 0.0362 

2 0.1796 0.1420 0.1036 0.0704 0.0489 0.0316 

4 0.1803 0.1379 0.0918 0.0667 0.0451 0.0284 

8 0.1805 0.1384 0.0899 0.0657 0.0434 0.0272 

Block Size w/ Doubleword Bus 
16 0.2552 0.2103 0.1643 0.1263 0.0957 0.0542 

32 0.1840 0.1495 0.1138 0.0854 0.0645 0.0362 

64 0.1589 0.1321 0.0999 0.0755 0.0587 0.0307 

128 0.1398 0.1192 0.0887 0.0664 0.0509 0.0284 

Prefetch Algorithms w/ 
One Singleword Bus 

demand 0.8232 0.6971 0.5530 0.4338 0.3352 0.1923 

w/a-miss 0.4438 0.3737 0.2964 0.2317 0.1781 0.1023 

MIPS-X 0.4160 0.3540 0.2827 0.2229 0.1732 0.0992 

remainder 0.2690 0.2244 0.1731 0.1327 0.1019 0.0588 

wrap-around 0.2675 0.2232 0.1719 0.1314 0.1008 0.0583 

SPUR 0.2731 0.2276 0.1748 0.1321 0.1008 0.0581 

always 0.2177 0.1800 0.1370 0.1055 0.0811 0.0468 

One Doubleword Bus 
demand 0.4559 0.3819 0.2994 0.2326 0.1787 0.1028 

w/a-miss 0.2692 0.2232 0.1728 0.1328 0.1015· 0.0578 

MIPS-X 0.3896 0.3318 0.2651 0.2089 0.1627 0.0921 

remainder 0.2047 0.1678 0.1276 0.0972 0.0740 0.0419 

wrap-around 0.2028 0.1659 0.1256 0.0951 0.0723 0.0411 

SPUR 0.1840 0.1495 0.1138 0.0854 0.0645 0.0362 

always 0.1383 0.1102 0.0808 0.0592 0.0450 0.0256 

Two Singleword Buses 
demand 0.8232 0.6971 0.5530 0.4338 0.3352 0.1923 

w/a-miss 0.4438 0.3737 0.2964 0.2317 0.1781 0.1023 

MIPS-X 0.4160 0.3540 0.2827 0.2229 0.1732 0.0992 

remainder 0.1927 0.1576 0.1192 0.0909 0.0686 0.0389 

wrap-around 0.1910 0.1561 0.1177 0.0893 0.0672 0.0382 

SPUR 0.1988 0.1631 0.1237 0.0926 0.0693 0.0399 

always 0.1118 0.0871 0.0613 0.0451 0.0335 0.0187 

Two Double word Buses 
demand 0.4559 0.3819 0.2994 0.2326 0.1787 0.1028 

w/a-miss 0.2692 0.2232 0.1728 0.1328 0.1015 0.0578 

MIPS-X 0.3896 0.3318 0.2651 0.2089 0.1627 0.0921 

remainder 0.1867 0.1522 0.1151 0.0877 0.0663 0.0372 

wrap-around 0.1846 0.1501 0.1129 0.0855 0.0645 0.0362 

SPUR 0.1777 0.1441 0.1095 0.0824 0.0619 0.0348 

always 0.1040 0.0799 0.0563 0.0410 0.0306 0.0167 

Table 4-3. IB Miss Ratios. 
Parameters not listed match those of the SPUR IB, described in Section 4.2.1. 

4.2.2.2. Off-Chip Bandwidth and Prefetching 

Using more expensive external bus and cache structure will improve also the performance of the 

SPUR IB by providing increased off-chip bandwidth. SPUR uses the least expensive alternative, 



132 

Distinguishing Size (bytes) 

Attribute(s) 256 512 1024 2048 4096 8192 

SPURffi 1.6139 1.5116 1.3949 1.2991 1.2295 1.1331 

Associativity 
1 1.6139 1.5116 13949 1.2991 1.2295 1.1331 

2 1.5977 1.4870 13650 1.2583 L1817 1.1176 

4 1.6005 1.4736 13312 1.2472 1.1684 L1065 

8 1.6009 1.4744 13260 1.2444 1.1623 1.1023 

Block Size (bytes) 
16 1.6919 1.5752 1.4521 13458 1.2637 1.1547 

32 1.6139 1.5116 13949 1.2991 1.2295 1.1331 

64 1.5863 1.5005 1.3846 1.2926 1.2273 1.1307 

128 1.5730 1.5064 1.4013 1.2998 1.2334 1.1381 

Associativity w/ Doub1eword Bus 
1 1.4022 1.3270 1.2499 1.1879 1.1425 1.0809 

2 13921 1.3128 1.2286 1.1573 1.1095 1.0709 

4 13936 1.3035 1.2040 1.1487 1.1008 1.0635 

8 1.3941 1.3043 1.1999 1.1466 1.0971 1.0609 

Block Size w/ Doubleword Bus 
16 1.5626 1.4648 13644 1.2805 1.2131 1.1220 

32 1.4022 1.3270 1.2499 1.1879 1.1425 1.0809 

64 13421 1.2846 1.2159 1.1634 1.1271 1.0672 

128 1.2990 1.2547 1.1895 1.1412 1.1086 1.0610 

Prefetch Algoritluns w/ 
One Singleword Bus 

demand 2.8628 2.5792 2.2577 1.9866 1.7658 1.4419 

w/a-miss 1.9993 1.8436 1.6719 1.5266 1.4066 1.2346 

MIPS-X 1.9388 1.8003 1.6415 1.5058 1.3947 1.2273 

remainder 1.6059 1.5059 1.3921 13009 1.2322 1.1349 

wrap-around 1.6029 1.5035 13897 1.2984 1.2299 1.1338 

SPUR 1.6139 1.5116 13949 1.2991 1.2295 L1331 

always 1.4892 1.4064 1.3116 1.2402 1.1854 1.1076 

One Doubleword Bus 
demand 2.0223 1.8590 1.6771 1.5274 1.4071 1.2353 

w/a-miss 1.5911 1.4911 13818 1.2942 1.2257 1.1295 

MIPS-X 1.8858 1.7552 1.6059 1.4778 1.3738 1.2130 

remainder 1.4490 1.3684 1.2814 1.2147 1.1641 1.0939 

wrap-around 1.4449 1.3644 1.2770 1.2102 1.1606 1.0919 

SPUR 1.4022 1.3270 1.2499 1.1879 1.1425 1.0809 

always 1.2961 1.2372 1.1749 1.1289 1.0988 1.0561 

Two Singleword Buses 
demand 2.6464 2.3941 2.1060 1.8676 1.6705 1.3847 

w/a-miss 1.8875 1.7475 1.5928 1.4633 1.3561 1.2046 

MIPS-X 1.8320 1.7080 1.5655 1.4458 1.3463 1.1984 

remainder 1.3853 1.3151 1.2385 U817 1.1372 1.0778 

wrap-around 1.3819 1.3122 1.2355 1.1786 1.1344 1.0764 

SPUR 1.3976 1.3262 1.2473 1.1852 U386 1.0798 

always 1.2235 1.1742 1.1225 1.0903 1.0670 1.0373 

Two Doubleword Buses 
demand 1.9117 1.7638 1.5988 1.4652 1.3574 1.2056 

w/a-miss 1.5384 1.4465 1.3456 1.2657 1.2030 1.1155 

MIPS-X 1.7793 1.6637 1.5302 1.4177 1.3254 1.1842 

remainder 13735 1.3044 1.2303 1.1755 1.1326 1.0744 

wrap-around 13692 1.3001 1.2259 1.1710 1.1290 1.0725 

SPUR 1.3554 1.2882 1.2190 1.1647 1.1237 1.0696 

always 1.2080 1.1599 1.1126 1.0819 1.0613 1.0334 

Table 4-4. IB Effective Access Times. 

Parameters not listed match those of the SPUR IB, described in Section 4 2.1. 



D 
e 
m 
a 
n 
d 

M 
i 

R 
a 
t 
i 
0 

030 ···-·-·-·······--r--·-··---·····

1 

0.20 

' 

0.10 ••••••...•...•••••.•••• :. •...•....... 

E 
f 
f 
e 
c 
t 
i 
v 
e 

A 
c 
c 
e 
I 
I 

133 

1.70 -···------------------··r··---------------------
1 

! ! 
1.60 ---------- ----------·-r·---------------------··i 

URi m i 
1.50 -·-····-------- ·····r-···----------------····1 

:: ~::::=::~:~~-_::~=::~:~1 
IVG 

T 
i 

m 
e 

l ~VG 
1.10 ------------------··r·---------------------

1 
0.00+-----.....;..------i 1.00+_-----r------i 

100 1000 10000 1 00 1000 10000 
m Size (bytes) m Size (bytes) 

Figure 4-4. SPUR IB Performance. 

This figure shows demand miss ratio (left) and effective access times (right) versus m size. Effective access time 

results assume a 1-cycle hit, 2-cycle miss penalty and a constant cycle time regardless of m size. Thus, the effec

tive access times for large ffis may be artificially low. The size of the SPUR m is 512 bytes. 

Results show miss ratios decrease by 0.043 per doubling in cache size. If hit and miss times are not increased, this 

translates into 6.4 to 9.6 relative decrease in effective access time. Note that effective access times are greater than 

one plus twice the miss ratio, because of cycles lost when instruction fetch misses are blocked from the external 

cache by pending data references. 

namely, it transfers information from and to the external unified cache via one singleword bus. Other 
alternatives are to use one doubleword bus and cache, separate singleword buses and caches for instruc
tions and data, and separate doubleword buses. 

Performance improves markedly as the size and number of buses is increased. The use of one sin
gleword bus yields the worst performance, because a single data reference can cause sequential pre
fetching to fail to keep up with the execution unit Using one doubleword bus not only allows the 
instruction prefetcher to keep up but also allows it to get ahead and capture short forward jumps in the 
best case. However, collisions between instruction and data references are still possible. The use of 
two buses, either singleword or doubleword, eliminates these collisions altogether. Two doubleword 
buses perform slightly better than two singleword buses by capturing some short forward jumps. 

The implementation cost of these alternatives rises as performance improves. One singleword bus 
requires 64 CPU pins (32 address pins plus 32 data pins t) and a singleword-wide external cache. One 
doubleword bus uses 96 CPU pins and requires a doubleword-wide external cache. Two singleword 
buses require 128 CPU pins and two singleword-wide external caches. Two doubleword buses require 
192 CPU pins and two doubleword-wide external caches. These costs can be changed by sharing pins 
between address and data buses, or by pipelining a single external cache to handle two requests per 
cycle. Both optimizations add complexity, however, and can increase machine cycle time. 

The proper number and size of buses and external caches is determined by trading off perfor
mance benefits with implementation costs. Figure 4-5 shows the miss ratios and effective access times 
of the four alternatives for the SPUR IB at difference sizes. Results show that one singleword bus per
forms worse than the other three alternatives, which perform similarly. At 512 bytes, for example, the 

t SPUR uses an additional eight data pins to transfer 40-bit tagged Lisp data. 



134 

effective access time with one singleword bus is 12 to 14 percent worse than the other three 

configurations. This difference decreases for larger IBs, since the number of collisions decreases as the 

miss ratio decreases. At 8K-bytes, for example, the difference is only 5 to 6 percent. 

D 
e 
m 
a 
n 
d 

M 
i 
s 

R 
a 
t 
i 
0 

MD ·--·--···-··-T····-·-.. --1 

0.20 ·········""········· ··t·········-····-······-··i 
I ' : : . ' . : ., . : 

·-:~ .. ~ i i 
-~\ : : 
•:~ \ : : '•::-.i : 

·:.~, i 
0.10 ·················-······:-~;:-,---· ········i 

i ··.·.,_, i 

0.00 
100 

i ''t,."' i 
: ··~ :1-32 i ... ~ :2-32 
i -~~~ 

l l2~ 
1000 10000 

m Size (bytes) 

E 
f 
f 
e 
c; 
t 
i 
v 
e 

A 
c; 
c; 
e 
I 
I 

T 
1 
m 
e 

1.70 ---------------------·-·r···--------------------
1 

1.60 .......... ·····--·--···t···--------------------1 

1~0 ----------------- ----r----------------------1 

1.40 ...................... : ------------------------j . ' : : 

···'• i i 
1.30 ............. :·:·;"<;···i---··· ................ j 

·. \.: : ·.. .... : -..... , i 
1.20 ·--···----------------··:·""~~------- ------: 

i -.......... i 
i ···-~ !t-32 
: ., : 

1.10 ------------------------r---···-----------:..~!: 2-32 

1.00+------i·------i' 
100 1000 10000 

m Size (bytes) 

Figure 4-5. Vary External Buses. 

This figure shows demand miss ratio (left) and effective access time (right) versus m size for one or two external 

buses (and caches) of singleword (32-bit) or doubleword width (64-bit). SPUR uses a shared singleword bus, be

cause it requires the least amount of external hardware and CPU pins. The other three alternatives, however, have 

better performance. At 512 bytes, for example, the effective access times of a doubleword bus, two singleword 

buses and two doubleword buses are less by 10, 12 and 14 percent (relative). 

Another parameter that affects cost and perfonnance of the IBis the prefetch algorithm. The com
plexity from implementing the prefetch algorithms defined in Table 4-5 manifests itself in the number 

of accesses to the instruction and tag arrays required per cycle, and in additional hardware, such as 

adders for calculating prefetch addresses. If instructions are loaded only on demand misses, the instruc
tion and tag arrays must support one read or one write per cycle, and no prefetch hardware is required. 

WI a-miss- prefetching (wrap-around-prefetching on misses only) and MIPS-X- prefetching 

(defined below) are the simplest to implement. Neither requires additional bandwidth into the instruc

tion or tag arrays if a demand miss stalls the pipeline for two cycles, but the external cache processes 

requests in one cycle. Instead the prefetcher uses these arrays only in the cycle when a demand miss is 

being completed and the arrays would otherwise be idle. W/a-miss-prefetching requires a modulo-8 

(3-bit) incrementer to calculate the prefetch address during the cycle when a demand miss is accessing 

the external cache. MIPS-X-prefetch, on the other hand, does not require any special adder to calculate 

the prefetch address, because it prefetches at the actual next PC, which is calculated by the MIPS-X 

execution unit while the IB is processing the demand miss. That PC never depends on the instruction 

currently missing, because MIPS-X uses delayed branches. A MIPS-X prefetch, however, can cause the 

replacement of any block in the IB, including the one containing the instruction just fetched. Agarwal, 

et al., found the complexity of prefetch replacements to be minor [Agar87]. 

SPUR- prefetching requires more implementation support. The most important additional require

ment for SPUR-prefetching is an instruction array that supports a read and write each cycle. The write 

is used to store prefetches into the instruction array. Additional tag-array bandwidth is not required 
since prefetches do not cross block boundaries. The next prefetch address is calculated with a register 

that is reset on each demand miss, and a modulo-8 (3-bit) incrementer. One innovation of SPUR 



Prefetch Description 
Algorithm 

Instruction Array Read or Write Per Cycle 

demand Demand misses only. 

w/a-miss After each instruction miss, do a wrap-around-prefetch (see 

below). 

MIPS-X After each instruction miss, prefetch the sub-block of the actu-

al next instruction. Since MIPS-X uses delayed branches, the 

address of the next instruction can be calculated while the 

current miss is being serviced. 

Instruction Array Read and Write Per Cycle 

SPUR On each idle external cache cycle, prefetch the next sub-block 

in the block of last demand miss. The next sub-block is the 

next sequential sub-block or the first sub-block in the block 

after the sub-block of the last prefetch or demand miss. Un-

like the other algorithms whose prefetch address is a function 

of the last reference, SPUR's prefetch address depends on the 

address of the last demand miss. 

remainder On each instruction reference not to the final sub-block of a 

block, prefetch the next sequential sub-block; otherwise, do 

not prefetch. 

wrap-around On each instruction reference not to the final sub-block of a 

block, prefetch the next sequential sub-block; otherwise, 

wrap-around and prefetch the first sub-block of the same 

block. 

always On each instruction reference, prefetch the next sequential 

sub-block, even if it maps into the next block frame. This al-

gorithm may require multiple tag array accesses per cycle. 

Table 4-5. Prefetch Algorithms. 

This figure describes various prefetch algorithms, listed roughly in ascending order of implementation complexity. 

Algorithms in the first group require that them instruction array support only one access, a read or a write, percy

cle. Algorithms in the second group require that the instruction array support both a read and a write per cycle. 

It is easy to confuse MIPS-X-prefetching with w/a-miss-prefetching and SPUR-prefetching with wrap-around

prefetching. Both w/a-miss- and MIPS-X-prefetching prefetch only after demand misses. W/a-miss-prefetching 

prefetches at an address that is a function of the last instruction, while MIPS-X-prefetching prefetches at the ad

dress of the actual next instruction. Wrap-around-prefetching prefetches after each reference at an address that is a 

function of the last instruction, while SPUR-prefetching prefetches each idle cache cycle at an address that is a 

function of the last demand miss. 

135 

. 

prefetching is that the prefetch address is a function of the last demand miss rather than the last refer

ence. Doing this simplies control logic by pennitting prefetching to be controlled with a separate FSM 

that interacts with the main FSM only during demand misses. 

The implementation complexity of wrap-around- prefetching and remainder- prefetching is simi

lar to that of SPUR-prefetching. As with SPUR-prefetching, only a 3-bit incrementer is needed to cal

culate the prefetch address. This incrementer, however, must operate in less than a phase rather than in 

an entire cycle, because the next prefetch address for these schemes is a function of the address of the 

last reference, rather than the address of the last miss. Care must be used to insure that including an 

increment before each prefetch does not increase the CPU's cycle time. 



136 

Always- prefetch is more complex to implement than the other five alternatives, because two tag 

array accesses per cycle may be needed, and a full 30-bit incrementer is required to calculate the pre

fetch address" The first tag array access is for fetches and misses; the second is for prefetches. The 

other prefetch algorithms do not need the second tag array access, because their prefetches never cross 

block boundaries. The second tag array read may be done as a side-effect of the first, e.g., a read of tag 

n also reads tag n + 1, and need not be done on every reference if repeated requests for the same tag are 

filtered. In any case, the tag array or the logic surrounding it must be more sophisticated than is 

required for the other prefetch algorithms. The logic to compute the prefetch address is also more com

plicated for always-prefetch" A full 30-bit incrementer must operate on the instruction fetch address in 

less than one phase. The timing of the SPUR CPU would have to be altered to permit this. 

Figure 4-6 shows the various prefetch algorithms with the SPUR configuration of one singleword 

bus. Prefetch algorithm performance falls into four equivalence classes, which in order of decreasing 

effective access time are: demand-fetch; MIPS-X- and w/a-miss-prefetch; SPUR-, wrap-around-, and 

remainder-prefetch; and always-prefetch" At 512 bytes, for example, the effective access time for 

demand-fetch, MIPS-X-prefetch and always-prefetch relative to that with SPUR-prefetching is 70 per

cent greater, 19 percent greater and 7 percent less" The difference between the algorithms diminishes as 

cache size in increases. At 8K bytes, the relative differences have reduced to 27, 83 and -2"3 percent. 

MIPS-X-prefetch and SPUR-prefetch offer the best cost-perfonnance. If the instruction array can 

support only a read or a write per cycle, only demand-fetch, w/a-miss-prefetch and MIPS-X-prefetch 

are possible. MIPS-X-prefetch yields much better performance than demand-fetch for modest addi

tional cost and slightly better performance than w/a-miss-prefetching at comparable cost If a read and 

a write are possible, SPUR-prefetching yields performance similar to wrap-around-pr~fetch and 

remainder-prefetch, and is slightly easier to implement, since the next prefetch address is a function of 

the last miss rather than the last reference" SPUR-prefetching yields performance a little worse than 

always-prefetch, but is significantly simpler to implement 

D 
e 
m 
a 
n 
d 

M 
i 
s 
s 

R 
a 
t 
i 
0 

o.so -----------------·····--r··----------------------
1 

~ i ~ 
"' : : 0.40 ·-----------..:1.---------}--······· .•.......... .: 

·, '.t.. : 
\, i 

\\ : 
\,1 

0.30 ---·---·--·----·------' ... ~-------------·- --·-·· 

. ·' 
1 '·~- : .. : \.~ : 

0.20 ·----------: ..... , .... ···f··-------~-------- -~emand 

l. 't·-. .\ L .. 
0.10 ·····----···. ··t·····J..·.;:: ···--«=~-X 

remamder : -.. -. 

0.00 
100 

wrap-around i ·,·~ i 
SPUR 1 "!.,fways 

1000 
Buffer Size (bytes) 

10000 

E 
f 
f 
e 
c 
t 
i 
v 
e 

A 
c 
c 
e 
s 
I 

T 
i 

m 
e 

2.oo ·-·-----~---··········r--····------··---····---1 

"\ : : 
1 90 ·········--''<~---·-··---L........ ············-l . \\ i i 

\-'1 : : 
1.80 -------·········".~---·f··----·-····· ---------·1 

\\ : : 
\\: : 

1. 70 ..•.. --·-········ ----·~:~·-············ .•.•.. ·j 

. ·' : 1.60 •••...•. ·····--------·· .. ,---------·--·- ----·1 
i \~ i 

1 so ······--.... ----- ..... L ..... ~---········ . .l . .... : -~ : 
'·, i -~ . .la. ~emand 

1.40 ·-------·-------z-:··- ------------"JI{--------= 
·, l '· : 

1 30 .•••...•.••••••....••. :........ . ...•.... \, ••.. ; . . . ' \ . 
remamder ! ·,._ 'lrt-jvf_!:miss 

1 20 ....... .'~Y!!IP:!~.~f-········:>....a. .... ~S-X 
. SPUR i ., i 

1.10 ················------··t···················~~-tways 
1.00+-----....... -----i 

100 1000 10000 
Buffer Size (bytes) 

Figure 4-6. Vary Prefetch Algorithm. 

This figure shows demand miss ratio (left) and effective access time (right) versus m size for various prefetch al

gorithms. 

The use of a doubleword bus improves the perfonnance of all prefetch algorithms, but by non

uniform amounts (see Figure 4-7). With a doubleword bus, w/a-miss-prefetching, rather than MIPS-X

prefetching, is preferred for instruction arrays that can only be read or written each cycle. Demand-



137 

fetching benefits the most from doubling the bus width, because a demand miss often brings in the next 

instruction executed. MIPS-X-prefetcbing benefits the least, since the additional instruction brought in 

on a miss is often the same one that MlPS-X-prefetching prefetches. For example, a miss to word 

address 0 brings in instructions at address 0 and 1. If the actual next PC is 1, MIPS-X-prefetch will 

redundantly prefetch an aligned doubleword at word address 1, i.e., the instructions at addresses 0 and 

1. Therefore, in the common sequential case, the MIPS-X-prefetch is not useful. W/a-miss-prefetching 

performs better, because it does a useful prefetch in the common sequential case. A marginal perfor

mance improvement can be achieved by doing a w/a-miss-prefetch if the execution unit indicates that 

the next PC is sequential or a MIPS-X-prefetch if not. The implementation complexity for this, com

parable to the union of the implementation complexities of w/a-miss- and MIPS-X-prefetch, however, is 

not justified, especially for large ms . 

D 
e 
m 
a 
n 
d 

M 
i 
s 
s 

R 
a 
t 
i 
0 

•. w --------~--r··--------1 

\ ! ~ : 
0.20 ...••••. ---------y·-i--------,- -----------: 

~ \ l \ l 

~ \. i 
: \ ., : 
i ' \ ! 

.. ' l ~ \ l 
·,_ ' \ l 

0.10 ---·-·····--· '· .... J:;).., -~-~~---~¥.~~ 
~:r .. ,. 

remainder , ·, ' ' ! 

0.00 
100 

d ' • ' ' 
wrap-aroun 1 'a.. ._\w!a-miss 

0 ...... ' • 

1 .... , " SPUR 

~ ··rways 

1000 
Buffer Size (bytes) 

10000 

E 

f 
e 
c 
t 
i 
v 
e 

A 
c 
c 
e 
I 
I 

T 
i 

m 
e 

1.40 

1.30 

1.00+-----....... -----i 
100 1000 

Buffer Size (bytes) 
10000 

Figure 4-7. Vary Prefetch Algorithm w/ Doubleword Bus. 

This figure shows demand miss ratio (left) and effective access time (right) versus m size for various prefetch al

gorithms using a single doubleword bus. 

As with a singleword bus, SPUR-prefetching with a doubleword bus is preferred for instruction 

arrays that can be read and written each cycle. Doubling the bus width reduces the effective access time 

by 12 percent to 1.3270 cycles. The performance of SPUR-prefetch with one doubleword bus is even 

slightly better (1 to 3 percent) than remainder- and wrap-around-prefetching, because it can get more 

than one sub-block ahead of the current reference since its prefetch addresses is a function of the 

address of the last miss, not that of the last reference. 

Using two singleword buses rather one singleword bus or using two doubleword buses rather one 

doubleword bus (see Table 4-4), reduces the effective access times of all prefetch algorithms by varying 

amounts, but does not change the conclusions drawn above. 

4.2.2.3. Reducing IB Miss Penalty 

A final approach for improving effective access time is reducing the penalty of IB misses. A miss 

in the current SPUR IB takes three cycles, two cycles beyond the normal IB access, which are roughly: 

(1) IB access, (2) external cache access and (3) IB retry. Figure 4-8 shows a phase-by-phase breakdown 

of an ideal IB miss (repeat of Figure 4-28 in Section 4.6). Three approaches for reducing the miss time, 

from smallest to greatest implementation cost, are to (1) eliminate the IB and fetch all instructions from 

the external cache, (2) start the external cache fetch for a non-sequential instruction one cycle early, and 



(3) use bypass logic to complete all misses faster, 

U Cycle/State Phase II Tom Fromm 

1 EU sends instrn addr Ox 100 

LNORMAL 
2 m detects miss 

3 Cache not busy m sends MISS to EU 

4 m sends Ox100 to Cache 

1 m ignores new instrn addr 

2. MEM_PENDING 2 m waiting for Cache 

3 Cache sends instrn(Ox100) to MDR ffi sends MISS to EU 

4 m loads instrn(Ox100) from MDR 

1 m igytores new instrn addr 

3.NORMAL 
2 m retrvs and hits 

3 m sends instrn(Ox 1 00) to EU 

4 

Figure 4-8. Ideal m Miss. 

m misses cause a delay of at least two cycles. This diagram shows minimum m miss delay on a reference to ad

dress OxlOO, which occurs when the external cache is available and can return the instruction word in one cycle. 

The address is sent to the external cache by the end of cycle 1, phase 4, The instruction word is latched in a 

memory data register (MDR) near the CPU's data pads at the end of cycle 2. phase 3. The instruction is written 

into the instruction array in the next phase, and them access is retried in cycle 3. 

138 

,, 

The first approach for reducing miss penalty is to remove the IB and fetch all instructions directly 

from the external cache. If this fetch can be made in one cycle, then a pipeline results that is similar to 

RISC II's [Kate83], where an instruction fetch or a data reference is made to the external cache each 

cycle. Since RISC II was built, however, intra-chip signal speeds have increased more rapidly than 

inter-chip ones. RISC II accessed external memory in one 330-ns cycle (in 3-micron NMOS); SPUR 

requires 100 ns for external memory accesses, necessary for loads, stores and IB misses, but only needs 

50 ns for an IB access. The external memory access in SPUR completes with an instruction word and a 

valid bit latched near the address pads. The IB access completes with an instruction word or a MISSt 

instruction latched in the instruction register of the execution unit If the IB is eliminated, additional 

time is required on an external memory access to determine if the instruction is valid and move it or a 

MISS instruction to the execution unit. Thus, it is difficult to fetch instructions directly from an exter

nal cache without increasing the cycle time or changing the pipeline (e.g., using a doubled-delayed 

branch [Chow87]). 

The viability of fetching instructions directly from an external cache is a function of how much it 

perturbs the cycle time and how large an IB it is compared with. The left plot in Figure 4-9 shows 

effective access times with the SPUR IB and with instructions fetched directly from the external cache 

leaving the cycle time unchanged, increased by 10 percent or increased by 20 percent I believe that 

removing the IB will increase the cycle time by least 20 percent. If the increase is exact! y 20 percent, 

the current IB could be eliminated with no performance loss; however, removing a larger IB results in a 

large loss. Removing an 8K-byte IB, for example, reduces perfonnance by 33 percent As levels of 

integration make larger IBs possible, the no-IB alternative will become increasingly unattractive. 

A second approach for reducing the average IB miss penalty is to treat non-sequential instruction 

fetches differently than sequential ones. On the cycle after an instruction fetch in the current IB, a 

t The MISS instruction contains an opcode that directs the execution unit to continue waiting for the current 

instruction fetch. 



E 
f 
f 
c 
c 
t 
i 
v 
c 

A 
c 
c 
c 

T 
i 

m 
c 

Fetch Directly from External Cache 

:: ::~=~~:~~r::~~:-::=:1 
.... "'t"=--"~"=-r 
1.40 ····--··.-:::::w::::: ·:::·:··-=:.;.:.·:.::-:ii_10% 

1.30 ...................... .j...... --------------i 

E 
f 
f 
c 
c 
t 
i 
v 
c 

A 
c 
c 
c 

139 

Fast Non-Seq. Misses 

1.70 --------~:···········-r······················: 
' : : 

.• ----.. . • :, __ .••••• ..!. .••••••••..• -----••••. j 
.)c. : : 

.\ ~ ~ 
1.60 

I .SO ................ ..'\.. + ...................... i 
' 'k i 

' 
i ·,_ i . ' : 

···············---~.--- . ······················: 
': ... , : 
~ . : 

•••••••••••••••••••••••• )o.. ---~~------1 . ' ' . 

1.40 

1.30 

i ' ·,_ i 
i ' "-tO% 

·················-----~-----------.:-.~ -----~ . ,. ----=~-=-l~-=---~ =-r .. 1.20 
i ' i 
i ' SPUR 
: a...b%-LB 

----------------------r·---------------------1 

1.00+-----...P.----...... 

i *PUR 
1.10 ------------------·-··r----------------------

1 
1.00+-----...P.-----i 

T 
i 

m 
e 1.10 

100 1000 10000 100 1000 10000 

m size (bytes) m size (byteal 

Figure 4-9. Vary Miss Time. 

This figure shows effective access times of the SPUR m and two alternatives that require fewer, longer (by 0, 10 or 

20 percent) cycles. Lines whose label includes "LB" are unachievable lower bounds. 

The left plot compares the SPUR m (one-cycle access plus two-cycle miss) with fetching all instructions directly 

from the external cache in one cycle with no contention. When data references are contending for the external 

cache, a instruction fetches is delayed until the next idle cache cycle. Clearly, the no-IB alternative loses when 

compared against large ms. 

The right plot compares the SPUR m with ffis that use fewer cycles for misses on non-sequential references. My 

estimates of effective access times with this optimization are a bit optimistic, because I do not take into account the 

effect of prefetches not made when misses are handled one cycle earlier. Nevertheless, results indicated this tech

nique is not worthwhile, since it produces small performance improvements for all but small ms. 

prefetch is done in the block of the last miss, usually the block of the previous reference. If the instruc

tion fetch misses, an external cache access for that instruction begins in the next cycle. For non

sequential instruction fetches, this may not be the best approach since the prefetch in the old block is 

unlikely to be usefult, and the non-sequential instruction fetch is more likely to miss than a sequential 

fetch. Consequently, I propose to reduce the penalty of non-sequential misses from two cycles to one 

cycle by beginning a non-sequential reference's external cache fetch one cycle earlier, so that the cache 

fetch is issued concurrently with the IB access rather than after it. One result of moving the fetch up 

one cycle is that the sequential prefetch that would otherwise have been issued in that cycle cannot be 

made. The effect of this optimization depends on how often such prefetches would have been useful 

and on how often the non-sequential fetches miss. If the prefetch would not have been useful, which I 

expect to be common, then one cycle is saved when the reference misses, and there is no effect if the 

reference hits. If a useful prefetch is suppressed, then using fast non-sequential misses can cause addi

tional delays of 0, 1 or 2 cycles. 

The cost of implementing fast non-sequential misses is three-fold. First, the IB must know when 

an instruction is probably not sequential. The simplest way to implement this is have the execution unit 

set a bit when an address is created by the incrementer logic. Sequential instruction addresses produced 

in other ways (i.e, a jump one word forward or a delayed jump two words forward) will be handled 

t A prefetch is useful if it reduces the demand miss ratio, which means that it loads an instruction not already 

present, not loaded by a subsequent prefetch, and used before it is replaced. Note that memory pollution 

[Smit78] is of no concern here, since prefetches do not cause other instructions to be replaced. 



140 

correctly, but not with maximum prefetch efficiency. Second, a non-sequential fetch must override the 

sequential prefetcho This requires a 32-bit multiplexor controlled by the "definitely-sequential" bit. 

Third, the m must be able to write the instruction from the non-sequential fetch into the instruction 

array two phases after it detects a non-sequer.tial miss, since the write moves up from cycle 2, phase 4 

to cycle 1, phase 4 and misses are detected in cycle 1, phase 2 (see Figure 4-8). This also implies that 

the corresponding tag be updated and other instruction words of the block be invalidated more rapidly, 

at a non-trivial cost. 

Unfortunately implementing fast non-sequential misses is not cost-effective, since simulations 

show the potential performance improvement to be too small to justify the implementation effort. The 

right plot in Figure 4-9 shows a lower bound on the effective access time achieved with this technique. 

The bound was calculated by subtracting one cycle for each miss on a non-sequential reference from the 

total cycles to process a trace. The bound is optimistic, principally because it is calculated without 

suppressing useful prefetches that are not done during non-sequential misseso Even so using fast non

sequential misses reduces effective access time by less than 6 and 2 percent at 512 and 8K bytes, 

respectively. The improvement, especially for larger IBs, is too small to justify the implementation 

effort. I did not construct a more accurate model of using fast non-sequential misses, as the bound 

clearly shows that its potential contribution to performance is too small to justify its implementation 

costs. 

A third approach for reducing the IB miss penalty is using fetch bypass to eliminate the third 

cycle of a miss, the IB retry, by passing the instruction returned at the end of cycle 2, phase 3 directly to 

the execution unit. Specifically, this means that at the end of phase 3 the instruction fetched or a MISS 

instruction must be valid in the execution unit. At the end of phase 3 in the current implementation, 

only a word-valid bit and an instruction word are valid at the latches adjacent to the CPU data pads. 

Since the external cache access is on a critical path that determines the CPU's cycle time, using one

cycle misses would lengthen the cycle timeo Another drawback of one-cycle misses is that sequential 

prefetch after a miss would not be in the IB when the IB is accessed for the first instruction after the 

miss. Consequently bypass logic would be needed to detect that the correct instruction is being pre

fetched, pass it is on to the execution unit, and suppress the instruction fetch miss. 

Using one-cycle misses improves performance of small IBs, but will only improve the perfor

mance of larger IBs if it does not increase the cycle time more than a minute amount. Figure 

IB_MISS_ TIME2 shows effective access times with the SPUR IB and with an IB that has the bypass 

logic for misses and prefetches. I assume this change leaves the cycle time unchanged, increased by 10 

percent, or increased by 20 percent For a 10 percent increase in the cycle time, which I think is reason

able, using one-cycle misses reduces effective access time at 512 bytes by 6.6 percent, but increases it at 

8K bytes by 4.4 percent Even if no cycle time increase occurs, using one-cycle misses results in a 10 

percent decrease in effective access time only if the IB 's miss ratio is greater than or equal to 0.1250 

((l-10%)(1+2m)= l+lm). Thus, the effective access time reduction will be smaller than 10 percent for 

IBs larger than 2K bytes with one singleword bus or larger than 512 bytes with one doubleword bus. 

Furthermore, implementing this optimization without increasing the cycle time will get more difficult as 

technological advancements make the implementation of single-cycle external accesses more difficult. 

Consequently, none of the three approaches for reducing the number of miss cycles (no-IB, fast 

non-sequential misses, and one-cycle miss) is worthwhile, especially in the future as IB sizes increase. 

4.2.2.4. An Improved SPUR m 
The earlier results of this section point to three cost-effective improvements of the SPUR IB, 

namely, increasing bus width, IB size and block size. The SPUR IB has an average effective access 

time of 1.5116 cycles per instruction. Doubling the bus width to 64 bits reduces effective access time 

by 12.2 percent to 1.3270. Doubling cache size to lK-bytes further reduces it by 5.8 percent to 1.2499. 

Doubling block size to 64 bytes (16 instruction words) only reduces effective access time by 2.7 percent 

to 1.2159, but can reduce the access time by cutting the number of address tags in half (Smaller 

memories can often be accessed more rapidly). The three changes together reduce IB miss ratio by 56 



E 
f 
f 
e 
c 
t 
i 
v 
e 

A 
c 
c 
e 
I 
I 

T 
i 
m 
e 

One-Cycle Miss Delay 
1.10 -----··········-------T·---------------------1 

~ i 
1.60 ··------ ····-······+·····-----------------~ . ' 

' ' ' ' . : : 

!.SO ................ \ •• ~---····-·······-···---~ 
~- ... .,_ 1 

' I • I 

1.40 -------------~~!..,-- : .:~~=-:·------------~ ., : ··.. : 
.. ic. .... ! ' : ~, ~~.. : 

1.30 -------------~---·-·t··.,_ .......... :.1!(_~ ' . ' ' : : 
'~ ., i 

1.20 --"'""·------------r-...·-~------- -·""iLi()tjl, 

i 'lt.. $PUR 
1.10 ----------------------+-··--· ---··--...... ----.! 

! 'Lr-UJ 
1.00 

100 1000 
m size (byu.) 

10000 

Figure 4-10. Vary More Miss Times. 

This figure shows effective access times for SPUR vs. alternates th111 using one-cycle misses, but with 0, 10 or 20 

percent longer cycle times. The line whose label includes "LB" is an unachievable lower bound A one-cycle 

miss delay significantly improvements the performance of larger ms only if reducing miss delay does not increase 

the cycle time. 

141 

percent (0.2276 to 0.0999) and effective access time by 19.6 percent Using Gibson's assumptions as I 

did at the end of Section 4.1.3, I find that incorporating these changes in SPUR reduces cycles per 

instruction by 15.5 percent and increases speed by 23.6 percent. Further increases in m size can be 

considered if they do not increase cycle time or reduce yield too much. Each of the next three dou

blings of IB size reduces effective access time by approximately 4 percent. 

Neither of the first two proposed changes, increasing the sub-block or IB size, was possible in the 

first implementation of SPUR after we decided to save design time by implementing the IB 's instruc

tion array with the register file cells. The final change, increasing the block size, is not necessary in 

SPUR since the tag lookup time does not determine the cycle time. 

4.3. Target Instruction ButTers 

In this section I examine target instruction buffers (TIBs). As with my study of IBs, I first pro

pose a SPUR TIB as a design operating point, and then use trace-driven simulation to study it and simi

lar designs. Results show that using a TIB in SPUR yields an effective access time less than that 

achieved using the SPUR IB (1.40 vs. 1.51 cycles per instruction). As with the SPUR IB, the most 

effective way to improve TIB performance is to double the width of the off-chip bus and cache so that 

instruction prefetching bandwidth is abundant. Doing so reduces effective access time by 12 percent to 

1.23 cycles per instruction. Unlike with IBs, however, increasing TIB size is not a cost-effective way to 

reduce effective access time. No doubling of TIB size improves effective access time by more than 4 

percent. 

4.3.1. SPUR TIB/PB Architecture and Implementation 

To evaluate TIB designs, I propose a TIB and PB for SPUR that has implementation characteris

tics similar to the SPUR lB. Figure 4-11 displays the architecture of this proposal that I will heretofore 

refer to as the SPUR TIB. Two problems in selecting a TIBIPB similar to the SPUR IB are selecting 

TIB block size and TIB size. Since a TIB prefetches off the end of a block, while an IB prefetches 



142 

within a block, TIBs prefer smaller block sizes. I choose a four-instruction block size for the SPUR 

TIB, the same as the Am29000 TIB 's block size and half of the SPUR m 's block size. The area 

required for a TIB that holds the same number of instructions as the SPUR IB (128 instructions) is 

clearly greater than that of the SPUR IB, because the TIB requires twice as many address tags (for its 

more numerous smaller blocks) and additional area for prefetch buffers and associated logk A half

sized TIB, on the other hand, uses less area than the SPUR IB, as the prefetch buffer area is smaller than 

that of half the instruction array. I choose to make the SPUR TIB half-sized so that it could be substi

tuted into the current SPUR CPU layout without other changes. Nevertheless, perfonnance results 

given here are for TIB sizes 256 though 8K bytes. 

4 instruction words per block 

H tagO I I-I instruction-0 IH :~;. IH instruction-3 

H tag 1 I I-I instruction -4 IH :~;. Il-l instruction-? 

16 blocks 
0 0 0 0 

0 0 0 0 

0 0 0 0 

H tag 15 I 1-1 instruction-60 Il-l :~~ 0 
llwvl instruction-63 

number of bits: 1 26 1 32 1 32 

pb-0 

I first I 
pb-1 2 

4 prefetch buffers 
pb-2 

lnuml 
pb-3 3 

32 

Figure 4-11. SPUR TIB Architecture. 

The proposed SPUR target instruction buffer (fiB) is a 256-byte (64-instruction) buffer, divided into 16 direct

mapped blocks. Each block contains a block-valid bit (labeled bv ), a 26-bit address tag, four word-valid bits (la

beled wv) and four 32-bit instructions words. The block-valid bit is asserted to indicate a valid address tag. The 

address tag holds bits 31-9 and 4-2 of a 32-bit byte address (the LSB is 0 in SPUR). Bits 0 and 1 are discarded be

cause all instruction addresses are on aligned 4-byte boundaries; bits 5 through 8 are used to select one of the 16 

blocks. Each word-valid bit indicates whether the corresponding instruction word is valid. The first instruction 

word in a block holds the instruction at the address stored in the tag. The i -th word holds the instruction at the tag 

address plus i -1 words. 

The proposed SPUR prefetch buffer (PB) holds up to four instructions. No tags are needed since I assume the PB 

is accessed only when the execution unit indicates an address is sequential. The 2-bit register first points to the 

next sequential instruction; 3-bit register rnun indicates the number of valid prefetch buffers (0 to 4). The SPUR 

TIB holds half the instructions of the SPUR m so that it could be incorporated into the SPUR CPU layout without 

other changes. A TIB with the same number of instructions requires more chip area than the SPUR m to hold 

twice the number of address tags plus the prefetch buffers. 

Figures 4-12 and 4-13 show a possible timing for TIB/PB that corresponds closely to the timing 

for the SPUR IB (see Figures 4-27 through 4-31 in Section 4.6). Both pay two-cycle penalties on 

demand misses and can prefetch one instruction per cycle unless blocked by data references. I assume, 

however, that PB prefetches are bypassed so that an instruction fetch of the same address as an out

standing prefetch will stall the execution unit only until the prefetch returns the instruction. In the 

SPUR IB pending prefetches are ignored; therefore, the same situation would cause a demand miss and 

a two-cycle penalty. We do not bypass prefetches in the SPUR IB, because doing so requires a second 



143 

32-bit comparator and some additional control complexity. Bypassing prefetches in a prefetch buffer is 

simpler to implement, because no additional comparator is needed (all instructions are sequential), and 

the PB can stall the TIB and execution unit on bypassed prefetches with the same mechanism used to 

stall them on PB and external cache misses. 

II Cycle/State Phase II ToTIB/PB From TIB/PB 

1 EU sends non-sequential instm addr 
Ox100 

I. NORMAL 2 TIB detects hit & reads 
instm(Ox100) 

3 Cache sends instrn(Ox84) to PB TIB sends instm(Ox 1 00) to EU 

4 TIB may load instm_(Ox84_l from PB PB sends Ox88 to Cache 

1 EU sends sequential addr Ox 104 PB is reset 

2. PB_RESET 2 instm(Ox104) read from TIB 

3 Cache sends instrn(Ox88), bw it is TIB sends instm(Ox104) to EU 

iRnored 
4 PB sends Oxll4 to Cache 

1 EU sends sequential addr Ox108 

3.NORMAL 2 instm(Ox108) read from TIB 

3 Cache sends instrn(Oxll4) to PB TIB sends instm(Ox108) to EU 

4 TIB loads instm(Ox114)_from PB PB sends Oxll8 to Cache 

Figure 4-12. Ideal TIB Hit 

This figure and Figure 4-13 show TIB timing with the notation used to give m timing in Figures 4-27 through 4-31 

in Section 4.6. 

A non-sequential reference that hits in the TIB (Ox100 here) causes the PB to be reset, but costs no additional cy

cles. In cycle 1, the TIB processes the hit, and PB (in italics) completes a prefetch and initiates another prefetch 

for instructions in the previous instruction run (Ox84 and Ox88). In cycle 2, the TIB processes the second instruc

tion of the run (Oxl 04 ), and the PB is reset and issues a prefetch for the instruction after the end of the TIB block of 

4 instructions (Ox114 = OxlOO + Ox10 + Ox4). Cycle 3 shows the PB loading the instruction at Oxl14, which as

sumes an external cache hit, and issuing a new prefetch to Oxll8. After Cycle 4 (not shown), sequential fetches 

will be handled by the PB since the TIB block is exhausted. 

II 

In many ways the SPUR TIB/PB is similar to the Am29000's TIB/PB [Adva87]. Both PBs con

tain four instruction words managed as a circular buffer, and both TIB have blocks that contain 26-bit 

address tags and four-instruction blocks with word-valid bits. Tile principal differences between the 

two designs is that the Am29000's TIB is larger (32 two-way set-associative blocks vs. SPUR's 16 

direct-mapped blocks), and the Am29000 uses separate off-chip buses for instruction and data, whereas 

SPUR uses a single bus. 

4.3.2. TIB/PB Evaluation 

Here I examine TIBs similar to the SPUR TIB. I first examine varying TIB size, associativity, 

index bits, and PB size; then I look at the interaction between off-chip bandwidth and TIB block size; 

and finally I propose an improved TIB. The miss ratios and effective access times discussed in the sec

tion are presented in Tables 4-6 and 4-7. I calculate effective access times from miss ratios using the 

equations given in Section 4.1.3, assuming a constant cycle time of 1.0. 



II Cycle/State Phase II ToTIB/PB FromTIB/PB 

1 EU sends non-sequential instm addr 

1.NORMAL 
OxlOO 

2 TIB detects miss on Ox100 

3 Cache sends instrn(Ox84) to PB TIB sends MISS to EU 

4 TIB may load instm(Ox84) from PB TIB sends addr0x100 to Cache 

1 TIB!PB ignores new addr PB is reset 

2. TIB_MISS_1 2 T1B prepared for new entry 

3 Cache sends instrn(OxJOO) to PB TIB sends MISS to EU 

4 TIB loads instm(Ox 1 OO_l from PB PB sends0x104 to Cache 

1 TIB!PB ignores new addr 

3. TIB_MISS_2 2 PB transfers instrn(OxlOO) to JR 

3 Cache sends instrn(Oxl 04) to P B TIB sends instm(OxlOO) to EU 

4 TIB loads instm(Ox 104) from PB PB sends OxJOB to Cache 

1 EU sends sequential addr Ox 104 

4. TIB_LOAD_1 2 PB transfers instrn(Ox104) to JR 

3 Cache sends instrn(Oxl08) to PB TIB sends instm(Ox104) to EU 

4 TIB loads instm(Ox108) from PB PB sends OxJOc to Cache 

Figure 4-13. Ideal TIB Miss. 

A non-sequential reference that misses in the TIB causes the PB to be reset and costs two additional cycles. Cycle 

1 shows the TIB detecting the miss and sending the address, OxlOO, to the external cache; the PB (in italics) com

pletes a prefetch in the previous instruction run (Ox84). In cycle 2 the TIB writes the tag and valid bits for a new 

block, sends MISS to the execution unit, and stores the first instruction of the run into the block; the PB is reset, 

catches the instruction that missed from the cache and passes it to the TIB, and initiates the next sequential prefetch 

to Ox104. In cycle 3, the TIB passes instruction that missed to the execution unit and loads the result of the PBs 

first sequential prefetch; meanwhile, the PB continues prefetching at Ox108. In cycle 4, the TIB accepts a new 

sequential address and returns the instruction to the execution unit PB prefetching and TIB loading continues. 

After the TIB block is full (not shown), execution continues similarly, but without the TIB load. 

4.3.2.1. TIB Size, Associativity, Indexing, and PB Size 

144 

II 

The TIB feature having the strongest effect on TIB miss ratio, TIB size, does not have the strong

est effect on TIB/PB effective access time. The left graph in Figure 4-14 shows the miss ratios for TIBs 

of various sizes. The SPUR TIB, with sixteen 16-byte blocks (256 bytes), has miss ratio of 0.6457. 

Doubling TIB size reduces the TIB miss ratio by 18.4 percent to 0.5268; the corresponding effective 

access time reduction, however, is only 3.5 percent (1.4002 to 1.3515 cycles per instruction). Further 

doublings of TIB size reduce effective access time by 4.0, 2.6, 2.0 and 2.6 percent The effective access 

time reductions are smaller, because all instruction fetches require at least one cycle and, to first-order, 

reducing the TIB miss ratio does not improve performance on sequential fetches. Symbolically, a ratio 

of relative effective access time changes to relative miss ratio changes is: 

~ leJJ I teff -+ [ .!!!....] [ a tcff ] 
11 m I m tt/1 a m 

To first order, the latter partial derivative is the miss penalty in cycles times the fraction of non

sequential references, which for our assumptions and these traces are 2 and 15.5 percent, respectively. 

Thus: 

[ ~] [a teff] :: [~] *2*0.155 « 0.310. 
tcff am teff 



145 

TIB Miss Ratios 

Distinguishing Size~tesl_ 

Attribute( s) 256 512 1024 2048 4096 8192 

SPUR TIB 0.6457 0.5268 0.3970 0.3100 0.2521 0.1815 

Associativity 
1 0.6457 0.5268 0.3970 0.3100 0.2521 0.1815 

2 05919 0.4197 0.2996 0.2131 0.1545 0.1204 

4 05665 0.3760 0.2677 0.1807 0.1253 0.0957 

8 0.5618 0.3650 0.2571 0.1716 0.1160 0.0894 

LSB of Index 
2 0.6816 0.5490 0.3710 0.2702 0.1873 0.1345 

3 0.6655 0.4768 0.3698 0.2645 0.1984 0.1552 

4 0.6457 0.5268 0.3970 0.3100 0.2521 0.1815 

5 0.7055 0.5955 0.5067 0.4560 0.3874 0.3687 

PB Size (bytes) 
00 0.6457 0.5268 0.3970 0.3100 0.2521 0.1815 

32 0.6457 0.5268 0.3970 0.3100 0.2521 0.1815 

16 0.6457 0.5268 0.3970 0.3100 0.2521 0.1815 

8 0.6457 0.5268 0.3970 0.3100 0.2521 0.1815 

Block Size (bytes) w/ 
One Singleword Bus 

4 0.3970 0.3100 0.2521 0.1815 0.1642 0.1570 

8 05268 0.3970 0.3100 0.2521 0.1815 0.1642 

16 0.6457 0.5268 0.3970 0.3100 0.2521 0.1815 

32 0.7901 0.6457 0.5268 0.3970 0.3100 0.2521 

One Doubleword Bus 
4 0.3970 0.3100 0.2521 0.1815 0.1642 0.1570 

8 05268 0.3970 0.3100 0.2521 0.1815 0.1642 

16 0.6457 0.5268 0.3970 0.3100 0.2521 0.1815 

32 0.7901 0.6457 0.5268 0.3970 0.3100 0.2521 

Two Buses 
4 0.3970 0.3100 0.2521 0.1815 0.1642 0.1570 

8 0.5268 0.3970 0.3100 0.2521 0.1815 0.1642 

16 0.6457 0.5268 0.3970 0.3100 0.2521 0.1815 

32 0.7901 0.6457 0.5268 0.3970 0.3100 0.2521 

Table 4-6. TIB Miss Ratios. 

Parameters not listed match those of the SPUR TIB/PB, described in Section 4.3.1. 

Consequently, increasing TIB size yields smaller relative improvement is effective access time than in 

miss ratio. Given the costs of increasing TIB size, large TIBs, e.g., greater than lK bytes, are probably 

not worth iL In addition, doubling TIB size can hurt performance if it causes a cycle time increase 

greater than a few percent. 

Another way to reduce TIB effective access time is to increase TIB associativity. Results in Table 

4-7 show that increasing associativity from direct-mapped to 2-way set-associative improves effective 

access time by 2 to 4 percent, comparable to the improvement achieved by doubling TIB size. Further 

increases in associativity result in very small improvement. As with IBs, these improvements will be 

reduced or made negative if they result in even small increases in machine cycle time. Consequently, 

only the first doubling of associativity is arguably profitable, and it is only so if it does not increase 

cycle time. Associativity results also indicate that AMD's two-way set-associativity TIB has a 3.2 to 

6.9 percent smaller effective access time than a direct-mapped TIB with the same cycle time. Thus 

AMD's design is reasonable, unless they could have build a faster chip with a direct-mapped TIB. 

Whenever caches are not fully-associative, some function must be used for indexing, i.e., select

ing the set of a reference. With the simplest function for doing this, called bit selection, a sub-set of 

the address bits are used. The most commonly-used bits are the lowest order bits not in the block offset. 

Bits within the block offset cannot be used, because two references to the same block, but different 

offsets, must still map to the same set. The lowest order of the remaining bits are used to exploit spatial 



146 

TIB Effective Access Times 

Distinguishing 
- 256 

Size (bytes) 

Attribute(u 512 1024 2048 4096 8192 

SPUR TIB 1.4002 1.3515 1.2982 1.2640 1.2390 1.2068 

Associativity 
1 1.4002 1.3515 1.2982 1.2640 1.2390 L2068 

2 13780 1.3099 1.2604 1.2229 1.1981 1.1827 

4 1.3704 1.2933 1.2481 1.2104 Ll860 1.1731 

8 1.3680 1.2896 1.2437 1.2064 1.1821 1.1703 

LSB of Index 
2 L4158 1.3600 1.2883 1.2445 1.2113 1.1900 
3 1.4082 1.3331 1.2875 1.2437 1.2170 1.1979 

4 1.4002 1.3515 1.2982 1.2640 1.2390 1.2068 

5 1.4179 1.3741 1.3376 1.3152 1.2837 1.2751 

PB Size (bytes) 
00 1.4002 1.3515 1.2982 1.2640 1.2390 1.2068 

32 1.4002 1.3515 1.2982 1.2640 1.2390 1.2068 

16 1.4002 L3515 1.2982 1.2640 1.2390 1.2068 

8 1.4071 1.3607 1.3096 1.2773 1.2546 1.2262 

Block Size (bytes) w/ 
One Singleword Bus 

4 1.4576 1.4440 1.4348 L4238 1.4212 1.4201 

8 1.4057 1.3651 1.3381 1.3201 1.2982 1.2928 

16 1.4002 1.3515 1.2982 1.2640 1.2390 1.2068 

32 1.4443 1.3802 1.3233 1.2618 1.2240 1.1945 

One Doubleword Bus 
4 1.2527 1.2392 1.2303 1.2196 1.2170 1.2160 

8 1.2067 1.1683 1.1423 1.1257 1.1048 1.0998 

16 1.2328 1.1955 1.1543 1.1271 1.1086 1.0865 

32 1.2764 1.2290 1.1900 1.1454 1.1176 1.0982 

Two Buses 
4 1.2155 1.2017 1.1923 1.1812 1.1785 1.1774 

8 1.1634 1.1231 1.0961 1.0782 1.0563 1.0509 

16 1.2002 1.1634 1.1231 1.0961 1.0782 1.0563 

32 1.2450 1.2002 1.1634 1.1231 1.0961 1.0782 

Table 4-7. TIBIPB Effective Access Times. 

Parameters not listed match those of the SPUR TIB/PB, described in Section 4.3.1. 

locality, which states that if block n is in use, other blocks spatially near it, such as blocks n-1 and n+l, 

are more likely than otherwise to be in use. If blocks are randomly mapped to S sets, then the probabil

ity of two blocks in simultaneous use mapping to the same set is liS. Selecting the set with low-order 

bits reduces this probability since blocks n-1, n and n+l never map to the same set. Selecting a TIB set 

is different from selecting a cache set, since TIB blocks are not aligned and therefore have no block 

offset. Consequently, the low-order bits of a word address (bits 2 and above of a byte address with LSB 

0) can be used to select the set It is not clear that selecting with bits 2 and above is optimal, however, 

since doing so prevents branch targets in adjacent words from colliding, which is unlikely in any case. 

For the reason I consider selecting a TIB set with higher-order bits. The only other data on this subject 

that I am aware of is in [Low87]. They find that beginning the index with bit 2 is slightly preferred to 

beginning it with bit 4, but that all TIB miss ratio differences are less than five percent 

Similarly, our results show that selecting a TIB set with bits beginning at bit 2, 3 or 4 yield com

parable performance in direct-mapped TIBs, but beginning with bit 5 produces inferior results, particu

larly for large TIBs (see Figure 4-15). Since the TIB implementation cost is not affected by which bits 

select sets, there is no reason not to use the bits that yield the minimum effective access time. I find that 

256-byte (16-block) and 512-byte TIBs should be indexed with bit 3 and above, lK- and 2K-byte TIBs 

with bit 2 or bit 3 and above, and 4K- and 8K-byte TIBs with bit 2 and above. 



• 

T 
I 
B 

M 
i 
s 
s 

R 
a 
t 
i 
0 

0.70 ···-------------------·-r··----------------------
1 

0.60 ------------ -----------r-----------------------, 

0.50 __________________ ---r----------------------
1 

0.40 .•••••••......••.••••••. ········-············-, 

E 
f 
f 
e 
c 
t 
i 
v 
e 

147 

:: ::·::~--:~----~1~:~~:~::~:~::·1 
130 ----------······ i ------------··--: 

0.30 ·-················-····-;--····· ············-j 
A 
c 
c 
e 
I 
I 

l lwo 
120 -------------··r·-----------

1 0.20 -·······················t··················· ···t VG 

0.10 ······-----------,-----------------, 

0.00+------i------i 
100 1000 10000 

TIB Size (bytes) 

T 
i 

m 
e l.IO ----------------r·-------------~ 

1.00+------i------i 
1 00 1000 10000 

TIB Size (bytes) 

Figure 4-14. Averages for SPUR TIB. 

This figure shows demand TIB miss ratio (left) and TIB/PB effective access time (right) versus TIB size. Effective 

acces~ time results assume a 1-cycle hit. 2-cycle miss penalty and a constant cycle time regudless of TIB size. 

Results show large TIBs may not be worth implementing since doubling TIB size only causes a 2 to 4 percent rela

tive improvement in effective access time. Relative improvements in effective access time are smaller than relative 

improvements in TIB miss ratio since the latter does not include the one-cycle used to access all instructions, or 

stalls caused by data references interfering with instruction fetches and prefetches. 

Most simulations in this section assume an unbounded PB. Results in Table 4-7 show that TIB 

effective access times are indeed insensitive to PB sizes of 16 bytes and larger, since that size is 

sufficient to enable prefetching from a single-cycle external cache to stay ahead of a sequential instruc

tion stream. Consequently, ignoring PB size is justified. Grohoski and Patel reached a similar conclu

sion [Groh82]. 

4.3.2.2. Off-Chip Bandwidth 

As with regular IBs, changes in external bus (and cache) structure greatly affect effective access 

time with TIBs by altering the available off-chip bandwidth. Figure 4-16 displays results with one sin

gleword bus, one doubleword bus, and two singleword buses. Results with two doubleword buses are 

not shown since they are exactly the same as those of two singleword buses. Increasing the width of a 

single bus improves effective access time about 12 percent, independent of cache size by enabling the 

prefetching to almost always stay ahead of sequential instruction references. With one singleword bus, 

0.1999 cycles per instruction are lost by the prefetch buffer associated with a 256-byte TIB waiting for 

uninitiated prefetches, uncompleted prefetches and data references. With a doubleword bus, these 

delays are reduced by a factor of 6 to 0.0325 cycles per instruction. Doubling the number of buses 

further improves effective access time by 2 to 3 percent by reducing the prefetch buffer delays to zero. 

With two buses, either single or doubleword, the prefetch buffer always stays two instructions ahead of 

a sequential instruction stream. 

Results so far have assumed that all TIB blocks contain 16 bytes (four instructions). Figure 4-17 

shows that this design choice is a good one when one singleword bus is used. The effective access time 

for a TIB with 4-byte blocks is poor, because a one-cycle stall is necessary on all TIB hits. The perfor

mance with 8-byte blocks is better since no stalls happen on TIB hits. This TIB block size, however, is 

too small to let the pre fetcher get ahead of the sequential instruction stream; consequently, one cycle is 



T 
I 
B 

M 
i 
s 
s 

R 
a 
t 
i 
0 

0.80 ··----------------------1·-----------------------l 

0.70 ·-------~:.~-----------[------------------------j 
\\ ~ : 

0.60 ----------- ~-~--------f------------------------1 " ~,.. : : 

0.50 ______________ \_ ~~:~,----------------------~ 
~- i ·-.... l 
'· : ~.. : ' . ··.. : 

0.40 -----------------------, ------------.. :::::;ls 
: ·, : 

0.30 ----------------------+·-\~ --------------j 
i ' i : ~ : 

0.20 --------·---------------t-------------'1:·:· --·! 4 
i ~-"""" :_3 
: 'i:!7 

0.10 _ -----------------------r-----------------------
1 

0.00+------t------i 
100 1000 10000 

TIB Size (bytes) 

E 
f 
f 
e 
c 
t 
i 
v 
e 

A 
c 
c 
e 
I 
I 

T 
i 
m 
e 

148 

·~ ·····-·---·····T········-----.. -·l 
1.40 -------- ~::·--------1------------------···---l 

~. l i 
\ ·-.. i i ·-. .. .,____ l 

.. , : ...... : 
1 30 ..................... : ............ :. .. :·······----i 
. ·a. ...•. cJ..s 

: '.. 0 

i .....: : : .. ,.. : 
1.20 ·-······--·······:------~"' : •, 

,_,. ----····--······T-·········-·-··! 
1.00+------t-----.... 

100 1000 10000 
TIB Size (bytes) 

Figure 4-15. Various LSB ofTIB Index. 

This figure shows demand TIB miss ratio (left) and TIB/PB effective access time (right) versus TIB size for TIB 

indexed with different bits. Labels show the least-significant bit (LSB) of each index. where 0 is the LSB of a 

byte-address. Results show indices show begin with bit 3 for 'fiBs 512 bytes (32 blocks) and smaller, with bit 2 for 

TIBs 4K bytes and larger, and with either bit 2 or bit 3 in between. 

Using one doubleword bus ("1-64") rather than one singleword bus ("1-32") reduces effective access time by 

around 12 percent Using two singleword buses ("2-32") rather than one singleword bus reduces effective access 

time by 2 to 3 percent more than doubling bus width. The effective access time with two doubleword buses (not 

shown) is exactly the same as that with two singleword buses, because neither option can be stalled by data refer

ences. 

lost every time a data reference is made. Using 16-byte blocks improves performance over using 8-byte 

blocks by preventing stalls on the first and second data references after TIB hits. Similarly, the perfor

mance for large TIBs with 32-bytes blocks is slightly better since the first six data references after TIB 

hits do not cause stalls. For small TIBs, however, the performance with 32-byte blocks is worse than 

that with 16-byte blocks, because the effect of a worse TIB miss ratio induced by the smaller number of 

larger blocks is more important than the reduced number of data stalls after TIB hits. 

Using a doubleword rather than a singleword bus improves the absolute performance for all block 

sizes (see Figure 4-16) and the relative performance of 8-byte blocks with respect to other block sizes 

(see Figure 4-18). With one singleword bus, all data references after TIB misses and some data refer

ences after TIB hits cause stalls. With one doubleword bus, the performance of all block sizes is 

improved, because the doubleword bus allows the prefetcher to get ahead of a sequential instruction 

stream so that few data references, even after TIB misses, stall the pipeline. The performance of 8-byte 

blocks is improved more than the larger block sizes, because its perfonnance with a singleword bus is 

particularly sensitive to data references. The performance with 4-byte blocks is still poor, because a 

stall occurs on every TIB hit. 

Using two singleword buses rather than one singleword bus, improves the absolute performance 

for all block sizes even more than doubling bus width by eliminating all data stalls (see Table 4-7). 

Using 8-byte blocks yields the smallest effective access time when two buses are used, because 2 

instructions are enough on TIB hits, no additional instructions are necessary to cover for data stalls, and 

the TIB miss ratio with 8-bytes is smaller than that of a TIB with fewer, larger blocks. 

The Am29000 has a hybrid external bus structure of separate data and instruction buses that share 

an address bus. The instruction bus can operate by using the address bus on every reference or just on 



T 
I 
B 

M 
i 
s 
s 

R 
a 
t 
i 
0 

0.70 -. ·--· --··--· ·--... ·----~---·· .. ··-·· ............ ! 

0.60 -----·--··-· ··-········r·------------·-······---, 
0.50 ------------------ ···-·r·--------------·-···-··1 

0.40 

E 
f 
f 
e 
c 
t 
i 
v 
e 

149 

::: ::~-~-~-~~:.:f~:~-~==~1 
130 ··---~-------·: ----·-·---·--·--·! 

0.30 -~~~=~~~~---:~:~-::::~~=:! A 
c 
c 
e 
I 
I 

1.20 ............ ~ .... JC."''··-~·-····-··············· : 1-32 ' .. , : ..... ·,: 
0.20 '~-.... ..... -~--

--~:~~-~:~:~~F~~~::~:~~--r 
T 
i 

m 
e 

. ' ........ . 
1.10 ··-····-···········-····t·····-.:·:::··---~:;c:J_ 1-64 

: .... . 
0.10 

0.00+-----...... ------t 
100 1000 10000 

TIB Size (bytes) 

1.00 
100 

Figure 4-16. Vary External Buses. 

l '12-32 

1000 10000 
TIB Size (bytes) 

This figure shows demand TIB miss ratio Oeft) and TIB!PB effective access time (right) versus TIB size for vari

ous external bus structures. The TIB miss ratio results coincide since they are \Dlaffected by the bus structure. 

Using one doubleword bus ("1-64") rather than one singleword bus ("1-32") reduces effective access time by 

around 12 percent. Using two singleword buses ("2-32") rather than one singleword bus reduces effective access 

time by 2 to 3 percent more than doubling bus width. The effective access time with two doubleword buses (not 

shown) is exactly the same as that with two singleword buses, because neither option can be stalled by data refer

ences. 

every non-sequential reference. In the latter mode, the Am29000 fetches sequential instructions by 

asserting a bit to ask for the next sequential word and then waiting for the external memory to generate 

the proper address and return the data. If the address bus is used on every instruction reference, perfor

mance is similar to having just one singleword bus; if it used only on non-sequential references, than it 

is similar to having two singleword buses. The performance of the latter case cannot be worse than that 

of two singleword buses by more than the number of TIB misses that collide with data references in a 

one singleword bus system. Since this degradation is never more than 0.0252 cycles per instruction for 

any of the TIB configurations studied, the performance difference between using AMD's bus structure 

in this mode and using two singleword buses is negligible. 

4.3.2.3. An Improved SPUR TIB 

This section's simulations show that the effective access time of the SPUR TIB (256 bytes, 16-

byte blocks, direct-mapped, one singleword bus) is 1.40 cycles per instruction, and that, as with the 

SPUR IB, the most straight-forward way to improve performance is to load instructions and data one 

doubleword bus or two separate buses. Using one doubleword bus, reduces effective access time by 12 

percent, while using two separate buses rather than one reduces effective access time by 14 percent. If 

separate buses are used, effective access time can be reduced by 3 percent by using 8-byte blocks. After 

bus width as been doubled, only small improvements are possible from increasing associativity to two

way, increasing TIB size, and reducing TIB block size. It is not clear, however, that these changes are 

worthwhile since they individually yield about a 2 percent reduction in effective access time only if 

they can be implemented without increasing the cycle time. 



T 
I 
B 

M 
i 
• I 

R 
a 
t 
i 
0 

150 

0.80 

0.70 

0.60 

o.so 

0.40 

-------- ~-~------------·i ................... ··---~ 

-........... :·~ .. ~ ........ f ....... ··-······· .. ----· j 
.. l l .. : : 

••~• e 
0 :..,:~·t ••••••• ••••• ••••••• •• •• 0 i 

... i 
............................... 

\ : \ l 

········-.:·--\ ...... i --~\, ................ 1 

1.50 

E 
f 
f 
e 
c 
t 
i 
v 
e 

A 

1.40 

............................................. i ................................................. l 
.. _ i i • .... _..__ : 

\ : ... - .. -~--__ :~---·-··-~oeo·------------·-·-·---l ·,.,_... i : 
'x:. : : 

... , : : 
·-~ : . .,..:--·-....... l 

1.30 

c 

0.30 

0.20 

' ·,, i '·b. ! 
' '. ·.. . 

................ L ... ::tt....... . .. : ......... i ' . ' .... ' 
... ~ -... ~. ·-.... ~2 

•••- 0 ••••••••••••••••---i .... ~"'-'.,,..,~: .......... aoo• •••i 

c 
e 
I 

• 
16 T 

···--····---I ""~···---~-~· 
···--··-···--·r·-·········-·'·· . " 1.20 

0.10 
•

!. .. -'::·-::.- . 
~: 

........................ , ....... -----............ 1 

0.00+-----....;.------i 

i 
m 
e 

------....... r-.................... 1 

. . . . . . 1.00..,_ _____ ... _____ ....... 

1.10 

100 1000 10000 100 1000 10000 
TIB Size (bytes) TIB Size (bytes) 

Figure 4-17. Vary Block Size w/ One Singleword Bus. 

This figure shows demand TIB miss ratio (left) and TIB/PB effective access time (right) versus TIB size for vari

ous TIB block sizes with instructions and data loaded over one singleword bus. 

Reducing TIB block size always improves TIB miss ratio, because smaller blocks permit more branch targets to be 

cached. The smaller blocks do not yield improved effective access times, however, because using smaller blocks 

makes a TIB more susceptible to prefetch stalls. The effective access time with 4-byte blocks is particularly poor, 

because one instruction is not enough to cover the latency of restarting sequential pre fetching after a TIB hit 



• 

T 
I 
B 

M 
i 
s 
s 

R 
a 
t 
i 
0 

151 

E 
f 
f 
e 
c 
t 
i 
v 
e 

A 
c 
c 
e 
s 
I 

16 
T 
i 
m 
e 

1.30 . ···---- -~~~~-----------~-------------- ----- -----~ 

~::, ! i 
'.:.., : : 
.• -t--.... i 

••. : ..... - ... - 4.4 

1.20 _________ !!\.\ ... ::-.~~~----------------------1 
'.. l \ i ·, ' \ : 

.,""- ... i 
: ............ ~...... : 
: . ',, : 
i •-.""32! 

1.10 ------------------------:---------------- ""'"'II:!-8 

1 r· 
1.00+-----....... -----t 

0.80 --------~--------------!------------------------! 

0.70 ........... \-.. ---------~-----------------·------! 
.... i ! 

o 60 ------------ -----~:.. ... L ....................... i 
. ~ ...... ~ l 

o.so ----------·,:~---- -----r\--------------------1 
\ : \ : 

0.40 --------~----~--:---- : ____ :tt:·--------------i 
' ' .. ! •·.. : ' '·: .... : 

0 30 ................ L .... :k...... .. ............ : . ' . ' •, . 
'~ -,1(, ···-._32 

: ' .. , : 
0.20 -----------------·------f--......... :......... ---i 

: ...... ~---
! .--- I 

0.10 ------------------------,------------------------1 

0.00+-----....... -----t 
100 1000 10000 100 1000 10000 

TIB Size (bytes) TIB Size (bytes) 

Figure 4-18. Vary Block Size w/ One Doubleword Bus. 

This figure shows demand TIB miss ratio (left) and TIB!PB effective access time (right) versus TIB size for vari

ous TIB block sizes with instructions and data loaded over one doubleword bus. Results show 8. 16 and 32-byte 

blocks perform comparatively. · 

4.4. IBs vs. TIBs 

Here I compare the effective access times of IBs and TIBs in systems where external cache refer

ences require one or more cycles. A comparison of IB and TIB miss ratios is not useful, because the 

latter miss ratio ignores sequential references and neither miss ratio takes into account prefetch delays 

or data interference. 

4.4.1. One-Cycle External Cache 

The IB and TIB effective access time results, heretofore presented separately, are combined in 

Figure 4-19. Two key assumptions made are (1) all buffers have the same access (hit) time, and (2) 

misses cost two cycles and prefetches require one cycle. Assumption (1) tends to make the results 

displayed in Figure 4-19 favor the buffers that would otherwise tend to have the slower access times, 

namely, larger buffers with respect to smaller ones, and TIBs with respect to IBs. All things being 

equal a TIB may have a slower access than an IB of the same size, because it has smaller blocks and 

therefore more address tags. The tag access may be slower, because larger memories often have slower 

access times. Assumption (2) implies that all external cache accesses require one cycle. Misses cost 

two cycles, because I assume a final cycle is necessary inside the CPU chip to complete a miss. 

Results with these assumptions show that TIB performance improves with respect to IB perfor

mance as buffer size in decreased or as the width or number of buses increases. With a singleword bus, 

TIB effective access times are worse than that of IBs of buffer sizes ~ 8K bytes, are comparable for 2K 

to 4K bytes, and are better at slK bytes. The small TIBs have lower effective access times than the 

small IBs, because the use of a single-cycle external cache yields a useful prefetch bandwidth of about 

one instruction per cycle, allowing TIBs to complete prefetches before instructions are needed, while 

IBs suffer the opportunity cost of caching instructions that can be prefetched without delay. As buffer 

size increases the performance of IBs improves with respect to TIBs, because, the IB opportunity cost 

decreases as most useful instructions are cached regardless. 



E 
f 
f 
e 
c 
t 
i 
v 
e 

A 
c 
c 
e 
s 
s 

T 
i 

m 
e 

1.70 ---------------------·-·r··---------------------
1 

1.60 ---------- -------------r-----------------------: 
1.50 _________________ • ---r---------- ____________ 

1 

1.40 ··-····-•:··········· . ······················-·! 
~~ : "-- . : ,~, : : 

1.30 ....................... :~:-··· ..•.•.••.•...••• ; 
': ............ : 
~ -- i ..... :' ............ 

1.20 .•••.•....•.•• :-....::····t·····'-~----··· --::X.tJ.D 
·...• ' i 

E 
f 
f 
e 
c 
t 
i 
v 
e 

A 
c 
c 
e 
I 
I 

T 
i 

152 

1.70 ··············-·········r-····-··-···············1 

1.60 .. ----· .. . . -.. ··-····· r-..... ····· ···-··· ---· "l 

1.50 . -..... ..... .. .. . . .... t ...... ----------------., 

1.40 ·····-··-.:······-·--- . ---------·-··---------··i 

1.30 

1.20 

~~ : : 
~ . . .. -, : : 
~ -,: : 

.•. ·-·-·---· .. -·--..... --"'t.:·-.• --·-····-·--·· ·i 
': ...... : i ....... _ i 
i' ..... _ tm 

····----•::········--·f····""-.:-······- .. :x., 
··-... i ' i 

:·· .......... lB 
. ·····'m't"'• 

1.10 -----------------------r-----------:--~rJ-64 
m 
e 1.10 

·--•.. ! ...._ lB 
~........ ' : ·······----·-···········:··---·s:::::;.--·"'(.:·ts 2-32 
1 ·----~-2-32 

1.00+-----....P..-----i 
100 1000 10000 

Buffer Size (bytes) 

1.00~----...... · ____ .....,.. 

100 1000 
Buffer Size (bytes) 

10000 

Figure 4-19. IB vs. TIB with Different Buses. 

This figure shows effective access time vs. buffer size for instruction buffers ("IB") and target instruction buffers 

("TIB"), which interact with external caches via one singleword bus (the default, left and right), one doubleword 

bus ("1-64", left) and two singleword buses ("2-32", right). Results asswne a I -cycle hit, 2-cycle miss penalty, 

1-cycle prefetch, and a constant cycle time regardless of buffer type or size. IBs contain 32-byte blocks whereas 

TIBs use 16-byte blocks. In practice, ihe effective access times for larger buffers may be slower than smaller 

buffers, and TIBs slower than IBs since TIBs have smaller blocks and more tags. 

Results with these asswnptions show that IBs yield inferior performance for small buffer sizes, sayS 1K bytes, but 

yield comparable (within 5 percent) or better performance ihan TIB for large buffer sizes. 

TIB performance improves with respect to IB performance as bus bandwidth increases, because 

TIBs rely more on prefetching than do IBs. TIBs need more prefetching bandwidth, because, even in the 

best case, many instructions are never cached. The TIB block used here contains up to four instructions 

at a branch target (16~bytes); therefore, prefetching is relied on to fetch the fifth and successive instruc

tions of a run before they are needed. The IB block used here contains up to eight total instructions 

(32-bytes), but on average can hold only 4.5 instructions at and after a branch target at a random align

ment (118* (1+2+3+ ... +8)). In the best case, however, subsequent instructions are resident in another IB 

block. 

Another factor to be considered when comparing an IB and TIB of the same number of bytes is 

that the TIB requires more chip area than the IB to hold its greater number of address tags and its pre

fetch buffer. A TIB with 16-byte blocks requires twice as many tags as an IB with 32-byte blocks. 

Furthermore, results in Section 4.2.2.1 imply that IB performance can be improved by doubling the 

block size to 64 bytes, yielding one quarter the tags of an TIB of the same size. For this reason, the area 

required for a IB is between that a half-size TIB and one of the same size. I compare IBs with TIB that 

have different block sizes, because the optimal block size for IBs and TIBs are different Nevertheless, 

these comparisons are reasonable, since I use effective access time but not miss ratio. 

Table 4-8 shows effective access time change that results from converting an IB to a TIB of half 

or the same size. Replacing the SPUR IB, for example, results in an performance improvement of 

between 1.7 and 10.6 percent As we will see in the next section, however, TIBs are not always supe~ 

rior, particularly when buffer sizes get bigger and external caches get slower. 



• 

Relative Effective Access Time Change 
from m (row) to Tm (column) 

1/2 Size TIB SameSizeTm 

SPURIB -7.4% -10.6% 

SPUR IB w/ -7.1 -9.9 
doubleword bus 

Improved SPUR IB -1.7 -5.1 

Table 4-8. SPUR IB vs. SPUR TIB. 

'This table shows the relative performance improvement achieved by replacing each of three SPUR IB designs with 

comparable TIB designs. The IB designs are: (1) the SPUR IB, which uses a singleword bus and contains 16 

blocks of 8 instructions (512 bytes); (2) an m of the same size, but that uses a doubleword bus; and (3) an m that 

contains 16 blocks of 16 instructions and uses a doubleword bus. 

These IBs are compared against TIBs that use the same external bus, four-instruction blocks, an unlimited prefetch 

buffer, and contain half as many or the same number of instructions. Thus, (1) is compared with 256- and 512-byte 

TIBs that use a singleword bus; (2) is compared with 256- and 512-byte TIBs that use a doubleword bus; and (3) is 

compared with 512- and lK-byte TIBs that use a doubleword bus. The area required to implement each pair of 

TIBs brackets the area needed for the corresponding IB, since the TIBs use more blocks and a prefetch buffer. 

Results show that TIBs are preferred to IBs for the buffer sizes relevant to SPUR and assuming one-cycle external 

cache access; however, the improvement of switching from an IB to TIB decreases as IB performance is improved. 

4.4.2. Multiple-Cycle External Cache 

153 

The results so far assume a single-cycle external cache. However, semiconductor trends promise 

to make single-cycle external memories more difficult and more expensive, principally because intra

chip delays are getting smaller more rapidly than inter-chip delays. Consequently, it is of interest to 

examine IBs and TIBs where instruction misses cost multiple cycles off-chip plus one cycle on-chip, 

and prefetches cost multiple cycles off -chip plus no cycles on-chip. All effective access times discussed 

in this section are presented in Tables 4-9 and 4-10. 

Two approximations are made in this analysis. First, IBs use remainder-prefetch rather than 

SPUR-prefetch, because SPUR-prefetch was designed specifically for one-cycle prefetching where a 

useless prefetch could be issued at no cost Figure 4-20 recalls results of Section 4.2.2.2, where I show 

that the performance difference between remainder-prefetch and SPUR-prefetch with a single-cycle 

external cache is negligible. Second, interference between instructions and data accesses to a multiple

cycle external cache is optimistically modeled as if the external cache is pipelined so that it can accept a 

new reference each cycle (see Table 4°2 in Section 4.1.3). Consequently results should not be extrapo

lated to systems with external caches slower than two or three cycles. 

Selected results for two- and three-cycle external caches, where my interference model is reason

able, are shown in Figures 4-21 (2 cycles for the first word and 1 cycle for subsequent words), 4-22 (2, 

2), 4-23 (3, 1), and 4-24 (3, 3). 

Two conclusions follow from these results. First, increasing the delay for the first instruction 

increases the effective access time for all configurations, but does not significantly change the relative 

positions of alternatives. A less optimistic modeling of delays induced by data interference could, how

ever, hurt the relative performance ofTIBs with respect to IBs, because TIBs require more of the avail

able prefetch bandwidth. 

Second, increasing the delay for subsequent instruction prefetches improves IB performance with 

respect to that of TIBs. Given an external cache that requires two cycles to access the first word and is 

connected to the CPU with one singleword bus, increasing external cache access time for subsequent 

words (prefetches) from 1 to 2 cycles improves IB effective access time with respect to that a TIB of the 

same size by 8 percent at 512 bytes and 11 percent at 4K bytes. 



IB Effective Access Times 

Distinguishing Size (bytes) 

Attribute(s) 256 512 1024 2048 4096 8192 

One Bus: first, next. 
1, 1 1.6059 1.5059 1.3921 1.3009 1.2322 1.1349 

One Bus: first, next. 
2,1 1.8749 L7304 1.5652 1.4336 L3342 1.1937 

2,2 2.5109 2.2599 1.9770 1.7529 1.5767 1.3337 

One Bus: first, next. 
3, 1 2.1439 1.9548 1.7383 1.5662 1.4361 1.2524 

3,2 2.7872 2.4912 2.1549 1.8894 1.6811 1.3942 

3,3 3.4094 3.0073 2.5573 2.2011 1.9189 1.5309 

One 64b Bus: first, next. 
1, 1 1.4490 1.3684 1.2814 1.2147 1.1641 1.0939 

One 64b Bus: first, next. 
2,1 1.6537 1.5362 1.4091 13118 1.2381 1.1358 

2,2 1.7380 1.6028 1.4535 13430 1.2600 1.1504 

One 64b Bus: first, next. 
3, 1 1.8583 1.7040 1.5367 1.4090 1.3120 1.1778 

3,2 1.9426 1.7706 1.5812 1.4402 1.3340 1.1923 
3, 3 2.2527 2.0265 1.7739 1.5862 1.4429 1.2562 

Two Buses: first, next. 
1, 1 1.3853 1.3151 1.2385 1.1817 1.1372 1.0778 

Two Buses: first, next. 
2,1 1.5780 1.4727 1.3577 1.2726 1.2058 1.1168 

2.2 2.2968 2.0736 1.8265 1.6358 1.4832 1.2777 

Two Buses: first, next. 
3,1 1.7706 1.6302 1.4770 1.3635 1.2745 1.1557 

3,2 2.4972 2.2386 1.9511 1.7310 1.5547 1.3186 

3,3 3.2023 2.8255 2.4104 2.0869 1.8272 1.4762 

Table 4-9. m Times w/ Multiple-Cycle External Caches. 

This table shows effective access time for ffis similar to the SPUR IB, described in the Section 4.2.1, but with 

varying buffer size, bus structure and off-chip access times. The numbers in the first co1unm give various off-chips 

delays, in cycles, for fetching a word (labeled "first") and for fetching subsequent sequential words (labeled 

"next"). 

154 



TIB Effective Access Times 

Distinguishing Size (b_y_tes) 

Attribute(s) 256 512 1024 2048 4096 8192 

One Bus: first, next. 
1, 1 1.4002 1.3515 1.2982 1.2640 1.2390 1.2068 

One Bus: first, next. 
2,1 1.5423 1.4733 1.3979 13490 1.3136 1.2692 

2,2 2.1362 2.0200 1.8933 1.8081 1.7492 1.6711 

One Bus: first, next. 
3, 1 1.6843 1.5951 1.4976 1.4339 1.3883 13316 

3,2 2.2382 2.1044 1.9583 1.8599 1.7925 1.7040 

3,3 2.9152 2.7325 2.5320 2.3986 2.3068 2.1899 

One 64b Bus: first, next. 
1, 1 1.2328 1.1955 1.1543 1.1271 1.1086 1.0865 

One 64b Bus: first, next. 
2,1 1.3426 1.2867 1.2252 1.1844 1.1568 1.1236 

2,2 1.5213 1.4448 1.3631 1.3102 1.2727 1.2335 

One 64b Bus: first, next. 
3,1 1.452A 1.3778 1.2961 1.2417 1.2050 1.1608 

3,2 1.6373 1.5420 1.4397 1.3728 1.3262 1.2757 

3,3 1.9118 1.8007 1.6872 1.6060 1.5511 1.4840 

Two Buses: first, next. 
1, 1 1.2002 1.1634 1.1231 1.0961 1.0782 1.0563 

Two Buses: first, nexL 
2,1 1.3004 1.2451 1.1847 1.1442 1.1173 1.0844 

2,2 1.9674 1.8548 1.7340 1.6516 1.5952 1.5185 

Two Buses: first, next. 
3, 1 1.4005 1.3267 1.2463 1.1923 1.1563 1.1126 

3,2 2.0676 1.9365 1.7956 1.6996 1.6343 1.5467 

3,3 2.8943 2.7040 2.4981 2.3631 2.2696 2.1485 

Table 4-10. TIB Times w/ Multiple-Cycle External Caches. 

This table shows effective access time for TIBs similar to the SPUR TIB, described in the Section 4.3.1, but with 

varying buffer size, bus structure and off-chip access times. The numbers in the first column give various off-chips 

delays, in cycles, for fetching a word (labeled "first") and for fetching subsequent sequential words (labeled 

''next"). 

155 



E 
f 
f 
e 
c 
t 
i 
v 
e 

A 
c 
c 
e 
s 
s 

T 
i 

m 
e 

1. 70 _ --------------------·-·r·----------------------
1 

1.60 ---------- ------------r------------------------~ 

-----,------------------------~ 

1.40 ---------..------------ . ------------------------i 
.. "'.. i 
~' : 
,~, .... J ! 

1.30 -------------------.... --~---·- ----------------: 
': ................ : 
i --- : :' .... _ tm 

1.20 ·······-•::·----------:----""~------- ... "X... 
·-... i .... l 

· .. : iB 

E 
f 
f 
e 
c 
t 
i 
v 
e 

A 
c 
c 
e 
I 
I 

156 

1. 70 -----------------------·r·----------------------
1 

1.60 --------- -------------r-----------------------~ 

------~------------------------1 

1.40 --------~:·····------ '------------------------1 
.... '· : : 

''x.. : : ' .. , : : 
' -,: i 

1.30 -------------------,··1t-::;:·· ---············: 
'l """'- : .. -- ·-. b 

1 ~20 D•-••••••••oo•~o•'"'""''""'..i"'"'~""''""'"'••••••g .:."X. • 
·· ..... i ... , i 

·--... : ..... tB* 
·--~--- ' : 

uo -------------------·-··-:--···...,==:::;_···~-.. :.-m 2-32 ! ··---~-2-32 

T 
i 

m 
c ~--.. ' : 

uo ···--------····-·······r····-=:=:::;.-_~-~-.;:m 2-32* i ... l_2-32* 

1.00 
100 1000 

Buffer Size (bytes) 
10000 

LOO 
100 

Figure 4-20. Actual vs. Approximate. 

1000 
Buffer Size (bytes) 

10000 

This figure shows effective access time vs. buffer size for instruction buffers ("ffi ") and target instruction buffers 

("TIB"), which interact with external cache(s) via one singleword bus (the default) and two singleword buses 

("2-32"). Results assume a 1-cycle hit, 2-cycle miss penalty (1 cycle external plus 1 cycle on-<:hip), 1-cycle pre

fetch (1 cycle external plus no cycles on-chip) and a constant cycle time regardless of buffer type or size. 

The left plot shows actual m and TIB results, while the right plot displays approximate results("*") whose ms 
use remainder-prefetch rather than SPUR-prefetch. The differences between actual and approximate results are 

negligible. 



E 
f 
f 
e 
c 
t 
i 
v 
e 

A 
c 
c 
e 
s 
s 

T 
I 

m 
e 

157 

1.90 

1.80 

1.70 

1.60 

1.50 

1.40 

1.30 

1.20 

:::~:~:~~:~:~~~F~~~~~~~:~: 
······---~---···· ···--i························j 

' ! ! .............. ,....... :························: 
.. \ i 

···········=~--"'····:-- ····················! ... ' : : ' .. ,: : 
·····················-~~---····· ·············! 

: ....... : ..... : , ......... _ : 

............. :, .. li·.::~··j······,..·..:.·~-- -:~ha· 
.... ~ ! 

........................................................... :: ... ,. ........................ '-0· ~JB• 

1.90 

1.80 
E 
f 
f 1.70 
e 
c 
t 1.60 
i 
v 
e 1.50 
A 
c 1.40 c 
e 
s 

1.30 I 

T 
i 1.20 
m 

................................ -----....................... -- ............... -........................... .. . . . . . . . . . . . . . . 
------------- --------··r··---------------------1 

-~=~:~:=:.:J=~==::::=i 
~' ' : 

········---=~---···/·· ····················j 
.. ~ .. ,: l 

.................................................. ; \. ..... _ . : 
: '................ ! 

........•............. :................ . ..... : 
···-. : A. ·...._rm• ... : .. : 

................... ~:: ... t:,--········-~---·· -iB• 

1.10 

i -.. ..... ._ ' IB 1-64* 
: ·····l:fiB 1-64* 

························t························i -
e 

1.10 

: ··...... ' i 
! ··-.... 'A.!B 2-32* 

---------------------··r··--------------·-:.:r-2-32· 

1.00+-----....... -----t 1.00+------;------i 

100 1000 10000 100 1000 10000 
Buffer Size (bytes) Buffer Size (bytes) 

Figure 4-21. 2 Cycles for First Word; 1 for Subsequent Words. 

'This figure shows effective access time vs. buffer size for instruction buffers ("IB") and target instruction buffers 

("TIB"), that interact with external cache(s) via one singleword bus (the default, left and right), one doubleword 

bus ("1-64", left), and two singleword buses ("2-32", right). Results assume an external cache requires two cy

cles for the first word fetched and one cycle for subsequent words. Results with one bus are slightly optimistic 

since some interference is not modeled. 

Results show that increasing the delay for the first word, but not subsequent words, increases all effective access 

times, but does not change the relative positions of alternative designs. 



;· ---.. ----------r----------------1 

r ------r---------1 
e ~, o o 

£0 
c 
c 
e 
s 
s 

g ........................... :.::-~ .... -- ! ---·---~~------------------.. ..! 
'· : ........ ' 

!'"· ! 
0 ~-- 0 : D-.... _ : 
: --... nB• 

;· ---------------r------------------1 

t5 ---------r-------------1 
v 
e 

R.O 
c 
c 
e 
I 
I 

' : : 
X. ' : : ..... :'&. : : 

----------·a::::~:x..x:_:. ~ ----------------------------·1 ....... ~- : 
··-.... ~- : ...... , ---... : 

: ·---~ ·---... m• 

158 

1.S 
1 

m 

~ l ! 
' : : .......... .a.....::::._.._ ....... t--··------··--·--· ........ ! l.s 

I 
m 
e 

i ....... l 

............................. i-------------::."!':.-.; ··::::-.LfiB_2-32• 

··-... .,.:...... is· 
i · ..... "'1:-------c. +m I-64 • 

i .... JlB• 
e 

1.0 
100 

! ''A,f_f-64• 

1000 
Buffer Size (bytes) 

10000 
1.0 

100 

I ~~-2-32· 

1000 
Buffer Size (bytes) 

10000 

E 
f 
f 
e 
c 
t 
i 
v 
e 

A 
c 
c 
e 
s 

T 
i 

m 
e 

Figure 4-22. 2 Cycles for First and Subsequent Words. 

This figure shows effective access time vs. buffer size for insttuction buffers and target inslrUCtion buffers interact

ing with an external cache that requires two cycles for the first word fetched and two cycles for subsequent words. 

Results show that increasing the delay for subsequent words increases the effective access times of TIBs with 

respect to IBs, making IBs attractive at smaller sizes. 

2.00 

1.90 

1.80 

1.70 

1.60 

l.SO 

1.40 

1.30 

1.20 

1.10 

: ::::: :: :::::::::: --::::r ::::: ::::::: ::::::: :::::! 
A. i i 

........... ).. .......... ; ........................ : ' : : 
\ : 

--------··--···-A.·-----i ...................... j 1<. 0 0 

.,_ \ i i 
' \ : : ................................................ , 

., \: i 
· ..... ~ i ....................................................... ~~---·-·- ............................... ! 

.... l .......... l 
o.•••••••••.,..,:'"':·~·•••••••~••••m ... 't.:':':. •• ••••• i 

• 0 ' 0 

··.. l ' ·""-tm· 
..................... ::,. ..................... : 

: ··... ' iB• 
: ....... ' 0 • ..................................... :.a..---~--m 1-64 
l ····I:nD 1-64* 
: : -

--------------------·--·r·-----------------------~ 

1.00+-----....... -----t 

2.00 

1.90 

E 
f 1.80 
f 
e 
c 1.70 
t 
i 
v 1.60 
e 

A l.SO 
c 
c 

1.40 e 
I 
I 1.30 
T 
i 1.20 m 
e 

1.10 

.. ···-~ ................ ----............................................ ----- ................ .. 
0 0 
0 0 
0 0 
0 0 
• 0 
0 0 
0 0 -.......... ......................... . .............................................................. . 
0 • 
• 0 
• 0 
0 0 
0 0 
0 0 

·--·-----~----------- ·t------------------------1 
' 0 i 

......... Ji("\'""""""""! ...................... ! 
.. , ' : : 
·," l i 

:::::::::::::::::~~~: .. :::··::::::::::::1 
: ,·~ : 

...................... : .... \,. ... :::,""~( ....... : 
···... i ' . .._l...n. 

• : ' ~pn 
- .............. ...................... :.~ .. ---~ ........... ............. "c' .... - -- ---: 

• •• o ., m• 
.... ' 0 

........................ i ... ::·-.:···----···,·---i 
; ··..... 'LlB 2-32* 

________________________ 

1 

________________ :~:== ... r-2-32* 

1.00+-----~-----"''i 

100 1000 10000 
Buffer Size (bytes) 

100 1000 10000 
Buffer Size (bytes) 

Figure 4-23. 3 Cycles for First Word; 1 for Subsequent Words. 

This figure shows effective access time vs. buffer size for insttuction buffers and target insttuction buffers, that in

teract with external cache(s) that require three cycles for the first word fetched and one cycle for subsequent 

words. 



4 ··············-······-····-···· --···········-····-······-···· 

E 
f 
f 
e 
c ' ··············--····· ···----~---··········-·········-·--··· 
I IlL, 

v 
e 

.............. 1C.. : 
....... : .......... 

A 
c ~--- i 

159 

i ----------------------r-··--------------~ 
' ·····-·:·-------------------·-···-····: 
I ... .,._. '• i i 
~ -~-~.,~ i i 

A ·-: : 
'-,-~~ i 

~ i ' =::-:.~~-- tm• 
e i ' ··-:.~"£l18 2-32" 

~ ···---------------------------~-------~"'-- ····-·······-~ -
c .... - ..... _ tm' 
e ..... .._"1L • • 

~ ·········-·······-~-1L------+·-············· ··········---~ 

T 
i 

m 
e 

............ ',: : .... .... . ...................... : 
: ····'"-=······-• m• 
: ... ······• _1-64* 

i::: ........ 

: ' : 
T l ~ l 
i l m· 

m i m 2-32* 

.......... t_l-64* 

1+-----------~----------~ 

e I ~-
1+-----------~----------~ 

100 1000 
Buffer Size (bytes) 

10000 100 1000 10000 
Buffer Size (bytes) 

Figure 4-24. 3 Cycles for First and Subsequent Words. 

This figure shows effective access time vs. buffer size for instruction buffers and target instruction buffers interact

ing with an external cache that requires three cycles for the first word fetched and three cycles for subsequent 

words. 

Results show that ms are preferred to TIBs with a three-cycle external cache, except for buffer sizes less than or 

equal to 512 bytes. 

4.5. Conclusions 

I have examined instruction memories, organized as IBs and TIBs, on single-chip RISC micropro

cessors in systems where these chips are connected to a low-latency external cache (or memory). I find: 

(1) The effective access time for IBs is affected most by off-chip bandwidth and buffer size; whereas 

TIB performance is sensitive to off-chip bandwidth, but less sensitive to buffer size. 

(2) TIBs are preferred or comparable to IBs in systems with one-cycle external caches unless buffer 

size is large (~ 8K bytes). Consequently, the TIB on the Am29000 microprocessor is a cost

effective use of on-chip memory, and the performance of SPUR can be improved by replacing the 

SPUR IB with a TIB of comparable size. 

(3) IBs are preferred or comparable to TIBs in systems with multiple-cycle external caches where pre

fetches to take more than one cycle, unless buffer size is small (~ 512 bytes). Consequently, IBs 

will be preferred to TIBs in the next generation of CMOS microprocessors, because technological 

trends are making larger on-chip memories possible, and making it more difficult to build a 

single-cycle external memory. 

These results do not directly extend to systems where RISC CPUs are attached to slow external 

caches or memories, because (1) the prefetching of sizes larger than one- or two-instruction sub-blocks 

may be preferred, and (2) my model of instruction and data interference will break down unless external 

memories are pipelined (at non-trivial expense) to accept a new reference every cycle. 

These results do not directly extend to systems with CISC CPUs, since those systems need not 

fetch an instruction per cycle. Prefetching is such systems is easier to implement, for example, since 

the results of a prefetch are rarely needed in the next cycle and can be written into the instruction 

memory during the many idle cycles between instruction fetches. 



160 

4.6. Appendix: SPUR Instruction Buffer Implementation 

The implementation of the SPUR IB began with a register-transfer-level implementation 

specification done by me in late 1984. This specification was executable, and matched the proposed 

phase-by-phase timing of the SPUR CPU. A trial VLSI implementation was started in the Spring 1985 

by students in a graduate class taught at Berkeley by Pro[ Randy Katz [Katz85]. This implementation 

was discarded, however, because of a change of technology and personneL 

The m implementation incorporated in the SPUR CPU was done by Rich Duncombe during the 

1985-86 academic year with some assistance from Shing Kong, Dave Lee, and myself [Dunc86]. Dave 

Lee also re-implemented IB control circuitry and been responsible for fixing m implementation bugs 

that arose as the IB was integrated with the execution unit and as the CPU was integrated with the exter

nal cache. The SPUR m contains 39,400 transistors and occupies 4200 microns by 6000 microns in a 

1.8-micron CMOS technology. It has an access time of 50 ns and a cycle time of 100 ns. The IB 

memory, shown earlier in Figure 4-3, is implemented in a tag array and an instruction array. The tag 

array, which holds block-valid bits and address tags, contains 16 entries of24 bits each. The instruction 

array, which holds word-valid bits and instructions, is 128 entries of 33 bits each. Them is controlled 

by two finite state machines (shown in Figures 4-25 and 4-26), which supervise fetching and prefetch

ing, respectively. 

Figures 4-27 to 4-29 show the phase-by-phase operation of the SPUR IB implementation when 

caching is enabled, but prefetching is disabled. The figures diagram a hit, ideal miss, and slow miss. 

An ideal miss is an IB miss serviced in the minimum two cycles, and therefore not delayed by a data 

reference or external cache miss. 

Figures 4-30 and 4-31 show IB operation on a hit and an ideal miss with prefetching enabled. The 

pre fetch address is reset after every IB miss to be the next word in the block. If the cache is not busy. 

subsequent words in the block are prefetched before they are needed by sequential instruction execu

tion. Prefetching is not stopped when the end of the block is encountered or when the block is full. 

Rather we implemented ''perpetual'' pre fetching, because it requires less logic. Redundant pre fetches 

need not be stopped, because prefetches are ''free'' since they never block other cache accesses. 



Reset 

NOT(Reset) 

Olherwise 

NORMAL 

NOT(Global_Suspension) 

Data_ Valid AND 
IUnit_Enable Data_ Valid AND 

NOT(IUnit_Enable) 

Equation2 
Equation 1 

MEM_PENDlNG 

Olherwise 

MEM_BUSY 
NOT(Memoty _Busy) 

Equation 1: NOT(Global_Suspension) AND (Miss OR Rush) 

AND NOT(Memory_Busy) 

Equation 2: NOT(Global_Suspension) AND (Miss OR Flush) 

AND Memory_Busy 

Figure 4-25. IB Fetch State Diagram. 

This diagram. based on Figure 3-1 in [Dunc86], shows the five-state FSM that controls instruction fetch processing. 

The m state changes to RESET if ffi-reset is asserted, regardless of the previous state. Instruction addresses are 

accepted from the execution unit only in state NORMAL. The IB stays in state NORMAL as long as hits occur. 

When a miss occurs, the m tries to initiate an instruction fetch to the external cache and moves to the state 

MEM_PENDING. H the external cache is busy (e.g., handling a execution unit data reference), the m waits in 

state MEM_BUSY until the fetch can be issued. 'The IB leaves state MEM_PENDING when the instruction is re

turned by the external cache. If the m is enabled, the miss is completed by re-trying the m access, which hits. If 

the m is disabled, state DISABLED is used to transfer the instruction to the execution unit In either case, the 

minimum delay for a miss is two cycles beyond the one cycle allotted in the pipeline for instruction fetching. 

161 



From States WAITING or PREFETCH 
NOT(Reset} AND Flush 

Otherwise 

Equation2 

Reset 

RESET 

Otherwise 

NOT(Reset) 

DISABLED 

Starting_Prefetch 

Equation 1 

Equation 1: Staning_Prefetch OR Memory _Busy 

Equation 2: NOT(Reset} AND IUnit_Enable AND Prefetch_Enable 

Equation 1 

NOT(Equation 1) 

NOT(Equation 1) 

Figure 4-26. IB Prefetch State Diagram. 

This diagram, based on Figure 3-2 in [Dunc86], shows the five-state FSM that controls instruction prefetching. 

The state changes to RESET if IB-reset is asserted. regardless of the previous state. If prefetching is disabled, the 

state changes to DISABLED and the prefetcher does nothing; otherwise, the prefetcher moves to state IDLE and 

waits for the first IB miss to occur. When it does, the prefetcher moves to state WAITING and prepares to prefetch 

subsequent words in the block of the IB miss. 'The prefetcher stays in state WAITING or moves to it whenever the 

external cache is busy (e.g., processing data fetches) or an instruction fetch miss occurs. The prefetcher stays in 

state PREFETCH or moves to it whenever the external cache is available. The prefetcher does not leave these two 

states unless the IB is reset or flushed. 

162 



II Cycle/State Phase II Tom Fromm 

1 EU sends instm addr Ox100 

!.NORMAL 
2 IB detects hit 

3 IB sends instm(Ox100) to EU 

4 

Figure 4-27. IB Hit. 

This figure diagrams the phase-by-phase activity of the SPUR m implementation on an m hit to address Ox100. 

An IB hit takes two clock phases or half of a cycle. In phase 1, them precharges bit lines in the instruction array 

and latches the instruction address from the execution unit. In phase 2 the instruction and tag arrays are read, and 

the hit/miss is determined. In phase 3, the IB sends an instruction or MISS to the execution unit. "MISS" is a 

32-bit instruction that causes the execution unit pipeline to continue requesting the same instruction. 

This diagram assumes that prefetching is disabled. When it is enabled. phase 3 is used to precharge instruction ar

ray bit lines, and phase 4 is used to write prefetched instructions into the instruction array. The same timing -

precharge, read, precharge, write -- is used in SPUR's register file. 

II Cycle/State Phase II Tom FromiB 

1 EU sends instm addr Ox100 

!.NORMAL 
2 m detects miss 

3 Cache not busy IB sends MISS to EU 

4 IB sends OxlOO to Cache 

1 m ignores new instm addr 

2. MEM_PENDING 
2 m waitingfor Cache 

3 Cache sends instm(Ox100) to MDR IB sends MISS to EU 

4 IB loads instm(Ox100) from MDR 

1 m ignores new instm addr 

3.NORMAL 
2 IB retrys and hits 

3 IB sends instm(Ox 1 00) to EU 

4 

Figure 4-28. Ideal IB Miss. 

IB misses cause a delay of at least two cycles. This diagram shows the minimum m miss delay, which occurs 

when the external cache is available and can return the instruction word in one cycle. The instruction address 

(OxlOO) is sent to the external cache by the end of cycle 1, phase 4. The instruction word is latched in a memory 

data register (MDR) near the CPU's data pads at the end of cycle 2, phase 3. The instruction is written into the in

struction array in the next phase, and the m access is retried in cycle 3. 

163 



II Cycle/State Phase II ToiB FromiB 

1 EU sends instm addr OxlOO 

l.NORMAL 
2 IB detects miss 

3 Cache bu_!Y IB sends MISS to EU 

4 IB cannot send addr to Cache 

1 IB i211ores new instm addr 

2.MEM_BUSY 
2 IB waiting for Cache 

3 Cache busy IB sends MISS to EU 

4 IB cannot send addr to Cache 

1 IB ignores new instm addr 

3.MEM_BUSY 
2 IB waiting for Cache 

3 Cache not busy IB sends MISS to EU 

4 IB sends Ox100 to Cache 

1 IB ignores new instm addr 

4. MEM_PENDING 
2 IB waiting for Cache 

3 Cache does not send instm IB sends MISS to EU 

4 

1 IB ignores new instm addr 

5. MEM_PENDING 
2 IB waitin__g_ for Cache 

3 Cache sends instm(Ox100) to MDR IB sends MISS to EU 

4 IB loads instm(Ox100) from MDR 

1 IB i211ores new instm addr 

6.NORMAL 
2 IB ret.rys and hits 

3 IB sends instm(Ox100) to EU 

4 

Figure 4-29. A Slow lB Miss. 

An IB miss can cause a delay of greater than two cycles. One or more MEM_BUSY cycles are added to the time 

of an IB miss whenever the external cache is not immediately ready to accept an instruction fetch. e.g., because it is 

handling a data fetch. One or more MEM_PENDING cycles can be added to the minimum one whenever the 

external cache takes longer than one cycle to handle an instruction fetch, e.g., because of a cache miss. Cycles 2 

and 4 may be repeated an arbitrary number of times. 

164 

II 



II Cycle/State Phase II Tom From IB 

1 EU sends instm addr Ox100 

I. NORMAL 2 IB detects hit 

Pre[ etch= 3 Cache sends instrn(Oxl34) to MDR IB sends instm(OxlOO) to EU 

PREFEICH 4 Pre[ etcher loads irastrn(O.x84) from Pre[ etcher sends Ox88 to Cache 

MDR 

Figure 4-30. IB Hit with Prefetching. 

This figure diagrams the phase-by-phase activity of the SPUR IB implementation for an IB hit with prefetching en

abled. The IB access (to address Ox100) and hit proceed as they did in Figure 4-26. Prefetch operations, shown in 

italics, proceed in parallel with the IB fetch. In phase 4, the prefetcher sends a prefetch address to the external 

cache if that cache is not busy. The prefetch address, Ox84 here. is a function of the address of the last miss, and 

may be unrelated to the address of the current reference, OxlOO. At the end of the next phase 3, the prefetcher 

latches a word-valid bit and an instruction word. Both are written into the instruction array in the next phase 4. If 

the external cache cannot provide the prefetched instruction, probably due to a cache miss, it merely returns a 

word-valid bit set to invalid. 

II Cycle/State Phase II Tom FromiB 

1 EU sends instm addr Ox100 

LNORMAL 2 IB detects miss 

Pre[ etch= 3 Cache sends irastrn(OxlJ4) to MDR IB sends MISS to EU 

Pre[ etch 4 Prefetcher loads irastrn(Ox84) from IB sends Ox100 to Cache 

MDR 

1 IB ignores new instm addr 

2. MEM_PENDING 2 IB waiting for Cache 

Pre[ etch= 3 Cache sends instm(OxlOO) to MDR IB sends MISS to EU 

IDLE 4 IB loads instm(OxlOO) from MDR Pre/etcher sends Oxl04 to Cache 

1 IB ignores new instm addr 

3.NORMAL 2 IB retrys and hits 

Pre[ etch= 3 Cache sends irastrn(Oxl04) to MDR IB sends instm(OxlOO) to EU 

PREFEICH 4 Prefetcher loads irastrn( Oxl 04) from Pre[ etcher sends Oxl08 to Cache 

MDR 

Figure 4-31. Ideal IB Miss with Prefetching. 

This diagram shows the minimum IB miss with prefetching activity in italics. An IB miss to address Ox100 

changes the prefetch address to Ox104, the next word within the 32-byte block of OxlOO. Prefetching proceeds in 

the same block until the next IB miss. The prefetch address wrap-arounds to the beginning of the block when the 

end of a block is reached. More precisely, the prefetch address after an IB miss or prefetch to address x is 

block(x) + [(x+4) mod 32], where block(x) is x - (x mod 32). 

4.7. References 

[Adva87] Advanced Micro Devices, Am29000 User's Manual (1987). 

165 

II 



166 

[Agar87] A. Agarwal, P. Chow, M. Horowitz, J. Acken, A. Salz and J. Hennessy, On-chip Instruction Caches 

for High Performance Processors, Proc. Conf. on Advanced Research in VLSJ, Stanford (March 

1987). 

[Alpe87] D. Alpert, The National NS32532, U.C Berkeley Systems Seminar (July, 1987). 

[Chow87] P. Chow and M. Horowitz, Architectural Tradeoffs in the Design of MIPS-X, Proc. 14th 

International Symposium on Computer Architecture, Pittsburgh (June 1987). 

[Digi80] Digital Equipment Corp., VAX Hardware Handbook (1980). 

[Ditz87] D. R. Ditzel, H. R. McLellan and A. D. Berenbaum, The Hardware Architecture of the CRISP 

Microprocessor, Proc. Fourteenth International Symposium on Computer Architecture, Pittsburgh 

(June 1987). 

[Dunc86] R. R Duncombe, The SPUR Instruction Unit: An On-Chip Instruction Cache Memory for a High 

Performance VLSI Multiprocessor, Unpublished Master's Report, University of California, 

Berkeley (August, 1986). 

[Emer84] J. S. Emer and D. W. Clark, A Characterization of Processor Performance in the V AX-I1n8o, Proc. 

Eleventh International Symposium on Computer Architecture, Ann Arbor, Ml (June 1984). 

[Fuji87] Fujitsu, Advanced Information of MB86900 -- A High Performance 32-bit RISC Processor (July, 

1987). 

[Gabr85] R. P. Gabriel, Performance and Evaluation of Lisp Systems, MIT Press, (1985). 

[Gibs87] G. Gibson, Performance Estimates of Shared Memory Multiprocessors, Computer Science Division 

Technical Report UCB/Computer Science DpL 871355, University of California, Berkeley (May 

1987). 

[Good83] J. R Goodman, Using Cache Memory to Reduce Processor-Memory Traffic, Proc. Tenth 

International Symposium on Computer Architecture, Stockholm, Sweden (June 1983), 124-131. 

[Groh82] G. F. Grohoski and J. H. Patel, A Performance Model for Instruction Prefetch in Pipelined Instruction 

Sets, Proc.lnternational Conference on Parallel Processing (August 1982). 

[Henn84] J. L. Hennessy, VLSI Processor Architecture, IEEE Trans. on Computers, C-33, 12 (Dec 1984). 

[Hill84] M.D. Hill and A. J. Smith, Experimental Evaluation of On-Chip Microprocessor Cache Memories, 

Proc. Eleventh International Symposium on Computer Architecture, Ann Arbor, MI (June 1984). 

[Holg80] R. W. Holgate and R N. lbbett, An Analysis of Instruction-Fetching Strategies in Pipelined 

Computers, IEEE Trans. on Computers, C-29, 4 (April 1980), 325-329. 

[Joob85] 

[Joup86] 

[Kate83] 

[Katz85] 

[Lee84] 

[Lee87] 

[Low87] 

R Joobbami, WEAVER: An Application of Knowledge-Based Expert Systems to Detailed Routing 

of VLSI Chips, Ph.D. Dissertation, Department of Electrical and Computer Engineering, Carnegie-

Mellon University (July, 1985). 

N. Jouppi, Private Communication, Dec. Western Research Lab, (December 1986). 

M. G. H. Katevenis, R. W. Sherburne, D. A. Patterson and C. H. Sequin, The RISC II Micro

Architecture, Proc. VLS/83 Conference, Trondheim, Norway (August 1983). 

R. H. Katz, editor. Proc. of CS292i: Implementation of VLSI Systems, Computer Science Division 

Technical Report UCB/Computer Science Dpt 86/259, University of California, 

_ Berkeley (September 1985). 

J. K. F. Lee and A. J. Smith, Branch Prediction Strategies and Branch Target Buffer Design, 

Computer, 17, 1 (January, 1984), 6 ~ 22. 

D. Lee, Private Communication, U.C. Berkeley, (June 1987). 

C. Low and L. D. Rugg, Design of Branch Target Buffer and Perforamnce Comparison Against 

Instruction Cache, Unpublished CS 252 Class Project, University of California, Berkeley (May 1987). 

[McFa86] S. McFarling and J. Hennessy, Reducing the Cost of Branches, Proc. Thirteenth International 

Symposium on Computer Architecture, Tokyo, Japan (June 1986). 

[McLe82] H. R. McLellan, Jr., Instruction Prefetch Strategies in a Pipelined Processor, Unpublished Masters 

Thesis, M.LT. (circa 1982). 

[Moto84] Motorola Semiconductors, MC68020 Technical Summary, No. BR-243 (1984). 



167 

[Moto86] Motorola Semiconductors, MC68030 Technical Summary, No. BR508/D (1986). 

[Mous86] J. Moussouris, L. Crudele, D. Freitas, C. Hansen, E. Hudson, R. March, S. Przybylski, T. Riordan, C. 

Rowen and D. V. Hof, A CMOS RISC Processor with Integrated System Functions, Proc. Compcon 

(Spring 1986). 

[Patt82] D. A. Patterson and C. H. Sequin, A VLSI RISC, Computer, 15, 9 (September 1982), 8-21. 

[Patt87] D. A. Patterson, Private Communication, University of California, Berkeley, (October 1987). 

[Rau77] B. R. Rau and G. Rossmann, The Effect of Instruction Fetch Strategies Upon the Performance of 

Pipelined Instruction Units, Proc. Fourth Symposium on Computer Architecture (June 1977), 80-89. 

[Siew82] D.P. Siewiorek, C. G. Bell and A. Newell, Computer Structures: Principles and Examples, McGraw 

Hill (1982). 

[Smit78] A. J. Smith, Sequential Program Prefetching in Memory Hierarchies, Computer, 11, 12 (December 

1978), 7-21. 

[Smit82] A. J. Smith, Cache Memories, Computing Surveys, 14, 3 (September, 1982), 473- 530. 

[Smit83] J. E. Smith and J. R. Goodman, A Study of Instruction Cache Organizations and Replacement 

Policies, Proc. Tenth International Symp(Jsium on Computer Architecture, Stockholm, Sweden (June 

1983), 132-137. 

[Smit85] A. J. Smith, Cache Evaluation and the Impact of Workload Choice, Proc. Twelfth International 

Symposium on Computer Architecture (June 1985). 

[Smit87] A. J. Smith, Line (Block) Size Choice for CPU Caches, IEEE Trans. on Computers, C-36, 9 

{September 1987). 

[Tayl87] G. Taylor, Design and Evaluation of the SPUR Lisp Architecture, Ph.D. Thesis, University of 

California, Berkeley (expected Fall1987). 

[Term83] C. J. Terman, Simulation Tools for Digital LSI Design, Laboratory for Computer Science Technical 

Report #304, MIT (September, 1983). 

[Whol85] S. Wholey, S. E. Fahlman and J. Ginder, Revised Internal Design of Spice Lisp, Department of 

Computer Science Technical Report, Carnegie-Mellon University (January, 1985). 

[Zorn87] B. Zorn, P. Hilfinger, K. Ho and J. Larus, Internal Design of the SPUR Lisp System, Computer 

Science Division Technical Report UCB/Computer Science Opt 87/373, University of California, 

Berkeley (September 1987). 


