Control Implementation for the SPUR Floating Point Coprocessor

Debby Jensen

Master’s Report
Computer Science Division
University of California, Berkeley

ABSTRACT

SPUR is a RISC-based multiprocessor workstation being designed to facilitate
parallel-processing research. Typically, RISC architectures achieve low performance
levels for floating-point intensive applications, as the multiple-cycle floating-point
instructions are not implemented in the hardware. In an attempt to raise these perfor-
mance levels, the SPUR system provides floating-point support through an extended
instruction set and a tightly-coupled floating-point coprocessor. This report documents
the implementation of the control unit for this floating-point coprocessor; describing the
coprocessor interface, control PLA definitions, the finite state machine, the dynamic
cycle counter, the 4-stage load-store pipeline, and the random logic generated to drive the
datapath modules. Implementation techniques and trade-offs are discussed; including
design strategy, area and speed optimization, noise margin considerations, and delay
balancing of the datapath control signals for clock skew minimization. Finally, simula-
tion results obtained using SPICE, CRYSTAL, and MOSSIM are presented. The chip is
implemented in 2-layer-metal 2um CMOS technology, and uses a four-phase non-
overlapping clock with a target cycle time of approximately 100ns - 140ns.

August 26, 1987

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
26 AUG 1987 2. REPORT TYPE 00-00-1987 to 00-00-1987
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Control Implementation for the SPUR Floating Point Copr ocessor £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of California at Berkeley,Department of Electrical REPORT NUMBER
Engineering and Computer Sciences,Berkeley,CA,94720

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONY M(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

SPUR isa RISC-based multiprocessor workstation being designed to facilitate parallel-processing
research. Typically, RISC architectures achieve low performance levelsfor floating-point intensive
applications, as the multiple-cycle floating-point instructions are not implemented in the hardware. In an
attempt to raise these perfor mance levels, the SPUR system provides floating-point support through an
extended instruction set and a tightly-coupled floating-point coprocessor. Thisreport documentsthe
implementation of the control unit for thisfloating-point coprocessor; describing the coprocessor interface,
control PLA definitions, the finite state machine, the dynamic cycle counter, the 4-stage load-stor e pipeline,
and therandom logic gener ated to drive the datapath modules. Implementation techniques and tr ade-offs
arediscussed; including design strategy, area and speed optimization, noise margin consider ations, and
delay balancing of the datapath control signalsfor clock skew minimization. Finally, smulation results
obtained using SPICE, CRYSTAL, and MOSSIM are presented. The chip isimplemented in 2-layer-metal
2um CM OStechnology, and uses a four -phase non-overlapping clock with atarget cycle time of
approximately 100ns-140ns.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18.NUMBER | 19a. NAME OF
ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Same as 82
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Control Implementation for the SPUR Floating-Point Coprocessor

1. INTRODUCTION
1.1. SPUR System Overview
1.2. Floating-Point Coprocessor
1.2.1. Coprocessor Interface
1.2.2. Extended Instruction Set and Data Formats
1.2.3. FPU Floorplan

1.3. Report Outline

2. INTERFACE CONTROL UNIT
2.1. Control Unit Overview
2.2. PLA Partitioning
23. Cycle Counter
2.4. Load-Store Pipeline
3. DATAPATH CONTROL UNIT
3.1. Datapath Modules
3.1.1. Exponent Unit
3.1.2. Fraction Unit
3.1.3. Multiply-Divide Unit
3.2. Control Implementation Considerations
3.2.1. Layout Strategy
3.2.2. Alternative Implementations
3.2.2.1. Pseudo-nMOS
3.2.2.2. Full Static CMOS
3.2.23. Comparison

3.2.3. Logic Definition and Conversion

3.2.4. Clock Skew Considerations

4. SIMULATION AND VERIFICATION

4.1. CAD Environment

4.2. Simulation Results
§. CONCLUSIONS
6. ACKNOWLEDGEMENTS
7. REFERENCES
APPENDIX A: PLA DEFINITIONS
APPENDIX B: SCHEMATICS
APPENDIX C: LAYOUT PLOTS
APPENDIX D: CONTROL SIGNAL DEFINITIONS AND IMPLEMENTATION
APPENDIX E: DATAPATH CAPACITANCES, BUFFER SIZES, AND DELAY TIMES

APPENDIX F: SIMULATION DATA

Table 1-1
Table 2-1
Table 2-2
Table 2-3
Table 24
Table 3-1
Table 3-2

Figure 1-1
Figure 1-2
Figure 1-3
Figure 14
Figure 2-1
Figure 2-2
Figure 2-3
Figure 24
Figure 2-5
Figure 3-1
Figure 3-2
Figure 3-3
Figure 34
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 4-1

List of Tables

SPUR Extended Floating-Point Instruction Set
Comparison of Control PLA Delay Versus Size

Sum and Carry Definition

P-Channel Width Versus Carry Propagation Delay
Comparison of Latch Circuit Parameters

Comparison of Pseudo-nMOS Versus Full Static CMOS
SPICE Delays for Common Circuit Configurations

List of Figures

SPUR System With Floating-Point Coprocessor
Coprocessor Interface Communication

FPU Data Formats

FPU Floorplan

Control Unit Block Diagram

State Transition Diagram

Cycle Counter Block Diagram

5-Bit Increment Implementation

Load-Store Pipeline Block Diagram

Exponent Datapath

Fraction Datapath

Multiply-Divide Datapath

Pseudo-nMOS Design Style

Full Static CMOS Design Style

Equivalent Representations of cm-latch-master
Equivalent Representations of cm-latch-slave

Typical Clock Skew Example With Non-Overlapping Clocks

CAD Tools Used in the Control Development Cycle

10
13
14
16

1. INTRODUCTION

1.1. SPUR System Overview

SPUR (Symbolic Processing Using RISCs) is a shared-memory multiprocessor being designed here
at Berkeley [7] to apply the RISC (Reduced Instruction Set Computer) concept 1o a parallel-processing
workstation. The basic SPUR system consists of 6 to 12 identical processors; each with a custom 32-bit
central-processing unit (CPU), a 128K -byte instruction and data cache and controller, and a floating-point
coprocessor (see Figure 1-1). Each of the processors communicates through a global shared memory
which, along with a single shared bus, simplifies parallel programming by eliminating the problem of
specifying complex processor interconnections. Like it’s predecessors, the SPUR CPU follows the typical
RISC philosophy of (approximately) one-cycle pipelined execution, register-register operations with load-

store accesses to memory, hard-wired control, and a large register file with overlapping windows.

FLOATING-POINT
COPROCESSOR

Figure 1-1 SPUR System With Floating-Point Coprocessor

RISCs evolved as a way to circumvent the problems inherent in microcoded control without
sacrificing speed, efficiency, and simplicity of design. In order to develop an efficient processor with one-
cycle execution, instructions are limited 1o register-register operations with a few simple addressing modes.

The most commonly executed operations are optimized and placed in the hardware while less frequently

-2-

executed operations, or multiple-cycle instructions, are implemented using software routines. Executing
multiple-cycle floating-point instructions in software results in low performance for floating-point intensive
applications [15]. One goal of the SPUR project was to increase this performance level by providing a

floating-point cOprocessor.

1.2. Floating-Point Coprocessor

The SPUR floating-point coprocessor implements the IEEE 754 standard without microcode by exe-
cuting the most common functions in hardware and trapping to software to handle less frequent operations
(such as transcendentals) and exceptions. The possible exceptions which can be detected [1] include:
invalid operation, overflow and underflow, divide by zero, and inexact result due to rounding. The IEEE
standard defines six different data types [8]: normalized, denormalized, zero, affine infinity, quiet Not a
Number, and signalling Not a Number. The normalized and zero types can be implemented entirely in

hardware, while the other four types are handled at least partially in software.

The floating-point coprocessor is tightly coupled 1o the SPUR CPU [6], which means that the pres-
ence of the coprocessor is transparent to the programmer, who sees only the extended instruction set. That
is, the coprocessor is a feature of the implementation of the SPUR system, not the architecture. If a
floating-point instruction is encountered and a coprocessor is present in the system, the instruction will be
executed by the coprocessor; otherwise it will be implemented in software. The CPU handies all of the

communication details at the hardware level through the coprocessor interface.

1.2.1. Coprocessor Interface

In order to improve floating-point performance through the use of an external coprocessor, it is
essential that the overhead of the data transfer between the central processor and the coprocessor be
insignificant in relation to the speed-up provided by the coprocessor. Several features of the SPUR copro-
cessor interface were designed to minimize this overhead [1]. In particular, the floating-point unit (FPU)
can operate concurrently with the CPU, FPU Joads and stores can be executed concurrently with arithmetic

FPU operations, and a 64-bit data bus is provided to transfer data directly between the cache and the FPU

(under control of the CPU, which calculates the effective memory address).

CACHE CONTROLLER CACHE

Tag-Maich

Data-May-Valid & U DataBus

Data-1s-Valid ==

fpuNewlInstr
1

fouOPCODE

7

fouRs2

4

fpuRS1
H

CPU kD FPU

L]

fpuSuspend

1

fpu-BUSYpin

1

fpu-EX’CEPpin
1

fpu-BRT/Fpin FPSW<15>

————————

Figure 1-2 Coprocessor Interface Communication

Figure 1-2 shows the interface signals used for communication between the CPU and the FPU,
including the three cache signals and data bus used in data transfer. Assuming no misses occur, the CPU
receives and decodes the next instruction from its on-chip instruction buffer. The CPU asserts the
fpuNewlnstr signal if the decoded instruction is a floating-point load or store instruction, or if it is an arith-
metic floating-point instruction and the FPU is not currently busy executing an arithmetic operation. The
CPU stalls if an arithmetic instruction is decoded while the FPU is busy. The assertion of the fpuNewlInstr
signal causes the FPU to latch the instruction opcode and register specifiers into the instruction register,
where they are again decoded and the instruction is executed. The addition of a 4-stage load-store pipeline
(see Section 2.4) and 15 dual-ported floating-point registers allows floating-point loads and stores to be
executed concurrently with arithmetic floating-point operations. The fpuSuspend signal allows the CPU w0

suspend all FPU memory operations, and is an input to the FPU internal finite state machine. Floating-

-4-

point exceptions are detected and handled by the CPU when the fpu-EXCEPpin line is asserted. Also, as
the CPU fetches the instructions and maintains the program counter, the fpu-BR-TiFpin is needed to indi-

cate the result (and branch direction) of a floating-point compare operation.

1.2.2. Extended Instruction Set and Data Formats

The extended floating-point instruction set [2,6] is shown in Table 1-1. Maintaining the RISC philo-
sophy, the instruction set contains only register-register arithmetic instructions and load-store memory
operations. All of the arithmetic operations except multiply and divide require four cycles. The multiply
and divide instructions are implemented using iterative algorithms (See Section 3.1.3) and thus take 9 and
22 cycles, respectively. Loading data from the cache into the FPU requires only one cycle, while storing

data into the cache from the FPU takes two cycles.

Table 1-1 SPUR Extended Floating-Point Instruction Set

Instruction Type Instruction Syntax Instruction Semantics Cycles
ARITHMETIC FADD RdRslRs2 Rd <- Rsl +Rs2 4
ARITHMETIC FSUB Rd.Rs1.Rs2 Rd <-Rsl -Rs2 4
ARITHMETIC FMUL RdRs1Rs2 Rd <-Rsl *Rs2 9
ARITHMETIC FDIV Rd.Rs1 Rs2 Rd <-Rs1/Rs2 22
ARITHMETIC FABS RdRs1,0 Rd <- Rsl;sign<-0 4
ARITHMETIC FNEG Rd,Rs1,0 Rd <- Rsl; sign <- -sign 4
COMPARE FCMP cond,Rs1,Rs2 FPSW(cond) <- result 4
MOVE FMOV RdRs1,0 Rd <- Rsl 4
CONVERT CVTS Rd.Rsl1,0 Rd(sgl) <- Rsl(ext) 4
CONVERT CVTD RdRsl,0 Rd(dbl) <- Rs1{ext) 4
LOAD LD_SGL Rd,Rs1.RC Rd <- MRs1+RCO) 1
LOAD LD_DBL RdRs1RC Rd <- M(Rs1+RC) 1
LOAD LD_EXT1 RdRs1 RC Rd <- M(Rs1+RC) 1
LOAD LD_EXT2 Rd.Rs1 RC Rd <- M(Rs1+RC) 1
STORE ST_SGL Rs2,Rs1,5C Rs2 -> M(Rs1+SC) 2
STORE ST_DBL Rs2Rs1,SC Rs2 -> M([Rs1+5C) 2
STORE ST_EXT! Rs2,Rs1,SC Rs2 -> M(Rs1+5C) 2
STORE ST_EXT2 Rs2,Rs1,SC Rs2 -> MRs1+SC) 2

As shown in the table, there are four separate types of load and store instructions. This is because
single, double, and extended data formats may be specified (see Figure 1-3), and in the case of the extended
format a separate load/store instruction is required for each 64-bit word. Although data may exist in
memory in any of the above formats, only the extended format is actually implemented in the hardware.

Therefore, when data in the single or double format is loaded into the FPU, it is automatically converted t0

-5-

the extended format by unpacking the exponent and fraction and assigning them to the extended fields, and
setting tag bits to specify one of the six IEEE data types. To store data from the FPU into memory in the
single or double format requires that the proper convert instruction be used in order to convert the data

from the extended format into the desired format before the store is implemented.

swore [Tomae meman 17777777777
DOUBLE : D(kmx: FRACTION<S10> .
extexvep (ooem /W 1/ /771177177

Figure 1-3 FPU Data Formats

1.2.3. FPU Floorplan

The basic structure of the floating-point chip is depicted in Figure 1-4. The FPU consists primarily
of four main modules: the exponent (EXP), fraction, and multiply-divide (MULDIV) blocks, which consti-
tute the datapath; and the control module, which is the focus of this report. The control unit latches and
decodes incoming floating-point instructions, using a combination of PLAs and random logic 10 generate

the necessary signals to control the datapath.

The main section of the control unit consists of the control programmable logic arrays (PLAs), a
cycle counter, and interface logic, whereas the logic which generates the individual datapath control signals
are located in the random logic strips in the proximity of the datapath block which they are controlling.
The inputs to this logic are generally routed directly from the main control block, though in some instances
these inputs come from other portions of the datapath. The outputs of this logic are then individually buf-

fered to drive the datapath.

The floating-point chip is implemented in 2um CMOS technology with two metal layers, where the

CONTROL

FRACTION MULDIV

Figure 1-4 FPU Floorplan

power supply and data lines run horizontally in metal-2 and the control lines run vertically in metal-1. The
entire FPU design is implemented assuming a four-phase non-overlapping clock, where the target cycle

time is approximately 100ns - 140ns with a non-overlap time of 5ns - 10ns between each phase.

1.3. Report Outline

As stated above, this report focuses on the implementation of the control unit for the SPUR floating-
point coprocessor. When I joined the project this year, much of the control was already specified at the
functional level and had been simulated using SLANG [18,19], but no control had been layed out. This
report documents the control layout completed for this project, beginning with a description at the func-
tional level and progressing down to the low-level circuit details, including alternative implementations,

functional verification, and simulation results.

-7-

Chapter 2 describes the main control block and the interface control, starting with an overview of the
entire control unit. The second section describes the three PLAs central to the control unit design. This
section is followed by a discussion of the implementation of the cycle counter. The last section of this

chapter is centered on the design of the load-store pipeline.

Chapter 3 revolves around the datapath, including a description of the main datapath modules and the
random logic used to control the modules. The first sections of this chapter describe the operation of the
three datapath modules; the exponent, fraction, and multiply-divide units. The next sections discuss the
layout strategies considered for the random control logic, including layout structure and regularity, speed
optimization, and area minimization. This discussion is concluded with a comparison of the two alternative
methods actually implemented. The following section deals with clock skew considerations for the control

lines, including capacitance extractions of the datapath and individualized buffer sizing techniques.

The first section of Chapter 4 presents an overview of the CAD environment, outlining the various
simulation tools employed and the interface between the tools. The following sections present the overall
simulation results obtained using these tools including, when applicable, a comparison between the various
tools.

Chapter 5 summarizes the work completed, providing conclusions and suggestions for future
research. This includes interesting points discovered, lessons leamed, and suggested paths to follow/avoid

in future work. The following two chapters contain acknowledgements and references.

A lengthy appendix is attached which is broken into six main parts. Appendix A defines the inputs
and outputs of the three control PLAs. Appendix B includes cell schematics and documentation which is
referenced in this report. Appendix C includes the layout plots of most of the unique cells incorporated in
the control unit, ranging from single cell plots up to a plot of the entire floating-point control unit Appen-
dix D documents the control signal definitions and their implementation. Tables of the extracted capaci-
tances for each of the datapath modules, including buffer sizes and total delay times, are given in Appendix

E. Finally, Appendix F contains source files for each of the simulators.

2. INTERFACE CONTROL UNIT

2.1. Control Unit Overview

A simplified block diagram of the control unit is shown in Figure 2-1. New floating-point instruc-
tions are latched on the chip in clock phase 3. The following phase, the instruction PLA decodes the
opcode from the instruction latch, and the register destination is latched into the first stage of the load-store
pipeline (see Figure 2-5), along with load-store specifiers in the case of a load or store instruction. The 4-
stage pipeline allows the FPU to execute load-store operations concurrently with the multi-cycle arithmetic
operations, as the required information can be latched into the pipeline every cycle. If an arithmetic opera-
tion is received, and the FPU is not currently busy executing a previous arithmetic operation, the operation
type is latched into the arithmetic ops register, where it serves as an input to the arithmetic PLA. Using a
3-bit state register and a PLA, the intemnal finite state machine records the current state of the FPU (see Fig-
ure 2-2) and maintains the fpuBusy signal along with various other signals. The cycle counter keeps track
of the current instruction cycle dependent on the state of the FPU, and is decoded by the arithmetic PLA.
Outputs of the arithmetic PLA, cycle counter, finite state machine, and load-store pipeiine serve to generate

the random control signals required by the datapath modules.

2.2. PLA Partitioning

As shown in Figure 2-1, three PLAs form the core of the control unit: the instruction PLA, the arith-
metic PLA. and the PLA in the internal finite state machine (IFSM). Each of the PLAs has a set of pass
gates associated with it to ensure that the inputs to the PLA cannot change unless the pass gate control is
asserted. That is, the pass gates allow the PLAs to operate only in the phase associated with the pass gate
control: in all other phases the outputs of the PLAs will be considered stable and valid. The phase of
operation for each of the control PLAs is indicated in Table 2-1. As an example, since the arithmetic PLA
is evaluated in phase 2, its outputs can be used only in phases 3 and 4 of the current cycle, and phase 1 of
the next cycle; signals needed in phase 2 must by created independent of the PLA. Furthermore, all of the
outputs of the PLAs are generated independent of clock phase. That is, if a control signal is defined as a

function of various inputs and a clock phase, the logical and of the PLA output and the clock phase must be

1
N
s
T LOAD/STORE PIPELINE
I x)
N v]
s c
T T
R ccmney 1
v (o]
c | :
1 L .:.
o A | H
N T °
c P
H H]
f
P
H a N
v___ . .
H
P [
B n
N CYQE
D] ¢
COUNTER
V V
Figure 2-1 Control Unit Block Diagram (The shaded blocks are PLAs).
implemented outside the PLA.

As mentioned earlier, the function of the instruction PLA is 1o decode the instruction opcode, which
is its only input (see Appendix A for a definition of all PLA inputs and outputs). The arithmetic PLA gen-
erates control signals for arithmetic operations, basically dependent on the type of instruction being exe-
cuted and the current cycle count of that instruction. The IFSM is used to keep track of the current state of
the FPU. The state transition diagram defining the IFSM is shown in Figure 2-2. As seen in the diagram,
the state of the FPU is dependent on its current state and the control signals ctrl-TrapRecvd, ctri-start-
arithop, ctri-fpuSuscond, and ctrl-STOP. As there are eight unique states possible, a state vector of three

bits is maintained external to the IFSM to hold the current FPU state.

-10-

Figure 2-2 State Transition Diagram

The PLAs were each simulated using CRYSTAL [13,16] to determine the worst-case delay times.
The results obtained are shown in Table 2-1, along with the corresponding PLA area. The last two
columns list the worst-case propagation delays for the three PLAs, where the first column of delays
corresponds to the worst-case times for the PLA outputs to fall from high to low measured relative to the
change in the input. Likewise, the last column corresponds to the worst-case times for the PLA outputs to
rise from low to high. The high-to-low delays are consistently the slowest among the PLAs, where the
worst-case is 11.35ns. This is suitable for use in a 20ns (minimum) phase time while still allowing the PLA

outputs to be latched within the same phase of evaluation (see Table 2-4) with an appropriate safety mar-

gin.
Table 2-1 Comparison of Control PLA Delay Versus Size
PLA Phase | Inputs | Outputs | Area (um2) | tp, (ns) | tp, (NS)
instruction PHI4 7 25 142746 11.13 993
arithmetic PHI2 18 19 180675 10.34 9.74
finite state machine | PHI1 7 7 70282 11.35 943

As seen here, there is little difference (only about 0.5ns) between the delay times although, for exam-

-11-

ple, the instruction PLA is about twice the size of the finite state machine. However, if all the PLAs had
been condensed into one big PLA the total area would have been approximately five times greater, and we
can extrapolate that the extra delay incurred would be at least 2.5ns, not counting the delays involved in the
external routing required to and from the PLA. As it is, the partitioning of the PLAs effectively minimizes

the average delay time while maintaining a logical grouping by function.

2.3. Cycle Counter

In order to keep track of the progression of the current instruction, a cycle counter has been incor-
porated as part of the control unit. For this purpose, a S-bit counter was required, since the maximum
number of cycles occurring in any FPU instruction is 22 (see Table 1-1). As shown in Figure 2-3, the cycle
value is clocked into the master latch in phase 1, and into the slave latch in phase 2. In phase 3, the current
cycle value is passed through to the increment logic, thus ensuring that the counter can be incremented only
once per cycle. If the FPU is currently busy with an instruction or starting a new instruction, and is not
suspended, the cycle value is incremented by one. Otherwise, the old cycle value is again clocked into the

master latch. The counter may be cleared asynchronously in phase 3.

Usually, the current cycle value is fed into the arithmetic PLA and is decoded by the end of phase 2.
As discussed in the previous section, this means that the decoded cycle value can only be used in phases 3
and 4, or phase 1 of the following cycle. The five cycleclock-init lines are used as inputs to random logic

which locally decodes the cycle value for control signals which are needed in phase 2.

The control signal ctri-fpuBusy is latched and stable by the end of phase 2, ctri-start-arithop by the
end of phase 4, and ctrl-fpuSuscond becomes available in phase 1 (see Figure A-B1 in Appendix B). Thus,
the critical path here is to ensure that ctri-fpuSuscond swabilizes early enough in phase 1 1o allow the incre-
mentor to work and the count value to be latched by the end of that phase. As the input to the cul-
fpuSuscond latch is stable by the end of phase 4 and the worst-case delay for the static latch is 3.0ns (see
Table 2-4), the worstcase delay for the increment logic (2nand2nand driving 0.404pF) is 2.0ns, and the
set-up time for the master latch is 3.0ns, we still have about 12ns left to actually perform the S-bit incre-

ment. (Note that this assumes a minimum specified phase time of 20ns.)

-12-

ctrl-
-m.rlll-syuixhop
ctri-fpuSuscond®
P}iIS PTI PHI2
- - ik -ch
PASS | INCREMENT MASTER SLAVE
R R cydleclock<4:0>
GATE LOGIC LATCH LATCH
cloar
u cycleclock-init<d:0>
PHI3
ctrl-cycleclock-clearcond

Figure 2-3 Cycle Counter Block Diagram

Two alternate methods of performing the increment were studied: the dynamic one shown below,
which I used, and the static carry-look-ahead type used in the fraction datapath. The latter method was
easiest 1o implement since the desired format already existed in the datapath. However, this method was
too slow to meet the above specifications, due to the overhead involved in the carry-look-ahead precondi-
tioning -- this overhead is simply too expensive when only a 5-bit increment is involved. The carry-look-
ahead logic also incurred a large area overhead. In fact, the incrementor alone using carry-look-ahead took

up almost as much space as the whole counter when implemented using the dynamic method!

The dynamic 5-bit incrementor shown in Figure 2.4 is based on the sum and carry definitions derived
from the truth table in Table 2-2. Using simple Boolean algebra, we see that the sum for a bit is the
exclusive-or of the current input and the carry into that bit, whereas the carry-out of that bit is the logical
and of the current input and the carry-in. The carry-in to the first cell is simply the output of the increment
logic. That is, if it is desired to increment the carry-in is high, and thus one is added to the current value.

Otherwise, the value remains unchanged.

-13-

Table 2-2 Sum and Carry Definition

At' Cl'n si CM
0|1 01]0 0
0 1 1 0
1 0|1 0
1 1 0 1
C. A, A, . A,
S, s, ‘ - s,

v oV

S, S

Figure 24 5-Bit Increment Implementation

A prime consideration here was the delay incurred in the dynamic carry propagation from the least
significant bit to the most significant bit through the chain of pass gates. Various p-channel sizes were
simulated using CRYSTAL to find an appropriate trade-off between layout area and propagation delay. As
seen in Table 2-3, an equivalent pass width of 2\ (8/4) results in a total delay (including the exclusive-or
delay) of 75.74ns, whereas an equivalent pass width of 12A (48/4) brings this delay below Sns. Further
increases in p-channel width result in comparatively small gains in speed. Each of the p-channel sizes were
thus chosen to be 48X, and the corresponding n-channel sizes were made 24A with no additional area
requirements. Since the mobility of p-type carriers is about 50% less than that of n-type carriers, and the

mobility of the transistor carrier is directly proportional to the current in the transistor channel, keeping the

.14 -

2:1 ratio in width between the p-channel and the n-channel serves to equalize the available currents (and
thus the delays) through both types of transistors. This ensure that in the worst case, where the inc signal
goes low late in phase 1, any carry which may have been propagated up to that point can be discharged
through the n-channel pass gates at approximately the same rate as the p-channel gates propagated the
carry. The discharge transistors ensure that no carry is propagated except during phase 1, when the actual

increment and latching occurs.

Table 2-3 P-Channel Width Versus Carry Propagation Delay

Channel (A) | Cell Size (A) | W (ns)
8 54 75.74

48 68 4.99

75 75 4.06

The implementation of the exclusive-or circuit, derived by a truth table similar to that above, is
shown in Figure A-B2 in Appendix B. The 1.7ns delay associated with the exclusive-or function could pos-
sibly be reduced, if necessary, simply by increasing the transistor widths, which are currently minimum

size.

2.4. Load-Store Pipeline

The loading of data from memory into the on-chip register file and the storing of data into memory
from the register file is handled by the load-store pipeline and its associated memory control logic. As
shown in Figure 2-5, the decode stage of the pipeline receives the load-store and register destination
specifier information in phase 4 if a new FPU instruction is signalled. The load-store information is
obtained from the instruction PLA, where it is decoded from the instruction opcode, while the register des-
tination specifier is received directly from the instruction. If the FPU is not suspended and no traps have
been received, this information is passed from one pipeline stage to the next in phase 1, allowing the pipe-
line to accept new memory information every cycle. The pipeline is suspended along with the FPU by
recirculating the current contents of the two intermediate stages through a mux rather than passing along
the contents of the previous stage. In this case, the contents of the write stage are cleared. If a trap occurs,

the two intermediate stages are cleared, effectively flushing the pipeline.

-15-

from Instruction PLA from Instruction Latch

J U S U W U S | ‘"r
RD<03>

1 1 1
Lol amil sagl st moe Meu2 Kl eg) WS lead
cloar

fpuNewlnstr* —— DECODE STAGE b |——PHI¢
14 4
317
1 ' MUX ' wte| i ctnt-fpuSuscond
T
wt-Tghecvi | SECOND STAGE I
Jqu
ECOND STAGE
S SLAVE e PH2
10 [v
d MUX Ve ctrl-fpuSuscond
T
MEMCYCLE STAGE _| |l
al-TrapRecvd s MASTER
MEMCYCLE STAGE ..
e SLAVE G PHD2
ctrl-fpuSuscond we WRITE STAGE wef—PHI
S | S—
MEMORY CONTROL LOGIC

Figure 2-5 Load-Store Pipeline Block Diagram

The implementation of the pipeline was very systematic as it contained only two basic cells: a 2:1
mux and a clearable latch. Since a dynamic clearable laich offered little time or area savings yet had ques-
tionable noise margins (see Table 2-4), full static cells were used (see Figures A-B3 and A-B4 in Appendix
B). For both the load-store pipeline and the cycle counter, I chose to maintain the 77A cell pitch for con-
sistency with the datapath modules, thus allowing me to access an existing library for many of the basic
cell forms needed. These cells required modification basically to reduce the amount of routing associated
with interconnecting the cells, some custom sizing of transistors, and simulation to verify functionality and

timing constraints. The static mux was simulated using SPICE [20] and found to have a delay time of 0.5ns

-16-

(assuming an output capacitance of 0.4pF). SPICE parameters obtained for both the static and dynamic
latches (assuming an output capacitance of 0.8pF) are listed in Table 2-4.

Table2-4 Comparison of Latch Circuit Parameters

Parameter | Static | Dynamic
tp, 3.0ns 20ns
tp, 40ns | 30nms
toensp 30ns | 30ns
taoid 1.0ns 20ns
telear 0.5ns -
Vi A" 052V
Vi S0V 423V

The memory control logic associated with the load-store pipeline uses the same random logic design

discussed in the next chapter. However, for the sake of modularity, this logic is included as part of the

load-store pipeline, as it is used by both the exponent and fraction front-ends. Detailed definitions of the

control logic and implementation can be found in Appendix D.

3. DATAPATH CONTROL UNIT

3.1. Datapath Modules

The following three sections present a brief overview of the operation of the main datapath modules:
the exponent unit, the fraction unit, and the multiply-divide unit. As seen in the simple block diagrams
given with each section, the majority of the datapath consists of only a few basic types of simple cells: mul-
tiplexors, latches, shifters, tri-state bus drivers, and adders. A few miscellaneous cells are also needed,
including the register cells and the front-end unpacking and convert logic. For the most part, this regularity
greatly simplifies layout generation and simulation.

Control logic is associated with most of the basic cells, such as select lines for the multiplexors,
clock lines for the latches, enables for the tri-state buffers, and so on. The second part of this chapter is
concerned with the generation of this control logic, including implementation methods and problems such
as speed optimization, area minimization, and clock skew. Appendix E contains detailed diagrams for each
of the datapath modules, indicating the relative placement of the control signals used for each of the basic
cells. The labels used in the diagrams are the actual names given the layout cells and their associated con-

trol.

3.1.1. Exponent Unit

A simplified block diagram of the 17-bit exponent datapath [1] is shown in Figure 3-1. The opera-
tion of the datapath is very straightforward. Data is loaded into the register file (from the bottom of the
figure), being converted to the extended format and setting data type tags if necessary. The instruction
register specifiers are used to access the current source exponents. For an add or subtract operation it is
necessary to determine which exponent is largest, so that the binary points of the numbers can be aligned.
It is important to determine this quickly, as the fraction unit cannot begin the addition or subtraction until
the alignment is complete. Therefore, the difference between the two exponents is determined simultane-
ously using the two subtractors shown, Ea-Eb and Eb-Ea. The reason for executing both subtractions
simultaneously is that although only one subtraction will determine which exponent is largest, the positive

difference between the largest and the smallest is needed for alignment, and it may be that the one

-18-

BusA BusB

j
Z

—4——NDist

‘T
o
Y
g

z
.?:
|

EbLatch

EaLatch

Eb-Ea
_T__/

B

4
MuxEb>Ea e X

AN

" EaBb)
"

‘Reg-File

5
-
N
L
4

DT P Unpack/Cvt____|
-

PADS

Figure 3-1 Exponent Datapath

subtraction instead gave a negative number. Thus, performing both subtractions at once ensures that the
proper difference will be available immediately. The multiplexor, MuxEb>Ea, selects which of the differ-
ences obtained from the two subtractors is 0 be used as the shift amount for the fraction unit. Two other
lines, Eb>Ea and Ed>128, are also used by the fraction unit. The first signal indicates that the exponent on
the B-bus is larger than that on the A-bus. This is necessary as the fraction datapath assumes that the
operand with the greater exponent comes from the A-bus, and if this is not the case a swap must be per-
formed by the fraction unit. The Ed>128 signal indicates that the difference between the exponents was

greater than 128 (7 bits). Once the addition or subtraction is complete, the Eg+/-El adder/subtractor is used

-19-

to adjust the result exponent by the correct normalization distance. As the adder/subtractor assumes that
the left operand is the greater exponent and the right operand is the normalization distance of the result, the
first multiplexor, MuxEg, is used to select the greater exponent and the second multiplexor, MuxNDist, is
psed to select the normalization distance. The nommalized result is then latched into EresLatch, and is ulti-

mately put onto the B-bus.

The same datapath is used to perform the necessary tasks for a multiply or divide operation. The
Eg+/-El adder/subtractor is used to calculate the sum of the exponents for multiplication, and the difference
of the exponents for division. This adder is then used again to normalize this result. Unlike the operation
above for an add/subtract instruction, the left operand to the adder is now the smaller exponent. Thus the

second multiplexor is used to select the smaller exponent rather than the normalization distance.

3.1.2. Fraction Unit

The main function of the 64-bit fraction unit [1] as shown in Figure 3-2 is to perform the addition or
subtraction of the floating-point fraction (magnitude). Symmetrical with the operation of the exponent unit,
the fraction portion of the data is loaded into the register file, again going through any necessary unpacking
and conversion to the extended format. The register specifiers access the current source magnitudes from
the register file, and prepare to perform the specified addition or subtraction. To do this, however, requires
that the binary point of the two magnitudes be aligned. As mentioned carlier, the fraction unit receives the
required shift amount for this alignment from the exponent unit, along with a signal indicating which
exponent is the largest. If this signal indicates that the operand with the greater exponent is not on the A-
bus, a multiplexor is used to swap the two operands. The barrel shifter is then used to shift the greater mag-
nitude right untl alignment of the two operands is achieved, as determined by the difference of their
exponents. The information lost during the right shift can be condensed into the three GRS bits (guard,
round, and sticky). The guard and round bits are the two most-significant bits shifted out, and the sticky bit
is the logical or of all of the rest of the lost bits. This bit indicates whether any precision was lost in the

shift operation, or if the bits shifted out were all zeros.

Once the operands are aligned, the addition or subtraction is performed and clocked into an inter-

BusA BusB

—LGRsj L '3'5'533";13D°iééf6r R
[crs] [_ Incoszuxch 1

R1PL1Shift

[crs] [Canp}imem JB"\%

[Grs]

[Grs] [omamchT]

| GRSJ r MuxB _J
L

]

]

[Grs] [_|__LshifuinLatch
| T
[Grs] [| REhifiOud.atch

LShifiOutLatch

Alatch

MuxA

]
J
J

]
MuxFG] |
_
_

Blatch

AlLatch

Unpack/Cvt J

PADS

Figure 3-2 Fraction Datapath

mediate latch. To complete the operation, rounding and normalization are done using the three GRS bits, a
rounding PLA, and an incrementor. If necessary, a normalization distance is sent to the exponent unit for

normalizing the final result exponent. The final result is ultimately put onto the B-bus.

-21-

3.1.3. Multiply-Divide Unit

A simplified diagram of the multiply-divide unit [3] is depicted in Figure 3-3. Due to area con-
straints on the chip, the 64x64-bit multiply is implemented as an iterative 64x8-bit multiply, with the partial
sum and carry vectors being accumulated in the PPS-SLatch and PPC-SLatch, respectively. A large carry-
look-ahead adder is required to add these two vectors, forming the final product. Again due to area con-
straints, the adder already existing in the fraction unit was borrowed for this purpose. This adder is also

used for calculating the complement of the multiplicand/divisor.

As shown in the diagram, the multiplier (MPR) is latched from the A-bus, and the complement of the
multiplicand (COMPMCD), along with the multiplicand (MCD) itself, is latched from the B-bus. A ver-
sion of the Booth recode algorithm is used here, which takes in turn each byte of the multiplier (including
the most-significant bit from the previous byte) and groups the byte into four overlapped triplets. Each of
the triplets is decoded by the Booth logic to select one of five inputs to the carry-save-adder (CSA) tree:
zero, MCD, 2MCD, COMPMCD, and 2COMPMCD. The input selected by the least significant triplet is
latched directly into its associated latch, the input selected by the next significant triplet is shifted left two
bits, and so on. The four (shifted) inputs selected from the four triplets are added to the accumulated par-
tial sum and carry vectors from the previous iterations using the 4-stage CSA tree to obtain the new partial
sum and carry vectors. To avoid using a 128-bit datapath, the partial sum and carry vectors are shifted
right by eight with each iteration. A *rounding’ adder accumulates the bits which are shifted out. As stated

above, the final sum and carry vectors are added in the fraction unit to obtain the product.

The divide operation is performed using an iterative non-restoring algorithm [3), where two bits of
the quotient are determined per iteration. The same datapath is used for both multiply and divide, and
much of the hardware is shared. The multiplexor preceding the PPS-SLatch allows the PPS slave latch to
be loaded either with the contents of the master latch or the contents of the A-bus. For a divide operation,
the A'-bus is used to initially load the dividend into the latch. As opposed to the multiply operation which
shifts right by eight, the PPS and PPC latches, which hold the partial remainders, are shifted left two bits
with each iteration. Under the algorithm, six bits of partial remainder and four bits of divisor are used by

the quotient logic 1o select the next two bits of the quotient.

-22-

Bus A Bus B

LOGIC

| PPC-SLatch

1 QPLA
smm;sn_z B

i ppcMised -] i Lach Ji

I PPs-sTanh I Mux |

. My [5RE

smm;snz i
'Y {pPS-MLatch

1T

CSA3
CSA2
CSAl
1
Latch3
Latch2
Latchl
LatchQ
ft 1t
SelectMCD3
SeleatMCD2
SelectMCD1
SelectMCDO
=
MCD/DVR 1
]

BOOTH

b COMPMCD/DVD

- : R 5 LOGIC
. ;

Shif;zRB J

t

Figure 3-3 Multiply-Divide Datapath

3.2. Control Implementation Considerations

The random logic design associated with the datapath and memory control is definitely the most

challenging part of the control unit implementation. This is mainly because there is litle inherent structure

-23-

in (and between) the individual cells, and each cell needs o be fine-tuned for its particular application.
That is, each signal must be buffered depending on the capacitance of the line it is driving to ensure that
there will be minimal propagation delays, and the delays must be balanced such that clock skew is avoided.
The following sections contain a detailed discussion of these considerations, including a study of altera-

tive implementations and support of design decisions.

3.2.1. Layout Strategy

The features 1 strove for in the design of the random logic included layout structure and regularity,
speed optimization, and area minimization. Structure and regularity are especially instrumental in achiev-
ing layout that is easy to generate, simulate, debug and modify. In particular, it is much easier to simulate
and change one cell that is used several times, rather than individually testing and modifying several
unique cells. These features are also important in terms of cell interconnection and routing. Several error-
prone steps can be avoided simply by arranging the basic cells such that most of the interconnections
between cells, particularly the power supply lines, are made automatically. This reduces the chances of
missing interconnections, and the regularity generally allows such flagrant errors to be spotted on layout

plots.

As always, there are trade-offs involved in any design problem. The questions of area minimization
and speed optimization are often opposed to one another, and both may be opposed to the concept of struc-
ture and regularity. For example, minimizing the area and associated delays for each signal requires the
individual design and optimization of each random logic cell, contrary 1o the features desired above. Like-
wise, all cells could be designed minimum-sized, but would not operate at the optimum speed. It has been
shown [10] that in order to minimize the delay for a single stage, the ratio of the stage’s output capacitance
to input capacitance should be approximately e. As an example of the use of this rule, a chain of inverters
(buffers) is often used to drive a large load capacitance. If an unlimited number of buffer stages may be
used, the first inverter is designed with minimum-size transistor channels, the second inverter’s channels
are about three times larger, and so on. However, if the number of stages is limited, then the optimum
solution is t scale each of the succeeding stages by the fanout factor f, where Y=fN. Here, Y is defined

as the ratio of the total load capacitance to the input gate capacitance of the first stage, and N is the total

-2 -

number of stages. Another consideration here is the concept of delay balancing and clock skew, which is

discussed in detail in Section 3.2.4.

3.2.2. Alternative Implementations

Looking for some degree of structure in the random cell layout, I studied the various forms of logic
needed for the datapath and memory control signals (see Appendix D). After some manipulation, most of
the logic was transformed into a two-level and-or form (or nand-nand as shown in Section 3.2.3), giving
me a template upon which to base my cell design. This led to the consideration of several methods of
implementation. The and-or format naturally suggested a dynamic or domino cell (5], whereas the nand-
nand format suggested a static layout using a library of nand cells. Pure domino logic was rejected on the
basis that many of the logic blocks are used in successive phases for some operations, leaving no time for
pre-charge. However, a pseudo-nMOS implementation seemed a likely extension. The following sections
present a pseudo-nMOS and a full static implementation studied in detail, concluding with a comparison of

the two methods and the selection of the full static design for the random logic implementation.

3.2.2.1. Pseudo-nMOS

As shown in Figure 3-4, the pseudo-nmos form adapts readily to the and-or format, and can easily be
extended to any number of inputs corresponding to this format. From the layout plots included in Appen-
dix C, we can see that this design style provides both economy of space and a well-structured design. The
area savings is mainly provided by the fact that only two p-channel pull-ups are required, whereas in typi-
cal static circuits a full complementary design is employed -- providing one p-channel pull-up for every n-
channel pull-down. However, there are many important drawbacks to this type of ratioed logic, including

increased power consumption and charge-sharing considerations.

To begin, several hand-calculations were performed to establish a ratio factor for the cells. Given
that it was desirable to keep the static pull-up transistor as small as possible to decrease the amount of
power consumed, I wanted to find the equivalent width of the pull-down transistors required to guarantee
that they were strong enough to pull the pre-charged node (V,) down below a specified safety voltage to

avoid any chance of accidentally triggering the succeeding stage. At the time, we set the safety voltage at

Vdd
L

Rl

I

GND

Figure 3-4 Pseudo-nMOS Design Style

0.5V, given that the threshold voltage of the following stage is about 0.75V and including a slight safety
margin, and derived the ratio factor using this value. Obviously, the bigger the p-channel device, the more
current it will source, the more power it will consume, and the harder it will be for the n-channel devices to
overcome it to pull the node down towards ground. No matter how many and strings I have hanging off of
the V, node, the worst case is where only one of them is turned on (assuming all and branches have
equivalent n-channel widths), thus giving less current (0 ground than the case where two or more branches
are tumed on. This assumption will give a conservative estimate for the actual size needed, as some leak-
age will occur among the off branches thus helping to lower the node voltage. For this case, I can easily
solve for the steady-state voltage at the pre-charged node using the fact that the source (pull-up) current ié
equal to the sink (pull-down) current. The calculation proceeds as follows:
PMOS: V,, ==5V:Vr =075V} Vo =Vi=5

V- Vr =—425V. (Assume V. <0.75V.)
Therefore, Vg < —4.25V. (The transistor is saturated.)

1= X2 WV, -vr)? where KPp=T6u.
Assume that for a string of n-channel gates, the equivalent W/L ratio for the string is the individual
ratio divided by the number of input gates in the string.

NMOS:V,, =5V, Vr= 0.75V:Vg =V,
Vgs—Vr =4.25V. (AssumeV; <0.75V.)

-26-

Therefore, Vg < Vge—=Vr. (The transistor is linear.)
1o, = X2 W (v -VrVa-Va?) where KPu=2Tu.

Setting these currents equal, and setting Vx=05V:

2% a259= I8 520262505057
W= 2 = 0623
Therefore, if W, is minimum size (41), then W, must be approximately 6.42).. Solving the quadratic
equation for V, given W, =4 and W, = 6 gives us V, =0.54V. This was still considered acceptable, giv-
ing a safety margin of 0.21V.
Many cells were layed out and simulated using this ratio factor. Table 3-1 lists the results for some

of the more common configurations used for comparison with the full static method, which is discussed in

the next section.

3.2.2.2. Full Static CMOS

A typical full-complementary static design is presented in Figure 3-5. Itis noticeably more complex
than the pseudo-nMOS design, due to the multiple pull-ups, the two-level design, and the extra routing.
However, this static design has none of the ratio, noise margin, charge sharing, and power consumption

problems associated with the previous design.

A library of cells was constructed containing the basic building blocks needed to generate any of the
specified control signals. Following the previous discussion I tried to minimize the delay between the logic
levels, and therefore designed cells suited for a specific level. That is, all first-level cells were built with
minimum-size channel widths and all second-level cells have channel widths about three times this size.
There were only a few instances where a third level of logic was required -- these were sized on an indivi-
dual basis. Since there are so many different control signals driving a wide range of capacitances, it would
bea difficult problem 1o individually optimize each level of each cell. Thus the factor of three was chosen
as a universal approximation, the discrepancies in delay are taken up in the double buffer stage as dis-
cussed in Section 3.2.4. To maintain the goals of structure and regularity, the levels were designed such

that inputs flow in from the top in metal-1, and the logic outputs flow out the bottom in metal-1,

.27-

T

|

- ABC+DEP

Figure 3-5 Full Static CMOS Design Style

interconnections between levels being performed automatically (see Appendix C). As most of the cells
used metal-2 only for Vdd and GND routing, many channels are left free and can be used for global rout-

ing.

3.2.2.3. Comparison

A comparison of various parameters of interest for the two design styles discussed above is presented
in Table 3-1 below. In order to make the comparisons as accurate as possible, all simulations were per-
formed assuming a typical datapath load capacitance of 3.0pF (from tables in Appendix E) and double
buffering of 60\ (n-channel width). The first column is the function name of the cell being simulated,
where the cells are ordered in groups of the two alternatives. In all cases, the top cell (and-or structure) is
the pseudo-nMOS implementation, and the bottom cell (nand-nand structure) is the full-complementary
static implementation. As shown in the following section, these two implementations can be shown to be
functionally equivalent through repeated applications of DeMorgan’s theorems. See Appendix C, Figures

A-C1-C10, for a comparison of the actual layout plots implementing the following functions.

The second column indicates the number of transistors required 1 implement the given function.
For the simplest function shown, a 2-input and gate (2andlor or 2nand Inand), less transistors are required

for the static implementation than pseudo-nMOS. This can be explained by the inverter overhead required

.28-

Table 3-1 Comparison of Pscudo-nMOS Versus Full Static CMOS

Function Devices | HA) | WQ@) | Vi_(V) | Ve (V) tp, (ns) tp, (ns)
2andlor 5 63 28 0.420 4908 45 6.0
2nand1nand 4 147 24 0.000 5.000 5.0 50
2and2or 7 63 43 0.420 4926 50 6.0
2nand2nand 12 147 48 0.000 5.000 55 55
2and3or 9 63 46 0.418 4.834 50 6.5
2nand3nand 18 147 72 0.000 5.000 6.0 6.0
2and4or 11 63 60 0.417 4.697 5.0 7.5
2nand4nand 24 147 96 0.000 5.000 6.5 6.0
2andSor 13 63 74 0.417 4.660 50 7.5
2nandSnand 30 147 120 0.000 5.000 7.0 6.0
3and2or 9 63 48 0473 4.704 50 7.0
3nand2nand 16 147 64 0.000 5.000 6.5 55

for the pseudo-nMOS implementation. However, for most of the configurations, the number of transistors
needed for the static implementation is around twice that of the pseudo-nMOS requirement. This is
because the static method requires two transistors for every additional input, whereas only one is required
using pseudo-nMOS. Furthermore, the static implementation has the additional overhead of the second
level of logic, which also has two transistors for every input, while the pseudo-nMOS has only the over-
head of the inverter in all cases. The most commonly used cell type is the 2-input and gate, which is used
about twice as many times as the next three configurations in the table and about five times as often as the

last two configurations.

The height and width of the actual layout cells required by the functions are given in columns three
and four. As shown, the pseudo-nMOS uses much less chip area, attributable to three facts. In the first
case, less devices take less area, especially since basically only one type of channel is used (n-channel) and
thus the overhead of the tub separation design rule is reduced. Secondly, the implementation allowed the
layout to be resolved using a single level, reducing interconnect overhead. Finally, the and strings using
the pseudo-nMOS method could be placed immediately adjacent to their neighbor string, thus sharing
many ground and node connections. In contrast, the use of nand cells from a general library in the static
implementation required that the individual cells be separated by a minimum distance of 4A, and no con-
nections could be shared. The main consideration here was to try 0 keep the logic cells tall and narrow, so
that they could all be placed directly above the datapath cells where required. As shown, the pseudo-

nMOS method best met this goal.

-29-

The next two columns show the noise margin characteristics of the cells. As expected from a full
CMOS implementation, the static style obtained full restoration of the voltage levels. The pseudo-nMOS
method also performed as expected, with the low voltage being slightly less than the 0.5V threshold limit.
The high voltage indicates some charge sharing, though the amount also remains within the 0.5V specified

safety threshold.

Propagation delay times are given in the final two columns. All times are comparable, with static
low-to-high (rise) times usually slower and high-to-low (fall) times usually faster than the pseudo-nMOS
times. The pseudo-nMOS fall times will always increase with the addition of and strings, as there is essen-
tially a limited supply of current available through the minimum-size p-channel source and an increasing
amount of capacitance to charge. The rise times are dependent on the width of the n-channel sinks, which
could be increased with a small area penalty. However, they cannot be decreased without upsetting the
ratio balance, so it is difficult to reduce skews at this level by balancing the rise and fall times. The static
cells are designed with a 2:1 p-channel to n-channel ratio in order to provide automatic balancing of the
rise and fall times. As seen, a better natural balance could possibly be obtained by increasing this ratio
towards 2.5:1 (this is dependent on the mobilities of the p- and n-type materials, which is a processing
parameter).

The decision to proceed with the "safe” static design came after much discussion [2], although the
area required for this implementation was shown to be much larger. The basic argument in support of this
decision was the fact that the extra area needed was available on the chip, and so the "safer” design seemed
appropriate. Besides significantly decreasing design time, the use of library cells also aided the goal of
structured and regular layout, providing an easy way 0 add new cells or quickly modify existing ones sim-
ply by replacing one library cell with another. No major penalties were taken with the rise and fall times,

either, as both were comparable, and the buffer sizes can still be optimized to reduce the times shown here.

.Looking back, I believe that the pseudo-nMOS implementation would have been quite suitable for
this application, though at the expense of an increased design cycle. In particular, the safety voltage thres-
hold should be lowered to allow an even greater noise margin. Specifying 2 safety threshold of 0.25V

would have involved increasing the n-channel sizes such that a ratio of 12.44:4 is maintained between the

-30-

n-channel width and the minimum-size p-channel width. However, this would also have served to increase
the charge-sharing problem, as increasing the n-channel width increases the amount of capacitance in the
and strings available for charge sharing. This could then be alleviated by increasing the size of the pre-
charge node, possibly by increasing the size of the output inverter associated with this implementation and
thus increasing its input gate capacitance. However, this also has its penalty, as increasing the size of the
pre-charge node increases the circuit delay. Many more SPICE simulations (and costly design time!)
would have been necessary to ensure safe operation using the pseudo-nMOS method, and safety is espe-

cially important in control implementation.

3.2.3. Logic Definition and Conversion

Most of the random control signals defined in the SLANG description of the floating-point unit were
conv;ned 10 a nand-nand format for implementation using DeMorgan’s theorems. These theorems can be
stated simply as (AB)* = A*+B* and (A+B)* = A*B* [9], where '+’ denotes the or function and *** indi-
cates complementation. Two typical examples of the sequence of steps taken to define and implement the
random logic are shown below. The first example, cm-latch-master, illustrates one of the most common

logic forms implemented: the 2nand2nand structure.

(defnode cm-latch-master
(depends ctrl-mul/div-latch phi2 phi4)
(update (And (Or phi2 phi4) ctrl-mul/div-latch))
)

Example 3-1 SLANG Description of cm-latch-master

From Example 3-1, we see that cm-latch-master = (phi2+phid)ctri-mul/div-latch. This can be
directly expanded to (phi2*ctrl-mul/div-latch) + (phi4*ctrl-mul/div-latch), bringing us to the and-or
representation. To use the theorems given above, we can let A = (phi2*ctrl-mul/div-latch)* and B =
(phi4';cu'l-muvdiv-latch)‘. This gives us an and-or form of the type A*+B*. Using the first theorem, we
have A*+B* = (AB)*, or cm-latch-master = ((phi2*ctrl-mul/div-latch)* (phi4*ctrl-mul/div-latch)*)*, which

can be recognized as the nand-nand representation. Both of these forms are depicted in Figure 3-6.

-31-

Figure 3-6 Equivalent Representations of cm-latch-master

As another example, I considered the SLANG definition of cm-latch-slave. Unlike most of the con-
trol signals, cm-latch-slave is unique in that I implemented it using three-level logic, as illustrated in Figure
3-7. It was possible to reduce cm-latch-slave 10 a two-level implementation using DeMorgan’s theorems,
but this required 4 invertors, one 2-input nand gate, eight 4-input nand gates, and one 9-input nand gate!
Generally, nand gates are limited to at most five inputs as using more inputs leads to either a large series
resistance to ground or a huge input gate capacitance, both of which increase the delay times. Therefore,
the three-level implementation was considered more appropriate, and also required only two different types

of nand gates.

(defnode cm-latch-slave
(depends ctrl-mul/div-latch phil phi3 clock6_mulop clock18 ctrl-latch-ops)
(update (Or (And (Or phil phi3)
(Not (And phi3 clock6_mulop))
(Not (And phil clock18))
ctrl-mul/div-latch)
ctrl-latch-ops
)

Example 3-2 SLANG Description of cm-laich-slave

To begin, I converted phil+phi3 to the nand type, again using the first theorem. By letting A* = phil
and B* = phi3, we get that A*+B* = (AB)*, or (phil*phi3*)*. The last two levels of logic are treated as in
the example above.

. Appendix D contains a complete listing of all of the control signal definitions as derived from the
SLANG description, along with their equivalent nand-nand representation. Except in special instances, all

signals were implemented using rand-nand 1ogic.

-32-

cad-vul +div-laxch cd-mul+div-lazch
PHD PHD
dock-mulop dock-mmlop
PHI PHI1
clock18 co-latch-elave dock18 c-lach-sinve
PHII®
PHI
PHD PHD*
PHI1
H.ﬂl cul-uant-arithop
ctri-sart-erithop cud-latch-ops

Figure 3-7 Equivalent Representations of cm-latch-slave

3.2.4. Clock Skew Considerations

The minimization of clock skew is one of the most important considerations in the design of the ran-

dom control logic. Clock skew [11] is the delay in a clock signal from its point of generation to the point at

L h :l:

L L

A A

TEY o T

c c

H H

il __ 1 I 1

: (IDEAL)

e -
noo-overisp

Figure 3-8 Typical Clock Skew Example with Non-Overlapping Clocks

which it is used, and is due to the resistive and capacitive delays incurred in the travel between the two
points. The effects of this delay between clock signals can be clearly seen in the case of two latches, as
shown in Figure 3-8. (The example shown assumes a two-phase non-overlapping clock, but the concept
can easily be extended for the case of a four-phase non-overlapping clock.) Given the ideal timing diagram
for phil and phi2, we see that both latches will never be operating simultaneously, thus providing the isola-

tion needed for correct operation. That is, the combinational logic determines a value which is clocked into

-33-

the second latch on the falling edge of phi2, and on the falling edge of phil the new value is clocked into
the first latch where it serves as an input to the combinational logic. A problem arises only when the feed-
back loop to the combinational logic is closed, resulting in a form of race condition. In this case, it
becomes possible for the combinational logic to receive as input the value which it has just determined,
causing the value to be updated at least twice within one cycle. This condition could occur only if one of
the signals were delayed (or in other words, the signals phil and phi2 were skewed) to such an extent that

the non-overlap time between the phases disappeared.

Since it is obvious that delays are going to occur in the clock lines, the best way to handle clock skew
is to balance the delays such that the relative clocking scheme is preserved. That is, given the worst-case
delay of all of the control signals, it is desirable to keep the delay for all signals as closely bounded to this
delay as possible, and the non-overlap time must be longer than the maximum variation in delay between
the signals. For high performance, it is necessary to keep this non-overlap time as short as possible in

order to minimize the clock cycle.

Most of the datapath control logic uses a type of gated clock [11), which is formed by the logical and
of a control signal and one of the clock phases. The same idea applies here, though in actual implementa-
tion is it now important to consider the total delay from the generation of the clock signal, through the ran-
dom logic, to each latch in the datapath. Given the huge datapaths in the FPU (> 70 bits), this delay can be
considerable. That is, although the random logic may be balanced such that each logic cell has the same
delay, if the delayg to the last latch on the datapath which the cells are driving are significantly different
clock skew can still occur. In order to take this into account, each random logic cell and its associated

buffers are scaled to drive their particular Joad capacitances at approximately the same rate [3].

To implement the delay balancing required individual attention for each control signal along the
datapath, as the capacitances varied over a huge range, and often different levels of logic were used in gen-
eratinig the control signals, thus providing various levels of driving ability. Appendix E contains tables of
the extracted control line capacitances for the three main datapath modules, along with their chosen buffer
sizes and the total delay. As shown, the largest capacitive load occurs in the multiply-divide carry-save-

adder tree and is approximately 11.3 pF. The goal here then is to minimize the delay for this control signal

-34-

Table 3-2 SPICE Delays for Common Circuit Configurations

Function Load (pF) | Buffer ™) || te, (ns) Per Stage tp, (ns) Per Stage

2and 1.0 40 35 1.5+1.0+1.0 4.0 20+1.0+10
2.0 40 45 2.0+15+1.0 50 2.0+1.5+1.5

3.0 60 50 2.5+1.0+1.5 50 2.0+2.0+1.0

4.0 60 55 2.5+1.5+1.5 6.0 2542.0+1.5

6.0 80 7.0 2.0+2.043.0 7.0 3.04+2.042.0

6.0 100 6.0 2.54+2.0+1.5 6.5 3.0+2.0+1.5

2nand2nand 1.0 40 4.5 25+1.0+1.0 4.5 2.5+1.0+1.0
20 40 55 2.5+1.5+1.5 55 2.5+1.5+1.5

3.0 60 55 2.5+2.0+1.0 50 2.5+1.0+1.5

4.0 60 6.0 2.5+1.5+2.0 6.0 2.542.0+1.5

6.0 100 6.0 3.0+2.0+1.0 55 2.5+1.5+1.5

8.0 100 7.0 3.0+2.0+2.0 7.0 3.0+2.0+2.0

113 100 9.0 3.0+2.543.5 9.0 3.0+3.0+3.0

113 160 15 3.5+2.0+20 7.0 3.0+42.5+1.5

11.3 200 7.5 4.0+2.0+1.5 8.0 4,0+2.0+2.0

2nand3nand 1.0 40 5.0 3.0+1.0+1.0 45 2.5+1.0+1.0
20 40 6.0 2.5+2.0+1.5 6.0 2.5+1.5+2.0

3.0 60 6.5 3.0+2.0+1.5 55 25+1.0+2.0

4.0 60 7.0 3.0+2.042.0 6.5 2.5+2.0+2.0

6.0 100 7.0 3.5+2.5+1.0 6.0 2.5+2.0+1.5

2nand4nand 1.0 40 5.0 3.0+1.0+1.0 50 2.5+1.5+1.0
2.0 40 6.5 3.0+2.0+1.5 6.0 2.54+2.0+1.5

3.0 40 8.0 3.0+2.542.5 70 2.54+2.0+2.5

3.0 60 7.0 3.5+2.0+1.5 6.0 2.5+2.0+1.5

4.0 60 1.5 3.5+42.5+2.0 7.0 2.542.5+2.0

6.0 60 9.0 3.5+42.5+3.0 8.0 2.5+3.0+2.5

6.0 100 8.0 3.5+2.0+42.5 7.0 3.0+2.5+1.5

2nand5Snand 1.0 40 6.0 3.5+1.0+1.5 50 2.5+1.5+1.0
20 40 7.0 3.542.0+1.5 6.0 2.5+2.5+1.0

30 40 8.0 3.542.042.5 7.0 2.5+2.5+42.0

3.0 60 7.0 3.5+2.5+1.0 6.0 3.0+2.0+1.0

4.0 60 8.0 4.0+2.0+2.0 70 3.042.5+1.5

4.0 80 7.5 4.0+15+2.0 6.5 3.042.0+1.5

6.0 80 9.0 4.0+2.5+42.5 7.5 3.0+2.5+2.0

6.0 100 8.0 4.0+2.5+1.5 7.0 3.0+2.0+2.0

3nand2nand 1.0 40 45 2.5+1.0+1.0 45 2.5+41.0+1.0
20 40 5.5 2.5+1.5+1.5 55 2.5+42.0+1.5

3.0 60 6.0 2.5+2.0+1.5 6.0 2.5+2.0+1.5

4.0 60 6.5 3.0+2.041.5 6.5 2.5+2.0+2.0

6.0 100 7.0 3.0+2.0+42.0 6.5 3.0+2.0+1.5

(cm-latch-master) and to scale all other delays to this match this delay. As the datapath control line capaci-

tances range anywhere from about 0.5pFto 11.3 pF, thisisa difficult task.

-35-

A series of SPICE simulations were exercised in order to compile Table 3-2. As shown here, a few
of the more commonly used circuit types were simulated iteratively with various load capacitances and
buffer sizes in order to find the configuration which most closely matched the cm-latch-master
(2nand2nand) delay of 7.5 ns. (It is still possible to optimize this delay by increasing the strength of the first
levels in order to equalize the delays between each of the stages.) Given these numbers, the cells were
placed and buffers were sized accordingly, and Crystal was then used for fine-tuning the delay of each cell.
It is important to note that the numbers below are only a crude approximation, as the iterations were per-
formed at the SPICE level, and did not take into account all of the changes in area and junction capaci-
tances for the different buffer sizes.

Since none of the global routing is complete at this point, the method above assumes that all clock

inputs to the random logic arrive at the same time and that the other inputs are stable through the clock

transitions. This minimizes additional skews that could be incurred by random delays in control inputs.

-36-
4. SIMULATION AND VERIFICATION

4.1. CAD Environment
As stated in the introduction to this report, much of the control had already been specified at the
functional level and had been simulated using SLANG when 1 joined this project. My role thus involved

turning the SLANG description into working layout. A progression of CAD tools was used in this process,

as illustrated in Figure 4-1.

SLANG

LOGICAL SIMULATION
MAGIC

GRAPHICAL LAYOUT

MOSSIM CRYSTAL
MW
SPICE
CIRCUTT-LEVEL SIMULATION

Figure 4-1 CAD Tools Used in the Control Development Cycle

The PLAs, block diagrams, and random logic definitions presented in this report were all derived
from the SLANG description of the FPU. The graphical layout editor, MAGIC [14,16], was then used to
impiement the SLANG definitions at the layout level. Circuit descriptions of the various blocks were
extracted from the MAGIC environment, and conversion programs were executed to obtain the necessary
file formats for the various simulators. Three types of simulators were used in verifying the control layout:
MOSSIM [4], CRYSTAL [13,16], and SPICE [20]). The first two are high-level interactive simulators,
while. SPICE is a low-level batch simulator. Appendix F contains a section on each of these simulators,
detailing important hints on starting up the simulators and including example source files used for initializ-

ing the simulation parameters and inputs nodes.

-37-

MOSSIM is an interactive functional simulator which employs a very primitive circuit model. The
simulator is based on an idea of the relative strengths and sizes of the circuit, where strength is a function
of the relative width of a transistor (to all the other transistors in the circuit), and size is a function of the
relative capacitance of a node. For the most accurate representation, it is desired to allow as many strength
and size definitions as the circuit requires. Unfortunately, MOSSIM is limited to a total of 15 strengths
and sizes, so a ratio factor is used to group transistors within a certain range of widths under the same
strength, and nodes within a certain range of capacitances under the same size. This fact is especially
important in dynamic or ratioed circuits. For instance, MOSSIM may consider some circuits incorrectly
simply because the model has treated each of the transistor sizes as the same strength where in fact the
transistors are ratioed safely, or has grouped critical nodes under the same size where in fact the charge-
shared node may be quite larger than those with whom it is supposedly sharing charge. Therefore, it is
important when creating the MOSSIM input file to keep the ratio factor as small as possible for the most

accurate circuit representation.

The MOSSIM timing model I used assumes that each phase specified is as long as required for all the
nodes to stabilize. This means that if the circuit functions successfully under MOSSIM, it should function
successfully in practice, given no timing constraints (an infinite clock cycle). Once the circuit description
is read into the simulator, inputs and control signals can be changed interactively, and any specified nodes
may be watched. Also, intermediate nodes may be forced to a particular value, in order to isolate subsec-
tions of the circuit for further testing. There are basically only three possible logic levels: high (1), low (0),
and intermediate (X). The intermediate level can mean a variety of things, such as undefined, charge shar-
ing, short, and so on. By asserting various control signals, and varying the inputs to the circuit, we can

immediately observe the levels on the output nodes in order to test the functionality of the circuit

CRYSTAL is an interactive simulator used for timing analysis. This simulator also follows a very
primitive circuit model, using signal-flow analysis to find the worst-case delay paths for the given circuit.
As done in MOSSIM, nodes can be forced 1o a desired logic level in order to direct the signal flow along
paths of interest, or {0 rule out impossible paths which CRYSTAL may consider. Also, specified nodes

may be watched to find the worst-case delay to that node, independent of the delay of the overall circuit.

-38-

SPICE was used for simulating the very low-level circuit considerations. This includes noise margin
voltages and charge sharing, low-level functional testing, latch set-up and hold times, and to provide accu-
rate delay times for comparison with CRYSTAL’s somewhat cruder model. This is particularly important

as only CRYSTAL is used for timing delays of the bigger layout modules.

Most of the basic cells used in the control layout were simulated first using SPICE, giving functional
verification and timing information at the lowest level of layout. Each of the functional blocks were simu-
lated in their entirety using MOSSIM, which in particular tests the interconnections between the basic cells
and any related effects. Critical paths were simulated using CRYSTAL for an over-all timing evaluation.
If a problem was found using any of the simulators, it was usually uncovered and fixed at the layout level.
The majority of these errors were related to labelling, particularly not labelling some power supply lines, or
accidentally attaching the label of a circuit node to one of the power supply lines, such that the simulator
believes it to be shorted to that line although the layout itself is correct. This happens often while editing in
MAGIC, since when layout is stretched or moved the associated labels often are transferred to another
layer in an intermediate stage, and are never restored to the original layer. If the layout yielded no infor-
mation about the problem, SPICE was used in order 1o study the voltages (as a function of time) at indivi-
dual nodes in greater detail.

All in all, the biggest problem I found concerning the CAD support was the inconsistency between
the various tools. Each of the simulators requires a different type of input file for the circuit description, all
of which are derived from the .sim file. (CRYSTAL is the friendliest here, as it actually uses the .sim file
as input.) For large modules, this requires lengthy conversion times and the accumulation of several types
of huge data files, each describing the same circuit! This is especially inefficient when a simulation result
indicates a problem which must be changed in the layout The circuit must then be re-extracted, re-
convented, and re-read into the simulator in order 10 simulate the modified layout. One example I encoun-
tered. was in the CRYSTAL simulation of the datapath control delays in order 10 tweak the sizing of the
double buffers. Each time I adjusted a buffer size I had to repeat the above procedure in order 10 monitor

the effects of that change!

Given my experience with the above problems, I definitely recognize the need for "smarter” CAD

-39.

tools. For example, one design group here has completely automated the process of random logic genera-
tion through the use of their Design Manager [17] and a standard cell library. A program has been written
which, given a set of equations, generates a file suitable for input to the Design Manager, which can then
be used to automatically select the appropriate standard cells from the library and access placement and
routing programs to complete the layout. Another such tool is EPOXY {12], currently under design here at
Berkeley. EPOXY actually takes the concept of silicon compilers one step further — aiming to not only
synthesize layout from a given circuit description but to also improve the performance of the generated lay-
out in order to meet desired specifications. Using this tool, it will be possible to model the circuit given
user-specified circuit constraints and parameters, such as desired delays and power consumption considera-
tions, layout area, and so on; specify the layout style and technology to be used; simulate the circuit as
specified and observe the effects; interactively or automatically adjust the parameters and constraints until

the desired behavior is observed; and then automatically generate the layout.

4.2. Simulation Results

Each of the basic control cells have been simulated at the lowest level using SPICE; detailed results
of the individua! simulations are included within this report. The three control PLAs have been simulated
using CRYSTAL, worst case delay times are presented in Table 2-1. MOSSIM has been used to function-
ally verify the major blocks of the control unit: the load-store pipeline, the cycle counter, and the random
logic blocks associated with each datapath module. All of the simulation results indicate full funcn'onality.
SPICE and CRYSTAL results verify that the control unit can meet the minimum speciﬁcatic;ns of a 20ns

clock phase, though to ensure against clock skew the non-overlap time should remain at 10ns.

.40 -

5. CONCLUSIONS

The control unit implementation for the SPUR floating-point coprocessor has been presented. The
actual control unit is divided into two main sections: interface control and datapat_h control. The basic
blocks needed for the interface control unit were designed first, taking about 15% of the total design time;
routing between the blocks required another 5% of the effort. The random logic implementation comprised
about 80% of the total design time. The disparity in design effort as shown here is due to the inherent lack
of regularity in the datapath control logié. as opposed to the interface control, which is based upon

automatically-generated PLAs.

A major portion of the design of the random logic involved studying the alternative implementations
available and developing a structured approach to the layout. Initially, a lot of time was spent trying to
optimize each cell in terms of area and speed, before actually determining the placement of the cells and
their load capacitances. A better approach would have been to determine the area available and then design
the cells accordingly. Also, the individual speed optimization of each cell was not required, and in fact was
not even desirable. As discussed in this report, clock skew between the control lines is minimized when
the delays in all of the lines are balanced. Therefore, the best approach would have been to first determine

the longest control line delay in the datapath, and design each cell to closely match this delay.

In retrospect, I feel that I should have implemented the random logic first, rather than the interface
control. The reason for this is that in placing and simulating the random logic and datapath, I obtained a
much better feel for the layout style of the other team members, design issues they considered, how the
control logic interfaces with the datapath, and so on. With this in mind, the implementation of the interface

control would have been much easier.

The rapid advances in VLSI technology have led to the proliferation of several CAD tools to aid in
the various steps of chip development. A lot of tedious and error-prone functions, such as routing and PLA
generation, can now be performed automatically. However, no such tools were available to SPUR for aid-
ing in the design, generation, placement, and optimization of the random control logic. Much of the design

effort above could have been avoided if more sophisticated CAD tools had been available.

.41-

6. ACKNOWLEDGEMENTS

Members of the FPU design team, B.K. Bose and Corinna Lee, provided invaluable assistance. In
particular, I would like to thank B.X. for sharing his ideas, philosophies, and especially his friendship dur-
ing the past year. I would like to thank my advisors, David Patterson and David Hodges, for their willing-
ness to read this report quickly, allowing me to complete this project on time. I would also like to ack-
nowledge Sandia National Laboratories, in particular Art Verardo, for making this year possible. Special
thanks go to all of my friends, who provided steady support and encouragement. Principal funding for the

SPUR project is provided by DARPA, under contract N00039-85-C-0269.

.42-

7. REFERENCES

(1

(2
3]
4]

(5]

(6]

7
(8]

9

[10]

(1]

(12}

(13]
(14]
(15

(16]

(17]

(18]

(191

(20}

Adams, G., B.X. Bose, L. Pei, and A. Wang, "The Design of a Floating-Point Processor Unit",
Proceedings of CS292i: Implementation of VLSI Systems, Ed: R.H. Katz, University of Califomia,
Berkeley, September 1985.

Bose, B.K., Private Communication, University of Califoria, Berkeley, 1987.

Bose, B.K., L. Pei, G.S. Taylor, and D.A. Patterson, "Fast Multiply and Divide for a VLSI Floating-
Point Unit", Proceedings of the 8th Symposium on Computer Arithmetic, Ed: M. Irwin and R.
Stefanelli, Como, Italy, May 19-21, 1987, pp. 87-94.

Bryant, R., M. Schuster, and D. Whiting, "MOSSIM II: A Switch-Level Simulator for MOS LSI
User’s Manual”, Jan. 1983 (Revised May 1986).

Duncombe, R., "The SPUR Instruction Unit: An On-Chip Instruction Cache Memory for a High
Performance VLSI Multiprocessor”, University of California, Berkeley, Master's Report, Report No.
UCB/CSD 87/307, Aug. 1986, pp. 19-44.

Hansen, PM., S.I. Kong, "SPUR Coprocessor Interface Description”, Computer Science Division
Technical Report, Report No. UCB/CSD 87/308, University of California, Berkeley, October 1986.

Hill, M. et. al., "Design Decisions in SPUR", JEEE Computer, Vol. 19, No. 10., Nov. 1986, pp. 8-22.
Lee, C., "Description of the SPUR Floating-Point Unit", University of California, Berkeley, Internal
Working Document, May 1986.

McCluskey, E., Logic Design Principles with Emphasis on Testable SemiCustom Circuits, New Jer-
sey: Prentice-Hall, 1986. .

Mohsen, A., C. Mead, "Delay-Time Optimization for Driving and Sensing of Signals on High-
Capacitance Paths of VLSI Systems”, IEEE J. Solid-State Circuits, Vol. SC-14, Apr. 1979, pp. 462-
470.

Mukherjee, A., Introduction to nMOS & CMOS VLSI Systems Design, New Jersey: Prentice-Hall,
1986.

Obermeier, F., "EPOXY: Electrical and Physical Layout Optimizer", EECS/ERL 1987 Research
Summary, Department of Electrical Engineering and Computer Sciences, Electronics Research
Laboratory, Industrial Liaison Program, University of California, Berkeley, 1987, pp. 167-168.
Ousterhout, J.K., "A Switch-Level Timing Verifier for Digital MOS VLSI", IEEE Transactions on
Computer-Aided Design, Vol. CAD-4, No. 3, July 1985, pp. 336-348.

Ousterhout, J.K., G.T. Hamachi, R.N. Mayo, W.S. Scott, and G.S. Taylor, "The Magic VLSI Layout
System", JEEE Design & Test of Computers, Feb. 1985.

Patterson, D., "Reduced Instruction Set Computers”, Communications of the ACM, Vol. 28, No. 1,
Jan. 1985, pp. 8-21.

Scott. W., R.N. Mayo, G.T. Hamachi, and J.K. Ousterhout, 1986 VLSI Tools: Still More Works by
the Original Artists, Computer Science Division, Department of Electrical Engineering & Computer
Science, University of California, Berkeley, Jan. 1986.

Shung, C., R. Jain, Design Manager User's Manual, Department of Electrical Engineering & Com-
puter Science, University of California, Berkeley, July 1987.

Van Dyke, K.S., "SLANG: A Logic Simulation Language”, University of California, Berkeley,
Master's Report, June 1982,

Van Dyke, K.S., J.K. Foderaro, "SLANG Slinger’s Cyclopedia”, in R.N. Mayo, J.K. Ousterhout, and
W.S. Scott, 1983 VLSI Tools: Selected Works by the Original Artists, Computer Science Division,
Department of Electrical Engineering & Computer Science, University of California, Berkeley,
Report No. UCB/CSD 83/115, March 1983.

Vladimirescu, A., K. Zhang, A.R. Newton, D.O. Pederson, and A .Sangiovanni-Vincentelli, "SPICE
Version 2G User’s Guide™, Department of Electrical Engineering & Computer Science, University of
California, Berkeley, Aug. 1981.

.43-

APPENDIX A: PLA DEFINITIONS

Table A-A1 Instruction PLA Input and Output Definitions

Type Signal Name
INPUT instr-OPCODE<6>
INPUT instr-OPCODE<5>

INPUT instr-OPCODE<4>
INPUT instr-OPCODE<3>
INPUT instr-OPCODE<2>
INPUT instr-OPCODE<1>
INPUT instr-OPCODE<0>

OUTPUT ctrl-TrapRecvd
OUTPUT instr-ldext1
OUTPUT | instr-ldext2
OUTPUT | instr-1ddbl
OUTPUT instr-ldsgl
OUTPUT | instr-stextl
OUTPUT instr-stext2
OUTPUT instr-stdbl
OUTPUT instr-stsgl
OUTPUT | instr-addop
OUTPUT instr-subop
OUTPUT instr-mulop
OUTPUT instr-divop
OUTPUT instr-cvtsop
OUTPUT instr-cvtdop
OUTPUT | instr-cmpop
OUTPUT instr-fabsop
OUTPUT instr-fnegop
OUTPUT instr-fmovop
OUTPUT instr-loadop
OUTPUT instr-storeop
OUTPUT | instr-MD/AS
OUTPUT | instr-AS/MD
OUTPUT instr-cvrtop
QUTPUT instr-fpuArithop

Table A-A2 IFSM PLA Input and Output Definitions

Type Signal Name
INPUT stp2
INPUT stpl
INPUT stp0
INPUT ifsm-STOP
INPUT ifsm-TrapRecvd
INPUT ifsm-fpuSuscond
INPUT ifsm-start-arithop
OUTPUT stn2

OUTPUT stnl

OUTPUT stn0

OUTPUT st-to-write

OUTPUT fpuBusy

OUTPUT ctrl-latch-fpuBusy
QUTPUT ctrl-cycleclock-clearcond

.45 -

Table A-A3 Arithmetic PLA Input and Output Definitions

Type Signal Name
INPUT arith-cycleclock<4>
INPUT arith-cycleclock<3>
INPUT arith-cycleclock<2>
INPUT arith-cycleclock<1>
INPUT arith-cycleclock<0>

INPUT arith-subop
INPUT arith-mulop
INPUT arith-divop
INPUT arith-fabsop
INPUT arith-fnegop
INPUT arith-fmovop
INPUT arith-fcvrtop
INPUT arith-MD/AS
INPUT arith-AS/MD
INPUT arith-arithop
INPUT arith-opexcept-detect
INPUT arith-sign-muldiv
INPUT arith-expn-BgtA
OUTPUT clockl
OUTPUT clock2
OUTPUT clock3
OUTPUT | clock4
OQUTPUT clock5
OUTPUT clock18
OUTPUT clock19
OUTPUT clock20
OUTPUT clock1_AS
OUTPUT clockl_MD
OUTPUT | clockl_cvriop
OUTPUT clock2_AS
OUTPUT clock6_mulop
OUTPUT clock7_mulop
OUTPUT ctrl-STOP
OUTPUT | cul-ASMD
OUTPUT ce-adder-first
OUTPUT ce-pass-expna
OUTPUT cf-adder-AS

APPENDIX B: SCHEMATICS

A
o RamtemC et Lage)

>3

Figure A-B1 Detailed Diagram of the Main Control Unit

.47-

J'L‘ A®B
™

Figure A-B2 Exclusive-Or Implementation

selectA

7

A L

14
|

S 4

Figure A-B3 2:1 Static Mux

Vdd

Figure A-B4 Static Latch with Asynchronous Clear

APPENDIX C: LAYOUT PLOTS

.48 -

Faa 11 VAN W

Figure A-C1 2and2or

b=
Y

H
ey =
Y i
= 4’1 HYNS
N2l 2 ¢ H ad

N o 17 Tvad]

Figure A-C2 2nand2nand

-49.

SN 33
/> Ty —
|
e
i § :—9_ H

g
.\\ ﬁ
i

T
r:m

h
W=E
|

(@i
[3 R

rales

T va)

Figure A-C4 2nand3nand

\\\\\\\\\\\\\\\\\\

B
N [P<

CEl
\
iy
AL
DAEAL

AN
N

N

ERONSS

Figure A-CS 2anddor

K

=1

BR BF B

42X}

05D

Figure A-C6 2nand4nand

-51-

i1 Vady

Figure A-C7 2andSor

Vo 2

b-and

k3

'Ix

si=;
-—_

Figure A-C8 2nandSnand

-52-

T
AN

Figure A-C9 3and2or

2p EEE

B BRI 6 S

Figure A-C10 3nand2nand

-53.

it

1 .__._ nling
“m: nr H

1 Static Mux

Figure A-C11 2

N
\)
)
\\\
RN
R

R
CRARSROANR:
et
NRRANORORY

@§S$F\
\

X
Dty
S

QRN R
D

Figure A-C12 Static Latch With Asynchronous Clear

N ROROROR \\\%5‘ N \\\‘\\\\‘\\‘\
N \\‘\‘:\}\\\ RO RO

R

N

N}

N
R

O

N
)
R Bty

RO
R &

RORER \{5‘ QERCRC IS
\\Q:\\:, “;,\'*

W

s AR
N ot :\‘“&\]‘\s\\:\\\:\

R R R R SR IR O ORGREREHUARRGY
R R R R R ey
RO R RN LR RNERNY
R R RO \‘5\“\\\\\\\‘\\\

N
S

QRG
\\\\\\\‘\\:\ R ¢¢::
)

¢
Bt

o

24

N0

IRSRER USRI IGHER W
) UARY) ~)

\\\‘\\\\\\\ ‘Lgs’**\‘g\‘\\\ RN B & \g:
. . . NG

’ oy
¥022020 .
v2
0277004
A XL

GITIPIELI 000, FOOEPY e SY

i

i

il

Bhiﬂi«gg

i)
i
It
i

i
i

|
i

harssss Z

LI ro
ek

X

Figure A-C13 Increment Bit

L]
L i il Ty :
" ‘m- .‘ = s i
e ‘ 2
”! ' 1. R
.,i_‘ =T ot
. it
4
il
dod
1l
g
| s J
"l
\l.m' .‘
:vﬁk T
=21 =
<|! Y
i v ~tF 33
A <3 =T = pintiiiitii i
' : |] ™.
qg* '|' =y
< i v 1
i | !
a B < BB
a 1 1
L

Figure A-C14 5-Bit Cycle Counter With cycleclock-init Logic

-57-

= = S 1|.‘-.(-1!I|HWWW..H|IH,‘?|M
= e Hin...h.ki =y B mm.n,uisuua,.}..i!j‘g

o

Figure A-C15 Load-Store Pipeline With Memory Control Logic

-58.

o

g of iy Sk

]
HHE

R : —

.
§I;f S ETAT ;

= i — 2

o ; :

=E i stk ||

st

P ;!
i

s

- e it

.—4:—
.

JT ’
i e
- ——

oy t

Figure A-C16 Exponent, Fraction, and Multiply-Divide Random Logic

-59.

HEBERERERIREEERNENEEERER NN}

llllllllll

13

Figure A-C17 Interface Control Unit

APPENDIX D: CONTROL SIGNAL DEFINITIONS AND IMPLEMENTATION

MULTIPLY-DIVIDE CONTROL SIGNALS

PHIl
ctri-start-arithop
dockl8
PHI4 _>- ctd-laxch-maldiv
dlockl
dockf-mmlop
ctd-laxch-emldiv
X

corl-mul +div-latch
PHD |
cockS-mulop
PHI1 |
clock18 an-lach-sisve
PHI1
PHD
PHI1
curl-start-arithop ctri-latch-ops

ctri-moul +div-latch o latch

PHM

m latch mldiv :D_ cm-cloar

co-lstch-maser

exd-latch-mmldw an~claar-mul
cti-mulop

an-latch-maser
cxrl-laxch-muidiv cm-cloar-div
cmi-divop

clockl
ad-di cm-roux-dvr

PHIA
dock]-MD :D— e aich-compracd
ctrl -start-arithop D_

::D»—'—}"‘“”‘”

oui-letch-mmldiv®

dockl 4 end mval odiv-lazch

onrl-latch-somidiv

clockf-mmlop

PHIL
cdockl8 o-lstch-slave

PHII®
PHD*

PHIL
ctrl-saant-srithop

ctrl-stant-arithop
crl-divap
an-romx-<dvr
dockl

exi-divop

-61-

MULTIPLIER BYTE SELECT CONTROL SIGNALS

24 16 | 0

64 56 48 40 32
(oo [g [[s | ot Lo [[t [o]

cm-latch-slave
PHII _:1 em-bytesel-mpr0 l[
ctrl-sart-arithop |
PHI1 rt cm-b 1-mpr] |
clock] -_-DJ IE
PHI3 [T Lem-byiesel-mpr2 iC
clock2 1
PHI _:Tﬂl’ml-ma ‘]E
clock2]

3 D[l r
T D[L

o D

PHI! cm-b. -mpr7
clock4 :D_f' _"”;

PHI3] C’“"’M'M 1
clock§

dockl-cvriop
dockl]l-MD

cydleciock-ini=]

ce-dest-to-busB
cti-latch-ops

ce-lawch-opGL
ctri-laich-ops

co-pass-cxpos

cn-adder-first

frac-S+A-axpn

f-to-erie

cti-opexcept-demct®

ctrl-arith
cycleclock-mitel

PHL2
ar-AS+MD

- mm3
ot
cycbdock-hu:

PR
cycleclock-imta2l

-62-

EXPONENT CONTROL SIGNALS

ce-latch-opGL

-63-

FRACTION CONTROL SIGNALS

PHI
docké-omlop dﬂbm
ctrl-gaw-PPS +C- fracBas carl- guae-PPS+C-fracBus
P aciih

dockl$

oty) et pom-guoies s 0o O et o ot

PHIY PHD
D dimvaton a2 D ettt
dockl
PHM PHIA
dackl-AS dock1-AS :D——
PHII
ctrd-luach-ops ctrl-start-arthap
ed-MD+AS « " L MDIAS D
_— Hatch-op -— cf-lstch-opAB
dockl® dockl9
PHD
ctrl-gat-PPS+C-fracBus clock$-mulop
dotit
PHIL
PHM $-Lr\ dmb
pr Iy d’ a
dock19 T 2 adder-divquot
9
cf-adder-AS —__—_—%_ f-adder m;f&d&rAS of-adder
crl-MDcyclo-passive oml- -pasave

mn:D__ PHD _-_D_
clock]-MD clocki-MD
PHL;
dﬂs dc:xl-A.‘S

of-lach-ireermed

M) ef-lach-; 4 PHII
cdlock6-mmlop cdlock6-malop
PHI3 PHI
dock19 clock19
PHIl

oL
dack19 clock19

s :D— PHII2 d?:lz :D" PHI) 2+

cycleciock-eend =l eyclociock 3 D pmae
d,_;-wm:ﬂu D"“ of-wris-narm d_n.m-mm D— of -wrissnorm*

PHI3 .
SN D— of-write-md o n-to-ww D— f-wris-md*

PHO!
dock2-AS
PHI2
cycleclock init=

cl-AS+MD
f-normaline

dock2-AS

| 23153
clockT-mmiop

PHII

frac-Shift-GT1
arl-ovriop
crl-arithop

PHI2

cycleclock-mite2
cl-AS+MD

clock2-AS

dock7-mulop

clock20

of-adder

wl-ﬁmydo-;-tﬁg

ctri-AS+MD

1 M

o

cf-intch-ncwmdist

frac-Shift-GT1
ctd-cvriop

cd-AS+MD
cud-MD+AS

PHI4

clock3-AS

cf-norzmalise ®
dock2-AS

dock7-mulop

carl-wart-arithop

eycloclock-init
cui-AS+MD

clock2-AS

dlock7-mmlop

PHI3

D—

f-lasch i

cf-norpalize®

of-lmch-mcoat

ef-lstch-roundata

-65-
MISCELLANEOUS CONTROL SIGNALS

ul-n.m :D' cui-lasch-ops®

d.nu':;:D' cer_jatch_ops

it] Do cotrmeycie pussives

e cut_teyc_puseive
ar _MD/AS ctrd_MDcycls_passive d_:nm %
ci_MDcycle_passive
cat MDIAS
Somns L e gD ol g
SIGN BOX CONTROL SIGNALS

cl-addorAS :D_ R

cf-adder-AS
frac-serodetlawch :D_ G- 2a0 frac-smrodetlaxh

PHI1
carl-sart-srithop

lnnh-q:
duk2 PHI3
arl-ASMD co-latch-dost dock2
o-ASMD
cl-ASMD
cf-laich-nammdist ci-ASMD
o4 .

as-latch-dest

MEMORY CONTROL SIGNALS
DECODE STAGE -

...
. g
dm'm%
sugl bl
sextl cirl-read LA mm caxl-read-restregs A
gl
PHIL
oxt]

- cad. -arithop
] PHI1
a2 []
ard £ an-read- fracregsA
PHI1 d- A _— L

ndbdl adl
swatl

<ldncode-Mlatch PHI1L

PHI3 sugl

PHI1
ndbl
gl mdbl
e M, . PHI1 .
PHI1 sap cldocade-Mlatch-store frac

PR
|

SECOND STAGE

:::D- dacand-losdnore

gl cisecond-stgl

adl == claocond-adbl

= -D-
smxtl clsecand-mext

ext] ~——————— clgocond-swextl

sugl
-— dmcond-saglext2

-67-

MEMORY STAGE

sore (scond siage) 23— d-Slach-store . Z}:} d-Slasch-sors
stare (socond sage)
Pl
WRITE STAGE

e PHD
Jisg Madbl
Idext}
PHD .
PHD ctrl-wris-restogeA \degl ctd-wrim-restre g A
PHD
ldextl

PHD
dsgl
Idaxt2 PHD ,
PHD axt-wris-f SA g ctrl-wrim-fracregs A
PHD
Mdext2
R4 o crl mb,
ideg! dwrite-idagl

1ddh et ¢ wyim-1ddbl

MISCELLANEOUS SIGNALS
sore (decode stage) stove (decode stage)
cari-stan-erithop PHM
ot (o 'm: arldach-regrumbA dm..;: eui-latch-ragommbA

PHI2 lond (wriz stage)
PHI2

APPENDIX E: DATAPATH CAPACITANCES, BUFFER SIZES, AND DELAY TIMES

-68 -

WORST CASE CONTROL INFORMATION FOR EXPONENT LAYOUT

BLOCK CELL SIGNAL (layout name) Cap (fF) Buffer Delay (ns) Label
El EAbusdr ctrl-read-regsB* (en*) 1549 40 3.38 1
El EBbusdr ctrl-read-regsB* (en*) 1549 40 3.32 2
El ebusBinv ctrl-write-arithresulis* (en*) 1549 40 5.00 3
AsubB17 AbarB17 PHI1 (phi) 699 40 1.29 4
AsubB17 AbarB17 PHI1* (phi*) 939 40 0.57 5
E2 MuxBgtAl7 expn-BgtA* (BgtA®) 869 40 10.47 6
E2 MuxBgtA17 expn-BgtA (BgtA) 852 40 9.58 7
E2 Egel28 ce-latch-expndiff (phi) 515 40 5.20 8
BsubAl7 AbarB PHI1 (phi) 699 40 1.29 10
BsubAl7 AbarB PHI1* (phi*) 939 40 0.59 11
E3 EAlatch ctrl-latch-ops (phi) 854 40 5.06 12
E3 EAlatch ctrl-latch-ops* (phi*) 905 40 4.13 13
E3 EBlatch ce-latch-expnB (phi) 854 40 6.23 14
E3 EBlatch ce-latch-expnB* (phi*) 905 40 5.84 15
E3 MuxOPG ce-mux-OPG (EB>EA) 852 40 2.24 16
E3 MuxOPG ce-mux-OPG* (EB>EA®) 835 40 2.83 17
E3 laichOPG ce-latch-opGL (phi) 597 40 6.89 18
E3 . lachOPG ce-laich-opGL* (phi*) 734 40 6.16 19
E3 MuxOPL1 ctrl-MD+AS* (MD+AS*) 858 40 1.24 20
E3 MuxOPL1 ctrl-MD+AS (MD+AS) 814 40 0.46 21
E3 MuxOPL2 cul-firstcycle-passive* (1cyc®) 902 40 4.05 22
E3 MuxOPL2 ctrl-firstcycle-passive (1cyc) 835 40 3.18 23
E3 latchOPL ce-latch-opGL (phi) 597 40 6.18 24
E3 latchOPL ce-latch-opGL* (phi*) 734 40 5.49 25
EGsubEL SubXorl7 ce-adder* (CEsub) 1330 40 5.88 26
EA MuxEdestl ctrl-arithop (arith) 852 40 4.13 27
E4 MuxEdestl ctrl-arithop* (arith*) 835 40 3.26 28
E4 Mux17Edest2 frac-zerodet (Odet) 890 40 1.33 29
E4 Mux17Edest2 frac-zerodet* (Odet*) 822 40 0.52 30
E4 MuxEdest3 ctrl-firstcycle-passive (1cyc) 852 40 4.05 31
E4 MuxEdest3 ctrl-firstcycle-passive* (1cyc®) 835 40 3.18 32
E4 Ereslatch ce-latch-dest (phi) 597 40 7.44 33
E4 Ereslatch ce-latch-dest* (phi*) 734 40 7.96 34
E4 Eresbusdr (ce-write-10-busB)* (en*) 1642 40 6.50 35

-69 -

WORST CASE CONTROL INFORMATION FOR FRACTION LAYOUT

BLOCK CELL SIGNAL (layout name) Cap (fF) Buffer Delay (ns) Label
Fl FAbusdr ctrl-read-regsB* (en*) 5570 60 5.35 1
Fl FBbusdr ctrl-read-regsB* (en®) 5570 60 520 2
F1 fbusBinv ctrl-write-arithresults* (en*) 5570 60 7.96 3
F1 FlaichA ctrl-latch-ops (phi) 2947 60 6.34 4
F1 FlatchA ctrl-latch-ops* (phi*) 3203 60 443 5
F1 FlaichB ctrl-latch-ops (phi) 2947 60 6.34 6
Fl1 FlatchB ctrl-latch-ops* (phi*) 3203 60 444 7
F1 muxFG expn-shfA-frac (CeBgtA) 2851 60 1.07 8
Fl muxFG expn-shfA-frac* (CeBgtA®) 2819 60 2.79 9
F1 muxFG expn-shfA-frac (CeBgtA) 2851 60 2.719 10
F1 muxFG expn-shfA-frac* (CeBgtA®) 2819 60 1.07 11
Fl fmuxB ctrl-AS/MD (AS+MD) 2881 60 i1 12
F1 fmuxB ctrl-AS/MD* (AS+MD*) 2945 60 2.85 13
Fl flaichOPB cf-latch-opAB (phi) 2947 60 8.40 14
Fl flatchOPB cf-latch-opAB* (phi*) 3203 60 6.50 15
Fl Ishfoutbusdr cf-write-norm (en*) 5197 60 4.60 16
F1 flatIshfout cf-latch-Ishout (phi) 2497 60 2.04 17
F1 flatishfout cf-latch-1shout* (phi*) 3075 60 9.42 18
F1 flatishfout PHI1.2 (phil.2) 4161 60 8.27 19
F2 flatchrshfout cf-latch-rshout (phi) 2146 60 5.85 20
F2 flatchrshfout cf-latch-rshout* (phi*) 3021 60 4.36 21
F2 flatchrshfout PHI2.1 (phi2.1) 4223 60 2.07 22
)37 flatchishfin cf-latch-1shin (phi) 2242 60 3.16 23
2 flatchlshfin cf-latch-1shin* (phi*) 2627 60 4.26 24
F2 fmuxAl ctrl-MDcycle-passive (MD) 577 60 3.24 25
F2 fmuxAl ctrl-MDcycle-passive* (MD*) 3122 60 1.19 26
F2 fmuxA2 ctrl-AS/MD (AS+MD) 3252 60 1.74 27
F2 fmuxA2 ctrl-AS/MD* (AS+MD*) 3187 60 0.38 28
F2 flatchOPA cf-lach-opAB (phi) 2277 60 7.92 29
F2 flatchOPA cf-laich-opAB* (phi*) 2799 60 6.35 30
F2 FBxor cf-adder* (sub) 4481 60 10.10 31
F3 fintlatch cf-latch-intermed (phi) 1973 60 7.59 32
F3 fintlatch cf-latch-intermed* (phi*) 2588 60 6.17 33
F3 fintlatdr cm-latch-compmed (en*) 5291 60 5.22 34
F3 fcompl frac-sign-intermed (Compl) 4559 60 1.59 36
F4 fmuxincout ctrl-firsticycle-passive (SELA) 3083 60 597 37
F4 fmuxincout ctrl-firstcycle-passive* (SELA*) 3083 60 428 38
)) flatincout64 cf-latch-incout (phi) 3087 60 7.04 39
F4 flatincout64 cf-latch-incout* (phi*) 3355 60 5.55 40
F4 fincoutdr cf-latch-1shin (en*) 5953 60 8.65 41

-170-

WORST CASE CONTROL INFORMATION FOR MULTIPLY/DIVIDE LAYOUT

BLOCK SIGNAL (layout name) Cap (fF) Buffer Delay (ns) Label
IN cm-latch-compmcd (phi) 2869 60 7.70 61,64

IN cm-latch-compmcd* (phi*) 2988 60 6.36 62,63

IN ctrl-latch-ops (phi) 2869 60 11.73 57.60,65,69,70
IN ctrl-latch-ops* (phi*) 2988 60 10.41 58,59,66,68
IN cm-clear-div (clr) 6438 60 35.01 67

MUX cm-latch-slave (phi) 6334 60 24.23 39,44.49,54
MUX Booth sel-1 (sel-1) 2930 60 3.93 38,43.48,53
MUX Booth sel+1 (sel+1) 2856 60 3.87 40,45,50,55
MUX Booth sel-2 (sel-2) 3001 60 3.98 41,46,51,56
MUX Booth sel+2 (sel+2) 2930 60 393 37424752
LATCH cm-latch-slave (phi) 3183 60 25.08 30,32,34,36
LATCH cm-latch-slave* (phi*) 3895 60 28.84 29,31,33,35
CSA cm-latch-master (phi) 11254 60 18.52 25,26,27.28
PP cm-latch-master (phi) 3213 60 17.46 1424

PP cm-latch-master* (phi*) 3901 60 15.94 13,23

PP cm-latch-slave (phi) 3213 60 23.62 8,16

PP cm-latch-slave* (phi*) 3901 60 27.78 7,15

PP cm-clear (clr) 7429 60 38.72 1222

PP ctrl-gate-PPS/C-fracBus (en) 7410 60 8.72 1121

PP ctrl-mulop (shr8) 3875 60 3.89 9,19

PP ctrl-mulop* (shl2) 3943 60 1.53 10,20

PP cm-mux-dvr (enbusA) 3936 60 8.24 17

PP cm-mux-dvr* (enPPSm) 3888 60 7.44 18

QUO cm-latch-master (MA) 3575 60 15.57 2.5

QUO cm-latch-slave (SL) 2832 60 2293 36

QUO ctrl-gate-quotient-fracBus (en) 6500 60 8.07 14

-71-

EXPONENT CONTROL SIGNAL PLACEMENT

ooy
Eregfile Efile
(860)
EAbusdr E 1 -
Bbusd -
it @34) -
AbarB17 AsubB17 e
(388) i, RACI &
maae
MuxBgtAl7 E2 BpA Bgiae
Egel28 (100) Sge128
w
BsubAl7 pascve
AbarB (366) g
EAlawch i, pht®
EBlatch . gt
MuxOPG E3 EREA. ERSEA®
1atchOPG P, e
Eshiﬁcvl it oS>
muxOPL1 (368) MD+AS. MDvAS®
B -soumndisvct 0>
muxOPL2 1o, teye®
1atchOPL oL pr
SubXorl7 EGsubEL Chass
(353) n
muxEdest 1 i, e
mux17Edest2 E4 Stu, Odur®
muxEdest3 1oy, 1eye®
Ereslatch (2 17) Phi, pt®
Eresbusdr -

PHI2+PHI4

ctr-read-regsB*
ctrl-read-regsB*
ctrl-write-anthresults®

PHII
(output)

(output)
expn-BgtA
(output)
ce-laich-expndiff

(output)
PHI1

ctrl-latch-ops
ce-laich-expnB
ce-mux-opG
ce-larch-opGL

(output)
ctd-MD+AS

(input)
ctri-firstcycle-passive

ce-latch-opGL

ce-adder®

e-carmyin

ctrl-arithop
frac-zerodet
arl-firsicycle-passive
ce-lawch-dest

(ce-dest-to-busB +
ctri-write-arithresults)*

-12-

FRACTION CONTROL SIGNAL PLACEMENT

Ffile
phisy
G117
FAbusdr -
FBbusdr -
FlaichA Phi. phae
FluchB F1 o, piue
muxFG CERgA. CRNgA®
CERgA, CEBgA®
fmuxB 622) AB+MD, AS+MD*
flarchOPB phi, phie
1shfoutbusdr -
flatshfout 12
o,
SHIFTER
(1389)
flatchrshfout phi, phie
21
flatchlshfin i, pe
fmux Al F2 MD, MD*
fmux A2 AS+MD, AS+MD*
flaichOPA . phi®
FBxor @62) -
Y
adder66
(549)
fintlaich i, poi®
bl
findatdr F3 -
f6d4zerobot -
-
fcompl (295) Compl
<R 64>
fR1PLI u.ue
BRI
X
Lin. Rt
inc64
(549)
fmuxincout F4 SELA, SELA®
Batincout i, p®
fincoutdr (210) -
PHI2I, PHIZI, PHE2!, P21, PHR2Y
detector
00
(463) <oe

PHI2+PHI4

g&-md-mgs .
-read-regsB*
atrd-write-an
ctri-latch-ops
ctri-latch-ops
expn-shfA-frac
expn-shfA-frac
cul-AS+MD

of -lawch-opAB
cf-write-norm*
PHIL.2
cf-latch-1shout

cf-latch-rshout
PHI2.1

cf-latch-Ishin
ctri-MDcyde-passive
ard-AS+MD
cf-laich-opAB
cf-adder®

f-carryin

cf-latch-intermed
(output)
cm-latch-compmed*
(output)

PHI2
frac-sign-intermed
(output)

(from Test R1PL1)

ctrd-firstcycle-passive

cf-1atch-incout

(cf-latch-1shin +
of-write-md)*

PHI1*

(OUTPUT)
(OUTPUT)

MULDIV CONTROL SIGNAL PLACEMENT

-73-

stbufstvg ™
10p aga<l
poa QuUO "
tsbufsivg @59) —:;
posq_top “.‘:
c2iachb.vg Phi, gt
shPPC e, an
tstbufst.vg ™
ppemlatch PP -
c2latchb.vg o, e
muxdiv_pr @357 wwinsA, @PFPSD
shPPC s, 02
tstbufst.vg ~
c2slatch.clvg '-"::
-
CSA -
csa_cell -
(768)
™
MUXLATCH oo
c2latchb.vg T
@19 phi, pta®
b2
-t
-
ke
--2
-2
-l
[
MUX =1
mux_bit aabed
(522) -
-
oi+2
-d-1
-
akl
-2
c2slatch.vg i, phu®
i, phu®
€2siach.vg IN .
i, pia®
c2slatch.cl.vg 522) ::
o
cm-byresel

ol w® =mF ol

ctri-gate-quotient-fracBus

(input)
cm-latch-master
cm-laich-slave

ctri-gate-quotient-fracBus

(input)
cm-Iatch-master
cm-latch-slave

cm-lach-slave
ard-mulop

ctri-gate-PPS+C-fracBus
cm-latch-master
cm-clear

em-latch-slave
cm-mux-dvr

cul-mulop

ctrl-gate-PPS+C-fracBus
cm-laich-master
cm-clear

cm-latch-master
cm-latch-master
cm-latch-master
cm-latch-master

cm-latch-slave
cm-laich-slave
cm-latch-slave
cm-latch-slave
BOOTH
BOOTH
cm-laich-slave
BOOTH
BOOTH
POOTH

cm-laich-slave
BOCTH

BOOTH
BOOTH

BOOTH
cm-latch-slave
BOOTH
BOOTH
BOOTH

BOOTH
cm-latch-slave
BOOTH
BOOTH

ctri-lawch-ops
ctrl-laich-ops
cm-latch-compmed
cm-latch-compmed
ctri-latch-ops

ctri-lach-ops
cmclear-div

cm-bytesel-mpr<8:0>

-4 -

APPENDIX F: SIMULATION DATA

1. SPICE

1.
2.
3.

b

Extract circuit description from within Magic: ":ext”

Obtain .sim file from ex2sim: "ex2sim -R -¢ 1¢-18"

Remove any attributes from sim file, such as the Cr:In$ labels used in CRYSTAL. In vi:
"%s/d=Cr:In$//g", etc.

Obtain .spice file from sim2spice: "sim2spice -d “/misc/def”

Add input and model cards to .spice file.

Submit .spice file on EROS: "spice < file.spice > file.out”

Typical /misc/def file:

def p P scmosll
def n N scmoslII
set Vdd 1 scmosll
set GND 0 scmosll
setP1

setNO

Model parameters used:

".l#‘l#t“#‘t‘ttttttt*‘t‘t#ttt-‘t‘tt‘t‘t**#‘#t“‘ttltt“t'*‘#t‘ttt#.ttt*

TYPICAL Device parameters for the HP CMOS40 Process

Released 2/6/86 by Rich Duncombe
NOTE: These parameters are intended for digital design only.

* 8 & 8 @

"t‘t*t"ttt.tt‘t““tt‘#‘*#‘t#ttl#ttt#tttt#tt‘t‘tt*#‘t‘t‘##t‘#t*l“t.l#t
 J

* Use N and P models for W >=4U and L <= 2U

|]

/MODEL N NMOS LEVEL=2 VTO= 0.75 KP=76.0U GAMMA=.40 LAMBDA=.025 TOX=25N
+ NSUB=4E16 TPG=+1 XJ=.25U LD=.20U UEXP=.16 VMAX=5.5E4 JS=1000U

+ CGSO=220P CGDO=220P CJ=230U CJSW=260P CGBO=400P

»

/MODEL P PMOS LEVEL=2 VTO=-0.75 KP=27.0U GAMMA=.50 LAMBDA=.045 TOX=25N
+ NSUB=2.0E16 TPG=-1 XJ=.20U LD=.05U UEXP=.15 VMAX=9.0E4 J§=1000U

+ CGSO=220P CGDO=220P CJ=670U CISW=215P CGBO=400P

*

.t‘t*#‘t‘tt*t#t‘*‘t"tl‘.*tt‘tt‘lt#tttlt#t‘ttt"tt‘tt#ttt#‘tt‘t#ttl‘**‘#‘

-75-

2. CRYSTAL

Extract circuit description from within Magic: ":ext”
. Obtain .sim file from ext2sim "ext2sim -R -¢ 1e-18"
Start up CRYSTAL: "crystal”

Read in typical source file: "source file.crystal®

Typical source file (for exp-control.sim):

source crys_parm

build exp-control.sim
alias exp-controLal
inputs *PHI *cycle *clock *ctrl-start *ctrl-AS *ctrl-mulop
outputs <1:35>

watch 12

options graphics magic
options bus 12

options watchpaths 10
capacitance 1.6 1
capacitance 1.6 2

set 0 PHI3&

set 0 PHI2&

set 0 PHI4&

delay PHI1& 00
critical -g gatequo.mcrit
critical 1w

CRYSTAL parameters used:

'tt#t‘t‘#t“““‘tt#t‘#tttt‘tt‘t*‘t‘ttttt#t**###“l‘t#‘t#tt*tttt.t‘t“‘**

! crystal paramter release V2.1(2.10.86)

! based on HPCMOS40 1.6um Process

! extracted by Wook Koh mail problems to wookkoh@kim
!.‘*.‘#t“*t*#tt#t*#‘tt““‘*‘t‘*t.l‘#*tt#t#‘tt‘t‘tt‘#t**i*#*tt“t‘#t“‘t

tran nchan slopeparmsdown 0.000,8000,0.7;0.1 13,8500,0.7:0.271,9500,0.7;0.771, 11500, 0.7; 2.527, 15500, 1.0; 7.534, 2
tran nchan slopeparmsup 0.000, 8000, 0.7; 0.113, 8500, 0.7; 0.271, 9500, 0.7; 0.771, 11500, 0.7; 2.527, 15500, 1.0; 7.534.
tran pchan slopeparmsdown 0.000, 20000, 0.8; 0.488, 25000, 0.9; 1.599, 35000, 1.0; 4.800, 55000, 1.5; 47.828, 194000, 5
tran pchan slopeparmsup 0.000, 20000, 0.8; 0.488, 25000, 0.9; 1.599, 35000, 1.0; 4.800, 55000, 1.5; 47.828, 194000. 5.0;

-76 -

3. MOSSIM

1. Extract circuit description from within Magic: ":ext”
2. Obtain .sim file from ex2sim: "ext2sim -R < le-18"
3. Obtain .ntk file from sim2ntk: "sim2ntk file”

4. Start up MOSSIM: "Mossim”

5. Read in .ntk description: "read file”

6. Read in typical source file: "source file”

sim2ntk file:

#!bin/csh -f

if ($#argv !=1) then

echo "Usage: sim2ntk file"
exitl .’

endif

onintr end

set file=$1.sim

m r $1l.ntk

echo sim $1.sim >! temp.$$
echo type vdd:i gnd:i >> temp.$$
echo stren ratio:3.0 >> temp.$3
echo size ratio:3.0 >> temp.$$
echo write $1.ntkk >> temp.$3
echo quit >> temp.$$
convert < temp.$$-

end:

foinfrm -f temp.$3

Typical source file (counter.src):

Ccopy counter.cpy

comment ‘t#t**‘l“*t**t‘#t#“‘ttttl*l#‘#‘*“‘ttt‘*#.ttttt“tt*

comment Logical Simulation for 5-bit Counter

comment t“##ttt*tlt#‘t#“#t‘.tt#t*lt#t‘t‘ttt#tt‘ttttttt##t‘t
comment

switch explain:1

clock phil:10000000 phi1*:01111111 phi2:00100000 phi2*:1 1011111 -
phi3:00001000 phi3*:11110111 phi4:00000010

force Vdd:1 GND:0

vector clear* (clr&phi3)*

prefix Sbitinc_0

vector A incbit_3/ai incbit_2/ai incbit_1/ai incbit_0/ai incbit0_0/ai
unprefix

vector /b S s4 s3 s2s1s0

vector /b SPHI1 s4_phil s3_phil s2_phil s1_phil sO_phil

watch /* /b Sbitinc_0/A S SPHI1 clear* start busy inc cout

set /b Sbitinc_0/A:00000

set /b clear*:0 start:0 busy:0

