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ABSTRACT 

SPUR is a RISC-based multiprocessor workstation being designed to facilitate 

parallel-processing research. Typically, RISC architectures achieve low perfonnance 

levels for floating-point intensive applications, as the multiple-cycle floating-point 

instructions are not implemented in the hardware. In an attempt to raise these perfor

mance levels, the SPUR system provides floating-point support through an extended 

instruction set and a tightly-coupled floating-point coprocessor. This report documents 

the implementation of the control unit for this floating-point coprocessor; describing the 

coprocessor interface, control PLA definitions, the finite state machine, the dynamic 

cycle counter, the 4-stage load-store pipeline, and the random logic generated to drive the 

datapath modules. Implementation techniques and trade-off's are discussed; including 

design strategy, area and speed optimization, noise margin considerations, and delay 

balancing of the datapath control signals for clock skew minimization. Finally, simula

tion results obtained using SPICE, CRYSTAL, and MOSSIM are presented. The chip is 

implemented in 2-layer-metal 2J.11Tl CMOS technology, and uses a four-phase non

overlapping clock with a target cycle time of approximately lOOns- 140ns. 
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1. INTRODUCTION 

1.1. SPUR System Overview 

SPUR (Symbolic Processing Using RISCs) is a shared-memory multiprocessor being designed here 

at Berkeley [7] to apply the RISC (Reduced Instruction Set Computer) concept to a parallel-processing 

workstation. The basic SPUR system consists of 6 to 12 identical processors; each with a custom 32-bit 

central-processing unit (CPU). a 128K-byte instruction and data cache and controller, and a floating-point 

coprocessor (see Figure 1-1). Each of the processors communicates through· a global shared memory 

which, along with a single shared bus, simplifies paraBel programming by eliminating the problem of 

specifying complex processor interconnections. Like it's predecessors, the SPUR CPU follows the typical 

RISC philosophy of (approximately) one-cycle pipelined execution, register-register operations with load-

store accesses to memory, hard-wired control, and a large register file with overlapping windows . 
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Figure 1-1 SPUR System With Floating-Point Coprocessor 

RISCs evolved as a way to circumvent the problems inherent in microcoded control without 

sacrificing speed. efficiency, and simplicity of design. In order to develop an efficient processor with one-

cycle execution, instructions are limited to register-register operations with a few simple addressing modes. 

The most commonly executed operations are optimized and placed in the hardware while less frequently 
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executed operations, or multiple-cycle instructions, are implemented using software routines. Executing 

multiple-cycle floating-point instructions in software results in low performance for floating-point intensive 

applications [15]. One goal of the SPUR project was to increase this performance level by providing a 

floating-point coprocessor. 

1.2. Floating-Point Coprocessor 

The SPUR floating-point coprocessor implements the IEEE 754 standard without microcode by exe

cuting the most common functions in hardware and trapping to software to handle less frequent operations 

(such as transcendentals) and exceptions. The possible exceptions which can be detected [1] include: 

invalid operation, overflow and underflow, divide by zero, and inexact result due to rounding. The IEEE 

standard defines six different data types [8]: normalized, denormali.zed.. zero, affine infinity, quiet Not a 

Number, and signalling Not a Number. The normalized and zero types can be implemented entirely in 

hardware, while the other four types are handled at least partially in software. 

The floating-point coprocessor is tightly coupled to the SPUR CPU [6], which means that the pres

ence of the coprocessor is ttansparent to the programmer, who sees only the extended instruction set That 

is, the coprocessor is a feature of the implementation of the SPUR system, not the architecture. If a 

floating-point instruction is encountered and a coprocessor is present in the system, the instruction will be 

executed by the coprocessor; otherwise it will be implemented in software. The CPU handles all of the 

communication details at the hardware level through the coprocessor interface. 

1.2.1. Coprocessor Interface 

In order to improve floating-point performance through the use of an external coprocessor, it is 

essential that the overhead of the data transfer between the central processor and the coprocessor be 

insignificant in relation to the speed-up provided by the coprocessor. Several features of the SPUR copro

cessor interface were designed to minimize this overhead (1]. In particular, the floating-point unit (FPU) 

can operate concurrently with the CPU, FPU loads and stores can be executed concurrently with arithmetic 

FPU operations, and a 64-bit data bus is provided to transfer data directly between the cache and the FPU 

(under control of the CPU, which calculates the effective memory address). 
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Figure 1-1 Coprocessor Interface Communication 

Figure 1-2 shows the interface signals used for communication between the CPU and the FPU, 

including the three cache signals and data bus used in data transfer. Assuming no misses occur, the CPU 

receives and decodes the next instruction from its on-chip instruction buffer. The CPU asserts the 

fpuNewlnstr signal if the decoded instruction is a floating-point load or store instruction, or if it is an arith-

metic floating-point instruction and the FPU is not currently busy executing an arithmetic operation. The 

CPU stalls if an arithmetic instruction is decoded while the FPU is busy. The assertion of thefpuNewlnstr 

signal causes the FPU to latch the instruction opcode and register specifiers into the instruction register, 

where they are again decoded and the instruction is executed. The addition of a 4-stage load-store pipeline 

(see Section 2.4) and 15 dual-ported floating-point registers allows floating-point loads and stores to be 

executed concurrently with arithmetic floating-point operations. The fpuSuspend signal allows the CPU to 

suspend all FPU memory operations, and is an input to the FPU internal finite state machine. Floating-
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point exceptions are detected and handled by the CPU when thefpu.-EXCEPpin line is asserted. Also, as 

the CPU fetches the instructions and maintains the program counter, thefpu.-BR-T!Fpin is needed to indi-

cate the result (and branch direction) of a floating-point compare operation. 

1.1.2. Extended Instruction Set and Data Formats 

The extended floating-point instruction set [2,6] is shown in Table 1-1. Maintaining the RISC philo-

sophy, the instruction set contains only register-register arithmetic instructions and load-stOre memory 

operations. All of the arithmetic operations except multiply and divide require four cycles. The multiply 

and divide instructions are implemented using iterative algorithms (See Section 3.1.3) and thus take 9 and 

22 cycles, respectively. Loading data from the cache into the FPU requires only one cycle, while storing 

data into the cache from the FPU takes two cycles. 

Table 1·1 SPUR Extended Floating-Point Instruction Set 

Instruction Type Instruction Syntax Instruction Semantics Cycles 

ARITHMETIC FADD Rd,Rsl,Rs2 Rd <- Rsl + Rs2 4 

ARITHMETIC FSUB Rd,Rsl,Rs2 Rd <- Rs1- Rs2 4 

ARITHMETIC FMUL Rd,Rs1,Rs2 Rd <- Rs1 • Rs2 9 

ARITHMETIC FDIV Rd,Rsl,Rs2 Rd <- Rs1/Rs2 22 

ARITHMETIC FABS Rd,Rsl,O Rd <- Rsl; sign<- 0 4 

ARITHMETIC FNEG Rd,Rsl,O Rd <- Rsl; sign<- -sign 4 

CO.MPARE FCMP cond,Rsl,Rs2 FPSW(cond) <-result 4 

MOVE FMOV Rd,Rs1,0 Rd <- Rsl 4 

CONVERT CVTS Rd,Rsl,O Rd(sgl) <- Rsl(ext) 4 

CONVERT CVTD Rd,Rsl,O Rd(dbl) <- Rsl(ext) 4 

LOAD LD_SGL Rd,Rsl,RC Rd <- M(Rsl+RC) 1 

LOAD LD_DBL Rd,Rsl.RC Rd <- M(Rsl+RC) 1 

LOAD LD_EXTI Rd,Rsl,RC Rd <- M(Rsl+RC) 1 

LOAD LD_EXT2 Rd,Rs1.RC Rd <- M(Rsl+RC) 1 

STORE ST_SGL Rs2.Rs1,SC Rs2 -> M(Rsl+SC) 2 

STORE ST_DBL Rs2.Rs1,SC Rs2 -> M(Rsl+SC) 2 

STORE ST_EXT1 Rs2,Rs1,SC Rs2 -> M(Rsl+SC) 2 

STORE ST EXT2 Rs2,Rsl,SC Rs2 -> M(Rs 1 +SC) 2 

As shown in the table, there are four separate types of load and store instructions. This is because 

single, double, and extended data formats may be specified (see Figure 1-3), and in the case of the extended 

format a separate load/store instruction is required for each 64-bit word. Although data may exist in 

memory in any of the above formats, only the extended format is actually implemented in the hardware. 

Therefore, when data in the single or double format is loaded into the FPU, it is automatically converted to 
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the extended format by unpacking the exponent and fraction and assigning them to the extended fields. and 

setting tag bits to specify one of the six IEEE data types. To store data from the FPU into memory in the 

single or double format requires that the proper convert instruction be used in order to convert the data 

from the extended format into the desired format before the store is implemented. 

G D D 0 

SINGLE RAcnON<Z2~ I I I I I I I I I I I I 

DOUBLE L.l: ..... l._EXP< __ ~o_:0>_
12 

.... 1 ______ FRA_cn_o_N_.cs_!_:O> _______ .... ·, 

I FRAcnoNc63:0> I 
Figure 1-3 FPU Data Formats 

1.2.3. FPU Floorplan 

The basic structure of the floating-point chip is depicted in Figure 1-4. The FPU consists primarily 

of four main modules: the exponent (EXP), fraction. and multiply-divide (MULDIV) blocks, which consti-

tute the datapath; and the control module, which is the focus of this report The control unit latches and 

decodes incoming floating-point instructions. using a combination of PLAs and random logic to generate 

the necessary signals to control the datapath. 

The main section of the control unit consists of the control programmable logic arrays (PLAs), a 

cycle counter, and interface logic, whereas the logic which generates the individual datapath control signals 

are located in the random logic strips in the proximity of the datapath block which they are controlling. 

1be ~puts to this logic are generally routed directly from the main control block, though in some instances 

these inputs come from other portions of the datapath. The outputs of this logic are then individually buf-

fered to drive the datapath. 

The floating-point chip is implemented in ~ CMOS technology with two metal layers, where the 
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Figure 1-4 FPU Aoorplan 

power supply and data lines run horizontally in metal-2 and the control lines run vertically in metal-1. The 

entire FPU design is implemented assuming a four-phase non-overlapping clock, where the target cycle 

time is approximately lOOns- 140ns with a non-overlap time of Sns- IOns between each phase. 

1.3. Report Outline 

As stated above, this report focuses on the implementation of the control unit for the SPUR floating-

point coprocessor. When I joined the project this year, much of the control was already specified at the 

functional level and had been simulated using SLANG [18,19], but no control had been layed out. This 

report documents the control layout completed for this project, beginning with a description at the func-

tional level and progressing down to the low-level circuit details, including alternative implementations, 

functional verification, and simulation results. 
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Chapter 2 describes the main control block and the interface control, starting with an overview of the 

entire control unit. The second section describes the three PLAs central to the control unit design. This 

section is followed by a discussion of the implementation of the cycle counter. The last section of this 

chapter is centered on the design of the load-store pipeline. 

Chapter 3 revolves around the datapath, including a description of the main datapath modules and the 

random logic used to control the modules. The first sections of this chapter describe the operation of the 

three datapath modules; the exponent, fraction, and multiply-divide WJits. The next sections discuss the 

layout strategies considered for the random control logic, including layout structure and regularity, speed 

optimization, and area minimization. This discussion is concluded with a comparison of the two alternative 

methods actually implemented. The following section deals with clock skew considerations for the control 

lines, including capacitance extractions of the datapath and individualized buffer sizing techniques. 

The first section of Chapter 4 presents an overview of the CAD environment, outlining the various 

simulation tools employed and the interface between the tools. The following sections present the overall 

simulation results obtained using these tools including, when applicable, a comparison between the various 

tools. 

Chapter 5 summarizes the work completed, providing conclusions and suggestions for furure 

research. This includes interesting points discovered, lessons learned, and suggested paths to follow/avoid 

in future work. The following two chapters contain aclcnowledgements and references. 

A lengthy appendix is attached which is broken into six main parts. Appendix A defines the inputs 

and outputs of the three control PLAs. Appendix B includes cell schematics and documentation which is 

referenced in this report. Appendix C includes the layout plots of most of the unique cells incorporated in 

the control unit, ranging from single cell plots up to a plot of the entire floating-point control unit. Appen

dix D documents the control signal definitions and their implementation. Tables of the extracted capaci

tances for each of the datapath modules, including buffer sizes and total delay times, are given in Appendix 

E. Finally, Appendix F contains source tiles for each of the simulators. 
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2. INTERFACE CONTROL UNIT 

2.1. Control Unit Overview 

A simplified block diagram of the control unit is shown in Figure 2-1. New floating-point instruc

tions are latched on the chip in clock phase 3. The foiiowing phase, the instruction PLA decodes the 

opcode from the insuuction latch, and the register destination is latched into the first stage of the load-store 

pipeline (see Figure 2-5), along with load-store specifiers in the case of a load or store instruction. The 4-

stage pipeline allows the FPU to execute load-store operations concurrently with the multi-cycle arithmetic 

operations, as the required information can be latched into the pipeline every cycle. If an arithmetic opera

tion is received, and the FPU is not currently busy executing a previous arithmetic operation, the operation 

type is latched into the arithmetic ops register, where it serves as an input to the arithmetic PLA. Using a 

3-bit state register and a PLA, the internal finite state machine records the current state of the FPU (see Fig

ure 2-2) and maintains the fpuBusy signal along with various other signals. The cycle counter keeps track 

of the current instruction cycle dependent on the state of the FPU, and is decoded by the arithmetic PLA. 

Outputs of the arithmetic PLA, cycle counter, finite state machine, and load-store pipeline serve to generate 

the random control signals required by the datapath modules. 

2.2. PLA Partitioning 

As shown in Figure 2-1, three PLAs form the core of the control unit: the instruction PLA, the arith

metic PLA, and the PLA in the internal finite state machine (IFSM). Each of the PLAs has a set of pass 

gates associated with it to ensure that the inputs to the PLA cannot change unless the pass gate control is 

asserted. That is, the pass gates allow the PLAs to operate only in the phase associated with the pass gate 

control; in all other phases the outputs of the PLAs will be considered stable and valid. The phase of 

operation for each of the control PLAs is indicated in Table 2-1. As an example, since the arithmetic PLA 

is evaluated in phase 2, its outputs can be used only in phases 3 and 4 of the current cycle, and phase 1 of 

the next cycle; signals needed in phase 2 must by created independent of the PLA. Furthermore, all of the 

outputs of the PLAs are generated independent of clock phase. That is, if a control signal is defined as a 

function of various inputs and a clock phase, the logical and of the PLA output and the clock phase must be 
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Figure 2-1 Control Unit Block Diagram (The shaded blocks are PLAs). 

implemented outside the PLA. 

As mentioned earlier, the function of the instruction PLA is to decode the instruction opcode, which 

is its only input (see Appendix A for a definition of all PLA inputs and outputs). The arithmetic PLA gen-

erates control signals for arithmetic operations, basically dependent on the type of instruction being exe-

cuted and the current cycle count of that instruction. The IFSM is used to keep track of the current state of 

the FPU. The state transition diagram defining the IFSM is shown in Figure 2-2. As seen in the diagram, 

the ~te of the FPU is dependent on its current state and the control signals ctrl-TrapRecvd, ctrl-start-

arithop, ctrl{puSuscond, and ctrl-STOP. As there are eight unique states possible, a state vector of three 

bits is maintained external to the IFSM to hold the current FPU state. 
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Figure 2.-2 State Transition Diagram 

The PLAs were each simulated using CRYSTAL [13,16] to detennine the worst-case delay times. 

The results obtained are shown in Table 2-1, along with the corresponding PLA area The last two 

columns list the worst-case propagation delays for the three PLAs, where the first column of delays 

corresponds to the worst-case times for the PLA outputs to fall from high to low measured relative to the 

change in the input. Likewise, the last column corresponds to the worst-case times for the PLA outputs to 

rise from low to high. The high-to-low delays are consistently the slowest among the PLAs, where the 

worst-case is 11.35ns. This is suitable for use in a 20ns (minimum) phase time while still allowing the PLA 

outputs to be latched within the same phase of evaluation (see Table 2-4) with an appropriate safety mar-

gin. 

Table 2.-1 Comparison of Control PLA Delay Versus Size 

PLA Phase Inputs Outputs Area (J.un2) tp• (ns) tp. (ns) 

instruction PHI4 7 25 142746 11.13 9.93 

arithmetic PHI2 18 19 180675 10.34 9.74 

finite state machine PHil 7 7 70282 11.35 9.43 

As seen here, there is little difference (only about 0.5ns) between the delay times although, for exam-
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ple, the instruction PLA is about twice the size of the finite state machine. However, if all the PLAs had 

been condensed into one big PLA the total area would have been approximately five times greater, and we 

can extrapolate that the extra delay incurred would be at least 2.5ns, not counting the delays involved in the 

extemaJ routing required to and from the PLA. As it is, the partitioning of the PLAs effectively minimizes 

the average delay time while maintaining a logical grouping by function. 

2.3. Cycle Counter 

In order to keep track of the progression of the current instruction, a cycle counter has been incor

porated as part of the control uniL For this purpose, a 5-bit counter was required, since the maximum 

number of cycles occurring in any FPU instruction is 22 (see Table 1-1). As shown in Figure 2-3, the cycle 

value is clocked into the master latch in phase 1, and into the slave latch in phase 2. In phase 3, the current 

cycle value is passed through to the increment logic, thus ensuring that the counter can be incremented only 

once per cycle. If the FPU is currently busy with an instruction or starting a new instruction, and is not 

suspended, the cycle value is incremented by one. Otherwise, the old cycle value is again clocked into the 

master latch. The counter may be cleared asynchronously in phase 3. 

Usually, the current cycle value is fed into the arithmetic PLA and is decoded by the end of phase 2. 

As discussed in the previous section, this means that the decoded cycle value can only be used in phases 3 

and 4, or phase 1 of the following cycle. The five cycleclock-init lines are used as inputs to random logic 

which locally decodes the cycle value for control signals which are needed in phase 2. 

The control signal ctrl{puBusy is latched and stable by the end of phase 2, ctrl-start-arithop by the 

end of phase 4, and ctrl{puSuscond becomes available in phase 1 (see Figure A-B 1 in Appendix B). Thus, 

the critical path here is to ensure that ctrl-fpuSuscond stabilizes early enough in phase 1 to allow the incre

mentor to work and the count value to be latched by the end of that phase. As the input to the ctrl

fpuSuscond latch is stable by the end of phase 4 and the worst-case delay for the static latch is 3.0ns (see 

Table 2-4), the worst-case delay for the increment logic (2nand2nand driving 0.404pF) is 2.0ns, and the 

set-up time for the master latch is 3.0ns, we still have about 12ns left to actually perfonn the 5-bit incre

ment (Note that this assumes a minimum specified phase time of 20ns.) 
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Two alternate methods of performing the increment were studied: the dynamic one shown below, 

which I used, and the static carry-look-ahead type used in the fraction datapath. The latter method was 

easiest to implement since the desired format already existed in the datapath. However, this method was 

too slow to meet the above specifications, due to the overhead involved in the carry-look-ahead precondi-

tioning -- this overhead is simply too expensive when only a 5-bit increment is involved. The carry-look-

ahead logic also incurred a large area overhead. In fact, the incrementor alone using carry-look-ahead took 

up almost as much space as the whole counter when implemented using the dynamic method! 

The dynamic 5-bit incrementor shown in Figure 2-4 is based on the sum and carry definitions derived 

from the truth table in Table 2-2. Using simple Boolean algebra. we see that the sum for a bit is the 

exclusive-or of the current input and the carry into that bit, whereas the carry-out of that bit is the logical 

and of the current input and the carry-in. The carry-in to the first cell is simply the output of the increment 

logic. That is, if it is desired to increment the carry-in is high, and thus one is added to the current value. 

Otherwise, the value remains unchanged. 
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Table 2-2 Sum and Carry Definition 

A. C;,. s, c., 
0 0 0 0 
0 1 1 0 
1 0 1 0 
1 1 0 1 

BilO Bill Bil4 

s. 

Figure 2-4 5-Bit Increment Implementation 

A prime consideration here was the delay incurred in the dynamic cany propagation from the least 

significant bit to the most significant bit through the chain of pass gates. Various p-channel sizes were 

simulated using CRYSTAL to find an appropriate trade-off between layout area and propagation delay. As 

seen in Table 2-3, an equivalent pass width of 2A. (8/4) results in a total delay (including the exclusive-or 

delay) of 75.74ns, whereas an equivalent pass width of 121.. (48/4) brings this delay below 5ns. Further 

increases in p-channel width result in comparatively small gains in speed. Each of the p-channel sizes were 

thus chosen to be 48).., and the corresponding n-channel sizes were made 241.. with no additional area 

requirements. Since the mobility of p-type carriers is about 50% less than that of n-type carriers, and the 

mobility of the transistor carrier is directly proportional to the current in the transistor channel, keeping the 
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2:1 ratio in width between the p-channel and the n-channel serves to equalize the available currents (and 

thus the delays) through both types of transistors. nus ensure that in the worst case, where the inc signal 

goes low late in phase 1, any carry which may have been propagated up to that point can be discharged 

through the n-channel pass gates at approximately the same rate as the p-channel gates propagated the 

carry. The discharge transistors ensure that no carry is propagated except during phase 1, when the actual 

increment and latching occurs. 

Table 2·3 P-Channel Width Versus Carry Propagation Delay 

Channel().) Cell Size ().) let (ns) 

8 54 75.74 

48 68 4.99 
75 75 4.06 

The implementation of the exclusive-or circuit, derived by a truth table similar to that above, is 

shown in Figure A-B2 in Appendix B. The 1.7ns delay associated with the exclJLSive-or function could pos-

sibly be reduced, if necessary, simply by increasing the transistor widths, which are currently minimum 

size. 

2.4. Load-Store Pipeline 

The loading of data from memory into the on-chip register file and the storing of data into memory 

from the register file is handled by the load-store pipeline and its associated memory control logic. As 

shown in Figure 2-5, the decode stage of the pipeline receives the load-store and register destination 

specifier information in phase 4 if a new FPU instruction is signalled. The load-store information is 

obtained from the instruction PLA, where it is decoded from the instruction opcode, while the register des-

tination specifier is received directly from the instruction. If the FPU is not suspended and no traps have 

been received, this information is passed from one pipeline stage to the next in phase 1, allowing the pipe-

line to accept new memory information every cycle. The pipeline is suspended along with the FPU by 

recirculating the current contents of the two intermediate stages through a mux rather than passing along 

the contents of the previous stage. In this case, the contents of the write stage are cleared. If a trap occurs, 

the two intermediate stages are cleared, effectively flushing the pipeline. 
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Figure 2-5 Load-Store Pipeline Block Diagram 

The implementation of the pipeline was very systematic as it contained only two basic cells: a 2:1 

mux and a clearable latch. Since a dynamic clearable latch offered little time or area savings yet had ques-

tionable noise margins (see Table 2-4), full static cells were used (see Figures A-B3 and A-B4 in Appendix 

B). For both the load-store pipeline and the cycle counter, I chose to maintain the 771.. cell pitch for con-

sistency with the datapath modules, thus allowing me to access an existing library for many of the basic 

cell forms needed. These cells required modification basically to reduce the amount of routing associated 

with interconnecting the cells, some custom sizing of transistors, and simulation to verify functionality and 

timing constraints. The static mux was simulated using SPICE [20] and found to have a delay time of 0.5ns 
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(assuming an output capacitance of 0.4pF). SPICE parameters obtained for both the static and dynamic 

latches (assuming an output capacitance of O.SpF) are listed in Table 2-4. 

Table2-4 Comparison of Latch Circuit Parameters 

Parameter Static Dynamic 

tp. 3.0ns 2.0ns 

tp. 4.0ns 3.0ns 

t...., 3.0ns 3.0ns 

t.vw l.Ons 2.0ns 

lci.cr 0.5 ns -
VL_ o.ov 0.52 v 
vH_ s.ov 4.23 v 

The memory control logic associated with the load-store pipeline uses the same random logic design 

discussed in the next chapter. However, for the sake of modularity, this logic is included as part of the 

load-store pipeline, as it is used by both the exponent and fraction front-ends. Detailed definitions of the 

control logic and implementation can be found in Appendix D. 



3. DATAPATH CONTROL UNIT 

3.1. Datapath Modules 

The following three sections present a brief overview of the operation of the main datapath modules: 

the exponent unit, the fraction unit, and the multiply-divide unit. As seen in the simple block diagrams 

given with each section, the majority of the datapath consists of only a few basic types of simple cells: mul

tiplexors, latches, shifters, tri-state bus drivm, and adders. A few miscellaneous cells are also needed, 

including the register cells and the front-end unpacking and convert logic. For the most part, this regularity 

greatly simplifies layout generation and simulation. 

Control logic is associated with most of the basic cells, such as select lines for the multiplexors, 

clock lines for the latches, enables for the tri-state buffers, and so on. The second pan of this chapter is 

concerned with the generation of this control logic, including implementation methods and problems such 

as speed optimization, area minimization, and clock skew. Appendix E contains detailed diagrams for each 

of the datapath modules, indicating the relative placement of the control signals used for each of the basic 

cells. The labels used in the diagrams are the actual names given the layout cells and their associated con

trol. 

3.1.1. Exponent Unit 

A simplified block diagram of the 17-bit exponent datapath [1] is shown in Figure 3-1. The opera

tion of the datapath is very straightforward. Data is loaded into the register file (from the bottom of the 

figure), being converted to the extended format and setting data type tags if necessary. The instruction 

register specifiers are used to access the current source exponents. For an add or subtract operation it is 

necessary to determine which exponent is largest, so that the binary points of the numbers can be aligned. 

It is important to determine this quickly, as the fraction unit cannot begin the addition or subtraction until 

the alignment is complete. Therefore, the difference between the two exponents is determined simultane

ously using the two subtractors shown, Ea-Eb and Eb-Ea. The reason for executing both subtractions 

simultaneously is that although only one subtraction will determine which exponent is largest, the positive 

difference between the largest and the smallest is needed for alignment, and it may be that the one 
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Figure 3-1 Exponent Datapath 

subtraction instead gave a negative number. Thus, perfonning both subtractions at once ensures that the 

proper difference will be available immediately. The multiplexor, MuxEb>Ea, selects which of the differ-

ences obtained from the two subtractors is to be used as the shift amount for the fraction unit. Two other 

lines, Eb>Ea and Ed>128, are also used by the fraction uniL The first signal indicates that the exponent on 

the B-bus is larger than that on the A-bus. This is necessary as the fraction datapath assumes that the 

operand with the greater exponent comes from the A-bus, and if this is not the case a swap must be per-

fanned by the fraction uniL The Ed> 128 signal indicates that the difference between the exponents was 

greater than 128 (7 bits). Once the addition or subtraction is complete, the Eg+/-El adder/subtracter is used 
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to adjust the result exponent by the correct normalization distance. As the adder/subtracter assumes that 

the left operand is the greater exponent and the right operand is the normalization distance of the result, the 

first multiplexor, MuxEg, is used to select the greater exponent and the second multiplexor, MuxNDist., is 

used to select the normalization distance. The normalized result is then latched into Eresl..atch, and is ulti

mately put onto the B-bus. 

The same datapath is used to perform the necessary tasks for a multiply or divide operation. The 

Eg+/-El adder/subtractor is used to calculate the sum of the exponents for multiplication, and the difference 

of the exponents for division. This adder is then used again to normalize this result. Unlike the operation 

above for an add/subtract instruction, the left operand to the adder is now the smaller exponent Thus the 

second multiplexor is used to select the smaller exponent rather than the normalization distance. 

3.1.2. Fraction Unit 

The main function of the 64-bit fraction unit [1] as shown in Figure 3-2 is to perform the addition or 

subtraction of the floating-point fraction (magnitude). Symmetrical with the operation of the exponent unit, 

the fraction portion of the data is loaded into the register file, again going through any necessary unpacking 

and conversion to the extended formaL The register specifiers access the current source magnitudes from 

the register file, and prepare to perform the specified addition or subtraction. To do this, however, requires 

that the binary point of the two magnitudes be aligned. As mentioned earlier, the fraction unit receives the 

required shift amount for this alignment from the exponent unit. along with a signal indicating which 

exponent is the largest If this signal indicates that the operand with the greater exponent is not on the A

bus, a multiplexor is used to swap the two operands. The barrel shifter is then used to shift the greater mag

nitude right until alignment of the two operands is achieved, as determined by the difference of their 

exponents. The information lost during the right shift can be condensed into the three GRS bits (guard, 

rountf, and sticky). The guard and round bits are the two most-significant bits shifted out. and the sticky bit 

is the logical or of all of the rest of the lost bits. This bit indicates whether any precision was lost in the 

shift operation, or if the bits shifted out were all zeros. 

Once the operands are aligned, the addition or subtraction is performed and clocked into an inter-
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Figure 3-2 Fraction Datapath 

mediate latch. To complete the operation, rounding and normalization are done using the three GRS bits, a 

rounding PLA, and an incrementor. If necessary, a normalization distance is sent to the exponent unit for 

normalizing the final result exponent. The final result is ultimately put onto the B-bus. 
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3.1.3. Multiply-Divide Unit 

A simplified diagram of the multiply-divide unit [3] is depicted in Figure 3-3. Due to area con

straints on the chip, the 64x64-bit multiply is implemented as an iterative 64x8-bit multiply, with the panial 

sum and carry vectors being accumulated in the PPS-SLatCh and PPC-SLatch, respectively. A large carry

look-ahead adder is required to add these two vectors, forming the fina1 product Again due to area con

straints, the adder already existing in the fraction unit was borrowed for this purpose. This adder is also 

used for calculating the complement of the multiplicand/divisor. 

As shown in the diagram, the multiplier (MPR) is latched from the A-bus, and the complement of the 

multiplicand (COMPMCD), along with the multiplicand (MCD) itself, is latched from the B-bus. A ver

sion of the Booth recode algorithm is used here, which takes in tum each byte of the multiplier (including 

the most-significant bit from the previous byte) and groups the byte into four overlapped triplets. Each of 

the triplets is decoded by the Booth logic to select one of five inputs to the carry-save-adder (CSA) tree: 

zero, MCD, 2MCD, COMPMCD, and 2COMPMCD. The input selected by the least significant triplet is 

latched directly into its associated latch, the input selected by the next significant triplet is shifted left two 

bits, and so on. The four (shifted) inputs selected from the four triplets are added to the accumulated par

tial sum and carry vectors from the previous iterations using the 4-stage CSA tree to obtain the new partial 

sum and carry vectors. To avoid using a 128-bit datapath, the partial sum and carry vectors are shifted 

right by eight with each iteration. A 'rounding' adder accumulates the bits which are shifted out As stated 

above, the final sum and carry vectors are added in the fraction unit to obtain the product. 

The divide operation is performed using an iterative non-restoring algorithm [3], where two bits of 

the quotient are determined per iteration. The same datapath is used for both multiply and divide, and 

much of the hardware is shared. The multiplexor preceding the PPS-SLatch allows the PPS slave latch to 

be loaded either with the contents of the master latch or the contents of the A-bus. For a divide operation, 

the A-bus is used to initially load the dividend into the latch. As opposed to the multiply operation which 

shifts right by eight, the PPS and PPC latches, which hold the partial remainders, are shifted left two bits 

with each iteration. Under the algorithm, six bits of partial remainder and four bits of divisor are used by 

the quotient logic to select the next two bits of the quotient. 
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Figure 3-3 Multiply-Divide Datapath 

3.2. Control Implementation Considerations 

The random logic design associated with the datapath and memory control is definitely the most 

challenging part of the control unit implementation. This is mainly because there is little inherent strUcture 
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in (and between) the individual cells, and each cell needs to be fine-tuned for its particular application. 

That is, each signal must be buffered depending on the capacitance of the line it is driving to ensure that 

there will be minimal propagation delays, and the delays must be balanced such that clock skew is avoided. 

The following sections contain a detailed discussion of these considerations, including a study of alterna

tive implementations and suppon of design decisions. 

3.2.1. Layout Strategy 

The features I strove for in the design of the random logic included layout structure and regularity, 

speed optimization, and area minimization. Structure and regularity are especially instrumental in achiev

ing layout that is easy to generate, simulate, debug and modify. In particular, it is much easier to simulate 

and change one cell that is used several times, rather than individually testing and modifying several 

unique cells. These features are also important in terms of cell interconnection and routing. Several error

prone steps can be avoided simply by arranging the basic cells such that most of the interconnections 

between cells, particularly the power supply lines, are made automatically. This reduces the chances of 

missing interconnections, and the regularity generally allows such flagrant errors to be spotted on layout 

plots. 

As always, there are trade-offs involved in any design problem. The questions of area minimization 

and speed optimization are often opposed to one another, and both may be opposed to the concept of struc~ 

ture and regularity. For example, minimizing the area and associated delays for each signal requires the 

individual design and optimization of each random logic cell, contrary to the features desired above. Like

wise, all cells could be designed minimum-sized, but would not operate at the optimum speed. It has been 

shown [10] that in order to minimize the delay for a single stage, the ratio of the stage's output capacitance 

to input capacitance should be approximately t. As an example of the use of this rule, a chain of inverters 

(buff~rs) is often used to drive a large load capacitance. If an unlimited number of buffer stages may be 

used. the first invener is designed with minimum-size transistor channels, the second inverter's channels 

are about three times larger, and so on. However, if the number of stages is limited, then the optimum 

solution is to scale each of the succeeding stages by the fanout factor f, where Y = JN. Here, Y is defined 

as the ratio of the total load capacitance to the input gate capacitance of the first stage, and N is the total 
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number of stages. Another consideration here is the concept of delay balancing and clock skew, which is 

discussed in detail in Section 3.2.4. 

3.2.2. Alternative Implementations 

Looking for some degree of structure in the random cell layout, I studied the various forms of logic 

needed for the datapath and memory control signals (see Appendix D). After some manipulation, most of 

the logic was transformed into a two-level and-or form (or nand-nand as shown in Section 3.23), giving 

me a template upon which to base my cell design. This led to the consideration of several methods of 

implementation. The and-or format naturally suggested a dynamic or domino cell [5], whereas the nand

nand format suggested a static layout using a library of nand cells. Pure domino logic was rejected on the 

basis that many of the logic blocks are used in successive phases for some operations, leaving no time for 

pre-charge. However, a pseudo-nMOS implementation seemed a likely extension. The following sections 

present a pseudo-nMOS and a full static implementation studied in detail, concluding with a comparison of 

the two methods and the selection of the full static design for the random logic implementation. 

3.2.2.1. Pseudo-nMOS 

As shown in Figure 3-4, the pseudo-nmos form adapts readily to the and-or format, and can easily be 

extended to any number of inputs corresponding to this format. From the layout plots included in Appen

dix C, we can see that this design style provides both economy of space and a well-structured design. The 

area savings is mainly provided by the fact that only two p-channel pull-ups are required, whereas in typi

cal static circuits a full complementary design is employed -- providing one p-channel pull-up for every n

channel pull-down. However, there are many important drawbacks to this type of ratioed logic, including 

increased power consumption and charge-sharing considerations. 

To begin, several hand-calculations were performed to establish a ratio factor for the cells. Given 

that it was desirable to keep the static pull-up transistor as small as possible to decrease the amount of 

power consumed, I wanted to find the equivalent width of the pull-down transistors required to guarantee 

that they were strong enough to pull the pre-charged node (V z) down below a specified safety voltage to 

avoid any chance of accidentally triggering the succeeding stage. At the time, we set the safety voltage at 
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Figure 3-4 Pseudo-nMOS Design Style 

O.SV. given that the threshold voltage of the following stage is about 0.75V and including a slight safety 

margin, and derived the ratio factor using this value. Obviously, the bigger the p-channel device, the more 

cwrent it will source, the more power it will consume, and the harder it will be for the n-channel devices to 

overcome it to pull the node down towards ground. No matter how many and strings I have hanging off of 

the V11. node, the worst case is where only one of them is turned on (assuming all and branches have 

equivalent n-channel widths), thus giving less cwrent to ground than the case where two or more branches 

are turned on. This assumption will give a conservative estimate for the actual size needed, as some leak-

age will occur among the off branches thus helping to lower the node voltage. For this case, I can easily 

solve for the steady-state voltage at the pre-charged node using the fact that the source (pull-up) current is 

equal to the sink (pull-down) current. The calculation proceeds as follows: 

PMOS:V,, =-5V; Vr =-Q.15V; Vc = V1l-5 

V1,- Vr = -4.25 V. (Assume v ... < 0. 75 V.) 

Therefore, V • < -4.25 V. (The transistor is saturated.) 

KP W J,_ = TT(V1,-Vr )2 whereKPp= 76u. 

Assume that for a string of n-channel gates, the equivalent W /L ratio for the string is the individual 

ratio divided by the number of input gates in the string. 

NMOS:V, ... =5V;Vr=0.15V;V8 =V ... 

V1,-Vr = 4.25V. (AssumeV ... < 0.15V.) 
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Therefore, V.u < v,.-Vr. (Ibe transistor is linear.) 

I~= ~f£2(V,.-Vr)V.u-V,.2] where KP,.=21u. 

Setting these currents equal, and setting Vx=0.5 V: 

¥ ~ (-4.25)2= .!f.!i-£2(4.25)(0.5)-(0.5)2] 

:: = i4~~8 = 0.623 

Therefore, if Wp is minimum size (4A.), then W,. must be approximately 6.42A. Solving the quadratic 

equation for V1l given Wp =4 and W,. = 6 gives us V1l = 0.54V. This was still considered acceptable, giv-

ing a safety margin of0.21V. 

Many cells were layed out and simulated using this ratio factor. Table 3-llists the results for some 

of the more common configurations used for comparison with the full static method, which is discussed in 

the next section. 

3.2.2.2. Full Static CMOS 

A typical full-complementary static design is presented in Figure 3-5. It is noticeably more complex 

than the pseudo-nMOS design, due to the multiple pull-ups, the two-level design, and the extra routing. 

However, this static design has none of the ratio, noise margin, charge sharing, and power consumption 

problems associated with the previous design. 

A library of cells was constructed containing the basic building blocks needed to generate any of the 

specified control signals. Following the previous discussion I tried to minimize the delay between the logic 

levels, and therefore designed cells suited for a specific level. That is, all first-level cells were built with 

minimum-size channel widths and all second-level cells have channel widths about three times this size. 

There were only a few instances where a third level of logic was required - these were sized on an indivi-

dual basis. Since there are so many different control signals driving a wide range of capacitances, it would 

be a difficult problem to individually optimize each level of each cell. Thus the factor of three was chosen 

as a universal approximation, the discrepancies in delay are taken up in the double buffer stage as dis-

cussed in Section 3.2.4. To maintain the goals of structure and regularity, the levels were designed such 

that inputs flow in from the top in metal-1, and the logic outputs flow out the bottom in metal-1, 
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Figure 3-5 Full Static CMOS Design Style 

interconnections between levels being perfonned automatically (see Appendix C). As most of the cells 

used metal-2 only for Vdd and GND routing, many channels are left free and can be used for global rout

ing. 

3.2.2.3. Comparison 

A comparison of various parameters of interest for the two design styles discussed above is presented 

in Table 3-1 below. In order to make the comparisons as accurate as possible, all simulations were per

Conned assuming a typical datapath load capacitance of 3.0pF (from tables in Appendix E) and double 

buffering of 601.. (n-channel width). The first column is the function name of the cell being simulated, 

where the cells are ordered in groups of the two alternatives. In all cases, the top cell (and-or structure) is 

the pseudo-nMOS implementation, and the bottom cell (nand-nand structure) is the fun-complementary 

static implementation. As shown in the following section, these two implementations can be shown to be 

functionally equivalent through repeated applications of DeMorgan 's theorems. See Appendix C, Figures 

A-Cl-ClO, for a comparison of the actual layout plots implementing the foUowing functions. 

The second column indicates the number of transistors required to implement the given function. 

For the simplest function shown, a 2-input and gate (2andlor or 2nandlnand), less transistors are required 

for the static implementation than pseudo-nMOS. This can be explained by the inverter overhead required 
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Table 3-1 Comparison of Pseudo-nMOS Versus Full Static CMOS 

Function Devices H (A.) w (A.) v~.._ \'/) v~~.. M tp• (ns) tp• (ns) 

2andlor 5 63 28 0.420 4.908 4.5 6.0 

2nandlnand 4 147 24 0.000 5.000 5.0 5.0 

2and2or 7 63 43 0.420 4.926 5.0 6.0 

2nand2nand 12 147 48 0.000 5.000 5.5 5.5 

2and3or 9 63 46 0.418 4.834 5.0 6.5 

2nand3nand 18 147 72 0.000 5.000 6.0 6.0 

2and4or 11 63 60 0.417 4.697 5.0 7.5 

2nand4nand 24 147 96 0.000 5.000 6.5 6.0 

2and5or 13 63 74 0.417 4.660 5.0 7.5 

2nand5nand 30 147 120 0.000 5.000 7.0 6.0 

3and2or 9 63 48 0.473 4.704 5.0 7.0 

3nand2nand 16 147 64 0.000 5.000 6.5 5.5 

for the pseudo-nMOS implementation. However, for most of the configurations, the number of transistors 

needed for the static implementation is around twice that of the pseudo-nMOS requirement This is 

because the static method requires two transistors for every additional input, whereas only one is required 

using pseudo-nMOS. Furthermore, the static implementation has the additional overhead of the second 

level of logic, which also has two transistors for every input, while the pseudo-nMOS has only the over-

head of the inverter in all cases. The most commonly used cell type is the 2-input and gate, which is used 

about twice as many times as the next three configurations in the table and about five times as often as the 

last two configurations. 

The height and width of the actual layout cells required by the functions are given in columns three 

and four. As shown, the pseudo-nMOS uses much less chip area, attributable to three facts. In the first 

case, less devices take less area, especially since basically only one type of channel is used (n-channel) and 

thus the overhead of the tub separation design rule is reduced. Secondly, the implementation allowed the 

layout to be resolved using a single level, reducing interconnect overhead. Finally, the and strings using 

the pseudo-nMOS method could be placed immediately adjacent to their neighbor string, thus sharing 

many ground and node connections. In contrast, the use of nand cells from a general library in the static 

implementation required that the individual cells be separated by a minimum distance of 41., and no con-

nections could be shared. The main consideration here was to try to keep the logic cells tall and narrow, so 

that they could all be placed directly above the datapath cells where required. As shown, the pseudo-

nMOS method best met this goal. 
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The next two columns show the noise margin characteristics of the cells. As expected from a full 

CMOS implementation, the static style obtained full restoration of the voltage levels. The pseudo-nMOS 

method also performed as expected, with the low voltage being slightly less than the O.SV threshold limiL 

The high voltage indicates some charge sharing, though the amount also remains within the O.SV specified 

safety threshold. 

Propagation delay times are given in the final two columns. All times are comparable. with static 

low-to-high (rise) times usually slower and high-to-low (fall) times usually faster than the pseudo-nMOS 

times. The pseudo-nMOS fall times will always increase with the addition of and strings, as there is essen

tially a limited supply of current available through the minimum-size p-channel source and an increasing 

amount of capacitance to charge. The rise times are dependent on the width of the n-channel sinks. which 

could be increased with a small area penalty. However. they cannot be decreased without upsetting the 

ratio balance, so it is difficult to reduce skews at this level by balancing the rise and fall times. The static 

cells are designed with a 2: 1 p-channel to n-channel ratio in order to provide automatic balancing of the 

rise and fall times. As seen, a better nab.lral balance could possibly be obtained by increasing this ratio 

towards 2.5:1 (this is dependent on the mobilities of the p- and n-type materials, which is a processing 

parameter). 

The decision to proceed with the "safe" static design came after much discussion [2], although the 

area required for this implementation was shown to be much larger. The basic argument in support of this 

decision was the fact that the extra area needed was available on the chip, and so the "safer" design seemed 

appropriate. Besides significantly decreasing design time, the use of library cells also aided the goal of 

structured and regular layout, providing an easy way to add new cells or quickly modify existing ones sim

ply by replacing one library cell with another. No major penalties were taken with the rise and fall times, 

either. as both were comparable, and the buffer sizes can still be optimized to reduce the times shown here. 

Looking back, I believe that the pseudo-nMOS implementation would have been quite suitable for 

this application, though at the expense of an increased design cycle. In particular, the safety voltage thres

hold should be lowered to allow an even greater noise margin. Specifying a safety threshold of 0.25V 

would have involved increasing then-channel sizes such that a ratio of 12.44:4 is maintained between the 
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n-channel width and the minimum-size p-channel width. However, this would also have served to increase 

the charge-sharing problem, as increasing the n-channel width increases the amount of capacitance in the 

and strings available for charge sharing. This could then be alleviated by increasing the size of the pre-

charge node, possibly by increasing the size of the output inverter associated with this implementation and 

thus increasing its input gate capacitance. However, this also has its penalty, as increasing the size of the 

pre-charge node increases the circuit delay. Many more SPICE simulations (and costly design time!) 

would have been necessary to ensure safe operation using the pseudo-nMOS method, and safety is espe-

cially important in control implementation. 

3.2.3. Logic Definition and Conversion 

Most of the random control signals defined in the SLANG description of the floating-point unit were 

converted to a nand-nand format for implementation using DeMorgan's theorems. These theorems can be 

stated simply as (AB)• = A*+B* and (A+B)• = A*B* [9], where '+'denotes the or function and ••• indi-

cates complementation. Two typical examples of the sequence of steps taken to define and implement the 

random logic are shown below. The first example, em-latch-master, illustrates one of the most common 

logic forms implemented: the 2nand2nand structure. 

(defnode em-latch-master 

(depends ctrl-muVdiv-latch phi2 phi4) 

{update (And (Or phi2 phi4) ctrl-muVdiv-latch)) 

) 

Example 3-1 SLANG Description of em-latch-master 

From Example 3-1, we see that em-latch-master = (phi2+phi4)ctrl-muVdiv-latch. This can be 

directly expanded to (phi2*ctrl-muVdiv-latch) + (phi4*ctrl-muVdiv-latch), bringing us to the and-or 

representation. To use the theorems given above, we can let A = (phi2*ctrl-mu]/div-latch)* and B = 

(phi4*ctrl-muVdiv-latch)*. This gives us an and-or form of the type A*+B*. Using the first theorem, we 

have A*+B* = (AB)*, or em-latch-master= {{phi2*ctrl-muVdiv-latch)*(phi4*ctrl-muVdiv-latch)*)•, which 

can be recognized as the nand-nand representation. Both of these forms are depicted in Figure 3-6. 
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Figure 3-6 Equivalent Representations of em-latch-master 

As another example, I considered the SLANG definition of em-latch-slave. Unlike most of the con-

trol signals, em-latch-slave is unique in that I implemented it using three-level logic, as illustrated in Figure 

3-7. It was possible to reduce em-latch-slave to a two-level implementation using DeMorgan's theorems, 

but this required 4 invertors, one 2-input nand gate, eight 4-input nand gates, and one 9-input nand gate! 

Generally, nand gates are limited to at most five inputs as using more inputs leads to either a large series 

resistance to ground or a huge input gate capacitance, both of which increase the delay times. Therefore, 

the three-level implementation was considered more appropriate, and also required only two different types 

of nand gates. 

(defnode em-latch-slave 

(depends ctrl-muVdiv-latch phil phi3 clock6_mulop clock18 ctrl-latch-ops) 

(update (Or (And (Or phi 1 phi3) 

(Not (And phi3 clock6_mulop)) 

(Not (And phil clock18)) 

cttl-muVdiv-latch) 

cttl-latch-ops 
))) 

Example 3-2 SLANG Description of em-larch-slave 

To begin, I converted phil+phi3 to the nand type, again using the first theorem. By letting A*= phil 

and B* = phi3, we get that A*+B* = (AB)*, or (phil*phi3*)*. The last two levels of logic are treated as in 

the example above. 

. Appendix D contains a complete listing of all of the control signal definitions as derived from the 

SLANG description, along with their equivalent nand-nand representation. Except in special instances, all 

signals were implemented using nand-nand logic. 
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Figure 3-7 Equivalent Representations of em-latch-slave 

3.2.4. Clock Skew Considerations 

_lch ... 

The minimization of clock skew is one of the most important considerations in the design of the ran-

dom control logic. Oock skew [11] is the delay in a clock signal from its point of generation to the point at 

pbil 
(IDEAL) 

pbil ___ ......,._, 

..... ~ 
---'-!> 

Figure 3-8 Typical Oock Skew Example with Non-Overlapping Clocks 

which it is used. and is due to the resistive and capacitive delays incurred in the travel between the two 

points. The effects of this delay between clock signals can be clearly seen in the case of two latches, as 

shown in Figure 3-8. (The example shown assumes a two-phase non-overlapping clock, but the concept 

can easily be extended for the case of a four-phase non-overlapping clock.) Given the ideal timing diagram 

for phil and phi2, we see that both latches will never be operating simultaneously, thus providing the isola-

tion needed for correct operation. That is, the combinational logic determines a value which is clocked into 
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the second latch on the falling edge of phi2, and on the falling edge of phil the new value is clocked into 

the first latch where it serves as an input to the combinational logic. A problem arises only when the feed

back loop to the combinational logic is closed, resulting in a fonn of race condition. In this case, it 

becomes possible for the combinational logic to receive as input the value which it has just determined, 

causing the value to be updated at least twice within one cycle. This condition could occur only if one of 

the signals were delayed (or in other words, the signals phil and phi2 were skewed) to such an extent that 

the non-overlap time between the phases disappeared. 

Since it is obvious that delays are going to occur in the clock lines, the best way to handle clock skew 

is to balance the delays such that the relative clocking scheme is preserved. That is, given the worst-case 

delay of all of the control signals, it is desirable to keep the delay for all signals as closely bounded to this 

delay as possible, and the non-overlap time must be longer than the maximum variation in delay between 

the signals. For high perfonnance, it is necessary to keep this non-overlap time as short as possible in 

order to minimize the clock cycle. 

Most of the datapath control logic uses a type of gated clock [11], which is fonned by the logical and 

of a control signal and one of the clock phases. The same idea applies here, though in actual implementa

tion is it now important to consider the total delay from the generation of the clock signal, through the ran

dom logic, to each latch in the datapath. Given the huge dat.apaths in the FPU (> 70 bits), this delay can be 

considerable. Tha~ is, although the random logic may be balanced such that each logic cell has the same 

delay, if the delays to the last latch on the datapath which the cells are driving are significantly different 

clock skew can still occur. In order to take this into account, each random logic cell and its associated 

buffers are scaled to drive their particular load capacitances at approximately the same rate [3]. 

To implement the delay balancing required individual attention for each control signal along the 

dat.apath, as the capacitances varied over a huge range, and often different levels of logic were used in gen

eratirtg the control signals, thus providing various levels of driving ability. Appendix E contains tables of 

the extracted control line capacitances for the three main datapath modules, along with their chosen buffer 

sizes and the total delay. As shown, the largest capacitive load occurs in the multiply-divide carry-save

adder tree and is approximately 11.3 pF. The goal here then is to minimize the delay for this control signal 
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Table 3-l SPICE Delays for Common Circuit Configurations 

Function Load (pF) Buffer 0,) tp. (ns) Per Stage tp., (ns) Per Stage 

2and 1.0 40 3.5 1.5+ 1.0+ 1.0 4.0 2.0+ 1.0+ 1.0 

20 40 4.5 2.0+1.5+1.0 5.0 2.0+ 1.5+ 1.5 

3.0 60 5.0 2.5+ 1.0+ 1.5 5.0 2.0+2.0+1.0 

4.0 60 5.5 2.5+ 1.5+ 1.5 6.0 2.5+2.0+ 1.5 

6.0 80 7.0 2.0+2.0+3.0 7.0 3.0+2.0+2.0 

6.0 100 6.0 2.5+2.0+ 1.5 6.5 3.0+2.0+1.5 

2nand2nand 1.0 40 4.5 2.5+1.0+1.0 4.5 2.5+ 1.0+ 1.0 

20 40 5.5 2.5+ 1.5+ 1.5 5.5 2.5+ 1.5+ 1.5 

3.0 60 5.5 25+2.0+1.0 5.0 2.5+ 1.0+ 1.5 

4.0 60 6.0 2.5+ 1.5+2.0 6.0 2.5+2.0+1.5 

6.0 100 6.0 3.0+2.0+1.0 5.5 2.5+1.5+1.5 

8.0 100 7.0 3.0+2.0+2.0 7.0 3.0+2.0+2.0 

11.3 100 9.0 3.0+25+3.5 9.0 3.0+3.0+3.0 

11.3 160 7.5 3.5+2.0+2.0 7.0 3.0+2.5+1.5 

11.3 200 7.5 4.0+2.0+1.5 8.0 4.0+2.0+2.0 

2nand3nand 1.0 40 5.0 3.0+1.0+1.0 4.5 2.5+ 1.0+ 1.0 

20 40 6.0 2.5+2.0+1.5 6.0 2.5+1.5+2.0 

3.0 60 6.5 3.0+2.0+1.5 5.5 2.5+ 1.0+2.0 

4.0 60 7.0 3.0+2.0+2.0 6.5 2.5+2.0+2.0 

6.0 100 7.0 3.5+2.5+1.0 6.0 2.5+2.0+1.5 

2nand4nand 1.0 40 5.0 3.0+ 1.0+ 1.0 5.0 2.5+ 1.5+ 1. 0 

2.0 40 6.5 3.0+2.0+1.5 6.0 2.5+2.0+1.5 

3.0 40 8.0 3.0+2.5+2.5 7.0 2.5+2.0+2.5 

3.0 60 7.0 3.5+2.0+1.5 6.0 2.5+2.0+1.5 

4.0 60 7.5 3.5+2.5+2.0 7.0 2.5+2.5+2.0 

6.0 60 9.0 3.5+2.5+3.0 8.0 2.5+3.0+2.5 

6.0 100 8.0 3.5+2.0+2.5 7.0 3.0+2.5+1.5 

2nand5nand 1.0 40 6.0 3 .5+ 1.0+ 1.5 5.0 2.5+ 1.5+ 1.0 

2.0 40 7.0 3.5+2.0+1.5 6.0 2.5+2.5+1.0 

3.0 40 8.0 3.5+2.0+2.5 7.0 2.5+2.5+2.0 

3.0 60 7.0 3.5+2.5+1.0 6.0 3.0+2.0+1.0 

4.0 60 8.0 4.0+2.0+2.0 7.0 3.0+2.5+1.5 

4.0 80 7.5 4.0+1.5+2.0 6.5 3.0+2.0+1.5 

6.0 80 9.0 4.0+2.5+2.5 7.5 3.0+2.5+2.0 

6.0 100 8.0 4.0+2.5+1.5 7.0 3.0+2.0+2.0 

3nand2nand 1.0 40 4.5 2.5+ 1.0+ 1.0 4.5 2.5+ 1.0+ 1.0 

2.0 40 5.5 2.5+ 1.5+ 1.5 5.5 2.5+2.0+ 1.5 

3.0 60 6.0 2.5+ 2.0+ 1.5 6.0 2.5+2.0+1.5 

4.0 60 6.5 3.0+2.0+ 1.5 6.5 2.5+2.0+2.0 

6.0 100 7.0 3.0+2.0+2.0 6.5 3.0+2.0+ 1.5 

(em-latch-master) and to scale all other delays to this match this delay. As the datapath control line capaci-

tances range anywhere from about 0.5 pF to 11.3 pF, this is a difficult task. 
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A series of SPICE simulations were exercised in order to compile Table 3-2. As shown here, a few 

of the more commonly used circuit types were simulated iteratively with various load capacitances and 

buffer sizes in order to find the configuration which most closely matched the em-latch-master 

(2nand2nand) delay of 7.5 ns. (It is still possible to optimize this delay by increasing the strength of the first 

levels in order to equalize the delays between each of the stages.) Given these numbers, the cells were 

placed and buffers were sized accordingly, and Crystal was then used for fine-tuning the delay of each cell. 

It is important to note that the numbers below are only a crude approximation, as the iterations were per

fanned at the SPICE level, and did not take into account all of the changes in area and junction capaci

tances for the different buffer sizes. 

Since none of the global routing is complete at this point, the method above assumes that all clock 

inputs to the random logic arrive at the same time and that the other inputs are stable through the clock 

transitions. This minimizes additional skews that could be incurred by random delays in control inputs. 
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4. SIMULATION AND VERIFICATION 

4.1. CAD Environment 

As stated in the introduction to this report, much of the control had already been specified at the 

functional level and had been simulated using SLANG when I joined this project. My role thus involved 

turning the SLANG description into working layout A progression of CAD tools was used in this process, 

as illustrated in Figure 4-1. 

SLANG 

Figure 4-1 CAD Tools Used in the Control Development Cycle 

The PLAs, block diagrams, and random logic definitions presented in this report were all derived 

from the SLANG description of the FPU. The graphical layout editor, MAGIC [14,16], was then used to 

implement the SLANG definitions at the layout level. Circuit descriptions of the various blocks were 

extracted from the MAGIC environment, and conversion programs were executed to obtain the necessary 

file formats for the various simulators. Three types of simulators were used in verifying the control layout: 

MOSSIM [4], CRYSTAL [13,16], and SPICE [20]. The first two are high-level interactive simulators, 

while. SPICE is a low-level batch simulator. Appendix F contains a section on each of these simulators, 

detailing important hints on starting up the simulators and including example source files used for initializ

ing the simulation parameters and inputs nodes. 
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MOSSIM is an interactive functional simulator which employs a very primitive circuit model. The 

simulator is based on an idea of the relative strengths and sizes of the circuit, where strength is a function 

of the relative width of a transistor (to all the other transistors in the circuit), and size is a function of the 

relative capacitance of a node. For the most accurate representation, it is desired to allow as many strength 

and size definitions as the circuit requires. Unfortunately, MOSSIM is limited to a total of 15 strengths 

and sizes, so a ratio factor is used to group transistors within a certain range of widths under the same 

strength, and nodes within a certain range of capacitances under the same size. This fact is especially 

important in dynamic or ratioed circuits. For instance, MOSSIM may consider some circuits incorrectly 

simply because the model has treated each of the transistor sizes as the same strength where in fact the 

transistors are ratioed safely, or has grouped critical nodes under the same size where in fact the charge

shared node may be quite larger than those with whom it is supposedly sharing charge. Therefore, it is 

important when creating the MOSSIM input file to keep the ratio factor as small as possible for the most 

accurate circuit representation. 

The MOSSIM timing model I used assumes that each phase specified is as long as required for all the 

nodes to stabilize. This means that if the circuit functions successfully under MOSSIM, it should function 

successfully in practice, given no timing constraints (an infinite clock cycle). Once the circuit description 

is read into the simulator, inputs and control signals can be changed interactively, and any specified nodes 

may be watched. Also, intennediate nodes may be forced to a particular value, in order to isolate subsec

tions of the circuit for further testing. There are basically only three possible logic levels: high (1), low (0), 

and intermediate (X). The intennediate level can mean a variety of things, such as undefined, charge shar

ing, short, and so on. By asserting various control signals, and varying the inputs to the circuit, we can 

immediately observe the levels on the output nodes in order to test the functionality of the circuit. 

CRYSTAL is an interactive simulator used for timing analysis. This simulator also follows a very 

primitive circuit model, using signal-flow analysis to find the worst-case delay paths for the given circuit. 

As done in MOSSIM, nodes can be forced to a desired logic level in order to direct the signal ftow along 

paths of interest, or to rule out impossible paths which CRYSTAL may consider. Also, specified nodes 

may be watched to find the worst-case delay to that node, independent of the delay of the overall circuit. 
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SPICE was used for simulating the very low-level circuit considerations. This includes noise margin 

voltages and charge sharing, low-level functional testing, latch set-up and hold times, and to provide accu

rate delay times for comparison with CRYSTAL's somewhat cruder model. This is particularly important 

as only CRYSTAL is used for timing delays of the bigger layout modules. 

Most of the basic cells used in the control layout were simulated first using SPICE, giving fm1ctional 

verification and timing information at the lowest level of layout. Each of the functional blocks were simu

lated in their entirety using MOSSIM, which in particular tests the interconnections between the basic cells 

and any related effects. Critical paths were simulated using CRYSTAL for an over-all timing evaluation. 

If a problem was found using any of the simulators, it was usually uncovered and fixed at the layout level. 

The majority of these errors were related to labelling, particularly not labelling some power supply lines, or 

accidentally attaching the label of a circuit node 10 one of the power supply lines, such that the simulator 

believes it 10 be shorted to that line although the layout itself is correcL This happens often while editing in 

MAGIC, since when layout is stretched or moved the associated labels often are transferred 10 another 

layer in an intermediate stage, and are never restored to the original layer. If the layout yielded no infor

mation about the problem, SPICE was used in order to study the voltages (as a function of time) at indivi

dual nodes in greater detail. 

All in all, the biggest problem I found concerning the CAD support was the inconsistency between 

the various tools. Each of the simulators requires a different type of input file for the circuit description, all 

of which are derived from the .sim file. (CRYSTAL is the friendliest here, as it actually uses the .sim file 

as input.) For large modules, this requires lengthy conversion times and the accumulation of several types 

of huge data files, each describing the same circuit! This is especially inefficient when a simulation result 

indicates a problem which must be changed in the layouL The circuit must then be re-extracted, re

converted. and re-read into the simulator in order to simulate the modified layouL One example I encoun

tered. was in the CRYSTAL simulation of the datapath control delays in order 10 tweak the sizing of the 

double buffers. Each time I adjusted a buffer size I had to repeat the above procedure in order 10 monitor 

the effects of that change! 

Given my experience with the above problems, I definitely recognize the need for "smarter" CAD 
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tools. For example, one design group here has completely automated the process of random logic genera

tion through the use of their Design Manager [17] and a standard cell library. A program has been written 

which, given a set of equations, generates a file suitable for input to the Design Manager, which can then 

be used to automatically select the appropriate standard cells from the library and access placement and 

routing programs to complete the layout Another such tool is EPOXY [12], currently under design here at 

Berkeley. EPOXY actually takes the concept of silicon compilers one step further- aiming to not only 

synthesize layout from a given circuit description but to also improve the performance of the generated lay

out in order to meet desired specifications. Using this tool, it will be possible to model the circuit given 

user-specified circuit constraints and parameters, such as desired delays and power consumption considera

tions, layout area, and so on; specify the layout style and technology to be used; simulate the circuit as 

specified and observe the effects; interactively or automatically adjust the parameters and constraints until 

the desired behavior is observed; and then automatically generate the layout 

4.2. Simulation Results 

Each of the basic control cells have been simulated at the lowest level using SPICE; detailed results 

of the individual simulations are included within this report. The three control PLAs have been simulated 

using CRYSTAL, worst case delay times are presented in Table 2-1. MOSSIM has been used to function

ally verify the major blocks of the control unic the load-store pipeline, the cycle counter, and the random 

logic blocks associated with each datapath module. All of the simulation results indicate full functionality. 

SPICE and CRYSTAL results verify that the control unit can meet the minimum specifications of a 20ns 

clock phase, though to ensure against clock skew the non-overlap time should remain at IOns. 
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5. CONCLUSIONS 

The control unit implementation for the SPUR floating-point coprocessor has been presented. The 

actual control unit is divided into two main sections: interface control and datapath control. The basic 

blocks needed for the interface control unit were designed first. taldng about 15% of the total design time; 

routing between the blocks required another 5% of the effort. The random logic implementation comprised 

about 80% of the total design time. The disparity in design effort as shown here is due to the inherent lack 

of regularity in the datapath control logic, as opposed to the interface control, which is based upon 

automatically-generated PLAs. 

A major portion of the design of the random logic involved studying the alternative implementations 

available and developing a structured approach to the layout Initially, a lot of time was spent trying to 

optimize each cell in terms of area and speed. before actually determining the placement of the cells and 

their load capacitances. A better approach would have been to determine the area available and then design 

the cells accordingly. Also, the individual speed optimization of each cell was not required, and in fact was 

not even desirable. As discussed in this report, clock skew between the control lines is minimized when 

the delays in all of the lines are balanced. Therefore, the best approach would have been to first determine 

the longest control line delay in the datapath, and design each cell to closely match this delay. 

In retrospect. I feel that I should have implemented the random logic first, rather than the interface 

control. The reason for this is that in placing and simulating the random logic and datapath, I obtained a 

much better feel for the layout style of the other team members, design issues they considered, how the 

control logic interfaces with the datapath, and so on. With this in mind, the implementation of the interface 

control would have been much easier. 

The rapid advances in VLSI technology have led to the proliferation of several CAD tools to aid in 

the various steps of chip development. A lot of tedious and error-prone functions, such as routing and PLA 

generation, can now be performed automatically. However, no such tools were available to SPUR for aid

ing in the design, generation, placement, and optimization of the random control logic. Much of the design 

effort above could have been avoided if more sophisticated CAD tools had been available. 
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APPENDIX A: PLA DEFINITIONS 

Table A-Al Instruction PLA Input and Output Definitions 

Type Signal Name 

INPliT instr-OPCODE<6> 

INPliT instr-OPCODE<S> 

INPliT instr-OPCODE<4> 

INPliT instr-OPCODE<3> 

INPliT instr-OPCODE<2> 

INPliT instr-OPCODE<l> 

INPliT instr-OPCODE<O> 

OU1PUT ctrl-TrapRecvd 

OUTPliT instr -ldextl 
OUTPliT instr-ldext2 
OUTPUT instr-lddbl 
OUTPUT instr-ldsgl 
OUTPliT instr-stextl 
OU1PUT instr-stext2 
OUTPliT instr-stdbl 
OUTPUT instr-stsgl 
OUTPUT instr-addop 
OUTPliT instr-subop 
OUTPUT instr-mulop 
OUTPUT instr-divop 
OUTPUT instr -cvtsop 
OUTPUT instr-cvtdop 
OUTPUT instr-cmpop 
OUTPUT instr-fabsop 
OUTPUT instr-fnegop 
OUTPUT instr-fmovop 
OUTPUT instr-loadop 
OUTPUT instr-storeop 
OU1PUT instr-MD/AS 
OUTPUT instr-AS/MD 
OUTPUT instr-cvrtop 
OUTPUT instr-fuuArithoo 
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Table A-Al IFSM PLA Input and Output Definitions 

Type Signal Name 

INPUT Stp2 

INPUT Stpl 

INPUT stpO 
INPUT ifsm-STOP 
INPUT ifsm-TrapRecvd 

INPUT ifsm-fpuSuscond 

INPUT ifsm-start-arithop 

OUTPUT stn2 
OUTPUT stnl 
OUTPUT stnO 
OUTPUT st-to-write 

OUTPUT fpuBusy 
OUTPUT ctrl-latch-fpuB usy 

OUTPUT ctrl-cycleclock-clearcond 
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Table A-A3 Arithmetic PLA Input and Output Definitions 

Type SiJmal Name 

INPUT arith-cycleclock<4> 
INPUT arith-cycleclock<3> 
INPUT arith-cycleclock <2> 
INPUT arith-cycleclock<l> 
INPUT ari th-cycleclock <0> 
INPUT arith-subop 
INPUT arith-mulop 
INPUT arith-divop 
INPUT arith-fabsop 
1NPUT arith-fnegop 
INPUT arith-fmovop 
INPUT arith-fcvnop 
INPUT arith-MD/AS 
INPUT arith-AS/MD 
INPUT arith-arithop 
INPUT ari th-opexcept -detect 
INPUT arith-sign-muldiv 
INPUT arith-expn-BgtA 

OUTPUT clock I 
OUTPUT clock.2 
OUTPUT clock3 
OUTPUT clock4 
OUTPUT clockS 
OUTPUT clockl8 
OUTPUT clock19 
OUTPUT clock20 
OUTPUT clockl_AS 
OUTPUT clockl_MD 
OUTPUT clockl_cvnop 
OUTPUT clock2_AS 
OUTPUT clock6_mulop 
OUTPUT clock7 _mulop 
OUTPUT ctrl-STOP 
OUTPUT ctrl-ASMD 
OUTPUT ce-adder-first 
OUTPUT ce-pass-expna 
OUTPUT cf-adder-AS 



APPENDIX B: SCHEMA TICS 

-

-
-

-

-

-46-

-
······· ········ ...... ·::::::::::::::::::: 

·::yp·'.:''':: .... 

-
Figure A-Bl Detailed Diagram of the Main Control Unit 

-

-

- --

I I 

I 
r I 

• 

" I 
I 

• I 

-l 

-



-47-
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Figure A·B2 Exclusive-Or Implementation 
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APPENDIX C: LAYOUT PLOTS 

Figure A·Cl 2and2or 

Figure A·C2 2nand2nand 
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Figure A-C3 2and3or 

Figure A-C4 2nand3nand 
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Figure A-C7 2and5or 
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Figure A·C9 3and2or 

Figure A·ClO 3nand2nand 
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Figure A·Cll 2:1 Static Mux 
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Fi&UTe A-CU Static Latch With Asynchronous Clear 
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Figure A-C13 Increment Bit 
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Figure A-CtS Load-Store Pipeline With Memory Control Logic 



• S8-

Fi&ure A·C16 Exponent., Fraction. and Multiply-Divide Random Logic 



Figure A-C17 Interface Control Unit 
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APPENDIX D: COI'I-'TROL SIGNAL DEFINITIONS AND IMPLEMENTATION 

arl-mul-t<liv-lalcb -----. 

PHI3 
d~amiOf 

PHil 
clacltll 

PHil 
PHI3 

MULTIPLY -DIVIDE CONTROL SIGNALS 

Cili-a.!~ ---.., 

PHI3 
d~op 

PHil 
dockll 

PHil• 
PHI3• 



-61-

MULTIPLIER BYTE SELECT CONTROL SIGNALS 
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FRACTION CONTROL SIGNALS 
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MISCELLANEOUS CONTROL SIGNALS 
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MEMORY CONTROL SIGNALS 
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APPENDIX E: DAT APATH CAPACITANCES, BUFFER SIZES, AND DELAY TIMFS 

WORST CASE CONTROL INFORMATION FOR EXPONENT LAYOUT 

BLOCK CELL SIGNAL Oavout name) Cap (fF) Buffer Dela_y (ns) Label 

El EAbusdr ctrl-read-regsB* (en*) 1549 40 3.38 1 

E1 EBbusdr ctrl-read-regsB* (en*) 1549 40 3.32 2 

E1 ebusBinv ctrl-write-arithresults* (en*) 1549 40 5.00 3 

AsubB17 AbarB17 PHil (phi) 699 40 1.29 4 

AsubB17 AbarB17 PHil* (phi*) 939 40 0.57 5 

E2 MuxBgtA17 expn-BgtA* (BgtA*) 869 40 10.47 6 

E2 MuxBgtA17 expn-BgtA (BgtA) 852 40 9.58 7 

E2 Ege128 ce-latch-expndiff (phi) 515 40 5.20 8 

BsubA17 AbarB PHil (phi) 699 40 1.29 10 

BsubA17 AbarB PHil* (phi*) 939 40 0.59 11 

E3 EAlatch ctrl-latch-ops (phi) 854 40 5.06 12 

E3 EAlatch ctrl-latch-ops• (phi*) 905 40 4.13 13 

E3 EBlatch ce-latch-expnB (phi) 854 40 6.23 14 

E3 EBlatch ce-latch-expnB* (phi*) 905 40 5.84 15 

E3 MuxOPG ce-mux-OPG (EB>EA) 852 40 2.24 16 

E3 MuxOPG ce-mux-OPG* (EB>EA*) 835 40 2.83 17 

E3 latchOPG ce-latch-opGL (phi) 597 40 6.89 18 

E3 latchOPG ce-latch-opGL • (phi*) 734 40 6.16 19 

E3 Mux0PL1 ctrl-MD+AS* (MD+AS*) 858 40 1.24 20 

E3 Mux0PL1 ctrl-MD+AS (MD+AS) 814 40 0.46 21 

E3 MuxOPL2 ctrl-fi.rstcycle-passive• (lcyc*) 902 40 4.05 22 

E3 Mux0PL2 ctrl-tirstcycle-passive (lcyc) 835 40 3.18 23 

E3 latchOPL ce-latch-opGL (phi) 597 40 6.18 24 

E3 latchOPL ce-latch-opGL • (phi*) 734 40 5.49 25 

EGsubEL SubXorl7 ce-adder* (CEsub) 1330 40 5.88 26 

E4 MuxEdestl ctrl-arithop (arith) 852 40 4.13 27 

E4 MuxEdestl ctrl-arithop• (arith*) 835 40 3.26 28 

E4 Mux 17Edest2 frac-zerodet (Odet) 890 40 1.33 29 

E4 Mux 17Edest2 frac-zerodet• (Odet*) 822 40 0.52 30 

E4 MuxEdest3 ctrl-tirstcycle-passive (lcyc) 852 40 4.05 31 

E4 MuxEdest3 ctrl-tirstcycle-passive• (lcyc*) 835 40 3.18 32 

E4 Ereslatch ce-latch-dest (phi) 597 40 7.44 33 

E4 Ereslatch ce-latch-dest• (phi*) 734 40 7.96 34 

E4 Eresbusdr (ce-write-to-busB)* (en•) 1642 40 6.50 35 
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WORST CASE CONTROL INFORMATION FOR FRACI10N LAYOUI' 

BLOCK CELL SIGNAL (layout name) Cap (fF) Buffer Delay (ns) Label 

F1 FAbusdr ctrl-read-regsB* (en*) 5570 60 5.35 1 

Fl FBbusdr ctrl-read-regsB* (en*) 5570 60 5.20 2 

F1 fbusBinv ctrl-write-arithresults* (en*) 5570 60 7.96 3 

F1 F1atchA ctrl-latch-ops (phi) 2947 60 6.34 4 

F1 F1atchA ctrl-latch-ops* (phi*) 3203 60 4.43 5 

F1 F1atchB ctrl-latch-ops (phi} 2947 60 6.34 6 

Fl F1atchB ctrl-latch-ops• (phi*) 3203 60 4.44 7 

F1 muxFG expn-shfA-frac (CeBgtA) 2851 60 1.07 8 

Fl muxFG expn-shfA-frac0 (CeBgtA*) 2819 60 2.79 9 

F1 muxFG expn-shfA-frac (CeBgtA) 2851 60 2.79 10 

F1 muxFG expn-shfA-frac* (CeBgtA *) 2819 60 1.07 11 

F1 fmuxB ctrl-ASIMD (AS+ MD) 2881 60 1.11 12 

Fl fmuxB ctrl-AS!MD* (AS+MD*) 2945 60 2.85 13 

Fl ftatchOPB cf-latch-opAB (phi) 2947 60 8.40 14 

Fl ftatchOPB cf-latch-opAB* (phi*) 3203 60 6.50 15 

Fl 1shfoutbusdr cf-write-nonn (en*) 5197 60 4.60 16 

F1 ftatlshfout cf-latch-lshout (phi) 2497 60 2.04 17 

F1 ftatlshfout cf-latch-lshout* (phi*) 3075 60 9.42 18 

Fl ftatlshfout Plll1.2 (phi1.2) 4161 60 8.27 19 

F2 ftatchrshfout cf-latch-rshout (phi) 2146 60 5.85 20 

F2 ftatchrshfout cf-latch-rshout* (phi*) 3021 60 4.36 21 

F2 ftatchrshfout Plll2.1 (phi2.1) 4223 60 2.07 22 

F2 ftatchlshfin cf-latch-lshin (phi) 2242 60 3.16 23 

F2 ftatchlshfin cf-latch-lshin* (phi*) 2627 60 4.26 24 

F2 fmuxAl ctrl-MDcycle-passive {MD) 3577 60 3.24 25 

F2 fmuxA1 ctr1-MDcycle-passive* (MD*) 3122 60 1.19 26 

F2 fmuxA2 ctrl-AS/MD (AS+MD) 3252 60 1.74 27 

F2 fmuxA2 ctrl-AS/MD* (AS+MD*) 3187 60 0.38 28 

F2 ftatchOPA cf-latch-opAB (phi) 2277 60 7.92 29 

F2 ftatchOPA cf-latch-opAB* (phi*) 2799 60 6.35 30 

F2 FBxor cf-adder* (sub) 4481 60 10.10 31 

F3 fintlatch cf-latch-intenned (phi) 1973 60 7.59 32 

F3 fintlatch cf-latch-intenned* (phi*) 2588 60 6.17 33 

F3 fintlatdr cm-latch-compmcd (en*) 5291 60 5.22 34 

F3 fcompl frac-sign-int.enned (Compl) 4559 60 1.59 36 

F4 fmuxincout ctrl-firstcycle-passive (SELA) 3083 60 5.97 37 

F4 fmuxincout ctrl-firstcycle-passive• (SELA *) 3083 60 4.28 38 

F4 ftatincout64 cf-latch-incout (phi) 3087 60 7.04 39 

F4 ftatincout64 cf-latch-incout* (phi*) 3355 60 5.55 40 

F4 fincoutdr cf-latch-Ishin (en*) 5953 60 8.65 41 
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WORST CASE CONTROL INFORMATION FOR MULTIPLY /DIVIDE LAYOUT 

BLOCK SIGNAL (layout name) Cap(fF) Buffer Delay (ns) Label 

IN em-latch-compmed (phi) 2869 60 7.70 61,64 

IN cm-latch-compmed* (phi*) 2988 60 6.36 62,63 

IN ctrl-latch-ops (phi) 2869 60 11.73 57,60,65,69,70 

IN ctrl-latch-ops* (phi*) 2988 60 10.41 58,59,66,68 

IN em-clear-div (elr) 6438 60 35.01 67 

MUX em-latch-slave (phi) 6334 60 24.23 39,44,49,54 

MUX Booth sel-l (sel-l) 2930 60 3.93 38,43,48,53 

MUX Booth sel+l (sel+l) 2856 60 3.87 40,45,50,55 

MUX Booth sel-2 (sel-2) 3001 60 3.98 41,46,51,56 

MUX Booth sel+2 (se1+2) 2930 60 3.93 37,42,47,52 

LATCH em-latch-slave (phi) 3183 60 25.08 30,32,34,36 

LATCH em-latch-slave* (phi*) 3895 60 28.84 29,31,33,35 

CSA em-latch-master (phi) 11254 60 18.52 25,26,27,28 

pp em-latch-master (phi) 3213 60 17.46 14,24 

pp em-latch-master* (phi*) 3901 60 15.94 13,23 

pp em-latch-slave (phi) 3213 60 23.62 8,16 

pp em-latch-slave• (phi*) 3901 60 27.78 7,15 

pp em-clear (elr) 7429 60 38.72 12,22 

pp etrl-gate-PPS/C-fracBus (en) 7410 60 8.72 11,21 

pp etrl-mulop (shr8) 3875 60 3.89 9,19 

pp etrl-mulop* (shl2) 3943 60 1.53 10,20 

pp em-mux-dvr (enbusA) 3936 60 8.24 17 

pp em-mux-dvr* (enPPSm) 3888 60 7.44 18 

QUO em-latch-master (MA) 3575 60 15.57 2,5 

QUO em-latch-slave (SL) 2832 60 22.93 3,6 

QUO etrl-gate-quotient-fracBus (en) 6500 . 60 8.07 1.4 
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EXPONENT CONTROL SIGNAL PLACEMENT 

Efile 
Ere &file 

(860) 

EAbusdr El EBbusdr 
cbusBinv ('234) 
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MuxBgtA17 E2 
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FRACllON CONTROL SIGNAL PLACEMENT 

Ffile 
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MULDIV CONfROL SIGNAL PLACEMENT 

lllbufn. vg .. 
~· 

pcllq_top QUO 
MA .. 
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~· 
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MA .. 
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CSA Jill 
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cui -gate-quocieot-fncB us 

("mput) 
an-latch-muter 
an-latch-dave 

cui-gase-quotieot-fncBus 

(mput) 

an-latch-master 
an-latch-slave 

an-latch-slave 

cui-mulop 

cui-gate-PPS+C-fracBus 
an-latch-master 
an-clear 
an-latch-slave 
an-mux-dvr 

cui-mulop 

cui-gate-PPS+C-fracBus 
an-latch-master 
an-clear 

an-latch-master 

an-latch-master 

an-latch-master 

an-latch-master 

an-latch-slave 
an-latch-slave 
an-latch-slave 
an-latch-slave 

IOO'r1l 
IOO'r1l 
cm·latch·llave 
100'T11 
IIOOTH 

IIOOTH 

~tch·slave 
100'T11 
IIOOTH 
100'T11 
IOOT1I 
an-latch-slave 
JOO'T1I 
IIOOTH 
IIOOTH 
IOOT1I 

an-latch-slave 
IOOT1I 
IOO'r1l 

cui -latch-ops 

cui ·latch-ops 

an·latch-axnpmcd 

an·latcb-axnpmcd 

cui-latch-ops 

cui-latch-ops 
an-clear-div 

an·bytesel-mpr<B:O> 
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APPENDIX F: SIMULATION DATA 

L SPICE 

1. Extract circuit description from within Magic: ":ext" 

2. Obtain .sim file from ex12sim: "exQ.sim -R -c 1e-18" 

3. Remove any attributes from .sim file, such as the Cr:In$ labels used in CRYSTAL. In vi: 

•CJJs/d=Cr.In$1/g", etc. 

4. Obtain .spice file from sim2spice: •sim2spice -d -/misc/def" 

S. Add input and model cards to .spice file. 

6. Submit .spice file on EROS: "spice< file.spice > file.out" 

Typical-/misc/def file: 

def p P scmosll 
def n N scmosll 
set V dd 1 scmosll 
set GND 0 scmosll 
setP 1 
set NO 

Model parameters used: 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 
• 
• 
• 
• 

TYPICAL Device parameters for the HP CMOS40 Process 

Released 2/6/86 by Rich Duncombe 
NOTE: These parameters are intended for digital design only . 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
• 
• Use Nand P models for W >= 4U and L <= 2U 

• 
/.MODEL N NMOS LEVEL=2 VTO= 0.75 KP=76.0U GAMMA=.40 LAMBDA=.025 TOX=25N 

+ NSUB=4E16 TPG=+l X1=.2SU LD=.20U UEXP=.16 VMAX=5.SE4 JS=IOOOU 

+ CGS0=220P CGD0=220P CJ=230U CJSW=260P CGB0=400P 

• 
/.MODEL P PMOS LEVEL=2 VT0=-0. 75 KP=27.0U GAMMA=. SO LAMBDA=.045 TOX=25N 

+ NSUB=2.0E16 TPG=-1 XJ=.20U LD=.05U UEXP=.15 VMAX=9.0E4 JS=IOOOU 

+ CGS0=220P CGD0=220P CJ=670U CJSW=215P CGBQ--400P 

• 
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
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l. CRYSTAL 

1. Extract circuit description from within Magic: ":ext" 

2. Obtain .sim file from ext2sim "ext2sim -R -c 1e-18" 

3. Stan up CRYSTAL: "crystal" 

4. Read in typical source file: "source file.crystal" 

Typical source file (for exp-control.sim): 

source crys_parm 
build exp-control.sim 
alias exp-controlal 
inputs *Pin *cycle *clock *ctrl-start *ctrl-AS •ctrl-mulop 

outputs <1:35> 
watch 12 
options graphics magic 
options bus 12 
options watchpaths 10 
capacitance 1.6 1 
capacitance 1.6 2 
setOPJn3& 
setOPHI2& 
setOPJn4& 
delay Pffi1& 00 
critical -g gatequo.mcrit 
critical1w 

CRYSTAL pmameters used: 

! •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

! crystal paramter release V2.1(2.10.86) 
! based on HPCMOS40 1.6um Process 
I extracted by Wook Koh mail problems to wookkoh@kim 
! •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

rran nchan slopeparmsdown 0.000,8000,0.7;0.113,8500,0.7;0.271,9500,0.7;0.771, 11500, 0.7; 2.527, 15500, 1.0; 7.534, 21 

rran nchan slopeparmsup 0.000, 8000, 0.7; 0.113, 8500, 0.7; 0.271, 9500, 0.7; 0.771, 11500, 0.7; 2.527, 15500, 1.0; 7.534. 

rran pchan slopeparmsdown 0.000, 20000, 0.8; 0.488, 25000, 0.9; 1.599, 35000, 1.0; 4.800, 55000, 1.5; 47.828, 194000,5 

rran pchan slopeparmsup 0.000, 20000, 0.8; 0.488, 25000, 0.9; 1.599, 35000, 1.0; 4.800, 55000, 1.5; 47.828, 194000 .'5.0: 
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3. MOSSIM 

1. Extract circuit description from within Magic: ":ext" 

2. Obtain .sim file from ext2sim: "exl2sim -R -c 1e-18" 

3. Obtain .ntk file from sim2ntk: "sim2ntk file" 

4. Start up MOSSIM: "Mossim" 

S. Read in .ntk description: "read file" 

6. Read in typical source file: "source file" 

sim2ntk file: 

f!Jbin/csh -f 
if ($#argv != 1) then 
echo "Usage: sim2ntk file" 

exit 1 -
endif 
onintrend 
set file=Sl.sim 
nn -r$1.ntk 
echo sim Sl.sim >!temp.$$ 

echo type vdd:i gnd:i >> temp.$$ 

echo stren ratio:3.0 >> temp.$$ 

echo size ratio:3.0 >> temp.$$ 

echo write $1.ntk >>temp.$$ 

echo quit >> temp.$$ 

convert < temp.$$· 
end: 
Jbin/rm -f temp.$$ 

Typical source file (counter.src): 

copy counter.cpy 
ccmnment***************************************************** 

comment Logical Simulation for 5-bit Counter 

comment••••••••••••••••••••••••••••••••••••••••••••••••••••• 

ccmnment 
switch explain: 1 
clock phil:lOOOOOOO phi1*:01111111 phi2:00100000 phi2*:11011111-

phi3:00001000 phi3*: 11110111 phi4:00000010 

force V dd: 1 GND:O 
vector clear* (clr&phi3)* 

prefix Sbitinc_O 
vector A incbit_3/ai incbit_2/ai incbit_l/ai incbit_O/ai incbitO_O/ai 

unprefix 
vector Jb S s4 s3 s2 s1 sO 

vector /b SPlll1 s4J>hil s3J)hil s2J>hil sl_phi1 sO_phi1 

watch /* /b Sbitinc_O/ A S SPill 1 clear* start busy inc cout 

set Jb Sbitinc_O/A:OOOOO 

set Jb clear*:O start:O busy:O 


