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1.0  SUMMARY 

 The research conducted in this project can be broken down into two parallel tracks, 
development of self-reconfigurable neuromorphic computing architectures utilizing memristive 
nanotechnology, and analysis and utilization of newly available hardware-based artificial neural 
network chips.  These two aspects of the program were complementary. The neuromorphic 
architectures research focused on long term disruptive technologies with high risk but 
revolutionary potential. The hardware-based neural network research provided the means to 
apply many of the advantages of biologically inspired processing using advanced chipsets that 
are available today.   

 Overall, hardware-based neural processing research allowed us to study the fundamental 
system and architectural issues relevant for employing neuromorphic computing concepts 
towards the development of autonomous systems for perception and data analysis.  The 
utilization of computationally intelligent processors for tasks within the United States Air Force 
Developmental Test and Evaluation (T&E) community was emphasized, with a focus on test 
data analysis and process control efficiencies.  This program resulted in the successful 
implementation of reconfigurable neuromorphic architecture building blocks.  In addition, this 
work demonstrated the benefits of neuromorphic architectures for increased performance over 
conventional computing in certain applications, especially in Size, Weight and Power (SWaP) 
constrained environments.   
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2.0  INTRODUCTION 

 The research conducted in this project can be broken down into two parallel tracks. The 
first track pursued the development of self-reconfigurable neuromorphic computing architectures 
utilizing memristive nanotechnology with the goal to build the scalable neuromorphic computing 
concept to achieve intelligent functions.  The second track involved the analysis and utilization 
of newly available hardware-based artificial neural network chips with the goal to develop a 
relationship with the Air Force test and evaluation community to identify applications on which 
to focus neuromorphic computing technology.  These two aspects of the program were 
complementary. The neuromorphic architectures research focused on long term disruptive 
technologies with high risk but revolutionary potential. The hardware-based neural network 
research provided the means to apply many of the advantages of biologically inspired processing 
using advanced chipsets that are available today.  Overall, hardware-based neural processing 
research allowed us to study the fundamental system and architectural issues relevant for 
employing neuromorphic computing concepts towards the development of autonomous systems 
for perception and data analysis.  The utilization of computationally intelligent processors for 
tasks within the United States Air Force Developmental Test and Evaluation (T&E) community 
was emphasized, with a focus on test data analysis and process control efficiencies. 

Reconfigurable XOR Logic Gate 

 The amazing computing power of the brain is in part due to its highly parallelized 
interconnectivity amongst neurons through synaptic connections.  The synaptic connection plays 
an important role in brain activity as these connections can be strengthened or weakened as the 
brain learns and stores knowledge within the system.  Neuron behavior has been characterized as 
an adding system that provides an output based on the sum of all inputs (through synaptic 
connections) and its connectivity to other neurons.  In addition, the amount of information or 
knowledge a neuromorphic computer can retain depends on the number of neurons and synaptic 
connections within the system. For example, the brain of an ant is said to contain approximately 
300,000 neurons. Given the large number of neurons and synapses required to design systems 
capable of mimicking practical brain functionality connections (approximately 1,000 synaptic 
connections per neuron), it is important for the electronic devices performing the mimicry to be 
small.  This facilitates fabrication within a reasonable physical area, similar to how computer 
microprocessors are fabricated today. In Sections 3.2 and 4.2, a physical description is presented 
by which three transistor synaptic circuit functions mimic brain synaptic behavior. The 
implementation of synaptic circuitry within an adding node and single transistor adding neuron 
(a simple neuromorphic computing architecture) is also demonstrated.  As an example to show 
the utility of a reconfigurable logic gate, a neuromorphic architecture as a reconfigurable XOR 
logic gate is demonstrated. 

 Computer simulations based on the physical principles described above demonstrate the 
feasibility of the neuromorphic architectures.  Variations of neuromorphic computing 
architectures can be constructed employing transistors, memristors and inverter circuits coupled 
to floating node neurons or thresholding neurons to perform the desired computations. 
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 Section 3 in this report describes the methods, assumptions and procedures used in this 
project for memristor device and circuit architecture design, to demonstrate neuromorphic 
processing. Section 4 provides results of the work in memristive device yield and functional 
testing and memristor based XOR circuit design.  Characterizations of reconfigurable circuits 
and neural networks are given.  Section 5 covers the conclusions about the project and potential 
future research topics.  The sponsor,  Air Force Office of Scientific Research (AFOSR), wanted a 
heavy emphasis on socializing the results of this project to achieve transition.  As a result, more 
than typical emphasis is given to interactions and transition throughout this report.  The 
Appendix describes the technology transitions achieved as a result of this project.  Patents, 
journal papers and talks are listed.   
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3.0  METHODS, ASSUMPTIONS AND PROCEDURES 

 This section describes the methods, assumptions and procedures used in this project.  
Memristive device and circuit architecture design and test procedures are detailed.  Work 
evaluating a commercial neuromorphic processor and its application to real world problems is 
described.    

 

3.1  Memristive Device Design and Fabrication  

 The nonvolatility and reconfigurability of memristive devices make them useful 
candidates for electronic synaptic connections and as memory for the storage of neural network 
training signatures.  Physical and compact models were developed in this project for MATLAB, 
HSPICE, and Verilog A environments and were used in circuit simulations allowing the 
development of prototype hardware of in-house designed reconfigurable neuromorphic 
architectures.  Three material configurations of memristor device architectures were examined 
within this effort with subsequent developments in hardware utilization.   

Chalcogenide Based Memristor Devices 

 Extremely productive collaborations were established at the onset of this program with 
Professor Kristy A. Campbell and her team at Boise State University (BSU).  The groups worked 
closely to utilize and optimize BSU’s chalcogenide based memristive devices for neuromorphic 
applications.  It was observed that the few existing published memristive models did not 
accurately represent the electrical characteristics of Air Force Research Laboratory (AFRL) 
memristor device hardware. Therefore, a simple compact model was developed that accurately 
represents the electrical behavior of chalcogenide based memristors. Such models are required 
for large scale circuit design and simulations.  The model enabled in-house architectural designs 
and patents.    

 The chalcogenide based memristor devices were fabricated on 200 mm p-type Si wafers. 
Isolated tungsten bottom electrodes were patterned on the wafers and a planarized nitride layer 
was used for device isolation. Vias were etched through the nitride layer to provide contact to the 
bottom electrode and to define the device active region.  The memristor device structure consists 
of the layers (from bottom electrode contact side to top electrode contact): 300 Å Ge2Se3 / 500 Å 
Ag2Se / 100 Å Ge2Se3 / 500 Å Ag / 100 Å Ge2Se3, as shown, alongside a typical IV curve, in 
Figure 1.  Part (a) shows a cross section of the chalcogenide based memristor fabrication design.  
Part (b) shows a typical measured memristor device Lissajous I-V curve with characteristic 
behavior at 100Hz frequency.  The top and bottom electrode bond pad contacts were 80 µm x 80 
µm.  A detailed examination of these devices and the compact model is provided in [2].  

 

Approved for Public Release; Distribution Unlimited. 

4 

 



 

 

Figure 1.  Chalcogenide Based Memristor 

 

In-house Al/CuxO/Cu Memristive Devices  

 Memristive devices were developed and fabricated in an effort to better understand 
memristor behavior and to create memristors with engineered characteristics.  This research 
covered the in-house design, fabrication, characterization and modeling of Al/CuxO/Cu 
memristive devices.  The devices were created by depositing Al top electrodes atop a CuxO film 
grown on a Cu wafer using plasma oxidation. These devices were utilized in simple 
reconfigurable circuits designed to test physical implementations of neural architectures.  Figure 
2 shows the device layout and typical testing connections 

 

 

 

Figure 2.  Device Design with Measurement Probe and Electrical Bias Arrangement 

 

 The completed memristive devices were electrically characterized using a Cascade M-
150 probe station and an Agilent B1500A Semiconductor Device Analyzer.  The exact testing 
parameters varied with the device generation; however, the method of testing remained 
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consistent. Devices were operated with the voltage bias applied to the Al top electrode and an 
exposed Cu bottom electrode which was electrically grounded. For both SET and RESET 
operations, either “single sweep” or “dual sweep” measurements were taken.  In single sweep-
mode, the applied voltage (Vapp) sweep progressed from 0 V to ±Vapp in ±10 mV steps.  In dual 
sweep mode, the applied voltage sweep progressed from 0 V to ±Vapp then back to 0 V in ±10 
mV steps. The time between each measurement was not specifiable and was measured to be 
between 0.04-0.05 s.  Lastly, during the SET operation only, a current compliance between |0.5 – 
10| mA was enforced to prevent the device from shorting during the transition from a high 
resistance state to a low resistance state. 

 Physical and empirical models of the devices were created for MATLAB, HSPICE, and 
Verilog A environments. While the physical model proved of limited practical consequence, the 
robust empirical model allowed for rapid prototyping of Complimentary Metal-Oxide 
Semiconductor (CMOS) memristor circuitry.  Details on the fabrication, testing, and modeling of 
these devices are available in [3, 4]. 

Hafnium Oxide Memristive Crossbars 

 Fourteen chips containing memristive Resistive Random Access Memory (ReRAM) 
devices in several different size crossbar architectures were acquired for use in advancing in-
house research on neuromorphic computing.  Funding supplied through this project was used to 
purchase these state-of-the-art devices by leveraging concurrent research within AFRL.  The 
ReRAM device technology in crossbar architecture was developed under both the Air Force 
Research Laboratory Memristive Crossbar Nanoelectronics Architecture Program as well as the 
current Hybrid CMOS/Memristive Nanoelectronics for AES (Advanced Encryption Standard) 
Encryption Program with the Albany College of Nanoscale Science & Engineering (CNSE).  A 
schematic of the chip layout is shown in Figure 3.  The die is 32mm x 25mm and contains a 
range of memristor ReRAM configurations from single devices to 128 x 128 crossbar networks. 
  

Approved for Public Release; Distribution Unlimited. 

6 

 



 

 

Figure 3.  Schematic of the Complete Raptor Die  

 

3.2  Physical Self-Reconfigurable Neuromorphic Computing Architectures 

 This section briefly describes work conducted in self reconfigurable architectures and 
application to development of a memristor based XOR logic gate. 

Reconfigurable Synaptic System 

 The synaptic system was defined as a building block employing a variable resistor (either 
a CMOS transistor operating within the weak inversion and Ohmic region modes or a memristor) 
and inverter circuit elements [5]. Figure 4 depicts the complete synaptic system where (a) 
illustrates the circuit implementation of the synapse and (b) illustrates the simplified circuit 
element form that will be employed when designing the neuromorphic network.  In (a), pfet is a 
p-channel field effect transistor and nfet is an n-channel field effect transistor.  The figure shows 
that the output of the synaptic system is a function of the Vm potential that will either strengthen, 
weaken, or completely cut-off the connection between the synapse input (SI) and the CMOS 
inverting circuit operating within its transition bias point range.  
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Figure 4.  Synaptic System: (a) Circuit Representation, (b) Simplified Circuit 
Representation 

 

 

 The synapse output, SO was modeled employing a linear approximation to the electronic 
characteristic behavior of the CMOS inverting circuit by: 

 

SO(𝑆𝐼,𝑉𝑚) =  𝑓[𝐼(𝑉𝑚) ∗ 𝑅]                                                (1) 

 

The function f represents the transfer function of the CMOS inverter and I(Vm) is current across 
the transistor channel or memristor device.  R is a resistor used to reset and properly bias the 
synapse.  For example, for synaptic inputs between 0 and 2 V, as shown in Figure 5, the inverter 
transfer functions can be made to range from 3 to ~0 V approximately as a function of the 
biasing operating voltage Vin as shown in Figures 4 and 5.  The resulting multiple synapse 
circuit is described in Section 4.2. 
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Figure 5.  CMOS Inverter Voltage Transfer Curve  

Reconfigurable Logic Circuit 

 Work was conducted with a reconfigurable logic gate circuit that uses the high and 
low resistance state of memristors to select the logic function.  This reconfigurable logic 
gate circuit could be programmed to perform any logic function. Given an input state, the 
circuit could be programmed to output a zero or a one for that particular input set. After any 
input state is trained, the circuit remembered the output for that input state. The circuit worked 
by storing the desired output for each possible input state using memristors as a memory storage 
device to store the value of the output for each input state. The total number of memristors 
needed was equal to the total number of input states. This is equal to 2n where n is the number of 
inputs. For example, a two input circuit required 4 memristors, a three input circuit required 8 
memristors, and a 4 input circuit required 16 memristors. 

 The full two input reconfigurable logic gate circuit is shown in Figure 6. In this circuit 
four resistor-memristor voltage dividers were used to store the output state for each of the four 
possible input states. Transmission gates, T1 to T4, selected which voltage divider was 
connected to the comparator. The enabled inputs on the transmission gates were connected to the 
outputs of a 2 to 4 line decoder which selected which transmission gate to turn on, based on the 
two inputs. The truth table in Table 1 shows the outputs of the 2 to 4 line decoder, labeled as W, 
X, Y and Z for inputs A and B.  
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Figure 6.  Two Input Reconfigurable Logic Gate 

  

Table 1.  Two to Four line Decoder Truth Table 

A B  W X Y Z 

0 0  0 0 0 1 

0 1  0 0 1 0 

1 0  0 1 0 0 

1 1  1 0 0 0 
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3.3  Hardware-Based Artificial Neural Network Chips 

 Fully parallel, silicon-based neural network chips (CM1K) developed by General Vision / 
CogniMem Technologies and based on IBM’s earlier series of zero instruction set computers 
were used for pattern recognition applications in large data sources.  Hardware-based Artificial 
Neural Networks (ANN) are ideally suited for mobile or portable platforms with strictly limited 
SWaP resources such as those used in T&E data acquisitions platforms.  

Change Detection in Video Data 

  In this work, chips containing 1024 parallel neurons were successfully used for change 
detection and pattern recognition in streaming video data.  A graphical user’s interface was 
written by in-house researchers to access and train the chip with the intent of utilizing the least 
amount of processor resources.  The overall system design is given in Figure 7, a block diagram 
depicting the system configuration where the V1KU is prototyping board designed to analyze 
vector signatures within a charge-coupled device generated video stream. 

 

 

Figure 7.  Video Analysis Functional Block Diagram 

 

 Change detection and simple object recognition were demonstrated with reduced neuron 
numbers utilizing only a few, or in some cases one, neuron per category.  This simplified 
approach was used to validate the utility of few neuron networks for use in applications that 
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necessitate severe SWaP restrictions.  The limited resource requirements and massively parallel 
nature of hardware-based ANNs make them superior to many software approaches in such 
resource limited systems. 

3.4  Test Center Technology Transition 

 The last half of this effort’s performance period saw an increase effort to identify an 
application area for our technology to address the needs of the T&E community.  At the AFOSR 
T&E Program Review in Niceville, FL, April 2012, initial contact was made with representatives 
from various T&E locations.  It was also learned that the AFOSR’s Program Manager’s intent 
for our effort to try to focus the needs of the T&E work at Arnold Engineering Development 
Complex, AEDC. Two issues that needed to be overcome were: presenting neuromorphic 
computing in a manner that the T&E community could easily see how the technology will be a 
benefit to them and getting one’s foot in the door at AEDC.   

Artificial Neural Network Management of Wind Tunnel Performance Data  

 Environmental test and evaluation facilities such as climatic laboratories and wind 
tunnels require significant control over operational factors in order to achieve and maintain 
critical testing parameters.  The use of neurologically inspired systems for process control has 
the potential to improve environmental stability, operational efficiencies, and testing results, 
while reducing run times and operating costs.  The work outlined in this section explored the use 
of neural network chips to evaluate and process wind tunnel performance data and built upon 
concurrent efforts funded by AFOSR, this effort and the Innovative Technology Applications 
Company / Notre Dame effort.   

 Hardware based neural networks offer significant benefits over traditional neural 
software algorithms.  First, the parallel nature of the hardware provides increased throughput 
potential, where all the neurons simultaneously monitor the input data for previously trained 
signatures.  The AFRL in-house system used in this project was built on the CogniMem CM1K 
platform.  It operated with over 40,000 parallel neural nodes where each recognition cycle 
required 10 microseconds to complete, regardless of number of committed or trained neurons.  
The AFRL team worked closely with CogniMem engineers to solve power distribution and data 
latency issues to increase the node count to over 120,000 parallel neurons.  Secondly, hardware-
based neural networks have greatly reduced SWaP requirements when compared to traditional 
serial processing methods and software algorithms.  For example, a desktop computer running a 
neural simulation utilizing 1,024 nodes (N=1,024) for pattern recognition can typically consume 
on the order of 100 W of power while the CM1K architecture consumes around 0.5 W per 1,024 
nodes.  The CM1K has additionally been shown to be 93 times faster than certain digital signal 
processors when N=1,024, where the speed-up linearly improves such that performance is 
enhanced 186 times at N=2,048, 279 times at N=3,072, and so on [6].  Finally, since these 
hardware-based neural implementations are built on Zero Instruction Set Computer architectures, 
they require no internal software to operate, effectively reducing the overhead and complexity 
required to operate a trained system.  Drawbacks to the current implementation of the CM1K 
include its ridged structure and limited memory for signature storage.  Reconfiguration and 
optimization can be more easily achieved in current software approaches but the AFRL team is 
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investigating adaptive and reconfigurable electronic versions in a complimentary aspect of this 
AFOSR sponsored program. 

 The utility of experimental neural chips for the management and analysis of wind tunnel 
performance data was examined by adapting the modeling and control work of Prof. Mark 
Rennie and Dr. Alan Cain to hardware based neural systems.  A mathematical model that Rennie 
and Cain developed to predict wind tunnel performance from both calculated and measured 
physical parameters was used to generate a representative data set that in turn was used to train a 
neural network to aid in process prediction and control.  The details of the modeling process is 
outlined in [7], to include theoretical assumptions and descriptions of the feature set used in the 
neural network.  Their work demonstrated that neural networks can be used to efficiently manage 
wind tunnel performance data to produce useful analysis and predictions for operators and test 
engineers. The network was shown to provide relevant estimates on the state of useful 
parameters not directly measured by sensors within the wind tunnel unit.  AFRL examined ways 
that hardware implementation of a neural network could enhance performance and provide 
control upgrades to legacy systems through the use of hardware-based low power neural 
networks that can be deployed at remote sites or in isolated sections of environmental test 
facilities where extensive renovations are not practical. 

Enhanced SWaP Performance through Neural Pruning and Optimization 

 Artificial neural networks have demonstrated success in solving difficult nonlinear 
classification problems but often times are designed as simulations on high performance 
processors.  Most existing neuromorphic concepts are developed without considering the system 
complexity and power consumption.  Human brains have plasticity so that when complex tasks 
are learned, information is not simply added to memories; the physical structures of the brain is 
actually altered.  Part of this process involves neural pruning which trims neural circuits in order 
to optimize wiring and reinforce frequently used pathways.  Inspired by the biological 
neuroplasticity of the brain to react to changes in behavior, the environment and neural 
processes, this portion of the AFRL program investigated a neuromorphic architecture with 
autonomous optimization ability, capable of changing synaptic configurations in response to the 
changing application needs and environments.  Specifically, a neuronal pruning and multi-
objective, heuristic self-optimization approach was investigated to dynamically determine the 
optimal synaptic structure.  This involved evaluating the significance of individual neurons, 
desired performance, available resource and power goals, rather than operating with statically 
overprovisioned resources.   

Data Processing Methods 

 The realization of large scale hardware-based neural networks not only offers new 
capabilities in computational intelligence, but also requires new methods of data manipulation.  
Such large scale neural networks, for example, offer new possibilities for the speed-up of big 
data analysis.  AFRL designed a data architecture that utilizes identically trained multiple 
neuronal banks for concurrent processing of high speed data with a linear increase of processing 
speed as 1/N, where N is the number of neuronal banks employed.  The design is based on the 
single instruction multiple data (SIMD) paradigm as depicted in Figure 8, where multiple parallel 
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neuron banks perform the same operations but are staggered in time, resulting in increased data 
throughput. 

 

 

 

 

Figure 8.  The SIMD Process  

 

 This approach takes advantage of the newly available high number of neurons and the 
massively parallel nature of neuromorphic circuitry.  An outline of the varying hierarchies to be 
applied is given below: 

 

Single Instruction Multiple Data (SIMD) 

• Multiple processors performing the same operation but staggered in time 

• Data throughput parallelism 

• Banks of identically trained neurons 

• Increased data rates 

• Utilize surplus neurons for increased speed 

 

Multiple Instruction Single Data (MISD) 
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• Many operations on same data at the same time 

• Functional parallelism 

• Each neuron in a bank has its own unique target signature  

• Increased functionality and speed 

 

Multiple Instruction Multiple Data (MIMD) 

• Many sensors processed simultaneously 

• Perceptual parallelism 

• Distributed memory 

• Biologically inspired 

 

Serial Processing 

• Allows hierarchical structures 

• Redundancy 

• Decision trees 

• Self-learning 
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4.0  RESULTS AND DISCUSSION 

 This section describes the results of the project.  Performance and yield testing results are 
given for memristive devices and application of the memristor XOR circuit architecture to self-
reconfigurable neuromorphic processing is shown.  Architectures for complete neuromorphic 
processors are described along with some transition work towards potential applications.   

4.1  Memristive Device Design and Fabrication  

 The memristive device level work centered on three materials sets, a Ag-Ge-Se 
chalcogenide device, created by BSU a Al/CuxO/Cu device created by AFRL and HfOx devices 
created by CNSE.  This section describes the results of AFRL modeling of the chalcogenide 
samples and testing of Al/CuxO/Cu and HfOx samples.   

Chalcogenide Based Memristive Devices 

 Sample output from the in-house empirical memristor compact model, showing the 
simulated behavior of the characteristic Lissajous I-V curve, is given in Figure 9.  This model 
formed the basis for much of the early memristive circuit simulations and designs. Memristor 
hardware is shown by red circles, the linear model by a green line and the compact model by a 
blue line, the later clearly showing greatest fidelity to actual device behavior.  The compact 
model follows actual behavior very closely.   

Figure 9.  Model Simulations versus Measured Data 
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In-house Al/CuxO/Cu Memristive Devices  

 During fabrication of the Al/CuxO/Cu based devices, power settings of the plasma 
oxidation system were shown to control the grown oxide thickness and implanted oxygen 
concentration, which subsequently affected memristive device behaviors. These memristive 
devices demonstrated complete nonpolar behavior and could be switched either in a vertical 
(Al/CuxO/Cu) or lateral (Al/CuxO/Cu/CuxO/Al) manner. The switching mechanism of these 
devices was shown to be filamentary in nature. Figure 10 gives experimentally measured I-V 
plots of the nonpolar switching behavior.  I-V curves of all four possible switching styles were 
observed in memristive devices: a) bipolar(+), b) bipolar(-), c) unipolar(+) and d) unipolar(-), 
where the blue curve is the SET operation and the red curve is the RESET operation 

 

 

 

Figure 10.  I-V Curves of all Four Possible Switching Styles 

 

 These devices demonstrated consistent, complete nonpolar behavior with operating 
voltages typically within |3| V and required currents under 20 mA. These operating parameters 
are acceptable for use in CMOS circuitry. 

Hafnium Oxide Memristive Crossbars 

 The active regions of the devices are based on based on hafnium oxide as depicted in 
Figure 11.  The Nano-dimensional Crossbar Architecture is shown, developed with CNSE.  In 
(a) is a schematic of a 2x2 junction, showing the tellurium and copper pathways.  In (b) is an 
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image of interconnecting layers.  In (c) is a device stack and in (d) is an image of the cross 
sectional layers.  The smooth analog transitions between resistive states demonstrated by initial 
testing of these devises shows promise for artificial electronic synapse applications where 
continuous and predictable evolution allows for higher density synaptic memory.  A typical set 
and reset curve depicting the characteristic hysteresis behavior is shown in Figure 12.  In (a) is a 
Bipolar ReRAM 1Transistor1Resistor configuration and its operational forming charactoristics.  
A typical SET/RESET curve is given in (b) showing the smooth analog behavior of these devices 
and their charactoristic hysteresis properties. 

 

 

Figure 11.  Nano-dimensional Crossbar Architecture  
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Figure 12.  ReRAM Example (Courtesy Albany CNSE) 

 

4.2  Physical Self-Reconfigurable Neuromorphic Computing Architectures 

 This section briefly describes the results of work conducted under this effort in self 
reconfigurable architectures and application to development of an XOR logic gate. 

Reconfigurable XOR Logic Gate 

 The implementation of the neuron functionality will be performed with an adding node 
and/or a single transistor as displayed in Figures 13 and 14.  In Figure 13, multiple synaptic 
outputs converge at the floating adding node and their combined response is fed to the next 
neuron synaptic layer of the neuromorphic computing architecture.  In Figure 14, multiple 
synaptic outputs converge at the adding neuron where their relative contribution (the adding of 
all post-synaptic output potentials) will cause the single metal–oxide–semiconductor field-effect 
transistor, MOSFET neuron to fire as long at the overall synaptic contribution is above its 
threshold potential. The neuron output Vo will be fed to the next synaptic layer of the 
neuromorphic computing architecture.  The adding node is the physical connection where all 
post-synaptic outputs will converge.  
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Figure 13.  Multiple Synaptic Outputs Converge at the Floating Adding Node 

 

 

 

Figure 14.  Multiple Synaptic Outputs Converge at the Adding Neuron 

 

 As the synaptic outputs converge, they will increase or decrease the potential at the 
floating neuron adding node. Thus, the resulting added potential will become the input to the 
following synaptic layer. In addition, if the neuron adding node were connected to the gate of, 
for example, an NFET transistor and if the total combined potential at the adding node is greater 
than the threshold voltage, Vth, of the MOSFET transistor, then the output of the neuron will be 

Approved for Public Release; Distribution Unlimited. 

20 

 



Vo=Vn. Otherwise, the neuron will not output a high potential (the neuron will not fire).  Figure 
15 displays the computing architecture required to implement the XOR function with the in-
house developed neuromorphic computing architecture [5] classically described in [8].  The 
circuit in Figure 15 is also an example of a neuromorphic computing concept that demonstrates 
how a computing architecture can be implemented with thresholding neurons. 

 

 

 

Figure 15.  Neuromorphic Computing Implementation of the XOR Function 

Demonstration of Neuromorphic Functionality 

 The AFRL in-house Computational Intelligence research group demonstrated the 
physical hardware operation of a self-reconfigurable neuromorphic computing architecture in the 
laboratory. The results illustrated the operation of one input neuron, one memristor-based 
synapse and one output neuron as shown in the circuit schematic diagram in Figure 16. The 
figure displays a transistor-based input neuron that is composed of four transistors and two 
biasing resistors. The synapse was formed by a memristor, two biasing resistors and a CMOS 
pass-gate to control the appropriate current flow. The autonomous training circuit employed in 
which a transistor based comparator circuit to take a desired output and send an electronic signal 
to the memristor device that caused it to change impedance state to switch the output of the 
circuit to match the desired output electronic signal. 
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Figure 16.  Neuromorphic Self-Reconfigurable Electronic Circuit 

 The electrical characteristic results of the in-house designed and tested neuromorphic 
computing architecture are shown in Figure 17 where a ‘Desired (V)’ electrical input was shown 
to the circuit, then the circuit was ‘Enabled (V)’ to learn and reconfigure itself to match the 
desired electrical signal. Once training was enabled, the circuit calculated and sent an 
autonomous feedback pulse to the memristor-based synapse causing it to change resistance.  
Then the circuit output was able to match the desired input.  Another very important result 
demonstrated was that when the power was completely switched off to the entire circuit, the 
neuromorphic circuit persisted in the state it was in before the loss of power; the circuit 
“remembered”. This important result gave a good first indication that potentially instant on 
computers could be a real possibility. 
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Figure 17.  Electrical Results for a Neuromorphic Self-Reconfigurable Electronic Circuit 

Memristor-Based Neural Network of 100 Synapses Fabricated & Characterized 

 The in-house research effort achieved a critical milestone in the design, fabrication and 
characterization of a 100 synaptic memristor-based neural network.  A memristor-based neural 
network leveraging BSU’s ion-conductor chalcogenide-based memristor devices was fabricated 
by Professor Kris Campbell at the research and development laboratory facilities at BSU.  They 
were characterized by AFRL in collaboration with BSU. The fabrication of the neural chips, led.  
The characterization results are displayed in Figure 18 where (a) shows the discrete memristance 
values achieved and (b) shows the contour plots of the memristance maps.  The results 
demonstrated that each synapse or memristor element in the neural network can be programmed 
individually into various memristive states.  
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(a)  

 

 

(b) 

 

Figure 18.  Characterization of a 100 Synapse Memristor-Based Neural Network  

Three distinct memristance states were programmed for each of the 100 memristors in the neural 
network. Thus, three distinct planes were observed from the characterization results data. 
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However, in practice any memristance state can be programmed from approximately a high of 
2x106 to a low 4x103 Ohms. In addition, the narrow distribution exhibited at the various current 
characterization points indicated that the fabrication process is reproducible with minimal 
geometric variation within the 2 micrometer fabrication process.  The final packaged chips are 
shown in Figure 19. 

 

 

 

Figure 19.  Fabrication of a 100 Synapse Neural Network 

Reconfigurable Logic Circuit 

 A reconfigurable logic circuit was designed with two inputs.  Figure 20 shows the two 
input circuit set up on a breadboard.  Figure 21 shows the results of training the reconfigurable 
logic gate circuit with one memristor input where Vp+ was set to 10 V, Vp- to -10 V, Rc1 to 1 
kohms and Rc2 to 1 kohms.  At the time the experimental work with the breadboard was 
performed, there were issues getting the full two input circuit working due to problems with 
finding enough working memristors.  The status of all of the memristors on hand was manually 
verified. 
  

Approved for Public Release; Distribution Unlimited. 

25 

 



 

 

 

Figure 20.  Two Input Circuit on a Breadboard 

 

Figure 21.  Results of Circuit Operation with One Memristor 

 A three input reconfigurable logic gate was made in the same way as the two input gate. 
For a three input gate, eight memristors were needed for the eight possible input states and a 
three to eight line decoder was used to select the memristor. 
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 A more robust circuit prototype was fabricated for additional experimentation.  The 
reconfigurable logic gate circuit, shown in Figure 22, is a logic gate with two inputs and one 
output that can be configured to implement any two input, one output logic function. The circuit 
used four memristors to store the output for each of the four possible input conditions. 

 

 

 

Figure 22.  Reconfigurable Logic Circuit 

 The circuit read the resistance state of each memristor using a voltage divider circuit 
composed of the memristor to be read and a fixed resistor. The voltage drop across the memristor 
depended on the resistance of the memristor.  A high resistance resulted in a high voltage and 
low resistance resulted in low voltage. To generate a binary value from the voltage, the voltage 
was compared with a threshold. If the voltage was greater than the threshold the output was a 
binary 1. A voltage less than the threshold produced a binary 0. 

 The circuit was operated in two programming modes: pulse mode and arbitrary waveform 
mode. Pulse mode was used for applying pulses to the memristors for programming. Arbitrary 
waveform mode allowed an arbitrary programming waveform to be applied to the memristor 
from an external waveform generator. While arbitrary waveform mode could be used to apply 
pulses to the memristor, regular mode allowed for setting and resetting of the memristor to be 
selected simply by setting a switch. In arbitrary waveform mode, the pulse generator voltages 
had to be changed each time the memristor was set or reset. Also, in arbitrary waveform mode, 
the output impedance of the function generator appeared in series with the memristor to be 
programmed. Pulse mode operation did not have this problem since the pulse voltages were 
supplied from DC power supplies that had negligible output impedance.  

 A simplified diagram of the circuit in the pulse mode configuration is shown in Figure 
23. When the read/write switch, S1, was closed, the circuit was in the read mode and a voltage 
divider circuit was formed from Rread and the memristor selected by closing A, B, C or D. In the 

Approved for Public Release; Distribution Unlimited. 

27 

 



actual circuit, A, B, C, and D were controlled by the two binary inputs. A, B, C and D were 
closed when the inputs were {0,0}, {0,1}, {1,0}, {1,1}, respectively.  The voltage developed 
across the selected memristor was converted to a binary value using op-amp Op2 configured as a 
comparator. The comparator compares the memristor voltage with the read threshold voltage and 
outputs a high or low binary value if the memristor is greater or less than the threshold voltage 
respectively. Op-amp Op1 was configured as a non-inverting buffer amplifier that measured the 
voltage across the selected memristor without loading the circuit significantly. The output of Op1 
could be measured using an oscilloscope or voltmeter. 

 

 

Figure 23.  Pulse Mode Simplified Circuit 

 When S1 was opened, the circuit was in the write mode and the read voltage was 
removed. Initially, S2 was opened and no voltage was applied across the memristor. The 
Set/Reset switch was first set such that when the programming pulse was applied, the proper 
voltage and current limit were selected to switch the memristor to the desired state. A pulse from 
an external pulse generator was then applied to the programming pulse input. This pulse caused 
S2 to close and apply the programming voltage across the memristor for the duration of the 
pulse, in theory causing the memristor to switch to the desired state.  Figure 24 shows the pulse 
mode setup for the test equipment on the lab bench. 
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Figure 24.  Pulse Mode Setup on Lab Bench 

 A simplified circuit diagram in the arbitrary waveform mode configuration is shown in 
Figure 25. In this mode, S1 and S2 were controlled simultaneously. When S1 was closed, S2 was 
open and the circuit was in read mode. The read operation was the same in arbitrary waveform 
mode as in pulse mode. When S1 was opened, S2 was closed and the circuit was in write mode. 
A programming waveform supplied from an external waveform generator was applied across the 
selected memristor with a series resistance selected by the Set/Reset switch.  Figure 26 shows the 
arbitrary waveform mode setup for the test equipment on the lab bench. 
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Figure 25.  Arbitrary Programming Waveform Mode Simplified Circuit 

 

Figure 26.  Arbitrary Waveform Setup on Lab Bench 
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4.3  Hardware-Based Artificial Neural Network Chips 

 This section describes the results of exploration of the use of neuromorphic processing 
for DoD related problems.   

Change Detection in Video Data 

 The CogniMem hardware is expected to work with a variety of data types. There was 
some work that explored the issues of utilizing different types of sensors including their control 
and data flow.  In the case of small unmanned systems, microcontrollers are certainly capable of 
handling simple onboard processing tasks, however,  as the complexity of autonomy increased so 
did the need for more computing horsepower and on-board memory.  In one instance, the use of 
neural networks for interpreting the optical flow of information was examined.  An attempt was 
made to use a feed forward neural network with a back propagation training algorithm to help 
determine when a vehicle should stop in front of an obstacle. A straight forward algorithm was 
found to work better than a more complex neural network.  While this was not an intensive study 
of the use of neural networks for obstacle avoidance, the results do illustrate that the application 
of neural networks may not be the best solution for all perception problems. 

Solid State Neural Networks for Network Intrusion Detection and Cyber Security 

 The expertise gained from aspects of research funded by this project directly contributed 
to recent collaborations with the Army Research Laboratory and the National Security Agency in 
areas concerning the use of solid state neuromorphic architectures for cyber security 
applications.  The joint effort resulted in the formation of an interagency working group, a 
conference focusing on the application of neuromorphic technologies to network science (The 
Network Science and Reconfigurable Systems for Cybersecurity Conference, 28-29 Aug 2012) 
and a technology interchange meeting hosted at the Air Force Research Laboratory, AFRL 
Information Directorate.   

 The working group leveraged the capabilities of many DoD, academic and industrial 
agencies, resulting in stronger and more resilient in-house efforts.  The skills gained by such 
technical interactions were directly applied to the AFOSR T&E effort with possible application 
to the testing and evaluation of United States Air Force cyber platforms. 

 To demonstrate the use of neuromorphic processing for network monitoring, a prototype 
of an in-house developed data monitoring circuit was built.  The system, shown in Figure 27, 
was constructed from a CogniMem PM1K (bottom right), an Arduino microcontroller (top right), 
and data interface circuit (top left).  The Arduino Mega2560 board was used in this prototype, 
but in conversations with CogniMem Technologies technical staff there was concern about the 
board being inadequate for the test.  Since this work was conducted, the Arduino Duo board with 
an ARM processor was made available which holds more promise.  The use of the Arduino 
board is now being examined in a follow-on in-house effort. 
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Figure 27.  Prototype of a 1024 Neuron Data Monitoring System 

4.4  Test Center Technology Transition 

 This project helped leverage AFOSR’s Small Business Technology Transfer Program 
(STTR) technology investment.  The particular effort involved Dr. Alan B. Cain from Innovative 
Technology Applications Company and Prof. R. Mark Rennie from the University of Notre 
Dame.  The effort involved the use of neural networks to organize and manipulate wind-tunnel 
performance data into formats useful for tunnel optimization and control.  The STTR effort was 
leveraged as a means to show the T&E community how neuromorphic computing technology 
can be used to bring more efficiency to their work and provide intelligent control to their 
systems.   

 Discussions on applications of neuromorphic processing were conducted with Capt. 
Alexander Henning, AEDC, including during the 2012 International Test and Evaluation 
Association Symposium.  One thing he reiterated was the need to explain neuromorphic 
computing in a manner that those with limited technical knowledge of the technology area will 
understand its potential. 

 There was also discussion of possibly redirecting the AFRL effort to address the needs of 
the McKinley Climatic Laboratory at Eglin AFB, FL, if working with AEDC did not pan out.  A 
teleconference was held on 27 September 2012, between the PM, Air Force Research Laboratory 
Information directorate, AFRL/RI, the Innovative T Technology Applications Co. / Notre Dame 
team and various individuals from Eglin, AFB.  This was an initial discussion to explore the 
possibility of applying the STTR control system work toward the needs of one of its facilities.  
From the teleconference, it seemed like it would be easier to obtain real data.  Discussions 
continued and a proposal was put together by AEDC for the Environmental Security Technology 
Certification Program for their Advanced Building Energy Management and Control Topic Area 
for FY 2014.  The proposal did not make it through the selection process. 

Management of Wind Tunnel Performance Data Using Hardware-Based Artificial Neural 
Network Chips 
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 The techniques demonstrated in early testing were adapted for use in control systems 
managing complex automated processes.  The chosen process concentrated on extracting useful 
information from sensor data characterizing wind tunnel performance for increased process 
control and optimization.  The team worked closely with CogniMem Technologies’ engineers to 
obtain a 102,400 neuron system (at the time of this effort, the largest system of its kind in the 
world), theoretically capable of finding a single signature among 100,000+ possible categories 
within 10μs while using only 150 mW per 1,000 patterns.  Figure 28 is an image of the 102,400 
neuron system at the AFRL Information Directorate.  Each board consisted of 4 individual 1024 
neuron chips orchestrated by a Field Programmable Gate Array and a communications bus.  
Utilization of only 40,960 neurons was successfully demonstrated due to communications 
latency and power distribution issues.  The 40K neurons, however, proved quite adequate for 
demonstrating the efficiencies of this architecture.  Figure 29 shows the current 10 board, 
CogniBlox configuration being used in AFRL research activity.  The 10 board CogniBlox stack 
was connected to a laptop 

 

 

 

Figure 28.  Three Stacks of Modules Making Up a 102,400 Neuron System 
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Figure 29.  Current Research Setup Using CogniMem Technology Hardware 

 Starting with Prof. Rennie’s and Dr. Cain’s earlier work, the use of solid state neural 
networks was examined to extract secondary results from typically-measured wind-tunnel 
control and status parameters, thereby effectively leveraging other AFOSR funded programs.  
This collaboration area is relatively new for AFRL and still being defined, but recent e-mail 
exchanges have reinvigorated the relationship.  Some preliminary results are given below.  

Compression of Feature Data for Input into Hardware Neural Memory 

 The memory that each otherwise identical neuron has for signature feature storage is 
limited to 256 8-bit registers per neuron.  Thus all input data variables must be preprocessed to 
conform to the available 8-bit representation.  Such a limited amount of storage essentially 
means that each variable must be restricted to fall within 256 bins that represent the continuous 
spectrum of feature values.  This compression can result in ambiguous signature representations 
within the neural memory.  That means data representation must be carefully considered when 
providing both training and test data to the neural network.  In order to maximize the dynamic 
range of the limited storage, a linear algorithm was used to convert the data to a form acceptable 
by the memory register. 

 

𝑑𝑎𝑡𝑎′ = ��𝑑𝑎𝑡𝑎− 𝑑𝑎𝑡𝑎𝑚𝑖𝑛
𝑠𝑝𝑟𝑒𝑎𝑑𝑑𝑎𝑡𝑎

� 𝑠𝑝𝑟𝑒𝑎𝑑𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟 + 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑚𝑖𝑛�,   (2) 

 

where data’ was the data after conversion to fit within the 8-bit (256 bin) memory, data was the 
unconverted raw data and the symbols ⌊ ⌋ represent the floor function.  The min and max values 
for register are 0 and 255, thus spreadregister is the difference or 255.  This compression algorithm 
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was used to try and maximize the dynamic range of the available neuron memory, but additional 
preprocessing on features with relevant statistical outliers or nonlinear distributions was needed 
such that careful preparation of the data was occasionally required.   

 Table 2 illustrates feature data from a signature set that required logarithmic scaling prior 
to conversion.  The use of scaling on two highly variant feature sets reduced conflicting data 
conversions from over 39,000 within a data set containing 260,000 signatures to 0 conflicting 
categories.  Close analysis of the dataset statistical make-up with the appropriate preprocessing 
reduced degenerate neuron counts and increased distinguishability between signatures.  The table 
compares the original data (that had no contradictions), to the scaled data (that then had two 
categories with the same signature), to the same data scaled with a logarithmic function so that 
the categories are again distinguishable.  The table shows a representative sample of the data 
showing how the two compression algorithms affected the distinguishability of the signatures, 
where the red indicates identical values. 

Table 2.  A Representative Data Sample  

 

 Category Feature 
Value 1 

Feature 
Value 2 

Feature 
Value 3 

Feature 
Value 4 

Feature 
Value 5 

Original Signature 1 Cat 1 147.04 -3.1311 33.397 98,786 98,281 

Original Signature 2 Cat 2 149.6 -3.1319 33.396 98,786 98,283 

  

     Signature 1 after 
linear scaling 

 

Cat 1 or 2 1 148 11 72 222 

Signature  2 after 
linear scaling  

 

Cat 1 or 2 1 148 11 72 222 

  

     Signature 1 after log 
scaling 

 

Cat 1 18 148 11 74 226 

Signature 2  after log 
scaling 

 

Cat 2 19 148 11 74 226 
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 The limited memory associated with each neuron created the non-trivial requirement to 
pre-process or compress the input data for optimized signature representation.  This compression 
results in reduced feature resolution and more ambiguity between different signatures. 

 Simulations of the CogniMem hardware were used to train and test the network on 
signature analysis and general classification tasks using wind tunnel simulation data supplied by 
Notre Dame and Innovative Technology Applications Co.  Network training was accomplished 
using subsets of signatures taken from the overall database of 260,000.  Training sets as large as 
160,000 were examined but became difficult to manage due to the large memory requirements of 
the simulations.  A representative cluster of 10,000 signatures, each with 36 feature variables, 
was designated to train the network for the recognition tasks.  The simulated signature data was 
previously generated using physical models of wind tunnel performance as outlined in [7].  The 
idea was to use neural networks as a means to generalize the models and to act as predictive 
systems for wind tunnel control and optimization with the ability to extract secondary results 
such as the model drag area from the data.  Hardware implementation of the ANNs brought such 
capabilities into size, weight and power constrained areas where the addition of large computer 
networks was not practical. 

Performance Comparisons between Software and Hardware Neural Network Implementations 

 Much of the appeal for biologically inspired neuromorphic hardware is in its potential for 
increased performance on specific tasks with reduced power requirements. In this section, the 
results of a signature recognition task conducted in hardware and software platforms are 
compared.  As part of the implementation of hardware-based neural networks for the 
management of wind tunnel performance data, recognition times were recorded and compared 
for equivalent tasks on both platforms.   

 The test utilized wind tunnel performance data consisting of 262,144 signatures made 
from 36 individual feature variables and describing 18 category bins (model drag area).  A 
selected population of signatures (9,600 in total) representing the 8 categories (1,200 each) was 
used as the training set.  Both the software and hardware based platforms were trained on these 
signatures prior to the timed recognition test.  In both instances the committed neuron count after 
training was identical at 8,897.   

 The software version of the radial basis function neural network was run on a high 
performance dual Intel Xeon processor with eight 3.07 GHz cores and 48 Gigabytes of memory.  
The recognition task examined all 262,144 signatures of the original dataset against the training 
data, requiring ~29.0 minutes to complete.  The hardware-based, zero instruction set computer 
radial basis function neural network was run on a stack of 40K identical CogniMem neurons and 
finished the task in ~9.06 minutes using less than 12 W of power.  This equated to increased 
performance (3.1 times speed-up) with lower SWaP requirements (1.7% of the power), assuming 
a typical load of 692W for the Xeon system used [10]. 

 Although the training set was not optimized to reduce recognition error, the results 
support the energy efficient performance of Application Specific Integrated Circuit hardware 
designs.  The results also suggested that embedded neuromorphic chips have the potential to add 
autonomy and intelligence to the control of complex industrial processes like the T&E 
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environmental testing facilities. Further improvements to performance and efficiency may be 
available through self-optimization of neural circuits and through neural pruning as discussed in 
the next section.   

SWaP Performance Enhancement through Neural Pruning and Optimization 

 The results presented in this section were made possible by aligning addition resources 
funded through the AFOSR Summer Faculty Fellowship Program (Contract Number FA8750-
13-2-0116) in partnership with Professor Zhanpeng Jin and Simon Chen from Binghamton 
University (BU) - SUNY, Binghamton NY, whose work on neural optimization was extremely 
beneficial to this project.   The general techniques and results are given below. Details of this 
collaborative work will be available through the final reports that are being prepared connected 
with the contract number given above. 

 Oversized neural networks that carry too many less-influential neurons, significantly 
increase the burdens on resources and power consumption, as well as weaken the network’s 
generalization capability [9]. To address this problem, researchers at BU and AFRL investigated 
adaptive neural pruning and a heuristic self-optimization technique to optimize the neuromorphic 
hardware from a comprehensive perspective.  Energy-aware neuronal pruning can increase the 
energy efficiency of neuromorphic hardware by deactivating the least functionally significant 
neurons (i.e., “least recently fired (LRF)”). The self-optimization not only focused on the 
recognition accuracy but also considered the recognition singularity and energy efficiency. 
Professor Jin established a hybrid objective function for the heuristic multi-objective 
optimization. 

 

min𝑅(𝑊) =  𝛼𝜀𝑎(𝑊) +  𝛽𝜀𝑠(𝑊) +  𝛾𝜀𝑐(𝑊)   (3) 

 

R(W) is the system cost, 𝜀𝑎(𝑊) is the accuracy cost (i.e., the distance between the input and the 
reference pattern), 𝜀𝑠(W) is the singularity cost (i.e., the number of fired neurons), 𝜀𝑐(W) is the 
complexity cost (i.e., the number of activated neurons) and α, β and λ are the regulatory 
parameters.  The rationale of this approach is that, a neuromorphic system needs to be co-
optimized towards the goals of minimizing the system cost, reducing recognition errors, avoiding 
the ambiguity caused by concurrent firing of multiple neurons and reducing the resource and 
energy consumption. [11] 

 Professor Jin’s experiments showed that, by strategically selecting the neurons with more 
significant impacts, the neural network can maintain high recognition performance with only a 
limited number of neurons (e.g., up to 90% recognition rate with only about 15% of the neurons). 
The multi-objective optimization provides a way of achieving a balanced tradeoff between 
recognition accuracy and resource utilization, and thus enables the possibility of further 
improving system overhead and energy efficiency. When combining these two approaches, it 
was observed that both the recognition accuracy and neuron efficiency are significantly 
improved, while still maintaining the recognition rate at a reasonable level. This study laid the 
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foundation for future research on highly flexible, scalable and energy-efficient neuromorphic 
architectural frameworks for mission-critical defense applications that demand a rather high level 
of massively parallel computing, especially in SWaP constrained environments. [11] 

4.5  Transitions Resulting From This Project 

 The accomplishment of technology transfer was a significant goal of this project.  Five 
patents were awarded with two pending in the areas of neuromorphic hardware and memristor 
based circuit designs as a result of this and other complementary in-house efforts.  Numerous 
papers and presentations were achieved and are listed in Appendix A 
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5.0  CONCLUSIONS 

 The in-house research efforts reached several critical milestones which were recognized 
through the award of five patents with two pending for work related to the invention of 
autonomous reconfigurable memristive technologies for reconfigurable electronic circuits and 
electronic memristive synapses. The synaptic computing element in the reconfigurable circuits 
is autonomously programmed whenever the circuits perceive new information and learning is 
enabled by the application.  These technical accomplishments will ensure the government a 
potential return on investment an intellectual property protection.  Refer to the patents 
descriptions in Appendix A for more detail. 

 This effort provided a great opportunity to pursue fundamental knowledge regarding 
hardware-based neuromorphic computing technology and its potential to address the needs of the 
Air Force.  Basic building blocks, models and testing techniques were developed from which 
new computing architectures were create based upon memristive device technology.  
Commercial technology was identified that will allow understanding of system integration and 
architectures issues.  This understanding will not only facilitate pursuit of opportunities to move 
emerging neuromorphic computing technology to the field faster, but also guide the development 
of far term technologies. Much of the success under this effort will be used in a new 6.2 in-house 
effort entitled, “Solid State Neural Technologies (SSNT),” and other efforts within the 
Information Directorate. Application areas include: addressing shortfalls of the processing, 
exploitation and dissemination chain, enhancing computer architectures for the T&E community, 
bringing computational intelligence closer to the sensor and a variety of cyberspace needs. Under 
SSNT technology will be explored that can benefit the developmental T&E community with 
whom there was little interaction prior to this LRIR.  Results suggest that embedded 
neuromorphic chips have the potential to add autonomy and intelligence to the control of 
complex industrial processes like the T&E environmental testing facilities.  

 With that said there is still more basic research that needs to be pursued to properly 
develop practical hardware-based neuromorphic computing architectures for the Air Force.  
Models for memristive technologies require more refinement for accurate and efficient design 
and simulation of new architectures. A methodology is needed to move from sound device 
models to accurate system models.  Understanding is needed of the issues of preparing data for 
processing in advanced hardware-based neural networks and other neural processors.  Advanced 
computing architectures should have the agility to address a variety of Air Force applications, 
but the proper techniques are needed to work with a variety data types.  The technology will need 
to interact with different systems including both legacy and emerging concepts that are land, air 
and space based.  Future architectures must work with time dependent input, real time data and 
tap into a variety of databases.  Given current budget issues and limits on available manpower 
trying to tackle these issues will be difficult.  Fortunately, as a result of working on this LRIR, 
numerous collaborative opportunities have arisen with academia, industry and other government 
agencies that allow this burden to be shared with a larger community with similar interests.  
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APPENDIX A – Patents, Publications and Presentations  

Technology transition was a large component of this effort.  Following is a list of Patents, 
publications and presentations that were a direct result of this effort.   

 

Patents Granted: 

The first two patents reflect concepts that evolved out of both AFOSR and AFRL 6.2 investment 
and are being leveraged by this particular effort.  The third patent represents work that has taken 
place since this effort was first proposed and was accomplished by this effort. 

 

1.  U. S. Patent No.7,902,857, “Reconfigurable electronic circuit,” by Dr. Robinson Pino.  Issued 
8 March 2011.  This patent provides an apparatus and method for designing reconfigurable 
electronic computing systems.  The invention relies on the ability to change the resistive state of 
a memristor device to achieve an optimal voltage at a specific circuit node.  Whereby this 
dynamically and autonomously causes the circuit to reconfigure itself and produce a different 
output for the same input relative to the circuit’s initial state.  The circuit’s state remains constant 
until the memristor’s resistance is changed, at which point the circuit’s function is 
“reprogramed”. 

 

2.  U. S. Patent No. 8,249,838, “Method and Apparatus for Modeling Memristor Devices,” by 
Dr. Robinson Pino and Mr. James Bohl was issued 21 August 2012. “The invention provides 
methods and an apparatus for accurately characterizing the linear and non- linear Lissajous 
current-voltage behavior of actual memristor devices and incorporating such behavior into the 
resultant model. The invention produces a model that is adaptable to large scale memristor 
device simulations.” 

 

3.  U. S. Patent No. 8,275,728, “Neuromorphic Computer," by Dr. Robinson Pino was issued 25 
September 2012.  “The invention provides variable resistance circuits to represent 
interconnection strength between neurons and a positive and negative output circuit to represent 
excitatory and inhibitory responses, respectively. The invention provides advantages over 
software-based neuromorphic computing methods.” 

 

4.  U. S. Patent No.  8,274,312, “Self-Reconfigurable Memristor-Based Analog Resonant 
Computer,” by Dr. Robinson Pino and Mr. James Bohl was issues 25 September 2012. The 
invention provides, “An apparatus which provides a self-reconfigurable analog resonant 
computer employing a fixed electronic circuit schematic which performs computing logic 
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operations (for example OR, AND, NOR, and XOR Boolean logic) without physical re-wiring 
and whose components only include passive circuit elements such as resistors, capacitors, 
inductors, and memristor devices. The computational logic self-reconfiguration process in the 
circuit takes place as training input signals, which are input causing the impedance state of the 
memristor device to change. Once the training process is completed, the circuit is probed to 
determine whether the desired logic operation has been programmed.” 

 

5.  U. S. Patent No.  8,427,203, “Reconfigurable Memristor-Based Computing Logic,” by Dr. 
Robinson Pino and Dr. Youngok Pino.  Issued 23 April 2013.  An apparatus for reconfigurable 
computing logic implemented by an innovative memristor based computing architecture. The 
invention employs a decoder to select memristor devices whose ON/OFF impedance state will 
determine the reconfigurable logic output. Thus, the resulting circuit design can be electronically 
configured and re-configured to implement any multi-input/output Boolean logic computing 
functionality. Moreover, the invention retains its configured logic state without the application of 
a current or voltage source. 

 

Patents Pending: 

A. Patent Application Pending:  “One Bit hardware-based Random Number Generator”  by 
Inventors: Nathan McDonald and Bryant Wysocki, Apparatus and method for generating a truly 
random binary bit value in which the resistance of memristive devices serve as the analogue bit 
values.  Said resistance values and the randomness by which they are generated stems from the 
inherently non-uniform, irreproducible variations in the materials of which the system is 
composed. This patent application is a direct spinoff of memristive research funded by this 
program. 

 

B. Patent Application Pending: “A Write-Time Based Memristive Physical Unclonable 
Function” Inventors: Garrett S. Rose, Nathan McDonald, Lok-Kwong Yan and Bryant Wysocki,  
Impact: Novel use of memristive device physics to address difficult supply chain issues with 
refurbished electronics and counterfeit chips, as well as methods to potentially enhance hardware  
identification, forms the basis for new methods in hardware trust and cyber security.  This patent 
application is a direct spinoff of memristive research funded by this program. 

 

Published in Peer Reviewed Journals, Books, etc.: 

Yakopcic, C.; Taha, T.M.; Subramanyam, G.; Pino, R.E.; Rogers, S.; , "A Memristor Device 
Model," Electron Device Letters, IEEE , Vol. 32, no.10, Oct. 2011, pp.1436-1438 
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Kozma, R.; Pino, R.; G.E. Pazienza, G., (Eds.), Advances in Neuromorphic Memristor 
Science and Applications, Springer Series in Cognitive and Neural Systems, Heidelberg, 
Springer, 2012. 

 

Zhang, L., Chen, Z., Joshua Yang, J., Wysocki, B., McDonald, N., Chen, Y., “A Compact 
Modeling of TiO 2-TiO 2–x Memristor”, Applied Physics Letters, Vol. 103, no. 15, 2013, pp. 
153503-153503-4. 

 

Liu, B., Chen, Y., Wysocki, B., and Huang, T. "Reconfigurable Neuromorphic Computing 
System with Memristor-Based Synapse Design." Neural Processing Letters, Aug. 2013, pp. 1-9. 

 

Wysocki, B., McDonald, N., Thiem, C., Rose, G., & Gomez II, M., “Hardware-Based 
Computational Intelligence for Size, Weight, and Power Constrained Environments”, Network 
Science and Cybersecurity, 2014, Springer, New York, pp. 137-153. 

 

Liu, B., Chen, Y., Wysocki, B., & Huang, T., “The Circuit Realization of a Neuromorphic 
Computing System with Memristor-Based Synapse Design”, Neural Information Processing, 
LNCS, Vol. 7663, Jan 2012, Springer, New York, pp. 357-365. 

 

Peer reviewed conference publications: 

  

Wysocki, B., McDonald, N., Thiem, C., “Hardware-based Artificial Neural Networks for Size, 
Weight, and Power Constrained Platforms”, accepted for presentation at the SPIE Defense and 
Security Symposium (2014) 

 

Ji, F., Li, H., Wysocki, B., Thiem, C., McDonald, N., “Memristor-based Synapse Design and a 
Case Study in Reconfigurable Systems” 2013 International Joint Conference on Neural 
Networks IEEE, (To be published in IEEE Xplore) 

 

Liu, B., Chen, Y., Wysocki, B., Huang, T., “The Circuit Realization of a Neuromorphic 
Computing System with Memristor-based Synapse Design” Proceedings of the 19th 
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International Conference on Neural Information Processing ICONIP2012, Doha Qatar, Nov, 
2012, pp. 12-15. 

 

Sun, Z., Bi, X., & Wysocki, B., “Spintronic devices: From Memory to Memristor,” IEEE 11th 
International Conference on Solid-State and Integrated Circuit Technology ICSICT, Xi’an 
China, 2012, pp. 1-4.  

 

Rose, G.; Rajendran, J.; Manem, H.; Karri, R; Pino, R., "Leveraging Memristive Systems in the 
Construction of Digital Logic Circuits," Proceedings of the IEEE, Vol. 100, no. 6, 2012, pp. 
2033-2049. 

 

Wang, H., LiH., Pino, R., "Memristor-Based Synapse Design and Training Scheme for 
Neuromorphic Computing Architecture," The 2012 International Joint Conference on Neural 
Networks (IJCNN), Brisbane Australia, 2012, pp.1-5. 

 

Pino, R., Li, H., Chen, Y., Hu, M., Liu, B., "Statistical Memristor Modeling and Case Study in 
Neuromorphic Computing," 49th ACM/EDAC/IEEE Design Automation Conference DAC, San 
Francisco, 2012, pp. 585-590. 

 

McDonald, N., Pino, R, Rozwood, P., Wysocki, B., "Analysis of Dynamic Linear and Non-
Linear Memristor Device Models for Emerging Neuromorphic Computing Hardware Design," 
The 2010 International Joint Conference on Neural Networks (IJCNN), Barcelona Spain, 2010, 
pp. 1-5.  

 

Pino, R., Bohl, J., McDonald, N., Wysocki, B., Rozwood,P., Campbell, K., Oblea, A., Timilsina, 
A., "Compact Method for Modeling and Simulation of Memristor Devices: Ion Conductor 
Chalcogenide-Based Memristor Devices." IEEE/ACM International Symposium on Nanoscale 
Architectures NANOARCH, Anaheim California, 2010, pp. 1-4. 
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Invited Presentations 

 

B. Wysocki served as an Invited expert panel member for conference wide 
presentation/discussion at the 3rd International Conference on Computing for Geospatial 
Research and Applications in Washington DC, 1-3 July 2012.  His topic was “Neuromorphic 
Computing for Big Data.” 

 

B. Wysocki and C. Thiem briefed IARPA visitors on 26 July 2012, on the integrated 
technologies developed in our group during a tour of the Nanotechnology/Computational 
Intelligence facility.  AFRL and IARPA leadership were in attendance.  Briefing highlighted 
AFRL/RI’s commitment to 6.1 basic research and highlighted recent RITB successes to high 
level officials. 

 

C. Thiem presented our computational intelligence work at the Network Science and 
Reconfigurable Systems for Cybersecurity Conference (NSRSCC 2012, Beltsville MD), 28-29 
Aug 2012 titled “ASIC-based Artificial Neural Networks for SWaP Constrained Applications.” 

 

B. Wysocki, N. McDonald, and G. Rose gave invited talks on 24 Sep 2013 at Sandia National 
Laboratories on memristive system design and neuromorphic architectures for autonomous 
systems. 

 

N. McDonald, C. Thiem, and B. Wysocki gave invited talks on 18 Oct 2013 to faculty and 
students at SUNY Binghamton regarding “Nanotechnology for Neuromorphic Computing and 
Hardware-based Computational Intelligence” as part of the university’s research seminar series. 
Much of the talks were based on research funded by this program. 
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LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS 

AEDC Arnold Engineering Development Complex 

AFOSR Air Force Office of Scientific Research 

AFRL Air Force Research Laboratory 

AFRL/RI Air Force Research Laboratory Information Directorate 

AIAA American Institute of Aeronautics and Astronautics 

ANN Artificial Neural Network 

BSU Boise State University 

CMOS Complimentary Metal-Oxide Semiconductor 

CNSE College Of Nanoscale Science and Engineering 

MOSFET Metal–Oxide–Semiconductor Field-Effect Transistor 

NFET N-Channel Field Effect Transistor 

PFET P-Channel Field Effect Transistor 

ReRAM Resistive Random Access Memory 

SIMD Single Instruction Multiple Data 

STTR Small Business Technology Transfer Program 

SWaP Size, Weight and Power 

T&E Test and Evaluation 

Ag Silver 

Al Aluminum 

Cu Copper 

Ge Germanium 

Hf Hafnium 

O Oxygen 
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Se Selenium 

V Volts 

Vapp Applied Voltage 

W Watts 
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