
.
Pla.D

Sponsors

The Deel&n of a Lupqe
for AJ&ebralc Computation S7stema

John K. Foderaro

Computer Science DlvlaloD
Electrical EnaiDeerbaa and

Computv Sciences Department

United States Department of Energy
Advanced Research Projects Agency
System Development Foundation

~f:;J.~-..r~

.ABSTRACI'

Richard J. Fateman
Chairman of Committee

This. thesis describes the desip of a lupap to support a mathematics-oriented

Qmbolie alcebra qstem. The lupap, which we haTe Damed NEWSPEAK, per·

mits the complex iDterrelations of mathematical iypes, aada u riDp, &elds and

polyuomials to be described. Functions can be writteu a.er the most ceueral type

that hu the required operatioDS ud properti• and thm iDherit.ed by subtypes.

AD funetioD calls are pneric, with IDOit funetioD raolution doue at compile time.

Newspeak il typ.sale, Jet permiti1'11Dtime ereatioD ol t)1ML

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
AUG 1983 2. REPORT TYPE

3. DATES COVERED
 00-00-1983 to 00-00-1983

4. TITLE AND SUBTITLE
The Design of a Language for Algebraic Computation Systems

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This thesis describes the design of a language to support a mathematics-oriented symbolic algebra system.
The language, which we have named NEWSPEAK, permits the complex interrelations of mathematical
types, such as rings, fields and polynomials to be described. Functions can be written over the most general
type that has the required operations and properties and then inherited by subtypes. All function calls are
generic, with most function resolution done at compile time. Newspeak is type-safe, yet permits runtime
creation of types.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

87

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

The Design of a Language
for Algebraic Computation Systems

Copyright @) 1083

by

John K. Foderaro

\
I

To my parents, Anthony and Rita Foderaro

ii

Acknowledgements

I am very grateful to Richard Fateman, my rese¥ch advisor and thesis supervisor, for his counsel

and support. I would also like to thank the other members of my thesis committee, F. Alberto

Grunbaum and Robert Wilensky.

I am grateful to Neil Soiffer and David Barton who helped me think through the ideas presented

in this thesis. My thanks to those others who took the time to read and comment on my thesis:

Bruce Char, Anthony Foderaro, Jim Larus, Vincent Norris, and Barry Trager.

My thanks also to Keith Sklower and Kevin Layer whose work on the Lisp system permitted me

to build my prototype NEw.!HP.AK system.

Finally, I wish to thank my wife, Cathy, who helped me in ways too numerous to list.

This research was sponsored in part by the Department of Energy, (Contract DE-AT03-

76SF00034, Project Agreement DE-AS03-79ER10358), the Defense Advance Research Projects

Agency (DoD) under Arpa Order No. 4031 monitored by Naval Electronic System Command

under Contract No. N00039-82-C-0235, and by the System Development Foundation.

Table of Contents

1. Symbolic Algebra Systems ... !

1.1. Introduction .. !

1.2. Math-oriented vs Symbol-oriented .. 2

1.3. Related work .. 4

2. Existing Symbolic Algebra Systems ... 5

2.1. Introduction .. 5

2.2. Requirements ..•........... 5

2.3. Languages in Existing Algebra Systems .. 7
2.3.1. Ma.csyma[Lispj ...•.................. 7

2.3.2. 1\taple ICJ ..•...• 9

3. The Newspeak Language ... lO

3.1. In traduction .. 10

3.2. A Model or an Algebra System ... 10

3.3. The Newspeak Language ..•... 13

3.3.1. Object•... 14

3.3.2. Type .. 14

3.3.3. Procedures ... 16

3.3.4. Relations Between Types ... 16

3.3.5. Type-hierarchy .. 20

3.3.6. The Importance or Restricts .. · 22

3.3.6.1. Satisfies-... 22

3.3.6.2. Extends ... 23

3.3.7. Restricts in other languages ... 24

3.3.7.1. Pascal and Ada ... 24

3.3.7.2. Smalltalk ...•...................................... 24

3.3.7 .3. Flavors ..•.•..................................... 24

3.3.7.4. Glisp ... 25

3.3.8. Parameterized Types ... 26

3.3.9. Views of Types .. 26

3.3.10. Inherited Parameters .. 28

3.3.11. Procedures ... 29

3.3.12. Lex Descriptions ...•.................................... 31

3.3.13. Type Parameters .. 32

3.3.14. Anonymous Restricted Types ... 34

3.3.15. Function Objects ... 34

3.3.16. Subtype .. 35

3.3.17. Generic Function Calls ···~··································36
3.3.18. Functional Parameter Inheritance .. 39

3.3.19. Distinguished Objects .. ; 40

4. The compiler ... 43

4.1. Type checking .. 43

4.2. Function database .. 43

4.3. Frozen Types .. 45

5. A Partial Implementation .. 46

5.1. Pointers and Object storage ... 46

5.2. Type Parameter Extraction .. 47

iii

6. Related Languages .. 49
6.1. FRL ... 49

6.2. Capsules ···:·············49
6.2.1. Category, Functor and Domain .. 80
6.2.2. Lack or Category Hierarchy ... 82
6.2.3. Function lnvocation ... 83
6.2.4. Package ... 85
6.2.5. Summary ... 86
6.2.6. Host Language ... 87
6.3. Andante and Newspad .. 49
6.3.1. Category, Functor and Domain .. 50
6.3.2. Lack or Category Hierarchy ... 51
6.3.3. Function Invocation•... 51
6.3.4. Package .. , .. 54
6.3.5. Summary ... , ... 55
6.3.6. Host Language , .. 55
7. A Simple Collection or Algebraic Algorithms ... 57
7.1. Set, Monoid, Group .. 58
7.2. Ring, Integral Domain, UFD•.........•................•....................... 60
7.3. Euclidean Domain•..•...•..........................•................... 62
7.4. Polynomial ... 66
7 .5. Using the Definitions•.•...............•... 7 4
1.6. Type Conversion .. 7 4
8. Conclusions ... 77

8.1. Limitations-....................... ~··77
8.2. Future work ... 78

Bibliography ... 79

iv

1. Symbolle Algebra Systems

1.1 Introduction
Since 1960 many languages and systems have been written to aid humans in performing com

putations symbolically. Some of these systems were written to compute in well-defined algebraic

domains, such as Altran [Hall71j which specialized in rational function manipulation. Other sys

tems, such as Sac-1 !Collins71J, were written as testbeds for the algorithms of symbolic algebra

and presented the user with a large number of specialized modules, each providing an interesting

set of operations in some particular domain (e.g. univariate polynomials over GF(p)). Others,

such as Schoonschip [V eltman65) were useful primarily in predetermined application domains.

(e.g. high energy physics). A number of systems such as Mathlab [Engelman69J, Macsyma [Mar

tin7Ij [Moses74j, Reduce [Heam71J, and Scratchpad [Griesmer71J did not have specific limiting

design objectives. By virtue of their extensibility they became known as "general purpose" sym

bolic algebra systems.
The algebra systems came in many Corms: subroutine libraries for existing languages (Sac-I),

extensions to existing languages - (Altran, Formac !Xenakis71j, ABC-Algol !VanDeRiet73J,

Formula-Pascal [Teer78l) or complete systems (Reduce, Macsyma). Although only a few of the

systems are in use today, and most of these not in widespread use, they did promote a great deal

of study into the computation and representation problems involved in the manipulation of alge

braic formulae.
Algebra systems have been written in a number of computer languages. Early systems were

written in the popular languages of their time, Fortran (Sac-1, Altran), PL/1 (a later version of

Formac), or assembler (Carnal !Bourne7lj, Formac). Two systems which continue to be used

heavily today, Macsyma and Reduce, were written in different dialects of the language Lisp in the

late 1960's. In the past few years, two new algebra systems, Maple [Char83j and S'MP [Cole81J,

have been written in the C language !Kernigha.n78j.
The growth of the older systems has slowed to a crawl. The newer systems are growing rapid

ly but we fear that they too will stagnate when they reach the power or the older systems. We

believe that this stagnation is a consequence of obsolescent foundations and design decisions. It is

our long term goal to design a symbolic algebra system for which continuous growth will be possi

ble. The keystone of such a system is the language in which it is written. In this thesis, we give

the design rationale for such a language, define a language named NE\'fSPEAK which satisfies these

requirements, and indicate implementation strategies and compromises.

The language NE'tY.Sf'EAK is a unique blend of dynamic data-object creation, hierarchical data

types, generic function calls, and strict compile-time type checking. It also has a novel method

lor specifying the data types of functional arguments. As a result, NE\\SI"E\K does not suffer the

high run-time cost usually associated with languages of similar expressiveness. Although NEWSi'!WC

was designed to fit the needs of a symbolic algebra system, there is nothing specific to algebra sys

tems in the language. Thus it may prove to be a useful tool for other applications which make

use of hierarchical data structures (e.g. AI and VLSI design programs).
The rest of this section is devoted to describing bow the system we designed differs from the

existing symbolic algebra systems. In section 2 we list the requirements for our implementation

language and look at the implementation languages for existing algebra systems from this per

spective. In section 3 we introduce our new language, NJ'!:WSPIW(, which has features designed to

meet the needs or an algebra system. In section 4 we discuss the compilation issues. Section 5

deals with data storage issues. In Section 6 we contrast NEWSPEAK with similar languages. Section

7 contains an annotated NEWSPI!'AK program which implements polynomial manipulation algorithms

in a very general form. In section 8 we summarize our work.

2

1.2 Math-oriented vs Symbol-oriented
Any 3.lgebra system defines representations of symbolic expressions and contains a collection of

manipulative and mathematical algorithms. We call existing systems such as Macsyma, Reduce,

Maple, and SMP, symbol-oriented because they tend to favor the manipulative processing or sym:.

bolic expressions over the execution of mathematical algorithms. Our goal is a math-oriented sys

tem. We will describe the distinction between these orientations first by an analogy.

Consider the task o(writing a program to convert a sentence written in French to English.

One soiution would be to look up each French word in a French-English dictionary and replace it

with the corresponding English word. Some knowledge or French conjugation would be required

to locate a word in the dictionary. Such knowledge could be represented as pattern-replacement

rule:>. An alternative solution would be to have the progr:1.m ;ead the complete sentence and con

vert it into an internal language-independent Corm. English could then be generated from the

internal Corm. The first solution, the dictionary lookup with pattern matching, is somewhat

analogous to the symbol-oriented algebra system. One characteristic of such a system is that the

result may be correct Cor simple cases, but Cor complex cases or even .simple but unanticipated

cases, the system may produce a result which is completely wrong. The second solution, that or

first trying to internalize and correctly model the input, is what a math-oriented system does. Ir

the input is inconsistent or the system lacks the capabilities Cor processing it, the math-oriented

system will notify the user.
We will now consider specific parts of an algebra system and how the symbol-oriented ap

proach differs from the math-oriented one.

domain

symbol-oriented: A system of t.his type usually has a general repreaentation Cor formu
lae. Commonly, this is a recursive tree form with the root node representing the

operator and the child nodes representing the operands. This Corm is also used to

represent programs (i.e., non-mathematical objects). The domain of programs in
symbol-oriented systems are these general representation forms, which may or

may not represent meaningful mathematical objects. The attitude of these sys

tems is, "Represent anything that the user types in (that can be parsed), because
it might be meaningful to some program."

math-oriented: A system or this type does not need a general representation. Such a

system would be a collection ot programs to manipulate representations of certain

types of mathematical objects, such as integers or polynomials each of which has

its own, speci:l.lized representation. The domain of such a system would be con

strained to be all mathematical objects that have been included by the writing

of programs to manipulate those objects. Other objects could be manipulated

only after the addition of those types, and associated operations, by the program
mer. The general attitude is, "Only represent those things which can be manipu

lated by the system. Do not allow operations which are not explicitly meaning

ful." We do not require axiomatic specification, for practical reasons, but the no
tion of axiomatization is compatible in that the structure and operations are

categorized rigorously.

3

eomputatlon

symbol-oriented: In many systems of this type, computation proceeds primarily by pat

tern matching, or alternatively, by tree traversal. Since there is no guarantee

that the operands are meaningful, programs in such a system generally look Cor

certain known operand patterns and perform some operation if one is seen. By

default, this processing is local in nature. The introduction or globally effective

transformations (e.g. removing a common factor from numerator and denomina

tor} is not easily supported by these techniques. In the absence oC special reduci

ble cases, programs may return a structure representing an incompletely under

stood obj~t. For example, in Macsyma the differentiation function diff applies

the rule that the derivative oC a sum is the sum oC the derivatives. Thus if a for

mula consisting of the sum of two programs (Lisp lambda expressions) were

passed to difJ, it would return the sum or diff of the two pro~rams rather than re

port that such a request was meaningless.

Because pattern matching is expensive if not carefully guided, some symbolic sys

tems have retreated in the dir~tion or math systems by having sp~ia.lized

representations for certain classes of formulae. Macsyma includes specialized

Corms for rational functions, Poisson series, and Taylor series. The specialized

forms represent the formulae in a. certain fixed way which has been designed for

efficient manipulation. Other special forms have been generated by users. Al

tran, based on rational functions, also has a form for simple truncated power

series.

The application of a rule may trigger a long computation, as the replacement

part of the rule c:~.n call an arbitrary program. The pattern match can be made

expensive by requiring an expensive predicate to be applied. In Macsyma., many

or the patterns are implicitly embedded in simplification programs (for efficiency)

but this construction t~hnique makes modification or debugging or these patterns

and their enclosing programs very difficult. Orten the model or computation is

never explicitly indicated - in M:J.Csyma it appears to be highly mutable deli

berately by means or flag settings, and less deliberately by the passage of time as

the program changes (i.e., it combines the worst features of declarative and pro

cedural encodings).

math-oriented: Every object in the system has a type which determines which opera

tions are permitted on it. It the user requests an operation on an object, the alge

bra system can proceed directly to the program which performs that operation,

or it can report that such an operation cannot be done.

user interface

symbol-oriented: The user interface is trivial in such a overall system. There is a very

close mapping between what the user types and the form used internally to store

the formula. The output is basically an infix printing of the internal form with

perhaps some concession to a more usual two dimensional form.

4

math-oriented: The user interface plays a vital role in the system. The user's input
must be transformed into a valid internal object. It is important that the correct
type of object is created from the input because the type will determine the valid
operations on the object. Often the form the user types in to one of the existing
systems is ambiguous. For example, 12 could be a member of "the integers modu
lo 37," or perhaps the polynomial O•x+ 12 where the coefficients are members of
the field of integers modulo 31. The input subsystem must be able to help the
user select the appropriate type for his input.

There may be little correspondence between what the user sees as output and
how the object is stored internally. It the users wishes to talk about subparts or
an output expression, it is the output subsystem's formidable task to locate and
extract or construct that subpart and its type from the internal (orm of the ob
ject.

1.3 Related work
Our work is inspired by the work or Jenks, Davenport, Barton, and Trager on Newspad

1Jen.ks81J and the work or Barton on Andante ISoifJ'er81J. Andante and Newspad are languages

still under design with a similar purpose to NE\\SI"'!AK, the language described in this thesis. We

will describe them in section 6.3.

5

%. Existing Symbolic Algebra Systems

2.1 Introduction
In this section we will present those properties which are useful in a high level computer

language if it is to be used to write a math-oriented symbolic algebra system. We don't claim

that a language must have these features, for most languages are sufficiently powerful to express

any application. However, systematic approaches to a useful implementation language obviously

become more useful by first providing primitives appropriate to our requirements.

2.% Requirements
A math-oriented symbolic algebra system places some unique r~quirements on the language in

which it is implemented. The following list or requirements will provide us with a measure to

analyze the implementation languages or existing symbolic algebra systems.

interactive
An algebra system is typically interactive since it is often used as an exploratory tool. It

isn't necessary to use an interactive implementation language to write an interactive sys

tem, but it does have advantages. If the implementation language is interactive, then the

language environment ezists at run time while the algebra system is running, and in fact

the algebra system is just an extension oC the capabilities or the interactive language.

This aids greatly in debugging and it means that the algebra system needn't duplicate

many o(the facilities provided by a typical implementation language (such as support

for input/output, memory management, exception handling and general operating system

in terraces).

ftrat-elaaa user-defined data type.
Most programming languages treat the integer and floating point types in a special, or

first-cltl88 way. A special syntax (infix) is permitted Cor operations on these types, open

compiling is often done, and enough about the relationships between the types is known

to permit the compiler to do automatic type coercion. An algebra system deals with

many different data types: polynomials in several forms, integers modulo a number, and

so on. In the implementation language, these data types must be treated in a. manner

equivalent to that of the first class data types. The implementation language should be

capable or type-checking, reading, printing, and open coding or operations on them. If

the implementation language fails to treat user defined data. types correctly, then the pro

grammer of algebraic algorithms is forced to construct a language on top of the given im

plementation where his data types are understood (or forego the advantages provided by

type checked languages). This layering of an additional language on top of :m existing

one has detrimental effects on the resulting system, as we see when we examine Macsvma

below.

abstract data types
It is important that the unnecessary details or data types remain hidden (rom all pro

grams except the programs that implement the type and thus require access to details.

Morris caUs this type tecrecy !Morrisi3J. This insures that the implementation of a data

type can be changed without concern that some piece of code depends on its current

representation.

generic function calls
As was mentioned above, algebra systems create many different data types over which the

6

common mathematical operations such as plus a.nd times make sense. We may write

programs in which we want to add two quantities but whose precise types we do not

know. Thus we would like to write plus(a,b) and let the types of a and b determine what

piece of code is executed to add them. This is called a generic function call. Generic

function calls 3.lso make sense for non-mathematical operations like print.

polymorphic functions
Certain algorithms work over a wide range or data. typf's. We should have to write the

algorithm only once and then declare the domain over which this algorithm is valid. IC

arguments of a function are permitted to have more than one type, then the function is

called polymorphic. Often polymorphic functions are confused with generic function calls.

Lisp has polymorphic functions but not generic function calls. Ada has ~eneric function

calls but not polymorphic functions.

hierarchical type checking
This is a two part requirement: first that there be type checking by the system and

second that the type-checking programs be able to make use or the hierarchical relations

between types in a algebra system. Type checking is a well established technique for

catching common programming errors. It can also provides the compiler with information

to increase the efficiency or generated code, especially generic function calls. Hierarchical

typing, even in its simplest form, is found in few languages. Languages ~uch as Pascal

and Ada allow a type to be dedared as a subrange of a scalar type. Languages such as

Small talk and Flavors (in Lisp) allow a simple hierarchy of types to be created, but the

compiler has very little knowledge or the hierarchy. In mathematics, the algebras of

monoid, ring, field, etc, form a rather complex hierarchy. Some of the data types are

parameterized, such as "integers modulo a prime p," and "polynomials over a coefficient

domain D." The value of the parameter often determines bow the type fits into the

hierarchy. Polynomials over a field are Euclidian domains whereas polynomials over a

unique factorization domain are a unique factorization domain. The implementation

language for a algebra system must be able to support this complex hierarchy at compile

time. The compiler can then type check expressions and resolve generic function calls.

eftlelency
It is foolish to claim that language X is more efficient than language Y without estabiish

ing a machine and application context. Otherwise, one could build a machine whose

primitives were those or language Y, and which could only run language X programs by

first converting statements to language Y at some loss in speed. Therefore, in comparing

efficiency, the computation model we assume is that of a '5imple uniprocessor with a uni

form address space, such as a ~1otorola 68000 or a VA..'{ (disregarding the exotic instruc

tions). We do not explicitly pursue efficiency in our design as a ~parate goal, but it is

implicitly of concern throughout.

uni!orm abstraction
The same mathematical notation that is used by grade schoolers is sometime also used in

the most advanced mathematical papers. While additional symbols are used in in ad

vanced papers, these symbols are for the most part just abbreviations and not a different

language. This is unfortunately not the case in existing algebra systems. No amount of

study or the Macsyma top level language will permit one to understand the underlying

Lisp program to add two polynomials. The existence of two languages has a number of

drawbacks. The user who really wants to understand the algebra system must learn both

languages, and while he may find the top-level language easy to understand, he will prob-

7

ably be confused by the implementation language, especially if it isn't well suited to writ

ing algebraic algorithms. Also, the fact that some programs have to be written in a

language hidden .from the user implies that there is something missing in the language ac

cessible to the user. We want the implementation language to provide a uniform abstrac

tion. All o(the algorithms in the algebra system should be written in this language, per

mitting the curious user or the algebra system to understand the internals or the system.

It is important to mention that we are not suggesting that the casual user using the

system in a calculator style manner be forced to use the implementation language. Rath

er, the serious user who wants to write programs in the system can, and perhaps should,

write his programs in the single implementation language.

Z.3 Languages In Existing Algebra Systems
The two most powerful generally available interactive algebra systems are Macsyma and

Reduce, each of which is written in Lisp. It suffices to study just one or these Lisp-based systems.

Two relative newcomers are Maple from the University of Waterloo and SMP from Cal Tech.

Both of these systems are written in C (or a language close to C). Very little has been published

about the internals of SMP, so we will use Maple as an example of an algebra system written in

C. Because all or the existing systems are symbol-oriented and we are interested in constructing a

math-oriented system, we will limit ourselves to examining bow the implementation l:mguage

affects the parts or the system that execute mathematical algorithms.

2.3.1 Macsyma [Lisp)
Macsyma evolved from Matblab and from the work of Moses !Moses67J and Martin !Mar

tin67J. It was written in Lisp (evolving with the Maclisp dialect, but later was made to run

under a number of alternative Lisps). It is a collection of modules written by a number of pro

grammers with many different styles. The interactions between modules and dependencies on

particular data structures are many, with very little data abstraction being used. In fact the

worst fears or the authors or Macsyma seems to have come true:

We have grave doubt.s aboui ~he usefulneSI of large sy!telll3 consiructed through

~he haph&urd contributions of unsophistica.ied uen. Every new bit of the !J8-

tem musi be carefully integra.ied with the old. [M&riin7lj

The reason that 1\facsyma has held together (from its origins in 1968 to the present) is due to the

the work of a few people who understand most of the rel3.tionships between the modules. Also,

the system has been rather static since 197 4 or so. There are no automatic methods to insure the

integrity or the system.
We believe that difficulties in understanding, modifying, and to some extent using Macsyma

have to do, in part, with the use o(Lisp as a implementation language. (Any criticism or 'Lisp' is

suspect because there is no standard Cor the Lisp language. Yet, most Lisp implementations

have a great deal in common. When we say that Lisp does not have some feature X, we cannot

be sure that no implementation or Lisp bas feature X. Rather we are saying that if an implemen

tation doesn't have feature X, it can still be called Lisp without any disclaimers.) While Lisp is at

its best as a prototyping system for small projects, it is not suitable Cor large programming pro

jects unless the programmers use some discipline: we suggest modem programming practices such

as abstract data types and well-defined module interfaces. Even though one obviously can write

large programs in Lisp, that doesn't imply that one ahould write a large algebra system in Lisp.

Let us examine how Lisp fits the requirements we made above.
Most Lisp systems are interactive. This satisfies one or our important requirements. Lisp also

contains memory allocation and reclamation code (which, incidentally, Macsyma uses).

8

Lisp does not have first-class user-defined data types. The programmer is free to modify the

evaluator and all of the relevant functions so that they look for new data types, but this is time

consuming and can cause problems if more than one programmer does it independently. The lack

of user-defined data types (and the fact that early programmers (c. 1968) didn't recognize the

need for them) meant that Macsyma programmers created new data types out of standard ob

jects. Two distinct methods were used. The first method uses a list whose first element is the

type of the object and whose subsequent elements are the object (for example (rat 1 2) for 1/2).
Unfortunately, knowledge of the Corm of each object is then spread throughout the code (for ex

ample, many functions would know that the second item in a rat form is the numerator). This

method is expensive if the data object is small (such as an integer) since the amount of storage

needed to denote the type would exceed the size of the datum itself. The second method uses a

standard data type (e.g integer) in association with a global variable. An example of this is the

use of the variable modulus to determine the meaning of Lisp integers. If moduluB were set to

seven, then integers would be treated in some circumstances as members of GF(7). This solution

is very dangerous because changing moduluB effectively changes the types of objects that have al

ready been computed. Also, some parts of Macsyma ignore the modulus flag, as this example

shows:

(ell) /• declare that we want to work in GF(7) •/
modulus:7;

(dll) 7

(c12) /• ask for the square root of 5, where 5 is considered
• to be a element or GF(7)

•I
sqrt(5);

(dl2) sqrt(2) %i

Note that even though we wish to compute in GF(7), Macsyma introduces an algebraic number
·r;; IV;;.

Abstract data types are generally implemented in Lisp by means or macro expansion or func

tion c:1lls that create and extract parts of the object. Macros are usually preferred over functions

because macros are expanded in-line and are thus faster (and sometimes more compact). For ex

ample, (main-var-of-poly z) might be 'expanded' to (car z). There is nothing in Lisp that

prevents any function from accessing the contents of an object defined via an abstract data type;

all that is necessary is to use the representation-manipnlation primatives (e.g. car, cdr, rplaca.
rplacd on lists).

Lisp does not have generic function calls, because Lisp doesn't do function resolution based on

types at runtime.
Lisp does have polymorphic functions. In fact, because there is no way to specify that a func

tion accepts only certain types or arguments, all functions in Lisp are trivially polymorphic be

cause they accept arguments of any type.
Since Lisp doesn't have type checking or first-class user-defined data types, it certainly can't

have the hierarchical type checking we desire. It is possible to declare types in Lisp programs

but this type checking is quite different from that in other languages. It is used solely to tell the

compiler that you believe that the value or a variable will always have a certain type, so that the

compiler can open code expressions containing that variable. The compiler does not verify that

your declaration is correct (in most cases it simply cannot), so as a result the compiled code may

g

fail in mysterious ways should the declarations be violated at runtime. The potential for failure is

sufficiently pervasive that the MIT Lisp Machine design includes type checking in microcode.

2.3.2 Maple [C)
Maple is a small but surprisingly powerful symbol-oriented algebra system being written at the

University of Waterloo. It is written in a cross between three languages BCPL, B and C, but we

can assume for our discussion that it is written in C, the most popular of the three languages.

The C language fits so few of our requirements that it wouldn't be worth considering as our im

plementation bnguage. However if our goal were to write another symbol-oriented algebra sys

tem, C would not be a bad choice. The authors of Maple attribute its success partly to their wil

lingness to try a different data structure for formulae [Char83J. The success or Lisp-based alge

bra systems made it seem that the best way to implement formulae were with lists and trees.

The authors of Maple feel that the use of lists to represent formulae introduces an unnecessary

layer of abstraction between the algebra system and the host machine. They chose to use what

they call "dynamic arrays," which map more closely to a typical machine architecture. This also

eliminated the need for a list processing language (like Lisp), although garbage collection and oth

er features were re-implemented.
We believe, though, that the direction of research should be toward more math-oriented sys

tems. c has few or the features we desire in the implementation language: it is efficient and has a

very weak form of data abstraction. It would likely be difficult to convert a program such as Ma

ple to a more math-oriented system.

3. The Newspeak Language

The language NE\\SPEAK w:u named ~ter tbe 1;\ngua.ge in George Orwell's novel

Hl8" [Orwell50]. In 198" t.he tenets of society a.re engraved on the tower of the

Ministry of Truth: Wa.r is Peace, Freedom is Slavery, Ignorance is Strength.

3.1 Introduction

10

In this section we describe the language N~ that was designed to fulfill the requirements

Cor a math-oriented symbolic algebra system. In interactive computer languages and environ

ments of today such as Lisp, Smalltalk, Flavors, and Basic, compile-time type declarations are

not required. It is claimed that this absence of typing gives the progr:~.mmer more freedom since

he need not worry. about describing all the details of a program in order to get part of it running.

N~ our new programming language, is based on the Orwellian contradiction that typing is

freedom: requiring the N~ programmer to declare types results in an increase in his free

dom of expression. He can count on the relations between types to help him write his program

and he can safely use modern programming techniques such as data abstraction and generic func

tion calls without fear or loss or efficiency.

In the next section we present a simple model of an algebra system. In the following section

we describe features of the Nl!.\'ISF'E\K language relevant to programming a symbolic algebra sys

tem. Constructs in NEWSF'E'AK will be compared with similar constructs in Smalltalk, Flavors

(Weinreb81j and Glisp (Nov:~.k82j. We will then examine how NE:WSI'Eo\K might be implemented.

Finally we will compare N~ to the languages Andante and Newspad, two language with

goals similar to those of NEYISJ'I:'AK.

3.2 A Model of an Algebra System
The heart of an algebra system is a set or functions which operate on data objects from a set

of types. The system may be organized in one of two ways, either emphasizing the operations or

emphasizing the types. Figure 3.1 shows how an operation-centered algebra system is construct

ed. There are single functions for each of the operations. Each function contains code for han

dling each of the data types relevant to the operation. The code looks something like this:

plus(a,b) ::=
if type(a) == Integer and type(b) === Integer

then Integer_add(a,b)
else if type(a) =Polynomial and type(b) ==Polynomial

then ...
else if type(a) == Matrix and type(b) = Matrix

then ...

else error("can't add these values ",a,b)

We call this "dispatch on type" programming, and this is bow most symbolic algebra systems are

organized. There are some easily recognized problems.

(1) knowledge of the representation of each data type is spread throughout the system. This

makes it ditficult to modify the representation because any program in the system may

depend on it. This is alleviated to some extent by centrally defining types. For example,

in Macsyma's rational function package the representation of 'coefficient' is embodied in

pcoefp - a predicate used by polynomial-arithmetic programs to test an object for

11

.· plus minus

times divide

Operation- Centered

Figure 3.1

12

membership in the domain "coefficient or a polynomial."

(2) adding a new data type requires modifying existing code, perhaps in uumerous places. This

is a delicate operation, especially if done at run-time. Consider the effect of the introduc

tion of a date type 'interval' in the plus program above.

(3) it is time consuming to be continuously checking and dispatching from data types. For exam

ple, in Macsyma, arithmetic on polynomials over GF(p) is done by checking, each time a

coefficient operation is executed, to see if the global variable modulus is non-zero.

An alternative method of organizing the system and the one we prefer is shown in figure 3.2. We

call this method type-centered to contrast it with operntion-centered. It is termed object

oriented in the Smalltalk and Flavors vernacular. The system is viewed a collection of types.

The descriptions of operations for each type are associated with the type. This method solves

some of the problems with the operation-centered approach in these ways:

(1) the knowledge of the representation of a data type is limited to the module defining the data

type and operations on it.

(2) adding a new data type does not explicitly affect existing code.

(3) each operation operates on a specific data type so that most procedures will not check the

types or arguments at run-time. In some type-"centered languages (e.g. Smalltalk) the

selection of which function to call is always done at run-time by examining types. The

time taken for the selection may be indistinguishable from that in the more traditional

operation-oriented case, however there is an important difference: it is done automatically

by the system (for good or ill) instead of being programmed in each function by the user.

In NI!.'WSI'EAK we will see that most function selection can be done at compile-time.

A problem with the type-centered approach would seem to be that common functions may have

to be written many times - once for each data type for which they are applicable. For example,

almost the same Euclidean GCD algorithm would have to be written for integers and for polyno

mials over a field. It is important, therefore, to establish relations between the type modules to

enable them to share common algorithms. The type-centered language NE\\SPEAK, which we

describe next, is one which permits the programmer to describe such relations in a form especially

suitable for structuring of mathematical algorithms.

3.3 The Newspeak Language
We describe N~ in a tutorial manner because we reel that it is important that the

reader understand the motivation behind each of its features. Typically, we show an example of

a program in a typical algebra system that can't be expressed given what has been said about

NEWSP!!'AK to this point. Then we introduce a new N~ feature which will enable us to write

the program.
The reader should acquire the ability to read programs in NE\\Sf'I!:AK but we will not provide

complete rules for writing NE\Wf'EAK programs. Our goal is to highlight the features of NE'ASP!!AK

that are especially appropriate for symbolic algebra systems. We illustrate these by simple exam

ples. We begin the description of NI!:W'..P!!AK with the most basic concept, the object.

13

integer polynomial matri%

,._ pia pl1l8 .. " .. mtn .. mtn• tbDa Ulllll8

dlftle dtrida dnide

'Pype- Centered.

Figure 3.2

14

3.3.1 Object
In the definition of object which follows, we depart from talking in the abstract because most

readers will find an. implementation phrase more evocative. We use the phrase pointer to an ob
ject. A pointer is a fixed-sized value that refers to a unique object in a specific execution or a

program. We describe the form of pointers in section 5.1.

Definition: object
An object is a data value that a NE\\SPE\K program can manipulate. The value is represented

by a block or storage partitioned into lez (for lexical) fields and primitive fields. Lex fields

contain pointers to objects. Each lex field bas a name and can only point to objects of a cer

tain type. Primitive fields contain values (called primitive values) which are (usually) not

pointers to objects. Integers or floating-point values in the host machine's format are exam

ples or primitive values.

3.3.2 Type
Associated with each object is another object called its type. An object which can serve as the

type of another object is called a type-object. Informally, we define a type-object as an object

that describes all that is common among a collection of objects. Type-objects are created in one

or three ways:

• At compile time with the deftype declarative function. We will provide examples or this

kind or 'statement' shortly.

• At run-time through a function call to the system type-generation module. This would

be used to create types for the specific mathematical objects that the algebra-system user

wishes to manipulate.

• At compile-time when a reference to a specific member of a parameterized type is made.

Parameterized types will be discussed in section 3.3.8.

If a type-object has a name attached to it, then it is referenced in a NEWS~'!!'.'K program by sur

rounding it with angle brackets, as in <integer>. The brackets should be read as "the type".

An integer value bas an associated type-object <integer>. The type-object <integer> has

<type> as its associated type-object. The type-object <type> has itself as its associated type

object. In the following discussion we will favor the use of the term type to the term type-object.
In NEw.lf'FAK the terms are synonymous. Type-object will be used in those cases where we wish to

emphasize that the type is itself an object.
When we use the phrase "objects or type <X>", we are describing the collection of objects

whose associated type-object is <X>.
The usual way to create types is by using deftype function. For example, the following state

ment declares the type "integers modulo 5":

(deftype zmod5
lex: ((val <integer>)))

The syntax is superficially similar to that or Lisp. Expressions are surrounded by parentheses

with the main operator being the first element or the list. This deftype expresoion declares that

there is a type named zmod5, and that objects of <zmod5> contain one lex field, named 'val',

which points to an integer value. Nowhere is it stated that there will be only five distinct values

15

stored in the val field. It is up to the programs that create and manipulate < zmod5> objects to

insure that the value of val inside a <zmod5> object is meaningful.

In this example and in those that follow we will ignore some details, including: when deftype 's

are permitted, how type redefinition is handled, and which pieces of code are permitted to use a

type's definition. These issues are important but are independent of the ideas presented in this

thesis.
Assuming that we have a type <real> of real numbers, we could define complex numbers in

this way:

(deftype complex
lex: ((real-part <real>)

(imag-part <real>)))

Objects of <complex> thus would always have two fields, both pointers to <real> objects.

Definition: Type
A type (or type-object) is an object that is intended to describe all that is common for com

putational purposes about a collection of objects. Part or the description is explicit in the

type-object, such as the names, types and locations of the lex fields in the objects of this

type. The other part or the object description is an implicit collection of properties of the

type. Properties usually pertain to semantics of functions on objects of the described type.

For example, a property of <Stack> is that iC S is a stack then X=pop(push{X,S)). A pro

perty of <Field> is that multiplication is commutative.

The properties of a type are difficult to make explicit because even Cor the simplest types they are

often infinite in number and are not generated uniformly Cor all imaginable types. For <Stack>,

Cor example, there are these properties: for each positive integer n, if you push x!1], x!2J, ... , x!nJ

onto a stack and pop them off, the values will be x!nJ, x!n-1], ... , x!1J. We see two methods to ex

plicitly represent the properties of a type: (1) declare those properties to exist which might prove

useful to programs operating on objects of the type, ignoring the rest of the properties or (2) de

clare a complete set of axioms governing the type and use a theorem prover to deduce any needed

properties. Solution (1) is used in the languages Andante and Newspad (described in section 6.3).

Solution (2) would be ineffective in general, slow in practice, and counterproductive because it

would be inconvenient Cor programmers to define all the axioms at each introduction of a new

data type.
We find neither solution to be sufficiently descriptive and practical. In NEWSFEAK, the proper

ties of types are not explicitly declared in the program. We have found a simpler, and adequate

technique in which the programmer is :1.ble to declare how the properties of related types are

themselves related, using a (mathematical) relation called restricts. The relation is based on the

implicit part of the types (their properties) as well as their explicit parts (the details of their lex

and primitive fields). NE'WSPW< can check that the explicit parts match, but it is the

programmer's responsibility, based on his knowledge of the properties or the types, to insure that

the implicit parts match. The restricts relation is described in section 3.3.4.

Other languages use the concept of a type-object which describes a collection of objects,

although different terms are often used. In Smalltalk, the terms are class (Cor type-object) and in

stance (for object) The respective terms in Flavors are flavor and instance. Neither or these sys

tems represents properties or types explicitly.

While every object has a type, it is convenient as a unifying principle to deal with types for

which no objects can exist.

16

Definition: domain-type
A domain-type is a type for which objects can exist. Other types are called non-domain
types.

Non-domain-types cannot have associated objects because they are representationless or
parameterized or both. A representationless type has no lex or primative field descriptions. For
example,

(deftype object)

We will see that in an algebra system, types such as <Field> and <Ring> are representation
less.

Parameterized types will be discussed in section 3.3.8.

3.3.3 Procedures
Programs in N~ are called procedures although we may use the term function when we

wish to emphasis that a procedure returns a value. Procedures resemble both functions and sub
routines because they can return values and can have side effects. A procedure takes zero or more
arguments and returns zero or more values, the number and types of which are fixed when the
procedure is defined. A sample procedure definition for the type <zmod5> declared above is:

{defproc plus ((x <zmod5>) (y <zmod5>)) <zmod5>
(new <zmod5> val (mod (plus x:val y:val) 5)))

The first line declares that this is a definition or the procedure plus which takes two <zmod5>
objects (called x and y within the procedure body) and returns a <zmod5> object. The syntax
z:vtJl should be read "the value of the val field or the object stored in variable x", or alternatively
"x's val". The first operation performed in the body is to add z:val and g:val using plm. Since
both of these values are <integer> objects, the plus procedure invoked' will be the one defined
over <integers>. It is not a recursive call to the procedure named plus that we are defining.
This call to plus is an example of a generic function call because the types of the operands select
which plus is invoked. The value returned by the plus procedure over <integer>'s is then re
duced modulo 5 and stored in the val field of a newly created <zmodS> object. The new object
is returned as the value of plu11. A new statement is given first a type-object (or expression re
turning a type-object), then a sequence of lex field name, expression, lex field name, expression
and so on. If there is only one field in the object, the field name can be omitted.

The new statement returns a <zmod5> object from plus which is exactly the type that plus
was declared to return on the first line of the derproc. It isn't necessary that the actual return
type and the declared return type match exactly. In section 3.3.4 we will define a relation res
tricts between type-objects and then we can state the the type of the actual return value must be
equal or restrict the declared return type.

The semantics of the NEY~SPEAK language, as they have been described so far, are much the
same as in several other languages with the possible exception of generic function calls. It could
pass for Pascal with Lisp syntax. In the following sections we will describe the features of
NEWSP!!'AK that make it unique.

3.3.4 Relations Between Types
In this section we focus on three (mathematical) relations between types: satisfieB, eztenda and

restricts. We define the relations, justify their definitions, and finally look at other languages to
see how similar relations are used.

17

Definition: Satisfies
<A> satisfies if the properties of <A> are a superset of the properties of .

The term satisfies is an abbreviation for "satisfies the type property requirements of". Figure 3.3

shows some or the ways that properties or types can be related. <object> is defined to have no

properties and thus is satisfied by all types. satisfies both <A> and <object>. <C>

satisfies only <object>; there is no relation between <C> and either <A> or . For ex

ample, B =ordered set, A= partially ordered set, and C =finite field. An ordered set has all of

the properties of a partially ordered set plus one more: all objects are comparable. The satisfies

relation is transitive. The system obeys the "closed world" hypothesis: Unstated properties are

assumed to be false.

Definition: Extends
<M> extends <L> if objects or <M> can be constructed from objects of <L> by ad

ding zero or more lex or primitive fields. To be specific, if the nth value in a <L > object is

a lex or primitive field named X of type <T>, then the nth value of a type <M> object is

also a lex or primitive field named X of type <T>.

Figure 3.4 shows the forms of objects of types <K>, <L>, and <M>. <object> has no lex

or primitive fields which means that there can never be an object whose type is <object>. This

does not mean that a type cannot extend <object>; in fact all types extend <object>. In the

figure, <M> extends <L> and <object>, <L> extends <object>, and <K> extends <ob

ject>. The extends relation is transitive.

We do not specify what we allow as a property or a type. The reader will soon see the practi

cal reasons for including properties or types. The properties we associate with types are those

that provide additional mathematical and programming structure. A general rule is that proper

ties should be independent or representation. For example, we can imagine a type <Field> with

this property: There is a function inv such that Cor any non-zero object X of <Field>, inv(X) *X

is the unit element of the <Field>. This property is independent of the representation oC

<Field>. (Note that we do not say "For any non-zero X there is a Y such that x~Y=l" as that

gives us no hint as to how to find Y).
The eztends relation (dealing with representation) is often independent or the satisfies relation

(dealing with properties). Examples of this that we seen so far are the push and pop properties or

<Stack> and the inv• property of <Field>. When we consider those pairs of types for which

extends and satisfies are both true, we define the following relation which is very important in

N EWSf'Eo\1(.

Definition: Restricts
<A> restricts if (1) <A> and are not the same type, (2) <A> satisfies

, and (3) <A> extends .

NE\\SP!':AK can't compute the restricts relation automatically because it doesn't have enough in

formation to compute the satisfies relation. Therefore when the programmer defines a type, he

must indicate which types it restricts based on his knowledge of which types it satisfies. The ez

tends relation is then used in one of two ways. If the programmer defines the representation of

the type's objects, then N~ will verify that the eztends relation is true between the newly

18

.
<C>

<object>

Satisfies relation

Figure 3.3

19

<Jl> <L> <object>

% <A> <A>

'Y y

z <C>

<K>

&tends relation

Figure 3.4

20

defined type and those types which it has been declared to restrict. If the programmer does not

define a representation, then NEYtSPEAK will compute the smallest representation which will make

the eztends relation true (or else signal an error if such a task is impossible due to differences in

the representations of the restricted types). For example, if a new type <X> were declared to

restrict <L > of figure 3.4 and no representation for it were given, then a representation identical

to <L > 's would be assigned to <X>. IC <X> were declared to restrict both <L > and <K>

then an error would be signaled because it is impossible to generate an object that extends both

<L> and <K> objects.
Before showing the importance of the restricts relation, we will first describe the graph of the

restricts relation, which is named the type-hierarchy.

3.3.5 Type-hierarchy
The restricts relation is transitive. NEWSW.AK automatically computes the transitive closure of

the restricts declarations provided by the user. For implementation reasons, the restricts relation

is irreflexive and antisymmetric. This is not very limiting to the programmer because if there

were a case where <A> restricted and restricted <A>, then <A> and

would be isomorphic: two names for a type with the same form and properties.
The restricts relation fonns a directed acyclic graph called the type-hierarchy. The type < ob

ject> is at the root of the type-hierarchy. Every type except <object> restricts <object> and

<object> restricts no type.
Many of the types close to <object> in the type-hierarchy will not have lex or primitive

fields defined (e.g. they are representationless types). Generally, they are placeholders in the

type-hierarchy representing useful collections of type properties. Types which restrict these

representationless types claim to satisfy the properties represented by the representationless types

but are more specific. In a symbolic algebra system, types such as <Ring> and <Field> would

be representationless types. Restrictions which provide some specificity are needed before we can

compute. Note that once a type is declared to contain a lex field, any type which restricts that

type must have an identical lex field declared Cor it. Thus as one goes farther away from the

root of the type-hierarchy, the sizes of the objects denoted by the types never decreases.
The following example shows how to define the types whose forms are shown in figure 3.4 to

create the type hierarchy shown in figure 3.5.

(deftype L
lex: ((x <A>)

(y))
restricts: ((<object>)))

(deftype M
lex: ((x <A>)

(y)
(z <C>))

restricts: ((< L >)))

(deftype K
lex: ((y))

The reatricta clause in the deftype for <L> is optional; if a restricts clause is missing, the type is

assumed to restrict <object>. This default is used in the deftype for <K>.

21

·.

<K> <L>

<ll>

type-hierarchy

Figure 3.5

22

3.3.8 The Importance ot Restricts
In this section, we examine the role or restricts' component relations: satisfies and extends.

Section 3.3.6.1 will describe how the satisfies rel:l.tion permits code sharing through the use of po

lymorphic functions. Section 3.3.6.2 will show how extends allows this to be done efficiently.

3.3.8.1 Satisfies
In an algebra system there are often many data types with similar properties. For example

there are many different polynomial data types which differ by the data type of the polynomial's
coefficients. Many aigorithms, such as polynomial addition and multiplication, can be written in
dependently or the coefficient's data type. Through the use of polymorphic functions, the pro
grammer can write these algorithms once and use them for a collection of data types.

The satisfies component or the restricts relation is important because it makes code sharing
officially 'correct.' IC we know that <A> satisfies , then whatever properties or ob
jects are required for a function to work correctly will be true of <A> objects.

A function which takes a type argument is a polymorphic function since the function
should be valid for any argument whose type satisfies . It the argument's type also extends
 and hence restricts , the function is not only valid, but the implementation can mir
ror this. As an example of how the use of restricts can reduce duplicated code, we will continue
the <zmod5> example (page 14). Suppose we define <zmod7>, <zmod13> and <zmod17>
in the same way that we defined <zmod5>. The resulting type-hierarchy is shown in figure 3.6.
We have already written the procedure plus for <zmodS> (page 16) and now we must duplicate
that procedure for each of the other <zmodX> types (changing just the second argument to the
mod function). We can eliminate this needless replication of code by organizing the types a bit
differently, as shown in figure 3. 7. We now write the plus procedure once for the type
<Zmodn> and then use it for objects of types <zmod5>, <zmod7>, <zmod13>, and
<zmod17>. In order to organize the types in such a way we need parameterized types, which
we describe in section 3.3.8.

3.3.8.Z Extends
This section addresses implementation issues. In order for <A> to extend , there are

two requirements: <A> objects must have (at least) the same fields as objects, and those
fields must be in the same location in both types of objects. Ir we remove the second require
ment, we have the weak-e::tends relation. Weak-extends represents the minimum requirement on
<A> to permit <A> objects to be used where objects are expected. NE\Y.SPEAK uses ex
tends rather then weak-extends because the guarantee or identical field order permits rapid access
to the lex fields without a run-time type check, as the following example shows.

We define complex numbers in the right half plane as a restriction of <complex> (defined on
page 14).

(deftype complexRightHP
lex: ((imag-part <real>)

(real-part <real>))
restricts: ((<complex>)))

(Actually the type <complexRightHP> does not satisfy <complex> (for example, multiplica
tion isn't closed over <complexRightHP>), so this isn't a valid restriction. However, we assume
closure is irrelevant in our system, thus we pretend <complexRightHP> satisfies <complex>.)

Now consider the extends relation between <complexRightHP> and <complex>. Notice
that the order or real-part and imag-part are switched in the <complexRightHP> object when
compared to the <complex> object. This is an implementation inconvenience. This deftype
would only be valid if we were allowing a weak-extends relation. Let us examine the conse-

23

Figure 3.6

..

Figure 3.7

quences: The NE.w.!P!!AK compiler might have to compile this procedure:

(defproc RealPart ((x <complex>)) <real>
x:real-part)

24

Naturally, we want RealPart to work for <complex> objects and for objects that restrict

<complex>, such as <complexRightHP>. Since the real-part field is first in a <complex> ob

ject and second in a <complexRightHP> object, we must know the type of x to select the prop

er field. The type of x can only be determined by a run-time check - a large overhead for the

simple operation of extracting a field from an object. It is to eliminate this run-time determina

tion of a field's location that in N~ we require the extends relation rather than weak

extends.

3.3.7 Restricts ln other languages
Other languages have relations analogous to the restricts relation in NE\Y.!iP&\K. The subrange

relation found in Pascal and Ada corresponds to the extends relation of NE\\SPI!'AK.. Smalltalk, Fla

vors and Glisp have relations similar to restricts. To some degree each of these languages permits

polymorphic functions. or particular concern is how a function accesses the fields of its argu

ments and how it insures that such accesses work even when the argument has a type which res

tricts the declared type.

3.3.7.1 Pascal and Ada
The subrange relation in Pascal and Ada declares that a given type will contain a subset of the

objects of another type. It implies nothing about the properties of the types, and thus does not

preserve operations. A simple example shows that the programmer should not equate the

subraoge relation with NE\\Sf'!'AK's restricts relation. Suppose we want to define the type

representing the positive integers. In languages like Pascal and Ada, this is done by declaring a

subraoge of the type integer (e.g. l..maxint). Mimicking this, in N~ one might declare

<positive-integer> to restrict <integer>. This is generally incorrect, at least if we wish

mathematical consistency and have used the fact that <integer> is a Euclidean domain. The

type <positive-integer> is merely a semigroup. A procedure written for a Euclidean domain

may attempt to use the procedure which computes the additive inverse or an element, but this

would fail for the <positive-integer> type. (In NE\\Sf'!'AK <positive-integer> and <integer>

would be unrelated). Therefore the NE\\Sf'!'AK programmer must be concerned with properties

more fundamentally than is the case with the subrange relation of other languages.

3.3.7 .2 Smalltalk
In Smalltalk, where types are called classes, the analogous relation to NE\\'SPI!'.AK's restricts is

named subclass. Each class in Smalltalk is the subclass of only one class (this is called single in
heritance). This is a severe restriction for an algebra system, because there are often cases in

which a type has the properties of more than one 'supertype'. For example, the type <Ring> is

a <Monoid> for certain operations and <AbelianGroup> for others. In NE\\Sf'!'AK, types are

not limited to restricting a single type. As in Ne:wsf'!'AK, the form of a Smalltalk object is the same

as the form or an object or its superclass plus zero or more added fields. This means that a

Smalltalk program that expects an object of a given type (or some restriction) can access the lex

fields by using offsets from the beginning of the objects that are known at compile time.

3.3.7 .3 Flavors
The Flavors language, which is built upon Lisp, is like NE\\S?EAK (and unlike Smalltalk) in that

a type (called a flavor) can restrict more than one type (called multiple inheritance). When a

language supports multiple inheritance, it must deal with the problem of a type restricting two

25

types neither of which extends the other type. This is a sticky implementation issue which ap

pears to be avoidable in our examination of algebra system. InN~ if <A> restricts

and <C>, then it must extend both and <C>; this implies that extt'nds <C> or

<C> extends : In Flavors, the more general weak-extends relation (page 23) is all that is

required for a restriction to be valid. The Flavors system creates an object whose lex fields (or in

stance variables as they are known in Flavors) are the union of the lex fields of all the restricted

types.
The implementation problems of Flavors caused by weak-extends originate in the fact that

there no guaranteed fast way to find the location of a particular instance variable in an object

just by knowing what type it restricts. This would appear to rule out open coding of accesses to

the lt'x fields of a flavor object because the compiler can't predict at compile time the location of

a field (as we saw on page 23}. However, because Flavors is embedded in Lisp and extra work is

done at the beginning and end of a call to a flavor function, a technique has been developed to

make it possible to quickly access the values of the lex fields in a flavor object. In Lisp there is

a global value cell for symbol objects, which can be rapidly accessed. When a function is called

on a flavor object, the values of the lex fields or the flavor object are placed in the global value

cells of the symbols associated with the lex fields (after saving away the old values). A function

can then access the values of the lex fields rapidly. After the flavor function is called, the original

values of the global variable have to be restored. The cost of making aU of the lex fields accessi

ble on every function call is high on a conventional machine, although it can be greatly reduced

on machines designed with Flavor implementation in mind.
Recently, a new strategy was implemented on MIT Lisp Machines !Weinreb81J for compiled

accesses to flavor instance variables. The compiler determines which variables in a function are

flavor instance variables and replaces references to them with two array references: the first to a

dynamically created table which indicates where that instance variable is found in the flavor ob

ject, and the second into the flavor object to access the instance variable !Stallman83J. Thus it

availability or weak-extends becomes an important issue, there are techniques or modest complex

ity to provide this.

3.3.7 .4 GUsp
Glisp permits the Lisp programmer to formally describe the Lisp data structures he uses for

data. Once his data structures are described in Glisp, the programmer may access and modify

elements of a data object in a representation-independent way. Glisp does not force data objects

to have a certain structure, which makes it easy for Glisp code and Lisp code to be intermixed.

Glisp also has a restricts-like relation and facilities for object-oriented programming. As we

explain next, the freedom Glisp provides the programmer for describing arbitrary Lisp data

structures causes its restricts relation to be too weak.
Glisp permits multiple inheritance but it make no attempt to deal with the problem of res

tricting types with different forms. This makes inheritance a weaker organizational principle. Be

cause Glisp does not decide what an object's representation is, it is easy for a programmer to

define a type whose objects are completely different from objects or the restricted type. Glisp

does not use the Flavors solution of storing lex values in global variables; instead it converts an

access to a lex field of an object into a call to a standard Lisp data structure accessing function

(cadr, get, vre/, etc). A result of this design is that code for objects or a given type, <A>, will

work for objects of types which restrict <A> only by deliberate data representation choice. This

defeats the purpose or restriction as the principal abstraction mechanism as NE'NSI'F.AK uses it, re

placing it with much weaker data types.

26

3.3.8 Parameterized Types
In this section we introduce one of the non-domain types mentioned earlier: the parameterized

type, a type which represents a collection of related types.
A parameterized type is declared as a type whose definition depends on one or more formal

parameters. For example, tbe <Zmodn> type mentioned above depends on an <integer>

value for the modulus. This type would be written:

{deftype Zmodn
params: ((n <integer>))
lex: ((val <integer>)))

A parameterized type is the template for a collection or types and cannot itself be the type or any

object. For example, there can never be an object whose type is <Zmodn> but there can be an

object of type <zmod5> defined as follows:

(deftype zmod5
restricts: ((<Zmodn> (n 5))))

There are two important features of this deftype. Because no lex field definition is given for

< zmod5 >, it inherits the lex field definition from the type it restricts, < Zmodn>. The restricts

clause is read "<zmod5> restricts <Zmodn> and sets the n parameter or <Zmodn> to the

value 5."
In order to distinguish parameterized types from non-parameterized types, we use the conven

tion that the names of parameterized types begin with a capital letter (except for single character

names such as <A> which may be name non-parameterized types).

Smalltalk, Flavors and Glisp do not permit the user to define parameterized types and thus

lack tilis organizational technique.
Before we can explain how to write procedures over parameterized types we will have to ex

amine how the presence of parameterized types affects the type-hierarchy. This is the topic of the

following section.

3.3.G Vlewa of Types
Although an object has only one type, it may be used in any function where the type of ob

ject required is one which its type restricts. When object X of <A> is used in a situation requir

ing an object or , we say that object X is being viewed as a object. How an object

is viewed determines what operations are possible on it, what values can be extracted from the

object, and what parameter values are accessible. In our example of <zmod5> restricting

<Zmodn> (parameterized by n) and <Zmodn> restricting <object>, a <zmod5> object can

be viewed as a <zmod5> object, a <Zmodn> object or an <object> object. Suppose the vari

able x contains a <zmod5> object. When viewed as a <zmod5> object, we can extract the

value of lex field val with the expression z:vaJ, but we cannot access the modulus (5 in this case).

When viewed as a <Zmodn> object, the expression z::n (note the double colon) will access the

modulus and the expression z:vaJ will still access the val lex field. \Vhen viewed as an <object>,

neither the lex field nor the parameter are accessible.
Figure 3.8 shows the type-hier..1rchy and the parameter and lex field accesses that are permit

ted depending on the declared (or viewed) type or x. It would not make sense to use the expres

sion z::n when x is declared to be <zmod5> since n is not a parameter. It all we know about x

is that is a <Zmodn> object, then z::n must be computed at run-time.

A different syntax (double colons instead of single) is used for denoting type parameters as op

posed to lex values because access to this information is a fundamentally different operation. The

values or type parameters are stored once within the type-object of an object whereas the lex field

permitted expressions 27

%:.-n (= 5)

z:val

Figure 3.8

28

values are stored within each object.
The way an object is viewed inside a defproc statement is normally determined by the way the

formal parameter or variable bound to the object is declared. It is possible to change the view by
assigning the object to a variable declared differently or by using the tL'iden-view and narrow-view
statements in the NEWSf'EAK language. It is always possible to widen the view of an object - th3t
is, to declare it to be a type which is closer to the root of the type-hierarchy than its currently de
clared type. Narrowing the view requires that a type check be done at run-time to verify that the
re-declaration is correct.

3.3.10 Inherited Parameters
When a programmer declares that parameterized-type <A> restricts parameterized-type

 he may choose to make the value of some of <A> 's parameters equivalent to the value of
some of 's parameters, in effect delaying the selection of values Cor some parameters of
. For example, given the definition of the <Zmodn> type above, we may define
<Zmodp> (integers modulo a prime) and <zmodp7> as

(deftype Zmodp
params: ((p <integer>))
restricts: ((<Zmodn> (n p)))

(deftype zmodp7
restricts: ((< Zmodp> (p 7)))

The < Zmodp > definition declares < Zmodp > to be parameterized by one integer named p. The
<Zmodp> type restricts the <Zmodn> type and the value of < Zmodn> 's n p:~.rameter is de
clared to be the same as < Zmodp > 's p parameter. < Zmodp > inherits the lex field named val
from <Zmodn>. The <zmodp7> definition declares <zmodp7> to restrict <Zmodp>, where
the value of p is the <integer> 7. <zmodp7> inherits the lex field named val from

<Zmodp>.
Figure 3.9 shows the type hierarchy and the permitted parameter and lex field accesses assum

ing that variable x contains a <zmodp7> object. If x is viewed as a <zmodp7> object then
there are no type parameters. If x is viewed as a <Zmodp> object, then z::p returns 7. If x is
viewed as a <Zmodn> object, then z::n returns 7. (It is not required that we use distinct names
n and p. We did so only for illustration.) The particular type parameter th:~.t is accessed is deter
mined not only by the name but also by the declared type of the object. In section 3.3.18 we will
see that the ability to inherit parameters which describe procedures will permit us to describe the
common algebraic types.

3.3.11 Procedures
Before we discuss procedures in more detail, we review the basic syntax of NEWSP£AK.

5 - the <integer> whose value is 5.

x - the value of variable x. When this is used within a procedure, x must be a formal parameter
or a locally declared variable. When used in the lex definition part of a deftype, x must
be a parameter of the type being defined (examples of this will be given later).

<x>- the type named x.

·x - the type of the value of x. The tilde is the "type or' operator, returning the type of the ex-

permitted expressions 29

..

z:va,L z::n (= 7)

z:ual z::p (= 7)

z:ual

Figure 3.9

30

pression it precedes. When used within a defproc, this expression is computed at run

time to return the actual type of the object stored in variable x. This form is also used

when declaring the types of procedures arguments and return values, where its meaning is

similar (more on this later).

x:l - the value of field i of the value of variable x. In order to enforce data abstraction, it is only

possible to use this form when the declared type of the variable x is open for inspection.

x::n - the value of paramet~ n of the type of the value of variable x. The same restrictions ap

ply to this expression as apply to ::::i.

The primitive forms (tilde, lex and parameter extraction) shown above may be combined in the

obvious ways (with tilde having the weakest binding). For example, - :d returns the type of the

lex field i of variable x.
The restricts relation forms a partial ordering on the types. As a result, two types may res

trict a common type but be unrelated themselves. This leads to problems if procedures are not

declared properly. As an example, we reexamine the problem of writing a single plus function for

<Zmodn> which can be used for aU restricting types (e.g. <zmod5> and <zmodl3>). The

naive (and incorrect) way would be this:

(defproc plus ((x <Zmodn>) (y <Zmodn>)) <Zmodn>
(new <Zmodn> (mod (plus x:val y:val) x::n)))

There are two major problems with this procedure.

• The new procedure is called to create a new <Zmodn> object. Since <Zmodn> is a

parameterized type and thus a non-domain-type, objects cannot be created of type

<Zmodn>. (The NE'M!F'EAK compiler would ftag such a statement as an error).

• When this procedure is called, the value or x could be a <zmod5> object and the value

of y could be a <zmod13> object. There may be cases where adding objects of different

moduli makes sense, but it is not our intent here.

What we want to declare is a plus procedure that will be called only if both arguments are the

same type and that type restricts <Zmodn>. We are now faced with the problem of represent

ing this requirement. It is tempting to generalize and say that associated with each formal

parameter is an arbitrary predicate. Given a set or actual types, if aU the predicates associated

with the formal parameters are satisfied at run time, then the procedure can be used. The prob

lem with this solution is that it may not be possible to determine at compile time if an arbitrary

predicate would be satisfied at run time. This would lead to run-time evaluation of predicates

which makes generic functions costly. NEWSP!!'AK's solution is to permit a user to replace the type

name in the formal parameter list by one of a very select group of expressions. During compila

tion NE\Y.Sf'EAK keeps enough information about the types of variables to be able to evaluate these

expressions at compile time. The types in the formal parameter list may have one of these forms,

where X is the name or another formal parameter:

<name> -the type named name or any restriction of it.

-x- the exact same type as formal parameter x.

x::n - the same type as the value or type parameter n or the value of formal parameter X. This is

'·

31

only valid if the the type of parameter n is <type>, that is the value of parameter n

must be a type-object. This will be explained shortly, after we have a chance to motivate

its use.

Now we can write the plus function over <Zmodn> correctly:

(defproc plus ((x <Zmodn>) (y -x)) -x
(new -x val (mod (plus x:val y:val) x::n)))

Alternatively, we could have declared y to have the type <Zmodn> and x the type -y. This

procedure also corrects the problem with the new function. It will now create an object of the

same type as the actual parameter x. The expression -z is always sure to return a domain-type

since it returns the type of an existing object.
Smalltalk, Flavors and Glisp do not have similar problems declaring the types of their argu

ments simply because only one argument's type is declared. Also, in these languages the type of

the result is not declared.

3.3.12 Lex Deserlptlona
In all types defined so far, the type of each lex field has been explicitly declared. It is often

the case that the type of the lex field of a parameterized type is a function or the values of the

parameters. In this section we will introduce two new methods for declaring the type of a lex

field. Both of these methods are needed to define the homogeneous linked-list data type,

<List>.
A first attempt at writing the <List> data type might be the following:

(deftype List
params: ((t <type>))
lex: ((first t)

(rest <List>)))

The type or the 'first' field is not a specific type, but an expression: t. When a type is defined

which restricts <List> and provides a value for t, this expression will be evaluated to determine

the type or the 'first' field in the newly defined type. As for first's type when viewed as a

<List> object, N~ assumed that it is <object>, which is the least it can assume.

This deftype is not what is intended. We would like <List> to be a (homogeneous) linked

list or elements or the same type. However, the type of the 'rest' field is not declared correctly as

we can see by defining a specific type or <List>:

(deftype list-of-integer
restricts: ((<List> (t <integer>)))

As far as the type or the lex fields are concerned, this deftype is the same as the deftype:

(deftype list-of-integer
lex: ((first <integer>)

(rest <List>)))

Notice that the rest field is declared to have type <List>, not <:list-of-integer>. As a result,

the rest field could point to an object or any type which restricts <List>, such as <list-of-real>

(if such a type existed). The type <List> that we have created is a heterogeneous linked list,

very much like the Lisp list data structure, not restricted to be a list or <integers>. The type

32

<list-of-integer> merely has as its first element an integer.
The solution we use is the special symbol _self in place or the type name in the lex declara

tion:

(deftype List
params: ((t <type>))
lex: ((first t)

(rest _self)))

This states that the rest field or an object will always point to an object of the same type as the

object. Thus when the <list-of-integer> type is created, the type of the rest field for the <list

of-integer> type is declared to be <list-of-integer>.

3.3.13 Type Parameters
In the <List> example, the parameter t could take on any vaiue and <List> operations (ap

pend, reverse, etc) would still work. There are instances in an algebra system or types

parameterized by other types where the value of a parameter determines which functions are pos

sible. An important example is the polynomial type parameterized by the type of its coefficients.

Ir the coefficients are from a field then it is p088ible to perform exact division with remainder. It

the coefficients are from a unique factorization domain and hence do not have multiplicative

inverses, then pseudo division must be used [Knuth81J. It the only way we could define polyno

mials were as follows:

(deftype Poly
params: ((coefdom <type>))
lex: ((coefficient coefdom)

(exponent <integer>)
(rest _self)))

then for many of the functions over polynomials we would have to put in repeated explicit tests

for the value of coefdom. The functions (e.g. polynomial division) would then be using the

"dispatch on type of coefficient" style (page 11) we wished to avoid. This problem arises because

the properties of <Poly> are dependent on the value (not just the type) of the coefdom parame

ter. This clashes with our notion that a type has a single set of properties. In this case we would

like to specify in the deftype the value of a <type> valued parameter (e.g. polynomials

parameterized by a <type> valued parameter whose value is <Field> or some restriction). All

type-objects have type <type> and we cannot give a subset of them a different type. For this

reason, parameters of type <type> (or simply type parameters) are a special case in NEWSreAK. It

is possible when defining a type to specify that a parameter is a type parameter and that its value

restricts a certain type-object. An example of such a declaration:

(deftype Poly-field
params: ((coefdom <= <Field>))
lex: ((coefficient coefdom)

(exponent <integer>)
(rest _self))

restricts: ((<ED>))) ; ED i8 Euclidean Domain

In past examples the syntax of the params description in a deftype was a symbol followed by a

type. In this case, between the symbol and the type is a less-than-or-equal symbol(<=), which

is indicative of the fact that the value of coefdom is either <Field> or some restriction of

33

<Field>.
The parameter declaration (t <type>) is equivalent to the declaration (t < = <object>).

The latter Corm is preferred, since it emphasizes the nature or the parameterized type.

There are two major ramifications or declaring a less-than-or-equal parameter like the one Cor

<Poly-field>:

• Whenever a type is declared to restrict <Poly-field>, NE\~FEAK will check that the

parameter supplied in the restriction is really a restriction or <Field>. This check is
done during the generation or the new type-object.

• When, in a procedure, a variable (say x) is declared to have type <Poly-field>, the type
or the expression :::coefficient will then be <Field>, which is the most restrictive type

that can be assumed about the value or the coefficient at compile-time.

The existence or type parameters has an effect on defproca too. Let us return to the <List>

data type, this time defining it in the preferred way:

(deCtype List
params: ((t <= <object>))
lex: ((first t)

(rest _self)))

Suppose we wish to write a procedure first(x) that, given an object x whose type restricts

<List>' returns the 'first' field or x. The type or the 'first' field or X will depend on the parame

ter t or x when x is viewed as a <List> object (i.e. the type will be x::t). The same synta.x that

we use to denote a parameter can be used to denote the result value or a defproc (recall that this

is the third Corm mentioned in section 3.3.11).

(derproc first ((x <List>)) x::t
x:first)

first is a procedure which takes a <List> object and returns a value whose type is the value or

the t parameter or the actual argument x.
We have already seen bow to write a procedure definition that returns a value or the same

type as one or its actual parameters, but here is another example:

(deCproc rest ((x <List>)) -x
x:rest)

As a final example, this is the definition or procedure cons which takes an object and a <List>

or that type or object and returns a new <List> object:

(derproc cons ((x y::t) (y -List)) -y
(new -y first x rest y))

In summary, by means or type parameters, we can propagate information about types at

compile-time which allow us to avoid type checking at inconvenient and frequent points at run

time.

34

3.3.14 Anonymous Restricted Types
All of the types we have discussed so far were created with deftype. Each type was given a

unique name when it was defined and which is used to reference the type. When referring to a
particular instance of a parameterized type it is inconvenient for the program to create a name
and declare a type. For example, after we define <Zmodn> we can create <zmod6>,
<zmod7> and so on with almost identical declarations. Another programmer might name these
types <zmodn6> and <zmodn7>, and would end up with a new set of distinct types. To avoid
these problems, a program may reference a particular member of a parameterized type simply by
naming the type being restricted and the values of the type's parameters. For example, instead
of defining the type <zmod6> as a restriction of <Zmodn>, one might like to refer to type
... < Zmodn > with parameter 6."

Definition: Anonymous restricted type (&l't)
An anonymous restricted type (or art) is a type created by N!MSP!!'AK from a parameter
ized type and values for its parameters. The syntax is

(art parameterized-type param-valuel param-value2 ...).

The type is called anonymous because it can't be referenced by a simple name: it is always
referenced using the syntax just given. The arts or a given type are never related through
restricts, but each art restricts parameterized-type. Furthermore, the art described by a cer
tain parameterized-type and sequence of values will always refer to the same type object.

For example, (art <Zmodn> S} is an art which restricts <Zmodn> with its parameter n given
the value 5. Wherever (art <Zmodn> S} appears in a program, it will always refer to the same
type-object.

Note that given this type declaration:

(deftype zmod5
restricts: ((<Zmodn> (n 5))))

There is no relation between <zmod5> and (art <Zmodn> Sj, although both restrict
<Zmodn>. AB a matter or good programming style, names for arts should not be introduced un
necessarily.

3.3.15 Function Objects
For every procedure we define using defproc, NE\\'SI'E\K associates the name or the procedure

with the types or the domain and range or the procedure, and the compiled code for the pro
cedure. The <Function> type is used for assembling this information. <Function> is
parameterized by a domain and range descriptor. Objects of type <Function> contain compiled
code and are stored in a data base in which the key is the procedure's name.

Because a <Function> object is parameterized by the domain and range, the user can
describe procedures by creating a type which restricts the <Function> type. NE\YSP£AK provides
special syntactic fonns to denote <Function> anonymous restricted types. The basic syntax is
(fen domain range), where domain is a sequence of type expressions similar to those that can ap
pear in the formal parameter list of a defproc. Range is either a single type expression or a se
quence or type expressions preceded by the symbol 'values'. The latter fonn is used to indicate
that the procedure returns multiple values. NE\\'SI'E\K converts this special syntax into the ap

propriate domain and range descriptor object and then creates an art or <Function>. Some ex
amples:

35

(ten (<Integer> <integer>) <Integer>)- a procedure that takes two <integer>'s andre
turns an <integer> result.

(fen (<Zmodn> -o) -o) - a procedure which takes two identical types which restrict
<Zmodn> and returns the same type. Numbers are used in the <Function> art form
to refer to formal variable names. Thus the zero refers to the zeroth formal parameter to
this function. This <Function> art describes a procedure like:

(defproc plus ((x <Zmodn>) (y -x)) -x ... and so on ...)

(ten r1 <Zmodn>) -1)- another way to write the previous type.

(ten (1::t <List>) -1)- this is how to write the type of the cons function or <List> defined on
page 33. The l::t refers to value or the type or the t type parameter of the <List> ob
ject.

(ten (<ED> -o) (values -o -o -o)) - a procedure which takes two identically typed <ED>
objects and returns three objects of that same type. This is bow the type of the extended
Euclidean algorithm would be written.

3.3.18 Subtype
When we compare <Function> anonymous restricted types, we use a new relation, subtype,

that is a superset or the restricts relation. As was mentioned in section 3.3.14, the arts or a given
type are never related through the restricts relation. However it makes sense Cor a
(fen (<zmod5>) -o; object to be used where a (fen {<Zmodn>) -o; is required because any
function of a < zmod5> object that returns a like object can be used where a function or a
<Zmodn> object returning a like object is required.

Definition: Subtype
<A> is a subtype or it <A> equals , <A> restricts , or if both <A>
and are <Function> arts and the domain and range of <A> are suhdomain and
mbrange or the domain and range of .

Informally, X is a subdomain (or subrange) or Y means that corresponding elements of X are
subtypes of the corresponding elements of Y. It a domain (or range) contains type expressions
(rather than type-objects), then the subdomain (resp. subrange) is the one which is denotes the
smaller set or types. For example, if domain X=(foo - 0) and domain Y =(foo - foo), then X is
a subdomain of Y but Y is not a subdomain of X.

Now that we have defined the subtype relation, we can clarify the process NEWSPE~.K uses to
verify that a declared restriction or a parameterized type is valid. Ir type <A> is declared to
restrict parameterized type with actual parameter values L and M, the subtype relation is
used to test if the types of L and M are legal.

We chose to define the subtype relation rather than enlarge the restricts relation because of
the way we represent restricts and subtype in our current implementation. The restricts relation
is explicitly represented whereas the subtype relation is computed when needed. Ir we were to en
large the restricts relation we would have to deal with the case of a type added inside the type
hierarchy instead of at the leaves. This would require checking the types of existing types to see

36

if they should restrict the new type, :md if they did the tables which represent the restricts rela
tion would have to be enlarged. In implementations other than our current one, this process may
prove inexpensive enough to do :md we would then drop the subtype relation.

3.3.17 Generic Function Calla
All or the examples or N~!.w.SP!!:AK function calls we have presented to this point have been sim

ple generic function calls. In this section we examine the mechanisms or generic function calls in
Smalltalk, Flavors, Glisp, :md Ada. In the next section we will introduce a type or function call
called the parameterized generic function call which has no parallel in these other languages.

A simple generic function call consists or a function name (called a selector) and a sequence or
zero or more arguments. NE.'WSPPAK uses the selector and declared types or all o(the arguments to
determine, at compile time, the particular function to call. Because this information is known at
compile time, NEWSF'EAK has the option of replacing the function call with the body of the function
being called (i.e open coding the function).

In Smalltalk, each function call must have at least one argument. The selector and the actual
type of only the first argument determines the function to call. In order to write generic functions
which depend on the types of more then one argument (a common occurrence in :m algebra
system program), the programmer must do "dispatch on type" programming, just as it is done in
languages without generic functions.

Determining the actual function to call in Smalltalk is done at runtime rather than compile
time. This trades interpretation-semantics flexibility against compile-time optimizations. Figure
3.10 shows a simple type-hierarchy. A function FuncXis defined for <A> and <C>, FuncYis
defined Cor and FuncZ is defined Cor <D>. Func Y simply calls Fun eX on its argument,
and FuncZ does likewise with Func Y. When NEWSF'E\K compiles Func Y it resolves the reference to
Fu.ncX to FuncX defined over <A> (for reasons we will give shortly). Thus. if Fu.ncZ were given
a <D> object, it would call FuncY which would then call the Fu.ncX over <A>. In Smalltalk
each generic function is resolved at runtime based only on the type ot the object and independent
ot the type over which the function was defined. Thus in Smalltalk, if FuncZ were given a <D>
object, it would call Fu.ncY which would then call Fu.ncX over <C>. We believe such behavior
is dangerous: the author of Func Y wrote it with knowledge of Fun eX over <A>. He has no way
of predicting which restrictions will be defined beneath , and if programmers of those res
trictions are free to redefine functions that his Fu.nc Y uses, then he can't be confident that his
program will work for all inputs.

There are programs in which it is desirable to call functions which are defined by restrictions.
An example we will see later is the greatest common divisor function (gcd) over the type of Eu
clidean domains. gcd calls a function to find the quotient and remainder of its arguments, this
function being defined over a restriction of Euclidean domain (<integer>, Cor example). Such a
call to a function defined over a restriction is handled in a different way by N~ and the pro
grammer must explicitly declare which functions should be handled by restricting types. This
type or call, named a parameterized generic function cal~ is described in the next section.

To summarize, in Smalltalk all generic selection is done at runtime. Thus (1) open coding can
not be done, (2) there is no way to tell at compile time the type of value returned from a function
call, and (3) there isn't a way to tell if all the functions which will be needed at runtime, exist.
NEWSF'E\K benefits, by contrast, from resolving generic function calls at compile time (as does Ada).

In Flavors and Glisp, both or which are embedded in Lisp, generic function calls work in the
same way as they do in Smailtalk. In Glisp, the generic function calls may be open coded if cer
tain declarations are given, but as was mentioned on page 25, this is a dangerous practice. Fla
vors and Glisp also permit the use of normal Lisp non-generic function calls. The calling se
quences Cor generic and non-generic functions are different. Thus programs can become a confus
ing mixture of code accessible only with generic calls or only with normal calls.

37

PuncX(z)

 PuncY(x) (calls PuncX(z))

<C>
F'uncX(z)

<D> PuncZ(x) (calls PuncY(z))

Figure 3.10

38

In Ada, generic function calls are handled in a different way. As in NE\IISFE\K, all generic func

tion calls are resolved at compile time. Ada uses not only the name of the procedure and the

types of the arguments; it also uses the result type. For example, the user could write two func

tions named plus, both of which took two integers arguments, one returning an integer and the

other a real number. Suppose n are r are integer and real variables, respectively, and the Ada

compiler is given these expressions:

n := plus(3,4)
r := plus(3,4)

It would resolve each call to plmt differently.
Before we critique Ada's method of generic function resolution, we present a prophetic state

ment from the Rationale for the Design of the Ada Programming Language [Ichbiah79J:

We believe that the language designer should not forbid an otherwise useful facil

ity on the grounds that it could be misused in isolated cases. He should never

take the attitude of the Newspeak [OrwellSOJ designer:

"Don't you see that the whole &im of Newspeak is to Darrow

the ruge of thought7 In the elld we shall make thought

crime impossible, because there will be no words in whicb to

express it.

Rather, he sbould alwa)'3 strive to expand the expressive power of the language,

while at the same time providing more sa.Iely by the consistency of his design.

While this statement was meant to compare Ada with Orwell's Newspeak, it also applies to our

NE.'WSPl"AK, so we must defend ourselves. Our method of handling generic function calls is more res

trictive than Ada's but we argue below it is superior. First we describe the problems with the

Ada method:

• When an expression !s large, it is often easiest to understand it by looking first at ele-

mentary constituents and then at successively larger subexpressions. This can be subvert

ed in Ada because the meaning of a subexpression is ambiguous without knowledge of the

context surrounding it. Given a large program which uses primarily generic functions, an

expression with a few function calls and constants may have effects which confound the

human reader. InN~ expressions can be analyzed "bottom-up".

• In Ada, an 3.5Signment statement is considered a unit as far as type checking and generic

function selection is concerned. If the selection fails, the system is likely to report only

that "somewhere in the statement on line N is a generic function that cannot be

resolved". Closer analysis is difficult.

These are general criticisms of the Ada method of generic function resolution. If we consider

these problems in combination with NE\\SflW<'s other design features, the arguments against Ada's

method are much stronger:

• In NEWSFEAK, all statements return values: thus an entire function can be considered as

one expression for the purposes of generic function selection. If, using the Ada method,

the selection failed, the compiler could only name the function and report that there is
something wrong somewhere in it.

39

• NEWSP~W< expressions can return more than one value. While this does not rule out the

Ada method, it adds to the complexity.

• As well as keeping track or the type or variables, The NEWSFEAK compiler records certain

relations between the types (to be discussed on page 41). Ag:l.in, it is probably possible

for the compiler to maintain enough information to use the Ada method, but the human

reader would be unlikely to be able to duplicate this feat. We certainly do not want to

design a language where the human is at such a disadvantage.

The Newspad language (to be discussed in section 6.3) also uses Ada's method of generic function

selection.

3.3.18 Functional Parameter Inheritance
A mathematical. type, such as ring or integral domain, is distinguished by the functions that

exist for the type and by the properties of the functions. Through the use of functional parame

ters, a NEWSI'E'K program can express the fact that certain functions must exist. A program does

not, however, represent the requirements placed on those functions, such as closure, commutivity,

etc.
In the following example we will see that the invocation of a function guaranteed by its men

tion as a functional parameter is significantly different from a normal generic function call,

although the syntax or both types or function calls are the same.

Suppose we wish to define the type <Comparable> and require that there be a function to

compare for equality two <Comparable> objects. We would write it this way:

(deftype Comparable
params: ((=(fen (<Comparable> -o) <boolean>))))

The = parameter is declared to be a function which takes two identically typed objects (whose

type restricts <Comparable>) and returns a <boolean> (true or false) value. The <Compar

able> type has no lex fields (it is representationless) and thus objects cannot exist of this type.

We will see next that it is possible to write functions of "<Comparable> objects" - the actual

objects passed to these functions will have types which restrict <Comparable>.

When we define a type that restricts <Comparable> we must provide a value for the =

parameter. We can either supply the name or a procedure whose type is a subtype of

(fen (<Comparable> - 0} <boolean>} or we can associate this parameter with one or the param

eters of the new types we are defining. The purpose or the = parameter in the <Comparable>

type is to guarantee the existence or a procedure named = with the type
(fen (<Comparable> - 0} <boolean>).

Based on that guarantee, we can write the following procedure:

(defproc not= ((x <Comparable>) (y -x)) <boolean>
(not(= x y)))

The call to = is the first example we have seen so far or a parameterized generic function call.

The characteristic of the call that distinguishes it from the normal generic function call is that

NE'o\SPEAK can't determine at compile time which procedure will be called. Instead, at run time the

particular procedure to call will be determined, based on the actual type of x and y.

Before we can describe in greater detail the operation of the not= function, we must define a

domain-type which restricts <Comparable>. We will then have objects which can be passed to

the not= function. We next define <Zmodn> to restrict <Comparable> and then use an art

of < Zmodn > for our domain type.

(deftype Zmodn
params: ((n <integer>))
lex: ((i <integer>))
restricts: ((<Comparable> (=mod=))})

(defproc: mod= ((x <Zmodn>) (Y -x)) <boolean>
(= x:i y:i))

40

In the de!type Cor <Zmodn>, we declare that <Zmodn> restricts <Comparable> and that the

= function required by <Comparable> is provided by the mod= function. We use the name

mod= rather than =to make this explanation clearer. Beeause <Zmodn> restricts <Compar

able>, we can use the function not= defined over <Comparable> objects for objects whose type

restricts <Zmodn>. Suppose that variables a and b contain objects or type (art <Zmodn> 5).

Let us follow the evaluation o(the expression (not= a b). The machine jumps to the not= func

tion where x is bound to a andy to b. Next it evaluates (=:: y), which requires determining the

correct = function to call. Viewing x (or y) as a <Comparable> object, the =parameter is ac

cessed (in effect, evaluating z::=). In this case, the mod= function is value or the = parameter.

The mod= function is then called on the values in x and y. mod= extracts the integers from the

<Zmodn> objects and calls tbe = function over <integers>. The rest or the evaluation pro

cess is straightforward.
Thus, a parameterized generic function call is evaluated in two steps. First the type parame

ter (a <Function> object) given by the function name is extracted from the type-object. Next

program contained in the <Function> object is invoked.
We will continue the discussion of function selection when we describe the function database

in section 4.2. In the next section we introduce a new topic, "distinguished objects".

3.3.11 Dlstlngulahed Objeeta
Associated with domain-types are distinguished objectB, useful in several contexts:

mathematical valuea
In the carrier set or an algebra there are usually certain members which have special

characteristics. Examples are additive identities and multiplicative identities in a ring

(also known as zeros and ones).

aentlnel values
In languages with dynamic storage allocation, linked lists are a common data structure.

Each object in a linked list contains a set or data fields and a next field which either

points to the next object or is a sentinel indicating the end of the list. In Lisp, the sen

tinel is usually indicated by a pointer to the constant object nil. The nil object solution

works in Lisp because Lisp is not a strongly typed language: the next field or a list data

object in Lisp may point to any type or data object. Pascal, on the other hand, is a

strongly typed language. In Pascal, there is a reserved pointer value called nil which indi

cates that the pointer doesn't point to anything. The next field or a Pascal data object

can only point to a single type. The reserved pointer value solution was adopted so that

an uninitialized pointer would not cause problems at run time by pointing to a value or

an illegal type. The cost or this solution is that each time a pointer value is used, it

should be checked that it isn't nil.
NIMSF'I!'AK has the same constraints as Pascal: it must insure type correctness at run

time. However the Pascal solution would be too expensive because most references in

failure

41

NEw.;f'EAK are through pointers.

Th<~re are mathematical algorithms (such as exact-quotient in a ring) which may, for cer

tain inputs, return an indication of failure. Creating a type which includes everything of

a given type plus a failure indicator is expensive and clumsy. What is needed is an object

of a given type which can indicate that a failure has occurred.

Now that we we have motivated the idea of distinguished objects, we define the term:

Definition: Distinguished object
A dlatlngulshed object is an object attached to its type-object and accessible by providing

the type-object and the distinguished object's name.

Each domain-type has at least one distinguished object, namely null, which is used for uninitial

ized variables of the domain-type. User programs may find this value useful as a sentinel for

linked lists, or it can be used as failure indicator. The NEWSPI!'AK syntax to access the null object

of type <X> is {dill null < .. Y>). 'dist' is an abbreviation for 'distinguished'. Although the syn

tax is similar to that of a function call, access to a distinguished object can always be done in

line, since it only involves extracting something at a known offset within a type object.

Distinguished objects and their initial values are declared in the deftype form.

(deftype rational
lex: ((num <integer>)

(denom <integer>))
dist: ((zero num 0 denom 1)

(one num 1 denom 1)))

Thus (dist zero <rational>) is a <rational> object with the num field containing the <in

teger> 0 and the denom field containing the <integer> 1. Note that the distinguished object

nuU need not be declared because it always exists.
The existence or distinguished objects is inherited by restricting types. If we define a type

<Ring> that has distinguished objects zero and one, then all types which restrict <Ring> must

also have distinguished objects zero and one.
This is how we might write a function inversep over <Rings> which returns the <boolean>

value true if its two arguments are multiplicative inverses or one another:

(defproc inversep ((x <Ring>) (y -x)) <boolean>
(= (• x y) (dist one -x)))

The reasons that we used {dist one -z) rather than {dist one <Ring>) are:

• Only domain-types have distinguished objects attached. <Ring> isn't a domain-type

(it is representationless), thus doe5 not have distinguished objects. It is possible to declare

distinguished objects for non-domain types, but no objects will be created. The d<?clara

tion is useful nevertheless because it insures that the restricting domain-types will have

the declared distinguished objects.

• The type or x andy is not <Ring>, but is some restriction of <Ring>. In order to do

the comparison with =, we must compare the value of the product (:~ z yj with a dis-

42

tinguished object or the same type.

Distinguished objects can take the place of global constants. In Lisp the global variables t and
nil hold the true and false values (although any non-nil value is generally considered to represent
true). In N~ these values are written (dist true <boolean>) and (dist false <boolean>).

43

4. The compUer

4.1 Type cbecldng
Type checking in an hierarchically typed language like NEWSFEAK is more difficult than type

checking a generic-function strongly typed language like Ada. The difficulty lies in the fact that

the NEWSFEAK compiler has to deal with the declared types or objects, knowing run well that the

actual types of the objects may be some restriction of the declared types. Furthermore, the types

of the arguments of generic functions are not expressed simply as type indicators. Instead they

may also take on the forms - n or n::par, as was described in Section 3.3.11. This requires the

compiler to maintain certain extra information about the type of each object accessible from ·

within this procedure:

• Is the type of this object the same as the type of another object at runtime! As we saw

when defining plus over < Zmodn> on page 30, it is not enough to know that two vari

ables are declared < Zmodn > to be able to add them.

• Is the type of this object the same as the value of a parameter of the type of another ob-

ject! This is important in order to check a function such as cons on page 33 for type

correctness.

Furthermore, the compiler must contend with multiple values and conditional expressions whose

branches return an object (or objects) of different types. The record keeping, while complex,

can be done at compile time and so the cost need only be paid once.

4.% Function database
In order to permit the compiler to select the correct function for a generic function call, all

known function objects are kept ordered in a complete database. Given two keys, the name of

the function and the number of arguments, a sequence of function objects can be retrieved from

the database. Recall that the type <Function> has as a parameter a domain and range

descriptor. In the ordering relation for function objects (objects whose types are arts or <Func

tion>}, only the domain part of the domain and range descriptor is considered. In this section we

will use the term domain to mean the domain part or the descriptor or the type or a function ob

ject. In the function database, the function objects are ordered in this way: for a given object X

and all objects Y which follow it, either the domain of object X is a subdomain of the domain of

object Y or the types are unrelated (aubdomain is defined on page 35). Given this ordering, the

first function that is found whose domain is a superdomain of the domain being searched for is the

correct function to use. By correct, we mean the most specific function suited for this task.

For example, it we assume the type-hierarchy in figure 4.1 and write a print function for

<object>, , and <C>, we end up with this ordering or functions with selector print (we

only list the types of the function objects):

(ten (<C>) -o)
(fen () -o)
(fen (<object>) -o)

Since <C> and are unrelated, the relative order of their print functions in the data base

is irrelevant, but both must precede the print function for <object>. Suppose the compiler is

given the expression (print x) to compile and x has the type <D>. The compiler creates a

domain expression: a list containing the type of the only argument, <D>. It then extracts from

the database all print function objects which expect one argument (which is the sequence or three

44

print

 . print

<C> print <D>

Figure 4.1

45

objects we listed above). It compares the given domain expression, (<D>), against the domains

or the function objects. When it finds the first superdomain, in this case (), it selects that

function object.
Ir a type's parameter is a function object, that object is also placed in the data base but it is

tagged to indicate that it is a type parameter. If the function selection process selects a type

parameter, a special type or function call is generated (described in section 5.2).

4.3 Frozen Types
Suppose the pltu~ function over rational numbers has this type: (fen (<rational> - 0) - 0}.

Now assume that there are <rational> values in x andy but due to the way they were generat

ed, the compiler can't be sure they are the same type (as far as it can tell, their actual types may

be different restrictions or <rational>). IC the programmer knows that the type <rational> will

never be restricted then the fact that both x and y are declared to have type <rational> is

enough to indicate that they have identical types, and that type is <rational>. Because .the

compiler doesn't realize that their types are identical, it will not permit the function plus with

type (fen (< rationtJi> - 0}- 0} to be called on x andy.
The problem is not a result a misdeclaration or plus's type: in this example we see that such a

declaration occurs naturally as a result or the restriction relation and functional parameters.

(deftype Field
params: ((plus (fen (<Field> -o) -o))))

(deftype rational
lex: ((num <integer>)

(denom <integer>))
restricts: ((<Field> (plus plus)))

The restricts clause or rational's deCtype declares that there will be a plus function over rationals

whose type is a subtype or <Field> 's plus parameter. Newspeak automatically defines the sub

type to be (fen(< rational> - 0} - 0). (NE!:'MftAK only generates subtypes automatically for

<Function> parameters).
We return to our original problem: we have two <rational> values that we would like to add

but can't because there is no function or type (fen (<rational> <rational>) <rational>). If we

declare that <rational> is a frozen type, that is, that it will never be restricted, then NEWSf'Eo\K

recognizes that (fen (<rational> <rational>) <rational>) is equivalent to

(fen (<rational> -o) -o) and our problem is solved. Contrast this with the plus function over

<Zmodn>, a non-frozen type. In this case, (fen (<Zmodn> <Zmodn>) <Zmodn>) is not

equivalent to (fen (<Zmodn> -o) -o). All domains-types are assumed frozen by default when

they are created, but can be explicitly unfrozen by a declaration in the deftype.

46

5. A Partial Implementation
In order to test the design or NEMF'EAK and demonstrate consistency, utility and completeness,

we wrote a prototype system in Franz Lisp !Foderaro82j. Although it is not a complete imple

mentation or NE\YSPEAK, it is a large enough subset to permit us to run most of the programs we

will present in section 7.. Lisp provided a base for rapid prototyping of a system and we were

able to modify our ideas as we experimented on the language described in this thesis.

A complete NE'N.>I'EAK system could be built entirely in NEMF'EAK itself and could be indepen

dent or Lisp. Such a construction would force us to resolve a number of problems, one of which is

how to store objects in memory. We discuss some of these issues in the following subsections. •

5.1 Pointers and Object storage
An object is usually implemented as a block of storage, referenced by a value called a pointer.

Given an object A, it must be possible to locate the type-object for A. The method chosen for

this task usually determines which dynamic memory allocation scheme is used.

The fact that objects are referenced through pointers allows objects to be passed between pro

cedures by just. passing pointers. Generally pointers fit in one machine word, making it much

more efficient. to pass pointers than to copy the (potentially large) objects themselves. The draw

back in using pointers is the aliasing that results from having an object referenced from more

than one location. This same situation occurs routinely in Lisp and other languages and our ex

perience has shown that it is not a problem if the programmer follows simple rules. In Lisp, any

user function can destructively modify almost any data object. In NE\\SPI!'AK, only code that has

specifically requested and received permission (at compile time) to look inside an object can des

tructively modify it.
In some applications, aliasing can be beneficial. It permits pieces or large data structures (such

as mathematical expressions) to be shared. Localizing destructive modification makes aliasing

safer.
The only requirement we have placed on a pointer to an object is that it be able to lead us to

the storage for that object. Independently, we have required that every object have a type-object

associated with it which is accessible from the object. We now consider strategies Cor allocating

objects, associating type-objects with objects, and creating pointers:

Storing types within objec:ta
Each object is a data structure that has as one component a pointer to its type-object.

The pointer to an object is its actual address in memory. The advantage or usiug the ac

tual address for a pointer is that it is possible to access parts of an object quickly (on

most machines) by using a simple register-plus-offset operand form. The disadvantage is

that each object is larger because it must contain a pointer to its type or some abbreviat

ed indicator or its type.

Encoding the type within pointers
A typed pointer contains both the address or an object and an indicator of its type.

There are two implementation problems with this.

• If a typed pointer is to reside in a machine word, then if addresses are to be

large, the number or bits that can be used to indicate the type must be small.

This is not a problem in most Lisps which have at most a few dozen types, but in

NE'N.>I'EAK the number of types can grow very large. The solution (used in those

Lisps which have user defined data types) is to define a type code meaning "the

type is actually stored in the object", thus resorting to the typed object method.

47

• In order to use the pointer to access a field in an object, the type information

must be stripped from the pointer. In N~ extracting a V::?lue from an ob

ject is a very common operation, so an underlying machine addressing mode that

ignores the type field would be bandy. Target machines which have only simple

addressing modes will require frequent use of masking or shifting instructions.

Encoding of types by association of storage blocks
The Big Bag of Pages (or bibop) storage management method
!Steele77J [Foderaro81J is used in PDP-10 Maclisp and Franz Lisp (on the VAX and

68000). The pointer to an object is simply the memory address of the beginning of an ob

ject. The high order bits or the pointer can be treated as an index into a vector of type

indicators called a typetable. Depending on how much space is devoted to each element

oC the type table, the type indicators could be pointers to type-objects or indexes into

another table containing pointers to type-objects.

There are two major ftaws in this method in the context of N~ The first is that

accessing the type-object, a common operation in NE'o\SPEAK, would be too slow, requiring

bit shirting and one or two memory accesses. The second is that if a program needs just

one object or a certain type, the NEWSF'IW(system would be required to allocate a whole

page or objects of that type. In NEWSFPAK, there are a large number of types Cor which

only one object is necessary (e.g. <Function> arts). IC an entire page were allocated Cor

each type, memory and address space would be poorly utilized.

Encoding of types by object table
Many Smalltalk implementations use this method. The pointer is an index into a table of

pairs: an object's address and its type. All references to objects are just indices into this

table. The advantages of this scheme is that it allows pointers to be small and makes ob

ject compaction easy. The drawback is that extracting an object's contents requires first

going to this table to retch the address.

Removal of type Information at eompUe tlme
A pointer is the address of an object. There is no way to determine the type of an object

from its pointer or from the object itselC. However, NEWSI"'EAK would insure that for every

value passed to a function, the type of the value would be passed as well (as an invisible

parameter) if the type were needed. This type oC scheme is possible in NE'NSPIW< because

it has strict type checking at compile time. The problems with it are: function calls may

take longer if there are more parameters to pass back and forth; debugging and garbage

collecting would be harder because there would be no way for these programs to deter

mine the type of an object directly from a pointer to an object.

None of the strategies we have just examined is clearly best Cor NEMFEAK. although some are

quite clearly bad (e.g. bibop). We used the object table approach in our current implementation

because of its simplicity. We plan to experiment with a number of difl'erent strategies in a subse

quent NEWSf'E\K implementation.

5.2 Type Parameter Extraction
In this section we describe bow parameter values are stored in our prototype implementation.

By the syntax we use for parameter extraction, we consider a parameter's value to be part or an

object, not the object's type-object. For example, if x contains an object oC type

(art <Zmodn> 5), then we can extract 5 by z::n (if xis viewed as a <Zmodn> object). It ap-

48

pears therefore that the value 'n' is being extracted from the object x when it is really being ex
tracted from the type-object (art <Zmodn> 5).

It takes three pieces of information to extract a type parameter: (1) the name of the parame
ter, (2) a type-object, <T>, to extract the parameter from, and (3) a type-object <V> which
<T> restricts and in which the parameter was declared. (<V> is known as the viewed as
type). In the above example, the parameter name is n, <T> is (art <Zmodn> 5) and <V> is
<Zmodn>.

In our current implementation, each type-object <T> contains a pointer to a list of vectors.
There is one vector for each parameterized type which <T> restricts. Within the vector for a
particular restricted type, <V>, are the actual values of <V> 's parameters. Thus to locate
the value of parameter n of <T> viewed as <V>, NEWSPEAK must look in <T> 's list of vectors
for the one associated with <V> and then extract the value associated with n. The layout of
the vector of values of <V> 's parameters is determined when < V> is defined. Thus NEWSPEAK
can locate the value of a parameter within a vector with one vector reference.

In order to locate <V> 's vector, NEWSf'EAK must search the list of vectors because it cannot
predict at compile time where the vector associated with a given viewed-as type will be. The
searching cannot be totally avoided because NEWSWAK permits multiple inheritance (a type can
restrict more than one type). Suppose there were a parameterized type <A> and we decided
that in every type that restricted <A>, the location of the vector containing the values of
<A>'s parameters would be N'th in the list. Now suppose that there were a type and we
decided that its vector should be N'th in the list too. If we define <C> to restrict both <A>
and then we have a case where both <A> 's and 's parameter value vectors must be
N'th in <C>'s list of parameter vectors.

In order to reduce the searching cost, we can use a number of strategies. One is to use a hash
table instead of a list. This may not be too useful as the list of vectors is most likely to be small
(less than 10), so the hashing could cost more than simply doing the comparisons. We must con
sider two costs associated with the searching: space (amount of code needed at each parameter
reference), and time (cpu time needed to resolve a parameter reference). In order to save space,
we want to make the searching procedure into a subroutine and access it via a "jump to subrou
tine" at each parameter reference location. In order to save time, we would like to avoid jumping
to the searching subroutine whenever possible. One way to avoid going to the subroutine is to
cache the result of the parameter lookup. The cache key would be the actual type and the value
would be the viewed-as vector. There would be a separate cache block for each instance of
parameter lookup in the code. The runtime mechanism for parameter lookup would be to check
the actual type against the cache key and if they were identical, the cached viewed-as vector
would be used. If a cache miss occurred, the standard parameter lookup would be done and the
results stored in the cache. Studies of Smalltalk (in which most function calls cause a runtime
table lookup based on type) show that 9.S% of lookups are to the same type as the preceding look
up ID'Ambrosio83j. The cache solution would cost a little more in space at each parameter refer
ence but greatly reduce the time when a cache hit occured.

49

8. Related Languages
In this section we compare NEWSPEAK to a collection of related languages: FRL, Capsules, An

dante and Newspad.

8.1 FRL
FRL is a hierarchical data description language embedded in Lisp used for planning and na

tural language understanding. It is based on Minsky's frame technique for representing knowledge

[Minsky75J.
• A FRL program creates data objects called frames which are patterned after association lists

in Lisp. Frames are stored in a database and may be interrelated. When data is stored in or re

trieved from a frame, it may cause other frames to be altered or searched or a Lisp program to be

run.
Datum access from a frame in FRL is thus not an atomic operation as it is in NEWSFEOC FRL

would not be suitable for implementing the low-level data types on an algebra gystem that we

have described in the thesis (e.g. ZmodN and Polynomial). However, it may prove useful at the

user-interface level of the algebra system where planning is necessary. One could model FRL in

NEWSPIW(by writing special procedures to perform each datum access. Such a strategy would be

work best if the procedures were written automatically from an FRL frame description.

8.2 Cap•ules
Capsules [Zippel83j is an object-oriented gystem written in Lisp by Richard Zippel, one of the

authors of Macsyma. It was originally designed to serve as base language for a symbolic algebra

system.
Capsules is an outgrowth of Flavors, differing mainly in how operations are associated with ob

jects. In Flavors, the hierarchy determines which methods are callable. In Capsules, all methods

have associated (explicit) properties. If an object needs an operation with a certain property, the

Capsules system locates it for the user. In fact, if costs are associated with operations, then Cap

sules will select the least expensive operation with the required property.

The problems we see with Capsules are similar to those we have mentioned about Flavors: (1)

functions are generic on only the first argument, (2) type checking isn't done (although Capsules

does check to see that aU required operations exist for an object). A problem unique to Capsules

is that of representing properties of operations. Currently, properties are just gymbols that are

uninterpreted by the system. If Capsules were to be used in an algebra system, a more powerful

property mechanism would be needed (e.g. parameterized properties and some reasoning scheme).

We do not represent type properties explicitly in NEWSPI!"AK for just this reason, but in Capsules,

properties must be explicitly represented in order to select the correct operators.

0.3 Andante and Newapad
The languages Andante and Newspad, like NEWSPEAJ<. are designed for math-oriented gymbolic

algebra systems. Newspad was an outgrowth of the Scratchpad project at IBM Yorktown Heights

(Newspad is an abbreviation for !'l"EW ScratchP AD). The IBM researchers, Jenks, Trager and

Davenport, had goals similar to ours when they designed Newspad: algorithms should be written

in their most general mathematical framework yet there should be \"ery little performance penalty

for this generality. Da.vid B:uton, a graduate student at Berkeley, worked with the News pad

group for a summer. Upon his return to Berkeley he wrote a new algebra system, Anda.nte, based

on Newspad. Andante and Newspad then grew independently, but due to the interaction between

the authors, a new feature in one gystem usually round its way into the other. According to Bar

ton, more algebraic code has been written for Andante, but Newspad has a much higher

developed user interface [Barton83J. As of this writing, both gystems are still in the research

stage, having never been released to the public.

50

Andante and News pad are actually the names or .algebra systems written on top or Lisp-based

implementation languages Modes and ModLisp 1Davenport80j respectively. When we refer to
Andante and Newspad, we will be referring to their implementation languages, not the algebra

systems themselves.
In this section we compare NE\\SPEAK with Andante and Newspad. Although we studied An

dante and Newspad before designing NEWS!"~!:AK, we did not use these languages as a starting point.

Instead we started from scratch (without even a base language like Lisp) and added those features

that we Celt were necessary to support an algebra system. The resulting language is quite distinct

from Andante and Newspad yet many of the constructs in NE'hSF'I!'.AK have parallels in Andante and

Newspad, making it likely that we can share programs.
In order to simplify the discussion which follows, we will only compare N~ to Newspad.

Andante will be mentioned only when it significantly differs from Newspad.

8.3.1 Category, Functor and Domain
Where NE\\SPEAK has the single concept o(type, Newspad uses three concepts: category, functor,

and domain. Very roughly, a category is similar to a NE\\SPEAK parameterized representationless

type, a functor to a NE\'VSPI!'AK parameterized type with one or more lex fields, and a domain to a

NE\Wf'!W(type without parameters and with one or more lex fields.
The Newspad programmer defines categories and functors. Functors are 'evaluated' to pro

duce domains. Ring is an example or a category. "Integers modulo n" is an example or functor.
It the "integers modulo n" functor is evaluated with n given the value 7, it returns the domain of

"integers modulo 7". Each domain is a member of one category. Each category may have many

domains as members. In Andante, a domain may be a member or more than one category.
A category is a set of function descriptors and attributes. A function descriptor is a function

name along with the types or the arguments it expects and the type or result it returns (much like

<Function> in NEWSI"E\K). The argument and result types that may be specified are limited to: a
specific domain, an arbitrary domain or the category being defined, or the value or a parameter

or the category definition. In the corresponding Corm in NE\\Sf'EAK, there are no such limitations.

Newspad can't give the user similar freedom because of the different way in which function invo

cation is implemented, as we shall see shortly. For example, assuming that there were categories

Field and UFO, one could not describe (in the Field or UFO category definition) a function which

converted an object from a Field domain to a UFO domain. Later, we will see that such multi
type definitions must be placed in something called a package.

Categories may be given attributes. The Corm oC an attribute is either a single symbol (e.g.

NoZeroDivisors) or symbol with arguments (e.g. associative('*')). Attributes list some oC the pro

perties or the category. As we mentioned on page 15, the properties of categories (types in

NEMPE\K) are often infinite in number and thus we make no attempt in NEY.'SPE\K to represent
them explicitly. Newspad lacks a type-hierarchy so the attributes or a category are very impor

tant (even though the attributes are just a partial list oC the properties oC the type). Attributes

are associated with the parameters of functors and their existence can be tested during functor

evaluation. We will describe how attributes are used when we describe the definition of the poly

nomial type below.
Categories can be thought or as templates: they are a list or functions and attributes that must

exist. Domains, as we shall see later, can be thought or as category templates filled in with the
actual functions which satisfy the category's requirements.

Categories can be constructed hierarchically by using existing categories and adding functions

and attributes. Unlike NEMJ'EI.K, the construction of categories from other categories is merely a

convenience used to shorten the category definitions. A reference to category X in category Y's

definition is no different than textually substituting category X's definition in place o(the refer

ence. The category hierarchy is not maintained at run-time (or even compile-time). We will see
in the polynomial example below that the effect or this is that Newspad programmers may have

51

to duplicate the hierarchy or categories in certain functors.
Most functions are defined in functor definitions. A functor definition consists of a functor

name, zero or more parameters from domains or categories, the name oC a result category, possi

bly another functor which this one extends, a list or attributes, and a list or function definitions.

When the functor is invoked with specific values Cor its parameters, it returns a domain which is a

member oC the result category. The attributes required by the result category are verified to exist

in the domain created by the functor. Functions defined within a functor are constrained to

operate only on values from specific domains, from domains that this functor creates, or from the

domains which are parameters to the functor. Consider the functor defining the domain oC rec

tangular matrices oC dimensions M and N. The domain oC the transpose of an M by N matrix is

the domain oC an N by M matrices. Since N by M is a different domain, the transpose function

can't appear in a functor. Such cross-domain functions are written in packages, as we describe

later. This problem doesn't occur in NE\\SPEAK since functions may be defined over any types.

8.3.: Lack of Category Hierarchy
We now consider the problems which occur because Newspad doesn't maintain a category

hierarchy. The standard algebraic hierarchy consists oC the algebras monoid, group, ring, in

tegral domain, unique factorization domain, Euclidean domain, and field. The definitions oC these

algebras as types in NEWSF~W< are given in section 7.. The definitions oC these algebras as

categories are similar for Newspad, with the addition oC attributes such as 'uCd' in the unique fac

torization domain category and 'gcd' in the Euclidean domain category. The difference between

Newspad and NE\\SPEAK is apparent when we examine how each system defines the polynomial

types. As we will see in section 7., in NEWSf'EAK we first define <Poly>, the type of "polynomials

over coefficients in an arbitrary <Ring>". We then define plus, minus and times for <Poly>.

Next we define a sequence of types which restrict <Poly> each assuming more about the

coefficient domain: <Polycr> (polynomials over a commutative ring), <Polyid> (polynomials

over an integral domain), and <PolyuCd> (polynomials over a unique factorization domain). Be

cause <Polyufd> is a unique factorization domain, we can write the content and primitive-part

functions over <Polyufd>. These functions can use the definitions of plus,minus and times

defined for the <Poly> type because <PolyuCd> restricts <Poly>. This restriction is permit

ted by N~ because the coefficient domain of <Polyufd> (a unique factorization domain), is

a restriction of the coefficient domain oC <Poly> (a ring).
In Newspad, there is a single polynomial functor, parameterized by a domain in the Ring

category. Within the functor all polynomial functions are defined. Those functions that require a

more restricted coefficient domain than Ring are preceded by a conditional statement such as "Ir

the domain has the attribute ufd then". The programmer or the polynomial functor is reproduc

ing the category hierarchy within the functor, using conditional statements and knowing what the

attributes or each category are. This is simihr to the "dispatch on type" programming technique

that we avoided using generic functions, although it is not quite the same since the type dispatch

is done when the functor is evaluated to produce a domain, not each time a function is called.

8.3.3 Function Invocation
Newspad, like NEWSP!!'AK, offers two types oC function calls which we have named generic and

parameterized generic. The generic function call in Newspad is used when the domains of the ar

guments are known. The target or such a call can be determined at compile time. In NEWSF'E'J<,

generic function calls can be used for all types, not just the types that correspond to domains in

Newspad. For example, we've seen the not= function defined for <Set> types on page 39. A

function like that could be not be defined over the Set category in Newspad.

The second type of call, the parameterized generic function call, occurs in NE\\SPEAK when a

call is made to a. function which is declared as a parameter or a type. In Newspad, the

corresponding call is one made to a function which takes as arguments any member of the domain

52

created by its enclosing functor (recall that most functions are defined within functors). As an

example, consider the two functors: "integers modulo n" and "polynomials over a ring". Each of

these functors returns a domain of the category Ring, whose template we've (partially) drawn in

figure 6.1. In order to create the domain of "polynomials with integer modulo 6 coefficients", we

first p3Ss 6 to the "integers modulo n" functor. It returns the "integers modulo 6" domain (which

we will call IntMod6). We pass IntMod6 to the polynomial functor and it returns the domain oC

"polynomials with integer modulo 6 coefficients" (which we will call PolylntMod6).

Figure 3.13 shows these domains. The Corm of each domain is a vector, with the values in the

vector being pointers to the functions defined in the functor which created the domain. The loca

tion within the vector or a function with a given name is the same for each domain or a given

category.
Both IntMod6 and PolylntMod6 are domains in the Ring category so the layout or their

domain vectors will be identical although the specific values in the vector will differ. There is also

a place in the domain vector Cor pointers to other domain vectors. The PolylntMod6 vector con

tains a pointer to the IntMod6 vector so that polynomial coefficient operations can be done.

We now give an example of how Newspad performs the equivalent or a parameterized generic

function call in NEWSFW.K. As we've drawn Ring category template, the second location contains a

pointer to the plus function. Suppose x and y contain objects or the domain PolylntMod6 and

we wish to evaluate (plus z y). We must have access to the PolylntMod6 vector. The second

value is extracted from the domain vector (it is the particular pluB to call), that function is in

voked, passing to it the x and y values and the PolylntMod6 vector. The plus function being in

voked is defined in the "polynomial over a Ring" functor and is not specificaJiy Cor "polynomials

over integers modulo 6". The domain vector that is passed along with the arguments describes

the particular domain over which we wish the addition to be computed. One operation that the

plus function will want to perform is the addition or the coefficients or the polynomials. The

IntMod6 vector is extracted from the PolylntMod6 vector and the second location or that vector

points to the plus function (since lntMod6 is also or the Ring category). The function is invoked

and passed the coefficients and the IntMod6 vector.
In Newspad, the appropriate domain vector is created and passed 'invisibly' to functions that

require it. In Andante the user is responsible Cor constructing the domain vector.

From the discussion on the (unction calling mechanism, it is clear why functions within rune

tors can only operate over a limited set of domains: the only parameterized generic functions

which they can call are those reachable from the domain vector p3Ssed as an argument.

In NE'>\SPEAK, each data object (implicitly) carries around its type, and the type is a pointer into

the type-hierarchy. Thus each data object has associated with it the "domain vectors" for its

type and all or the types it restricts (the particular domain vector that is used depends on which

type the object is viewed as). Because objects carry around their types, functions may operate on

any set of data types and it will always be possible to locate the domain vectors at runtime in

order to perform parameterized generic function calls.

G.3.4 Package
In order for Newspad functions to operate on objects from more than one domain (such as the

transpose function mentioned earlier), they must be written in a package (or capsule in Andante)

[Trager83j [Barton83j. A package is parameterized by a set of domains of specified categories and

it contains functions which can operate on data from those domains. A package may contain, Cor

example, an algorithm for exponentiation by repeated squaring. IC, when a functor is evaluated,

it neededs such an algorithm, it would pass the domain vector it is constructing to the package,

and the package would return a new vector to be stored in the domain vector. This new vector

would contain the local state information the that package required in order to run.

53

characteristic

plus

times

Ring template

Figure 6.1

54

·-

• •

lDUiod+ Poly+

~

-, ~ - -

Int1lod6 Polylntllod6

Figure 6.2

55

8.3.5 Summary
Newspad (and Andante) are languages well suited Cor the writing or programs to perform alge

braic algorithms. Both systems have grown a great deal since they were last described in a pub

lished document. Our criticisms are thus based on old and incomplete information. Furthermore,

we base our criticisms on how well these languages fit our ideas of how a system should be organ

ized. With these caveats in mind, we proceed with a summary or the differences between

NEWSPEAK and Newspad and Andante.
The advantages of Newspad's organization or functions by category and function invocation

methods are:

• Access to functions is always very Cast: either determined at compile time or just one

vector reference at runtime. NE\'ISFE\K's parameterized generic function call takes longer

the first time the function is located but not for subsequent calls assuming that result or

the function search is cached (page 47).

• Data objects need not be typed; the domain vector contains all the information necessary

to determine which functions to call. Newspad simply uses Lisp data objects without any

tags to indicate their Newspad type. Newspad can do this because the Lisp system it

runs in takes care of dynamic storage allocation. NEWSFEAK was not designed to work on

top or Lisp, so it must put type tags on its data objects in order Cor garbage collection to

be possible.

The problems with Newspad are:

• It has too many mechanisms: category, functor, domain and capsule, whereas NEw.!PEAK

has one notion of type-object that encompasses them all. Furthermore there are many

restrictions placed on the Newspad mechanisms: functions can't be written over

categories, functions within functors are limited in what they can operate on, and

domains are a member or only one category.

• The hierarchy or categories isn't maintained by Newspad, thus code within functors

tends to use a "dispatch on type" programming style to define the correct function based

on the attributes of the functor parameter.

G.3.G Host Language
Andante and Newspad are implemented on top of Lisp systems, Andante on top of Franz Lisp

and Newspad on top or Lisp/370. NEWSFEAK is designed to be written in itself and to run on a

conventional processor. We feel self-implementation is important for the following reasons.

data struetures
We have more freedom to choose data structures Cor NEWSFEAK because we aren't con

strained to use Lisp's data structures. Many Lisps have a bit vector data structure out of

which we could build our objects, but we would then be forced to implement our own

storage allocation and reclamation routines.

control structures
We c:m choose to implement novel control structures Cor NE'Mlf'Et.K. We already permit

functions to return multiple values and we may want to add multi-processing facilities at

some time. Retrofitting such features on an existing Lisp system might be difficult.

Even if a Lisp already had such features it isn't clear that they would be done in a way

56

usable by NEWSPE\K.

unltorm abstrac:tlon
We've already mentioned that Lisp does not have the type or user extensible data types

that we need. Ir NEWSP!W< were written in Lisp, there would be a strong dividing line

between the code written in NEWSP~W< and the code written in Lisp to implement

NE.'WSF'EOC This lisp code would be opaque to the person who knew only NE.'WSF'EOC

better language
We have already mentioned that Lisp is a good language for prototyping systems but

that there are problems with it when a program gets large. The type-centered method of

organizing a system (page 13), used by NE'I\SPEAK, groups functions around the types they

manipulate. Such modularity will help insure that a program can grow large gracefully.

The modularity and software engineering related issues are perhaps the most critical is

sues which made earlier gener:~.tion algebra systems hard to extend.

57

7. A Simple Collection ot Algebraic Algorithms
In this section we demonstrate the expressive power of NEYt'SFEt.K through an extended example.

Our goal is to write algorithms for polynomial GCD calculations in a general algebraic framework.

Most of the code in this section just sets up the algebraic framework. In an actual algebra sys

tem, the framework would be defined once and then shared by all programs. Our type and pro

cedure definitions are intentionally over-simple so that we can present and discuss a large number

oC them without getting bogged down in details.
We have been vague about the mechanisms by which deftypes and defprocs are essentially

treated as Lisp defintions: put in one file and read into NEWSF'EOC This is a detail left to t'he

NEWSF'EY< system implementor. For the sake of the examples that follow, we can assume that all

deCtype and defprocs are put in one file and read in NEWSP!rAK. When a deftype in encountered in

the file, NEWSF'EAK parses it, checks it for errors and if none are found, creates a new type-object in

the hierarchy. defprocs are similarly checked !or type consistency and then compiled, with the

resulting code stored in a newly created <Function> object. The <Function> object is then

added to the function database.
Figure 7.1 shows the type hierarchy that will be constructed by the declarations in this sec

tion. The types to be defined fall into two classes: representationless, and parameterized with a

representation. The types on the left in the figure Call into the former class; the polynomial types

on the right are of the latter class. We assume the existence of types <boolean> and <sym

bol> both restricting <object>, and of functions not over <booleans> and eq over <objects>

(which we describe later).

7.1 Set, Monoid, Group

(deftype Set
params: ((= (fen (<Set> -o) <boolean>)))
restricts: ((<object>))) ; {this clause is not necessary)

The first type and function we define (<Set> and !=) have already been presented as examples

(on pages 39 and 39) using different names (<Comparable> and not=). The names we use here,

while less descriptive, are closer to the names used by Newspad and Andante. In less formal

language, <Set> has one parameter, a function = which returns the <boolean> value true if

given two equal objects. A mathematical set is a collection of objects with the property that no

two are identical. The test Cor equality performed by the = function should correspond to the

set theoretic notion or 'identical'.

(defproc != ((x <Set>) (y -x)) <boolean>
(not(= x y)))

!= is the "not equal" function. The = function which it calls is guaranteed to exist Cor <Set>

arguments because we have defined the =parameter for <Set>.

(deftype Monoid
params: ((= (sub-fen <Monoid> <Set> =))

(• (fen (<Monoid> -o) -on
(' (Ceo (<Monoid> <integer>) -on
(Cl! (fen (<Monoid>) <boolean>)))

restricts: ((<Set>))
dist: ((zero) (one)))

<object>
<Set>~

i
·<Monoid>

~~
<Group> <Abelian Group>

\/
<Ring>

i
<CommutativeRing> •C----

i
<IntegralDomain> C

i
<UF'D>

i
<ED>

i
<Field>

Figure 7.1

58

<Poly>

i
<Polycr>

i
<Polyid>

i
<Polyufd>

i
<Polyed>

i
<Polyf>

59

The form

(sub-fen <Monoid> <Set> =)

a shorthand for, in this instance,

(fen (<Monoid> -o) <boolean>)

It is a declaration of a <Function> 'art' that has the same domain and range as the =function

al parameter of <Set> with all occurrences of <Set> replaced with <Monoid>.

Because the restricts clause for <Monoid> doesn't specify a value for the <Set>'s = param

eter, NEWSF'EAK makes Monoid's = parameter equivalent to the <Set>'s = parameter. This is

desirable because the same function can be used for testing for equality, regardless of whether an

object is viewed as a <Set> or a <Monoid>.
<Monoid> declares three new functional parameters: *for multiplication, ~ for repeated mul

tiplication and fl?, a predicate which returns true iC its argument is the multiplicative identity.

Two distinguished elements, zero and one, are declared. The algebra monoid has only one dis

tinguished element, the identity element, so it may appear wrong (or at least unnecessary) that

two distinguished elements are declared for <Monoid>. It is done in anticipation of the types

which restrict <Monoid>: The operator in a monoid, which we've named *, is treated as multi

plication in some contexts, and as addition in others. We declare a zero distinguished element

for when the operation * is considered addition and a one distinguished element for when it is

considered as multiplication. For a given domain which restricts <Monoid>, only one of the dis

tinguished elements would be used.

(deftype Group
params: ((=

(•
r

(sub-fen <Group> <Monoid> =))
(sub-fen <Group> <Monoid> •))
(sub-fen <Group> <Monoid> ·n

(Cl? (sub-fen <Group> <Monoid> fl?))
(inv (fen (<Group>) -o)))

restricts: ((<Monoid>)))

The type <Group> is a restriction of <Monoid> with the addition or a functional parameter

inv for the function which returns the inverse of an element. Because <Group> restricts

<Monoid>, the existence or distinguished elements zero and one is inherited. In fact, all or the

types we will define below restrict <Monoid>, so each inherits the existence or zero and one.

(deftype AbelianGroup
params: ((= (sub-fen <AbelianGroup> <Monoid> =))

(+ (sub-fen <AbelianGroup> <Monoid> •))
(n• (sub-fen <AbelianGroup> <Monoid> "))
(10? (sub-fen <AbelianGroup> <Monoid> fl?))
(- (fen (<AbelianGroup>) -o))) ;unary inverse

restricts: ((<Monoid> (• +) (' n•) (fl? CO?))))

<AbelianGroup> is similar to <Group> except for two things: the operation is typically writ

ten as + instead of •, and the operation is commutative (which is not represented explicitly).

This renaming of functions is evident in the restricts clause. If an object is viewed as an <Abeli

anGroup> and the + function is called, that will invoke the same function as iC the object were

viewed as a <Monoid> and the • function were called.

60

The repeated multiplication function • bas been renamed n* to indicate repeated addition.

A.lso, /1 '? bas been renamed fO'I.
The ·• parameter is the unary minus function.

(defproc - ((x <Abelian Group>) (y -x)) -x
(+ X(- y)))

This shows how subtraction is written using addition and unary inverse. The calls to + and ·•

will be compiled as parameterized generic function calls.

7.% Ring, Integral Domain, UFD

(deftype Ring
params: ((= (sub-fen <Ring> <Monoid> =))

(• (sub-fen <Ring> <Monoid> •))
(" (sub-fen <Ring> <Monoid> .))
(fl? (sub-fen <Ring> <Monoid> fl?))
(+ (sub-fen <Ring> <AbelianGroup> +))
(n• (sub-fen <Ring> <AbelianGroup> n•))
(fO! (sub-fen <Ring> <AbelianGroup> ro?))
(- (sub-fen <Ring> <AbelianGroup> -))
(exact-quotient (fen (<Ring> -o) -o))
(unit-normal (fen (<Ring>) -o))
(unit-part (fen (<Ring>) -o))
(char (fen (<Ring>) <integer>))
)

restricts: ((<Monoid>)
(<AbelianGroup>)))

<Ring> corresponds to the possibly non-commutative algebra ring. It is the combination of a

<Monoid> and an <Abelian group with the addition of a few parameters.
Recall that an element of a ring is a unit if it has an inverse in the ring. Two elements are as

socialea if one is equal to the other multiplied by a unit. Within a set of associates, one or the

members is called the unit-normal associate. The functional parameter unit-normal returns the

unit-normal associate of the <Ring> object passed as a parameter. Any element of ring can be

written as the product of its unit-normal and a unit. The functional parameter unit-part has this

relationship with the unit-normal functional parameter: X = unit-part{X) • unit-normal(X).

The char functional parameter returns the characteristic or the <Ring>. exact-quotient re

turns the quotient if exact division is possible or else it signals an error.

(deftype CommutativeRing
params: ((== (sub-fen <CommutativeRing> <Ring> =))

(• (sub-fen <CommutativeRing> <Ring> •))
(" (sub-fen <CommutativeRing> <Ring> .))
(fl? (sub-fen <CommutativeRing> <Ring> rt?))
(+ (sub-fen <CommutativeRing> <Ring> +))
(n* (sub-fen <CommutativeRing> <Ring> n•))
(fO? (sub-fen <CommutativeRing> <Ring> CO?))

(- (sub-fen <CommutativeRing> <Ring> -))
(exact-quotient (sub-fen <CommutativeRing> <Ring>

exact-quotient))
(unit-normal (sub-fen <CommutativeRing> <Ring>

unit-normal))
(unit-part (sub-fen < CommutativeRing> <Ring>

unit-part))
(char (sub-fen <CommutativeRing> <Ring> char)))

restricts: ((<Ring>)))

61

<CommutativeRing> introduces nothing beyond <Ring> that we can represent explicitly in

N~ however it a type with the additional property that *is commutative.

(deftype IntegralDomain
params: ((= (sub-fen <lntegralDomain>

<CommutativeRing> =))
(• (sub-fen <lntegralDomain>

<CommutativeRing> •))
r (sub-fen <lntegralDomain>

<CommutativeRing> '))
(rt? (sub-fen <lntegralDomain>

<CommutativeRing> rt?)}
(+ (sub-fen <lntegralDomain>

<CommutativeRing> +))
(n* (sub-fen <lntegralDomain>

<CommutativeRing> n•))
(CO? (sub-fen <lntegralDomain>

<CommutativeRing> CO?))
(- (sub-fen <lntegralDomain>

<CommutativeRing> -))
(exact-quotient (sub-fen <lntegralDomain>

< CommutativeRing>
exact-quotient))

(unit-normal (sub-fen <lntegralDomain>
< CommutativeRing>
unit-normal))

(unit-part (sub-fen < IntegralDomain>
< CommutativeRing>
unit-part))

(char (sub-fen <lntegralDomain>
<CommutativeRing> char)))

restricts: ((<CommutativeRing>)))

<IntegralDomain> 's are <CommutativeRing> 's with the additional property that zero divisors
do not exist. Again, this property cannot be represented explicitly.

(deftype UFD
params: ((= (sub-fen <UFD> <lntegralDomain> =))

(* (sub-fen <UFD> <IntegralDomain> •))
(" (sub-fen <UFD> <IntegralDomain> '))
(ri? (sub-fen <tJFD> <IntegralDomain> Cl?))
(+ (sub-fen <UFD> <lntegralDomain> +))
(n• (sub-Ccn <UFD> <lntegralDomain> n•))
(CO? (sub-fen <UFD> <lntegralDomain> CO?))
(- (sub-fen <UFD> <IntegralDomain> -))
(exact-quotient (sub-fen <UFD> <lntegralDomain>

exact-quotient))
(unit-normal (sub-fen <UFD> < lntegraiDomain>

unit-normal))
(unit-part (sub-fen <UFD> <Intf"gralDomain> unit-part))
{char (sub-fen <UFO> <IntegralDomain> char))
(gcd (fen (<UFD> -o) -om

restricts: ((<lntegralDomain>)))

62

In a unique factorization domain (UFO) the factorization of any element is unique up to associ
ates. Furthermore, there exists a function gcd which returns the unique unit-normal greatest
common divisor (GCD) of two elements.

7.3 EueUdean Domain

(deftype ED
params: ((= (sub-fen <ED> <UFO> =))

(* (sub-fen <ED> <UFO> •))
r (sub-fen <ED> <UFO> '))
(n? (sub-fen <ED> <UFO> fl?))
(+ (sub-fen <ED> <UFO> +))
(n• (sub-fen <ED> <UFO> n•))
(CO! (sub-fen <ED> <UFO> CO?))
(- (sub-fen <ED> <UFO>-))
(unit-normal (sub-fen <ED> <UFO> unit-normal))
(unit-part (sub-fen <ED> <UFO> unit-part))
(exact-quotient (sub-fen <ED> <UFO> exact-quotient))
(char (sub-fen <ED> <UFO> char))
{deg< (fen (<ED> -o) <boolean))
(quorem (fen (<ED> -o) (values -o -o))))

restricts: ((<UFO>)))

In a Euclidean domain there is an algorithm Cor computing GCD's. Thus we define the function
gcd (directly below) rather than make it a functional parameter. The gcd function invokes two
functions, deg< and quorem, which cannot be written Cor the general Euclidean domain and are
added as functional parameters to <ED>. The deg< function returns true if the Euclidean de
gree of the first argument is less than that of the second. We chose to use deg< rather than a
function returning the actual degree for two reasons. The actual value or the degree is often not
important. It is only important if an element has a smaller degree than another element. Also,

63

the degree of zero is negative infinity and we don't want to deal with the problem of representing

that value in this simple example. The quorem function returns two values, the quotient and the

rem::~.inder upon division.
This following function is the Euclidean greatest common divisor algorithm. It returns the

unique unit-normal GCD of its two arguments. This is the first non-trivial program we've

presented and there are many unfamiliar forms in it. We will go through it step by step.

(defproc gcd ((x y <ED>)) -x
(if (deg< x y)

then (setq (x y) (values (unit-normal y) (unit-normal x)))

else (setq {x y) (values tunit-normal x) (unit-normal y))))
(do ((q (dist null -x))

(r (dist null -x)))
((to? y)
x)

(setq (q r) (quorem x y))
(setq (x y) (values y (unit-normal r)))))

The types of the arguments are expressed in an abbreviated form. The lirst line is equivalent to

(defproc gcd ((x <ED>) (y -x)) -x

This is the familiar form which states that x ::md y have the same type and that type is <ED>

(or some restriction).
The $elq, do, if and values forms are modelled after like-named functions in Lisp. In NEWSPEAK

they are handled by the compiler rather than being called as functions, thus these are not con

sidered generic function calls. The only functions that gcd calls are deg<, unit-normal, quorem

and fO'l. All four are called as parameterized generic functions.

The form of the if statement is self-evident. The predicate must return a <boolean> result.

In languages such as Lisp and C the predicate can return any type of value, with all values but

one (nil in Lisp, zero in C) meaning 'true'. This leads to problems like the one shown in this C

fragment:

if(x=y){

The = operator is 'assignment', not the 'equivalence' (represented ==) that was probably

desired. It is a valid statement, pevertheless, so the C compiler will not flag it. In a NEWSPEAK

program, to test a value against zero, the test must be written explicitly. This is a bit more work

but it makes the predicate clearer and eliminates pitfalls s11ch :JS the one just shown.

In the gcd function, the ij st:ltement insures that the degree of x is not less than the degree ')(

y and converts x and y to unit-normal form. The conversion is not necessary until the end of the

algorithm, but is done here (and each time around the loop) to keep the coefficient size down (a

case of importance when x and y are polynomials).
The values statement is best understood by explanation of its implementation: it produces

multiple values on the stack. The setq statement takes one or more V:J.lues from the st:lck and

places them in local variables. For example, the statement

(s.:tq (x y) (values y x))

interchanges the values of x and y: first the values of y and x are stacked, then they are stored

intoxandy.

The do statement, adopted from Maclisp because of its generality, has this form:

(do ((varl initl repeat!)
(var2 init2 repeat2))

(end-predicate result-value)
body!
body2

bodyn)

64

First new local variables vari are created and initialized to the values of the initi. The types of

the values returned by the initi implicitly determine the types of vari to the compiler. Next the

end-predicate is evaluated and if true the result-value is evaluated and returned from the do. It
the end-predicate returns false, the bodyi Corms are evaluated. Next, if there are any repeati
forms, they are evaluated and their results placed in the vari, otherwise the value of the vari are

unchanged. This is one pass through the loop. Evaluation returns to the end-predicate and con

tinues though the loop until the end-predicate is satisfied or until a return-from-do statement is

executed from within the body.
In this particular example, local variables q and r are initialized to the value of the nuU object

of x 's type. q and r are implicitly declared to be the same type as x. The next clause, ({/0'1 11) z),

contains the end-predicate, {fO'I y), and result-value, z. This clause tests if the value is y is zero

and il so returns the value of x from the do statement (and then from the gcd function). In the

body of the do, the quotient and remainder of x divided by y are calculated and assigned to q and

r. Next x takes on y's value andy t~es on the unit-normal part of the remainder. The last setq

could have been written

(setq x y)
(setq y (unit-normal r))

It was written as it is for stylistic reasons.
We illustrate more features via the extended Euclidean algorithm.

(defproc eeuclid ((a b <ED>)) (values -a -a ·a)
(if (deg< a b)

then (bind (((resl res2 res3) (eeuclid b a)))
(values res2 resl res3))

else (do (((c c1 c2) (values (unit-normal a)
(dist one -a)
(dist zero ·a)))

((d dl d2) (vruues (unit-normal b)
(dist zero -a)
(dist one ·a)))

((q r rl r2) (values (dist zero -a)
(dist zero ·a)
(dist zero ·a)
(dist zero ·a))))

((fO? d) (values
(exact-quotient

c1
(• (unit-part a) (unit-part c)))

(exact-quotient

c2
(• {unit-part b) (unit-part c)))

(unit-normal c)))
(setq (q r) (quorem c d))
(setq (rl r2) (values (· cl (• q dl))

(· c2 (• q d2))))
(setq (c cl c2)' (values d dl d2))
{setq {d dl d2) (values r rl r2)))))

65

The extended Euclidean algorithm returns values s, t and q such that q is the GCD and

s*a+ l*b=q. The particular form or this algorithm and the choice or variable names is taken

from Algorithm 2.2 or [Geddes82j. The only new Corm introduced in this procedure is bind. It is

used to introduce and initialize new local variables, much like do's initialization part.

The if statement insures that a's Euclidean degree is not less than b 's. Ir it is, eeuclid is called

recursively and the return values swapped so the relation mentioned above exists between the

result values.
The do statement above introduces ten local variables. They are initialized in three groups

purely ror stylistic reasons, apparent by comparison with the math description.

(de(type Field
params: ((= (sub-rcn <Field> <ED> =))

(* (sub-Ccn <Field> <ED> •))
(" (sub-Ccn <Field> <ED> .))
{n! (sub-rcn <Field> <ED> Cl!)}
(+ (sub-Ccn <Field> <ED> +))
(n• (sub-fen <Field> <ED> n•)}
(CO! (sub-rcn <Field> <ED> CO!))
(- (sub-rcn <Field> <ED>-))
(print (sub-rcn <Field> <ED> print))
(char (sub-Ccn <Field> <ED> char))
(inv• (fen (<Field>) -o)))

restricts: ((<ED>)))

In a field, all elements except zero are units. Thus we add inv•, the multiplicative inverse func

tion, as a parameter. There are only two unit-normals elements: zero and one, making it possible

to write the unit-normal and unit-part functions ror all <Field>'s. Other runctions are equally

trivial to write over <Field>'s, as shown below.

(defproc unit-normal ((x <Field>)) -x
(if (CO? x)

then (dist zero -x)
else (dist one -x)))

Ir a value is not zero then its unit-normal associate is one, otherwise it is zero.

(defproc unit-part ((x <Field>)) -x
(if (ro! x)

then (dist one -x)
else x))

66

If a value is zero, then we arbitrarily return the value one as its unit-part to make it possible for
functions to safely divide by the unit-part.

(defproc gcd ((x y <Field>)) -x
(dist one -xn

gcd is the unit-normal GCD or its arguments. Because the divisor must be non-zero, and the
unit-normal for any non-zero element is one in a field, we always return one for the gcd or two
fields elements.

(defproc exact-quotient ((x y <Field>)) -x
(• x (inv• y)))

(defproc quorem ((x y <Field>)) (values -x -x)
(values (exact-quotient x y) (dist zero -x)))

The remainder is always zero because exact division is always possible.

(defproc deg< ((x y <Field>)) <boolean>
(dist false <boolean>))

7.4 Polynomial
All of the types defined up to now in this extended example are representa.tionless. They form

the backbone of the type hierarchy: any type, regardless of its representation, can restrict a back
bone type as long as it has the required properties.

Now we introduce the polynomial type parameterized by an indeterminate (a <symbol> ob
ject) and a coefficient domain (a <type>). The type of the coefficient domain determines where
the polynomial type attaches itself to the backbone of the type-hierarchy.

(deftype Poly
params: ((coefdom <= <Ring>) (var <symbol>))
lex: ((coef coefdom)

(exp <integer>)
(rest _self))

dist: ((null coef (dist zero coefdom)
exp (dist zero <integer>))

(zero (sameas null))
(one coer (dist one coefdom)

exp (dist zero <integer>)))
restricts: ((<Ring>)))

67

A polynomial object is represented as a linked list oC coefficients and exponents. The exponents
are in decreasing order with the list terminated by the nua object. The type oC the coefficient is
determined by the coefdom parameter oC <Poly>.

Our polynomial representation is similar to the rational function form or polynomials in
Macsyma. Maple uses hash tables, a distinctly different method.

The distinguished object list contains initialization expressions Cor the distinguished objects.
The clause

(zero (sameas null))

means that zero and nuU will name the same object. As a result a polynomial may be considered
to terminate with a zero rather than a null object, making functions like = below look clearer.
We consider the equivalence or distinguished objects to be an interim solution, necessary because
N~MSPFAK does not (yet) permit a program to conveniently select the list terminating object.

Because <Poly> restricts <Ring>, there are a number or functions we must write:

(defproc Cl! ((x <Poly>)) <boolean>
(= x (dist one -x)))

(defproc to! ((x <Poly>)) <boolean>
(eq x (dist zero -x)))

/1 'I tests if its argument is the multiplicative identity or the ring <Poly>. fO'I tests if its argu
ment is the additive identity. Notice that /1 'I uses = whereas /0'1 uses eq. eq is a function
defined over <object>s which returns true iC the arguments are the exact same object (because
objects are referenced by pointers, this is done by checking iC the pointer values are the same).
The = function, analogous to equal in Lisp, is more complicated: it checks whether its arguments
represent the same value, generally by recursively checking if the lex fields represent the same
value. The =function Cor <Poly> is defined next.

The code Cor <Poly> operations insures that the zero polynomial is always represented by
the zero distinguished object, thus /0'1 can use eq instead oC the slower =. The polynomial whose
value is one is not always represented by the distinguished object one (although we could have
written the code to make this so). Thus we must use =to test Cor the value one.

(defproc = ((x y <Poly>)) <boolean>
(if (to? x)

then (to? y)
elseir (CO? y)

then (dist false <boolean>)
elseir (= x:coer y:coer)

then (if(= x:exp y:exp)
then(= x:rest y:rest)
else (dist false <boolean>))

else (dist false <boolean>)))

The = function recursively checks if the coefficients and exponents are equal in the polynomials x
and y. It is a good example of the expressive power of generic function calls. Note that there are

68

three calls to = within the procedure. The first call, checking the equality of the coefficients, will

require a parameterized generic function call. The second call, that of the exponents, is a call to

the = function over <integer> objects - a function which can be determined at compile time

(and perhaps even open compiled). The third call to = is a recursive c:ill to the procedure being
defined. Such a call is tail recursive, that is the value returned by this recursive invocation of =
is returned by the original call to =. We can expect to replace the tail recursive call by a little
variable juggling and a jump to the top of the = function, in a good implementation.

Each call to = is automatically handled in a different and efficient way and the various

mechanisms used are invisible to the programmer who simply writes his code in the most obvious

way.

(defproc + ((x y <Poly>)) -x
(if (f07 x) ; if either argument i8 zero

then y ; return the other argument
elseif (CO? y)

then x
else ; we only have to add if we find terms with

; the same e::ponent
(if(> x:exp y:exp)

then (new -x
coer x:coef
exp x:exp
rest (+ x:rest y))

elseif (> y:exp x:exp)
then (new -x

coer y:coer
exp y:exp
rest(+ x y:rest))

else (bind ((tempval (+ x:coef y:coef)))
; check for the ctJae of the coefficients
; canceling. Don't include terms with zero
; coefficients tJnd non zero e:rponents
(if (CO? tempval) _

then(+ x:rest y:rest)
else (new -x

coer(+ x:coer y:coef)
exp x:exp
rest(+ x:rest y:rest)))))))

The polynomial addition routine makes use o(the property that the exponents are in decreasing

order. The polynomial it constructs as an answer may contain new objects and may share parts

or an argument's object.

(deCproc- ((x <Poly>)) -x
(ir (to? x)

then x
else (new -x

coer (- x:coef)

exp x:exp
rest(- x:rest))))

69

The function -- negates the polynomial by recursing down the polynomial negating the

coefficients.

(defproc term• ((coer x::coefdom) (exp <integer>) (x <Poly>)) -x

(if (CO! x)
then x
else (new -x

coer (* x:coer :coer)
exp (+ x:exp :exp)
rest (term• coer exp x:rest))))

term• multiplies a polynomial by a monomial implicitly given as the first two arguments. This is

a utility function used by polynomial *·

(defproc term/ ((coer x::coerdom) (exp <integer>) (x <Poly>)) -x

(ir (CO! x)
then x
else (new -x

coer (exact-quotient x:coer :coer)
exp (- x:exp :exp)
rest (term/ coer exp x:rest))))

term/ divides a polynomial by monomial. The monomial should divide evenly. This is also a

utility function so it doesn't check to make sure that the exponents in the newly created polyno

mial objects are non-negative.

(derproc • ((x y <Poly>)) -x
(ir (CO? x) ; if either multiplicand is zero, just return zero

then x
elseir (fO! y)

then y
else ; otherwise multiply y by leading coef of z and add result

; the the result of multiplying the rest of z times y.

(+ (term* x:coer x:exp y)
(* x:rest y))))

In this polynomial multiplication function, we treat one polynomial as a set or monomials and

find the sum of the product of the each monomial with the other polynomial. This is a somewhat

inefficient method, we use it here for its simplicity.

(derproc unit-normal ((x <Poly>)) -x
(exact-quotient x (unit-part x)))

(derproc unit-t>art ((x <Poly>)) -x
(new -x

coer (unit-part x:coeC)
exp 0))
'

The units of the polynomial type are the units of the coefficient domain.

(defproc char ((x <Poly>)) <integer>
(char x:coer))

The characteristic of the polynomial type is the characteristic or the coefficient domain.

(defproc degree ((x <Poly>)) <integer>
(if (fO? x)

then (error !degree or zero poly!)
else x:exp))

70

The degree of the polynomial is the exponent of the leading term. If the polynomial is zero, the
degree is commonly given as minus infinity. Since we don't want to worry about adding infinities
to the integer type, we consider asking the degree of a zero polynomial to be an error.

(detproc deg< ((x y <Poly>)) <boolean>
(it (fO! x)

then (not (fO? y))
else (< x:exp y:exp)))

(defproc exact-quotient ((x y <Poly>)) -x
(it (fO? y)

then (error !exact-quotient by zerol)
else it (fO? x)

then x
elseit (deg< x y)

then (error !exact-quotient can't be done!)
else (do ((q (dist null -x)))

((deg< x y)
(it (not (CO? x))

then (error !exact-quotient not exact I))
:q)

(bind ((quot (new -x
coer (exact-quotient x:coer y:coer)
exp (- x:exp y:exp)))

(rem(- x (* quot y))))
(setq q (+ q quot))
(setq x rem)))))

ezact-quotient should only be called when it is known that the division is possible. The division is
performed by repeated subtraction.

;; palynomial over a commutative ring
(deftype Polycr

params: ((coefdom <= <CommutativeRing>) (var <symbol>))
restricts: ((<CommutativeRing>)

)

(<Poly>)))

;; polynomial over an integral domain
(deCtype Polyid

params: ((coeCdom <= <IntegralDomain>) (var <symbol>))
restricts: ((< IntegralDomain >)

(<Polycr>)))

;; polynomial over a unique factorization domain
(deCtype Polyufd

params: ((coefdom <= <UFD>) (var <symbol>))
restricts: ((<UFO>)

(<Polyid>)))

71

When we restrict the coefficient domain, the polynomials take on more properties. A polynomial
over a commutative ring is a commutative ring itself. All or the functions defined over <Poly>
also work over <Polycr>, <Polyid> and <Polyufd>.

(defproc content-recur ((~rar poly::coeCdom) (poly <Polyufd>))
poly ::coefdom

(if (or (n! ~rar) (ro! poly))
then ~rar
else (content-recur (gcd ~far poly:coef)

poly:rest)))

(defproc content ((x <Polyufd>)) x::coefdom
(if (ro? x)

then (dist one x::coefdom)
else (content-recur x:coer x:rest)))

When the coefficients or a polynomial restrict a unique factorization domain, we ca.o use the fact
that the gcd function is defined over the coefficients. The content function returns the GCD or
the coefficients (notice that the value returned is in the coefficient domain).

(defproc pp ((x <Polyufd>)) -x
(ir (ro? x)

then x
else (term/ (content x) 0 x)))

The primitive part (pp) of a polynomial is the purely polynomial part, that is, the polynomial
with the content removed.

(defproc content-pp ((x <PolyuCd>)) (values x::coefdom -x)
(ir (ro? x)

then (values (dist zero x::coefdom) (dist zero -x))
else (bind ((c (content x)))

(values c (term/ c 0 x)))))

i2

When computing the primitive part, the content is calculated. It a program requires both the

content and the primitive part, calling content-pp is faster than calling content and pp separately

since the content need only be calculated once.

(defproc pquorem ((x y <Polyufd>)) (values -x -x)
(ir (ro? y)

then (error !pseudo poly divide by zero!)
else (setq x (* x (new -x

coer r y:coer (+ (-(degree x)
(degree y))

1))
exp 0)))

(do ((q (dist null -x)))
((deg< x y)
(values q x))

(bind ((quot (new -x
coer (exact-quotient x:coef y:coer)
exp (- x:exp y:exp)))

(rem(- x (• quot y))))
(setq q (+ q quot))
(setq x rem)))))

pquorem returns the quotient q and remainder r of the pseudo division of x by y. Pseudo divi

sion differs from normal division is that the dividend is multiplied by the leading coefficient of the

divisor enough times to insure that each division step will be exact (see page 2-27 or [Geddes821).

(defproc gcd ((a b <Polyu£d>)) -a
(if (CO! a)

then b
else if (to? b)

then a
else (ir (deg< a b)

then (setq (a b) (values b a)))
(do (((c-cont c) (content-pp (unit-normal a)))

((d-cont d) (content-pp (unit-normal b)))
(q (dist null -a))
(r (dist null -a)))

((ro? d)
(term• (gcd c-cont d-cont) 0 c))

(setq (q r) (pquorem c d))
(setq (c d) (values d (pp r))))))

Because <Polyufd> restricts <UFO>, it must supply a GCD function to satisfy the gcd param
eter of <UFO>. This gcd function is the primitive polynomial remainder sequence Euclidean

GCD (primitive PRS GCD)- algorithm 2.3 or !Geddes82l.

;; polynomials over a Euclidean domain
(deftype Polyed

params: ((coefdom <= <ED>) (var <sy:nbol>))

)

)

restricts: ((<UFO>)
(<Polyufd >)))

;; polynomials over tJ Field
(deftype Polyf

params: ((coefdom <= <Field>) (var <symbol>))
restricts: ((<ED>)

(<Polyed>)))

73

Polynomials over a field have additional useful properties resulting from to the divisibility of their
coefficients. Because they restrict the Euclidean domain type (<ED>), they can use the Euclide
an GCD (presented on page 63).

(defproc unit-normal ((x <Polyf>)) -x
(if (to? x)

then x
elseif (rt? x:coef)

then x ; 41retJdy monic
else (exact-quotient x (new -x

coer x:coer
exp (dist zero -x:exp)))))

(defproc unit,..part ((x <Poly!>)) -x
(if (ro? x)

then (dist one -x)
else (new -x

coer x:coer
exp (dist zero -x:exp))))

In the <Polyr> type, aU non-zero coefficients are units. The unit-normal polynomial is monic (if
non-zero, the leading coefficient is one).

(defproc quorem ((x y <Polyf>)) (values -x -x)
(if (ro? y)

then (error !poly divide by zero!)
e!seir (CO? x)

then (values x x)
else (do ((q (dist null -x)))

((deg< x y)
(values q x))

(bb.d ((quot (new -x
coer (exact-quotient x:coef y:coef)
exp (- x:exp y:exp)))

(rem(- x (• quot y))))
(setq q (+ q quot))
(setq x rem)))))

74

Because the coefficient domain is a field, we can do real division (instead of pseudo-division)

without failure as lcng as the divisor is non zero.

(defproc exact-quotient ((x y <Polyf>)) -x
(bind (((q r) (quorem x y)))

(it (not (ro? r))
then (error lpolyf exact quotient not exact I)
else q)))

The exact-quotient function should only be called when it is known that the divisor evenly

divides the dividend.

7.5 Using the Definitions
Now that the polynomial types are defined, a program can create and manipulate polynomials.

In order to create type or polynomials in x over the Eudidean domain or integers, a specific type

could be created with deftype, or the 'art' form could be used to create a nameless type:

(art <Potyed> <integer> x).
It the ring <Matrix> were defined, the type of "polynomials in x over matrices" could gen

erated in a similar way: (art <Poly> <Matrix> x). Macsyma's standard programs are unable

to work with such a data type because their polynomial operations assume coefficient commuta

tivity.

7.8 Type Conversion
In algebraic algorithms such as the Hensel lifting algorithm (page 74 of !Fateman78J) it is

necessary to convert a data object from one type to another. The target type may not be known

at compile-time, in which case it is be necessary to create the type at run-time before doing the

conversion. This task is difficult in the usual strongly-typed system, and thus our ability to han

dle this is a test or the convenience or N~ One way to do this is illustrated in the following

example: We define the type ol "polynomials in one variable over integers modulo n" and show

how conversions are done between such types with different moduli.

(deftype PolyZmodn
params: ((n <integer>)

(var <symbol>))
restricts: ((<Polycr> (coefdom (art <Zmodn> n)))))

<PolyZmodn> is parameterized by n, the modulus, and var, the indeterminant. The restricts

clause contains a new Corm: (art <Zmodn> n). This is a delayed type expression. When <Po

ly Zmodn > is restricted :md a value is supplied for n, the expression (art < Zmodn > n) will

denote a type-object. For the purposes of verifying that (art <Zmodn> n) is a valid value for

the coefdom parameter, N~ assumes that the expression is simply <Zmodn>. We've as

sumed that <Zmodn> was defined to restrict <CommutativeRing> (otherwise NEWSFEAK will

not permit this deftype because coe!dom must be a type which restricts <CommutativeRing>).

The first conversion function defined is that between < Zmodn > types:

(defproc cvt ((x <Zmodn>) (y <Zmodn>)) -y
(new -y (mod x:val y::n)))

The cvt function takes two objects whose types :1re possibly different restrictions of < Zmodn >

and returns the first object converted to the type of the second object. The arguments to this

75·

function may appear counterintuitive - one probably expects cut to take as arguments an object
and a desired type. The problem with passing the desired type is that no information is declared
about the values the type can have: it can't be assumed that the type is a restriction of
<Zmodn>, or even a domain-type. By passing in a representative object of the desired type: (1)
it is assured that the desired type is a domain-type, (2) the parameters of the desired type can be
accessed (they can't be accessed from the type-object itself by using the double-colon notation),
and (3) the range of values the desired type can take on can be represented (e.g. that it restricts

<Zmodn>).
A similar conversion function can be written for <PolyZmodn>:

(defproc cvt ((x <PolyZmodn>) (y <PolyZmodn>)) -y
(if (CO? x)

then (dist zero -y)
else (new -y

coer (cvt x:coer y:coer)
exp x:exp
rest (cvt x :rest y))))

There are two calls to cvt within this function: the first to a different cvt over < Zmodn> for the
coefficient and the second a recursive call to cvt over <PolyZmodn>.

This function copies the entire polynomial, replacing each link in the linked-list with a link or
the new type (and converting the types of the coefficients too). Copying is required because each
link of the polynomial is 't:-.gged' with the polynomial's type. While this makes arithmetic func
tions easy to write recursively, it also makes type conversion more expensive. We discuss an al
ternative method of representing polynomials below.

An example of a function which uses the cvt function defined above is this:

(defproc lift-square ((x <PolyZmodn>)) <PolyZmodn>
(cvt x (dist null (art <PolyZmodn> (* x::n x::n) x:var))))

The <PolyZmodn> object passed as an argument is converted to another <PolyZmodn> type,
this one with a modulus which is the square of the modulus of the original object's type. The ex
pression

(art <PolyZmodn> (• x::n x::n) x:var)

is another examplt> of a delayed type expression. For the purpose of compilation, NEWSP!!AK as
sumes that the type is <PolyZmodn> (thus it can successfully do the generic function lookup for
the cut function).

The final example is a function to do the first stage lift of the linea.r Hensel algorithm. (Lift
ing from p 11 to p n + 1 introduces no additional concepts but would be a somewhat longer pro
gram.) We are giv~n V(X) and W(X), relatively prime monic polynomials with coefficients in
the field of integers modulo a prime p (i.e. elements of zp [x]), and U(X), an element of Z[x].
They have this relation:

V(x)· W(x) = U(x) mod p

We wish to determine polynomials Vnew(x) and Wnew(x) in Zpz(x] such that

Vnew(x)· Wnew(x) = U(x) mod p2

This defproc comput.es these polynomials:

(defproc hensel-lilt
((u (art <Polyed> <integer>)) (v w <PolyZmodn>) (p <integer>))
(values <PolyZmodn> <PolyZmodn>)

(bind (; create a and b in Zp{zj such that
; a-'v + w•u = 1 in Zp{:zj
((a b dummy) (eeuclid v w))
; create null abject of new type: Zp' 2/z}
(objnew (dist null (art <PolyZmodn> (' p 2))))
; create new polynomials in Zp' 2{:rj
; from those in Zp{zj.
(aup (cvt a objnew))
(bup (cvt b objnew))
(vup (cvt v objnew))
(wup (cvt w objnew))
; calculate c = ((v-'w • u)/ p' !!} in Zp' !!{zj
(c (term/(-(* vup wup) (cvt u objnew))

(new • objnew:coer val r p 2))
0))

; convert c from Zp e{zj to Zp{zj
(cdown (cvt c a))
; determine the quotient (q) and remainder (anew) of
; a-'cfw in Zp{zj
((q anew) (quorem (• a cdown) w))
; set bnew to b*c + q"V in Zp{zj
(bnew (+ (* b cdown) (• q v))))

; return Vnew(z) and Wnew(:z)
(values; Vnew = v • p*bnew in Zp'!!{zj

(+ vup
(term* (cvt bnew objnew)

(new • objnew:coef val (- p))
0))

; Wnew = w · p •anew in Zp • 2{zj
(+ :wup

(term* (cvt anew objnew)
(new • objnew:coef val (- r p 2)))
0)))))

76

The arguments to hensel-lift are U(X), V(X), YV(Xf, and the prime p. The function
must work with polynomials in three domains: ZP [xJ, zp~[x :llld Z[x]. The cvt function we
defined earlier is used to convert polynomials between domains. (Also, a wt function from Z [x]
to Z,. [X] is used even though it hasn't been defined in this section. It is very similar to the cvt
function from z" [x] to Zm [:.c] that we've already shown.) As we mentioned earlier, ct•t creates a
totally new polynomial, an operation that is expeusive in both time and space, especially since
most of the conversions are done betweP.n domains where the coefficients (viewed as integers) do
not have to be recalculated (e.g. from ZP [zj to zp~[x]). It is tempting, therefore, to maintain

the modulus inside the polynomial object itself :llld rf>present the coefficents as <integer> 's.
Then type conversion would be merely a destructive modification of Lhe modulus value. In
NE\~.:.-\K, the programmer may use such a technique but he is then taking on much of the type
checking burden himself.

)

77

8. Conclusions
The goal of our research was the design of a language to support a math-oriented symbolic

algebra system. While symbol-oriented algebra systems can solve many problems, their lack of

mathematical rigor promotes blunders. Furthermore their lack of structure makes addition of

new knowledge difficult.
In order to design a math-oriented symbolic algebra system, we need a language with the abili

ty to represent the complex interrelations of mathematical types. The only languages with

sufficiently powerful hierarchical data typing facilities lack the strict compile-time type checking

that we feel is necessary for a large program such as a symbolic algebra system. As a result,

NEw.3PI!'AK was designed to combine type hierarchies and compile-time type checking. We

discovered that the normal benefits of compile-time type checking (e.g. efficient execution and

type security) can even be obtained in a. language such as NEWSPIW<, where the precise types of

variables are not known at compile-time. Strict typing also enhances the programmer's ability to

specify the input and output data. types for his functions.
For the particular domain of symbolic algebra. systems, NEWSI'I!'AK is especially appropriate. It

has these important features:

• Its ability to represent the hierarchy of mathematical types enables one to write pro-

grams over the most general types and have those programs be inherited by appropriate

types.

• Types may be parameterized by other types, permitting types such as "polynomials over

a ring" to be described.

• The syntax for function calls is the same, whether a generic or parameterized generic call

is being made. The user need not be aware of the difference.

• The language is type safe, permitting the compiler to generate code without run-time

consistency checks.

• Types can be created at runtime. The algebra system constructed on top of NEw.3P!!'AK
will be interactive, and the user may want to extend the system by adding new data

types.

• While the mathematical algorithms will be the core of the algebra system we plan to

build, the outer layers will be made up of rather mundane programs which don't require

a. complex type hierarchy. The most important requirement for the mundane code is that

it be compiled efficiently and not suffer from generalities introduced into the language to

satisfy the mathematical programs. This is the case in NEWSP~WC.

8.1 Limitations
Due to its extensibility, NEWSPEAK doesn't suffer the major limitation of a non-extensible

language: a fixed set or first-class data types. A limitation or NEWSPEAK which is shared by other

high level languages such as Lisp and Smalltalk is that the precise form of data objects isn't a

fixed part of the language. Thus NEWSPEAK would not be suitable for applications such as systems

programming where the exact form or data objects is important. (One could write a program in

another language which would transform a NE\Y.SF'EAK object into any necessary form, as has been

done with Franz Lisp.)

78

8.2 Future work
We have described in this thesis the core of the NE..'WSF'EAK language. Before it is completely

implemented, a number of other issues must be resolved. One of the most important is insuring
consistency between separately compiled modules. Changes in the type hierarchy, especially near
the top, can affect modules which depend on types defined lower down. This will require main
taining a database or dependencies between modules and types.

Strict type checking is a powerful asset to NE:WSF'E\K but it is likely to be troublesome to the
programmer. Type checking permits NEWSPEAK to move most of the cost associated with program
ming within a type-hierarchy to compile-time. The programmer may be intimidated by having to
write programs which satisfy strict typing rules, especially it he is unclear about the characteris
tics of the types he is working on. It is vitally important to the success of the NEWSP!!:AK language
as a tool Cor prototyping systems that a programming environment be built around the language.
Such an environment would help the user with typing problems and with the debugging of his
programs.

We must also establish rules which determine when an object should be treated as atomic and
when its contents are visible. We cannot simply forbid programs outside of an object's type
defining module to see inside the object, because it may be necessary to write functions to convert
from one type to another (e.g. polynomials from factored to unfactored form).

The parameters of type-objects are not mutable (alterable) by programs. There are times in
an algebra system when mutable state variables are required. For example, when defining a
sparse multivariate-polynomial type, we would like to have available an ordered list of the in
determinants in the polynomial, this list being subject to change when new variables are intro
duced. We plan on adding mutable type parameters to NEWSI'EOC

We also plan to add variant records, also known as union types. The sparse multivariate poly
nomials type just mentioned could use such a facility (where each coefficient is either a member of
the coefficient domain or else a polynomial). A variant record is not required if the user is willing
to allocate space for both types of values, and to insure that his program can tell which variant is
valid. It is for the latter reason that we feel that NEWSF'I!'AK, not the programmer, should handle
variants records. It can insure that a program only accesses the valid variant field.

A large algebra system may be best written as a set of independent processes communicating
via a byte stream or shared memory. While many operating systems provide multiprocessing fa
cilities, the methods and capabilities vary from system to system. We do not want to tie
NEWSPEt.K to a particular operating system or machine so we will consider adding multiprocessing
to N~!.VVSFEAK itself.

When we proceed to a full scale implementation of NEWSP!!'AK, the language is certain to grow.
It will be our goal to maintain the semantics that we have presented in this thesis.

79

Bibliography

Barton83. Barton, D., private communication, (1983)

Bourneil. Bourne, S. and Horton, J., The Design of the Cambridge Algebra System, Proeeedings or the
Second Symposium on Symbolic and Algebraic Manipulation, ACM, (1\lil), pp. 134-143

Char83. Char, B. et a!, The Design of Maple: A Compact, Portable and Powerful Computer Algebra Sys
tem, Research Report CS-83-00, University of Waterloo, (April1983)

Cole8L Cole, C., Wolfram, S. et a!, SMP, A Symbolic Manipulation Program, California Institute of
Technology, (1981)

CollinsiL Collins, G., The Sac-! System: An Introduction and Survey, Proceedings of the Second Sympo
sium on Symbolic and Algebraic Manipulation, ACM, (1971), pp. 144-152

D'Ambrosio83. D'Ambrosio, B., Smalltalk-80 Language Measurement-Dynamic Use of Compiled Methods,
Proceedings of CS2\l2r, CS Division, University of California at Berkeley, (April 1983)

Davenport80. Davenport, J. and Jenks, R., ModLisp, Proceedings of the 1980 Lisp Conference, (1980),
pp. 6~74

Engelman69. Engelman, C., Mathlab 58, Information proeessing 68, North-Holland, Amsterdam, (1969),
pp, 462-467

Fatemani8. Fateman, R., CS 292s Draft notes, (1978)

Foder:uo81. Foderaro, J. and Fateman, R., Characterization of VAX Macsyma, Proceedings of 1g81 ACM
Symposium on Symbolic and Algebraic Computation, (1981), ppo 14-19

Foderaro82. Foderaro, J. and Sklower, K., The Franz Lisp Manual, CS Division, EECS Department,
University of California at Berkeley, (1982)

Geddes82. Geddes, K., Algebraic Algorithms for Symbolic Computation (draft notes), University of Water
loo, (Jan. 1982)

Goldberg83. Goldberg, A. and Robson, D., Smalltalk-80, The Language and Its Implementation, Addison
Wesley, (1983)

Griesmer71. Griesmer, J. and Jenks, R., Scratchpad/1 ·An Interactive Facility for Symbolic Mathematics,
Proceedings of the Second Symposium on Symbolic and Algebraic Ylanipulation, AC:>!, (1971),
PPo 42-58

Ha1171. Hall, A., The Altran System for Rational Function .\fanipulotion ·A Survey, Proceedings of the
Second Symposium on Symbolic and Algebraic :>1anipulation, ,\C:-.1, (1971), pp. 153-157

Hearn71. Hearn, A., Reduce 2: A System and Language for Algebraic Implementation, Proceedings of the
Second Symposium on Symbolic and Algebraic Manipulation, AC:>1, (1971), pp. 123-133

80

Ichbiah79. lchbian et al, Rationale for the Design of the Ada Programming Langauge, SIGPLAN Notices,
ACM, (June 1979)

Jenks81. Jenks, R. and Trager, B., A Language for Computational Algebra, Proceedings of 1981 ACM
Symposium on Symbolic and Algebraic Computation, pp. x-y

Kernighan78. Kernighan, B. and Ritchie, D., The C Programming Language, Prentice-Hall, (1978)

Knuth81. Knuth, D., The Art of Computer Programming, Volume e, Addiso'1-Wesley, (1981)

Martin67. Martin, W., Symbolic Mathematical Laboratory, MIT (MAC-TR-36), (1967)

Martin71. Martin, W, A. and Fateman, R. J., The Macayma System, Proceedings of the Second Symposi
um on Symbolic and Algebraic Manipulation, ACM, (1971), pp. 59-75

Minsky75. Minsky. M., A Framework for Representing Knowledge, in P. H. Winston (Ed.) The Psycholo
gy of Computer Vision, McGraw-Hill, (1975)

Morris73. Morris, J., Types are not Sets, ACM Symposium on Principles of Programming Languages,
(1973), pp. 120..124

Moses67. Moses, J., Symbolic Integration, MIT (MAC-TR-47), (1967)

Moses74. Moses, J., Macsyma- The Fifth Year, Proceedings Euros:1m 74 Conference, (August 1974)

Novak82. Novak, G., Glisp User's Manua~ CS Dept, Stanford University, (November 1982)

Orwell50. Orwell, G., 1984, Harcourt, Brace and Co., {1950)

Roberts77. Roberts, R. and Goldstein, 1., The FRL Manual, The MIT A.l. Laboratory, (1977)

Soiffer81. Soiffer, N., A Perplexed User's Guide to .{ndante, UCB internal memo, (December 1981)

Stallman83. Stallman, R., personal communication, (1983)

Steele77. Steele, G., Data Representations in PDP-10 MacLisp, Proceedings of the 1977 Macsyma Users'
Conference, {1977), pp. 20~214

Teer78. Teer, F., Formula Manipulation and Pascal, University of Amsterdam, (1978)

Trager83. Trager, B., private communication, (1983)

VanDeRiet73. Van de Riet, R., ABC Algol, A Portable Language for Formula Manipulation Syatema,
Mathematisch Centrum, (1973)

Veltman65. Veltman, M., Schoonschip, A CDC 6600 Programme for Symbolic Evaluation of Feynman Di
agrama, CERN, (1965)

Weinreb81. Weinreb, D. and Moon, D., Lisp Machine Manual, MIT, (1981)

Xenakis71. Xenakis, J., The PL/ 1 - Formac Interpreter, Proceedings of the Second Symposium on Sym-

\

.)

•'\
}

\

' . /

_}

81

bolic and Algebraic Manipulation, ACM, (1971), pp. 153-157

Zippel83. Zippel, R., Capsules, MIT, (1983)

