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ABSTRACT  
 
This report documents the development of a computational model to simulate the complex 
flow induced by helicopter rotors, using an open-source computational fluid dynamics (CFD) 
code, OpenFOAMTM. This computational code is now being used to perform large-scale multi-
physics simulations of the flow field around helicopters including exhaust plumes and their 
airframe impingement. The rotor downwash model was validated against available 
experimental data on rotor-fuselage interactions published by the Georgia Institute of 
Technology. The OpenFOAM predicted result was also shown to compare favourably with 
ANSYS Fluent predictions. 
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Executive Summary  
 
 
The Infrared Signatures and Aerothermodynamics (IRSA) group within DSTO is 
tasked with providing measurement-validated infrared signature models of air 
vehicles to the Australian Defence Force (ADF).  
 
In general, both fixed and rotary-wing aircraft will exhibit a significant area of 
unobscured hot exhaust surface. For such aircraft, the infrared signature is dominated 
by direct emissions from these unobscured hot surfaces, while the signature 
contribution from surface reflections and plume emissions can largely be neglected 
without great loss of accuracy. However, for low-observable aircraft, like helicopters 
fitted with infrared suppressors, a lack of observable exhaust surfaces means that this 
simplification does not apply. Infrared-suppressed helicopters are becoming 
increasingly important to the ADF and an understanding of their infrared signature 
requires a much more comprehensive understanding of their associated air and 
exhaust flows.  
 
Infrared suppression systems principally function by denying direct line-of-sight to hot 
engine exhaust surfaces at tactically critical viewing aspects. Consequently, aircraft 
fitted with infrared suppression systems have signatures which are dominated by 
exhaust plume emissions, emissions from airframe surfaces incidentally heated by 
exhaust impingement and indirect reflections of directly obscured hot surfaces on rotor 
blades, wings, cavities, etc. In the case of a suppressed helicopter, the ability to model 
the complex interaction between the hot engine exhaust plume and the rotor 
downwash is essential to the prediction of its infrared signature. Downwash-plume-
crosswind interaction determines the magnitude and disposition of volumetric exhaust 
gas emission and localised surface emission due to plume impingement. 
 
This report documents the development of a computational model to simulate the 
complex flow induced by helicopter rotors, using an open-source computational fluid 
dynamics (CFD) code, OpenFOAMTM. This computational code is now being used to 
perform large-scale multi-physics simulations of the flow field around helicopters 
including exhaust plumes and their airframe impingement. These simulations exploit 
the benefit of combining free open-source software with historically inexpensive 
computer cluster hardware performance to accurately model the signatures of low-
observable aircraft. 
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Notation 
 
  rotor blade angular velocity (rad/s) 

 zr ,,  stationary cylindrical coordinate system local to the rotor plane 
for zero RSP pitch-bank angles 

 zyx ,,  global Cartesian coordinate system 

r  
radial position vector along the blade span  

  rotor azimuth angle 

LRFr  unit radial vector in the LRF rotating cylindrical frame of 
reference  

LRF  unit vector tangential to the instantaneous blade path in the LRF 
rotating cylindrical frame of reference  

LRFz  unit vector normal to the instantaneous blade path in the LRF 
rotating cylindrical frame of reference 

RSPr  unit radial vector in the RSP rotating cylindrical frame of 
reference  

RSP  unit vector tangential to the line of constant radius in the RSP 
rotating cylindrical frame of reference  

RSPz  unit vector normal to the RSP rotating cylindrical frame of 
reference 

  rotor disk solidity ratio 

bN  number of blade on the rotor 

J  rotor advance ratio 

R  rotor disk radius (m) 

g  blade geometric angle-of-attack (deg) 

collective  blade collective angle-of-attack (deg) 

  sincos BA   blade longitudinal and lateral cyclic pitch angles (deg) 

  total blade flapping angle (deg) 

0  blade coning angle (deg) 

  sincos 11 sc   first harmonic components of the blade longitudinal and lateral 
flapping angles (deg) 

i  induced angle-of-attack (deg) 



UNCLASSIFIED 
DSTO-TR-2931 

UNCLASSIFIED 

e  blade effective angle-of-attack (deg) 

LRFi  induced angle-of-attack in the rotor LRF rotating cylindrical 
frame of reference (deg) 

LRFe  
blade effective angle-of-attack in the rotor LRF rotating 
cylindrical frame of reference (deg) 

  blade twist angle (deg) 

 zyx vvv ,,  velocity components (m/s) in the stationary global Cartesian 
frame of reference  

 
RSPRSPRSP zyx vvv ,,  velocity components (m/s) in the RSP stationary Cartesian frame 

of reference  

 
LRFLRFLRF zr vvv ,,   velocity components (m/s) in the LRF rotating cylindrical frame 

of reference following the blade path 

LRF
v '  

total relative fluid velocity component with respect to the blade 
tangential velocity (m/s) in the direction parallel to the blade 
motion in the LRF rotating cylindrical frame of reference 

lf  sectional blade force (N) in the direction perpendicular to the 
blade chord, obtained using the 2D Lifting Line theory 

df  sectional blade force (N) in the direction parallel to the blade 
chord, obtained using the 2D Lifting Line theory 

LRFzf  sectional blade force (N) in the direction normal to the blade path 
in the LRF rotating cylindrical frame of reference 

LRF
f  sectional blade force (N) in the direction tangential to the blade 

path in the LRF rotating cylindrical frame of reference 

 
LRFLRFLRF zr FFF ,,   time-averaged blade force components (N) in the LRF rotating 

cylindrical frame of reference 

 
RSPRSPRSP zr FFF ,,   time-averaged blade force components (N) in the RSP rotating 

cylindrical frame of reference  

 
RSPRSPRSP zyx FFF ,,  time-averaged blade force components (N) in the RSP stationary 

Cartesian frame of reference 

 zyx FFF ,,  time-averaged blade force components (N) in the stationary 
global Cartesian frame of reference 

lC  blade 2D lift coefficient 

dC  blade 2D drag coefficient 

localU  magnitude of local velocity vector relative to each blade element, 
neglecting the velocity component in the radial direction (m/s) 
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T  total rotor thrust (N) in the global Cartesian frame of reference  

Q  total rotor torque (N) in the global Cartesian frame of reference 

uS  volumetric momentum source in vector form in the global 
Cartesian frame of reference (force per unit computational cell 
volume) 

TC  rotor disk coefficient of thrust 

MxC  rotor disk coefficient of pitching moment 

MyC  rotor disk coefficient of rolling moment 

k  turbulent kinetic energy  22 sm  

  turbulent dissipation rate  32 sm  

turbI  turbulent intensity (%) 

t  flow time  s  

  fluid density  3mkg  

  fluid molecular viscosity  smkg .  

t  turbulent viscosity  smkg .  

p  pressure  pa  

u  
velocity vector  sm /  

U  freestream velocity 

p  a reference static pressure based on the freestream condition 

C  a coefficient in the k turbulence models 

HD  equivalent hydraulic diameter used for evaluating the turbulence 
length scale in a wall bounded channel 
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1. Introduction  

 
The Infrared Signatures and Aerothermodynamics (IRSA) group within DSTO is tasked 
with providing measurement-validated infrared (IR) signature models of air vehicles to 
the Australian Defence Force (ADF).  
 
An important element of the IR signature modelling is the ability to model the transport of 
the hot exhaust plume around a helicopter under the influence of the rotor downwash. 
The transport of the hot exhaust plume around the helicopter fuselage may have an 
important fuselage heating effect due to the impingement of the hot plume on the 
fuselage. This needs to be modelled correctly to produce an accurate temperature 
distribution on the engine nacelles, fuselage, rotor blades, and tail boom. An accurate 
temperature distribution on the fuselage, nacelles and exhaust plume is a critical input for 
generating an accurate IR signature prediction for the entire platform.  
 
The transport of the hot exhaust plume around a helicopter is dependant on several 
different factors, such as: the freestream flow; the turbulent air-wake due to the interaction 
between the freestream flow and the fuselage; as well as the rotor downwash flow. It is 
therefore critical that the Computational Fluid Dynamics (CFD) modelling tools used for 
predicting both the flow and temperature fields are able to accurately model the 
interaction between each of the different flow features before the heat transfer rates and 
the temperature distribution on the fuselage can be accurately predicted. 
 
ANSYS Fluent CFD software has been used within the group for simulating the flow 
around a helicopter. The flow through the rotor plane is modelled in ANSYS Fluent using 
an additional add-on code called “Virtual Blade Element Model” (VBM) which is available 
by request from ANSYS distributor1. Furthermore, at Reference 1 DSTO developed in-
house a separate VBM code, as an add-on to ANSYS Fluent based on Reference 2.   
 
Since early 2010, IRSA has been evaluating another CFD code, OpenFOAM, which is an 
open source code and is made available to the public for free (Reference 3), to complement 
the use of ANSYS Fluent. Unlike ANSYS Fluent, OpenFOAM avoids licensing costs and 
thus offers the potential to run high fidelity simulations using a large High Performance 
Computing (HPC) cluster at a significantly lower cost than that required by ANSYS. 
However, several gaps in the OpenFOAM2 capabilities for performing the CFD 
simulation, as typically required for simulating the flow around the helicopter, have been 
identified. Most notable is the lack of a VBM to model the flow induced by a helicopter 
rotor. Consequently, a task was raised to develop the VBM capability using the 
OpenFOAM code. This development task was jointly carried out with OpenCFD Ltd.3 in 
the United Kingdom, which is the original producer of the OpenFOAM code. It should be 
noted that a significant portion of the model development is based on the work presented 

                                                      
1 LEAP, Pty. Ltd. is the sole distributor for ANSYS Fluent in Australia. 
2 OpenFOAM Version 1.7.x 
3 OpenCFD, Ltd. is now wholly owned by ESI, Ltd.. 
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at References 1, 2 and 4.  This report provides a detailed mathematical description of the 
VBM, its implementation in the OpenFOAM environment, and the model validation 
against available experimental data.  
 
This report is divided into six sections. A thorough description of the mathematical model 
employed in the VBM is presented at Section 2. The model implementation using the C++ 
programming language and the OpenFOAM library, including an overview of the code 
structure is discussed in Section 3. Section 4 describes the procedure for setting up a 
simulation case with the VBM in OpenFOAM. Sections 5 reports on the code validation 
and verification results using available experimental data. Finally, the conclusions and 
recommendations arising from this development task are discussed in Section 6. 
 
Following this development effort, a CFD simulation of the flow around the MRH-90 in 
hover and its effect on fuselage heating was carried out. This work is presented at 
Reference 5, and was considered to be a suitable test case for evaluating the OpenFOAM 
accuracy in performing the complex-geometry complex-flow CFD simulations typically 
required by IRSA.  
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2. Physical Model and Assumptions  

2.1 Overview of Rotor Blade Modelling Techniques in CFD 

The airflow induced by the moving blades in a helicopter rotor is generally unsteady and 
consists of complex flow features. As the blade moves through the air, tip vortices are 
generated on the blade tip, which will interact with the air induced through the rotor 
plane along the rotor axis. This interaction typically produces a very complex 
three-dimensional unsteady swirling air-wake with cascading tip vortices at the boundary 
of the rotor downwash. The downwash flow pattern may also vary depending on the ratio 
of the rotor blade linear speed and the helicopter forward speed (known as the “advance 
ratio”).  
 
Several techniques exist for modelling the flow through a helicopter rotor using CFD. 
These techniques vary in terms of the model complexity and the associated computational 
cost. The selected model must consider the objective of the simulation ranging from 
determining detailed blade characteristics (e.g. blade stall behaviour or accurate prediction 
of rotor lift and drag), to cases where only the time-averaged cumulative effects of the 
rotating blades on the rotor air-wake and its interaction with the fuselage is considered 
important. The latter scenario is deemed to be appropriate for predicting the transport of 
the hot exhaust plume and its impingement on the fuselage skin for the purpose of IR-
signature prediction. 
 
The most common technique used in CFD for computing the time-averaged flow-field is 
the Reynolds-Averaged Navier-Stokes (RANS) simulation. In the RANS simulation, the 
fluctuating velocity field is removed from the system of equations. Turbulence is modelled 
by introducing a modelling quantity called “turbulence viscosity” to model the increase in 
the stress in the flow due to turbulence.  
 
When using the RANS simulation the time-averaged effect of the rotor blade moving 
through the air can be modelled as time-averaged momentum sources introduced in the 
cell region swept by the rotor blades. This region is modelled as a disk with a finite 
thickness made up of a collection of computational cells. The rotor disk orientation 
corresponds to the orientation of the Rotor Shaft Plane (RSP), and the disk radius 
corresponds to the actual blade radius.  
 
In this simplified rotor model, there is no need to physically model the individual rotor 
blades in the domain. Consequently, the mesh does not need to be regenerated or 
“moved” as the blade moves through the air. Therefore, the resulting computational mesh 
has a substantially lower cell count when compared to modelling the entire blade 
geometry, which also significantly reduces the mesh generation time.  
 
Two variants of the simplified rotor model exist. The pressure disk rotor model 
approximates a helicopter rotor or propeller in a time averaged manner using inflow and 
outflow boundary conditions at the disk’s circular surfaces (which are the top and bottom 
surfaces of the cylinder). This yields a pressure jump across the disk varying with radius 
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and azimuth. Such model is known as the “Fan” boundary condition. Alternatively, Zori 
et al (Reference 4) developed a more accurate technique that replaces the rotor system with 
momentum sources placed in the rotor disk region, yielding indirectly a pressure jump 
across the disk which varies with the disk radial and azimuthal coordinates. Using this 
technique, the momentum sources are calculated using the well-known Blade Element 
Theory (BET) which approximates the blade forces at each point in the rotor disk region by 
using an airfoil lookup table that provides the two-dimensional (2D) lift and drag 
coefficients for the blade airfoil considered. The latter rotor modelling technique is known 
as VBM, which is the model adopted for the current development task. 
 
The VBM model only allows for accurate aerodynamic predictions when no flow 
separation occurs on the actual blade for a particular helicopter control input and flight 
condition. This limitation is largely imposed by the use of 2D lifting line and drag line 
curves for calculating the blade forces in the rotor disk region. Furthermore, for modelling 
helicopter rotor in flight, the VBM requires the user to know a priori the correct orientation 
of the rotor TPP for a particular blade collective and cyclic pitch trim, and flight condition. 
The orientation of the RSP must correspond to the orientation of the rotor disk in the CFD 
mesh. Note that the rotor disk pitch and bank angles are calculated from the mesh, while 
the TPP is constructed during runtime using the blade flap angle as the blades rotate. 
Therefore, the origin and angle of the TPP are different from the origin and angle of the 
RSP as defined by the mesh. This will be discussed further in Section 2.3. 
 
The rotor blade flap angle profile for a particular helicopter type and flight condition can 
typically be obtained using various flight dynamics modelling software, such as FlightLab 
(Reference 6). The Rotary Wing Operation (RWO) group within the Air Operation Division 
(AOD) maintains a collection of validated FlightLab models for a range of ADO helicopter 
types.  
 
2.2 Overview of Rotor Aerodynamics  

A brief overview of the rotor aerodynamics will be discussed in this section prior to the 
description of the VBM. This overview will lay the necessary foundation including the 
conventions used in the implementation of the BET in a RANS algorithm.  
 
2.2.1 Brief Description of a Helicopter Rotor 

A schematic of the blade in the rotor plane system is shown in Figure 2.1. It is conventional 
to assume that the rotor rotation direction is counter-clockwise (viewed from above). Thus, 
this direction of rotation in the model is assumed to have a positive angular velocity, .  
 
In forward flight, and assuming a positive angular velocity, the right side of the rotor disk 
is termed the advancing side, while the left side is termed the retreating side. The two 
terms are due to the difference in the relative velocity experienced by the blade when the 
helicopter flies forward. 
 
A cylindrical coordinate system is used to describe any arbitrary position inside the rotor 
disk model which represents the RSP. This coordinate system has the origin located at the 
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disk centre. The variables r and  refer to the radial and azimuthal position of the blade, 
which are also used for the polar coordinates on the rotor disk. The RSP coordinate system 
will be further transformed using the flap angle   into the Local Rotor Frame of reference 
(LRF) which follows the motion of the blade path. This transformation will be further 
discussed in Section 2.3.2. 
 

 

Figure 2.1:  Rotor disk schematic showing definition of  and r 

 
Another important scaling factor is the rotor disk solidity, . The solidity is the ratio of the 
total blade area to the total disk area. For a non-tapered (constant chord) blade, the solidity 
is given by: 
 

      
R

cNb


      [Equation 2.1] 

 
In forward flight, the forward velocity of the aircraft is commonly described in terms of 
“advance ratio”. Advance ratio, J,  is the ratio of the blade tip linear velocity to the aircraft 
forward velocity, V .  
 

      
R

V
J


     [Equation 2.2] 
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2.2.2 Blade Geometry 

A helicopter blade was traditionally made of a symmetric airfoil (Reference 7). However, 
many modern helicopters now incorporate non-symmetrical high-lift airfoil shapes. The 
lift on a blade section is produced by increasing the effective Angle-Of-Attack (AOA) of 
the blade relative to the blade motion and local fluid velocity angle. The blade AOA is 
determined by the collective pitch input and the cyclic pitch input from the helicopter 
control sticks. The collective pitch applies a constant AOA to the blade independent of its 
azimuthal position in the rotor disk plane, while the cyclic pitch applies a harmonically 
varying AOA on the blade depending on its azimuthal position. The superposition of the 
two pitch inputs can be described by the following equation: 
 
     sincos BAcollectiveg     [Equation 2.3] 

 
where g  is the geometric angle of attack, collective  is the collective pitch angle, A  and 

B are the blade cosine and sine pitch angles.  
 
Furthermore, the rotor blade is normally twisted along its length. The model will allow for 
a linear twist to be accounted for in the calculation. Compounding the blade twist angle on 
the collective pitch and cyclic pitch angles will yield the following blade geometric AOA: 
 
     rBAcollectiveg   sincos   [Equation 2.4] 

 
2.2.3 Rotor Coning and Flapping 

Figure 2.2 shows a schematic of the blade motion. The basic motion of the blade is 
essentially rigid body rotation about the rotor hub. However, most rotor blades must be 
allowed to flap vertically as they rotate for stability reasons (Reference 7). The flapping 
motion (shown in Figure 2.2 as the  direction) is largely due to the asymmetric velocity 
distribution on the rotor plane as the blade travels from the advancing side of the rotor to 
the retreating side when the helicopter is moving forward. Furthermore, most modern 
helicopter rotors also allow the blade to rotate in the direction of the disk plane. This 
motion is called blade “lead-lag” (shown in Figure 2.2 as the  direction) and has been 
neglected in the development of the current model.  
 
The asymmetric velocity distribution on the rotor plane in forward flight causes 
asymmetry of lift (Reference 7). During hover, the lift is uniform across the entire rotor 
disk. However, in forward flight, as the helicopter gains airspeed, the advancing blade 
develops greater lift than the retreating blade because of the increased relative airspeed. 
This asymmetry of lift is compensated for by allowing the blade to flap. The increased 
relative airspeed (and corresponding lift increase) on the advancing blade causes the blade 
to flap upward. On the other hand, decreasing speed and lift on the retreating blade causes 
it to flap downward. This flapping process alters the effective angle of attack of the blade 
as each blade rotates, and further causes the upward-flapping, advancing blade to produce 
less lift, and the downward-flapping, retreating blade to produce a corresponding lift 
increase. The result is a balanced lift distribution across the disk. 
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Rotor blades on helicopters flap in response to the centrifugal and aerodynamic forces they 
experience. The flapping and coning motion of the blade could not be physically modelled 
in the VBM as such a model would require the solution to the blade equation of motion, 
taking into account the structural stiffness and response of the blade to the aerodynamic 
forces. However, if the blade flapping and coning motion is known a-priori, the model can 
account for the coning and the first harmonics by transforming the velocity components 
from the RSP to the LRF (see Figure 2.3). 
 
In the current model development, flapping is defined to be positive for upward motion of 
the blade. 
 

 

Figure 2.2:  Blade motion schematic at an arbitrary azimuthal position, , on the rotor disk 

 
The blade flap harmonic modes can be decomposed into longitudinal flapping and lateral 
flapping. Thus, assuming that the blade is rigid along its span, the blade flap angle,   , 
must be expressed as a Fourier series: 
 
     ...2sin2cossincos 22110   scsc   [Equation 2.5] 

 
The first term in Equation 2.5 is termed the blade coning angle. Only the first sine and 
cosine terms in the equation are considered in the current model. Furthermore, the 
flapping velocity t / , which typically contributes to the velocity normal to the blade 
path, has been neglected.  
 
Figure 2.3 shows a sketch of the blade in flapping and coning planes and the definition of 
the rotor TPP and RSP. Note that while the rotor disk in the mesh represents the RSP, the 
rotor disk region modelled in the VBM corresponds to the LRF, not the RSP. The LRF is a 
moving frame of reference that follows the blade path as it flaps and cones.  



g



Rotor shaft 
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Figure 2.3:  A schematic of the RSP, LRF and TPP on a flapping and coning blade 

 
2.3 Model Description 

2.3.1 The Virtual Blade Model 

The numerical model used for predicting the momentum sources in the rotor disk region 
adopted in this report was first introduced by Rajagopalan et al. (References 8 and 9). Since 
then, several studies have been carried out to investigate the validity of this model in a 
simplified environment where accurate experimental data can be taken. These studies 
(available at References 4 and 10) have shown that well-known, qualitative features of the 
rotor wake are well approximated by this model. Furthermore, these references also show 
that the numerically predicted flow-field and the experimentally measured flow-field data 
are quantitatively in good agreement.  
 
At References 2 and 11, the numerical algorithm introduced by Zori et al. (Reference 4) 
was implemented in the Fluent environment. Furthermore, at Reference 1 DSTO 
independently developed an in-house implementation of the VBM in Fluent.  The model 
implemented in OpenFOAM follows closely the numerical algorithm presented at 
References 1, 2 and 4.  
 
The model implementation in Reference 11 addresses several shortcomings of the previous 
model at Reference 4. The most notable shortcoming is that accurate aerodynamic 
predictions are only possible if the rotors operate at desired thrust and zero moment about 
the hub. This is attained by perturbing the collective (thrust) and the cyclic (moments) 
blade pitch angles (a procedure performed by trim routines embedded in the VBM model) 
until the desired rotor thrust and moments are achieved during the simulation. The 
numerical trim routine implemented in the OpenFOAM VBM model utilises a Newton-
Raphson iterative method to account for the non-linear relation between blade pitch and 
rotor performance. 
 
As previously discussed in Section 2.1, the VBM model approximates the time-averaged 
effect of the rotor blades in the flow-field by explicitly introducing momentum sources 

180
0

TPP 

RSP 
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inside the disk volume swept by the spinning rotor. This volume is referred to as the rotor 
disk region. The procedure used to calculate the momentum sources can be summarised as 
follows: 

1. The flow-field around the rotor disk region is solved. 

2. The blade forces on each point in the rotor disk region are calculated using: the local 
fluid velocity; the modelled blade geometric angles; the blade 2D lifting line; and the 
blade 2D drag curve. 

3. The momentum sources imparted by the blade onto the fluid are approximated using 
the calculated blade forces at each point in the rotor disk region. 

4. Check convergence and return to step 1, if necessary. 

 
2.3.2 Frame of Reference Transformations 

The following frame of reference transformations are applied to transform the local 
velocity vector acting on each blade element from the global stationary Cartesian frame to 
a rotating frame of reference that follows the blade path (termed the LRF): 
 

1. The Global Cartesian Frame of Reference.  The Navier-Stokes Equations are solved in 
the global Cartesian frame of reference during the simulation. This frame of reference 
are defined by the three orthogonal base vectors, x ,y and z.  The three components of 
the velocity vector of the fluid in this frame of reference are denoted as xv , yv  and zv . 

2. The RSP Stationary Cartesian Frame of Reference.  To account for the RSP pitch and 
bank angle, the local velocity vector acting one each blade element is transformed from 
the global Cartesian frame to the RSP Cartesian frame using the following equation: 
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 [Equation 2.6] 

 
where the RSP pitch angle,  , and bank angle,  , are calculated using the RSP normal 

vector, RSPz  with respect to the global z  direction (i.e. 0  and 0 for a non tilted 

rotor disk).  
      

3. The RSP Rotating Cylindrical Frame of Reference.  The local velocity vector in the 
RSP stationary Cartesian frame is transformed into the RSP rotating cylindrical frame 
using the following equation: 
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    [Equation 2.7] 

 
where the angle   is the rotor azimuth angle in the stationary RSP cylindrical frame of 
reference, and is related to the stationary RSP Cartesian system as follows: 
 

   22 yxrRSP   and 





 

x

y
RSP

1tan    [Equation 2.8] 

 
The x and y coordinates used in Equation 2.8 are Cartesian coordinates in the stationary 
RSP frame of reference.  
 

4. The LRF Rotating Cylindrical Frame of Reference.  The local velocity vector in the 
RSP rotating cylindrical frame is transformed into the LRF rotating cylindrical frame 
using the following equation: 
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   [Equation 2.9] 

 
where the angle   is the compounded flapping and coning angle previously given by 
Equation 2.5. Note that this frame of reference is rotating with the blade and following 
the blade flapping and coning motion.  

 
Figure 2.4 shows a schematic of the RSP stationary cylindrical frame of reference and the 
LRF rotating cylindrical frame of reference. 

 
Figure 2.4:  Schematic of the blade element in the RSP stationary cylindrical frame of reference and 

the LRF rotating cylindrical frame of reference 
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2.3.3 Blade Forces Calculation 

A schematic of the blade element representation in the LRF rotating cylindrical frame of 
reference is shown at Figure 2.5. It is important to note that the coordinate system shown 
in this figure is already in the LRF rotating cylindrical frame of reference.  
 
The blade element area is given by: 
 

     ).(  rrA      [Equation 2.10] 
 
Since the blade is not physically modelled in the VBM, each cell in the rotor disk region is 
assumed to represent a blade element.  However, it is important to note that the 
computational cells in the disk mesh are in the RSP frame of reference, NOT in the LRF 
frame of reference.  
 
Each cell in the rotor disk region can be described by the radial position vector relative to 

the disk origin, r (x,y,z) and the rotor azimuth angle,  . As previously discussed in 

Section 2.3.2(3), the vector r  and azimuth angle   are approximated using the Cartesian 
coordinates of each cell relative to the rotor disk centre in the mesh in the stationary RSP 

frame of reference. The same vector r  and azimuth angle   have been used for the 
calculation of the force acting on each cell in the LRF frame of reference. Therefore, it is 
expected that some errors are introduced in the calculation due to this approximation.  
However, this error was deemed acceptably small when the RSP pitch and bank angles are 
small (typically less than five degrees), and when the compounded blade flap and cone 
angles are also small (typically less than five degrees). 
 
 

 
Figure 2.5:  Blade element  

 
A schematic of the drag and lift forces acting on the blade element at any arbitrary 
coordinate in the LRF is shown in Figure 2.6.  

0
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Figure 2.6:  Schematic of the forces acting on the blade element in the LRF 

 

LRFi  is the induced AOA in the LRF, which is given by: 

     









 

LRF

LRF

LRF v

vz
i




'

tan 1
   [Equation 2.11] 

 

where 
LRFzv was previously calculated using Equation 2.9. 

LRF
v '  is the total relative fluid 

velocity with respect to the blade tangential velocity, and is given by: 
 

    LRFrvv
LRFLRF

 '    [Equation 2.12] 

 
where the first term in Equation 2.12 refers to the local fluid velocity in the direction 
parallel to the blade path as previously given in Equation 2.9, and the second term refers 
to the blade linear velocity component in the direction parallel to the blade path. The 
velocity component acting on the blade element in the direction orthogonal to the blade 
path, 

LRFzv is previously given by Equation 2.9. 

 
To estimate the forces acting on fluid particles, consider the forces acting on the two-
dimensional blade section shown in Figure 2.6. Note that the positive rotation of the airfoil 
is in the positive z-direction. Components of the blade force acting in the normal and 
tangential direction to the blade chord are given by the following equations:   
 

    
LRFLRFLRF idilz fff  sincos    [Equation 2.13] 

    
LRFLRFLRF idil fff  cossin    [Equation 2.14] 
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2.3.4 Blade Section Lift and Drag 

The blade sectional lift, lf , and sectional drag, df , on each blade element (seen in 

Equations 2.13 and 2.14) are calculated based on the effective AOA seen by the blade 
element and the airfoil lift and drag coefficients. From Figure 2.6, the effective AOA seen 
by each blade element (

LRFe ) is given by: 

     
LRFLRFLRF ige      [Equation 2.15] 

 
Using the effective AOA, the sectional lift and drag coefficients can be obtained as a 
function of AOA using a predefined lookup table. The lookup tables are user inputs which 
can be obtained using the two-dimensional lifting line theory for a given blade airfoil 
shape.  
 
It is important to note that this model neglects any compressibility effect due to the 
moving blade. The blade lift coefficient is assumed to be directly proportional to the 

effective AOA, i.e. 
LRFelC  .  

 
The sectional forces acting on the blade are given by: 
 

       llocall cCUf 2

2

1     [Equation 2.16] 

       dlocald cCUf 2

2

1     [Equation 2.17] 

where: 
 c  is the chord length at the location of the blade element, 
 lC  and dC  are the sectional lift and drag coefficient respectively, and 

 localU  is the local induced fluid velocity experienced by the blade element. 

 
The local velocity is given by the following expression for each blade element: 
 

       22 '
LRFLRF

vvU zlocal     [Equation 2.18] 

 
The radial fluid velocity component in the rotor disk region has not been included in 

Equation 2.18 in accordance to the BET assumption. 
LRFzv and 

LRF
v ' were previously 

calculated using Equation 2.9 and Equation 2.12 respectively. 
 
The blade sectional lift and drag in Equations 2.16 and 2.17 can subsequently be 
substituted into Equations 2.13 and 2.14 to obtain the rotor thrust and torque forces which 
are the forces normal and parallel to the rotor disk plane respectively.  
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Finally the elemental thrust, torque, and power on each blade element can be calculated 
using: 
 

      drfNdT
LRFzb     [Equation 2.19] 

     rdrfNdQ
LRFb      [Equation 2.20] 

     rdrfNdQdP
LRFb .    [Equation 2.21] 

 
where bN  is the number of blades in the rotor disk. The total forces on the rotor disk are 

obtained by integrating over the blade span from root to tip.  The root cutout can be 
modelled as a “hole” in the centre of the disk. 
 
2.3.5 Blade Tip Effect 

As previously discussed, at each spanwise location of the blade (which is equal to the 
radial direction of the rotor disk) local lift and drag forces are computed assuming two-
dimensional flow. This assumption is violated in close proximity to the blade tip due to 
the presence of increasingly strong secondary flow around this area.  
 
To account for the loss of blade lift near the tip, a simple correction factor was applied to 
the force calculations in the region near the edge of the rotor disk. In the corrected model, 
the blade lift is assumed to be zero for blade elements that are located outward of a certain 
user-selected threshold value. This threshold is in the form of a radial distance from the 
rotor disk origin, normalised by the rotor disk radius. For example, a value of 0.96 means 
that from a normalized span of 0.96 outward, the lift forces are set to zero while the drag 
forces are still accounted for (using the two-dimensional assumption). Hence, using this 
example, the last four per cent of the blade span produces no lift (just recirculation around 
the blade) while it still produces drag. A tip loss factor of 0.96 is typical for a helicopter 
rotor (Reference 12). 
 
2.3.6 Momentum Sources 

Figure 2.7 shows a typical structured mesh used for CFD modelling of a rotor disk using 
the VBM. The rotor disk is represented in the CFD model by a collection of cells (in this 
case of hexahedral form). In the VBM, momentum sources that represent the effect of the 
blade forces on the fluid flow are introduced in each of the computational cells in the rotor 
disk region.  
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Figure 2.7:  Typical structured mesh used to model the rotor disk using the VBM 

 
The method for calculating the blade forces on each blade element represented by each of 
the cells in Figure 2.7 has been outlined in Sections 2.3.1 through 2.3.5. It is important to 
note that there is no direct relationship between the blade element and the computational 
cell in the mesh. However, the method used to calculate the forces acting on the blade 
element can be applied to calculate the equivalent blade forces at each computational cell 
in the rotor disk.  
 
In this section, the method for converting the calculated instantaneous blade forces into 
the time-averaged momentum sources will be described. 
 
The forces acting on each cell in the LRF are given by Equations 2.13 and 2.14. However, 
these calculated forces are instantaneous forces experienced by the cell as the blade is 
traversing through air. In a time-averaged simulation, such as steady RANS, the time-
averaged force experienced by each cell in the rotor disk region is only a fraction of these 
instantaneous forces. Therefore, assuming a constant rotational speed of the rotor, time-
averaging over one period is identical to geometric averaging over an angle of 2 . Thus, 
the time-averaged forces experienced by each cell can be obtained by scaling the 
instantaneous forces (Equations 2.13 and 2.14) by a scaling factor of:  
 

     
r

r
rNS b 

2

     [Equation 2.22] 

where the ratio 
r

r



2

 is the ratio of the arc length of a blade element to the circumference 

of the rotor disk, and bN is the number of blades in the rotor disk. 
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Applying the scaling factor in Equation 2.22 to the instantaneous forces given by 
Equations 2.13 and 2.14 yields the resultant time-averaged forces acting on each cell as: 
 

   
r

rr
NfSfF bzzz LRFLRFLRF 


2

.
.     [Equation 2.23] 

 

   
r

rr
NfSfF bLRFLRFLRF 


 2

.
.    [Equation 2.24] 

 
For a structured mesh in the rotor disk, the term  rr.  is equivalent to the blade element 
area A  (refer to Equation 2.10). This assumption is only valid if the cell is of the form of a 
hexahedra, where the sides are parallel to the radial lines and the other two sides are lying 
on concentric circles. Therefore, the mean forces acting on each cell can be calculated as 
follows: 
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f
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F
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   [Equation 2.25] 
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   [Equation 2.26] 

 
This implementation limits the cell type that can be used for meshing the rotor disk region 
in the CFD model to only structured hexahedral cells.  
 
The forces on each cell given by Equations 2.25 and 2.26 are forces in the LRF rotating 
cylindrical frame of reference. Therefore, these forces need to be transformed back into the 
RSP rotating cylindrical frame of reference using the following operation: 
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  [Equation 2.27] 

 
Following this transformation, the forces in the rotor RSP rotating cylindrical frame of 
reference need to be transformed into the RSP stationary Cartesian frame of reference 
using the following equation: 
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  [Equation 2.28] 

 
The calculated forces in the RSP stationary Cartesian frame of reference can finally be 
transformed to the global Cartesian frame using the rotor disk pitch and bank angles as 
follows: 
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           [Equation 2.29] 
 
 
Finally, the rotor forces in the global Cartesian frame can be converted into volumetric 
momentum sources on every cell in the rotor disk region by dividing the cell forces by the 
cell volume as follows: 
 

       cell
cell

cellU F
V

S 
1

    [Equation 2.30] 

 

where  cellF is the force vector in the global Cartesian frame at every cell in the rotor disk 

region as given by Equation 2.29, and cellV is the cell volume.  

 
2.3.7 Rotor Trim Model 

According to Reference 4, accurate aerodynamic predictions are only possible if the rotors 
are operating at the correct thrust level. This means that a trimming computation is 
needed during the CFD simulation if the blade parameters necessary to achieve the correct 
thrust level are not known a priori. Furthermore, during a steady hover or level flight, the 
rotor moments are generally zero; hence, this must be accurately represented by the VBM 
during the simulation.  
 
At any arbitrary flight mode, the total thrust and rotor pitching and rolling moments 
acting on the rotor disk can be calculated by integrating the cell forces across the entire 
rotor disk region as follows: 
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    [Equation 2.31] 

 
The effect of flapping hinge offset is neglected from the moment calculations, shown in 
Equation 2.31. Since the relationship between the rotor aerodynamic parameters and the 
blade pitch is non-linear, an iterative technique is needed to obtain a converged trim 
result. In such a method, the collective and cyclic pitch angles are iteratively perturbed in 
the simulation in order to achieve the desired thrust coefficient, and eliminate the 
moments around the hub. The updates to the blade angles, which are treated as a control 
input at each trim iteration, can be obtained using a Newton-Raphson method applied to a 
linearised system of coupled equations relating the rotor response (i.e. the rotor thrust and 
moments) to the control vector.  
 

Let the control input vector be denoted by x , and the rotor response vector be denoted by 

y , as follows: 
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A first order Taylor expansion for the rotor response about x  can then be written as: 
 

          ... xJxyxxy     [Equation 2.32]
  

where  xxy  is the rotor response vector due to the new control input vector  xx  .  
 
Equation 2.32 can then be re-arranged into: 
 

          xyxxyxJ      [Equation 2.33] 
 
The tensor  J  is the Jacobian of the dependant quantities (response variables in terms of 
the control input (i.e. thrust, pitching and rolling moments), and is given by the following 
tensor:  
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Each term in the Jacobian tensor can be discretised using first order Taylor expansion for 
solving with the Newton-Raphson method. For example, the Jacobian for the thrust can be 
discretised into: 
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  [Equation 2.35] 

 
Equation 2.35 is solved for an initial guess value of BAcollective ,, . Following the initial 

solution a perturbed solution is obtained from the small perturbation angle of 2  . 
The iterations stop and an estimate for the changes to the perturbed angles 

BAcollective  ,, is obtained in the form of: 
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 [Equation 2.36] 

 
Note that for this method to work the Jacobian must be constructed from a frozen flow-
field and perturbing the pitch angles independently. With the new   as the initial guess, 
the above iterative procedure continues until the target thrust and moments are achieved, 
and the flow-field is converged.  
 
2.3.8 Dimensionless Parameters 

It is sometimes convenient to specify the target thrust and moments acting on the rotor 
disk by using a set of dimensionless parameters. The following dimensionless parameters 
are commonly used to describe the rotor performance: 
 

Coefficient of Thrust:   
 2diskdisk

thrust
T

RA

F
C


    [Equation 2.37] 
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Coefficient of Pitching Moment: 
  diskdiskdisk

pitch
Mx

RRA

M
C

2
   [Equation 2.38] 

Coefficient of Rolling Moment: 
  diskdiskdisk

roll
My

RRA

M
C 2

   [Equation 2.39] 

 
 
In the current implementation, the rotor trim model utilises the total rotor thrust and 
moment values as the desired trim target. However, the dimensionless parameters are 
commonly used for specifying the desired rotor performance. Therefore, the target forces 
and moments must be calculated from the dimensionless parameters using Equations 2.37 
through 2.39. 
 
2.3.9 Summary 

A VBM model for modelling the flow through a simplified rotor disk in a RANS 
simulation has been described in detail in this section. This model, which is derived from 
the well-known BET, accounts for the time-averaged effect of the motion of the blade in a 
rotor disk region embedded inside a larger computational domain used in CFD.  
 
The model introduces volumetric momentum sources in each computational cell that 
collectively make up the rotor disk region. The momentum sources are computed based on 
the time-averaged blade forces (per unit cell volume) imparted by the blade onto the fluid 
as it traverses through the air. The VBM also accounts for the blade flapping and coning. 
Furthermore, the blade collective pitch, cyclic pitch, and twist angles are mathematically 
modelled in the VBM. 
 
The model description presented in this section will form the basis of its implementation 
in OpenFOAM, which will be presented in Section 3. 
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3. Model Implementation in OpenFOAM 

3.1 Overview 

This section describes the specific implementation of the VBM in the OpenFOAM 
environment. The description contained in this Section will focus on providing the reader 
with an overview of the code structure, as well as the integration of the VBM with the flow 
solver in OpenFOAM. A complete copy of the code is provided at Appendix A. 
 
As previously described in Section 2, the VBM essentially introduces momentum sources 
in the cells that collectively make up the rotor disk region. Therefore, the description of the 
implementation of this model in OpenFOAM will begin by describing how these 
additional momentum sources are incorporated into the global fluid momentum equations 
that are solved by the RANS solvers. Following this, a detailed explanation of the object-
orientation structure used in the VBM will be presented. A procedure on how to compile 
the code in the OpenFOAM environment will be given at the end of this Section. 
 
In order to understand the way in which the OpenFOAM library and solvers work, some 
background knowledge of C++, the base language of OpenFOAM, is required. A 
description of the C++ language, the object-oriented programming paradigm, and its best 
practice are outside the scope of this report. However, the OpenFOAM User Guide 
(Reference 13) and Programming Guide (Reference 14) provide a good overview of the 
general code structure, the use of object-orientation paradigm in OpenFOAM, and several 
base classes and operators used in OpenFOAM.  
 
The description contained in this Section of the report shall assume that the reader has 
some familiarity with the C++ object-oriented paradigm, but minimal knowledge of the 
OpenFOAM classes and solvers. 
 
3.2 Applicable OpenFOAM Version 

OpenFOAM is continuously updated through the use of its online repository at Reference 
3. The final version of the code developed in this report was ensured to be fully compatible 
with OpenFOAM version 2.1.x (dated 26 June 2012). Consequently, all OpenFOAM code 
described in this report refers to the aforementioned version release. 
 
Due to potential changes implemented in the base OpenFOAM code between version 
updates, the VBM code delivered in this report may not compile or run with the later 
version. However, to an experienced OpenFOAM user, relatively minor changes can be 
implemented in the current VBM code to make it compatible with the later releases of 
OpenFOAM. 
 
Similarly, the VBM code delivered in this report is not guaranteed to be compatible with 
any OpenFOAM versions earlier than the version 2.1.x (dated 26 June 2012). 
  



UNCLASSIFIED 
DSTO-TR-2931 

UNCLASSIFIED 
22 

3.3 The Flow Solvers 

3.3.1 Overview of RANS Solvers in OpenFOAM 

The standard OpenFOAM distribution includes a collection of top-level flow solvers. 
These flow solvers are the top-most level executable files in OpenFOAM, and are 
differentiated based on the flow physics that are being solved. Table 3.1 provides a set of 
examples of the variety of OpenFOAM standard solvers that are typically used in the IRSA 
group. Note that the standard OpenFOAM distribution includes a larger number of 
standard solvers than that shown in Table 3.1. 
 
Table 3.1:    List of standard OpenFOAM flow solvers that are applicable to the IRSA Group 

Basic' CFD Solver

laplacianFoam
Solves a simple Laplace equation, e.g. for thermal diffusion
in a solid

potentialFoam
Simple potential flow solver which can be used to generate
starting fields for full Navier-Stokes codes

Incompressible Flow Solvers

boundaryFoam
Steady-state solver for incompressible, 1D turbulent flow, typically to 
generate boundary layer conditions at an inlet, for use in a simulation

icoFoam
Transient solver for incompressible, laminar flow of Newtonian
fluids

simpleFoam
Steady-state solver for incompressible, turbulent flow based on SIMPLE 
algorithm

SRFSimpleFoam
Steady-state solver for incompressible, turbulent flow of non-Newtonian 
fluids in a single rotating frame

pisoFoam Transient solver for incompressible flow based on PISO algorithm

Compressible Flow Solvers
rhoSimpleFoam simpleFoam solver for compressible flow

rhoSimplecFoam
Steady-state SIMPLEC solver for laminar or turbulent RANS
flow of compressible fluids

rhoPimpleFoam
Large time-step transient solver for compressible flow using
the PIMPLE (merged PISO-SIMPLE) algorithm

rhoCentralFoam
Density-based compressible flow solver based on central upwind 
schemes of Kurganov and Tadmor

Heat Transfer and Buoyancy Driven Flow Solvers

buoyantBaffleSimpleFoam
Steady-state solver for buoyant, turbulent flow of compressible
fluids using thermal baffles

buoyantBoussinesqSimpleFoam
Steady-state solver for buoyant, turbulent flow of incompressible fluids 
based on SIMPLE algorithm and Boussinesq approximation

buoyantSimpleFoam
Steady-state solver for buoyant, turbulent flow of compressible fluids 
based on SIMPLE algorithm

Combustion

rhoReactingFoam
Solver for combustion with chemical reactions using density
based thermodynamics package

fireFoam Transient Solver for Fires and turbulent diffusion flames

PDRFoam
Solver for compressible premixed/partially-premixed combustion with 
turbulence modelling

dieselEngineFoam Solver for diesel engine spray and combustion
 

 
The VBM code was developed to be compatible with any of the above listed flow solvers. 
However, further modification to the standard flow solvers may be needed to implement 
the VBM model in the solvers. 
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In this report, an example of how one may modify the off-the-shelf steady-state 
compressible flow solver, rhoSimpleFoam, to include the VBM calculation in the 
simulation will be provided. However, the same procedure can be applied to any of the 
above listed flow solvers. 
 
3.3.2 Overview of the rhoSimpleFoam Solver 

The standard rhoSimpleFoam source code can be found in the following path: 
 
  $FOAM_APPLICATIONS/solvers/compressible/rhoSimpleFoam 
 
rhoSimpleFoam, like any other flow solver in OpenFOAM, is largely procedural since it 
is a close representation of solution algorithms and equations, which are procedural in 
nature (Reference 13). Therefore, users do not necessarily need a deep knowledge of 
object-oriented paradigm and C++ programming to write a solver but should know the 
principles behind object-oriented paradigm and classes, and to have a basic knowledge of 
some C++ code syntax. An understanding of the underlying equations, models and 
solution method and algorithms is deemed to be far more important in developing new 
flow solvers in OpenFOAM. 
 
The main implementation of rhoSimpleFoam is contained in the file rhoSimpleFoam.C. 
As the name implies, the solution algorithm is based on the Semi-Implicit Pressure-Linked 
Equation (SIMPLE) algorithm (Reference 13) which is shown graphically in Figure 3.1. 
 
As shown in Figure 3.1, the algorithm basically consists of: 

1. assembling of the discretised momentum equations into a matrix,  

2. solving the momentum equations by first treating the pressure gradient term 
explicitly, 

3. solving the pressure equation based on the computed momentum field, and 

4. computing the pressure-corrected momentum field for the next flow iteration. 

 
In this implementation, the additional momentum sources that are introduced by the VBM 
will be incorporated explicitly into the momentum matrix . The assembling of the 
momentum matrix is contained in the file UEqn.H which is reproduced in Figure 3.2. 
 
The momentum matrix, UEqn, assembled in the code in Figure 3.2 incorporates both the 
convective term and diffusive terms in the momentum equation; however, no source terms 
are present in the above code. 



UNCLASSIFIED 
DSTO-TR-2931 

UNCLASSIFIED 
24 

 
Figure 3.1:  Implementation of the SIMPLE algorithm in rhoSimpleFoam 

 
 

 
Figure 3.2:  UEqn.H in rhoSimpleFoam 

 
In OpenFOAM, there already a C++ class exists that allows generic source terms to be 
added to the momentum equation. This class is called “basicSource” class, and its 
source code lives in the following path 
 
$FOAM_SRC/finiteVolume/cfdTools/general/fieldSources/basicSources 
 
The class constructor to the basicSources class will be described later in Section 3.3.4. 
However, it is useful to know at this stage that the UEqn.H can be modified as shown in 
Figure 3.3 to incorporate a source term in the momentum equation.  Furthermore, it is 
equally important to note at this stage that the basicSource class is an “abstract class”, 
which means it contains no specific implementation of the source terms that are to be 
introduced in the momentum equation. This specific implementation will be derived from 
the VBM implementation as described in Section 3.3.5. 
 
 

    // Solve the Momentum Equation 
 
    tmp<fvVectorMatrix> UEqn 
    ( 
        fvm::div(phi, U) 
      + turbulence->divDevRhoReff(U) 
    ); 
 
    UEqn().relax(); 
 
    solve(UEqn() == -fvc::grad(p)); 
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Figure 3.3:  Modified UEqn.H in rhoSimpleFoam with basicSource term 

 
The “sources” object added to the modified UEqn.H shown in Figure 3.3 needs to be 
instantiated in the rhoSimpleFoam solver. This can be done by adding the following line 
to the last line of the createFields.H file located in the rhoSimpleFoam source 
directory: 
 
 IObasicSourceList sources(mesh); 
 
From the above example, a new class was constructed, IObasicSourceList, which is 
derived from both a List class and basicSource class (see Section 3.3.4) in order to 
accommodate the need to have multiple sources in the simulation (such as having multiple 
rotor disks). 
 
No other modification is required since the VBM implementation will be called by the 
instantiated basicSource class object during solver execution. Note that the 
basicSource class can also be used to introduce thermal energy source terms in the 
energy equation.  
 
3.3.3 Creating a New rhoSimpleSourceFoam Solver 

It is considered best practice to copy the standard rhoSimpleFoam solver code and place 
the user-modified version in a new directory, typically: 
 
 $FOAM_USER_APP/rhoSimpleSourceFoam 
 
New names are needed for the directory and relevant .C files to avoid ambiguity with the 
standard solver. In this example, the rhoSimpleFoam.C has been renamed to 
rhoSimpleSourceFoam.C, which will also be the executable name of the new solver. 
The modifications previously shown in Section 3.3.2 can then be applied to the source files 
in the $FOAM_USER_APP/rhoSimpleSourceFoam. 
 
A set of programming code files in UNIX/Linux systems is often organised and delivered 
to the compiler using the standard UNIX “make” utility. OpenFOAM, however, is 
supplied with a specialised “wmake” compilation script, that is based on make but is 
considerably more versatile and specific, to compile and link the code to the existing 

    // Solve the Momentum Equation 
 
    tmp<fvVectorMatrix> UEqn 
    ( 
        fvm::div(phi, U) 
      + turbulence->divDevRhoReff(U) 
      == 
        sources(rho, U)  // source terms 
    ); 
 
    UEqn().relax(); 
 
    sources.constrain(UEqn()); 
 
    solve(UEqn() == -fvc::grad(p)); 
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OpenFOAM library. The process of compiling a new code or library in OpenFOAM using 
the wmake script is given at Reference 14.  
 
OpenFOAM applications are organised using a standard convention that requires the 
source code of each application to be placed in a directory whose name is that of the 
application. The top level source file takes the application name with the .C extension. 
This convention must be adhered to when creating new solvers or applications in 
OpenFOAM. For example, the source code for the newly created rhoSimpleSourceFoam 
solver would reside in a directory rhoSimpleSourceFoam and the top level file would 
be rhoSimpleSourceFoam.C as shown in Figure 3.4. The directory must also contain a 
“Make” sub-directory containing two files, “options” and “files”.  
 

 
Figure 3.4:  Directory structure for an application in OpenFOAM 

 
The final step that needs to be done prior to compiling the new solver, 
rhoSimpleSourceFoam, is to modify the Make/files and Make/options to include 
the entries shown in Figure 3.5.  
 

 
Figure 3.5:  Modified Make/files and Make/options for compiling rhoSimpleSourceFoam 

 

$ cat Make/files 
 
  rhoSimpleSourceFoam.C 
  EXE = $(FOAM_USER_APPBIN)/rhoSimpleSourceFoam   
        // The EXE variable determines where the new executable binary will be 
  // placed. It is important to use $(FOAM_USER_APPBIN) path instead of  
       // the standard $(FOAM_APPBIN) for revision control. 
 
 
$ cat Make/options 
 
  EXE_INC = \ 
     -I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \ 
     -I$(LIB_SRC)/turbulenceModels \ 
     -I$(LIB_SRC)/turbulenceModels/compressible/RAS/RASModel \ 
     -I$(LIB_SRC)/finiteVolume/cfdTools \ 
    -I$(LIB_SRC)/finiteVolume/lnInclude \ 
     -I$(LIB_SRC)/meshTools/lnInclude 
 
  EXE_LIBS = \ 
     -lbasicThermophysicalModels \ 
     -lspecie \ 
     -lcompressibleTurbulenceModel \ 
     -lcompressibleRASModels \ 
     -lfiniteVolume \ 
     -lmeshTools 

$FOAM_USER_APP/rhoSimpleSourceFoam 

rhoSimpleSourceFoam.C 

HeaderFiles.H 

Make 

files 

options 
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Finally the new rhoSimpleSourceFoam solver can be compiled by executing wmake 
from the code parent directory using the following commands: 
 
 $ cd $FOAM_USER_APP/rhoSimpleSourceFoam 
 $ wmake  
  
3.3.4 The basicSource Class  

The momentum sources introduced by the VBM will be implemented in the flow solver 
through the use of the class basicSource. Therefore, before the newly developed VBM 
model can be introduced, it is important for the reader to first understand the 
implementation of the basicSource class in OpenFOAM.  
 

 
Figure 3.6:  Class hierarchy of basicSource class in OpenFOAM 

 
Figure 3.6 shows the basicSource class hierarchy. The hierarchy diagram has been 
generated using doxygen. Further details on doxygen legend can be found at Reference 15. 
As seen from this figure, the VBM code will be implemented as a new class, called 
“rotorDiskSource”, which will inherit attributes from the basicSource class. Since 
the basicSource class is an abstract class with no implementation (by using virtual 
functions), the implementation of the VBM using this class in the flow solver can be made 
by adding the VBM libraries into the runTimeSelectionTable of this class. This means 
that the rotorDiskSource class (and all other classes derived from the 
rotorDiskSource class) that contains the specific implementation of the VBM will 
contain a series of functions that can be “hooked-up” with the virtual functions in the 

rotorDiskSource The new class containing the 
implementation of the VBM in 
OpenFOAM. 
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basicSource class. Virtual functions that are used in the implementation of the 
rotorDiskSource class are listed below: 

 virtual void isActive().  This virtual function reads the input dictionary of 
the source model and determines if the source is active during a simulation.  

 virtual bool read (const dictionary &dict).  This virtual function 
reads the input dictionary of the source model for relevant parameters to be used 
in the model implementation. 

 virtual void addSup(fvMatrix<type> &UEqn, const label fieldI). 
This virtual function adds the momentum sources explicitly into the passed 
momentum matrix.  

 
Interested users and readers are recommended to further explore the functionality 
provided by the basicSource class by reviewing its source code. 
 
One of the major advantages of using the basicSource class as a template abstract class 
for deriving the VBM library is that multiple source term objects of different kind can be 
spawned in the simulation. This means that the simulation can include multiple rotor 
disks, multiple heat source terms, and multiple porosity terms.  
 
The basicSource class is a registeredIOObject class, which means any 
basicSource object spawned during runtime is automatically tracked globally by the 
solver. However, since the basicSource class is an abstract class, the specific 
implementation of the source term (e.g. VBM or heat source term) can vary depending on 
the specific classes that are derived from this basicSource class. Some examples of such 
derived classes are rotorDiskSource (VBM), actuationDiskSource (momentum 
sink) and porousMedia (porosity momentum sink). 
 
3.3.5 Overview of the VBM Library Classes 

The VBM code developed in OpenFOAM comprises multiple C++ classes. The file 
structure grouped by the class name is shown in Figure 3.7. Calculation of the blade forces 
and momentum source terms using the methodology outlined in Section 2 is implemented 
in the main class, rotorDiskSource. A hard copy of all the source code included in 
Figure 3.7 is available from Appendix A, sorted by the class hierarchy.  
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Figure 3.7:  Overview of the directory and file structure of the VBM source code in OpenFOAM 

 
As previously discussed, the rotorDiskSource class must inherit from the abstract base 
class basicSource in order to be implemented in the flow solvers. This is reflected in the 
file rotorDiskSource.H (Appendix A.2.1), which includes the class declaration 
statement shown in Figure 3.8. The rotorDiskSource.H also contains a declaration for 
the class constructor function, all private and public data members, as well as all the 
private and public member functions of the rotorDiskSource class. It is important to 
note that because this class inherits from the basicSource class, any change in the 

 
 [rotorDiskSource] 
| 
|---- [Make] 
|   |---- files 
|    \---- options 
| 
|---- [bladeModel] 
|   |---- bladeModel.C 
|    \---- bladeModel.H 
| 
|----- [profileModel] 
|   | 
|   |---- [lookup] 
|   |   |---- lookupProfile.C 
|   |    \---- lookupProfile.H 
|   | 
|   |---- profileModel.C 
|   |---- profileModel.H 
|   |---- profileModelList.C 
|   |---- profileModelList.H 
|   | 
|    \---- [series] 
|       |---- seriesProfile.C 
|        \---- seriesProfile.H 
| 
|---- rotorDiskSource.C 
|---- rotorDiskSource.H 
|---- rotorDiskSourceI.H 
|---- rotorDiskSourceTemplates.C 
| 
 \----- [trimModel] 
    | 
    |---- [fixed] 
    |   |---- fixedTrim.C 
    |    \---- fixedTrim.H 
    | 
    |---- [targetForce] 
    |   |---- targetForceTrim.C 
    |    \---- targetForceTrim.H 
    | 
     \---- [trimModel] 
        |---- trimModel.C 
        |---- trimModel.H 
         \---- trimModelNew.C 

The main class for the VBM implementation. 
This class inherits from the basicSource class. 

An abstract class for different methods of 
constructing the Cl and Cd lookup tables. It 
allows for easy addition of new methods of 
constructing the blade Cl and Cd curves. 
 
 
The class “lookup” inherits from profileModel 
and uses linear interpolation to construct the Cl 
andCd curves. 
 
 
The class “series” inherits from profileModel 
and uses a harmonic function to construct the Cl 
and Cd curves. 

A class for constructing the blade geometrical 
angle of attack as a function of the disk radial 
and azimuthal positions. 

An abstract class for different rotor trim 
models. It allows for easy addition of new trim 
models. 

Classes that inherit from the abstract class 
trimModel, and contain different 
implementations of the rotor trim model, i.e. 

- fixed:  No trimming 
- targetForce: Perturb the blade AOA to 

achieve the user specified target forces 
and moments 
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constructor of the basicSource class in a later release of OpenFOAM must also be 
propagated to this class.  
 

 
Figure 3.8: Class declaration in rotorDiskSource.H showing inheritance from basicSource  

 
In order for the rotorDiskSource class to “hook-up” with the basicSource class, the 
following two criteria must be satisfied: 

1. The class must contain implementations of the basicSource class virtual 
functions listed in previously in Section 3.3.4, and 

2. The class must inherit from the basicSource class, have a specific typeName, 
and contain an implementation that allows for the class to be registered in the 
runTimeSelectionTable of the basicSource class.  

The implementation of the two criteria above in the rotorDiskSource will be discussed 
in the following paragraphs.  
 
Implementation of the basicSource virtual functions in rotorDiskSource.    
 
The implementation of the virtual function addSup() which returns the momentum 
sources to the flow solvers is shown in Figure 3.9. Note that the addSup() in the 
rotorDiskSource actually calls another protected internal member function calculate() 
included in the rotorDiskSource. Similarly, the implementation of the virtual functions 
read() and writeData() can also be found in the rotorDiskSource.C.  
 
Adding the rotorDiskSource class to the runTimeSelectionTable.    
 
The basicSource is an abstract class that allows for new source models to be introduced 
and registered to its runTimeSelectionTable. This mechanism allows the user to select 
the different source models to be run with the flow solvers without re-compiling the entire 
base code prior to each run. In the case of the rotorDiskSource, this process is done 
using a static member function in the rotorDiskSource.C as shown in Figure 3.10. Note 
that this process is generic in OpenFOAM, and can be copied for adding any new source 
models or boundary conditions in the future.  
 

$cat rotorDiskSource.H 
 
 
class rotorDiskSource 
: 
    public basicSource 
{ 
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Figure 3.9:  Implementation of the virtual void addSup() in the rotorDiskSource class 

 

 
Figure 3.10:  Adding rotorDiskSource class to the basicSource runTimeSelectionTable 

 
3.4 The VBM Library in OpenFOAM 

3.4.1 The rotorDiskSource Class 

The rotorDiskSource class encapsulates both data and member functions that are 
needed to implement the VBM. The private data in this class are the variables or 
parameters (e.g. rotor RPM, blade pitch angle, etc.) that are needed for the VBM 
calculation. These data are not available for access from outside of this class.  
 
The private data have also been designed to be read as user inputs, which means that 
when the solver rhoSimpleSourceFoam is run, the basicSource object in the solver 
will look for a “dictionary” file in the case directory structure. In the case of the 
rotorDiskSource model, the dictionary file for the source is called 
sourceProperties, and must be placed in the constant directory of the case. An 
example of a sourceProperties file is given at Appendix B.2.5. This 
sourceProperties file is only read at the start or restart of a simulation. 
 

$ cat rotorDiskSource.C 
 
using namespace Foam::constant; 
 
namespace Foam 
{ 
    defineTypeNameAndDebug(rotorDiskSource, 0); 
    addToRunTimeSelectionTable(basicSource, rotorDiskSource, dictionary); 
} 

$ cat rotorDiskSource.C 
 
void Foam::rotorDiskSource::addSup(fvMatrix<vector>& eqn, const label fieldI) 
 
// The momentum matrix UEqn is passed by reference to this class  
// from the basicSource class. 
{ 
… 
    const volVectorField& U = eqn.psi(); 
 
    const vectorField Uin = inflowVelocity(U); 
 
    //Initiate the rotor trim routine  
    trim_->correct(Uin, force);   
 
 //The blade forces and momentum sources are calculated 
    calculate(Uin, trim_->alphag(), force);  
     
 
    // add source to rhs of UEqn. The object “force” was returned by the     
    // calculate()function and is already in the unit of force per unit volume  
    eqn -= force; 
} 
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A flowchart showing the implementation of the rotorDiskSource class in the 
OpenFOAM rhoSimpleSourceFoam solver is shown in Figure 3.11. However, the 
rotorDiskSource class has been written as a generic class that can readily be 
implemented in any of the other OpenFOAM flow solvers (previously listed in Table 3.1) 
by following the method previously outlined in Sections 3.3.2 through 3.3.3.  
 
The class declaration and definition for rotorDiskSource is given in the 
rotorDiskSource.H. The main implementation of the class is given in the 
rotorDiskSource.C.  The bulk implementation of the BET is given in the 
Foam::rotorDiskSource::calculate() function in rotorDiskSource.C.  
 
A notable feature in the code structure is that calculation of the local blade geometric AOA 
is not implemented inside the rotorDiskSource class, but in a separate trimModel 
class (refer to Figure 3.13). This allows the future addition of a new trim model while 
avoiding significant re-structure of the rotorDiskSource class. Further description of 
the trimModel class will be given in Section 3.4.3. 
 
Other features of the rotorDiskSource class that allow for ease of future expansion are as 
follows: 

1. Addition of new Lifting Line Models (in profileModel class).  Currently two 
different models are implemented, i.e: 

a. using a Lookup Table (profileModel::lookupProfile class), and  

b. using Fourier Series (profileModel::seriesProfile class). The series 
definition is hard-coded in the seriesProfile.C file, and is defined by 
the following series equation: 

     

    



n

i
effilL iCC

1

sin 
   [Equation 3.1] 

     

    



n
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2. Addition of new blade geometric models (in bladeModel class). Currently the 
blade can only be tapered linearly (i.e. the blade chord varies linearly with the cell 
radial distance from the rotor disk origin). The model also accommodates multiple 
taper angles along the blade radius.  Future blade models may allow the variation 
of the blade chord along the radius to be described using a more complex function.  
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Figure 3.11:  Implementation of the VBM using rotorDiskSource class and rhoSimpleSourceFoam 

solver in OpenFOAM 
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3.4.2 The rotorDiskSource Input/Output (IO) 

In the current implementation, the user must specify the rotor characteristics as input 
using the sourceProperties (Appendix B.2.5) file, which must be placed in the 
constant directory of each case. This file is read during the class construction by the 
function Foam::rotorDiskSource::read(). Any changes made by user to the 
sourceProperties file will be monitored and effected continuously during runtime at 
each iteration.  
 
The rotorDiskSource output consists of the following: 

1. Field variable data output.  In the current implementation, the lift and drag forces 
per unit cell volume are written out for post-processing as a vector field data type. 
The body forces can be visualised using paraview using a similar filter to that 
used to visualise the velocity field. 

2. RunTime console output. In the current implementation, the rotor disk global 
pitching and rolling moments, and the total thrust is printed to the screen of the 
running Linux shell. An example of this output is given in Figure 3.12. 

 
Additional data quantities, such as cell inflow angle, the cell’s cylindrical coordinate, and 
the cell’s effective AOA, can be written out using the provided templated function 
Foam::RotorDiskSource::writeField(), which is implemented in the source file 
rotorDiskSourceTemplates.C.  
 

 
Figure 3.12:  Linux shell output of rotorDiskSource during runtime  
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3.4.3 The Rotor trimModel Class 

The trimModel class is an abstract class that carries out the blade trimming calculation 
required by the rotorDiskSource. The trimModel class is not derived from the 
rotorDiskSource. A private object called “trim_” of class type trimModel is 
instantiated inside the rotorDiskSource class during its construction. This trim_ object 
acts as the conduit between the trimming routine and the rotorDiskSource class during 
the calculation of the rotor forces. 
 
The implementation of the trimModel as an abstract class allows for different trim 
models to be added in the future without needing to alter any other part of the code. 
Currently, two classes are derived from the trimModel, which are user-selectable from 
the sourceProperties file. The two sub-classes provide two different trimming 
algorithms, as described below: 

1. trimModel::fixedTrim class.   The fixedTrim calculates the compounded 
blade geometric AOA variation with respect to cell radial and azimuthal position 
based on constant blade collective pitch angles and cyclic pitch coefficients. These 
coefficients must be provided by the user in the sourceProperties file.  The use 
of this class is equivalent to an “untrimmed” VBM model. 

2. trimModel::targetForceTrim class.   The targetForceTrim class perturbs 
the local blade geometric AOA at a frozen flow state (at each flow solver iteration) 
to find a combination of blade collective pitch angles and cyclic pitch coefficients 
that will return the global thrust and moments on the rotor disk that match the 
user-specified target rotor thrust and moments. To use this trim model, the 
following parameters must be specified in the sourceProperties file: 

a. The target global rotor thrust, rolling and pitching moments. 

b. The initial guess of the blade collective pitch angle and cyclic pitch 
coefficients (refer to Equation 2.4). 

c. The interval (in flow iterations) in-between trimming routines. 

d. The angles by which the local blade AOA needs to be perturbed during 
trimming. The default value is 0.05 degree. 

e. The under-relaxation factor for the newly calculated AOA during trimming. 
Note that this factor should be kept at one unless the trimming routine is 
unable to find a trimmed solution within its iteration limits. 

The maximum number of iterations, and the minimum force and moments residuals 
allowed during trimming before a solution is deemed converged (or fully trimmed) are 
not user-specifiable. Currently, these are set to default values of 50 and 1x10-8 for the 
maxIter and residuals tolerance respectively. These values are hard-coded in the 
constructor function of the trimModel::targetForceTrim class, which can be found 
in the targetForceTrim.C file. 
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A flowchart showing the implementation of the trimming routine in the 
targetForceTrim class is shown in Figure 3.13. It shows that the targetForceTrim 
class uses the Foam::rotorDiskSource::calculate()  function to calculate the local 
forces and moments. This is done to avoid any coding repetition in the two classes. Note 
that the trimming process shown in the flowchart in Figure 3.13 occurs at a “frozen” flow 
state, meaning the flow iteration is not progressed during the trimming loop.  

 
Figure 3.13:  Implementation of the targetForceTrim model in the rotorDiskSource class  

 
The targetForceTrim class, if activated, will print out a set of messages to the screen of 
the running Linux shell. An example of this output is given in Figure 3.14. 
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Figure 3.14:  Linux shell output of targetForceTrim class during runtime  

 
3.5 Compiling the Code 

The steps required to compile rotorDiskSource as a non-executable library in 
OpenFOAM differs to that required to compile an executable solver (e.g. 
rhoSimpleSourceFoam). A set of instructions on how to compile the 
rotorDiskSource will be given in the following paragraphs. 
 
3.5.1 Preparation 

Prior to code compilation, all the VBM library source codes (previously shown in Figure 
3.7) can be placed at any location on the machine while maintaining the directory structure 
and naming; however, it is recommended that the source codes are placed at the following 
standard path, which is separate from the standard OpenFOAM source codes: 

New blade pitch to be used in 
the next flow iteration 
(collective and cyclic)  
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  ${WM_PROJECT_USER_DIR}/lib 
 
It is considered a good practice to keep any third-party code separates from the standard 
OpenFOAM library. Linking the VBM library to the standard OpenFOAM library will be 
done during compilation. The code compilation must be done from inside the 
rotorDiskSource directory. The first step of the compilation involves cleaning the 
directory from any previous compilation artefacts, such as any “.o” or “.dep” files. This 
can be done as follows: 
 
  $ cd ${WM_PROJECT_USER_DIR}/lib/rotorDiskSource 
  $ rmdepall; wclean 
 
3.5.2 Linking the VBM Library to the Standard OpenFOAM Libraries 

By default, the compiler links to shared object library files in the following directory 
paths, which are specified with the -L option in the wmake:   

1. The ${FOAM_LIBBIN} path; 

2. Platform dependent paths set in files in the  
      ${WM_DIR}/rules/${WM_ARCH} directory, e.g./usr/X11/lib and  
      ${MPICH_ARCH_PATH}/lib; 

3. Other directories specified in the Make/options file. 

 
It is considered standard practice for any third-party object files or executables be placed 
in the ${FOAM_USER_LIBBIN}, which is separate from the standard OpenFOAM 
installation path. The ${FOAM_USER_LIBBIN} is a standard OpenFOAM environment 
variable set during installation. However, the user must check if ${FOAM_USER_LIBBIN} 
is valid on their OpenFOAM installation. This can be done using the standard utility 
foamInstallationTest. 
 
The library files to be linked must be specified using the -l option and removing the lib 
prefix and “.so” extension from the library file name, e.g. 
libbasicThermophysicalModels.so is included with the flag 
-lbasicThermophysicalModels.  
 
By default, wmake loads the following libraries for any third-party code compilation: 

1. The libOpenFOAM.so library from the ${FOAM_LIBBIN} directory; 

2. Platform dependent libraries specified in set in files in the  
${WM_DIR}/rules/${WM_ARCH} , e.g. /usr/X11/lib/libm.so and  
${LAM_ARCH_PATH}/lib/liblam.so; 

3. Other libraries specified in the Make/options file. The following standard 
OpenFOAM libraries must also be linked during compilation of the 
rotorDiskSource: 
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a. –lmeshTools 

b. -lfiniteVolume 

 
All of the above steps can be accounted for by creating a “Make” directory in the 
rotorDiskSource root directory. The Make directory will contain two new files, i.e. 
options and files. The Make/options file contains the full directory paths, links to 
the standard libraries, and the new library name. The Make/files file contains the list of 
source code to be compiled. The content of the Make/options and Make/files files 
needed to compile the rotorDiskSource library are shown in Figure 3.15 and Figure 
3.16 respectively. Note that from this example, the VBM is to be compiled to a library 
named “librotorDiskSource”.  
 
 

 
Figure 3.15:  Content of the “Make/options” needed to compile rotorDiskSource 

 

 
Figure 3.16:  Content of the “Make/files” needed to compile rotorDiskSource 

 
3.5.3 Compiling the VBM Library (librotorDiskSource.so)  

Finally the code can be compiled by running the following command from the 
rotorDiskSource root directory: 
   
  $ wmake libso 
 
The libso option is a flag for the make script to compile the librotorDiskSource as a 
dynamically linked library instead of a static library or an executable. This means that the 
library is not loaded by the solver, unless a “rotorDiskSource” object is instantiated by 
the “basicSource” object. Compiling third-party library into a dynamically linked 
library in OpenFOAM is also considered to be a standard practice.  Following a successful 
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compilation, a librotorDiskSource.so binary file should be available at 
${FOAM_USER_LIBBIN} path.  
 
3.6 Updating the VBM Code for Compatibility with Future OpenFOAM 
Version  

All classes included in the VBM library developed in this report are only dependant on the 
structure of the basicSource class. Therefore, any changes in the OpenFOAM solver(s) 
or other standard OpenFOAM libraries in the future versions should not be detrimental to 
the VBM library. However, this library must be re-compiled with every new OpenFOAM 
release prior to its use. The procedure for compiling the code is described in Section 3.5. 
Furthermore, any necessary solver modifications as described in Section 3.3.3 will also be 
required. 
 
Changes made to the structure of the basicSource class in future OpenFOAM versions 
may cause compilation of the VBM library code to fail. However, should this occur, it is 
expected that the changes required to the VBM codes will be minimal, and are expected to 
only be made to the constructor of the rotorDiskSource class. While it is almost 
impossible to predict what changes may occur in the future OpenFOAM versions, the 
following steps may serve as a starting point to identify the changes required to the VBM 
code should it fail to compile with a future OpenFOAM version: 
 

1. Check that the library names included in the Make/options file are still relevant. 
These dependency libraries are the standard OpenFOAM libraries that contain 
low-level classes that are not likely to change in future release. These libraries are: 

a. lmeshTools.  The VBM libraries need the lmeshTools for getting access 
to mesh information, such as cellZone and faceZone, cell addressing, 
etc.  

b. lfiniteVolume.  The VBM libraries need the lfiniteVolume for getting 
access to FVM related information in the mesh, such as the cell-centres, cell-
face flux field, templated data type and operation (volVectorField, 
coordinateSystems), etc. 

2. Check that the names and constructors of the basicSource class’s virtual 
functions implemented in the rotorDiskSource class are still relevant. These 
virtual functions are: 

a. virtual void addSup ( fvMatrix<vector>& eqn,  
                      const label fieldI ); 

b. virtual void writeData ( Ostream&)  const; 

c. virtual bool read ( const dictionary& dict ); 

3. The names and constructors of the virtual functions listed in point 2 above can be 
checked at the following path: 
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${FOAM_SRC}/finiteVolume/cfdTools/general/fieldSources/basicS
ource/basicSource 
 
The implementation of these virtual functions in the rotorDiskSource class can be 
found in both rotorDiskSource.H and rotorDiskSource.C. The names and 
constructors of these functions in the rotorDiskSource must match those in the 
basicSource class. 
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4. Case Setup in OpenFOAM using the rotorDiskSource 
Library 

 
4.1 Case Setup 

This section provides an overview of a typical case setup in OpenFOAM. Unlike many 
other commercial CFD packages, such as ANSYS, the standard OpenFOAM distribution 
does not have a Graphical User Interface (GUI) that may aid the user in preparing a case.  
 
Case preparation in OpenFOAM typically involves the manual preparation of all the 
required input and mesh files. These files must adhere to a specific format and use specific 
keywords as given in the Chapter 4 of the OpenFOAM User Guide (Reference 13). 
Furthermore, the required files and formats vary significantly depending on the 
OpenFOAM solvers and Boundary Conditions to be used. Therefore, to limit the scope of 
this report, only the case set up relevant to running a compressible RANS simulation using 
the rotorDiskSource will be discussed. 
 
4.1.1 File Structure 

An OpenFOAM case is defined using a series of standard files that are arranged with a 
specific directory structure and naming convention. This standard structure of files and 
directories is shown in Figure 4.1. Different OpenFOAM solvers and libraries may require 
additional input files in the case setup, which may not be shown in Figure 4.1. Basic 
descriptions of each file shown in Figure 4.1 are given in Table 4.1.  
 
An example of a case setup using the VBM with a steady state RANS solver is provided in 
Appendix B.  
 
An OpenFOAM case directory can be placed anywhere in the hard-drive space; however, 
it is normally located at a standard location given by the standard environmental variable, 
${FOAM_RUN}. In setting up a new case, all file names and directory names as shown in 
Figure 4.1 must be preserved. The directory name of the case root directory as indicated in 
Figure 4.1 may be changed to better reflect the case name. All cases must be run using a 
shell terminal from the case root directory location.  
 
It is important to note that the input format for each of the files described in Table 4.1 
follows some general principles of C++ source code as follows (Reference 14): 

1. Files have free form, with no particular meaning assigned to any column and no 
need to indicate continuation across lines. 

2. Lines have no particular meaning except to a // comment delimiter which makes 
OpenFOAM ignore any text that follows it until the end of line. 

3. A comment over multiple lines is done by enclosing the text between /* and 
*/delimiters. 
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Figure 4.1:  OpenFOAM minimal case directory structure required for running a RANS 

simulation using the rotorDiskSource library 
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Table 4.1:    Brief description of the files in a standard OpenFOAM case 

Directory 
Name File Name Description 

Chapter in 
OpenFOAM 
User Guide 
(Reference 
13) 

 
 
system ControlDict 

A dictionary file where run control parameters are 
set including start/end time, time step and parameters for data 
output. This file is continuously monitored for change during 
runTime. 

Chapter 4.3 

 

fvSchemes 
A dictionary file where discretisation schemes used in the 
solution are specified. This file is continuously monitored for 
change during runTime. 

Chapter 4.4 

 

fvSolution 
A dictionary file where the linear matrix solvers, tolerances and 
other algorithm controls are specified for the run. This file is 
continuously monitored for change during runTime. 

Chapter 4.5 

  

decomposeParDict 

A dictionary file where the domain decomposition methods and 
the number of sub-domains to be used on a parallel MPI run 
are specified. This file is only read when the decomposePar 
command is run as a pre-processing step.  

Chapter 3.4 

 
constant RASProperties A dictionary file where the turbulence modelling technique is 

specified, i.e. kEpsilon, kOmegaSST, etc. 
Chapter 7.2 

 
thermophysicalPrope
rties 

A dictionary file where the fluid thermophysical model and 
properties are specified (e.g. constant specific heat model with 
evaluation of enthalpy). 

Chapter 7.1 

 
transportProperties A dictionary file where the transport model (e.g. Newtonian, 

Bird-Carreau, etc) and the fluid molecular viscosity is specified 
Chapter 7.1 

  
sourceProperties A dictionary file where all zones with source term models are 

specified, including the rotorDiskSource. 
N/A 

 
 
constant/ 
polyMesh boundary 

Automatically generated mesh file that contains a list of patches 
(or domain boundaries), containing a dictionary entry for each 
patch, declared using the patch name, e.g. wall or inlet patch. 
The patch name can be updated manually by the user by 
modifying entries in this file. 

Chapter 
5.2.1 

 

faces 
Automatically generated mesh file that contains a list of faces, 
each face being a list of indices to vertices in the points list, 
where the first entry in the list represents face 0, etc.  

Chapter 5.1 

 

neighbour 

The polyMesh description is based around faces and as such, 
internal cells connect 2 cells and boundary faces address a cell 
and a boundary patch. 
Each face is therefore assigned an ‘owner’ cell and ‘neighbour’ 
cell so that the connectivity across a given face can simply be 
described by the owner and neighbour cell labels. This file is 
automatically generated during mesh conversion.  

Chapter 5.1 

 owner See description for neighbour file above.  Chapter 5.1 

Table continues over page … 



UNCLASSIFIED 
DSTO-TR-2931 

UNCLASSIFIED 
45 

Table continued … 

Directory 
Name File Name Description 

Chapter in 
OpenFOAM 
User Guide 
(Reference 
13) 

  

points 
Automatically generated mesh file that contains a list of points 
in the mesh, defined by a vector in units of metres (m). The 
points are compiled into a list and each point is referred to by a 
label, which represents its position in the list, starting from zero. 

Chapter 5.1 

 
0 

p, U, T, mut, 
alphat, epsilon, 
omega, R, k 

A Boundary Condition (BC) must be specified for every patches 
that exist in the constant/polyMesh/boundary file. In 
OpenFOAM, each flow variables that are solved must have a 
BC specified against each patch. This means, the 0 directory 
must have p and U files as a minimum when solving a laminar 
flow. When solving a turbulent flow using RANS "mut", epsilon 
or omega and k must exist. When solving a compressible flow, 
T and alphat must exist. 
 
Each file must also contain the initial field solution, whether 
specified as a “uniform” value, or as a list of non-uniform 
values.  

Chapter 
5.2.2 
through 
Chapter 
5.2.4 

 
The various inputs specified in the files listed in Table 4.1 contain “token” or keywords. 
Such method of specifying inputs is called “dictionary entries”. A dictionary is an entity 
that contains data entries that can be retrieved by the I/O by means of keywords. 
Therefore, these files are commonly referred to as “dictionary files” in OpenFOAM. 
Furthermore, the keyword entries follow the general format: 
 
  <keyword> <dataEntry1> …  <dataEntryN>; 
 
  <keyword> <dataEntry>; 
 
As described in Reference 13, most OpenFOAM data files are themselves dictionaries 
containing a set of keyword entries. Dictionaries provide the means for organising entries 
into logical categories and can be specified hierarchically so that any dictionary can itself 
contain one or more dictionary entries. The format for a dictionary is to specify the 
dictionary name followed by keyword entries enclosed in curly braces {} as follows: 
 
<dictionaryNames> 
{ 
 <keyword> <dataEntry>; 
 <keyword> <dataEntry1>    <dataEntry2>   …    <dataEntryN>; 
} 
 
4.1.2 Time Directory (Output) 

Before solving for a flow case, a directory named “0” must exist as shown in Table 4.1. 
This “0” directory is the first time directory, named after the “start time”.   Note that the 
solver will look for the same time directory number which matches that specified by the 
keyword startTime in the controlDict file, and usually equals “0”. The “0” directory 
contains the initial field values and the boundary conditions for all flow variables that are 
going to be solved. A typical boundary conditions setup that can be used for running both 
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incompressible and compressible external aerodynamic flow with field momentum 
sources present in the domain will be discussed later in Section 4.4. 
 
Results are written out in the manner specified by the keywords writeControl and 
writeInterval in the controlDict file. Allowable parameters for these are specified 
in Table 4.2. Results are written out into a time directory with the directory name 
corresponding to the current iteration count or the flow time step.  
 
Table 4.2:    Specifying writeData control in the controlDict File 

Keyword AllowableValue Description 

stopAt endTime Stops at time specified by the endTime keyword entry. 

 writeNow Stops simulation on completion of current time step and writes data. 

 noWriteNow 
Stops simulation on completion of current time step and does not write 
out data. 

  nextWrite 
Stops simulation on completion of next scheduled write time, specified 
by writeControl. 

deltaT [floating point] 
Time step of the simulation. If steady, it can be specified as 1 to be used 
as the iteration counter. 

writeControl timeStep 
Controls the timing of write output to file. Writes data every writeInterval 
time steps. 

 runTime Writes data every writeInterval seconds of simulated time. 

 adjustableRunTime 

Writes data every writeInterval seconds of simulated time, adjusting the 
time steps to coincide with the writeInterval if necessary — used in 
cases with automatic time step adjustment (based on Courant Criteria). 

 cpuTime Writes data every writeInterval seconds of CPU time. 

  clockTime Writes data out every writeInterval seconds of real time. 

writeInterval [floating point] Scalar used in conjunction with writeControl described above. 

purgeWrite [floating point] 

Integer representing a limit on the number of time directories that are 
stored by overwriting time directories on a cyclic basis. Example of t0 = 
5s, Δt = 1s and purgeWrite 2; 
data written into 2 directories, 6 and 7, before returning to write the data 
at 8 s in 6, data at 9 s into 7, etc. 
To disable the time directory limit, specify purgeWrite 0; For steady-state 
solutions, results from previous iterations can be continuously 
overwritten by specifying purgeWrite 1; 

 
 
4.2 Specifying the rotorDiskSource Properties in the 
sourceProperties Dictionary File 

4.2.1 Basic Selection Mechanism  

In order to use the rotorDiskSource library in a simulation, a sourceProperties file 
containing the parameters required by the rotorDiskSource library must exist in the 
constant directory for the case considered.  
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As previously discussed in Section 3.3.4, an abstract class (basicSource) is used in the 
solver. The implementation of this basicSource class depends on the “type” entry in 
the case sourceProperties4 dictionary file as shown in Figure 4.2.  This selection 
mechanism allows user to specify multiple source regions in the computational domains 
with differing implementations. An example of this is the ability to specify two source 
regions where one region contains the VBM model, and the other contains a heat source. 
In the example shown in Figure 4.2, a rotorDisk object, arbitrarily named “mainrotor”, 
is instantiated in the domain for all computational cells included in the “fluid-
mainRotor” cellZone5. When a rotorDisk type source object is selected, the user 
must then define all parameters inside the rotorDiskCoeffs keyword entry as required 
by rotorDiskSource class as described in Section 4.2.2 through Section 4.2.4. 
 
Multiple rotorDisk regions are allowed, provided that each cellZone representing the 
rotor disk region is attached to only one object. An example of this is also shown in Figure 
4.2, where a second rotorDisk, named “tailrotor” object, is instantiated in the 
domain on all cells included in the fluid-tailRotor cellZone. There is no limit on 
the number of rotorDisk objects that can be instantiated in a computational domain. 
 

 
Figure 4.2:  Source term model selector in the sourceProperties file 

 

                                                      
4 Note that sourceProperties file is a common “dictionary” file that is read by many different source 
term implementations in OpenFOAM.  
5 The term cellZone in OpenFOAM refers to the same cell-zone in the ANSYS Fluent terminology.  
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4.2.2 Specifying Basic rotorDiskSource Coefficients 

All keyword entries shown in Figure 4.3 must be specified for each rotorDisk object. In 
an incompressible simulation, the fluid density, rho, is not computed; hence, a reference 
value for rho must be specified using the keyword rhoRef.  
 

 
Figure 4.3:  Basic rotorDiskCoeffs parameters in the sourceProperties file 

 
The keyword geometryMode indicates the method that rotorDiskSource will use to 
determine the rotor disk origin.  When the “auto” mode is selected, the code will calculate 
the origin of the rotor disk cellZone using a cell volume-weighting method.  The origin 
vector is mathematically described by Equation 4.1: 
 

     

 


 


cellI
i

cellI
ii

disk
V

CV
O     [Equation 4.1] 

where iV  is the cell volume, and iC  is the cell-centre position vector. 

 
The rotor disk axis will also be calculated using the orientation of the face normal vectors 
on each cell included in the rotor disk cellZone.  The rotor disk axis vector is determined 
by summing the face area vector on every cell included in the rotor disk cellZone that 
are closely aligned with the pointAbove vector. The axis is expressed as a unit vector, 
which is mathematically shown in Equation 4.2: 
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where 
if

S is the surface area vector of each cell face that is normal to the disk surface. 

 
The user must always check for the correctness of the calculated rotor disk origin and axis 
during runtime by looking at the runtime log printed to the screen.  
 
For the main rotor, the refDirection and pointAbove are vectors in the direction of 
the positive X-axis and positive Z-axis in the mesh respectively. It is good practice to create 
the helicopter and rotor disk model in the mesh with the helicopter nose pointing in the 
negative X-direction direction, and the lift vector pointing close to the positive Z-direction. 
These refDirection and pointAbove vectors are used in the code to construct the 
Cartesian to cyclindrical coordinate transformation matrix, and do not have to precisely 
reflect the orientation of the freestream flow and lift vector.  
 
The keyword rpm is the rotor blade speed in revolutions per minute (RPM). This quantity 
needs to be an integer, and is specified as positive when the rotor blade is rotating counter-
clockwise when viewed from above (i.e. a view in the negative-lift direction). 
 
The keyword nBlades is the number of rotor blades in the rotor. 
 
The keyword inletFlowType specifies the type of inlet flow into the rotorDisk region. 
When this is specified as “local”, the code will use the local velocity value in the 
rotorDisk region. Otherwise, a user-defined velocity profile on the rotorDisk can be 
specified by setting this parameter value to either “fixed” or “surfaceNormal”. An 
example of the latter settings is shown in Figure 4.4. 
 

 
Figure 4.4:  Methods of specifying inlet flow into the rotor disk in the sourceProperties file 

 
The keyword tipEffect specifies the blade radius position over which the momentum 
source in the disk will be reduced to zero. This parameter is specified as a non-
dimensionalised radial position on the disk normalised by the rotor radius, i.e. a value of 1 
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corresponds to the tip of the rotor disk region, while a value of 0.96 represents a radial 
position at 96 per cent of the disk radius relative to the disk origin.    
 
The keyword flapCoeffs specifies the blade flapping constants, sco 11 ,,  , as given in 

Equation 2.5 at Section 2.2.3. These constants represent the coning, cosine and sine 
flapping angles respectively; and thus have a unit of degrees.  
 
4.2.3 Specifying Blade Trim Parameters  

A “trim” model must always be specified for each rotor disk region in the 
sourceProperties file. An untrimmed rotor is deemed to have a “fixedTrim” model 
as shown in Figure 4.5. If a fixedTrim model is selected, a set of trim coefficients need to be 
specified in accordance to the definition shown in Equation 2.3 at Section 2.2.2. These trim 
coefficients, denoted as BAc ,, in the sourceProperties file, correspond to the blade 

collective pitch angle, and the cosine and sine cyclic pitch angles respectively. These angles 
should always be specified in their first-quadrant values irrespective of the direction of 
rotation. For example, a blade collective pitch, c , of positive 10 represents a blade pitch 

angle of 10 degrees regardless whether the blade is rotating in the counter-clockwise or 
clockwise direction. Note that changing these values will not alter the rotor disk 
orientation in the mesh.  
 

 
Figure 4.5:  Cyclic and collective pitch trim parameters in the sourceProperties file 
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The blade trimming calculation can be “activated” by specifying “targetForceTrim” as 
the trimModel. When blade trimming is carried out in the simulation, the 
fixedTrimCoeffs entries will be ignored by the code. Instead, the user must specify the 
targetForceTrimCoeffs entries as shown in Figure 4.5. 
 
As previously discussed in Section 2.3.7 and Section 3.4.3, the trimming is done by 
perturbing the blade collective and cyclic pitch angles at a frozen flow state (at each flow 
solver iteration) to find a combination of blade collective and cyclic pitch angles that will 
return the global thrust and moments on the rotor disk that match the user-specified target 
rotor thrust and moments. The keyword fThrust shown in Figure 4.5 specifies the 
desired total thrust acting on the disk in Newtons. The keywords mRoll and mPitch 
specify the desired total rolling and pitching moments acting on the disk in 
Newton-meters.  
 
Usually the rotor total thrust and moments for a particular flight condition are specified by 
the Original Equipment Manufacturer (OEM) as non-dimensionalised quantities of 
coefficients of thrust and coefficients of moments as given by Equations 2.37 through 2.39 
in Section 2.3.7.  
 
The keyword alphaCIni, AIni and BIni are the initial guesses of the blade collective 
pitch angle and cyclic pitch coefficients (refer to Equation 2.36 in Section 2.3.7).  
 
The keyword calcFrequency specifies the interval (in flow iterations) in-between 
trimming routines. The keyword dTheta specifies the angles by which the local blade 
AOA needs to be perturbed during trimming (the default value is 0.05 degree).  
 
The URF for the newly calculated AOA during trimming is specified by the keyword 
relax as shown in Figure 4.5. Note that for stability reasons, this factor should be kept at 
one unless the trimming routine is unable to find a trimmed solution within its iteration 
limits. This iteration limit in the trimming loop is “hard-coded” to be 50 iterations, in the 
source file “targetForceTrim.C”. However, the user may override this setting by 
adding a keyword nIter and specifying an integer value in the line following the relax 
keyword.  
 
 
4.2.4 Specifying Blade Geometry and Section Profile  

A blade geometry and blade section profile must be specified for each of the rotor objects 
created in the “sourceProperties” file. An example of a setup for a linearly tapering 
blade with a NACA0015 section is shown in Figure 4.6. In this example, the blade has zero 
twist along its radius, and is linearly tapered from a chord length of 0.086 m at r = 0.45 m, 
to a chord length of 0.075 m at its tip.  The blade radius is shown to be 0.8 m. Note that 
currently only a linear taper is supported by the code.  
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Figure 4.6:  Blade geometry and profile specification in the sourceProperties file 

 
The “NACA0015” shown in Figure 4.6 can be arbitrarily named. However, this naming 
must correspond to the “profile” entry setup as described later in Section 4.2.5.  
 
The setup shown also allows the blade to be defined in multiple segments, where in each 
segment an independent section profile, and a linear variation of twist angle and taper, can 
be defined. Each blade segment can be defined using a pair of entries specifying the 
segment start and end radii, blade twist angle, and chord.  
 
4.2.5 Specifying Section Profile Lift and Drag Curves 

Following the blade geometry and section profile specification, the lift and drag curves for 
a range of AOA must be specified for each blade segment. Using the example shown in 
Figure 4.6, NACA0015 lift and drag curves as a function of AOA must be specified. This is 
shown in Figure 4.7.  
 
As shown in Figure 4.7, there are two ways of specifying the lift and drag curves for the 
selected NACA0015 airfoil, i.e. using a “series” mode or a “lookup” mode. In the 
“series” mode, the Cl curve is represented using a sine series, while the Cd curve is 
represented using a cosine series as shown by the equations in the same Figure. The 
numbers shown in the sourceProperties file (Figure 4.7) are the ith coefficient  ilC   

and  idC   for the respective series equations. These coefficients have been generated by 

fitting the Cl and Cd versus AOA using the sine or cosine series respectively. The fitted 
raw data for the Cl and Cd must cover AOA ranging from – to +. 
 
In the “lookup” mode, the lift and drag curves are described using point data as shown in 
Figure 4.7. During computation, the values for Cl and Cd for any AOA are linearly 
interpolated from the point data specified in the sourceProperties file. The data must 
cover AOA ranging from – to +.  
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Figure 4.7:  Airfoil section lift and drag curves specification in the sourceProperties file 

 

4.3 Mesh Requirement 

As previously discussed in Section 2.3.6, the rotorDiskSource library introduces a 
momentum source on each cell included in a separate cell zone or fluid region. This 
separate rotor cell zone must be made up of a collection of one-cell thick hexahedral cells 
forming a cylindrical disk. The thickness of the cells must be chosen so as to give the best 
possible aspect ratio (close to one) to the hexahedral cells.  
 
The rotor disk may also have an inner central hole to allow for the rotor shaft with a no-
aerofoil region (also called “blade root cutout”).  The addition of the central hole in the 
middle of the rotor disk is also considered a good practice for avoiding mesh singularity at 
the centre of the disk. 
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An example of this setup is shown in Figure 4.8. Note that due to the specific 
implementation of the momentum source terms (discussed in Section 2.3.6), only 
hexahedral cells are allowed in the rotor disk region.  
 
 

 
Figure 4.8:  An example of rotor disk mesh using structured hexahedral cells 

 
Although the rotor disk region can only be constructed from hexahedral cells, other parts 
of the domain may be constructed using any other type of cells, i.e. tetrahedral or 
polyhedral. However, if tetrahedral cells are used in the domain, a series of pyramid 
shaped cells need to be attached on the rotor disk surfaces in order to smoothly blend the 
hexahedral cells in the rotor disk region to the tetrahedral cells in the domain.  An example 
of this is shown in Figure 4.9. 
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Figure 4.9:  An example of pyramid cells attachment on the rotor disk mesh in a fully unstructured 

tetrahedral cell domain – generated using ANSYS TGrid 

 
OpenFOAM does not include robust geometry manipulation and meshing tools. Hence, as 
a standard practice, the geometry and mesh need to be generated using third party 
software packages.  A range of third party meshing software packages that have been 
tested to be compatible with OpenFOAM are shown in Figure 4.10. 
 
From the range of third-party geometry modeller and meshing software shown in Figure 
4.10, Pointwise and ANSYS Gambit/TGrid have been successfully used for creating the 
geometry and meshes used in this project. Pointwise has the ability to natively export the 
created mesh into an OpenFOAM format. However, meshes created using ANSYS Gambit 
and TGrid need to be first exported into ANSYS Fluent format. The resulting ANSYS 
Fluent mesh can then be converted into an OpenFOAM mesh using the 
fluent3DMeshToFoam utility which is included in the standard OpenFOAM 
distribution.   

Pyramidal cells on the side and 
bottom surfaces of the rotor 
disk 

Pyramidal cells on the inner cap 
of the rotor disk 

NOTE:  Pyramidal cells attached to the rotor 
disk top surface have been omitted from view 
for clarity 
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Figure 4.10:  OpenFOAM user environment 

 
The ANSYS Gambit and ANSYS TGrid software are widely available within DSTO. 
Therefore, only the method of generating the rotor disk mesh using ANSYS Gambit and 
TGrid will be discussed in this report. 
 
4.3.1 Generating Rotor Disk Mesh Using ANSYS Gambit and ANSYS TGrid for 
Use in OpenFOAM 

Reference 1 provides a detailed discussion on the development of the VBM in the ANSYS 
Fluent environment. A detailed procedure on how to create the rotor disk mesh in a CFD 
model using ANSYS Gambit and TGrid is also included in Section 3.2 of Reference 1. 
Therefore, this procedure will not be repeated in this report.  However, during review of 
Reference 1, it was found that the use of prismatic cells to construct the rotor disk is not 
appropriate for the VBM method (refer to Section 2.3.6). Therefore, it is recommended that 
the rotor disk region is constructed in ANSYS Gambit (or any other preferred geometry 
modelling software) using structured hexahedral cells only. Pyramidal cell caps can then 
be placed on the rotor disk surfaces to transition the hexahedral cells to the tetrahedral 
cells for meshing the fluid domain as per the guidance given in Reference 1. 
 
Following the procedure given at Reference 1, the mesh can be saved as a Fluent type 
mesh file format (.msh)6. Although the OpenFOAM translation routine, 
“fluent3DMeshToFoam” is able to translate the .msh file into OpenFOAM format, it was 
found that the same routine performs better with ANSYS Fluent case file format (.cas). 
Therefore, it is considered to be a good practice to load the ANSYS Gambit/TGrid 
generated mesh into ANSYS Fluent, and then save the mesh into a “dummy” case file (in 
.cas format).  

                                                      
6 IMPORTANT:  the Fluent case file will need to be written in ASCII format for translation 
into OpenFOAM format.  
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Conversion of an ANSYS Fluent case into an OpenFOAM format requires the user to first 
set up a standard OpenFOAM case directory structure (previously shown in Figure 3.7) in 
the intended OpenFOAM working path.  For the purpose of importing the mesh from a 
Fluent format into OpenFOAM, the “polyMesh” directory inside the case directory 
structure must be empty. The conversion routine will subsequently populate this directory 
to contain the files needed to define the mesh in OpenFOAM. 
 
Prior to the mesh conversion, the “dummy” ANSYS Fluent case file needs to be copied 
into the OpenFOAM case “root directory”. This is the top level location in the case 
directory structure. Following this, the mesh conversion can be started by issuing the 
following command from the Bash shell terminal from the case root directory location: 
 
$ fluent3DMeshToFoam –scale <factor> <filename.cas> -writeZones 
-writeSets 
 
The input <factor> is the mesh geometric scaling factor to be applied during conversion, 
e.g. if the mesh was created in the unit of mm, the entry <factor> should be replaced 
with 0.001. The input <filename.cas> should be replaced with the ANSYS Fluent case 
filename, including the full or relative path to the ANSYS Fluent case file.  
 
Following a successful mesh conversion, the polyMesh directory will be populated with 
the files as shown in Figure 4.11. Details on the mesh topology and conventions used in 
OpenFOAM are available from Chapter 5 of Reference 13.  
 

 
Figure 4.11:  polyMesh directory structure in an OpenFOAM case 

 
The “points”, “cells”, and “faces” files contain a long list of numbers which are used 
for cell and face addressing. The “boundary” file contains the patch definition in the mesh. 
It is important to note that the patch definitions contained in the “boundary” file are not 
the boundary conditions for the case. The boundary conditions need to be set up in the “0” 
directory in the case directory. Boundary conditions setup will be discussed in Section 4.4. 
 
Prior to setting up the boundary conditions for the case, the user should check if the 
separate cellZone or region that the rotor disk was created in has been preserved 
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correctly during the mesh conversion. The simplest way to check this is to make sure that 
the “cellZone” file located in the polyMesh directory has at least two separate 
cellZone as indicated in Figure 4.12.   
 
The final step involved in the process of preparing an OpenFOAM mesh from an ANSYS 
Fluent mesh is to reorder the mesh addressing in the domain to improve the 
computational performance of the solvers. The reordering procedure involves rearranging 
the points, faces and cells addressing to improve the bandwidth of the FV Matrix, once 
constructed, during runtime. In general, the faces and cells are reordered so that the 
neighboring cells are near each other in the zone and in memory. Since most of the 
computational loops are over faces (e.g. calculation of the cell face flux), it is best to place 
two adjacent cells next to each other in the memory addressing slots.  
 
The imported mesh can be reordered by issuing the following command from the case root 
directory: 
 
 $ renumberMesh -overwrite 
 

 
Figure 4.12:  polyMesh directory structure in an OpenFOAM case 

 
4.4 Setting Up the Boundary Conditions 

The OpenFOAM mesh conversion utility, fluent3DMeshToFoam, will attempt to capture 
the ANSYS Fluent boundary condition definitions as much as possible. However, since 
there is no clear, direct correspondence between the OpenFOAM and ANSYS Fluent 
boundary conditions, the user must make manual adjustments in the OpenFOAM case 

Total number of cellZones (or regions) in the mesh 

rotor disk region name 

Total cell count in rotor disk region 
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prior to running the case. The following sub-sections will provide a high-level overview of 
boundary conditions that are readily available in OpenFOAM for typical cases involving 
the use of VBM.  
 
4.4.1 Overview of Boundary Patches and Boundary Conditions in OpenFOAM 

Following a successful mesh conversion from an ANSYS Fluent mesh format to an 
OpenFOAM format, a “boundary” file will be automatically created by 
fluent3DMeshToFoam and placed inside the polyMesh directory. The “boundary” file 
contains the type associated with each imported domain boundary surface included in the 
Fluent mesh that are readily recognisable by the fluent3DMeshToFoam. These boundary 
types include: patch, wall, symmetry plane, and cyclic plane.  If a 2D mesh is imported, then a 
pair of empty plane or wedge plane will be created to simulate the symmetry plane or the cyclic 
plane for the 2D planar and 2D axisymmetric case respectively. Note that a 2D mesh is not 
suitable for using the rotorDiskSource library. 
 
In OpenFOAM, a boundary surface is generally broken up into a set of patches. One patch 
may include one or more enclosed areas of the boundary surface which do not necessarily 
need to be physically connected (Reference 13). The type definition included in the 
boundary file is therefore only associated with the mesh hierarchy. In addition to the type 
definition included in the boundary file, a numerical boundary condition must also be 
defined for each boundary surface.  
 
In summary, there are two attributes associated with a “patch” that are described below in 
their natural hierarchy. Figure 4.13 also shows the names of different patch types 
introduced at each level of the hierarchy.  
 

 Base type.  The type of patch described purely in terms of geometry or a data 
‘communication link’. 

 Numerical type.  The boundary conditions describing the treatment of field 
variables on a particular base type patch. These are split into two categories: 

a. Primitive type.   The base numerical patch condition assigned to a field 
variable on the patch. Some examples of these are: the Dirichlet Condition 
(fixdValue), zero Neumann Condition (zeroGradient), etc. 

b. Derived type.  A complex patch condition, derived from the primitive type, 
assigned to a field variable on the patch.  Some examples of these are: the 
totalPressure, inletOutlet, flowRateInletVelocity, etc. 
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Figure 4.13:  Boundary patch hierarchy in an OpenFOAM case (reproduced from Reference 13) 

 
4.4.2 Setting Up Boundary Conditions for an OpenFOAM Case 

As discussed in the previous Section, the OpenFOAM mesh conversion utility, 
fluent3DMeshToFoam, is capable of recognising the “base type” of each boundary patch. 
This means that boundary surfaces with the following attributes: wall; symmetry plane; and 
periodic (cyclic); are automatically setup in the boundary file. However, all other derived 
types, such as: velocity inlet, pressure inlet, pressure outlet, etc, from ANSYS Fluent are 
assigned a basic type of patch in the boundary file. Whilst each of these boundary 
condition types carries a specific numerical definition in ANSYS Fluent, they are not made 
available to the public. Therefore, a set of numerical boundary conditions that is 
considered to be equivalent to that in ANSYS Fluent was investigated.  
 
In addition to setting up the “base type” for each of the boundary surfaces in the 
boundary file, a “numerical type” must also be assigned for each of the field variables at 
each of the boundary surfaces included in the mesh. Setting up the numerical boundary 
conditions in OpenFOAM involves creating a series of text files in a “0” directory as 
previously shown in Figure 3.7. An example of an OpenFOAM case that was used for 
validating the rotorDiskSource code has also been enclosed in this report (in 
Appendix B), and may serve as a template for setting up future cases. Further details on 
the more specific format of these boundary condition files are provided at Chapter 5.2 of 
the OpenFOAM User Guide at Reference 13. 
 
Table 4.3 provides a map translating the commonly used ANSYS Fluent boundary 
conditions to those that are readily available in OpenFOAM. The OpenFOAM boundary 
conditions shown in the map are not exhaustive, and are typically the simplest available 
types. There is very limited information on some of these boundary conditions available in 
the OpenFOAM User Guide (Reference 13, Chapter 5.2). Thus, in the author’s opinion, the 
simplest way to learn more about the types of boundary conditions that are available in 
OpenFOAM and their numerical implementation is through the source code. The source 
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code for all available boundary conditions in OpenFOAM can be found at the following 
path: 
 
  ${FOAM_SRC}/finiteVolume/fields/fvPatchFields/derived 
 
The method and entries required to set up a boundary condition in OpenFOAM are not 
necessarily uniform across all types.  However, description of such methods required to 
setup each boundary condition available in OpenFOAM is considered to be beyond the 
scope of the current report. Nonetheless, the sample cases provided in Appendix B of this 
report provide some examples on how the boundary conditions are typically set up in a 
case involving a helicopter in forward flight. The boundary conditions setup can be found 
in the files located inside the “0” directory of the case as given in Appendices B.2.6 
through B.2.12. These files need to be created manually in every case set up. The methods 
required for specifying any other boundary conditions apart from those included in 
Appendix B can always be obtained from the source code.   
 
4.4.3 Rotor Disk Boundary Conditions in OpenFOAM  

The construction of the rotor disk geometry as shown in Figure 4.8 and Figure 4.9 requires 
construction of several internal surfaces bounding the disk. Following the meshing of the 
rotor disk, it is customary to define these disk internal surfaces as “interior” type 
boundaries in ANSYS Gambit and ANSYS TGrid. Unfortunately, there is currently no 
boundary condition in OpenFOAM that is equivalent to the “interior” type that is 
available in ANSYS Fluent (and most of other commercial CFD packages, such as ANSYS 
CFX). Any “interior” type boundaries in the ANSYS Fluent mesh will be ignored during 
the conversion; hence such boundary will not appear in the “polyMesh/boundary” file 
in the OpenFOAM mesh.  
 
However, the geometry definition of the surface of such boundaries is retained in the 
OpenFOAM mesh in the form of a “faceZone”. This faceZone may still prove useful for 
post-processing the result using paraview. Therefore, it is still considered to be beneficial 
to place the “interior” type surface or boundary when creating the ANSYS Fluent mesh for 
post-processing purposes. Section 4.6 will provide limited guidance on how an “interior” 
surface may be used for post-processing in OpenFOAM using paraview.  
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Table 4.3:    Mapping of ANSYS Fluent boundary conditions to standard OpenFOAM numerical type boundary conditions 

OpenFOAM 2.1.x 
"Numerical Type" in Time Directory (If simulation is started from 0, the Time Directory is 0) 

ANSYS Fluent  
BC Type 

OpenFOAM 
2.1.x 
"Base 
Type" in  
constant/ 
polyMesh/ 
boundary 

0/p 0/U 0/k 0/epsilon 

mass flow rate 
inlet 

patch zeroGradient; 
 
waveTransmissive

1
 

flowRateInletVelocity fixedValue; 
 
mappedFixedValue

2
; 

 
turbulentIntensityKineticEnergyInlet 

fixedValue; 
 
mappedFixedValue

2
; 

 
compressible::turbulentMixingLengthDissipationRateInlet

3
 

velocity inlet patch zeroGradient; 
 
waveTransmissive

1
 

fixedValue; 
 
uniformFixedValue; 
 
mappedFixedValue

2
 

fixedValue; 
 
mappedFixedValue

2
; 

 
turbulentIntensityKineticEnergyInlet 

fixedValue; 
 
mappedFixedValue

2
; 

 
turbulentMixingLengthDissipationRateInlet

3
 

pressure inlet patch fixedValue; 
 
totalPressure

4
 

zeroGradient; 
 
pressureInletVelocity

5
 

outletInlet outletInlet 

pressure outlet patch zeroGradient; 
 
totalPressure

4
; 

inletOutlet; 
 
pressureInletOutletVelocity

6
 

inletOutlet inletOutlet 

wall - no slip wall zeroGradient fixedValue
7
 fixedValue

8
; 

 
compressible::kqRWallFunction

10
 

zeroGradient
9
; 

 
compressible::epsilonWallFunction

10
 

wall - slip wall slip slip slip slip 

interior N/A N/A N/A N/A N/A 

symmetry symmetry symmetryPlane symmetryPlane symmetryPlane symmetryPlane 

periodic cyclic cyclic cyclic cyclic cyclic 

N/A empty
13

 empty empty empty empty 

N/A wedge
14

 wedge wedge wedge wedge 

Table continues over page… 
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…Table continued 

OpenFOAM 2.1.x 
"Numerical Type" in Time Directory (If simulation is started from 0, the Time Directory is 0) 

ANSYS 
Fluent  
BC Type 

OpenFOAM 
2.1.x 
"Base 
Type" in  
constant/ 
polyMesh/ 
boundary 

0/omega 0/T 0/mut 0/alphat 

mass flow 
rate inlet 

patch fixedValue; 
 
mappedFixedValue

2
; 

 
compressible::turbulentMixingLengthDissipationRateInlet

3
 

fixedValue; 
 
mappedFixedValue

2
; 

 
totalTemperature

4
 

calculated calculated 

velocity inlet patch fixedValue; 
 
mappedFixedValue

2
; 

fixedValue; 
 
mappedFixedValue

2
; 

 

calculated calculated 

pressure inlet patch outletInlet zeroGradient; 
 
outletInlet; 
 
inletOutletTotalTemperature

11
 

calculated calculated 

pressure 
outlet 

patch inletOutlet zeroGradient; 
 
inletOutlet; 
 
inletOutletTotalTemperature

11
; 

calculated calculated 

wall - no slip wall zeroGradient
9
; 

 
compressible::epsilonOmegaFunction

10
 

zeroGradient; 
 
compressible::temperatureThermoBaffle1D

12
 

mutKWallFunction
15

;
 
mutUWallFunction

16
 

alphatWallFunction; 
 
alphatJayatillekeWallFunction 

wall - slip wall slip slip slip slip 

 
 
Note: 

1. waveTransmissive is a boundary conditions that may be used if strong pressure reflection on the boundary is detected during the simulation, that causes 
numerical instability to develop. Otherwise, the use of zeroGradient is recommended. 

2. mappedFixedValue is used when the distribution of the “value” across the boundary is not uniform and is known. For example: parabolic velocity inlet. 
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3. The compressible::turbulentMixingLengthDissipationRateInlet can only be used for compressible flow solvers (e.g. rhoSimpleFoam). If an incompressible flow 
solver is used (e.g. simpleFOAM), use the equivalent turbulentMixingLengthDissipationRateInlet. 

4. totalPressure and totalTemperature should be used when running a compressible flow solver.  

5. Use pressureInletVelocity for U when totalPressure is used for p. 

6. Use pressureInletOutletVelocity for U when totalPressure is used for p. 

7. Set value to “uniform 0”. 

8. Set turbulent kinetic energy at the wall (k) to zero only when the mesh resolution at the wall is adequate to resolve the flow to the wall (low Reynolds number 
mesh). Otherwise, use wall function. 

9. Use zeroGradient for epsilon and/or omega at the wall only when the mesh resolution at the wall is adequate to resolve the flow to the wall (low Reynolds number 
mesh). Otherwise, use wall function. 

10. These BCs are for compressible flow solvers. When running an incompressible flow solver, remove the “compressible::” from the BC type name. 

11. Use inletOutletTotalTemperature on a pressure boundary when totalTemperature is specified at an inlet boundary. 

12. BC for calculating 1D normal conduction through a thin wall. zeroGradient condition for temperature at a wall will result in an adiabatic wall. 

13. BC for the “front” and “back” planes of a planar 2D mesh – only used in a 2D simulation. 

14. BC for the wedge planes of an axisymmetric 2D mesh – only used in a 2D axisymmetric simulation. 

15. Wall function for turbulent vicosity based on near wall values of turbulent kinetic energy (k). 

16. Wall function for turbulent vicosity based on near wall values of velocity. 
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4.5 Solution Driving Strategy 

4.5.1 Overview  

The steady-state RANS solvers included in the standard OpenFOAM distribution are 
pressure-based segregated solvers that are based on the SIMPLE algorithm. The numerical 
stability of such RANS algorithm is often determined by a range of interacting factors. 
These factors are generally associated with:  

1. appropriateness of the boundary conditions chosen;  
2. appropriateness of the chosen initial condition; 
3. the orthogonality of the cell faces in the mesh; 
4. the number of PDEs being solved simultaneously during the simulation;  
5. the method of solving the coupled PDEs, either by using a segregated method 

(explicit coupling with quasi-linearisation)  or direct implicit coupling method; 
6. selection of the numerical discretisation scheme for each term in the PDEs being 

solved; 
7. selection of linear solvers employed in the algorithm, and 
8. selection of the under-relaxation factors. 

 
The original SIMPLE method was first introduced by Patankar and Spalding at Reference 
16. The method was further extended for compressible flow and heat transfer application 
at Reference 17. However, its suitability is often only limited to weakly compressible flow 
(Ma < 0.7). In general, the SIMPLE algorithm seeks to convert the continuity equation into 
an equation for pressure (often referred to as “pressure corrector”), and to use the 
corrected pressure to correct the initial solution of the momentum equation. The solution 
is then iterated until a “converged solution” is reached, meaning the pressure corrector 
becomes zero anywhere in the solution. This particular method, while proven to be low-
cost and effective in solving the steady-state version of the Navier-Stokes equations, is 
inherently unstable because the solution may change abruptly from one iteration to the 
next, leading to a divergence in the calculation. Therefore, an appropriate combination of 
solver settings and solution control methods needs to be applied to the case to stabilise the 
run.  
 
Unfortunately due to the diverse flow regimes (even when the simulated flow is only 
limited to the incompressible and compressible flow regimes), there is no single method 
that will ensure a stable simulation for all possible flow conditions and flow regimes while 
at the same time maintaining a reasonable accuracy of the solution. For example, using a 
Gauss upwind discretisation scheme (1st order accurate scheme) for all convective terms in 
the momentum equation may lead to a more numerically stable run than using a Gauss 
linear scheme (2nd order accurate scheme). However, this may lead to a less accurate 
solution as the upwind scheme introduces a higher degree of numerical diffusion (artificial 
diffusion) in the solution. An alternative method would be to start the run with a Gauss 
upwind scheme for the convective terms until the pressure field is fully developed in the 
domain, then switching to the Gauss linear scheme in the more advanced stage of the 
iteration to get a better converged solution. The numerical stability may also be enhanced 
by heavily under-relaxing the pressure field, which may dampen any numerical 
fluctuations that occur in the pressure solution. 
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In an OpenFOAM case, the numerical discretisation schemes are specified in the 
fvSchemes file located inside the system directory of the case. The linear solver settings 
and solution control methods are set using the fvSolution file located inside the 
system directory of the case. Users will need to create these files manually following the 
specifications given in Section 4.4 and Section 4.5 of the OpenFOAM User Guide 
(Reference 13). While the User Guide (Reference 13) provides some explanations of the 
numerical schemes and linear solver settings that are available in OpenFOAM, they are by 
no means exhaustive. Therefore, it may also be useful to refer to the sample case files 
provided in Appendix B of this report.  
 
The following sub-sections will discuss some of the more important considerations that 
may help in stabilising the steady RANS simulation in OpenFOAM using the 
simpleFoam or rhoSimpleFoam solvers. These strategies are generally applicable, but 
not limited, to cases typically considered by IRSA, e.g. transport of hot exhaust plumes 
around a helicopter in-flight. 
 
4.5.2 Appropriateness of Boundary Conditions  

Inappropriate boundary conditions are the most common cause for numerical instability in 
performing a steady RANS simulation. This difficulty with setting-up proper boundary 
conditions for a problem set has largely been alleviated in a lot of market-leading 
commercial CFD packages (such as ANSYS Fluent or ANSYS CFX) for many commonly 
considered flow cases. Many of the commercial CFD packages now employ an extensive 
use of GUI to simplify the case set up procedure, and at the same time automate the 
process of setting up the numerical boundary condition type for each of the field variables. 
The main reasoning behind this automation is to minimise the chance of human error by 
minimising the amount of user’s input. However, this has an adverse effect of obscuring 
the actual implementation of the boundary conditions from the user. 
 
In OpenFOAM, the user has the ability to set every boundary condition that is required to 
solve each equation (refer to Section 4.4). However, this may also lead to inappropriate 
specification of boundary conditions which causes the system of equations to be 
“numerically stiff”, and eventually leading to a divergence solution during the iteration. 
To minimise the chance of setting-up a numerically stiff case, the user needs to consider 
the following factors: 

1. Avoid using a Dirichlet type condition (e.g. fixedValue) for both the pressure and 
velocity on a boundary. For example, if a fixedValue velocity is set at an inlet 
boundary, a zeroGradient pressure must be selected on that boundary.  

2. A case must not have fixedValue pressure being setup on all boundaries in a 
computational domain, nor a zeroGradient pressure being setup on all 
boundaries. 

3. If the flow is compressible, a totalPressure boundary condition must be used 
for pressure on all inlet and outlet boundaries (refer to Table 4.3).  
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4. Use the inletOutlet or pressureInletOutletVelocity type boundary 
conditions for velocity on a pressure boundary for incompressible flow and 
compressible flow cases respectively. This is particularly important on boundaries 
where “back-flow” is expected. This is because the inletOutlet type is a 
“mixed condition” that sets a zeroGradient condition on the boundary face if the 
face flux vector on that face is pointing out of the domain, and sets a fixedValue 
condition if the face flux vector on that face is pointing into the domain (i.e. 
backflow). inletOutlet is also a better boundary condition for turbulence 
quantities across a pressure boundary. 

5. Ramp-up the velocity (or mass flow rate) at the inlet boundary by using the 
“timeVarying” set up of the fixedValue or flowRateInletVelocity 
boundary conditions. An example of how to use the time-varying option with the 
flowRateInletVelocity is shown at Figure 4.14. Note that a volumetric flow 
rate (instead of a mass flow rate) must be defined for flowRateInletVelocity 
when used with an incompressible flow solver (e.g. simpleFoam).  

 
4.5.3 Appropriateness of Initial Condition 

An initial condition must be set for each of the field variables being solved. The initial 
conditions are set up using the keyword internalField (refer to the sample case setup 
at Appendix B).  The simplest type of initial condition in OpenFOAM is as follows: 
 
  internalField   “uniform (0 0 0)”  for a vector field;  
  internalField      “uniform 0”   for a scalar field.  
 
Starting the simulation from a zero solution is known to potentially cause numerical 
instability in the flow-field at later stages during the iteration. Regions in the flow-field 
with strong gradients (such as the engine exhaust exit plane in a helicopter simulation) are 
particularly prone to numerical instability. Therefore, where a complex simulation is 
concerned (such as flow around a helicopter in forward flight with hot exhaust plume), it 
is recommended that the solution is developed gradually. In such a scenario, the 
simulation may be started from a quiescent condition by first running a potential flow 
solver (potentialFoam) or incompressible flow solver (simpleFoam) without modelling 
the compressible flow feature. This will initially establish the pressure field and rough 
wake field around the helicopter. The incompressible solution can subsequently be 
mapped or interpolated into a new compressible flow case with the exhaust plume 
activated. Ramping up the exhaust plume flow rate will also aid in stabilising the run. 
 
The standard distribution of OpenFOAM comes with a utility to map or interpolate field 
solution between meshes or cases. The following command can be used to map fields: 
 
$ mapFields –consistent –sourceTime <time> -targetTime <time> 
<sourceCasePath> 
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Figure 4.14:  Using the “timeVarying” option of the flowRateInletVelocity boundary 

condition across a mass flow rate inlet boundary  

 
4.5.4 Cell Orthogonality Consideration 

Highly non-orthogonal cells (i.e. skewed cells) may lead to large interpolation errors in the 
calculation of the cell face flux for discretising both the convective and diffusive terms. The 
cell quality is largely controlled and inspected during the meshing process. However, it 
may not be possible to completely avoid the inclusion of highly-skewed cells in a mesh 
containing highly complex geometry. Therefore, a correction needs to be applied in the 
solving stage.  
 
The standard OpenFOAM utility for checking mesh quality is 
 
 $ checkMesh  
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The user must observe the reported average value and maximum value of the mesh 
non-orthogonality from running the checkMesh utility. An average value of less than 30 
is considered good. At least 1 or 2 nonOrthogonalCorrectors are needed when 
checkMesh reports an average value of higher than 50. The number of 
nonOrthogonalCorrectors can be set in the “system/fvSolution” file of the case, 
under the keyword nNonOrthogonalCorrectors.  
 
If checkMesh reports a maximum cell non-orthogonality of higher than 50, it is 
recommended that a leastSquares method is used for calculating the gradient terms, 
instead of the Gauss linear scheme. The discretisation scheme for the gradient term is 
set in the case “system/fvSchemes” file, under the keyword gradSchemes.   
 
4.5.5 Selection of Numerical Discretisation Scheme 

OpenFOAM requires the user to set up the discretisation schemes that are to be used for 
each PDE being solved. These include all gradient terms, convective terms (divergence 
term), diffusion terms (laplacian term), and surface normal gradient terms. The numerical 
schemes are specified in the “system/fvSchemes” file for each case.  
 
Section 4.4 of the OpenFOAM User Guide (Reference 13) contains some limited 
explanations on the numerical discretisation setup in a case. An example of the 
fvSchemes file has also been included in the attached sample case files at Appendix 
B.2.14.  
 
There are several differences in the way the discretisation schemes are setup (or selected) 
in OpenFOAM and ANSYS Fluent cases. A map translating the commonly used ANSYS 
Fluent numerical schemes (or discretisation schemes) to those that are readily available in 
OpenFOAM is shown in Table 4.4. Due to the limited information available from the 
ANSYS Fluent manual, some educated judgement was applied to deduce the possible 
implementation of the same discretisation scheme in Fluent.  
 
It is considered a standard practice to start a complex flow simulation (using steady 
pressure-based RANS formulation) with first order accurate schemes for the divergence 
terms (i.e. Gauss upwind). The residuals are then monitored during runtime. The 
solution may be restarted using higher order-schemes (such as Gauss linear) when the 
residuals have shown a significant drop (approximately by two orders of magnitude), and 
any instabilities in the pressure residuals have gradually disappeared. A more 
conservative approach would be to restart the solution using higher order schemes from a 
fully converged first order accurate solution. 
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Table 4.4:    Mapping of ANSYS Fluent discretisation schemes to standard OpenFOAM discretisation schemes – excluding Laplacian schemes 

Pressure-Velocity Coupling: Segregated - SIMPLE   

ANSYS Fluent - Setup in GUI OpenFOAM - $FOAM_CASE/system/fvSchemes Numerical Behaviour of OpenFOAM Scheme 

Gradient grad(p);   grad(U)   

Green Gauss Node Based Gauss pointLinear Second order, Gaussian Integration - Using Node values 

Green Gauss Cell Based Gauss linear Second order, Gaussian Integration - Using Cell centre values 

Least Squares Cell Based leastSquares Second order, least squares fitting 

N/A fourth Fourth order, least squares fitting 

Flux Limiter in Gradient Term 

Cell-to-Face Limiting faceLimited <gradScheme> 1 Cell limited version of one of the above grad schemes 

Cell-to-Cell Limiting CellLimited <gradScheme> 1 Face limited version of one of the above grad schemes 

Cell Centre-to-Face Centre Interpolation  

Unknown linear Central differencing, unbounded 

Unknown upwind phi Upwind differencing, bounded 

Unknown limitedLinear <factor> phi 

Blending of central differencing and bounded upwind differencing based on 
<factor>, e.g. 
limitedLinear 0.5 phi 

Pressure div(U,p)   

Standard Gauss upwind First order, upwind differencing 

PRESTO! N/A Unknown 

Linear Gauss linear Second order, central differencing 

Second Order Gauss linear Second order, central differencing 

Body Force Weighted Gauss limitedLinear 1 Unknown 

Table continues over page… 
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Table continued… 

ANSYS Fluent - Setup in GUI OpenFOAM - $FOAM_CASE/system/fvSchemes Numerical Behaviour of OpenFOAM Scheme 

Momentum (Vector Field) div(phi,U)   

First Order Upwind Gauss upwind <fluxLimiterScheme> First order, bounded 

Second Order Upwind Gauss linearUpwind <fluxLimiterScheme> First/second order, upwind differencing with a blending function, bounded 

N/A Gauss linear Second order, central differencing for face flux term, unbounded 

Power Law N/A Unknown  

QUICK Gauss QUICK Second order, bounded 

Third Order MUSCL Gauss MUSCL Second order, Total Variation Diminishing (TVD) scheme, bounded 

N/A Gauss skewLinear First/Second order, upwind differencing with skewness correction, bounded 

N/A Gauss limitedLinearV First/Second order, TVD scheme, limitedLinear differencing, bounded 

N/A Gauss limitedCubicV First/Second order, TVD scheme, cubic differencing with flux limiter, bounded 

N/A Gauss SFCD 
First/Second order, Normalised Variation Diminishing (NVD) scheme,  
Self-Filtered Central Differencing, bounded 

N/A Gauss vanLeerV First/Second order, NVD scheme, bounded 

k, epsilon, 
omega, energy  
(Scalar Field) 

div(phi,k);  div(phi,epsilon);   
div(phi,omega);  div(phi,K); 
div((muEff*dev2(T(grad(U))))); 
div((muEff*dev2(grad(U).T()))) 

  

First Order Upwind Gauss upwind <fluxLimiterScheme> First order, bounded 

Second Order Upwind Gauss linearUpwind <fluxLimiterScheme> First/second order, upwind differencing with a blending function, bounded 

N/A Gauss linear Second order, central differencing, unbounded 

Power Law N/A Unknown  

QUICK Gauss QUICK Second order, bounded 

Third Order MUSCL Gauss MUSCL Second order, Total Variation Diminishing (TVD) scheme, bounded 

N/A Gauss cubicCorrected Fourth order, unbounded, cubic differencing  

N/A Gauss skewLinear First/Second order, upwind differencing with skewness correction, bounded 

N/A Gauss limitedLinear First/Second order, TVD scheme, limitedLinear differencing, bounded 

N/A Gauss limitedCubic First/Second order, TVD scheme, cubic differencing with flux limiter, bounded 

Table continues over page… 
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Table continued… 

ANSYS Fluent - Setup in GUI OpenFOAM - $FOAM_CASE/system/fvSchemes Numerical Behaviour of OpenFOAM Scheme 

k, epsilon, 
omega, energy  
(Scalar Field) 

div(phi,k);  div(phi,epsilon);   
div(phi,omega);  div(phi,K); 
div((muEff*dev2(T(grad(U))))); 
div((muEff*dev2(grad(U).T()))) 

  

N/A Gauss SFCD 
First/Second order, Normalised Variable (NV) scheme,  
Self-Filtered Central Differencing, bounded 

N/A Gauss limitedVanLeer <LowerBound> <UpperBound> 
First/Second order, NVD scheme for strictly bounded scalar, e.g. 
Gauss limitedVanLeer 0.1 1.0 

Note: 
1. The shaded row was found to be the most robust scheme for a mesh of typical industrial type and quality.   
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The central differencing interpolation (Gauss linear) used in the convective flux 
reconstruction is second order accurate, which often causes numerical oscillations during a 
steady RANS simulation. On the other hand, the upwind differencing scheme does not 
induce numerical oscillations, but is numerically very diffusive. Hence, a blend between 
the two schemes is the preferred method in most cases.  
 
The simplest method to blend the central differencing scheme with the upwind 
differencing scheme is by introducing a blending function into the interpolation scheme. 
This method is implemented in the Gauss linearUpwind scheme, which is similar to 
the ANSYS Fluent’s second order upwind discretisation scheme.  
 
Furthermore, there exist a large number of other flux reconstruction schemes, such as the 
TVD and NVD schemes, that attempt to apply various form of flux limiting schemes to 
increase the boundedness of the scheme. While these schemes may reduce numerical 
oscillations and at the same time achieve higher than first order accuracy, they have not 
been found to be significantly more robust than the linearUpwind scheme. It is also 
important to note that the overall accuracy of the Gauss schemes is limited to second order 
despite the use of higher order flux reconstruction schemes (i.e. 
Gauss cubicCorrected scheme will still be second order accurate despite the fourth 
order accurate interpolation scheme being used).  
 
Generally, in the author’s opinion, the bounded second order linearUpwind scheme 
with a faceLimited option provides an optimum balance between numerical stability 
and order of accuracy. However, for a strictly bounded scalar, such as turbulence kinetic 
energy, a vanLeer or limitedLinear TVD schemes may provide better damping to any 
numerical oscillation that may arise in the solution, particularly if strong gradients are 
expected to occur in the domain (Reference 18).  
 
All Laplacian terms have been excluded from Table 4.4 as there is no sufficient information 
available to deduce the type of Laplacian Schemes used in ANSYS Fluent. In OpenFOAM, 
a numerical scheme must be specified for all Laplacian terms found in the PDEs that are 
being solved. These are also specified in the “system/fvSchemes” file for each case. The 
Gauss scheme is the only choice of discretisation, and it requires a selection of both an 
interpolation scheme for the diffusion coefficient, and a surface normal gradient scheme. 
The following example illustrates the method of specifying a Laplacian discretisation 
scheme in OpenFOAM. 
 
Consider a typical Laplacian term found in the incompressible Navier-Stokes Equation,  
 

 U   
 
This is represented in OpenFOAM syntax as:   
 
laplacian(nu,U) 
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The Gauss scheme can be applied to the above Laplacian term by applying a divergence 

scheme to the velocity gradient term, U . Note that the term U  must be evaluated as a 

surface normal gradient of velocity U  at the face centre (in a similar fashion to the flux 
evaluation in the convection term). Thus, to summarise, the entries required are: 
 
laplacian(nu,U)     Gauss <interpolationScheme> <snGradScheme>; 
 
The interpolation scheme can be chosen from those listed in Table 4.4. It is recommended 
that linear interpolation is used. The user must then specify the Surface Normal 
Gradient (snGrad) scheme from those listed in Table 4.5. 
 
Table 4.5:    Surface normal gradient discretisation schemes for specifying Laplacian schemes in 

OpenFOAM 

OpenFOAM - $FOAM_CASE/system/fvSchemes Numerical Behaviour of OpenFOAM Scheme 

snGrad Scheme   

corrected Unbounded, second order, conservative 

uncorrected Bounded, first order, non-conservative 

limited <ψ>
1
 Blending of corrected and uncorrected schemes 

bounded First order for bounded scalars ONLY 

fourth Unbounded, fourth order, conservative 

Note:  1. The shaded row was found to be the most robust for a mesh of typical industrial type and quality.  
The <ψ> corresponds to a floating point number between 0 and 1 (refer to the following paragraph for further 
explanation). 
 
The “corrected” and “fourth” snGrad schemes were found to induce numerical 
instability when used with an unstructured tetrahedral mesh. Therefore, it is 
recommended that the limited <ψ> scheme is used for most cases. According to 
Reference 13, the blending coefficient (0 ≤ ψ ≤ 1.0) for the limited scheme is based on the 
following criteria: 
 

 
 
Selection of the appropriate blending coefficient to use should be based on the cell 
orthogonality measure. As a rule of thumb, when the maximum non-orthogonality in the 
mesh is found to be higher than 50°, the “Gauss linear limited 0.5” scheme 
should be used, and if the maximum cell non-orthogonality is found to be higher than 70°, 
the “Gauss linear limited 0.333” should be used.  
 
The simplest way to test the appropriateness of the choice of the Laplacian scheme is by 
running a potential flow solver (i.e. potentialFoam) using the prepared mesh. The 

potentialFoam solves the potential flow equation ( 0.;02  Up ), which is the 
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Laplacian of the pressure (laplace(1,p)    Gauss linear limited 0.5;). Thus, 
any numerical instability that arises during the potentialFoam simulation is solely due 
to the discretisation of the Laplacian term.  
 
A summary of the optimum second order discretisation schemes for running compressible 
flow cases typically considered within the IRSA group is shown in Table 4.6. Note that 
since the momentum source introduced by the rotorDiskSource library is an explicit 
source term, no additional discretisation scheme needs to be specified in the fvScheme 
file apart from those required by the solver.  
 
Table 4.6:    Recommended second order accurate discretisation scheme set up for use with the 

rhoSimpleFoam solver 

Term / keyword in fvSchemes FV Scheme Comment 

ddtSchemes     

default steadyState; rhoSimpleFOAM compressible flow 
solver 

      

gradSchemes     

default cellLimited Gauss linear 1; Use "cellLimited Gauss 
pointLinear 1" if Mach > 0.5. 

grad(U) cellLimited leastSquares 1; Cell-to-Cell flux limited to 1 
neighbouring cell. LeastSquares fit 
interpolation. 

grad(p) cellLimited Gauss linear 1; Can be changed to leastSquares if 
large number of highly non-orthogonal 
cells exist in the mesh. 

grad(K) faceLimited Gauss linear 1; Cell-to-Face flux limited to 1 
neighbouring cell. Linear interpolation 
(central differencing). 

      

divSchemes     

default none;  

div(phi,U) Gauss linearUpwindV grad(U); grad(U) is the flux limited scheme - set 
in the gradSchemes.  

div(U,p) Gauss linear; Use Gauss linear only to maintain 
accuracy for the pressure equation. 

div(phi,k) Gauss limitedLinear 0.5; The coefficient "0.5" can be reduced to 
"0.1" to set the scheme closer  
to upwind behaviour. 
Gauss linearUpwind with flux limiter 
can also be used. Alternatively, use 
Gauss vanLeer.  

div(phi,epsilon) Gauss limitedLinear 0.5; The coefficient "0.5" can be reduced to 
"0.1" to set the scheme closer  
to upwind behaviour. 
Gauss linearUpwind with flux limiter 
can also be used. Alternatively, use 
Gauss vanLeer.  

Table continues over page… 
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Table continued… 

Term / keyword in fvSchemes FV Scheme Comment 

div(phi,omega) Gauss limitedLinear 0.5; The coefficient "0.5" can be reduced to 
"0.1" to set the scheme closer  
to upwind behaviour. 
Gauss linearUpwind with flux limiter 
can also be used. Alternatively, use 
Gauss vanLeer.  

div(phi,K) Gauss linearUpwind grad(K); grad(K) is the flux limited scheme - set 
in the gradSchemes.  

div(muEff*dev2(grad(U).T()))) Gauss linear; Use Gauss linear only to maintain 
accuracy for the turbulence modelling. 

div(nuEff*dev(T(grad(U))))) Gauss linear; Use Gauss linear only to maintain 
accuracy for the turbulence modelling. 

      

laplacianSchemes     

default none; Default can be set to "Gauss linear 
limited 0.333". All the other 
Laplacian entries will be omitted. 

laplacian(muEff,U) Gauss linear limited 0.333; Can be omitted if the default is used. It 
is recommended all laplacian terms 
used the same scheme. 

laplacian((rho*(1/|A(U))),p) Gauss linear limited 0.333; Can be omitted if the default is used. 

laplacian(alphaEff,h) Gauss linear limited 0.333; Can be omitted if the default is used. 

laplacian(DkEff,k) Gauss linear limited 0.333; Can be omitted if the default is used. 

laplacian(DepsilonEff,epsilon) Gauss linear limited 0.333; Can be omitted if the default is used. 

laplacian(DomegaEff,omega) Gauss linear limited 0.333; Can be omitted if the default is used. 

      

interpolationSchemes     

default linear; 
 
upwind phi; 

Can be changed to leastSquares for 
highly non-orthogonal mesh at a higher 
CPU cost. 
 
“upwind phi” scheme provides a 
bounded upwind interpolation. 

      

snGradSchemes     

default limited 0.333; flux limited scheme with non-orthogonal 
correction. 

 
4.5.6 Selection of Linear Solvers 

The type of linear solver used for solving each of the PDEs must be specified by the user in 
the “fvSolution” file located in the “system” directory of a case. Section 4.5 of 
Reference 13 contains some limited explanations on the setup of solution method for a 
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case. An example of the fvSolution file has also been included in the attached case files 
at Appendix B.2.15. 
 
There are several differences between the linear solver setup in OpenFOAM and ANSYS 
Fluent. ANSYS Fluent by default sets up the multigrid solver to be used for all PDEs. 
While, the same set up can also be used in an OpenFOAM case, it is not a recommended 
setting. Table 4.7 shows the recommended linear solver set up for a compressible 
OpenFOAM case. 
 
4.5.7 Under-Relaxation Factors 

Under-Relaxation Factors (URF) can be used to stabilise a steady-state RANS simulation 
run. In an OpenFOAM case, the URFs are setup in the “system/fvSolution” file under 
the keyword “relaxationFactors”.  
 
The most commonly accepted set of URFs as recommended in the ANSYS Fluent User 
Manual is to use a URF of 0.3 for pressure, and 0.7 for the momentum equation. 
Furthermore, ANSYS Fluent recommends using a URF ranging from 0.7 to 0.9 for the 
energy and turbulence model equations. This particular setup has been found to be 
unsuitable for running steady highly compressible flow cases in OpenFOAM. Severe 
numerical instability growth in the pressure field has been seen in the early iterations, 
which eventually led to numerical divergence.  
 
A recommended URF setup for running a steady compressible flow case using 
OpenFOAM is shown in Figure 4.15. The recommended URF for pressure is ranging 
between 0.001 and 0.1. Flow cases with higher Mach numbers will tend to require a lower 
URF for pressure during the early iterations (typically for the first 1000 – 2000 iterations). 
The URF for pressure may be increased in the later iterations to speed up convergence.  
 

 
Figure 4.15:  Recommended URF setup for running rhoSimpleSourceFoam solver for a moderately 

compressible flow case
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Table 4.7:    Recommended linear Solver Set Up for Use with the rhoSimpleSourceFoam Solver 

PDE 
Linear Solver 
Type  

Recommended Setup  
(optimised) 

Alternative Setups Comments 

p 

Preconditioned  
Conjugate  
Gradient  
Method (PCG) 

p 
{ 
    solver    PCG; 
    preconditioner 
    { 
        preconditioner    GAMG; 
        tolerance           1e-05; 
        relTol                 1e-03; 
        smoother            DICGaussSeidel; 
        nPreSweeps       0; 
        nPostSweeps     2; 
        nBottomSweeps 2; 
        cacheAgglomeration    false; 
        nCellsInCoarsestLevel  20; 
        agglomerator      faceAreaPair; 
        mergeLevels        1; 
    } 
    tolerance    1e-06; 
    relTol          1e-02; 
} 

p 
{ 
        solver                 GAMG; 
        tolerance            1e-06; 
        relTol                 1e-02; 
        smoother            GaussSeidel; 
        nPreSweeps       1; 
        nPostSweeps     2; 
        nBottomSweeps 2; 
        cacheAgglomeration    true; 
        nCellsInCoarsestLevel  20; 
        agglomerator        faceAreaPair; 
        mergeLevels         1; 
} 
 
ALTERNATIVELY 
 
p 
{ 
        solver                 PCG;      
        // Use PBiCG for transonic 
        preconditioner     DIC;        
        // Use DILU for transonic 
        tolerance            1e-06; 
        relTol                 1e-02; 
} 

The recommended setup uses the smoothed 
Geometric Algebraic Multi Grid (GAMG) solver as 
the matrix preconditioner for the PCG solver. This 
results in a highly optimised solution method for 
pressure as the GAMG preconditioner 
dramatically reduces the number of PCG 
iterations needed. However, the user may opt to 
use the GAMG as the main solver as a cheaper 
alternative.  
 
Another more expensive alternative would be to 
use the PCG solver with a Cholevsky method 
preconditioner (DIC).  
 
If the maximum Mach Number in the field is 
higher than 0.6, it is recommended that the 
'transonic' options is enabled in the 
system/fvSolution file by adding the following 
entry: 
 
SIMPLE 
{ 
    transonic    yes; 
} 
 
If the transonic option is enabled, the PBiCG 
solver must be used in place of PCG. The 
transonic option, when enabled, will write the p 
matrix in its full non-symmetric form.  
The PCG solver is only for solvng a symmetric 
matrix equation, while the PBiCG is the PCG 
counterpart for solving non-symmetric matrix 
equation. 

Table continues over page… 
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Table continued… 

PDE 
Linear Solver 
Type  

Recommended Setup  
(optimised) 

Alternative Setups Comments 

U, h, k, 
epsilon, 
omega, 
R, 
nuTilda 

Geometric  
Algebraic  
Multi Grid  
(GAMG) Solver 

"(U|h|k|epsilon|omega|R|nuTilda)" 
{ 
        solver                 GAMG; 
        tolerance            1e-08; 
        relTol                 1e-02; 
        smoother            GaussSeidel; 
        nPreSweeps       1; 
        nPostSweeps     2; 
        nBottomSweeps 2; 
        cacheAgglomeration    true; 
        nCellsInCoarsestLevel  20; 
        agglomerator      faceAreaPair; 
        mergeLevels       1; 
} 

"(U|h|k|epsilon|omega|R|nuTilda)" 
{ 
        solver                 smoothSolver; 
        smoother            GaussSeidel; 
        tolerance            1e-08; 
        relTol                 1e-02; 
} 
 
ALTERNATIVELY 
 
"(U|h|k|epsilon|omega|R|nuTilda)" 
{ 
        solver                 PBiCG; 
        smoother            DILU; 
        tolerance            1e-07; 
        relTol                 1e-02; 
} 

It is recommended to use the the same solver 
type for U,h, k, epsilon, omega, and R. epsilon, 
omega, or R must be specified depending on 
the selection of turbulence model.  
 
Note that the expression 
"(U|h|k|epsilon|omega|R)" represents the 
boolean operation "or" wildcard. 
 
The recommended setup uses the GAMG 
solver with a GaussSeidel smoother. A cheaper 
alternative is to use the Gauss-Seidel solver 
(smoothSolver). 
 
Using the PBiCG is considered to be the most 
robust and accurate solution method, however 
at a higher computing cost. The Incomplete  
L-U Decomposition method (DILU) can be used 
as a preconditioner for the PBiCG solver. 
 
If any instability in the turbulence quantities 
develops during a simulation run, it is 
recommended to create a separate entry for 
"(k|epsilon|omega|R)", and using the 
smoothSolver for these PDEs. 
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4.6 Plotting Results on the Rotor Disk Surface using ParaviewTM 

ParaviewTM is a third-party post-processing software that is included in the standard 
distribution of OpenFOAM. An extensive user guide is readily available from the 
Paraview official website at Reference 19.  
 
The discussion here will be limited to the important aspects of post-processing results 
generated using the rhoSimpleSourceFoam solver and the rotorDiskSource library. 
Readers are assumed to have a working knowledge of how to use Paraview’s basic 
functionality. 
 
As previously discussed in Section 4.3 and Section 4.4, the rotor disk surfaces are created 
using ANSYS TGrid as “interior” type surfaces. Since OpenFOAM does not recognise an 
interior type surface as a boundary condition, the rotor disk surfaces are translated into a 
“faceZone” during the mesh translation routine.  
 
Two methods are available in Paraview for plotting the flow-field variables on the rotor 
disk surface, i.e.: 
1. By defining a new plane source7 in Paraview which has the same dimensions, position 

and orientation as the rotor disk surface.  This method can be difficult to implement if 
the exact position and orientation of the disk is unknown.  

2. By converting the rotor disk region contained in the OpenFOAM mesh into a VTK 
format, which can then be readily read into Paraview. This is the preferred method, as 
the disk surface mesh and geometrical information preserved as a faceZone in the 
OpenFOAM mesh can then be read directly in the Paraview environment.  

 
 
4.6.1 Plotting Flow-field Variables on the Rotor Disk using a New Plane Source in 
Paraview  

After loading up the OpenFOAM case and data into Paraview, a new rotor disk surface 
plane can be defined in Paraview by selecting the following menu entry: 
 
  Sources > Disk 
 
The dimensions, radial resolution and circumferential resolution of the newly created 
plane source must be set to correspond to the rotor disk mesh. Following this, the user 
must then apply a “transform” filter to the newly created disk to re-position and re-orient 
the disk to the correct location and orientation. This can be done through the following 
menu entry: 
 
 Filters > Alphabetical > Transform 
 

                                                      
7 The term “source” in Paraview refers to a geometry definition (for example: a surface plane, 
cylinder, etc.) that is created exclusively within the Paraview environment. 
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Finally, the flow-field data can be mapped onto the newly created disk using the following 
menu entry: 
 
 Filters > Alphabetical > Resample With Dataset 
 
Note that for the “Resample With Dataset” filter to work, the user must first select the 
main case name entry in the Selection Tree. 
 
4.6.2 Plotting Flow-field Variables on the Rotor Disk using a VTK File 

To use this method, the OpenFOAM mesh containing the rotor disk source region must 
first be exported into a VTK format. This can be done using the following command from 
the root directory of the corresponding OpenFOAM case: 
 
 $ foamToVTK –latestTime 
 
The foamToVTK utility will write the mesh and point data into a new directory named 
VTK. Inside the VTK directory, each patch and faceZone is arranged into a separate 
directory. The user must then identify the name of the faceZone that corresponds to the 
rotor disk surface. The VTK file that is located inside the directory with the faceZone 
name contains the point and cell data for the corresponding faceZone surface.  
 
The newly created VTK file can be read into the Paraview environment using the standard 
“file > open” menu entry in Paraview, and can be subsequently used as the “source” for 
the “Resample With Dataset” filter as previously described in Section 4.6.1.  
 
This method is more efficient than the previous one as it does not require the user to know 
the exact position and orientation of the rotor disk surface.  
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5. Validation and Verification Test Case 

5.1 Overview 

An experimental dataset based on a rotor - fuselage aerodynamic interaction study is 
available from References 20 through 24. This dataset was identified as a suitable 
validation case for the rotorDiskSource model in OpenFOAM. The same case has been 
previously used by the ANSYS Fluent team at Reference 2 for validating the Fluent VBM 
model.  
 
The validation effort consists of modelling the wind tunnel experiment described in  
Reference 20 (which will be referred to hereafter as the Georgia Tech case) using both 
OpenFOAM and ANSYS Fluent. The results from both CFD packages will be compared to 
the experimental data. The OpenFOAM result will also be compared to the ANSYS Fluent 
result for verification purposes. The ANSYS Fluent VBM Model (version 9.0) provided by 
ANSYS directly (Reference 25) was used in this work. 
 
5.2 Summary of Georgia Institute of Technology (Georgia Tech) Rotor-
Airframe Interaction Experimental Setup 

The wind tunnel experiment in Reference 20 involves placement of a simple fuselage body 
in a 2.3 m x 2.74 m low speed wind tunnel with a uniform freestream velocity. The tunnel 
freestream turbulence level was measured to be below 1 per cent. 
 
A two-bladed teetering rotor was placed above the fuselage to simulate a helicopter rotor. 
Using this setup, the rotor and the airframe were linked solely through the flow-field. 
Figure 5.1 shows a schematic of the experimental setup, which has been reproduced from 
Reference 20.  
 
According to References 20, 22 and 23, the fuselage geometry was a cylinder with a 
hemispherical nose. The cylinder diameter was 134 mm. The total length of the fuselage 
was 1,350 mm. The rotor hub was located 274.2 mm above the fuselage, and was placed 
along the fuselage symmetry line, at an axial length of 914 mm downstream from the 
fuselage nose tip. 
 
The rotor blade was made with an un-tapered NACA 0015 profile, with an 86 mm chord 
length. The rotor diameter was 914 mm. The blade hub diameter was 24.5 mm. The blade 
collective pitch angle was preset at 10 degrees during the experiment. The rotor plane was 
tilted at 6 degrees forward to simulate the forward flight condition, and the rotor speed 
was set at a constant 2100 rpm. In the experiment reported in Reference 22, the advance 
ratio (which is defined as the ratio of the tunnel freestream velocity to the rotor tip speed) 
was set to 0.10. This advance ratio was for a tunnel freestream velocity of 10 m/s.  
 
During the experiment, coning of the blade was measured to be negligible due to the 
stiffness of the blade and the absence of hinges at the rotor hub; however, the blade was 
free to flap laterally and longitudinally. The blade flapping angles were measured by 
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tracking the position of the blade tip. Reference 23 reported that the blade’s longitudinal 
and lateral flapping angles were 4.06 deg and 2.03 deg upwards respectively.  
 
The cylindrical fuselage in Reference 23  was instrumented with 94 static pressure taps. 
Furthermore, velocity field measurements at several locations in the flow-field were taken 
using the Laser Doppler Velocimetry (LDV) technique.  
 

 
Figure 5.1:  Georgia Tech rotor - airframe interaction wind tunnel experimental setup – reproduced 

from Reference 23 

 
5.3 CFD Model 

5.3.1 Geometry and Mesh 

A CFD model of the Georgia Tech experiment was created as part of the current validation 
effort. The geometry and mesh were created using the ANSYS Gambit and TGrid 
software. The mesh was then converted to an OpenFOAM mesh using the 
fluent3DMeshToFoam utility.  
 
Unstructured tetrahedral cells were used to mesh the entire computational domain, which 
comprises of approximately 1.4 million cells. The tetrahedral cells in the domain and on 
the fuselage wall were then converted to unstructured polyhedral cells to increase 
computational efficiency. The rotor domain mesh was of structured hexahedral type with 
approximately 30,000 cells. The computational domain was a 5.5m x 2.7m x 2.3m block. 
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Figure 5.2 shows the mesh configuration used in this CFD model. The teeter hinge used to 
mount the rotor was not modelled in the computational domain. 

 
Figure 5.2:  Mesh configuration  

 
5.3.2 Boundary Conditions  

Dirichlet and Zero Neumann boundary conditions were used for velocity and pressure 
respectively across the domain inlet boundary. The velocity at the outlet boundary was set 
to Zero Neumann condition, while the gauge pressure across the outlet boundary was set 
to a uniform fixed value of 0 Pa.  
 
The standard k-ε turbulence model was used in the simulation. Dirichlet conditions were 
used for k and ε at the inlet boundary. The k value at the inlet was estimated using 
Equation 5.1 to be 12 m2/s2 based on 10 m/s tunnel freestream velocity and 1% upstream 
turbulence intensity. 
 

      25.1 turbinlet IUk     [Equation 5.1] 

(Reference 26) 
 
The ε value at the inlet was estimated using Equation 5.2 to be 32 m2/s3 based on tunnel 
hydraulic diameter of 3 m, and freestream turbulence kinetic energy of 12 m2/s2.  
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      HD

kC






07.0

5.175.0
    [Equation 5.2] 

(Reference 26) 
  
where: 
  HD   is the tunnel hydraulic diameter, 

  C    is a k-ε model constant (commonly accepted value is 0.09). 

 
Zero Neumann conditions were used for k and ε at the outlet boundary.  
 
Non-slip wall conditions were used on all the domain boundaries except at the domain 
inflow and outflow boundaries. Zero Neumann conditions were used for pressure at 
walls, while the velocity is set to zero. The standard k and ε wall functions were used on 
all walls. The computed turbulent viscosity, ύ, was fitted with a standard wall function on 
the wall.  
 
The boundary condition set up for the Georgia Tech case is provided at Appendices B.2.6 
through B.2.12. 
 
5.3.3 Rotor Modelling 

All of the rotor modelling parameters that are measured in the experiment (summarised in 
Section 5.2) can be incorporated into the VBM. It is important to point out that the pitch 
angle of the teetering rotor in the Georgia Tech experiment was fixed at 10° collective 
without any possibility of adjusting the cyclic pitch. The same collective pitch was entered 
as a rotor parameter in the VBM; however, the cyclic pitch has been assumed to be zero.  
 
The 2D lifting line and drag curves for the NACA 0015 airfoil were obtained from running 
a 2D panel method code called XFoil. The Cl and Cd profiles for a range of AOA are 
shown in Figure 5.3. 
 
5.3.4 FV Discretisation Scheme and Linear Solvers 

The same FV discretisation schemes as those presented in Table 4.6 were used to run the 
Georgia Tech case.  
 
The pressure equation was solved using the Geometric-Algebraic Multi Grid solver with a 
Gauss-Seidel smoother. All the other equations were solved using an iterative Gauss-
Seidel method (smoothSolver). The iterative solver tolerances were set to 10-7 for the 
pressure solver, and 10-8 for all the other equations.  
 
An under relaxation factor of 0.2 was used for the pressure field during the simulation run. 
All other field variables were under-relaxed by a factor of 0.3 during runtime.  
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Samples of the FV discretisation scheme and linear solver setup for the Georgia Tech case 
are provided at Appendix B.2.14 and Appendix B.2.15 respectively.  
 

 
 

Figure 5.3:  Cl and Cd profiles for NACA 0015 airfoil over a range of AOA 

 
5.3.5 ANSYS Fluent Case Setup 

For verification purposes, an identical mesh and geometry to that used in OpenFOAM was 
setup and run using ANSYS Fluent. In ANSYS Fluent, the equations were initially 
discretised using first order upwind schemes. The schemes were later changed to second 
order upwind after 1000 iterations. The Multi-Grid solver was used for all equations in 
ANSYS Fluent. 
 
5.3.6 Solution Driving Strategy and Residual Trend 

The OpenFOAM case was initially run for 1000 iterations using the Gauss upwind (first 
order upwind) scheme for all the divergence terms. The schemes were then switched to 
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the Gauss linearUpwind (second order upwind) scheme from the 1000th iteration 
onwards, until convergence was achieved. The Flow-field convergence was observed after 
4000 iterations.  
 
Figure 5.4 shows the residual curves for an OpenFOAM run of the untrimmed Georgia 
Tech case. The residuals are seen to exhibit cyclic behaviour at convergence, possibly due 
to some unsteadiness in the flow-field which cannot be modelled using the steady-state 
RANS model.  
 

 
Figure 5.4:  Residual curves of the Georgia Tech case run using the rhoSimpleSourceFoam solver 

 
5.4 Verification and Validation Result 

The Georgia Tech Rotor-Airframe experiment was simulated for both the untrimmed rotor 
and trimmed rotor conditions. In the untrimmed rotor simulation, the blade collective and 
cyclic pitch angles were set to the experimentally measured values. However, in the 
trimmed rotor simulation, the blade collective and cyclic pitch angles were allowed to 
change during the simulation until the experimentally measured total rotor thrust was 
obtained in the simulation. Due to the lack of data, the rotor pitching and rolling moments 
in the experiment were assumed to be zero for the trimmed rotor condition (See 
Section 5.4.3). 
 
5.4.1 Calculated Rotor Thrust and Moments 

A comparison between converged rotor disk thrust and moments obtained using different 
solvers is shown in Table 5.1. It shows that the predicted rotor thrust obtained using the 
simpleFoam (incompressible) solver for the untrimmed condition compares well with the 
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experimentally measured value of 72.8 N. The rhoSimpleFoam (compressible) solver and 
ANSYS Fluent are shown to under-predict the rotor thrust.  
 
Table 5.1:    Calculated rotor thrust and moments 

Total Rotor Disk 

Flow Solver 
Untrimmed 
/ Trimmed? 

Blade Cyclic 
Pitch Angles  

Blade 
Collective 

Angle Thrust (N) 
Pitching  
Moment 

(N.m) 

Rolling  
Moment 

(N.m) 

Untrimmed 
0° (Lat and   

Long)  
1
 

10° 
1
 71.96 2.72 -2.08 

simpleFoam 
(Incompressible) 

Trimmed 
2.37° (Lat)  

-2.88 (Long) 
12° 72.8

   2
 0 0 

Untrimmed 
0° (Lat and 

Long)  
1
 

10° 
1
 66.93 2.46 -1.99 

rhoSimpleSourceFoam 
(Compressible) 

Trimmed 
2.24° (Lat)  

-2.54 (Long) 
11.2° 72.8 

2
 0 0 

ANSYS Fluent  
(Incompressible) 

Untrimmed 
0° (Lat and 

Long)  
1
 

10° 
1
 68.158 3.05 -3.32 

 
Note: 

1. Based on experimentally measured values (Reference 24). 

2. Based on experimentally measured Coefficient of Thrust of 0.0092 (Reference 24). 

 
5.4.2 Untrimmed Rotor Simulation Result 

Pressure Field  
 
The mean static gauge pressure contour plots on the x-z plane and on the y-z plane passing 
through the rotor disk centre for the untrimmed rotor run are shown in Figure 5.5 and 
Figure 5.6 respectively. 
 
The figures show that the mean pressure field obtained using OpenFOAM and ANSYS 
Fluent compare favourably. Furthermore, result obtained using the modified OpenFOAM 
compressible flow solver (rhoSimpleSourceFoam) was also shown to be similar to that 
obtained using the incompressible flow solver (simpleFoam).  
 
From Figure 5.5, the effect of the forward tilt of the rotor disk plane is seen by the 
formation of a low pressure region at the forward tip of the rotor disk plane. Furthermore, 
Figure 5.6 shows that the lateral pressure distribution is not symmetrical although no 
lateral tilt is present on the rotor disk. The lateral pressure imbalance on the rotor disk is 
consistent with the predicted non-zero disk moments in the calculation. However, the 
actual rotor moments acting on the disk were not measured during these experiments; 
hence further comparison is prevented.  
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Figure 5.5:  Mean static gauge pressure contour plot on the x-z plane which passes through the 

rotor disk centre 

 

ANSYS Fluent

simpleFOAM

rhoSimpleSourceFoam

Pa 
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Figure 5.6:  Mean static gauge pressure contour plot on the y-z plane which passes through the 

rotor disk centre 

 
Fuselage Coefficient of Pressure 
 
The mean Coefficient of Pressure (Cp) on the fuselage was experimentally measured and is 
available from Reference 24. The mean pressure distribution was measured on the top and 

ANSYS Fluent

simpleFOAM

rhoSimpleSourceFoam

Pa
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bottom surfaces, and on the port and starboard sides of the fuselage. Figure 5.7 shows the 
contour plot of Cp and pressure tapping locations on the fuselage. The Cp on the fuselage 
was defined as follows: 
 

     
2

2

1





U

PP
C wall

p


 [Equation 5.3]  (Reference 24) 

 

 

Figure 5.7:  Computed mean Cp on the fuselage without force and moment trimming 

 
Figure 5.8 shows a comparison between the CFD computed Cp on the fuselage and the 
experimentally measured values. The comparison shows that the predicted Cp using both 
the OpenFOAM incompressible and compressible flow solvers compares favourably with 
the ANSYS Fluent’s prediction. However, both the OpenFOAM and ANSYS Fluent results 
have failed to capture the experimentally measured pressure peaks on the top and port 
sides of the fuselage. According to Reference 24, the disagreements in the pressure peaks 
occur at the locations where the blade tip vortices impinge on the fuselage body, as 
illustrated by the schematic shown at Figure 5.9. The momentum sources introduced by 
the VBM are based on time-averaged forces acting on the blade; thus, it cannot capture 
transient flow features, such as: formation of the blade tip vortices; and the effect of the 
blade passage as it moves through air. 
 
According to Reference 11, a possible explanation of the strong under-prediction of the 
pressure peak on the top surface of the fuselage near the nose is that it is due to the 
presence of a periodic tip vortex that retards the freestream airflow, causing a rise in the 
stagnation pressure at this location.  
Furthermore, although the blade thickness has been ignored in the present simulations, 
this may have a more pronounced effect on the pressure field when the blade is passing in 

Note:    
The red and blue lines on the fuselage indicate locations of static 
pressure taps during the Georgia Tech experiment 
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close proximity to the fuselage surface. At this instance, the narrow space between the 
fuselage and the blade is expected to create a “venturi effect”, which causes local 
interaction between the rotor downwash and the freestream flow. 
 

 
Figure 5.8:  Comparison of measured and computed mean Cp on the fuselage without force and 

moment trimming  

 
Figure 5.9:  Schematic representation of the instantaneous flow-field above the fuselage – 

reproduced from Reference 22 
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A comparison between the gauge static pressure contour produced using ANSYS Fluent 
and the simpleFoam solver on the top surface of the rotor disk is shown in Figure 5.10. 
The same comparison for the rotor disk bottom surface is shown in Figure 5.11. These 
figures show that the pressure distribution patterns on the disk surfaces are generally 
similar in both the ANSYS Fluent and the OpenFOAM results. However, ANSYS Fluent 
predicts much lower pressure occurring on the front part of the disk compared to that 
shown in the OpenFOAM result. 
 

 
Figure 5.10:  Gauge static pressure contour on the rotor disk top surface 

 
Figure 5.11:  Gauge static pressure contour on the rotor disk bottom surface  
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simpleFoam 
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simpleFoam
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Velocity Field 
 
Figure 5.12 shows a comparison between the flow streamlines coloured by velocity 
magnitude computed using OpenFOAM and ANSYS Fluent. It can be seen that the two 
results compare favourably to each other, albeit there are slight differences in the colour 
contrast and line thickness between the two results. There is no experimental data 
available that enables comparison with the streamlines.  
  
The “tip vortices” shown in Figure 5.12 are not the blade tip vortices; rather these are 
vortices that are formed due to the pressure gradient that exists between the top and 
bottom surfaces of the rotor disk, similar to those formed on the tip of a fixed wing. The 
comparison shows that generally the rotor flow is convected downstream by the 
freestream.  
 

 
Figure 5.12:  Streamlines coloured by velocity magnitude. Velocity magnitude contour plot is 

shown on the rotor disk bottom surface 
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Reference 20 provides the time-averaged measurement of the rotor downwash velocity 
normalised by the freestream velocity at a plane located 12.7 mm below the rotor disk. 
Contour plots of the rotor downwash velocity were generated from the CFD results to 
enable comparison with experimental data. This comparison is shown at Figure 5.13.  
 

 
Figure 5.13:  Contour plot of mean downwash velocity measured 12.7 mm below the rotor disk -   

negative values denote upflow 

Figure is reproduced from 
Reference 20 

simpleFOAM

ANSYS Fluent 

Uz/U(m/s) 

FWD Side Aft Side 
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From Figure 5.13, the OpenFOAM result generally agrees very well with the 
experimentally measured values. The mean downwash velocity distribution is shown by 
both the CFD results and the experimental data to be asymmetrical with respect to the 
longitudinal axis. The upflow region near the hub is clearly seen on the retreating side of 
the rotor disk. There is also an upflow region observed in both results throughout the front 
part of the disk. According to Reference 20, the upflow region near the hub is largely 
attributed to the flow separation on the blade downstream of the hub, and the rotation 
imparted to the flow by the viscous effect near the hub.  
 
The strongest downwash flow is shown in both the experimental data and the OpenFOAM 
result to occur at around 70 and 290 rotor azimuth degrees towards the aft side of the disk, 
near the blade tip.  
 
The experimental data at Reference 20 includes a plot of the normalised velocity profile at 
a vertical location below the rotor disk, at z/R=0.178 (refer to Figure 5.14). The profile was 
measured along the fuselage body centreline axis. The same plot was constructed from the 
CFD results and compared to the available experimental data. This comparison is shown 
in Figure 5.15.  
 
From Figure 5.15, it can be seen that OpenFOAM under-predicts the streamwise velocity 
component compared to Fluent by approximately 14 per cent. However, there is a good 
agreement between the Fluent and OpenFOAM predicted downwash velocity profile, and 
the experimentally measured values. 
 
 

 
Figure 5.14:  Velocity measurement location at Reference 20 
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Figure 5.15:  Comparison of measured and computed mean dtreamwise velocity profile (Top) and 

downwash velocity profile (Bottom) at Z/r=0.178 

 
5.4.3 The Effect of Thrust and Moments Trimming  

To evaluate the performance of the trimming routine incorporated into the OpenFOAM 
VBM, the Georgia Tech case was re-run with force and moments trimming set to active. 
The simulation with trim calculation was started from a quiescent flow condition to avoid 
any hysteresis effect appearing in the result. The trim calculation was carried out every 
five flow-iterations.  
 
As previously discussed, the trimming routine varies both the collective and cyclic pitch 
angles until the target rotor thrust and moments are obtained. Another equivalent method 
of numerical trimming of the rotor involves solving for the equation of motion of the blade 
in flapping mode by accounting for the aerodynamic forces acting on the blade and the 
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blade structural response. The latter method may not always be achievable. Often this is 
because of the lack of blade structural data. Nonetheless, it is important to note that as far 
as the mean rotor aerodynamic behaviour is concerned, one degree of cyclic pitch 
produces the same aerodynamic effect as one degree of blade flapping.  
 
In the context of the present validation work, the cyclic pitch in the Georgia Tech teetering 
rotor was not adjustable. Furthermore, the total moments acting on the teetered rotor were 
not measured experimentally. Therefore, the present simulation assumes that the total 
moments acting on the rotor disk are zero.  
 
Table 5.2 shows the trim parameters that were used in the OpenFOAM simulation. The 
effect of trimming to the blade collective and cyclic pitch angles were presented previously 
in Table 5.1. 
 
Table 5.2:    Rotor trim parameters for the GIT validation case 

Trim Parameter Value 

Target Rotor Thrust 72.8 N 

Target Rotor Rolling Moment 0 N.m 

Target Rotor Pitching Moment 0 N.m 

Initial Blade Collective Pitch 
Angle 

5 deg 

Initial Longitudinal Cyclic Pitch 
Angle 

0 deg 

Initial Lateral Cyclic Pitch Angle 0 deg 

Trim Calculation Interval 5 

dTheta (Perturbation Angle) 0.1 

Relaxation Factor 1 

Trim Solver Tolerance 1.00E-06 

 
Pressure Field  
 
Figure 5.16 provides a comparison of the fuselage Cp obtained from simulations with the 
trimming routine active. The Cp plots were generated at the probe locations shown in 
Figure 5.7. A comparison between Figure 5.8 (without trim) and Figure 5.16 (with trim) 
reveals that the trimmed result matches the experimental data more closely than the 
untrimmed solution. In particular, the computed pressure distributions on the top, 
starboard side and port side of the fuselage agree well in the trimmed case with the 
experimental data, apart from the pronounced pressure peaks that were previously 
identified to have been caused by the impingement of tip vortices on the fuselage. 
Furthermore, it is also shown that the simpleFoam solver produces results that are closer 
to the experimental data than the rhoSimpleFoam results. 
 
Minimal differences are observed in the pressure distribution on the bottom surface of the 
fuselage between the untrimmed and trimmed results. This is due to the rotor air-wake– 
fuselage interaction being less prominent on the bottom surface of the fuselage.  
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Figure 5.16:  Comparison of measured and computed mean Cp on the fuselage with the thrust and 

moment trimming activated 

 
Velocity Field 
 
The effect of thrust and moments trimming on the downwash velocity profile is shown in 
Figure 5.17. The figure shows that no significant improvement is gained by activating the 
thrust and moment trimming. However, the trim feature can be useful if the blade 
collective and cyclic pitch angles are not known, but the rotor disk total thrust and 
moments are known.  
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The blue dotted lines highlight the area of improvement when
compared to the plotted data shown previously in Figure 5.8. 
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Figure 5.17:  Comparison of measured and computed streamwise velocity (Top) and downwash 

velocity (Bottom) at Z/r=0.178 with the thrust and moment trimming activated 

 
Tip Effect 
 
Figure 5.18 shows the effect of using a tip factor of 0.96 instead of 1.0 on the fuselage Cp, to 
account for the loss of lift near the blade tip. It can be seen from this figure that the 
predicted Cp trends on the fuselage top and port side surfaces have been slightly 
improved from the previous results shown in Figure 5.16. The value of 0.96 is considered 
to be typical. Therefore, it is recommended that a tip factor is specified in the simulation. 
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Figure 5.18:  Mean Cp on the fuselage with the thrust and moment trimming activated and using a 

tip factor of 0.96 
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6. Conclusions and Recommendations 

A new OpenFOAM library, rotorDiskSource, has been developed to include the effect 
of helicopter rotor flow into existing OpenFOAM steady-state RANS flow solvers. Being 
part of a free open-source software suite allows high performance computer cluster 
hardware to be used at minimum cost. This allows large-scale whole-of-airframe 
computations to be routinely made in support of accurate infrared signature modelling. 
 
In the new library, rotorDiskSource, the helicopter rotor is approximated as a thin one-
cell-thick disk. The mean flow through the rotor is approximated by introducing time-
averaged momentum sources on the rotor disk, which are calculated based on the two-
dimensional Blade Element Theory. The rotorDiskSource model incorporates a range 
of blade characteristics, such as: the blade lifting line and drag profiles, variations in the 
blade collective and cyclic pitch angles, blade flapping and coning effect, as well as rotor 
thrust and moments trimming. Integration of the rotorDiskSource library into existing 
OpenFOAM RANS flow solvers has also been demonstrated.  
 
An experimental dataset based on a rotor - fuselage aerodynamic interaction study done at 
the Georgia Institute of Technology was identified as a suitable validation case for the 
rotorDiskSource model in OpenFOAM. The same case has been previously used by 
the ANSYS Fluent team at Reference 2 for validating the Fluent VBM model. The 
validation effort consists of modelling the Georgia Tech wind tunnel experiment using 
both OpenFOAM and ANSYS Fluent. The mean velocity and pressure fields predicted by 
both OpenFOAM and ANSYS Fluent software were shown to agree well with the time-
averaged experimental data. However, both the OpenFOAM and ANSYS Fluent models 
failed to capture the effect of vortex shedding from the blade tip. Nonetheless, this 
shortcoming is to be expected from the current model, as only time-averaged momentum 
sources are being introduced on the rotor disk. The VBM is also not expected to capture 
any other transient flow features. 
 
Having completed validation, the rotorDiskSource library is being used to model the 
transport of the hot exhaust plume around various ADF helicopter types for a range of 
flight conditions. An example whole-of-aircraft flow-field prediction can be seen for the 
MRH-90 in Figure 6.1 and Figure 6.2. The details of these results and related modelling 
will be published in forthcoming DSTO reports. 
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Figure 6.1:  Flow streamlines coloured by temperature used for visualising the interaction between 

the exhaust plume and the rotor downwash around the MRH-90 in hover outside of 
ground effect. 

 
 

 
Figure 6.2:  Predicted MRH-90 fuselage temperature in hover with different prevailing relative 

wind angles.  

 

Note:  Temperature is shown in Kelvin. 

-150 Deg Wind (Portside) 

-30 Deg Wind (Portside) 

+150 Deg Wind (Starboard side) 

+30 Deg Wind (Starboard side) 

Note:  1. Temperature is shown in Kelvin. 
    2. The exhaust gas is visualised using iso-temperature contour plot. 
     3. The prevailing wind is relative to the aircraft heading. 
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Appendix A Source Code for the rotorDiskSource  

A.1. High Level Description of the Source Code Files  

This Appendix contains the source code needed for the implementation of the VBM in 
OpenFOAM 2.1.x. The code needs to be compiled as an OpenFOAM library following the 
instructions given in Section 3.5. Table A.1 shows a complete list of all files included in the 
overall code along with a brief description of the content of each file.  
 
A hardcopy of all files is included in Section A.2 of this Appendix, arranged following the 
order shown in Table A.1. Comments in the code have been shown in blue to improve 
readability. 
 
Table A.1:    Summary of all source files in the rotorDiskSource code 

File Name Location Description 
rotorDiskSource.H rotorDiskSource Contains the class definition for the main 

rotorDiskSource class. It is derived from the 
basicSource class.  
 

rotorDiskSource.C rotorDiskSource Contains the main implementation of the 
rotorDiskSource Class. It contains the class 
constructor and several private member functions and 
implementation of the basicSource class virtual 
functions.  
 
The basic geometrical information of the rotor disk 
radius, centre, orientation, cell face areas are also 
subtracted from the mesh in this class. These 
procedures are contained in the following private 
functions: 
 
   rotorDiskSource::createCoordinateSystem(), 
   rotorDiskSource::constructGeometry(), and 
   rotorDiskSource::setFaceArea(). 
 
The momentum source calculation is included in the 
member function rotorDiskSource::calculate(). The 
momentum source is added to the solver in the 
function rotorDiskSource::adSup(). 
 

rotorDiskSourceTemplates.C rotorDiskSource Contains a templated function 
rotorDiskSource::writeField() which can be used to 
write out to external data file any variable computed 
in the rotorDiskSource class as a field variable. 
 

rotorDiskSourceI.H rotorDiskSource Contains the implementation of several data access 
functions as protected public member functions. 
These functions are handy for accessing and passing 
various protected and private data in the 
rotorDiskSource to any external classes. 
 

Table continues over page … 
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Table continued … 
File Name Location Description 
rotorDiskSource.dep rotorDiskSource This file was automatically generated using the wmake 

utility. It contains a list of all dependencies and their 
corresponding paths to the other standard 
OpenFOAM classes included in the OpenFOAM 2.1.x 
standard distribution. 
 

bladeModel.H rotorDiskSource/ 
bladeModel 

Contains the class definition of bladeModel class. This 
class is the container class for various blade geometry 
features as defined in the sourceProperties file, such 
as the blade radial section, twist angle and chord. 
 

bladeModel.C rotorDiskSource/ 
bladeModel 

Contains the constructor for bladeModel class and a 
linear interpolation function. Linear interpolation of 
the chord and twist angles between radial sections in 
the rotor disk is implemented in this class.  
 
This class is constructed in the Foam::rotorDiskSource 
class as a private object called “blade_”. The 
bladeModel::interpolate() function is called inside the 
rotorDiskSource::calculate() function. 
 

 

profileModel.H rotorDiskSource/ 
profileModel 

Contains the class definition of profileModel class. 
This class is the container class for various lifting and 
drag line profiles as defined in the sourceProperties 
file. 
 
The profileModel class is an abstract class for the two 
methods of specifying the blade section lift and drag 
coefficients curves, i.e. the “lookup” method and the 
“series” method. 
 

profileModel.C rotorDiskSource/ 
profileModel 

Contains the constructor for profileModel class and a 
virtual function, profileModel::Cdl() which calculates 
and returns the Cd and Cl for a given AOA.  
 
This class is constructed in the Foam::rotorDiskSource 
class as a private object called “profile_”. The 
profileModel::Cdl() function is called inside the 
rotorDiskSource::calculate() function. 
 

profileModelList.H rotorDiskSource/ 
profileModel 

Contains the class definition of profileModelList class. 
This class is derived from the template Foam::PtrList 
class which takes the profileModel class as its type.  

profileModelList.C rotorDiskSource/ 
profileModel 

Contains the constructor for profileModelList class 
and a virtual function, 
profileModelList::connectBlades() which sets the 
bladeModel – to - profileModel addressing. 
 

 

Table continues over page … 
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Table continued … 
File Name Location Description 
lookupProfile.H rotorDiskSource/ 

profileModel/lookup 
Contains the class definition of lookupProfile class, 
which inherits from the abstract class 
Foam::profileModel. This class holds the Cd, Cl and 
AOA data. This class is only constructed during 
runtime if “lookup” entry is specified in the 
sourceProperties file. 
 

lookupProfile.C rotorDiskSource/ 
profileModel/lookup 

Contains the constructor for lookupProfile class and 
the implementation of the virtual function 
Foam::profileModel::Cdl(). This function looks-up the 
supplied Cl, Cd Vs AOA data from the 
sourceProperties file, and then linearly interpolates 
the Cl and Cd for a supplied AOA.  
 

 

seriesProfile.H rotorDiskSource/ 
profileModel/series 

Contains the class definition of seriesProfile class, 
which inherits from the abstract class 
Foam::profileModel. This class holds the Cd, Cl and 
AOA data. This class is only constructed during 
runtime if “series” entry is specified in the 
sourceProperties file. 
 

seriesProfile.C rotorDiskSource/ 
profileModel/series 

Contains the constructor for seriesProfile class and the 
implementation of the virtual function 
Foam::profileModel::Cdl(). This function reads the 
supplied coefficients for calculating Cl and Cd for a 
given AOA from the sourceProperties file, and then 
calculate the Cl and Cd based on the Fourier series 
equations specified in Section 3.4.1.  
 

 

trimModel.H rotorDiskSource/ 
trimModel/ 
trimModel 

Contains the class definition of trimModel class. This 
class is the container (abstract) class for various blade 
trimming methods as defined in the sourceProperties 
file. 
 
In the current implementation, there are two 
trimming methods available, i.e. the “fixed trim” and 
the “targetForce” trim. The default is fixed trim 
method, which is equivalent to an untrimmed 
solution. 
 

trimModel.C rotorDiskSource/ 
trimModel/ 
trimModel 

Contains the constructor for trimModel class and a 
virtual function, trimModel::correct().  This virtual 
function returns the updated blade forces when called 
using the new blade pitch parameters. 
 
This class is constructed in the Foam::rotorDiskSource 
class as a private object called “trim_”. . The 
trimModel::correct() function is called inside the 
rotorDiskSource::addSup() function. 
 

Table continues over page … 
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Table continued … 
File Name Location Description 
trimModelNew.C rotorDiskSource/ 

trimModel/ 
trimModel 

Contains a procedure to create “clones” of the 
trimModel class objects during runtime to account for 
multiple rotor objects. 
 

   

fixedTrim.H rotorDiskSource/ 
trimModel/fixed 

Contains the class definition of fixedTrim class, which 
inherits from the abstract class Foam::trimModel. This 
class reads blade collective and cyclic pitch angles 
from the sourceProperties file, and returns the 
geometric angle of attack.  
 
This class is only constructed during runtime if 
“fixed” trim entry is specified in the sourceProperties 
file. 
 

fixedTrim.C rotorDiskSource/ 
trimModel/fixed 

Contains the constructor for fixedTrim class and the 
implementation of the virtual functions 
Foam::trimModel::alphag() and 
Foam::trimModel::correct().  
 
In this class, the Foam::trimModel::correct() function 
does nothing.    
 
 

   

targetForceTrim.H rotorDiskSource/ 
trimModel/ 
targetForce 

Contains the class definition of targetForceTrim class, 
which inherits from the abstract class 
Foam::trimModel.  
 
This class reads blade collective and cyclic pitch 
angles from the sourceProperties file, and returns the 
updated geometric angle of attack after a force and 
moments trimming calculation is carried out.  
 
This class is only constructed during runtime if 
“targetForce” trim entry is specified in the 
sourceProperties file. 
 

targetForceTrim.C rotorDiskSource/ 
trimModel/ 
targetForce 

Contains the constructor for targetForceTrim class and 
the implementation of the virtual functions 
Foam::trimModel::alphag() and 
Foam::trimModel::correct().  
 
The implementation of the force and moments 
trimming using the Newton-Raphson method as 
described in Section 2.3.7 is contained in the 
Foam::targetForceTrim::correct() function inside this 
class. 
 

   

files rotorDiskSource/ 
Make 

Contains a list of .C files to be compiled using wmake 
libso. The compiled library name is also specified in 
this file. 

Options rotorDiskSource/ 
Make 

Contains a list of compiler options and include files to 
be included in the library compilation using wmake 
libso.  
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A.2. Source Code for the rotorDiskSource  

A.2.1 rotorDiskSource.H 

/*---------------------------------------------------------------------------*\ 
  =========                    | 
  \\      /  F ield            | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration        | 
    \\  /    A nd              | Copyright (C) 2011-2012 OpenFOAM Foundation 
     \\/     M anipulation     | 
------------------------------------------------------------------------------- 
License 
    This file is part of OpenFOAM. 
 
    OpenFOAM is free software: you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 
 
    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
    FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 
    for more details. 
 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>. 
 
Class 
    Foam::rotorDiskSource 
 
Description 
    Cell based momentum source 
 
    Source approximates the mean effects of rotor forces on a cylindrical 
    region within the domain 
 
    Sources described by: 
 
        rotorDiskSourceCoeffs 
        { 
            fieldNames      (U);    // names of fields on which to apply source 
            rhoName         rho;    // density field if compressible case 
            nBlades         3;      // number of blades 
            tipEffect       0.96;   // normalised radius above which lift = 0 
 
            inletFlowType   local;  // inlet flow type specification 
 
            geometryMode    auto;   // geometry specification 
 
            refDirection    (-1 0 0); // reference direction 
                                      // - used as reference for psi angle 
 
            trimModel       fixed;  // fixed || targetForce 
 
            flapCoeffs 
            { 
                beta0           0;  // coning angle [deg] 
                beta1           0;  // lateral flapping coeff 
                beta2           0;  // longitudinal flapping coeff 
            } 
 
            blade 
            { 
                ... 
            } 
 
            profiles 
            { 
                ... 
            } 
        } 
 
    Where: 
 
        geometryMode = 
            auto          : determine rototor co-ord system from cells 
            specified     : specified co-ord system 
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        inletFlowType = 
            fixed         : specified velocity 
            surfaceNormal : specified normal velocity (positive towards rotor) 
            local         : use local flow conditions 
 
 
 
SourceFiles 
    rotorDiskSource.C 
    rotorDiskSourceTemplates.C 
 
\*---------------------------------------------------------------------------*/ 
 
#ifndef rotorDiskSource_H 
#define rotorDiskSource_H 
 
#include "basicSource.H" 
#include "cylindricalCS.H" 
#include "NamedEnum.H" 
#include "bladeModel.H" 
#include "profileModelList.H" 
#include "volFieldsFwd.H" 
#include "dimensionSet.H" 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
namespace Foam 
{ 
 
// Forward declaration of classes 
class trimModel; 
 
/*---------------------------------------------------------------------------*\ 
                      Class rotorDiskSource Declaration 
\*---------------------------------------------------------------------------*/ 
 
class rotorDiskSource 
: 
    public basicSource 
{ 
public: 
 
    enum geometryModeType 
    { 
        gmAuto, 
        gmSpecified 
    }; 
    static const NamedEnum<geometryModeType, 2> geometryModeTypeNames_; 
 
    enum inletFlowType 
    { 
        ifFixed, 
        ifSurfaceNormal, 
        ifLocal 
    }; 
    static const NamedEnum<inletFlowType, 3> inletFlowTypeNames_; 
 
 
protected: 
 
    // Helper structures to encapsulate flap and trim data 
    // Note: all input in degrees (converted to radians internally) 
 
        struct flapData   // on-the-fly data encapsulation declaration 
        { 
            scalar beta0;   // coning angle 
            scalar beta1;   // lateral flapping coeff 
            scalar beta2;   // longitudinal flapping coeff 
        }; 
 
 
    // Protected data 
 
        //- Name of density field 
        word rhoName_; 
 
        //- Reference density if rhoName = 'none' 
        scalar rhoRef_; 
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        //- Rotor debug mode 
        bool rotorDebug_; 
 
        //- Rotational speed [rad/s] 
        //  Positive anti-clockwise when looking along -ve lift direction 
        scalar omega_; 
 
        //- Number of blades 
        label nBlades_; 
 
        //- Inlet flow type 
        inletFlowType inletFlow_; 
 
        //- Inlet velocity for specified iinflow 
        vector inletVelocity_; 
 
        //- Tip effect [0-1] 
        //  Ratio of blade radius beyond which lift=0 
        scalar tipEffect_; 
 
        //- Blade flap coefficients [rad/s] 
        flapData flap_; 
 
        //- Cell centre positions in local rotor frame 
        //  (Cylindrical r, theta, z) 
        List<point> x_; 
 
        //- Rotation tensor for flap angle 
        List<tensor> R_; 
 
        //- Inverse rotation tensor for flap angle 
        List<tensor> invR_; 
 
        //- Area [m2] 
        List<scalar> area_; 
 
        //- Rotor co-ordinate system (r, theta, z) 
        cylindricalCS coordSys_; 
 
        //- Maximum radius 
        scalar rMax_; 
 
        //- A list of psi angle in the rotor zone for IO  
        List<scalar> psiList_; 
         
        //- Trim model 
        autoPtr<trimModel> trim_; 
 
        //- Blade data 
        bladeModel blade_; 
 
        //- Profile data 
        profileModelList profiles_; 
 
        //- Rotor bank angle 
        scalar bankAng_; 
         
        //- Rotor pitch angle 
        scalar pitchAng_; 
         
        //- Transofrmation from Carteisan to Pitch/Bank plane 
        tensor PB_; 
         
        //- Transformation from Pitch Bank plane to Cartesian 
        tensor invPB_; 
         
 
    // Protected Member Functions 
 
        //- Check data 
        void checkData(); 
 
        //- Set the face areas per cell, and optionally correct the rotor axis 
        void setFaceArea(vector& axis, const bool correct); 
 
        //- Create the co-ordinate system 
        void createCoordinateSystem(); 
 
        //- Construct geometry 
        void constructGeometry(); 
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        //- Return the inlet flow-field 
        tmp<vectorField> inflowVelocity(const volVectorField& U) const; 
 
        //- Helper function to write rotor values 
        template<class Type> 
        void writeField 
        ( 
            const word& name, 
            const List<Type>& values, 
            const bool writeNow = false 
        ) const; 
 
 
public: 
 
    //- Runtime type information 
    TypeName("rotorDisk"); 
 
 
    // Constructors 
 
 
        //- Construct from components 
        rotorDiskSource 
        ( 
            const word& name, 
            const word& modelType, 
            const dictionary& dict, 
            const fvMesh& mesh 
        ); 
 
 
    //- Destructor 
    virtual ~rotorDiskSource(); 
 
 
    // Member Functions 
 
        // Access 
             
            //- Return the cell centre positions in local rotor frame 
            // (Cylindrical r, theta, z) 
            inline const List<point>& x() const; 
 
            //- Return the rotor co-ordinate system (r, theta, z) 
            inline const cylindricalCS& coordSys() const; 
 
           //- Return rhoName_  
           inline const word& getRhoName() const; 
 
           //- Return rhoRef_ 
           inline const scalar& getRhoRef() const; 
 
 
        // Evaluation 
 
            //- Calculate forces 
            void calculate 
            ( 
                const vectorField& U, 
                const scalarField& alphag, 
                vectorField& force, 
                const bool divideVolume = true, 
                const bool output = true 
            ) const; 
 
        // Source term addition 
 
            //- Source term to fvMatrix<vector> 
            virtual void addSup(fvMatrix<vector>& eqn, const label fieldI); 
 
 
        // I-O 
            //- Write the source properties 
            virtual void writeData(Ostream&) const; 
 
            //- Read source dictionary 
            virtual bool read(const dictionary& dict); 
}; 
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// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
} // End namespace Foam 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
#include "rotorDiskSourceI.H" 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
#ifdef NoRepository 
    #include "rotorDiskSourceTemplates.C" 
#endif 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
#endif 
 
// ************************************************************************* // 
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A.2.2 rotorDiskSource.C 

/*---------------------------------------------------------------------------*\ 
  =========                    | 
  \\      /  F ield            | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration        | 
    \\  /    A nd              | Copyright (C) 2011-2012 OpenFOAM Foundation 
     \\/     M anipulation     | 
------------------------------------------------------------------------------- 
License 
    This file is part of OpenFOAM. 
 
    OpenFOAM is free software: you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 
 
    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
    FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 
    for more details. 
 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>. 
 
\*---------------------------------------------------------------------------*/ 
 
#include "rotorDiskSource.H" 
#include "addToRunTimeSelectionTable.H" 
#include "mathematicalConstants.H" 
#include "trimModel.H" 
#include "unitConversion.H" 
#include "fvMatrices.H" 
#include "syncTools.H" 
 
using namespace Foam::constant; 
 
// * * * * * * * * * * * * * Static Member Functions * * * * * * * * * * * * // 
 
namespace Foam 
{ 
    defineTypeNameAndDebug(rotorDiskSource, 0); 
    addToRunTimeSelectionTable(basicSource, rotorDiskSource, dictionary); 
 
    template<> const char* NamedEnum<rotorDiskSource::geometryModeType, 2>:: 
        names[] = 
    { 
        "auto", 
        "specified" 
    }; 
 
    const NamedEnum<rotorDiskSource::geometryModeType, 2> 
        rotorDiskSource::geometryModeTypeNames_; 
 
    template<> const char* NamedEnum<rotorDiskSource::inletFlowType, 3>:: 
        names[] = 
    { 
        "fixed", 
        "surfaceNormal", 
        "local" 
    }; 
 
    const NamedEnum<rotorDiskSource::inletFlowType, 3> 
        rotorDiskSource::inletFlowTypeNames_; 
} 
 
 
// * * * * * * * * * * * * Protected Member Functions  * * * * * * * * * * * // 
 
void Foam::rotorDiskSource::checkData() 
{ 
    // set inflow type 
    switch (selectionMode()) 
    { 
        case smCellSet: 
        case smCellZone: 
        case smAll: 
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        { 
            // set the profile ID for each blade section 
            profiles_.connectBlades(blade_.profileName(), blade_.profileID()); 
            switch (inletFlow_) 
            { 
                case ifFixed: 
                { 
                    coeffs_.lookup("inletVelocity") >> inletVelocity_; 
                    break; 
                } 
                case ifSurfaceNormal: 
                { 
                    scalar UIn 
                    ( 
                        readScalar(coeffs_.lookup("inletNormalVelocity")) 
                    ); 
                    inletVelocity_ = -coordSys_.e3()*UIn; 
                    break; 
                } 
                case ifLocal: 
                { 
                    // do nothing 
                    break; 
                } 
                default: 
                { 
                    FatalErrorIn("void rotorDiskSource::checkData()") 
                        << "Unknown inlet velocity type" << abort(FatalError); 
                } 
            } 
 
 
            break; 
        } 
        default: 
        { 
            FatalErrorIn("void rotorDiskSource::checkData()") 
                << "Source cannot be used with '" 
                << selectionModeTypeNames_[selectionMode()] 
                << "' mode. Please use one of: " << nl 
                << selectionModeTypeNames_[smCellSet] << nl 
                << selectionModeTypeNames_[smCellZone] << nl 
                << selectionModeTypeNames_[smAll] 
                << exit(FatalError); 
        } 
    } 
} 
 
 
void Foam::rotorDiskSource::setFaceArea(vector& axis, const bool correct) 
{ 
    area_ = 0.0; 
 
    static const scalar tol = 0.8; 
 
    const label nInternalFaces = mesh_.nInternalFaces(); 
    const polyBoundaryMesh& pbm = mesh_.boundaryMesh(); 
    const vectorField& Sf = mesh_.Sf(); 
    const scalarField& magSf = mesh_.magSf(); 
 
    vector n = vector::zero; 
 
    // calculate cell addressing for selected cells 
    labelList cellAddr(mesh_.nCells(), -1); 
    UIndirectList<label>(cellAddr, cells_) = identity(cells_.size()); 
    labelList nbrFaceCellAddr(mesh_.nFaces() - nInternalFaces, -1); 
 
    // add internal field contributions 
    for (label faceI = 0; faceI < nInternalFaces; faceI++) 
    { 
        const label own = cellAddr[mesh_.faceOwner()[faceI]]; 
        const label nbr = cellAddr[mesh_.faceNeighbour()[faceI]]; 
 
        if ((own != -1) && (nbr == -1)) 
        { 
            vector nf = Sf[faceI]/magSf[faceI]; 
 
            if ((nf & axis) > tol) 
            { 
                area_[own] += magSf[faceI]; 
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                n += Sf[faceI]; 
            } 
        } 
        else if ((own == -1) && (nbr != -1)) 
        { 
            vector nf = Sf[faceI]/magSf[faceI]; 
 
            if ((-nf & axis) > tol) 
            { 
                area_[nbr] += magSf[faceI]; 
                n -= Sf[faceI]; 
            } 
        } 
    } 
 
    forAll(pbm, patchI) 
    { 
        const polyPatch& pp = pbm[patchI]; 
 
        if (pp.coupled()) 
        { 
            forAll(pp, i) 
            { 
                label faceI = pp.start() + i; 
                label nbrFaceI = faceI - nInternalFaces; 
                label own = mesh_.faceOwner()[faceI]; 
                nbrFaceCellAddr[nbrFaceI] = cellAddr[own]; 
            } 
        } 
    } 
 
    // correct for parallel running 
    syncTools::swapBoundaryFaceList(mesh_, nbrFaceCellAddr); 
 
    // add boundary contributions 
    forAll(pbm, patchI) 
    { 
        const polyPatch& pp = pbm[patchI]; 
        const vectorField& Sfp = mesh_.Sf().boundaryField()[patchI]; 
        const scalarField& magSfp = mesh_.magSf().boundaryField()[patchI]; 
 
        if (pp.coupled()) 
        { 
            forAll(pp, j) 
            { 
                const label faceI = pp.start() + j; 
                const label own = cellAddr[mesh_.faceOwner()[faceI]]; 
                const label nbr = nbrFaceCellAddr[faceI - nInternalFaces]; 
                const vector nf = Sfp[j]/magSfp[j]; 
 
                if ((own != -1) && (nbr == -1) && ((nf & axis) > tol)) 
                { 
                    area_[own] += magSfp[j]; 
                    n += Sfp[j]; 
                } 
            } 
        } 
        else 
        { 
            forAll(pp, j) 
            { 
                const label faceI = pp.start() + j; 
                const label own = cellAddr[mesh_.faceOwner()[faceI]]; 
                const vector nf = Sfp[j]/magSfp[j]; 
 
                if ((own != -1) && ((nf & axis) > tol)) 
                { 
                    area_[own] += magSfp[j]; 
                    n += Sfp[j]; 
                } 
            } 
        } 
    } 
 
    if (correct) 
    { 
        reduce(n, sumOp<vector>()); 
        axis = n/mag(n); 
    } 
} 
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void Foam::rotorDiskSource::createCoordinateSystem() 
{ 
    // construct the local rotor co-prdinate system 
    vector origin(vector::zero); 
    vector axis(vector::zero); 
    vector refDir(vector::zero); 
 
    geometryModeType gm = 
        geometryModeTypeNames_.read(coeffs_.lookup("geometryMode")); 
 
    switch (gm) 
    { 
        case gmAuto: 
        { 
            // determine rotation origin (cell volume weighted) 
            scalar sumV = 0.0; 
            const scalarField& V = mesh_.V(); 
            const vectorField& C = mesh_.C(); 
            forAll(cells_, i) 
            { 
                const label cellI = cells_[i]; 
                sumV += V[cellI]; 
                origin += V[cellI]*C[cellI]; 
            } 
            reduce(origin, sumOp<vector>()); 
            reduce(sumV, sumOp<scalar>()); 
            origin /= sumV; 
 
            // determine first radial vector 
            vector dx1(vector::zero); 
            scalar magR = -GREAT; 
            forAll(cells_, i) 
            { 
                const label cellI = cells_[i]; 
                vector test = C[cellI] - origin; 
                if (mag(test) > magR) 
                { 
                    dx1 = test; 
                    magR = mag(test); 
                } 
            } 
            reduce(dx1, maxMagSqrOp<vector>()); 
            magR = mag(dx1); 
 
            // determine second radial vector and cross to determine axis 
            forAll(cells_, i) 
            { 
                const label cellI = cells_[i]; 
                vector dx2 = C[cellI] - origin; 
                if (mag(dx2) > 0.5*magR) 
                { 
                    axis = dx1 ^ dx2; 
                    if (mag(axis) > SMALL) 
                    { 
                        break; 
                    } 
                } 
            } 
            reduce(axis, maxMagSqrOp<vector>()); 
            axis /= mag(axis); 
 
            // correct the axis direction using a point above the rotor 
            { 
                vector pointAbove(coeffs_.lookup("pointAbove")); 
                vector dir = pointAbove - origin; 
                dir /= mag(dir); 
                if ((dir & axis) < 0) 
                { 
                    axis *= -1.0; 
                } 
            } 
 
            coeffs_.lookup("refDirection") >> refDir; 
 
            // set the face areas and apply correction to calculated axis 
            // e.g. if cellZone is more than a single layer in thickness 
            setFaceArea(axis, true); 
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            break; 
        } 
        case gmSpecified: 
        { 
            coeffs_.lookup("origin") >> origin; 
            coeffs_.lookup("axis") >> axis; 
            coeffs_.lookup("refDirection") >> refDir; 
 
            setFaceArea(axis, false); 
 
            break; 
        } 
        default: 
        { 
            FatalErrorIn("rotorDiskSource::createCoordinateSystem()") 
                << "Unknown geometryMode " << geometryModeTypeNames_[gm] 
                << ". Available geometry modes include " 
                << geometryModeTypeNames_ << exit(FatalError); 
        } 
    } 
 
    coordSys_ = cylindricalCS("rotorCoordSys", origin, axis, refDir, false); 
    // BEWARE WHEN USING THIS cylindricalCS CLASS. IT IS INCOMPLETE! 
 
/*  // ========== THIS METHOD RETURNS SEG FAULT ON MRH90 CASE ============= // 
    // Calculate rotor pitch and bank angles from local co-ordinate system 
    // normalised pitch-bank plane normal 
    vector nNPB = coordSys_.e3()/mag(coordSys_.e3()); 
 
    // Projection of normal onto cartesian Y-Z plane 
    vector nPBYZ = vector(0, coordSys_.e3().y(), coordSys_.e3().z()); 
    vector nNPBYZ = nPBYZ/mag(nPBYZ); 
 
    // Projection of normal onto cartesian X-Z plane 
    vector nPBXZ = vector(coordSys_.e3().x(), 0, coordSys_.e3().z()); 
    vector nNPBXZ = nPBXZ/mag(nPBXZ); 
 
    // Rotation of PB plane about X axis (bank angle) 
    bankAng_ = -acos(nNPB & nNPBYZ)*(coordSys_.e3().y()/mag(coordSys_.e3().y())); 
 
    // Rotation of PB plane about Y axis (pitch angle) 
    pitchAng_ = acos(nNPB & nNPBXZ)*(coordSys_.e3().x()/mag(coordSys_.e3().x())); 
*/ // ======================================================================== // 
 
    // alternative way of calculating pitch and bank angles 
    bankAng_  = atan2(coordSys_.e3().y(), coordSys_.e3().z()); 
    pitchAng_ = atan2(coordSys_.e3().x(), coordSys_.e3().z()); 
 
 
    // Tensor for transforming from Cartesian into Pitch/Bank Plane 
    scalar cp = cos(pitchAng_); 
    scalar sp = sin(pitchAng_); 
    scalar cb = cos(bankAng_); 
    scalar sb = sin(bankAng_); 
    PB_ = tensor(cp, sp*sb, sp*cb, 0, cb, -sb, -sp, cp*sb, cp*cb); 
 
/* 
    // Alternative way of constructing the rotational tensor 
    scalar cp = cos(pitchAng_); 
    scalar sp = sin(pitchAng_); 
    scalar cb = cos(-bankAng_); 
    scalar sb = sin(-bankAng_); 
 
    // rotation tensor about the cartesian X-Axis by bankAng_ 
    tensor bankRotate = tensor(1, 0, 0, 0, cb, sb, 0, -sb, cb); 
 
    // rotation tensor about the cartesian Y-axis by pitchAng_ 
    tensor pitchRotate = tensor(cp, 0, -sp, 0, 1, 0, sp, 0, cp); 
 
    // combined bank and pitch rotations 
    PB_ = pitchRotate * bankRotate; 
 
    // manual check of the combined rotational tensor 
    //PB_ = tensor(cp, -sp*sb, -sp*cb, 0, cb, -sb, sp, cp*sb, cp*cb); 
 
*/ 
 
    // Tensor for transforming from Pitch/Bank Plane into Cartesian  
    invPB_ = PB_.T(); 
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    const scalar sumArea = gSum(area_); 
    const scalar diameter = Foam::sqrt(4.0*sumArea/mathematical::pi); 
    Info<< " =================================== " << nl 
        << " #  Using rotorDiskSource 20120822 # " << nl 
        << " =================================== " << nl << endl;  
    Info<< "    Rotor gometry:" << nl 
        << "    - disk diameter     = " << diameter << nl 
        << "    - disk area         = " << sumArea << nl 
        << "    - origin            = " << coordSys_.origin() << nl 
        << "    - r-axis            = " << coordSys_.e1() << nl 
        << "    - psi-axis          = " << coordSys_.e2() << nl 
        << "    - z-axis            = " << coordSys_.e3() << nl 
        << "    - disk pitch angle  = " << pitchAng_ << nl 
        << "    - disk bank angle   = " << bankAng_ << endl; 
} 
 
 
void Foam::rotorDiskSource::constructGeometry() 
{ 
    const vectorField& C = mesh_.C(); 
 
    forAll(cells_, i) 
    { 
        if (area_[i] > ROOTVSMALL) 
        { 
            const label cellI = cells_[i]; 
 
            // position in (planar) rotor co-ordinate system 
            x_[i] = coordSys_.localPosition(C[cellI]); 
 
            // cache max radius 
            rMax_ = max(rMax_, x_[i].x()); 
 
            // swept angle relative to rDir axis [radians] in range 0 -> 2*pi 
            scalar psi = x_[i].y(); 
 
            if (rotorDebug_) 
            { 
                psiList_[i] = radToDeg(psi); 
            } 
 
            // blade flap angle [radians] 
            scalar beta = 
                flap_.beta0 - flap_.beta1*cos(psi) - flap_.beta2*sin(psi); 
 
            // determine rotation tensor to convert from planar system into the 
            // rotor cone system 
            scalar c = cos(beta); 
            scalar s = sin(beta); 
            R_[i] = tensor(c, 0, -s, 0, 1, 0, s, 0, c); 
            invR_[i] = R_[i].T(); 
        } 
    } 
 
    // reduce rMax_ for parallel running 
    reduce(rMax_, maxOp<scalar>()); 
} 
 
 
Foam::tmp<Foam::vectorField> Foam::rotorDiskSource::inflowVelocity 
( 
    const volVectorField& U 
) const 
{ 
    switch (inletFlow_) 
    { 
        case ifFixed: 
        case ifSurfaceNormal: 
        { 
            return tmp<vectorField> 
            ( 
                new vectorField(mesh_.nCells(), inletVelocity_) 
            ); 
 
            break; 
        } 
        case ifLocal: 
        { 
            return U.internalField(); 
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            break; 
        } 
        default: 
        { 
            FatalErrorIn 
            ( 
                "Foam::tmp<Foam::vectorField> " 
                "Foam::rotorDiskSource::inflowVelocity" 
                "(const volVectorField&) const" 
            )   << "Unknown inlet flow specification" << abort(FatalError); 
        } 
    } 
 
    return tmp<vectorField>(new vectorField(mesh_.nCells(), vector::zero)); 
} 
 
 
// * * * * * * * * * * * * * * * Constructors  * * * * * * * * * * * * * * * // 
 
Foam::rotorDiskSource::rotorDiskSource 
( 
    const word& name, 
    const word& modelType, 
    const dictionary& dict, 
    const fvMesh& mesh 
 
) 
: 
    basicSource(name, modelType, dict, mesh), 
    rhoName_("none"), 
    rhoRef_(1.2), 
    rotorDebug_(false), 
    omega_(0.0), 
    nBlades_(0), 
    inletFlow_(ifLocal), 
    inletVelocity_(vector::zero), 
    tipEffect_(1.0), 
    flap_(), 
    x_(cells_.size(), vector::zero), 
    R_(cells_.size(), I), 
    invR_(cells_.size(), I), 
    area_(cells_.size(), 0.0), 
    coordSys_(false), 
    rMax_(0.0), 
    psiList_(cells_.size(), 0.0), 
    trim_(trimModel::New(*this, coeffs_)), 
    blade_(coeffs_.subDict("blade")), 
    profiles_(coeffs_.subDict("profiles")) 
{ 
    read(dict); 
} 
 
 
// * * * * * * * * * * * * * * * * Destructor  * * * * * * * * * * * * * * * // 
 
Foam::rotorDiskSource::~rotorDiskSource() 
{} 
 
 
// * * * * * * * * * * * * * * * Member Functions  * * * * * * * * * * * * * // 
 
void Foam::rotorDiskSource::calculate 
( 
    const vectorField& U, 
    const scalarField& alphag, 
    vectorField& force, 
    const bool divideVolume, 
    const bool output 
) const 
{ 
    const vectorField& C = mesh_.C(); 
    const scalarField& V = mesh_.V(); 
    const bool compressible = rhoName_ != "none"; 
 
    tmp<volScalarField> trho 
    ( 
        compressible 
      ? mesh_.lookupObject<volScalarField>(rhoName_) 
      : volScalarField::null() 
    ); 
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    // logging info 
    scalar dragEff = 0.0; 
    scalar liftEff = 0.0; 
    scalar AOAmin = GREAT; 
    scalar AOAmax = -GREAT; 
    scalar epsMin = GREAT; 
    scalar epsMax = -GREAT; 
    scalar CdMin = 10.0; 
    scalar CdMax = VSMALL; 
    scalar ClMin = 10.0; 
    scalar ClMax = VSMALL; 
 
    scalar totalThrust = 0.0; 
    scalar totalPitchingMoment = 0.0; 
    scalar totalRollingMoment = 0.0; 
 
    // begin looping over all rotor cells 
    forAll(cells_, i) 
    { 
        if (area_[i] > ROOTVSMALL) 
        { 
            const label cellI = cells_[i]; 
 
            const scalar radius = x_[i].x(); 
            const scalar psi = x_[i].y(); 
 
            // velocity in local cylindrical reference frame 
            // the localVector function below is just for position vector. 
            //vector Uc = coordSys_.localVector(U[cellI]); 
             
            // velocity in local cylindrical reference frame 
            // This assumes that the Uz is the same as the rotorDiskPlane normal axis. 
 
            // aligning U to the pitch bank angle plane 
            vector Upb = PB_ & U[cellI]; 
 
            vector Uc = vector   
                        ( 
                            Upb.x()*cos(psi)+Upb.y()*sin(psi), 
                           -Upb.x()*sin(psi)+Upb.y()*cos(psi), 
                            Upb.z() 
                        ); 
/* 
            // transforming velocity to rotor local cylindrical frame 
            // using the dot products of the two systems' base vectors 
            const vector e1Global = vector (1, 0, 0); 
            const vector e2Global = vector (0, 1, 0); 
            const vector e3Global = vector (0, 0, 1); 
            vector Uc = vector (0, 0, 0); 
            Uc.x() = U[cellI].x() * (coordSys_.e1() & e1Global) +  
                     U[cellI].y() * (coordSys_.e2() & e1Global) + 
                     U[cellI].z() * (coordSys_.e3() & e1Global); 
 
            Uc.y() =  U[cellI].x() * (coordSys_.e1() & e2Global) +  
                      U[cellI].y() * (coordSys_.e2() & e2Global) + 
                      U[cellI].z() * (coordSys_.e3() & e2Global); 
 
            Uc.z() = U[cellI].x() * (coordSys_.e1() & e3Global) +  
                     U[cellI].y() * (coordSys_.e2() & e3Global) + 
                     U[cellI].z() * (coordSys_.e3() & e3Global); 
 
            // ==> This method does not work because the coordSys_.e1(), e2() 
            // and e3() does not return the base vectors of r, psi, z in terms of 
            // i, j, k for each cell. In fact only e3() vector is correct.  
            // e1() and e2() were found to not vary with cell position.  
             
*/ 
            // transform from rotor cylindrical into local coning system 
            Uc = R_[i] & Uc; 
 
            // set radial component of velocity to zero 
            Uc.x() = 0.0; 
 
            // total Utheta 
            //scalar Ut = radius*omega_ + Uc.y(); 
 
            // set blade normal component of velocity 
            Uc.y() = radius*omega_ - Uc.y(); 
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            // air angle (rad) 
            //scalar eps = atan2(Uc.z(), fabs(Ut)); 
            scalar eps = atan2(-Uc.z(), Uc.y()); 
 
            if (eps < -mathematical::pi) 
            { 
                eps = (2.0*mathematical::pi + eps); 
            } 
            if (eps > mathematical::pi) 
            { 
                eps = (eps - 2.0*mathematical::pi);            
            } 
 
            epsMin = min(epsMin, eps); 
            epsMax = max(epsMax, eps); 
 
            // determine blade data for this radius 
            // i2 = index of upper radius bound data point in blade list 
            scalar twist = 0.0; 
            scalar chord = 0.0; 
            label i1 = -1; 
            label i2 = -1; 
            scalar invDr = 0.0; 
            blade_.interpolate(radius, twist, chord, i1, i2, invDr); 
 
            // flip geometric angle if blade is spinning in reverse (clockwise) 
            scalar alphaGeom = alphag[i] + twist; 
            if (omega_ < 0) 
            { 
                alphaGeom = mathematical::pi - alphaGeom; 
            } 
 
            // effective angle of attack 
            scalar alphaEff = alphaGeom - atan2(-Uc.z(), Uc.y()); 
 
            if (alphaEff < -mathematical::pi) 
            { 
                alphaEff = (2.0*mathematical::pi + alphaEff); 
            } 
            if (alphaEff > mathematical::pi) 
            { 
                alphaEff = (alphaEff - 2.0*mathematical::pi);            
            } 
 
            AOAmin = min(AOAmin, alphaEff); 
            AOAmax = max(AOAmax, alphaEff); 
 
            // determine profile data for this radius and angle of attack 
            const label profile1 = blade_.profileID()[i1]; 
            const label profile2 = blade_.profileID()[i2]; 
 
            scalar Cd1 = 0.0; 
            scalar Cl1 = 0.0; 
            profiles_[profile1].Cdl(alphaEff, Cd1, Cl1); 
 
            scalar Cd2 = 0.0; 
            scalar Cl2 = 0.0; 
            profiles_[profile2].Cdl(alphaEff, Cd2, Cl2); 
 
            scalar Cd = invDr*(Cd2 - Cd1) + Cd1; 
            scalar Cl = invDr*(Cl2 - Cl1) + Cl1; 
 
            CdMin = min(CdMin, fabs(Cd)); 
            CdMax = max(CdMax, fabs(Cd)); 
            ClMin = min(ClMin, fabs(Cl)); 
            ClMax = max(ClMax, fabs(Cl)); 
 
            // apply tip effect for blade lift 
            scalar tipFactor = 1.0; 
            if ((radius/rMax_) > tipEffect_) 
            { 
                tipFactor = 0.0; 
            } 
 
            //scalar tipFactor = neg(radius/rMax_ - tipEffect_); 
 
            // calculate forces perpendicular to blade 
            scalar pDyn = 0.5*magSqr(Uc); 
            if (compressible) 
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            { 
                pDyn *= trho()[cellI]; 
            } 
 
            scalar f = pDyn*chord*nBlades_*area_[i]/radius/mathematical::twoPi; 
 
            // forces in blade coordinate system 
            //scalar ftc = (f*Cd*cos(eps) - tipFactor*f*Cl*sin(eps)); 
            //scalar fnc = (f*Cd*sin(eps) + tipFactor*f*Cl*cos(eps)); 
 
            // Implementation of Kim et al [7th OpenFOAM Workshop] 
            scalar ftc = (f*Cd*cos(eps) + tipFactor*f*Cl*sin(eps)); 
            scalar fnc = (-f*Cd*sin(eps) + tipFactor*f*Cl*cos(eps)); 
 
            //vector localForce = vector(0.0, -f*Cd, tipFactor*f*Cl); 
            vector localForce = vector(0.0, -ftc, fnc); 
 
            if (compressible) 
            { 
                // accumulate forces 
                dragEff += localForce.y(); 
                liftEff += localForce.z(); 
            } 
            else  
            {  
                dragEff += rhoRef_*localForce.y(); 
                liftEff += rhoRef_*localForce.z(); 
            } 
 
            if (rotorDebug_) 
            { 
                if (i == 0) 
                { 
                    Info << "CellI    psi    radius    alphaEff    " 
                         << "eps    Cl    Cd     f    fn    fth" << nl << endl; 
                } 
 
                Info << cellI << "    " << psiList_[cellI] << "    " << radius << "    " 
                     << radToDeg(alphaEff) << "    " 
                     << radToDeg(eps) << "    " 
                     << Cl << "    " << Cd << "    " 
                     << f << "    " << localForce.y() << "    " << localForce.z() 
                     << endl; 
            } 
 
            // convert force from local coning system into rotor cylindrical 
            localForce = invR_[i] & localForce; 
 
            // convert force to global cartesian co-ordinate system 
            // similarly to the localVector function, the globalVector is  
            // only meant for the position vector. 
            //force[cellI] = coordSys_.globalVector(localForce); 
 
            // convert force to global cartesian co-ordinate system 
            // the line below assumes that there is zero tilt on the rotorDiskPlane 
            localForce = vector  
                        ( 
                            localForce.x()*cos(psi) - localForce.y()*sin(psi), 
                            localForce.x()*sin(psi) + localForce.y()*cos(psi), 
                            localForce.z() 
                        ); 
 
            force[cellI] = invPB_ & localForce; 
 
/* 
            // transforming force from rotor local cylindrical to global cartesian 
            // using the dot products of the two systems' base vectors 
            vector globalForce = vector (0, 0, 0); 
            globalForce.x() = localForce.x() * (coordSys_.e1() & e1Global) +  
                              localForce.y() * (coordSys_.e2() & e1Global) + 
                              localForce.z() * (coordSys_.e3() & e1Global); 
 
            globalForce.y() = localForce.x() * (coordSys_.e1() & e2Global) +  
                              localForce.y() * (coordSys_.e2() & e2Global) + 
                              localForce.z() * (coordSys_.e3() & e2Global); 
 
            globalForce.z() = localForce.x() * (coordSys_.e1() & e3Global) +  
                              localForce.y() * (coordSys_.e2() & e3Global) + 
                              localForce.z() * (coordSys_.e3() & e3Global); 
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            force[cellI] = globalForce; 
 
            // ==> This method does not work because the coordSys_.e1(), e2() 
            // and e3() does not return the base vectors of r, psi, z in terms of 
            // i, j, k for each cell. In fact only e3() vector is correct.  
            // e1() and e2() were found to not vary with cell position.  
*/ 
 
            if (compressible) 
            { 
                // calculate global thrust and moment  
                vector moment = force[cellI]^(C[cellI] - coordSys_.origin()); 
                totalThrust += force[cellI] & coordSys_.e3(); 
                totalPitchingMoment += moment & coordSys_.e2(); 
                totalRollingMoment += moment & coordSys_.e1(); 
            } 
            else 
            { 
                vector moment = force[cellI]^(C[cellI] - coordSys_.origin()); 
                totalThrust += (rhoRef_ * (force[cellI] & coordSys_.e3())); 
                totalPitchingMoment += (rhoRef_ * (moment & coordSys_.e2())); 
                totalRollingMoment += (rhoRef_ * (moment & coordSys_.e1())); 
            } 
 
            if (divideVolume) 
            {   // calculate momentum source 
                force[cellI] /= V[cellI]; 
            } 
 
        } 
    } 
 
    if (output) 
    { 
        reduce(AOAmin, minOp<scalar>()); 
        reduce(AOAmax, maxOp<scalar>()); 
        reduce(epsMin, minOp<scalar>()); 
        reduce(epsMax, maxOp<scalar>()); 
        reduce(dragEff, sumOp<scalar>()); 
        reduce(liftEff, sumOp<scalar>()); 
        reduce(totalThrust, sumOp<scalar>()); 
        reduce(totalPitchingMoment, sumOp<scalar>()); 
        reduce(totalRollingMoment, sumOp<scalar>()); 
 
        Info<< type() << " output:" << nl 
            << "    min/max(AOA)   = " << radToDeg(AOAmin) << ", " 
            << radToDeg(AOAmax) << nl 
            << "    min/max(induced AOA)   = " << radToDeg(epsMin) << ", " 
            << radToDeg(epsMax) << nl 
            << "    Effective blade drag  = " << dragEff << nl 
            << "    Effective blade lift  = " << liftEff << nl 
            << "    Total Thrust          = " << totalThrust << nl 
            << "    Total Pitching Moment = " << totalPitchingMoment << nl 
            << "    Total Rolling Moment  = " << totalRollingMoment << endl; 
    } 
} 
 
 
void Foam::rotorDiskSource::addSup(fvMatrix<vector>& eqn, const label fieldI) 
{ 
    dimensionSet dims = dimless; 
    if (eqn.dimensions() == dimForce) 
    { 
        coeffs_.lookup("rhoName") >> rhoName_; 
        dims.reset(dimForce/dimVolume); 
    } 
    else 
    { 
        coeffs_.lookup("rhoRef") >> rhoRef_; 
        dims.reset(dimForce/dimVolume/dimDensity); 
    } 
 
    volVectorField force 
    ( 
        IOobject 
        ( 
            "rotorForce", 
            mesh_.time().timeName(), 
            mesh_, 
            IOobject::NO_READ, 
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            IOobject::NO_WRITE 
        ), 
        mesh_, 
        dimensionedVector("zero", dims, vector::zero) 
    ); 
 
    const volVectorField& U = eqn.psi(); 
 
    const vectorField Uin = inflowVelocity(U); 
 
    trim_->correct(Uin, force); 
 
    calculate(Uin, trim_->alphag(), force); 
 
    // add source to rhs of eqn 
    eqn += -force; 
 
    if (mesh_.time().outputTime()) 
    { 
        force.write(); 
    } 
} 
 
 
void Foam::rotorDiskSource::writeData(Ostream& os) const 
{ 
    os  << indent << name_ << endl; 
    dict_.write(os); 
} 
 
 
bool Foam::rotorDiskSource::read(const dictionary& dict) 
{ 
    if (basicSource::read(dict)) 
    { 
        coeffs_.lookup("fieldNames") >> fieldNames_; 
        applied_.setSize(fieldNames_.size(), false); 
 
        // read if rotorDebug is active 
        coeffs_.lookup("rotorDebugMode") >> rotorDebug_; 
 
        // read co-ordinate system/geometry invariant properties 
        scalar rpm(readScalar(coeffs_.lookup("rpm"))); 
        omega_ = rpm/60.0*mathematical::twoPi; 
 
        coeffs_.lookup("nBlades") >> nBlades_; 
 
        inletFlow_ = inletFlowTypeNames_.read(coeffs_.lookup("inletFlowType")); 
 
        coeffs_.lookup("tipEffect") >> tipEffect_; 
 
        const dictionary& flapCoeffs(coeffs_.subDict("flapCoeffs")); 
        flapCoeffs.lookup("beta0") >> flap_.beta0; 
        flapCoeffs.lookup("beta1") >> flap_.beta1; 
        flapCoeffs.lookup("beta2") >> flap_.beta2; 
        flap_.beta0 = degToRad(flap_.beta0); 
        flap_.beta1 = degToRad(flap_.beta1); 
        flap_.beta2 = degToRad(flap_.beta2); 
 
 
        // create co-ordinate system 
        createCoordinateSystem(); 
 
        // read co-odinate system dependent properties 
        checkData(); 
 
        constructGeometry(); 
 
        // reading rhoName_ 
        coeffs_.lookup("rhoName") >> rhoName_; 
        coeffs_.lookup("rhoRef") >> rhoRef_;  
         
        trim_->read(coeffs_);         
 
        if (debug) 
        { 
            writeField("alphag", trim_->alphag()(), true); 
            writeField("faceArea", area_, true); 
        } 
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        return true; 
    } 
    else 
    { 
        return false; 
    } 
} 
 
 
// ************************************************************************* // 
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A.2.3 rotorDiskSourceTemplates.C 

/*---------------------------------------------------------------------------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright (C) 2011 OpenFOAM Foundation 
     \\/     M anipulation  | 
------------------------------------------------------------------------------- 
License 
    This file is part of OpenFOAM. 
 
    OpenFOAM is free software: you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 
 
    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
    FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 
    for more details. 
 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>. 
 
\*---------------------------------------------------------------------------*/ 
 
#include "rotorDiskSource.H" 
#include "volFields.H" 
 
// * * * * * * * * * * * * Protected Member Functions  * * * * * * * * * * * // 
 
template<class Type> 
void Foam::rotorDiskSource::writeField 
( 
    const word& name, 
    const List<Type>& values, 
    const bool writeNow 
) const 
{ 
    typedef GeometricField<Type, fvPatchField, volMesh> fieldType; 
 
    if (mesh_.time().outputTime() || writeNow) 
    { 
        tmp<fieldType> tfld 
        ( 
            new fieldType 
            ( 
                IOobject 
                ( 
                    name, 
                    mesh_.time().timeName(), 
                    mesh_, 
                    IOobject::NO_READ, 
                    IOobject::NO_WRITE 
                ), 
                mesh_, 
                dimensioned<Type>("zero", dimless, pTraits<Type>::zero) 
            ) 
        ); 
 
        Field<Type>& fld = tfld().internalField(); 
 
        if (cells_.size() != values.size()) 
        { 
            FatalErrorIn("") << "cells_.size() != values_.size()" 
                << abort(FatalError); 
        } 
 
        forAll(cells_, i) 
        { 
            const label cellI = cells_[i]; 
            fld[cellI] = values[i]; 
        } 
 
        tfld().write(); 
    } 
} 
// ************************************************************************* // 
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A.2.4 rotorDiskSourceI.H 

/*---------------------------------------------------------------------------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright (C) 2012 OpenFOAM Foundation 
     \\/     M anipulation  | 
------------------------------------------------------------------------------- 
License 
    This file is part of OpenFOAM. 
 
    OpenFOAM is free software: you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 
 
    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
    FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 
    for more details. 
 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>. 
 
\*---------------------------------------------------------------------------*/ 
 
#include "rotorDiskSource.H" 
 
const Foam::List<Foam::point>& Foam::rotorDiskSource::x() const 
{ 
    return x_; 
} 
 
 
const Foam::cylindricalCS& Foam::rotorDiskSource::coordSys() const 
{ 
    return coordSys_; 
} 
 
 
const Foam::word& Foam::rotorDiskSource::getRhoName() const 
{ 
    return rhoName_; 
} 
 
 
const Foam::scalar& Foam::rotorDiskSource::getRhoRef() const 
{ 
    return rhoRef_; 
} 
 
 
// ************************************************************************* // 
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A.2.5 bladeModel.H 

/*---------------------------------------------------------------------------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright (C) 2011 OpenFOAM Foundation 
     \\/     M anipulation  | 
------------------------------------------------------------------------------- 
License 
    This file is part of OpenFOAM. 
 
    OpenFOAM is free software: you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 
 
    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
    FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 
    for more details. 
 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>. 
 
Class 
    Foam::bladeModel 
 
Description 
    Blade model class 
 
SourceFiles 
    bladeModel.C 
 
\*---------------------------------------------------------------------------*/ 
 
#ifndef bladeModel_H 
#define bladeModel_H 
 
#include "List.H" 
#include "dictionary.H" 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
namespace Foam 
{ 
 
/*---------------------------------------------------------------------------*\ 
                         Class bladeModel Declaration 
\*---------------------------------------------------------------------------*/ 
 
class bladeModel 
{ 
 
protected: 
 
    // Protected data 
 
        //- Corresponding profile name per section 
        List<word> profileName_; 
 
        //- Corresponding profile ID per section 
        List<label> profileID_; 
 
        //- Radius [m] 
        List<scalar> radius_; 
 
        //- Twist [deg] on input, converted to [rad] 
        List<scalar> twist_; 
 
        //- Chord [m] 
        List<scalar> chord_; 
 
        //- File name (optional) 
        fileName fName_; 
 
 
    // Protected Member Functions 
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        //- Return ture if file name is set 
        bool readFromFile() const; 
 
        //- Return the interpolation indices and gradient 
        void interpolateWeights 
        ( 
            const scalar& xIn, 
            const List<scalar>& values, 
            label& i1, 
            label& i2, 
            scalar& ddx 
        ) const; 
 
 
public: 
 
    //- Constructor 
    bladeModel(const dictionary& dict); 
 
 
    //- Destructor 
    virtual ~bladeModel(); 
 
 
    // Member functions 
 
        // Access 
 
            //- Return const access to the profile name list 
            const List<word>& profileName() const; 
 
            //- Return const access to the profile ID list 
            const List<label>& profileID() const; 
 
            //- Return const access to the radius list 
            const List<scalar>& radius() const; 
 
            //- Return const access to the twist list 
            const List<scalar>& twist() const; 
 
            //- Return const access to the chord list 
            const List<scalar>& chord() const; 
 
 
        // Edit 
 
            //- Return non-const access to the profile ID list 
            List<label>& profileID(); 
 
 
        // Evaluation 
 
            //- Return the twist and chord for a given radius 
            virtual void interpolate 
            ( 
                const scalar radius, 
                scalar& twist, 
                scalar& chord, 
                label& i1, 
                label& i2, 
                scalar& invDr 
            ) const; 
}; 
 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
} // End namespace Foam 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
#endif 
 
// ************************************************************************* // 
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A.2.6 bladeModel.C 

/*---------------------------------------------------------------------------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright (C) 2011-2012 OpenFOAM Foundation 
     \\/     M anipulation  | 
------------------------------------------------------------------------------- 
License 
    This file is part of OpenFOAM. 
 
    OpenFOAM is free software: you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 
 
    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
    FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 
    for more details. 
 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>. 
 
\*---------------------------------------------------------------------------*/ 
 
#include "bladeModel.H" 
#include "unitConversion.H" 
#include "Tuple2.H" 
#include "vector.H" 
#include "IFstream.H" 
 
 
// * * * * * * * * * * * * * Protected Member Functions  * * * * * * * * * * // 
 
bool Foam::bladeModel::readFromFile() const 
{ 
    return fName_ != fileName::null; 
} 
 
 
void Foam::bladeModel::interpolateWeights 
( 
    const scalar& xIn, 
    const List<scalar>& values, 
    label& i1, 
    label& i2, 
    scalar& ddx 
) const 
{ 
    i2 = 0; 
    label nElem = values.size(); 
 
    if (nElem == 1) 
    { 
        i1 = i2; 
        ddx = 0.0; 
        return; 
    } 
    else 
    { 
        while ((values[i2] < xIn) && (i2 < nElem)) 
        { 
            i2++; 
        } 
 
        if (i2 == nElem) 
        { 
            i2 = nElem - 1; 
            i1 = i2; 
            ddx = 0.0; 
            return; 
        } 
        else 
        { 
            i1 = i2 - 1; 
            ddx = (xIn - values[i1])/(values[i2] - values[i1]); 
        } 
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    } 
} 
 
 
// * * * * * * * * * * * * * * * * Constructors  * * * * * * * * * * * * * * // 
 
Foam::bladeModel::bladeModel(const dictionary& dict) 
: 
    profileName_(), 
    profileID_(), 
    radius_(), 
    twist_(), 
    chord_(), 
    fName_(fileName::null) 
{ 
    List<Tuple2<word, vector> > data; 
    if (readFromFile()) 
    { 
        IFstream is(fName_); 
        is  >> data; 
    } 
    else 
    { 
        dict.lookup("data") >> data; 
    } 
 
 
    if (data.size() > 0) 
    { 
        profileName_.setSize(data.size()); 
        profileID_.setSize(data.size()); 
        radius_.setSize(data.size()); 
        twist_.setSize(data.size()); 
        chord_.setSize(data.size()); 
 
        forAll(data, i) 
        { 
            profileName_[i] = data[i].first(); 
            profileID_[i] = -1; 
            radius_[i] = data[i].second()[0]; 
            twist_[i] = degToRad(data[i].second()[1]); 
            chord_[i] = data[i].second()[2]; 
        } 
    } 
    else 
    { 
        FatalErrorIn("Foam::bladeModel::bladeModel(const dictionary&)") 
            << "No blade data specified" << exit(FatalError); 
    } 
} 
 
// * * * * * * * * * * * * * * * * * Destructor  * * * * * * * * * * * * * * // 
 
Foam::bladeModel::~bladeModel() 
{} 
 
 
// * * * * * * * * * * * * Public Member Functions  * * * * * * * * * * * * // 
 
const Foam::List<Foam::word>& Foam::bladeModel::profileName() const 
{ 
    return profileName_; 
} 
 
 
const Foam::List<Foam::label>& Foam::bladeModel::profileID() const 
{ 
    return profileID_; 
} 
 
 
const Foam::List<Foam::scalar>& Foam::bladeModel::radius() const 
{ 
    return radius_; 
} 
 
 
const Foam::List<Foam::scalar>& Foam::bladeModel::twist() const 
{ 
    return twist_; 
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} 
 
 
const Foam::List<Foam::scalar>& Foam::bladeModel::chord() const 
{ 
    return chord_; 
} 
 
 
Foam::List<Foam::label>& Foam::bladeModel::profileID() 
{ 
    return profileID_; 
} 
 
 
void Foam::bladeModel::interpolate 
( 
    const scalar radius, 
    scalar& twist, 
    scalar& chord, 
    label& i1, 
    label& i2, 
    scalar& invDr 
) const 
{ 
    interpolateWeights(radius, radius_, i1, i2, invDr); 
 
    twist = invDr*(twist_[i2] - twist_[i1]) + twist_[i1]; 
    chord = invDr*(chord_[i2] - chord_[i1]) + chord_[i1]; 
} 
 
 
// ************************************************************************* // 
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A.2.7 profileModel.H 

/*---------------------------------------------------------------------------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright (C) 2011 OpenFOAM Foundation 
     \\/     M anipulation  | 
------------------------------------------------------------------------------- 
License 
    This file is part of OpenFOAM. 
 
    OpenFOAM is free software: you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 
 
    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
    FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 
    for more details. 
 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>. 
 
Class 
    Foam::profileModel 
 
Description 
    Abstract class for profile models 
 
SourceFiles 
    profileModel.C 
 
\*---------------------------------------------------------------------------*/ 
 
#ifndef profileModel_H 
#define profileModel_H 
 
#include "autoPtr.H" 
#include "runTimeSelectionTables.H" 
#include "dictionary.H" 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
namespace Foam 
{ 
 
/*---------------------------------------------------------------------------*\ 
                        Class profileModel Declaration 
\*---------------------------------------------------------------------------*/ 
 
class profileModel 
{ 
 
protected: 
 
    // Protected data 
 
        //- Coefficients dictionary 
        const dictionary dict_; 
 
        //- Name of profile model 
        const word name_; 
 
        //- File name (optional) 
        fileName fName_; 
 
 
    // Protected Member Functions 
 
        //- Return ture if file name is set 
        bool readFromFile() const; 
 
 
public: 
 
    //- Runtime type information 
    TypeName("profileModel"); 
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        // Declare run-time constructor selection table 
        declareRunTimeSelectionTable 
        ( 
            autoPtr, 
            profileModel, 
            dictionary, 
            ( 
                const dictionary& dict, 
                const word& modelName 
            ), 
            (dict, modelName) 
        ); 
 
 
    // Selectors 
 
        //- Return a reference to the selected basicSource model 
        static autoPtr<profileModel> New(const dictionary& dict); 
 
 
    //- Constructor 
    profileModel(const dictionary& dict, const word& modelName); 
 
 
    //- Destructor 
    virtual ~profileModel(); 
 
 
    // Member functions 
 
        // Access 
 
            //- Return const access to the source name 
            const word& name() const; 
 
 
        // Evaluation 
 
            //- Return the Cd and Cl for a given angle-of-attack 
            virtual void Cdl 
            ( 
                const scalar alpha, 
                scalar& Cd, 
                scalar& Cl 
            ) const = 0; 
}; 
 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
} // End namespace Foam 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
#endif 
 
// ************************************************************************* // 
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A.2.8 profileModel.C 

/*---------------------------------------------------------------------------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright (C) 2011 OpenFOAM Foundation 
     \\/     M anipulation  | 
------------------------------------------------------------------------------- 
License 
    This file is part of OpenFOAM. 
 
    OpenFOAM is free software: you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 
 
    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
    FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 
    for more details. 
 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>. 
 
\*---------------------------------------------------------------------------*/ 
 
#include "profileModel.H" 
#include "addToRunTimeSelectionTable.H" 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
namespace Foam 
{ 
    defineTypeNameAndDebug(profileModel, 0); 
    defineRunTimeSelectionTable(profileModel, dictionary); 
} 
 
 
// * * * * * * * * * * * * * Protected Member Functions  * * * * * * * * * * // 
 
bool Foam::profileModel::readFromFile() const 
{ 
    return fName_ != fileName::null; 
} 
 
 
// * * * * * * * * * * * * * * * * Constructors  * * * * * * * * * * * * * * // 
 
Foam::profileModel::profileModel(const dictionary& dict, const word& name) 
: 
    dict_(dict), 
    name_(name), 
    fName_(fileName::null) 
{ 
    dict.readIfPresent("fileName", fName_); 
} 
 
// * * * * * * * * * * * * * * * * * Destructor  * * * * * * * * * * * * * * // 
 
Foam::profileModel::~profileModel() 
{} 
 
 
// * * * * * * * * * * * Public Member Functions  * * * * * * * * * * * * * // 
 
const Foam::word& Foam::profileModel::name() const 
{ 
    return name_; 
} 
 
 
Foam::autoPtr<Foam::profileModel> Foam::profileModel::New 
( 
    const dictionary& dict 
) 
{ 
    const word& modelName(dict.dictName()); 
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    const word modelType(dict.lookup("type")); 
 
    Info<< "    - creating " << modelType << " profile " << modelName << endl; 
 
    dictionaryConstructorTable::iterator cstrIter = 
        dictionaryConstructorTablePtr_->find(modelType); 
 
    if (cstrIter == dictionaryConstructorTablePtr_->end()) 
    { 
        FatalErrorIn("profileModel::New(const dictionary&)") 
            << "Unknown profile model type " << modelType 
            << nl << nl 
            << "Valid model types are :" << nl 
            << dictionaryConstructorTablePtr_->sortedToc() 
            << exit(FatalError); 
    } 
 
    return autoPtr<profileModel>(cstrIter()(dict, modelName)); 
} 
 
 
// ************************************************************************* // 
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A.2.9 profileModelList.H 

/*---------------------------------------------------------------------------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright (C) 2011 OpenFOAM Foundation 
     \\/     M anipulation  | 
------------------------------------------------------------------------------- 
License 
    This file is part of OpenFOAM. 
 
    OpenFOAM is free software: you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 
 
    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
    FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 
    for more details. 
 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>. 
 
Class 
    Foam::profileModelList 
 
Description 
    Base class for profile models 
 
SourceFiles 
    profileModelList.C 
 
\*---------------------------------------------------------------------------*/ 
 
#ifndef profileModelList_H 
#define profileModelList_H 
 
#include "PtrList.H" 
#include "profileModel.H" 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
namespace Foam 
{ 
 
/*---------------------------------------------------------------------------*\ 
                    Class profileModelList Declaration 
\*---------------------------------------------------------------------------*/ 
 
class profileModelList 
: 
    public PtrList<profileModel> 
{ 
 
protected: 
 
    // Protected data 
 
        //- Dictionary 
        const dictionary dict_; 
 
 
public: 
 
    //- Constructor 
    profileModelList(const dictionary& dict, const bool readFields = true); 
 
    //- Destructor 
    ~profileModelList(); 
 
 
    // Member Functions 
 
        //- Set blade->profile addressing 
        void connectBlades 
        ( 
            const List<word>& names, 
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            List<label>& addr 
        ) const; 
}; 
 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
} // End namespace Foam 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
#endif 
 
// ************************************************************************* // 
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A.2.10 profileModelList.C 

/*---------------------------------------------------------------------------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright (C) 2011 OpenFOAM Foundation 
     \\/     M anipulation  | 
------------------------------------------------------------------------------- 
License 
    This file is part of OpenFOAM. 
 
    OpenFOAM is free software: you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 
 
    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
    FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 
    for more details. 
 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>. 
 
\*---------------------------------------------------------------------------*/ 
 
#include "profileModelList.H" 
 
// * * * * * * * * * * * * * * * * Constructors  * * * * * * * * * * * * * * // 
 
Foam::profileModelList::profileModelList 
( 
    const dictionary& dict, 
    const bool readFields 
) 
: 
    PtrList<profileModel>(), 
    dict_(dict) 
{ 
    if (readFields) 
    { 
        wordList modelNames(dict.toc()); 
 
        Info<< "    Constructing blade profiles:" << endl; 
 
        if (modelNames.size() > 0) 
        { 
            this->setSize(modelNames.size()); 
 
            forAll(modelNames, i) 
            { 
                const word& modelName = modelNames[i]; 
 
                this->set 
                ( 
                    i, 
                    profileModel::New(dict.subDict(modelName)) 
                ); 
            } 
        } 
        else 
        { 
            Info<< "        none" << endl; 
        } 
    } 
} 
 
 
// * * * * * * * * * * * * * * * * * Destructor  * * * * * * * * * * * * * * // 
 
Foam::profileModelList::~profileModelList() 
{} 
 
 
// * * * * * * * * * * * * * * * Member Functions  * * * * * * * * * * * * * // 
 
void Foam::profileModelList::connectBlades 
( 
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    const List<word>& names, 
    List<label>& addr 
) const 
{ 
    // construct the addressing between blade sections and profiles 
    forAll(names, bI) 
    { 
        label index = -1; 
        const word& profileName = names[bI]; 
 
        forAll(*this, pI) 
        { 
            const profileModel& pm = this->operator[](pI); 
 
            if (pm.name() == profileName) 
            { 
                index = pI; 
                break; 
            } 
        } 
 
        if (index == -1) 
        { 
            List<word> profileNames(size()); 
            forAll(*this, i) 
            { 
                const profileModel& pm = this->operator[](i); 
                profileNames[i] = pm.name(); 
            } 
 
            FatalErrorIn("void Foam::connectBlades(List<word>& names) const") 
                << "Profile " << profileName << " could not be found " 
                << "in profile list. Available profiles are" 
                << profileNames << exit(FatalError); 
        } 
        else 
        { 
            addr[bI] = index; 
        } 
    } 
} 
 
 
// ************************************************************************* // 
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A.2.11 lookupProfile.H 

/*---------------------------------------------------------------------------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright (C) 2011 OpenFOAM Foundation 
     \\/     M anipulation  | 
------------------------------------------------------------------------------- 
License 
    This file is part of OpenFOAM. 
 
    OpenFOAM is free software: you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 
 
    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
    FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 
    for more details. 
 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>. 
 
Class 
    Foam::lookupProfile 
 
Description 
    Look-up based profile data - drag and lift coefficients are lineraly 
    interpolated based on the supplied angle of attack 
 
    Input in list format: 
 
        data 
        ( 
            (AOA1 Cd1 Cl2) 
            (AOA2 Cd2 Cl2) 
            ... 
            (AOAN CdN CdN) 
        ); 
 
    where: 
        AOA = angle of attack [deg] converted to [rad] internally 
        Cd  = drag coefficient 
        Cl  = lift coefficient 
 
SourceFiles 
    lookupProfile.C 
 
\*---------------------------------------------------------------------------*/ 
 
#ifndef lookupProfile_H 
#define lookupProfile_H 
 
#include "profileModel.H" 
#include "List.H" 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
namespace Foam 
{ 
 
/*---------------------------------------------------------------------------*\ 
                        Class lookupProfile Declaration 
\*---------------------------------------------------------------------------*/ 
 
class lookupProfile 
: 
    public profileModel 
{ 
 
protected: 
 
    // Protected data 
 
        //- List of angle-of-attack values [deg] on input, converted to [rad] 
        List<scalar> AOA_; 
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        //- List of drag coefficient values 
        List<scalar> Cd_; 
 
        //- List of lift coefficient values 
        List<scalar> Cl_; 
 
 
    // Protected Member Functions 
 
        //- Return the interpolation indices and gradient 
        void interpolateWeights 
        ( 
            const scalar& xIn, 
            const List<scalar>& values, 
            label& i1, 
            label& i2, 
            scalar& ddx 
        ) const; 
 
 
public: 
 
    //- Runtime type information 
    TypeName("lookup"); 
 
    //- Constructor 
    lookupProfile(const dictionary& dict, const word& modelName); 
 
 
    // Member functions 
 
        // Evaluation 
 
            //- Return the Cd and Cl for a given angle-of-attack 
            virtual void Cdl(const scalar alpha, scalar& Cd, scalar& Cl) const; 
}; 
 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
} // End namespace Foam 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
#endif 
 
// ************************************************************************* // 
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A.2.12 lookupProfile.C 

/*---------------------------------------------------------------------------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright (C) 2011-2012 OpenFOAM Foundation 
     \\/     M anipulation  | 
------------------------------------------------------------------------------- 
License 
    This file is part of OpenFOAM. 
 
    OpenFOAM is free software: you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 
 
    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
    FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 
    for more details. 
 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>. 
 
\*---------------------------------------------------------------------------*/ 
 
#include "lookupProfile.H" 
#include "addToRunTimeSelectionTable.H" 
#include "vector.H" 
#include "unitConversion.H" 
#include "IFstream.H" 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
namespace Foam 
{ 
    defineTypeNameAndDebug(lookupProfile, 0); 
    addToRunTimeSelectionTable(profileModel, lookupProfile, dictionary); 
} 
 
 
// * * * * * * * * * * * * Protected Member Functions  * * * * * * * * * * * // 
 
void Foam::lookupProfile::interpolateWeights 
( 
    const scalar& xIn, 
    const List<scalar>& values, 
    label& i1, 
    label& i2, 
    scalar& ddx 
) const 
{ 
    i2 = 0; 
    label nElem = values.size(); 
 
    if (nElem == 1) 
    { 
        i1 = i2; 
        ddx = 0.0; 
        return; 
    } 
    else 
    { 
        while ((values[i2] < xIn) && (i2 < nElem)) 
        { 
            i2++; 
        } 
 
        if (i2 == nElem) 
        { 
            i2 = nElem - 1; 
            i1 = i2; 
            ddx = 0.0; 
            return; 
        } 
        else 
        { 
            i1 = i2 - 1; 
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            ddx = (xIn - values[i1])/(values[i2] - values[i1]); 
        } 
    } 
} 
 
 
// * * * * * * * * * * * * * * * * Constructors  * * * * * * * * * * * * * * // 
 
Foam::lookupProfile::lookupProfile 
( 
    const dictionary& dict, 
    const word& modelName 
) 
: 
    profileModel(dict, modelName), 
    AOA_(), 
    Cd_(), 
    Cl_() 
{ 
    List<vector> data; 
    if (readFromFile()) 
    { 
        IFstream is(fName_); 
        is  >> data; 
    } 
    else 
    { 
        dict.lookup("data") >> data; 
    } 
 
    if (data.size() > 0) 
    { 
        AOA_.setSize(data.size()); 
        Cd_.setSize(data.size()); 
        Cl_.setSize(data.size()); 
 
        forAll(data, i) 
        { 
            AOA_[i] = degToRad(data[i][0]); 
            Cd_[i] = data[i][1]; 
            Cl_[i] = data[i][2]; 
        } 
    } 
    else 
    { 
        FatalErrorIn 
        ( 
            "Foam::lookupProfile::lookupProfile" 
            "(" 
                "const dictionary&, " 
                "const word&" 
            ")" 
        )   << "No profile data specified" << exit(FatalError); 
    } 
} 
 
 
// * * * * * * * * * * * * * * * Member Functions  * * * * * * * * * * * * * // 
 
void Foam::lookupProfile::Cdl(const scalar alpha, scalar& Cd, scalar& Cl) const 
{ 
    label i1 = -1; 
    label i2 = -1; 
    scalar invAlpha = -1.0; 
    interpolateWeights(alpha, AOA_, i1, i2, invAlpha); 
 
    Cd = invAlpha*(Cd_[i2] - Cd_[i1]) + Cd_[i1]; 
    Cl = invAlpha*(Cl_[i2] - Cl_[i1]) + Cl_[i1]; 
} 
 
 
// ************************************************************************* // 
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A.2.13 seriesProfile.H 

/*---------------------------------------------------------------------------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright (C) 2011-2012 OpenFOAM Foundation 
     \\/     M anipulation  | 
------------------------------------------------------------------------------- 
License 
    This file is part of OpenFOAM. 
 
    OpenFOAM is free software: you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 
 
    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
    FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 
    for more details. 
 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>. 
 
Class 
    Foam::seriesProfile 
 
Description 
    Series-up based profile data - drag and lift coefficients computed as 
    sum of cosine series 
 
        Cd = sum_i(CdCoeff)*cos(i*AOA) 
        Cl = sum_i(ClCoeff)*sin(i*AOA) 
 
    where: 
        AOA = angle of attack [deg] converted to [rad] internally 
        Cd = drag coefficent 
        Cl = lift coefficent 
 
    Input in two (arbitrary length) lists: 
 
        CdCoeffs (coeff1 coeff2 ... coeffN); 
        ClCoeffs (coeff1 coeff2 ... coeffN); 
 
SourceFiles 
    seriesProfile.C 
 
\*---------------------------------------------------------------------------*/ 
 
#ifndef seriesProfile_H 
#define seriesProfile_H 
 
#include "profileModel.H" 
#include "List.H" 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
namespace Foam 
{ 
 
/*---------------------------------------------------------------------------*\ 
                        Class seriesProfile Declaration 
\*---------------------------------------------------------------------------*/ 
 
class seriesProfile 
: 
    public profileModel 
{ 
 
protected: 
 
    // Protected data 
 
        //- List of drag coefficient values 
        List<scalar> CdCoeffs_; 
 
        //- List of lift coefficient values 
        List<scalar> ClCoeffs_; 
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    // Protected Member Functions 
 
        // Evaluate 
 
            //- Drag 
            scalar evaluateDrag 
            ( 
                const scalar& xIn, 
                const List<scalar>& values 
            ) const; 
 
            //- Lift 
            scalar evaluateLift 
            ( 
                const scalar& xIn, 
                const List<scalar>& values 
            ) const; 
 
 
public: 
 
    //- Runtime type information 
    TypeName("series"); 
 
    //- Constructor 
    seriesProfile(const dictionary& dict, const word& modelName); 
 
 
    // Member functions 
 
        // Evaluation 
 
            //- Return the Cd and Cl for a given angle-of-attack 
            virtual void Cdl(const scalar alpha, scalar& Cd, scalar& Cl) const; 
}; 
 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
} // End namespace Foam 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
#endif 
 
// ************************************************************************* // 
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A.2.14 seriesProfile.C 

/*---------------------------------------------------------------------------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright (C) 2011-2012 OpenFOAM Foundation 
     \\/     M anipulation  | 
------------------------------------------------------------------------------- 
License 
    This file is part of OpenFOAM. 
 
    OpenFOAM is free software: you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 
 
    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
    FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 
    for more details. 
 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>. 
 
\*---------------------------------------------------------------------------*/ 
 
#include "seriesProfile.H" 
#include "addToRunTimeSelectionTable.H" 
#include "IFstream.H" 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
namespace Foam 
{ 
    defineTypeNameAndDebug(seriesProfile, 0); 
    addToRunTimeSelectionTable(profileModel, seriesProfile, dictionary); 
} 
 
 
// * * * * * * * * * * * * Protected Member Functions  * * * * * * * * * * * // 
 
Foam::scalar Foam::seriesProfile::evaluateDrag 
( 
    const scalar& xIn, 
    const List<scalar>& values 
) const 
{ 
    scalar result = 0.0; 
 
    forAll(values, i) 
    { 
        result += values[i]*cos(i*xIn); 
    } 
 
    return result; 
} 
 
 
Foam::scalar Foam::seriesProfile::evaluateLift 
( 
    const scalar& xIn, 
    const List<scalar>& values 
) const 
{ 
    scalar result = 0.0; 
 
    forAll(values, i) 
    { 
        result += values[i]*sin(i*xIn); 
    } 
 
    return result; 
} 
 
 
// * * * * * * * * * * * * * * * * Constructors  * * * * * * * * * * * * * * // 
 
Foam::seriesProfile::seriesProfile 
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( 
    const dictionary& dict, 
    const word& modelName 
) 
: 
    profileModel(dict, modelName), 
    CdCoeffs_(), 
    ClCoeffs_() 
{ 
    if (readFromFile()) 
    { 
        IFstream is(fName_); 
        is  >> CdCoeffs_ >> ClCoeffs_; 
    } 
    else 
    { 
        dict.lookup("CdCoeffs") >> CdCoeffs_; 
        dict.lookup("ClCoeffs") >> ClCoeffs_; 
    } 
 
 
    if (CdCoeffs_.empty()) 
    { 
        FatalErrorIn 
        ( 
            "Foam::seriesProfile::seriesProfile" 
            "(" 
                "const dictionary&, " 
                "const word&" 
            ")" 
        )   << "CdCoeffs must be specified" << exit(FatalError); 
    } 
    if (ClCoeffs_.empty()) 
    { 
        FatalErrorIn 
        ( 
            "Foam::seriesProfile::seriesProfile" 
            "(" 
                "const dictionary&, " 
                "const word&" 
            ")" 
        )   << "ClCoeffs must be specified" << exit(FatalError); 
    } 
} 
 
 
// * * * * * * * * * * * * * * * Member Functions  * * * * * * * * * * * * * // 
 
void Foam::seriesProfile::Cdl(const scalar alpha, scalar& Cd, scalar& Cl) const 
{ 
    Cd = evaluateDrag(alpha, CdCoeffs_); 
    Cl = evaluateLift(alpha, ClCoeffs_); 
} 
 
 
// ************************************************************************* // 

 



UNCLASSIFIED 
DSTO-TR-2931 

UNCLASSIFIED 
151 

A.2.15 trimModel.H 

/*---------------------------------------------------------------------------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright (C) 2012 OpenFOAM Foundation 
     \\/     M anipulation  | 
------------------------------------------------------------------------------- 
License 
    This file is part of OpenFOAM. 
 
    OpenFOAM is free software: you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 
 
    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
    FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 
    for more details. 
 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>. 
 
Class 
    Foam::trimModel 
 
Description 
    Trim model abstract class 
 
SourceFiles 
    trimModel.C 
 
\*---------------------------------------------------------------------------*/ 
 
#ifndef trimModel_H 
#define trimModel_H 
 
#include "rotorDiskSource.H" 
#include "dictionary.H" 
#include "runTimeSelectionTables.H" 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
namespace Foam 
{ 
 
/*---------------------------------------------------------------------------*\ 
                         Class trimModel Declaration 
\*---------------------------------------------------------------------------*/ 
 
class trimModel 
{ 
 
protected: 
 
    // Protected data 
 
        //- Reference to the rotor source model 
        const rotorDiskSource& rotor_; 
 
        //- Name of model 
        const word name_; 
 
        //- Coefficients dictionary 
        dictionary coeffs_; 
 
 
public: 
 
    //- Run-time type information 
    TypeName("trimModel"); 
 
 
    // Declare runtime constructor selection table 
 
        declareRunTimeSelectionTable 
        ( 
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            autoPtr, 
            trimModel, 
            dictionary, 
            ( 
                const rotorDiskSource& rotor, 
                const dictionary& dict 
            ), 
            (rotor, dict) 
        ); 
 
 
    // Constructors 
 
        //- Construct from components 
        trimModel 
        ( 
            const rotorDiskSource& rotor, 
            const dictionary& dict, 
            const word& name 
        ); 
 
 
    // Selectors 
 
        //- Return a pointer to the selected trim model 
        static autoPtr<trimModel> New 
        ( 
            const rotorDiskSource& rotor, 
            const dictionary& dict 
        ); 
 
 
    //- Destructor 
    virtual ~trimModel(); 
 
 
    // Member functions 
 
        //- Read 
        virtual void read(const dictionary& dict); 
 
        //- Return the geometric angle of attack [rad] 
        virtual tmp<scalarField> alphag() const = 0; 
 
        //- Correct the model 
        virtual void correct(const vectorField& U, vectorField& force) = 0; 
}; 
 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
} // End namespace Foam 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
#endif 
 
// ************************************************************************* // 
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A.2.16 trimModel.C 

/*---------------------------------------------------------------------------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright (C) 2012 OpenFOAM Foundation 
     \\/     M anipulation  | 
------------------------------------------------------------------------------- 
License 
    This file is part of OpenFOAM. 
 
    OpenFOAM is free software: you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 
 
    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
    FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 
    for more details. 
 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>. 
 
\*---------------------------------------------------------------------------*/ 
 
#include "trimModel.H" 
 
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * // 
 
namespace Foam 
{ 
    defineTypeNameAndDebug(trimModel, 0); 
    defineRunTimeSelectionTable(trimModel, dictionary); 
} 
 
 
// * * * * * * * * * * * * * * * * Constructors  * * * * * * * * * * * * * * // 
 
Foam::trimModel::trimModel 
( 
    const rotorDiskSource& rotor, 
    const dictionary& dict, 
    const word& name 
) 
: 
    rotor_(rotor), 
    name_(name), 
    coeffs_(dictionary::null) 
{ 
    read(dict); 
} 
 
// * * * * * * * * * * * * * * * * * Destructor  * * * * * * * * * * * * * * // 
 
Foam::trimModel::~trimModel() 
{} 
 
 
// * * * * * * * * * * * * * * * Member Functions  * * * * * * * * * * * * * // 
 
void Foam::trimModel::read(const dictionary& dict) 
{ 
    coeffs_ = dict.subDict(name_ + "Coeffs"); 
} 
 
 
// ************************************************************************* // 
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A.2.17 trimModelNew.C 

/*---------------------------------------------------------------------------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright (C) 2012 OpenFOAM Foundation 
     \\/     M anipulation  | 
------------------------------------------------------------------------------- 
License 
    This file is part of OpenFOAM. 
 
    OpenFOAM is free software: you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 
 
    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
    FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 
    for more details. 
 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>. 
 
\*---------------------------------------------------------------------------*/ 
 
#include "trimModel.H" 
 
// * * * * * * * * * * * * * * * * Constructors  * * * * * * * * * * * * * * // 
 
Foam::autoPtr<Foam::trimModel> Foam::trimModel::New 
( 
    const rotorDiskSource& rotor, 
    const dictionary& dict 
) 
{ 
    const word modelType(dict.lookup(typeName)); 
 
    Info<< "    Selecting " << typeName << " " << modelType << endl; 
 
    dictionaryConstructorTable::iterator cstrIter = 
        dictionaryConstructorTablePtr_->find(modelType); 
 
    if (cstrIter == dictionaryConstructorTablePtr_->end()) 
    { 
        FatalErrorIn 
        ( 
            "trimModel::New(const rotorDiskSource&, const dictionary&)" 
        )   << "Unknown " << typeName << " type " 
            << modelType << nl << nl 
            << "Valid " << typeName << " types are:" << nl 
            << dictionaryConstructorTablePtr_->sortedToc() 
            << exit(FatalError); 
    } 
 
    return autoPtr<trimModel>(cstrIter()(rotor, dict)); 
} 
 
 
// ************************************************************************* // 
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A.2.18 fixedTrim.H 

/*---------------------------------------------------------------------------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright (C) 2012 OpenFOAM Foundation 
     \\/     M anipulation  | 
------------------------------------------------------------------------------- 
License 
    This file is part of OpenFOAM. 
 
    OpenFOAM is free software: you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 
 
    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
    FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 
    for more details. 
 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>. 
 
Class 
    Foam::fixedTrim 
 
Description 
    Fixed trim coefficients 
 
SourceFiles 
    fixedTrim.C 
 
\*---------------------------------------------------------------------------*/ 
 
#ifndef fixedTrim_H 
#define fixedTrim_H 
 
#include "trimModel.H" 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
namespace Foam 
{ 
 
/*---------------------------------------------------------------------------*\ 
                         Class fixedTrim Declaration 
\*---------------------------------------------------------------------------*/ 
 
class fixedTrim 
: 
    public trimModel 
{ 
 
protected: 
 
    // Protected data 
 
        //- Geometric angle of attack [rad] 
        scalarField alphag_; 
 
 
public: 
 
    //- Run-time type information 
    TypeName("fixedTrim"); 
 
    //- Constructor 
    fixedTrim(const rotorDiskSource& rotor, const dictionary& dict); 
 
    //- Destructor 
    virtual ~fixedTrim(); 
 
 
    // Member functions 
 
        //- Read 
        void read(const dictionary& dict); 
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        //- Return the geometric angle of attack [rad] 
        virtual tmp<scalarField> alphag() const; 
 
        //- Correct the model 
        virtual void correct(const vectorField& U, vectorField& force); 
}; 
 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
} // End namespace Foam 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
#endif 
 
// ************************************************************************* // 
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A.2.19 fixedTrim.C 

/*---------------------------------------------------------------------------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright (C) 2012 OpenFOAM Foundation 
     \\/     M anipulation  | 
------------------------------------------------------------------------------- 
License 
    This file is part of OpenFOAM. 
 
    OpenFOAM is free software: you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 
 
    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
    FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 
    for more details. 
 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>. 
 
\*---------------------------------------------------------------------------*/ 
 
#include "fixedTrim.H" 
#include "addToRunTimeSelectionTable.H" 
#include "unitConversion.H" 
#include "mathematicalConstants.H" 
 
using namespace Foam::constant; 
 
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * // 
 
namespace Foam 
{ 
    defineTypeNameAndDebug(fixedTrim, 0); 
 
    addToRunTimeSelectionTable(trimModel, fixedTrim, dictionary); 
} 
 
 
// * * * * * * * * * * * * * * * * Constructors  * * * * * * * * * * * * * * // 
 
Foam::fixedTrim::fixedTrim(const rotorDiskSource& rotor, const dictionary& dict) 
: 
    trimModel(rotor, dict, typeName), 
    alphag_(rotor.cells().size(), 0.0) 
{ 
    read(dict); 
} 
 
 
// * * * * * * * * * * * * * * * * * Destructor  * * * * * * * * * * * * * * // 
 
Foam::fixedTrim::~fixedTrim() 
{} 
 
 
// * * * * * * * * * * * * * * * Member Functions  * * * * * * * * * * * * * // 
 
void Foam::fixedTrim::read(const dictionary& dict) 
{ 
    trimModel::read(dict); 
 
    scalar alphaC = degToRad(readScalar(coeffs_.lookup("alphaC"))); 
    scalar A = degToRad(readScalar(coeffs_.lookup("A"))); 
    scalar B = degToRad(readScalar(coeffs_.lookup("B"))); 
 
    const List<vector>& x = rotor_.x(); 
    forAll(alphag_, i) 
    { 
        scalar psi = x[i].y(); 
        alphag_[i] = alphaC + A*cos(psi) + B*sin(psi); 
    } 
} 
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Foam::tmp<Foam::scalarField> Foam::fixedTrim::alphag() const 
{ 
    return tmp<scalarField>(alphag_); 
} 
 
 
void Foam::fixedTrim::correct(const vectorField& U, vectorField& force) 
{ 
    // do nothing  - untrimmed model 
} 
 
 
 
// ************************************************************************* // 
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A.2.20 targetForceTrim.H 

/*---------------------------------------------------------------------------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright (C) 2012 OpenFOAM Foundation 
     \\/     M anipulation  | 
------------------------------------------------------------------------------- 
License 
    This file is part of OpenFOAM. 
 
    OpenFOAM is free software: you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 
 
    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
    FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 
    for more details. 
 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>. 
 
Class 
    Foam::targetForceTrim 
 
Description 
    Target force trim coefficients 
 
SourceFiles 
    targetForceTrim.C 
 
\*---------------------------------------------------------------------------*/ 
 
#ifndef targetForceTrim_H 
#define targetForceTrim_H 
 
#include "trimModel.H" 
#include "tensor.H" 
#include "vector.H" 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
namespace Foam 
{ 
 
/*---------------------------------------------------------------------------*\ 
                      Class targetForceTrim Declaration 
\*---------------------------------------------------------------------------*/ 
 
class targetForceTrim 
: 
    public trimModel 
{ 
 
protected: 
 
    // Protected data 
 
        //- Number of iterations between calls to 'correct' 
        label calcFrequency_; 
 
        //- Target force [N] 
        vector target_; 
 
        //- Pitch angles (collective, roll, pitch) [rad] 
        vector alpha_; 
 
        //- Maximum number of iterations in trim routine 
        label nIter_; 
 
        //- Convergence tolerance 
        scalar tol_; 
 
        //- Under-relaxation coefficient 
        scalar relax_; 
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        //- Perturbation angle used to determine jacobian 
        scalar dTheta_; 
 
 
    // Protected member functions 
 
        //- Calculate the rotor forces 
        vector calcForce 
        ( 
            const vectorField& U, 
            const scalarField& alphag, 
            vectorField& force     
        ) const; 
 
 
public: 
 
    //- Run-time type information 
    TypeName("targetForceTrim"); 
 
    //- Constructor 
    targetForceTrim(const rotorDiskSource& rotor, const dictionary& dict); 
 
    //- Destructor 
    virtual ~targetForceTrim(); 
 
 
    // Member functions 
 
        //- Read 
        void read(const dictionary& dict); 
 
        //- Return the geometric angle of attack [rad] 
        virtual tmp<scalarField> alphag() const; 
 
        //- Correct the model 
        virtual void correct(const vectorField& U, vectorField& force); 
}; 
 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
} // End namespace Foam 
 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
#endif 
 
// ************************************************************************* // 
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A.2.21 targetForceTrim.C 

/*---------------------------------------------------------------------------*\ 
  =========                 | 
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox 
   \\    /   O peration     | 
    \\  /    A nd           | Copyright (C) 2012 OpenFOAM Foundation 
     \\/     M anipulation  | 
------------------------------------------------------------------------------- 
License 
    This file is part of OpenFOAM. 
 
    OpenFOAM is free software: you can redistribute it and/or modify it 
    under the terms of the GNU General Public License as published by 
    the Free Software Foundation, either version 3 of the License, or 
    (at your option) any later version. 
 
    OpenFOAM is distributed in the hope that it will be useful, but WITHOUT 
    ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 
    FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License 
    for more details. 
 
    You should have received a copy of the GNU General Public License 
    along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>. 
 
\*---------------------------------------------------------------------------*/ 
 
#include "targetForceTrim.H" 
#include "addToRunTimeSelectionTable.H" 
#include "unitConversion.H" 
#include "mathematicalConstants.H" 
 
using namespace Foam::constant; 
 
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * // 
 
namespace Foam 
{ 
    defineTypeNameAndDebug(targetForceTrim, 0); 
 
    addToRunTimeSelectionTable(trimModel, targetForceTrim, dictionary); 
} 
 
 
// * * * * * * * * * * * * Protected Member Functions  * * * * * * * * * * * // 
 
Foam::vector Foam::targetForceTrim::calcForce 
( 
    const vectorField& U, 
    const scalarField& alphag, 
    vectorField& force     
) const 
{ 
    rotor_.calculate(U, alphag, force, false); 
 
    const labelList& cells = rotor_.cells(); 
    const vectorField& C = rotor_.mesh().C(); 
 
    const vector& origin = rotor_.coordSys().origin(); 
    const vector& rollAxis = rotor_.coordSys().e1(); 
    const vector& pitchAxis = rotor_.coordSys().e2(); 
    const vector& yawAxis = rotor_.coordSys().e3(); 
 
    vector f(vector::zero); 
    forAll(cells, i) 
    { 
        label cellI = cells[i]; 
 
        vector moment = force[cellI]^(C[cellI] - origin);  //cross product 
        f[0] += force[cellI] & yawAxis;  //dot product 
        f[1] += moment & pitchAxis; 
        f[2] += moment & rollAxis; 
    } 
 
    reduce(f, sumOp<vector>()); 
     
    return f; 
} 
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// * * * * * * * * * * * * * * * * Constructors  * * * * * * * * * * * * * * // 
 
Foam::targetForceTrim::targetForceTrim 
( 
    const rotorDiskSource& rotor, 
    const dictionary& dict 
) 
: 
    trimModel(rotor, dict, typeName), 
    calcFrequency_(-1), 
    target_(vector::zero), 
    alpha_(vector::zero), 
    nIter_(50), 
    tol_(1e-8), 
    relax_(1.0), 
    dTheta_(degToRad(0.05)) 
{ 
    read(dict); 
} 
 
 
// * * * * * * * * * * * * * * * * * Destructor  * * * * * * * * * * * * * * // 
 
Foam::targetForceTrim::~targetForceTrim() 
{} 
 
 
// * * * * * * * * * * * * * * * Member Functions  * * * * * * * * * * * * * // 
 
void Foam::targetForceTrim::read 
( 
    const dictionary& dict 
) 
{ 
    trimModel::read(dict); 
 
    const dictionary& targetDict(coeffs_.subDict("target")); 
     
    const bool IsCompressible = rotor_.getRhoName() != "none";  
 
    if (IsCompressible != 0)  
    { 
        target_[0] = readScalar(targetDict.lookup("fThrust")); 
        target_[1] = readScalar(targetDict.lookup("mPitch")); 
        target_[2] = readScalar(targetDict.lookup("mRoll")); 
    } 
    if (IsCompressible == 0) 
    { 
        target_[0] = (readScalar(targetDict.lookup("fThrust")))/(rotor_.getRhoRef()); 
        target_[1] = (readScalar(targetDict.lookup("mPitch")))/(rotor_.getRhoRef()); 
        target_[2] = (readScalar(targetDict.lookup("mRoll")))/(rotor_.getRhoRef()); 
    }     
 
    const dictionary& pitchAngleDict(coeffs_.subDict("pitchAngles")); 
    alpha_[0] = degToRad(readScalar(pitchAngleDict.lookup("alphaCIni"))); 
    alpha_[1] = degToRad(readScalar(pitchAngleDict.lookup("AIni"))); 
    alpha_[2] = degToRad(readScalar(pitchAngleDict.lookup("BIni"))); 
 
    coeffs_.lookup("calcFrequency") >> calcFrequency_; 
 
    coeffs_.readIfPresent("nIter", nIter_); 
    coeffs_.readIfPresent("tol", tol_); 
    coeffs_.readIfPresent("relax", relax_); 
 
    if (coeffs_.readIfPresent("dTheta", dTheta_)) 
    { 
        dTheta_ = degToRad(dTheta_); 
    } 
} 
 
 
Foam::tmp<Foam::scalarField> Foam::targetForceTrim::alphag() const 
{ 
    const List<vector>& x = rotor_.x(); 
 
    tmp<scalarField> ta(new scalarField(x.size())); 
    scalarField& a = ta(); 
 
    forAll(a, i) 
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    { 
        scalar psi = x[i].y(); 
        a[i] = alpha_[0] + alpha_[1]*cos(psi) + alpha_[2]*sin(psi); 
    } 
 
    return ta; 
} 
 
 
void Foam::targetForceTrim::correct(const vectorField& U, vectorField& force) 
{ 
    if (rotor_.mesh().time().timeIndex() % calcFrequency_ == 0) 
    { 
        // iterate to find new pitch angles to achieve target force 
        scalar err = GREAT; 
        label iter = 0; 
        tensor J(tensor::zero); 
 
        while ((err > tol_) && (iter < nIter_)) 
        { 
            // cache initial alpha vector 
            vector alpha0(alpha_); 
 
            // set initial values 
      // gets re-initialised everytime this function is called 
            vector old = calcForce(U, alphag(), force); 
 
            // construct Jacobian by perturbing the pitch angles 
            // by +/-(dTheta_/2) 
            for (label pitchI = 0; pitchI < 3; pitchI++) 
            { 
                alpha_[pitchI] -= dTheta_/2.0; 
                vector f0 = calcForce(U, alphag(), force); 
 
                alpha_[pitchI] += dTheta_; 
                vector f1 = calcForce(U, alphag(), force); 
 
                vector ddTheta = (f1 - f0)/dTheta_; 
 
                J[pitchI + 0] = ddTheta[0]; 
                J[pitchI + 3] = ddTheta[1]; 
                J[pitchI + 6] = ddTheta[2]; 
 
                alpha_ = alpha0; 
            } 
 
            // calculate the change in pitch angle vector 
            vector dAlpha = inv(J) & (target_ - old); 
 
            // update pitch angles 
            vector alphaNew = alpha_ + relax_*dAlpha; 
 
            // update error 
            err = mag(alphaNew - alpha_); 
 
            // update for next iteration 
            alpha_ = alphaNew; 
      
           // next iteration 
            iter++; 
        } 
 
        const bool IsCompressible = rotor_.getRhoName() != "none"; 
 
        if (iter == nIter_) 
        { 
            WarningIn 
            ( 
                "void Foam::targetForceTrim::correct" 
                "(" 
                    "const vectorField&, " 
                    "vectorField&" 
                ")" 
            )   << " Trim routine not converged in " << iter 
                << " iterations, max residual = " << err << endl; 
        } 
        else 
        { 
            if (IsCompressible)  
            {  
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                Info<< type() << ": Target Force and Moments " << nl 
                    << "    Target Thrust            = " << target_.x() << nl 
                    << "    Target Pitching Moment   = " << target_.y() << nl 
                    << "    Target Rolling Moment    = " << target_.z() << nl  
                    << "    isCompressible = " << IsCompressible << endl; 
            } 
            if (!IsCompressible) 
            { 
                Info<< type() << ": Target Force and Moments " << nl 
                    << "    Target Thrust            = "  
                    << (target_.x()*rotor_.getRhoRef()) << nl 
                    << "    Target Pitching Moment   = "  
                    << (target_.y()*rotor_.getRhoRef()) << nl 
                    << "    Target Rolling Moment    = "  
                    << (target_.z()*rotor_.getRhoRef()) << nl  
                    << "    isCompressible = " << IsCompressible << endl; 
            } 
 
            Info<< type() << ": converged in " << iter << " iterations" << nl  
                << "    residual =  " << err << endl; 
        } 
 
        Info<< "    new pitch angles:" << nl 
            << "        alphaC = " << radToDeg(alpha_[0]) << nl 
            << "        A      = " << radToDeg(alpha_[1]) << nl 
            << "        B      = " << radToDeg(alpha_[2]) << nl 
            << endl; 
    } 
} 
 
 
// ************************************************************************* // 
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A.2.22 Make/files 

rotorDiskSource.C 
bladeModel/bladeModel.C 
profileModel/profileModel.C 
profileModel/profileModelList.C 
profileModel/lookup/lookupProfile.C 
profileModel/series/seriesProfile.C 
trimModel/trimModel/trimModel.C 
trimModel/trimModel/trimModelNew.C 
trimModel/fixed/fixedTrim.C 
trimModel/targetForce/targetForceTrim.C 
 
LIB=$(FOAM_USER_LIBBIN)/librotorDiskSource 
 
 
A.2.23 Make/options 

EXE_INC = \ 
    -DFULL_DEBUG -g -O0 \ 
    -I$(LIB_SRC)/meshTools/lnInclude \ 
    -I$(LIB_SRC)/finiteVolume/lnInclude 
 
LIB_LIBS = \ 
    -lmeshTools \ 
    -lfiniteVolume 
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Appendix B A Sample Case Set Up using the Georgia 
Tech Validation Case for Running 

rhoSimpleSourceFoam Solver with rotorDiskSource 
Active 

B.1. Overview 

This appendix provides a copy of the OpenFOAM case files used for running the Georgia 
Tech Rotor-Airframe Validation Case using OpenFOAM 2.1.x. The purpose of this 
appendix is to provide user with an example of a typical case setup needed for running a 
steady compressible (pressure-based) solver, rhoSimpleSourceFoam, using the 
rotorDiskSource library.  
 
The mesh files have been omitted from this Appendix. However, to aid in providing a 
context for the boundary conditions set up, the “constant/polyMesh/boundary” file 
have been included. The “boundary” file provides the list of the names of the domain 
boundary patches included in the mesh.   
 
The current setup assumes that there is one rotor disk cellZone included in the mesh, 
named rotorcell. The targetForce trim is used with the same trim parameters as 
those specified in Section 5.4.3. 
 
Table B.1 presents a sorted list of the case configuration files shown in Section B.2. To 
improve readability, comments in the code have been shown in blue. 
 
Table B.1:    Summary of a sample rhoSimpleSourceFoam case configuration files 

Section path/filename 
(path is assumed to be relative to  
the case PWD) 

Description 

 constant/polyMesh/boundary Contains patch names and addressing. This file is part 
of the mesh files, which is automatically generated 
during mesh conversion process, or by using 
blockMesh 

 constant/RASProperties Contains RANS turbulence model selection 
 constant/thermophysicalProperties Contains the fluid thermophysical properties, such as 

molecular viscosity and Prandtl number 
 constant/transportProperties Contains the fluid transport model selection, such as 

Newtonian or Bird-Carreau, etc… 
 constant/sourcesProperties Contains selections and definitions of field sources, 

such as the rotorDiskSource  
Multiple sources (even of varying types) must be 
defined in this file. 

 0/p Boundary condition for pressure 
 0/U Boundary condition for velocity 
 0/T Boundary condition for temperature 
 0/k Boundary condition for turbulent kinetic energy 
 0/epsilon Boundary condition for turbulent dissipation rate 

Table continues over page … 
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Table continued … 
Section path/filename 

(path is assumed to be relative to  
the case PWD) 

Description 

 0/mut Boundary condition for turbulent viscosity 
 0/alphat Boundary condition for turbulent heat dissipation 

coefficient 
 system/controlDict Contains runtime control parameters, such as startTime, 

endTime, saveInterval, etc… 
 system/fvSchemes Contains numerical discretisation schemes selections 
 system/fvSolution Contains linear solvers selections and URF 

specifications 
 system/decomposeParDict Contains domain decomposition methods and setup 

parameters 
 monitorResiduals A simple Gnuplot script that can be used to plot 

residuals during runtime 
 runCaseOnSeadragonCluster A sample PBS script that can be used to submit a job 

through the PBS installation on a cluster 

 
B.2. Case Configuration Files  

B.2.1 Constant/polyMesh/boundary 

/*--------------------------------*- C++ -*----------------------------------*\ 
| =========                 |                                                 | 
| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 
|  \\    /   O peration     | Version:  2.1.x                                 | 
|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 
|    \\/     M anipulation  |                                                 | 
\*---------------------------------------------------------------------------*/ 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       polyBoundaryMesh; 
    location    "constant/polyMesh"; 
    object      boundary; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
4 
( 
    inlet 
    { 
        type            patch; 
        nFaces          82; 
        startFace       451463; 
    } 
    outlet 
    { 
        type            patch; 
        nFaces          80; 
        startFace       451545; 
    } 
    wall-tunnel 
    { 
        type            wall; 
        nFaces          1084; 
        startFace       451625; 
    } 
    wall-body 
    { 
        type            wall; 
        nFaces          5756; 
        startFace       452709; 
    } 
) 
 
// ************************************************************************* // 
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B.2.2 constant/RASProperties 

/*--------------------------------*- C++ -*----------------------------------*\ 
| =========                 |                                                 | 
| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 
|  \\    /   O peration     | Version:  dev                                   | 
|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 
|    \\/     M anipulation  |                                                 | 
\*---------------------------------------------------------------------------*/ 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       dictionary; 
    object      RASProperties; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
RASModel            kEpsilon;  //realizableKE; 
 
turbulence          on; 
 
printCoeffs         on; 
 
kEpsilonCoeffs 
{ 
    Cmu         0.09; 
    C1          1.44; 
    C2          1.92; 
    C3          -0.33; 
    sigmak      1.0; 
    sigmaEps    1.11; //Original value is 1.44 
    Prt         1.0; 
} 
 
// ************************************************************************* // 
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B.2.3 constant/thermophysicalProperties 

/*--------------------------------*- C++ -*----------------------------------*\ 
| =========                 |                                                 | 
| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 
|  \\    /   O peration     | Version:  2.0.0                                 | 
|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 
|    \\/     M anipulation  |                                                 | 
\*---------------------------------------------------------------------------*/ 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       dictionary; 
    location    "constant"; 
    object      thermophysicalProperties; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
thermoType      
hPsiThermo<pureMixture<constTransport<specieThermo<hConstThermo<perfectGas>>>>>; 
 
mixture 
{ 
    specie 
    { 
        nMoles      1; 
        molWeight   28.966; 
    } 
    thermodynamics 
    { 
        Cp          1006.43; 
        Hf          0.0;  //not used – no heat release 
    } 
    transport 
    { 
        mu          17.894e-06; 
        Pr          0.7; 
    } 
} 
 
 
// ************************************************************************* // 
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B.2.4 constant/transportProperties 

/*--------------------------------*- C++ -*----------------------------------*\ 
| =========                 |                                                 | 
| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 
|  \\    /   O peration     | Version:  dev                                   | 
|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 
|    \\/     M anipulation  |                                                 | 
\*---------------------------------------------------------------------------*/ 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       dictionary; 
    object      transportProperties; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
transportModel  Newtonian; 
 
nu              nu [0 2 -1 0 0 0 0] 1.5e-05; 
 
// ************************************************************************* // 
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B.2.5 constant/sourcesProperties 

/*--------------------------------*- C++ -*----------------------------------*\ 
| =========                 |                                                 | 
| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 
|  \\    /   O peration     | Version:  dev                                   | 
|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 
|    \\/     M anipulation  |                                                 | 
\*---------------------------------------------------------------------------*/ 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       dictionary; 
    location    "constant"; 
    object      sourcesProperties; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
mainrotor //arbitrary object name 
{ 
    type            rotorDisk; 
    active          on; 
    timeStart       0.0; 
    duration        100000.0; 
    selectionMode   cellZone; 
    cellZone        rotorcell; 
 
    rotorDiskCoeffs 
    { 
        fieldNames       (U); 
 
        rhoName          none; 
        rhoRef           1.225; 
 
        rotorDebugMode   false; 
        rotorURF  1.0; 
 
//        geometryMode    specified; 
//        origin          (0.456998 0.0 0.137100); 
//        axis            (0 0 1); 
//        refDirection    (1 0 0); 
 
        geometryMode    auto; 
        refDirection    (1 0 0); 
        pointAbove      (0 0 1); 
 
        rpm             2100; 
        nBlades         2; 
        inletFlowType   local; 
        tipEffect       0.96; 
 
        flapCoeffs 
        { 
            beta0           0; 
            beta1           1.94; 
            beta2           2.03; 
        } 
 
        trimModel        targetForceTrim; // targetForceTrim; // fixedTrim; 
 
        fixedTrimCoeffs 
        { 
            alphaC          10; 
            A               0; 
            B               0; 
        } 
 
        targetForceTrimCoeffs 
        { 
            target 
            { 
                fThrust         72.8; 
                mRoll           0; 
                mPitch          0; 
            } 
            pitchAngles 
            {  
                alphaCIni    5; 
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                AIni         0; 
                BIni         0; 
            } 
            calcFrequency   5; 
            dTheta          0.1; 
            relax           1; 
        } 
 
        blade 
        {                //radius twist chord 
            data 
            ( 
//                (NACA0015-ser   (       0 0 0.086)) 
//                (NACA0015-ser   (0.456978 0 0.086)) 
 
                (NACA0015-Lookup   (       0 0 0.086)) 
                (NACA0015-Lookup   (0.456978 0 0.086)) 
            ); 
        } 
 
        profiles 
        { 
            NACA0015-ser 
            { 
                type            series; 
                CdCoeffs 
                ( 
                    1.09853905176285 -0.0254111379715975 -1.01464921175951  
                    0.000297893132963066 -0.0805674417410576 0.0003478832627729604 
                    0.0183641071501486 -0.00187212740610965 0.00738154463596278 
                   -0.0271646860125189 -0.0201573706491855 0.00310230620458444 
                   -0.00738192972395497 0.0172792907248443 0.0141795478822924 
                    0.0228307118297743 
                ); 
                ClCoeffs 
                ( 
                    0.0 0.122067939602577 1.12197137626962 -0.0198082665751631  
                    0.091486923514929 0.0146427968325049 0.0511391044755384  
                    0.0158813079932265 0.105584091108421 0.00367478325400266  
                    0.127744823649244 -0.00715619228634737 0.100691143636163 
                   -0.0108010398622889 0.0564061685913662 -0.00846889180607761 
                ); 
            } 
 
            NACA0015-Lookup 
            { 
                type            lookup; 
                data 
            ( 
              //alpha    Cd      Cl    
         ( -180 0.02 0 ) 
         ( -175 0.06 0.49 ) 
         ( -170 0.13 0.75 ) 
         ( -165 0.24 0.68 ) 
         ( -160 0.3 0.65 ) 
         ( -140 1.04 1 ) 
         ( -120 1.65 0.75 ) 
         ( -110 1.85 0.48 ) 
         ( -100 2.02 0.21 ) 
         ( -90 2.02 -0.06 ) 
         ( -80 1.96 -0.34 ) 
      ( -70 1.84 -0.61 ) 
            ( -60 1.66 -0.88 ) 
         ( -50 1.39 -1.15 ) 
         ( -30 0.56 -0.98 ) 
         ( -20 0.35 -0.75 ) 
         ( -19 0.28 -0.76 ) 
         ( -18 0.21 -0.77 ) 
         ( -17 0.17 -0.78 ) 
         ( -16 0.15 -0.79 ) 
         ( -15 0.14 -0.83 ) 
         ( -14 0.14 -0.86 ) 
         ( -13 0.1 -0.93 ) 
         ( -12 0.04 -1 ) 
         ( -11 0.02 -0.99 ) 
         ( -10 0.02 -0.94 ) 
         ( -9 0.02 -0.87 ) 
         ( -8 0.02 -0.79 ) 
         ( -7 0.01 -0.7 ) 
         ( -6 0.01 -0.61 ) 
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         ( -5 0.01 -0.52 ) 
         ( -4 0.01 -0.43 ) 
         ( -3 0.01 -0.32 ) 
         ( -2 0.01 -0.22 ) 
         ( -1 0.01 -0.11 ) 
         ( 0 0.01 0 ) 
         ( 1 0.01 0.11 ) 
         ( 2 0.01 0.22 ) 
         ( 3 0.01 0.32 ) 
         ( 4 0.01 0.43 ) 
         ( 5 0.01 0.52 ) 
         ( 6 0.01 0.61 ) 
         ( 7 0.01 0.7 ) 
            ( 8 0.02 0.79 ) 
         ( 9 0.02 0.87 ) 
            ( 10 0.02 0.94 ) 
            ( 11 0.02 0.99 ) 
            ( 12 0.04 1 ) 
         ( 13 0.1 0.93 ) 
         ( 14 0.14 0.86 ) 
         ( 15 0.14 0.83 ) 
         ( 16 0.15 0.79 ) 
         ( 17 0.17 0.78 ) 
         ( 18 0.21 0.77 ) 
         ( 19 0.28 0.76 ) 
         ( 20 0.35 0.75 ) 
         ( 30 0.56 0.98 ) 
         ( 50 1.39 1.15 ) 
         ( 60 1.66 0.88 ) 
         ( 70 1.84 0.61 ) 
         ( 80 1.96 0.34 ) 
         ( 90 2.02 0.06 ) 
         ( 100 2.02 -0.21 ) 
         ( 110 1.85 -0.48 ) 
         ( 120 1.65 -0.75 ) 
         ( 140 1.04 -1 ) 
         ( 160 0.3 -0.65 ) 
         ( 165 0.24 -0.68 ) 
         ( 170 0.13 -0.75 ) 
         ( 175 0.06 -0.49 ) 
         ( 180 0.02 0 ) 
                                      ); 
            } 
        } 
    } 
} 
 
/* 
 
ADD NEW ROTOR HERE 
 
tailrotor //arbitrary object name 
{ 
    type            rotorDisk; 
    active          on; 
    timeStart       0.0; 
    duration        100000.0; 
    selectionMode   cellZone; 
    cellZone        rotorcell; 
 
    rotorDiskCoeffs 
    { 
 
… } 
*/ 
 
 
// *********************************************************************** // 
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B.2.6 0/p 

/*--------------------------------*- C++ -*----------------------------------*\ 
| =========                 |                                                 | 
| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 
|  \\    /   O peration     | Version:  dev                                   | 
|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 
|    \\/     M anipulation  |                                                 | 
\*---------------------------------------------------------------------------*/ 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       volScalarField; 
    object      p; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
dimensions      [1 -1 -2 0 0 0 0]; 
 
internalField   uniform 101325; 
 
boundaryField 
{ 
    wall-tunnel 
    { 
        type          zeroGradient; 
    } 
 
    wall-body 
    { 
        type          zeroGradient; 
    } 
 
    outlet 
    { 
     type  totalPressure;  
  U  U; 
  phi  phi; 
  rho  rho; 
  psi  psi; 
  gamma  1.4; 
  p0  uniform 101325; 
    } 
 
    inlet 
    { 
        type          zeroGradient; 
    } 
 
} 
 
// ************************************************************************* // 
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B.2.7 0/U 

/*--------------------------------*- C++ -*----------------------------------*\ 
| =========                 |                                                 | 
| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 
|  \\    /   O peration     | Version:  dev                                   | 
|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 
|    \\/     M anipulation  |                                                 | 
\*---------------------------------------------------------------------------*/ 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       volVectorField; 
    location    "0"; 
    object      U; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
dimensions      [0 1 -1 0 0 0 0]; 
 
internalField   uniform (10 0 0); 
 
boundaryField 
{ 
 
    wall-tunnel 
    { 
        type            fixedValue; 
        value           uniform (0 0 0); 
    } 
 
    wall-body 
    { 
        type            fixedValue; 
        value           uniform (0 0 0); 
    } 
 
    outlet 
    { 
  type            pressureInletOutletVelocity;  
  value   uniform (10 0 0); 
 
        /* Alternative BC 
        type            inletOutlet; 
        inletValue      uniform (0 0 0); 
        value           $internalField; 
        */ 
    } 
 
    inlet 
    { 
        type            fixedValue; 
        value           $internalField; 
    } 
} 
 
 
// ************************************************************************* // 
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B.2.8 0/T 

/*--------------------------------*- C++ -*----------------------------------*\ 
| =========                 |                                                 | 
| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 
|  \\    /   O peration     | Version:  dev                                   | 
|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 
|    \\/     M anipulation  |                                                 | 
\*---------------------------------------------------------------------------*/ 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       volScalarField; 
    location    "0"; 
    object      T; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
dimensions      [0 0 0 1 0 0 0]; 
 
internalField   uniform 300; 
 
boundaryField 
{ 
    wall-tunnel 
    { 
        type            zeroGradient; 
    } 
    wall-body 
    { 
        type            zeroGradient; 
    } 
    outlet 
    { 
 
        type            inletOutletTotalTemperature; 
        U               U; 
        phi             phi; 
        psi             psi; 
        gamma           1.4; 
        T0              uniform 300; 
 
        /* Alternative BC 
        type            inletOutlet; 
        inletValue      $internalField; 
        value           $internalField; 
        */ 
    } 
    inlet 
    { 
        type            totalTemperature; 
        U               U; 
        phi             phi; 
        psi             psi; 
        gamma           1.4; 
        T0              uniform 300; 
 
        /*  Alternative BC 
        type            fixedValue; 
        value           $internalField; 
        */ 
    } 
} 
 
 
// ************************************************************************* // 
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B.2.9 0/k 

/*--------------------------------*- C++ -*----------------------------------*\ 
| =========                 |                                                 | 
| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 
|  \\    /   O peration     | Version:  2.0.x                                 | 
|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 
|    \\/     M anipulation  |                                                 | 
\*---------------------------------------------------------------------------*/ 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       volScalarField; 
    location    "0"; 
    object      k; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
dimensions      [0 2 -2 0 0 0 0]; 
 
internalField   uniform 0.00375; 
 
boundaryField 
{ 
    wall-tunnel 
    { 
        type            compressible::kqRWallFunction; 
        value           uniform 0.00375; 
    } 
    wall-body 
    { 
        type            compressible::kqRWallFunction; 
        value           uniform 0.00375; 
    } 
    outlet 
    { 
        type            inletOutlet; 
        inletValue      uniform 0.00375; 
        value           uniform 0.00375; 
    } 
    inlet 
    { 
        type            turbulentIntensityKineticEnergyInlet; 
        intensity       0.01; 
        value           uniform 12;  //based on avgU of 10 m/s     
    } 
} 
 
 
// ************************************************************************* // 
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B.2.10 0/epsilon 

/*--------------------------------*- C++ -*----------------------------------*\ 
| =========                 |                                                 | 
| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 
|  \\    /   O peration     | Version:  2.0.x                                 | 
|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 
|    \\/     M anipulation  |                                                 | 
\*---------------------------------------------------------------------------*/ 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       volScalarField; 
    location    "0"; 
    object      epsilon; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
dimensions      [0 2 -3 0 0 0 0]; 
 
internalField   uniform 0.0005; 
 
boundaryField 
{ 
    wall-tunnel 
    { 
        type            compressible::epsilonWallFunction; 
        Cmu             0.09; 
        kappa           0.41; 
        E               9.8; 
        value           uniform 0.0005; 
    } 
    wall-body 
    { 
        type            compressible::epsilonWallFunction; 
        Cmu             0.09; 
        kappa           0.41; 
        E               9.8; 
        value           uniform 0.0005; 
    } 
    outlet 
    { 
        type            inletOutlet; 
        inletValue      uniform 0.0005; 
        value           uniform 0.0005; 
    } 
    inlet 
    { 
        type            compressible::turbulentMixingLengthDissipationRateInlet; 
        mixingLength    0.21;     // 0.07 x Tunnel Dia 
        value           uniform 32;    // based on k of 12      
    } 
} 
 
 
// ************************************************************************* // 
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B.2.11 0/mut 

/*--------------------------------*- C++ -*----------------------------------*\ 
| =========                 |                                                 | 
| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 
|  \\    /   O peration     | Version:  2.0.x                                 | 
|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 
|    \\/     M anipulation  |                                                 | 
\*---------------------------------------------------------------------------*/ 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       volScalarField; 
    location    "0"; 
    object      mut; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
dimensions      [1 -1 -1 0 0 0 0]; 
 
internalField   uniform 0; 
 
boundaryField 
{ 
    wall-tunnel 
    { 
        type            mutkWallFunction; 
        Cmu             0.09; 
        kappa           0.41; 
        E               9.8; 
        value           uniform 0; 
    } 
    wall-body 
    { 
        type            mutkWallFunction; 
        Cmu             0.09; 
        kappa           0.41; 
        E               9.8; 
        value           uniform 0; 
    } 
    outlet 
    { 
        type            calculated; 
        value           uniform 0; 
    } 
    inlet 
    { 
        type            calculated; 
        value           uniform 0; 
    } 
} 
 
 
// ************************************************************************* // 
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B.2.12 0/alphat 

/*--------------------------------*- C++ -*----------------------------------*\ 
| =========                 |                                                 | 
| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 
|  \\    /   O peration     | Version:  2.0.x                                 | 
|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 
|    \\/     M anipulation  |                                                 | 
\*---------------------------------------------------------------------------*/ 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       volScalarField; 
    location    "0"; 
    object      alphat; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
dimensions      [1 -1 -1 0 0 0 0]; 
 
internalField   uniform 0; 
 
boundaryField 
{ 
    wall-tunnel 
    { 
        type            alphatWallFunction; 
        Prt             0.85; 
        value           uniform 0; 
    } 
    wall-body 
    { 
        type            alphatWallFunction; 
        Prt             0.85; 
        value           uniform 0; 
    } 
    outlet 
    { 
        type            calculated; 
        value           uniform 0; 
    } 
    inlet 
    { 
        type            calculated; 
        value           uniform 0; 
    } 
} 
 
 
// ************************************************************************* // 
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B.2.13 system/controlDict 

/*--------------------------------*- C++ -*----------------------------------*\ 
| =========                 |                                                 | 
| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 
|  \\    /   O peration     | Version:  dev                                   | 
|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 
|    \\/     M anipulation  |                                                 | 
\*---------------------------------------------------------------------------*/ 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       dictionary; 
    object      controlDict; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
libs            ("librotorDiskSource.so"); 
 
application     rhoSimpleSourceFoam; 
 
startFrom       startTime; 
 
startTime       0; 
 
stopAt          endTime;  //writeNow; 
 
endTime         6000; 
 
deltaT          1; 
 
writeControl    timeStep; 
 
writeInterval   1000; 
 
purgeWrite      5; 
 
writeFormat     ascii; 
 
writePrecision  12; 
 
writeCompression uncompressed; 
 
timeFormat      general; 
 
timePrecision   6; 
 
runTimeModifiable yes; 
 
// ************************************************************************* // 
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B.2.14 system/fvSchemes 

/*--------------------------------*- C++ -*----------------------------------*\ 
| =========                 |                                                 | 
| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 
|  \\    /   O peration     | Version:  dev                                   | 
|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 
|    \\/     M anipulation  |                                                 | 
\*---------------------------------------------------------------------------*/ 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       dictionary; 
    object      fvSchemes; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
ddtSchemes 
{ 
    default            steadyState; 
} 
 
gradSchemes 
{ 
    default             leastSquares;  //Gauss linear;  //Gauss pointLinear; 
    grad(p)             Gauss linear; 
    grad(U)             faceLimited Gauss linear 1; 
    limitedGrad(h)      cellLimited Gauss linear 1; 
} 
 
divSchemes 
{ 
    default             none; 
    div(phi,U)          Gauss upwind grad(U);    //1st order upwind 
  //div(phi,U)    Gauss linearUpwindV grad(U);   //2nd order blended upwind   
 
    div(phi,h)          Gauss upwind; 
  //div(phi,h)    Gauss linearUpwind limitedGrad(h);  //2nd order blended upwind   
 
    div(phi,k)          Gauss upwind; 
    div(phi,epsilon)    Gauss upwind; 
 
    div(phi,k)          Gauss limitedLinear 0.5; // TVD 2nd Order Scheme 
    div(phi,epsilon)    Gauss limitedLinear 0.5; 
 
    div(phi,K)          Gauss upwind; 
    div(U,p)            Gauss linear; 
    div((nuEff*dev(T(grad(U)))))    Gauss linear; 
    div((muEff*dev2(T(grad(U))))) Gauss linear; 
} 
 
laplacianSchemes 
{ 
    default             Gauss linear limited 0.333; 
} 
 
interpolationSchemes 
{ 
    default             linear; 
} 
 
snGradSchemes 
{ 
    default             limited 0.333; 
} 
 
fluxRequired 
{ 
    default             no; 
    p; 
} 
 
 
// ************************************************************************* // 
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B.2.15 system/fvSolution 

/*--------------------------------*- C++ -*----------------------------------*\ 
| =========                 |                                                 | 
| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 
|  \\    /   O peration     | Version:  dev                                   | 
|   \\  /    A nd           | Web:      www.OpenFOAM.org                      | 
|    \\/     M anipulation  |                                                 | 
\*---------------------------------------------------------------------------*/ 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       dictionary; 
    object      fvSolution; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
solvers 
{ 
    p 
    { 
        solver           GAMG; 
        tolerance        1e-7; 
        relTol           0.1; 
        smoother         GaussSeidel; 
        nPreSweeps       0; 
        nPostSweeps      2; 
        cacheAgglomeration on; 
        agglomerator     faceAreaPair; 
        nCellsInCoarsestLevel 10; 
        mergeLevels      1; 
    } 
 
    U 
    { 
        solver           smoothSolver; 
        smoother         GaussSeidel; 
        tolerance        1e-8; 
        relTol           0.1; 
        nSweeps          1; 
    } 
 
    k 
    { 
        solver           smoothSolver; 
        smoother         GaussSeidel; 
        tolerance        1e-8; 
        relTol           0.1; 
        nSweeps          1; 
    } 
 
    epsilon 
    { 
        solver           smoothSolver; 
        smoother         GaussSeidel; 
        tolerance        1e-8; 
        relTol           0.1; 
        nSweeps          1; 
    } 
 
    h 
    { 
        solver           smoothSolver; 
        smoother         GaussSeidel; 
        tolerance        1e-8; 
        relTol           0.1; 
        nSweeps          1; 
    } 
 
} 
 
SIMPLE 
{ 
    nNonOrthogonalCorrectors 0; 
 
    // pRefCell            0; 
    // pRefValue           0; 
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    rhoMin  rhoMin [1 -3 0 0 0] 1; 
    rhoMax  rhoMax [1 -3 0 0 0] 1.4; 
 
    residualControl 
    { 
        p               1e-8; 
        U               1e-9; 
        "(k|epsilon)"   1e-9; 
    } 
} 
 
relaxationFactors 
{ 
    rho             1.0; 
    p               0.2; 
    U               0.3; 
    k               0.3; 
    epsilon         0.3; 
    h               0.3; 
} 
 
cache 
{ 
    grad(U); 
} 
 
// ************************************************************************* // 
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B.2.16 system/decomposeParDict 

/*--------------------------------*- C++ -*----------------------------------*\ 
| =========                 |                                                 | 
| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           | 
|  \\    /   O peration     | Version:  1.7.0                                 | 
|   \\  /    A nd           | Web:      www.OpenFOAM.com                      | 
|    \\/     M anipulation  |                                                 | 
\*---------------------------------------------------------------------------*/ 
FoamFile 
{ 
    version     2.0; 
    format      ascii; 
    class       dictionary; 
    object      decomposeParDict; 
} 
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * // 
 
numberOfSubdomains 256; 
 
//method          simple; 
//method          metis; 
//method          parMetis; 
 
method  scotch; 
 
simpleCoeffs 
{ 
    n               (28 1 1); 
    delta           0.001; 
} 
 
hierarchicalCoeffs 
{ 
    n               (4 2 1); 
    delta           0.0001; 
    order           xyz; 
} 
 
manualCoeffs 
{ 
    dataFile        "cellDecomposition"; 
} 
 
metisCoeffs 
{ 
    processorWeights (1 1 1 1 1 1 1 1 ); 
}     
    distributed no; 
    roots (); 
 
// ************************************************************************* // 
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B.2.17 monitorResiduals 

 
# to run this script issue the commands: 
#   $ gnuplot monitorResiduals 
 
set logscale y 
set grid 
 
plot "< cat script.log | grep Ux | cut -d' ' -f9 | tr -d ','" t "Ux" with lines, "< cat 
script.log | grep Uy | cut -d' ' -f9 | tr -d ','" t "Uy" with lines, "< cat script.log | 
grep 'for omega,'| cut -d' ' -f9 | tr -d ','" t "omega" with lines, "< cat script.log | grep 
Uz, | cut -d' ' -f9 | tr -d ','" t "Uz" with lines, "< cat script.log | grep 'for h,' | cut 
-d' ' -f9 | tr -d ','" t "energy" with lines, "< cat script.log | grep local | cut -d' ' -f9 
| tr -d ','" t "local_continuity" with lines, "< cat script.log | grep 'for p,' | cut -d' ' 
-f9 | tr -d ','" t "p" with lines 
 
pause 1  # update interval (s) 
reread   #live plotting mode 
 
#### Uncomment all four lines below to save the plot to a png file #### 
#set terminal png 
#set size 1,1 
#set output "residuals.png" 
#replot 
 
 
# File name: save.plt - save a Gnuplot plot as a PostScript file 
# to save the current plot as a postscript file issue the commands: 
#  gnuplot>   load 'saveplot' 
#  gnuplot>   !mv my-plot.ps another-file.ps 
 
# set size 1.0, 0.6 
# set terminal postscript portrait enhanced mono dashed lw 1 "Helvetica" 14  
# set output "my-plot.ps" 
# replot 
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B.2.18 runCaseOnSeadragonCluster 

#!/bin/bash 
# 
 
### PBS ### 
#PBS -N GTITrimmed 
#PBS -S /bin/bash -j oe -k o -r n 
#PBS -l walltime=100:00:00 
#PBS -l select=16:ncpus=16:mpiprocs=16 
 
### PBS -l select=32:ncpus=16:mpiprocs=16 
### PBS -l select=28:ncpus=16:mpiprocs=16 
 
### qsub -l select=8:ncpus=16:mpiprocs=16 ./Allrun 
### 
### select=number_of_nodes                (1 to 32 nodes in cluster) 
### ncpus=number_of_cores_per_node        (for dual AMD 6220 processor nodes, ncpus=16) 
### mpiprocs=number_of_mpi_processes_per_node       (mpiprocs=16) 
### 
 
source /data1/OpenFOAM/OpenFOAM-SGIRHEL62-2.1.X_X8664_07JUNE12_REPO/setup.sh DP SGIMPI 
 
export NCORES=`cat $PBS_NODEFILE | wc -l` 
 
####################### 
cd $PBS_O_WORKDIR     # NOTE THAT THIS SCRIPT MUST BE SUBMITTED FROM THE WORK DIRECTORY 
####################### 
 
rm -rf processor* log logs script.log 
 
. $WM_PROJECT_DIR/bin/tools/RunFunctions 
 
unset FOAM_SIGFPE 
echo ' ' > script.log 
echo 'Starting the Run' >> script.log 
echo '==============================' >> script.log 
echo "PBS: Allocated $NCORES core(s) on node(s) "`cat $PBS_NODEFILE | sort -u` >> script.log 
echo "PBS: Submitted to $PBS_QUEUE@$PBS_O_HOST" >> script.log 
echo "PBS: Working directory is $PBS_O_WORKDIR" >> script.log 
echo "PBS: Job identifier is $PBS_JOBID" >> script.log 
echo "PBS: Job name is $PBS_JOBNAME" >> script.log 
echo '==============================' >> script.log 
echo ' ' 
 
# System variables 
HOST=`uname -n` 
OSTYPE=`uname -s` 
echo 'running on '$HOST $OSTYPE ' using mpi routine '$FOAM_MPI  >> script.log 
echo '' >> script.log 
 
CURDIR=`pwd` 
 
runApplication foamInstallationTest 
cat log.foamInstallationTest >> script.log 
 
runApplication checkMesh 
cat log.checkMesh >> script.log 
 
# Tell PBS of available nodes on the cluster 
export MPI_DSM_CPULIST="0-15:allhosts" 
 
### Add job sequence here ### 
 
decomposePar -force -cellDist > log.decomposePar 2>&1 
cat log.decomposePar >> script.log  
 
foamJob -parallel -screen rhoSimpleSourceFoam >> script.log 2>&1 
foamLog log 
 
reconstructPar > log.reconstructPar 2>&1 
cat log.reconstructPar >> script.log 
 
rm -rf processor* 
echo '' 
echo =========================================== 
echo RUN IS FINISHED 
echo =========================================== 
echo '' 
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