
UNCLASSIFIED

Development of Virtual Blade Model for Modelling
Helicopter Rotor Downwash in OpenFOAM

Stefano Wahono

Aerospace Division

Defence Science and Technology Organisation

DSTO-TR-2931

ABSTRACT

This report documents the development of a computational model to simulate the complex
flow induced by helicopter rotors, using an open-source computational fluid dynamics (CFD)
code, OpenFOAMTM. This computational code is now being used to perform large-scale multi-
physics simulations of the flow field around helicopters including exhaust plumes and their
airframe impingement. The rotor downwash model was validated against available
experimental data on rotor-fuselage interactions published by the Georgia Institute of
Technology. The OpenFOAM predicted result was also shown to compare favourably with
ANSYS Fluent predictions.

RELEASE LIMITATION

Approved for public release

UNCLASSIFIED

UNCLASSIFIED

UNCLASSIFIED

Produced by

Aerospace Division
DSTO Defence Science and Technology Organisation
506 Lorimer St
Fishermans Bend, Victoria 3207 Australia

Telephone: 1300 3333 362
Fax: (03) 9626 7999
AR 015-836
 Commonwealth of Australia 2014
December 2013

APPROVED FOR PUBLIC RELEASE

UNCLASSIFIED

UNCLASSIFIED

Development of Virtual Blade Model for Modelling
Helicopter Rotor Downwash in OpenFOAM

Executive Summary

The Infrared Signatures and Aerothermodynamics (IRSA) group within DSTO is
tasked with providing measurement-validated infrared signature models of air
vehicles to the Australian Defence Force (ADF).

In general, both fixed and rotary-wing aircraft will exhibit a significant area of
unobscured hot exhaust surface. For such aircraft, the infrared signature is dominated
by direct emissions from these unobscured hot surfaces, while the signature
contribution from surface reflections and plume emissions can largely be neglected
without great loss of accuracy. However, for low-observable aircraft, like helicopters
fitted with infrared suppressors, a lack of observable exhaust surfaces means that this
simplification does not apply. Infrared-suppressed helicopters are becoming
increasingly important to the ADF and an understanding of their infrared signature
requires a much more comprehensive understanding of their associated air and
exhaust flows.

Infrared suppression systems principally function by denying direct line-of-sight to hot
engine exhaust surfaces at tactically critical viewing aspects. Consequently, aircraft
fitted with infrared suppression systems have signatures which are dominated by
exhaust plume emissions, emissions from airframe surfaces incidentally heated by
exhaust impingement and indirect reflections of directly obscured hot surfaces on rotor
blades, wings, cavities, etc. In the case of a suppressed helicopter, the ability to model
the complex interaction between the hot engine exhaust plume and the rotor
downwash is essential to the prediction of its infrared signature. Downwash-plume-
crosswind interaction determines the magnitude and disposition of volumetric exhaust
gas emission and localised surface emission due to plume impingement.

This report documents the development of a computational model to simulate the
complex flow induced by helicopter rotors, using an open-source computational fluid
dynamics (CFD) code, OpenFOAMTM. This computational code is now being used to
perform large-scale multi-physics simulations of the flow field around helicopters
including exhaust plumes and their airframe impingement. These simulations exploit
the benefit of combining free open-source software with historically inexpensive
computer cluster hardware performance to accurately model the signatures of low-
observable aircraft.

UNCLASSIFIED

UNCLASSIFIED

Author

Stefano Wahono
Aerospace Division

Stefano Wahono graduated with double degree in Mechanical and
Aerospace Engineering in 2004 from Monash University with first
class honours. He then undertook research work at Monash
University in the experimental and computational fluid mechanics,
particularly on the mechanics of spray formation and swirling jets.

In 2006, Stefano took up a position as an aircraft structural
integrity engineer for the RAAF with QinetiQ Australia. During
his time at QinetiQ, Stefano undertook various structural integrity
management and regulation work for the RAAF, which included
undertaking of the structural life assessment of the PC-9/A fleet,
structural life analysis and certification of the Electronic Warfare
Self Protection on the AP-3C fleet, and the Ageing Aircraft
Structural Audit for the F/A-18 fleet.

Since 2009, Stefano has worked at DSTO on a variety of projects
including using computational fluid dynamics to significantly re-
design the flow path and performance of DSTO’s Concept-2
infrared suppressor for the CH-47D. Stefano also used CFD to
analyse the airwake about the LHD flight deck for helicopter
operations.

Stefano is a member of the Infrared Signatures and
Aerothermodynamics group within Aerospace Division. His
current primary research interest is in the area of complex
turbulent flows around aircraft and in propulsion system elements
for accurate signature prediction.

____________________ __

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED

Contents

1. INTRODUCTION... 1

2. PHYSICAL MODEL AND ASSUMPTIONS... 3

2.1 Overview of Rotor Blade Modelling Techniques in CFD 3

2.2 Overview of Rotor Aerodynamics ... 4

2.2.1 Brief Description of a Helicopter Rotor.. 4

2.2.2 Blade Geometry ... 6

2.2.3 Rotor Coning and Flapping ... 6

2.3 Model Description.. 8

2.3.1 The Virtual Blade Model .. 8

2.3.2 Frame of Reference Transformations.. 9

2.3.3 Blade Forces Calculation .. 11

2.3.4 Blade Section Lift and Drag ... 13

2.3.5 Blade Tip Effect.. 14

2.3.6 Momentum Sources .. 14

2.3.7 Rotor Trim Model.. 17

2.3.8 Dimensionless Parameters ... 19

2.3.9 Summary... 20

3. MODEL IMPLEMENTATION IN OPENFOAM.. 21

3.1 Overview .. 21

3.2 Applicable OpenFOAM Version ... 21

3.3 The Flow Solvers... 22

3.3.1 Overview of RANS Solvers in OpenFOAM 22

3.3.2 Overview of the rhoSimpleFoam Solver .. 23

3.3.3 Creating a New rhoSimpleSourceFoam Solver................................. 25

3.3.4 The basicSource Class ... 27

3.3.5 Overview of the VBM Library Classes ... 28

3.4 The VBM Library in OpenFOAM ... 31

3.4.1 The rotorDiskSource Class ... 31

3.4.2 The rotorDiskSource Input/Output (IO) ... 34

3.4.3 The Rotor trimModel Class.. 35

3.5 Compiling the Code ... 37

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED

3.5.1 Preparation ... 37

3.5.2 Linking the VBM Library to the Standard OpenFOAM Libraries . 38

3.5.3 Compiling the VBM Library (librotorDiskSource.so) 39

3.6 Updating the VBM Code for Compatibility with Future OpenFOAM
Version.. 40

4. CASE SETUP IN OPENFOAM USING THE ROTORDISKSOURCE LIBRARY 42

4.1 Case Setup .. 42

4.1.1 File Structure .. 42

4.1.2 Time Directory (Output) .. 45

4.2 Specifying the rotorDiskSource Properties in the sourceProperties
Dictionary File ... 46

4.2.1 Basic Selection Mechanism... 46

4.2.2 Specifying Basic rotorDiskSource Coefficients 48

4.2.3 Specifying Blade Trim Parameters.. 50

4.2.4 Specifying Blade Geometry and Section Profile................................ 51

4.2.5 Specifying Section Profile Lift and Drag Curves 52

4.3 Mesh Requirement ... 53

4.3.1 Generating Rotor Disk Mesh Using ANSYS Gambit and ANSYS
TGrid for Use in OpenFOAM.. 56

4.4 Setting Up the Boundary Conditions.. 58

4.4.1 Overview of Boundary Patches and Boundary Conditions in
OpenFOAM.. 59

4.4.2 Setting Up Boundary Conditions for an OpenFOAM Case 60

4.4.3 Rotor Disk Boundary Conditions in OpenFOAM 61

4.5 Solution Driving Strategy ... 65

4.5.1 Overview .. 65

4.5.2 Appropriateness of Boundary Conditions... 66

4.5.3 Appropriateness of Initial Condition ... 67

4.5.4 Cell Orthogonality Consideration... 68

4.5.5 Selection of Numerical Discretisation Scheme.................................. 69

4.5.6 Selection of Linear Solvers ... 76

4.5.7 Under-Relaxation Factors... 77

4.6 Plotting Results on the Rotor Disk Surface using ParaviewTM...................... 80

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED

4.6.1 Plotting Flow-field Variables on the Rotor Disk using a New
Plane Source in Paraview ... 80

4.6.2 Plotting Flow-field Variables on the Rotor Disk using a VTK File. 81

5. VALIDATION AND VERIFICATION TEST CASE.. 82

5.1 Overview .. 82

5.2 Summary of Georgia Institute of Technology (Georgia Tech) Rotor-
Airframe Interaction Experimental Setup.. 82

5.3 CFD Model ... 83

5.3.1 Geometry and Mesh.. 83

5.3.2 Boundary Conditions.. 84

5.3.3 Rotor Modelling... 85

5.3.4 FV Discretisation Scheme and Linear Solvers 85

5.3.5 ANSYS Fluent Case Setup.. 86

5.3.6 Solution Driving Strategy and Residual Trend................................. 86

5.4 Verification and Validation Result ... 87

5.4.1 Calculated Rotor Thrust and Moments.. 87

5.4.2 Untrimmed Rotor Simulation Result.. 88

5.4.3 The Effect of Thrust and Moments Trimming................................... 97

6. CONCLUSIONS AND RECOMMENDATIONS... 102

7. REFERENCES .. 102

APPENDIX A SOURCE CODE FOR THE ROTORDISKSOURCE........................ 106

A.1. High Level Description of the Source Code Files.................. 106

A.2. Source Code for the rotorDiskSource....................................... 110

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED

A.2.1 rotorDiskSource.H ... 110

A.2.2 rotorDiskSource.C.. 115

A.2.3 rotorDiskSourceTemplates.C 128

A.2.4 rotorDiskSourceI.H.. 129

A.2.5 bladeModel.H... 130

A.2.6 bladeModel.C ... 132

A.2.7 profileModel.H... 135

A.2.8 profileModel.C ... 137

A.2.9 profileModelList.H .. 139

A.2.10 profileModelList.C... 141

A.2.11 lookupProfile.H.. 143

A.2.12 lookupProfile.C .. 145

A.2.13 seriesProfile.H .. 147

A.2.14 seriesProfile.C... 149

A.2.15 trimModel.H... 151

A.2.16 trimModel.C ... 153

A.2.17 trimModelNew.C... 154

A.2.18 fixedTrim.H .. 155

A.2.19 fixedTrim.C... 157

A.2.20 targetForceTrim.H ... 159

A.2.21 targetForceTrim.C.. 161

A.2.22 Make/files... 165

A.2.23 Make/options... 165

APPENDIX B A SAMPLE CASE SET UP USING THE GEORGIA TECH
VALIDATION CASE FOR RUNNING
RHOSIMPLESOURCEFOAM SOLVER WITH
ROTORDISKSOURCE ACTIVE... 166

B.1. Overview.. 166

B.2. Case Configuration Files... 167

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED

B.2.1 Constant/polyMesh/boundary................................... 167

B.2.2 constant/RASProperties ... 168

B.2.3 constant/thermophysicalProperties 169

B.2.4 constant/transportProperties....................................... 170

B.2.5 constant/sourcesProperties.. 171

B.2.6 0/p ... 174

B.2.7 0/U... 175

B.2.8 0/T ... 176

B.2.9 0/k.. 177

B.2.10 0/epsilon ... 178

B.2.11 0/mut... 179

B.2.12 0/alphat... 180

B.2.13 system/controlDict.. 181

B.2.14 system/fvSchemes... 182

B.2.15 system/fvSolution ... 183

B.2.16 system/decomposeParDict .. 185

B.2.17 monitorResiduals ... 186

B.2.18 runCaseOnSeadragonCluster....................................... 187

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED

List of Figures

Figure 2.1: Rotor disk schematic showing definition of and r... 5

Figure 2.2: Blade motion schematic at an arbitrary azimuthal position, , on the rotor disk
... 7

Figure 2.3: A schematic of the RSP, LRF and TPP on a flapping and coning blade 8

Figure 2.4: Schematic of the blade element in the RSP stationary cylindrical frame of
reference and the LRF rotating cylindrical frame of reference .. 10

Figure 2.5: Blade element ... 11

Figure 2.6: Schematic of the forces acting on the blade element in the LRF 12

Figure 2.7: Typical structured mesh used to model the rotor disk using the VBM 15

Figure 3.1: Implementation of the SIMPLE algorithm in rhoSimpleFoam......................... 24

Figure 3.2: UEqn.H in rhoSimpleFoam .. 24

Figure 3.3: Modified UEqn.H in rhoSimpleFoam with basicSource term............................. 25

Figure 3.4: Directory structure for an application in OpenFOAM ... 26

Figure 3.5: Modified Make/files and Make/options for compiling rhoSimpleSourceFoam
... 26

Figure 3.6: Class hierarchy of basicSource class in OpenFOAM .. 27

Figure 3.7: Overview of the directory and file structure of the VBM source code in
OpenFOAM... 29

Figure 3.8: Class declaration in rotorDiskSource.H showing inheritance from basicSource
... 30

Figure 3.9: Implementation of the virtual void addSup() in the rotorDiskSource class...... 31

Figure 3.10: Adding rotorDiskSource class to the basicSource runTimeSelectionTable 31

Figure 3.11: Implementation of the VBM using rotorDiskSource class and
rhoSimpleSourceFoam solver in OpenFOAM ... 33

Figure 3.12: Linux shell output of rotorDiskSource during runtime 34

Figure 3.13: Implementation of the targetForceTrim model in the rotorDiskSource class . 36

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED

Figure 3.14: Linux shell output of targetForceTrim class during runtime..................... 37

Figure 3.15: Content of the “Make/options” needed to compile rotorDiskSource 39

Figure 3.16: Content of the “Make/files” needed to compile rotorDiskSource 39

Figure 4.1: OpenFOAM minimal case directory structure required for running a RANS
simulation using the rotorDiskSource library.. 43

Figure 4.2: Source term model selector in the sourceProperties file 47

Figure 4.3: Basic rotorDiskCoeffs parameters in the sourceProperties file 48

Figure 4.4: Methods of specifying inlet flow into the rotor disk in the sourceProperties file
... 49

Figure 4.5: Cyclic and collective pitch trim parameters in the sourceProperties file........... 50

Figure 4.6: Blade geometry and profile specification in the sourceProperties file............... 52

Figure 4.7: Airfoil section lift and drag curves specification in the sourceProperties file... 53

Figure 4.8: An example of rotor disk mesh using structured hexahedral cells 54

Figure 4.9: An example of pyramid cells attachment on the rotor disk mesh in a fully
unstructured tetrahedral cell domain – generated using ANSYS TGrid 55

Figure 4.10: OpenFOAM user environment .. 56

Figure 4.11: polyMesh directory structure in an OpenFOAM case.. 57

Figure 4.12: polyMesh directory structure in an OpenFOAM case.. 58

Figure 4.13: Boundary patch hierarchy in an OpenFOAM case (reproduced from
Reference 13) ... 60

Figure 4.14: Using the “timeVarying” option of the flowRateInletVelocity
boundary condition across a mass flow rate inlet boundary ... 68

Figure 4.15: Recommended URF setup for running rhoSimpleSourceFoam solver for a
moderately compressible flow case ... 77

Figure 5.1: Georgia Tech rotor - airframe interaction wind tunnel experimental setup –
reproduced from Reference 23 ... 83

Figure 5.2: Mesh configuration.. 84

Figure 5.3: Cl and Cd profiles for NACA 0015 airfoil over a range of AOA 86

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED

Figure 5.4: Residual curves of the Georgia Tech case run using the rhoSimpleSourceFoam
solver .. 87

Figure 5.5: Mean static gauge pressure contour plot on the x-z plane which passes through
the rotor disk centre ... 89

Figure 5.6: Mean static gauge pressure contour plot on the y-z plane which passes through
the rotor disk centre ... 90

Figure 5.7: Computed mean Cp on the fuselage without force and moment trimming...... 91

Figure 5.8: Comparison of measured and computed mean Cp on the fuselage without
force and moment trimming... 92

Figure 5.9: Schematic representation of the instantaneous flow-field above the fuselage –
reproduced from Reference 22 ... 92

Figure 5.10: Gauge static pressure contour on the rotor disk top surface............................. 93

Figure 5.11: Gauge static pressure contour on the rotor disk bottom surface 93

Figure 5.12: Streamlines coloured by velocity magnitude. Velocity magnitude contour plot
is shown on the rotor disk bottom surface ... 94

Figure 5.13: Contour plot of mean downwash velocity measured 12.7 mm below the rotor
disk - negative values denote upflow.. 95

Figure 5.14: Velocity measurement location at Reference 20 .. 96

Figure 5.15: Comparison of measured and computed mean dtreamwise velocity profile
(Top) and downwash velocity profile (Bottom) at Z/r=0.178 ... 97

Figure 5.16: Comparison of measured and computed mean Cp on the fuselage with the
thrust and moment trimming activated.. 99

Figure 5.17: Comparison of measured and computed streamwise velocity (Top) and
downwash velocity (Bottom) at Z/r=0.178 with the thrust and moment trimming activated
... 100

Figure 5.18: Mean Cp on the fuselage with the thrust and moment trimming activated and
using a tip factor of 0.96... 101

Figure 6.1: Flow streamlines coloured by temperature used for visualising the interaction
between the exhaust plume and the rotor downwash around the MRH-90 in hover outside
of ground effect... 103

Figure 6.2: Predicted MRH-90 fuselage temperature in hover with different prevailing
relative wind angles. .. 103

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED

List of Tables

Table 3.1: List of standard OpenFOAM flow solvers that are applicable to the IRSA
Group ... 22

Table 4.1: Brief description of the files in a standard OpenFOAM case 44

Table 4.2: Specifying writeData control in the controlDict File .. 46

Table 4.3: Mapping of ANSYS Fluent boundary conditions to standard OpenFOAM
numerical type boundary conditions .. 62

Table 4.4: Mapping of ANSYS Fluent discretisation schemes to standard OpenFOAM
discretisation schemes – excluding Laplacian schemes.. 70

Table 4.5: Surface normal gradient discretisation schemes for specifying Laplacian
schemes in OpenFOAM... 74

Table 4.6: Recommended second order accurate discretisation scheme set up for use with
the rhoSimpleFoam solver .. 75

Table 4.7: Recommended linear Solver Set Up for Use with the rhoSimpleSourceFoam
Solver.. 78

Table 5.1: Calculated rotor thrust and moments... 88

Table 5.2: Rotor trim parameters for the GIT validation case ... 98

Table A.1: Summary of all source files in the rotorDiskSource code 106

Table B.1: Summary of a sample rhoSimpleSourceFoam case configuration files........... 166

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED

Glossary

ADF Australian Defence Force

ADO Australian Defence Organisation

AOA Angle-Of-Attack

AOD Air Operation Division

AVD Air Vehicles Division

BET Blade Element Theory

C++ Object-Oriented Programming Language

CFD Computational Fluid Dynamics

CPU Central Processing Unit

DSTO Defence Science and Technology Organisation

FV Finite Volume

FVM FV Method

GIT Georgia Institute of Technology

GUI Graphical User Interface

HPC High Performance Computer

IO Input/Output

IR Infra Red

IRSA Infrared Signatures and Aerothermodynamics

LDV Laser Doppler Velocimetry

LRF Local Rotor Frame of reference

NVD Normalised Variation Diminishing

OpenCFD Trademark holder of OpenFOAM CFD Code

OpenFOAM Open Field Operation And Manipulation

PBS Portable Batch System

PDE Partial Differential Equation

PISO Pressure Implicit with Splitting of Operators

RANS Reynolds Averaged Navier Stokes Equation

RSP Rotor Shaft Plane

RWO Rotary Wing Operations

SIMPLE Semi-Implicit Method for Pressure Linked Equations

TPP Rotor Tip Path Plane

TVD Total Variation Diminishing

URF Under Relaxation Factor

VBM Virtual Blade Element Method

VTK Visualisation Tool Kit file format

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED

Notation

 rotor blade angular velocity (rad/s)

 zr ,, stationary cylindrical coordinate system local to the rotor plane
for zero RSP pitch-bank angles

 zyx ,, global Cartesian coordinate system

r
radial position vector along the blade span

 rotor azimuth angle

LRFr unit radial vector in the LRF rotating cylindrical frame of
reference

LRF unit vector tangential to the instantaneous blade path in the LRF
rotating cylindrical frame of reference

LRFz unit vector normal to the instantaneous blade path in the LRF
rotating cylindrical frame of reference

RSPr unit radial vector in the RSP rotating cylindrical frame of
reference

RSP unit vector tangential to the line of constant radius in the RSP
rotating cylindrical frame of reference

RSPz unit vector normal to the RSP rotating cylindrical frame of
reference

 rotor disk solidity ratio

bN number of blade on the rotor

J rotor advance ratio

R rotor disk radius (m)

g blade geometric angle-of-attack (deg)

collective blade collective angle-of-attack (deg)

 sincos BA blade longitudinal and lateral cyclic pitch angles (deg)

 total blade flapping angle (deg)

0 blade coning angle (deg)

 sincos 11 sc first harmonic components of the blade longitudinal and lateral
flapping angles (deg)

i induced angle-of-attack (deg)

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED

e blade effective angle-of-attack (deg)

LRFi induced angle-of-attack in the rotor LRF rotating cylindrical
frame of reference (deg)

LRFe
blade effective angle-of-attack in the rotor LRF rotating
cylindrical frame of reference (deg)

 blade twist angle (deg)

 zyx vvv ,, velocity components (m/s) in the stationary global Cartesian
frame of reference

RSPRSPRSP zyx vvv ,, velocity components (m/s) in the RSP stationary Cartesian frame

of reference

LRFLRFLRF zr vvv ,, velocity components (m/s) in the LRF rotating cylindrical frame

of reference following the blade path

LRF
v '

total relative fluid velocity component with respect to the blade
tangential velocity (m/s) in the direction parallel to the blade
motion in the LRF rotating cylindrical frame of reference

lf sectional blade force (N) in the direction perpendicular to the
blade chord, obtained using the 2D Lifting Line theory

df sectional blade force (N) in the direction parallel to the blade
chord, obtained using the 2D Lifting Line theory

LRFzf sectional blade force (N) in the direction normal to the blade path
in the LRF rotating cylindrical frame of reference

LRF
f sectional blade force (N) in the direction tangential to the blade

path in the LRF rotating cylindrical frame of reference

LRFLRFLRF zr FFF ,, time-averaged blade force components (N) in the LRF rotating

cylindrical frame of reference

RSPRSPRSP zr FFF ,, time-averaged blade force components (N) in the RSP rotating

cylindrical frame of reference

RSPRSPRSP zyx FFF ,, time-averaged blade force components (N) in the RSP stationary

Cartesian frame of reference

 zyx FFF ,, time-averaged blade force components (N) in the stationary
global Cartesian frame of reference

lC blade 2D lift coefficient

dC blade 2D drag coefficient

localU magnitude of local velocity vector relative to each blade element,
neglecting the velocity component in the radial direction (m/s)

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED

T total rotor thrust (N) in the global Cartesian frame of reference

Q total rotor torque (N) in the global Cartesian frame of reference

uS volumetric momentum source in vector form in the global
Cartesian frame of reference (force per unit computational cell
volume)

TC rotor disk coefficient of thrust

MxC rotor disk coefficient of pitching moment

MyC rotor disk coefficient of rolling moment

k turbulent kinetic energy 22 sm

 turbulent dissipation rate 32 sm

turbI turbulent intensity (%)

t flow time s

 fluid density 3mkg

 fluid molecular viscosity smkg .

t turbulent viscosity smkg .

p pressure pa

u
velocity vector sm /

U freestream velocity

p a reference static pressure based on the freestream condition

C a coefficient in the k turbulence models

HD equivalent hydraulic diameter used for evaluating the turbulence
length scale in a wall bounded channel

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
1

1. Introduction

The Infrared Signatures and Aerothermodynamics (IRSA) group within DSTO is tasked
with providing measurement-validated infrared (IR) signature models of air vehicles to
the Australian Defence Force (ADF).

An important element of the IR signature modelling is the ability to model the transport of
the hot exhaust plume around a helicopter under the influence of the rotor downwash.
The transport of the hot exhaust plume around the helicopter fuselage may have an
important fuselage heating effect due to the impingement of the hot plume on the
fuselage. This needs to be modelled correctly to produce an accurate temperature
distribution on the engine nacelles, fuselage, rotor blades, and tail boom. An accurate
temperature distribution on the fuselage, nacelles and exhaust plume is a critical input for
generating an accurate IR signature prediction for the entire platform.

The transport of the hot exhaust plume around a helicopter is dependant on several
different factors, such as: the freestream flow; the turbulent air-wake due to the interaction
between the freestream flow and the fuselage; as well as the rotor downwash flow. It is
therefore critical that the Computational Fluid Dynamics (CFD) modelling tools used for
predicting both the flow and temperature fields are able to accurately model the
interaction between each of the different flow features before the heat transfer rates and
the temperature distribution on the fuselage can be accurately predicted.

ANSYS Fluent CFD software has been used within the group for simulating the flow
around a helicopter. The flow through the rotor plane is modelled in ANSYS Fluent using
an additional add-on code called “Virtual Blade Element Model” (VBM) which is available
by request from ANSYS distributor1. Furthermore, at Reference 1 DSTO developed in-
house a separate VBM code, as an add-on to ANSYS Fluent based on Reference 2.

Since early 2010, IRSA has been evaluating another CFD code, OpenFOAM, which is an
open source code and is made available to the public for free (Reference 3), to complement
the use of ANSYS Fluent. Unlike ANSYS Fluent, OpenFOAM avoids licensing costs and
thus offers the potential to run high fidelity simulations using a large High Performance
Computing (HPC) cluster at a significantly lower cost than that required by ANSYS.
However, several gaps in the OpenFOAM2 capabilities for performing the CFD
simulation, as typically required for simulating the flow around the helicopter, have been
identified. Most notable is the lack of a VBM to model the flow induced by a helicopter
rotor. Consequently, a task was raised to develop the VBM capability using the
OpenFOAM code. This development task was jointly carried out with OpenCFD Ltd.3 in
the United Kingdom, which is the original producer of the OpenFOAM code. It should be
noted that a significant portion of the model development is based on the work presented

1 LEAP, Pty. Ltd. is the sole distributor for ANSYS Fluent in Australia.
2 OpenFOAM Version 1.7.x
3 OpenCFD, Ltd. is now wholly owned by ESI, Ltd..

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
2

at References 1, 2 and 4. This report provides a detailed mathematical description of the
VBM, its implementation in the OpenFOAM environment, and the model validation
against available experimental data.

This report is divided into six sections. A thorough description of the mathematical model
employed in the VBM is presented at Section 2. The model implementation using the C++
programming language and the OpenFOAM library, including an overview of the code
structure is discussed in Section 3. Section 4 describes the procedure for setting up a
simulation case with the VBM in OpenFOAM. Sections 5 reports on the code validation
and verification results using available experimental data. Finally, the conclusions and
recommendations arising from this development task are discussed in Section 6.

Following this development effort, a CFD simulation of the flow around the MRH-90 in
hover and its effect on fuselage heating was carried out. This work is presented at
Reference 5, and was considered to be a suitable test case for evaluating the OpenFOAM
accuracy in performing the complex-geometry complex-flow CFD simulations typically
required by IRSA.

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
3

2. Physical Model and Assumptions

2.1 Overview of Rotor Blade Modelling Techniques in CFD

The airflow induced by the moving blades in a helicopter rotor is generally unsteady and
consists of complex flow features. As the blade moves through the air, tip vortices are
generated on the blade tip, which will interact with the air induced through the rotor
plane along the rotor axis. This interaction typically produces a very complex
three-dimensional unsteady swirling air-wake with cascading tip vortices at the boundary
of the rotor downwash. The downwash flow pattern may also vary depending on the ratio
of the rotor blade linear speed and the helicopter forward speed (known as the “advance
ratio”).

Several techniques exist for modelling the flow through a helicopter rotor using CFD.
These techniques vary in terms of the model complexity and the associated computational
cost. The selected model must consider the objective of the simulation ranging from
determining detailed blade characteristics (e.g. blade stall behaviour or accurate prediction
of rotor lift and drag), to cases where only the time-averaged cumulative effects of the
rotating blades on the rotor air-wake and its interaction with the fuselage is considered
important. The latter scenario is deemed to be appropriate for predicting the transport of
the hot exhaust plume and its impingement on the fuselage skin for the purpose of IR-
signature prediction.

The most common technique used in CFD for computing the time-averaged flow-field is
the Reynolds-Averaged Navier-Stokes (RANS) simulation. In the RANS simulation, the
fluctuating velocity field is removed from the system of equations. Turbulence is modelled
by introducing a modelling quantity called “turbulence viscosity” to model the increase in
the stress in the flow due to turbulence.

When using the RANS simulation the time-averaged effect of the rotor blade moving
through the air can be modelled as time-averaged momentum sources introduced in the
cell region swept by the rotor blades. This region is modelled as a disk with a finite
thickness made up of a collection of computational cells. The rotor disk orientation
corresponds to the orientation of the Rotor Shaft Plane (RSP), and the disk radius
corresponds to the actual blade radius.

In this simplified rotor model, there is no need to physically model the individual rotor
blades in the domain. Consequently, the mesh does not need to be regenerated or
“moved” as the blade moves through the air. Therefore, the resulting computational mesh
has a substantially lower cell count when compared to modelling the entire blade
geometry, which also significantly reduces the mesh generation time.

Two variants of the simplified rotor model exist. The pressure disk rotor model
approximates a helicopter rotor or propeller in a time averaged manner using inflow and
outflow boundary conditions at the disk’s circular surfaces (which are the top and bottom
surfaces of the cylinder). This yields a pressure jump across the disk varying with radius

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
4

and azimuth. Such model is known as the “Fan” boundary condition. Alternatively, Zori
et al (Reference 4) developed a more accurate technique that replaces the rotor system with
momentum sources placed in the rotor disk region, yielding indirectly a pressure jump
across the disk which varies with the disk radial and azimuthal coordinates. Using this
technique, the momentum sources are calculated using the well-known Blade Element
Theory (BET) which approximates the blade forces at each point in the rotor disk region by
using an airfoil lookup table that provides the two-dimensional (2D) lift and drag
coefficients for the blade airfoil considered. The latter rotor modelling technique is known
as VBM, which is the model adopted for the current development task.

The VBM model only allows for accurate aerodynamic predictions when no flow
separation occurs on the actual blade for a particular helicopter control input and flight
condition. This limitation is largely imposed by the use of 2D lifting line and drag line
curves for calculating the blade forces in the rotor disk region. Furthermore, for modelling
helicopter rotor in flight, the VBM requires the user to know a priori the correct orientation
of the rotor TPP for a particular blade collective and cyclic pitch trim, and flight condition.
The orientation of the RSP must correspond to the orientation of the rotor disk in the CFD
mesh. Note that the rotor disk pitch and bank angles are calculated from the mesh, while
the TPP is constructed during runtime using the blade flap angle as the blades rotate.
Therefore, the origin and angle of the TPP are different from the origin and angle of the
RSP as defined by the mesh. This will be discussed further in Section 2.3.

The rotor blade flap angle profile for a particular helicopter type and flight condition can
typically be obtained using various flight dynamics modelling software, such as FlightLab
(Reference 6). The Rotary Wing Operation (RWO) group within the Air Operation Division
(AOD) maintains a collection of validated FlightLab models for a range of ADO helicopter
types.

2.2 Overview of Rotor Aerodynamics

A brief overview of the rotor aerodynamics will be discussed in this section prior to the
description of the VBM. This overview will lay the necessary foundation including the
conventions used in the implementation of the BET in a RANS algorithm.

2.2.1 Brief Description of a Helicopter Rotor

A schematic of the blade in the rotor plane system is shown in Figure 2.1. It is conventional
to assume that the rotor rotation direction is counter-clockwise (viewed from above). Thus,
this direction of rotation in the model is assumed to have a positive angular velocity, .

In forward flight, and assuming a positive angular velocity, the right side of the rotor disk
is termed the advancing side, while the left side is termed the retreating side. The two
terms are due to the difference in the relative velocity experienced by the blade when the
helicopter flies forward.

A cylindrical coordinate system is used to describe any arbitrary position inside the rotor
disk model which represents the RSP. This coordinate system has the origin located at the

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
5

disk centre. The variables r and refer to the radial and azimuthal position of the blade,
which are also used for the polar coordinates on the rotor disk. The RSP coordinate system
will be further transformed using the flap angle into the Local Rotor Frame of reference
(LRF) which follows the motion of the blade path. This transformation will be further
discussed in Section 2.3.2.

Figure 2.1: Rotor disk schematic showing definition of and r

Another important scaling factor is the rotor disk solidity, . The solidity is the ratio of the
total blade area to the total disk area. For a non-tapered (constant chord) blade, the solidity
is given by:

R

cNb

 [Equation 2.1]

In forward flight, the forward velocity of the aircraft is commonly described in terms of
“advance ratio”. Advance ratio, J, is the ratio of the blade tip linear velocity to the aircraft
forward velocity, V .

R

V
J

 [Equation 2.2]

180

270

advancing side
90

0

retreating side

forward velocity, V
r

Rotor disk

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
6

2.2.2 Blade Geometry

A helicopter blade was traditionally made of a symmetric airfoil (Reference 7). However,
many modern helicopters now incorporate non-symmetrical high-lift airfoil shapes. The
lift on a blade section is produced by increasing the effective Angle-Of-Attack (AOA) of
the blade relative to the blade motion and local fluid velocity angle. The blade AOA is
determined by the collective pitch input and the cyclic pitch input from the helicopter
control sticks. The collective pitch applies a constant AOA to the blade independent of its
azimuthal position in the rotor disk plane, while the cyclic pitch applies a harmonically
varying AOA on the blade depending on its azimuthal position. The superposition of the
two pitch inputs can be described by the following equation:

 sincos BAcollectiveg [Equation 2.3]

where g is the geometric angle of attack, collective is the collective pitch angle, A and

B are the blade cosine and sine pitch angles.

Furthermore, the rotor blade is normally twisted along its length. The model will allow for
a linear twist to be accounted for in the calculation. Compounding the blade twist angle on
the collective pitch and cyclic pitch angles will yield the following blade geometric AOA:

 rBAcollectiveg sincos [Equation 2.4]

2.2.3 Rotor Coning and Flapping

Figure 2.2 shows a schematic of the blade motion. The basic motion of the blade is
essentially rigid body rotation about the rotor hub. However, most rotor blades must be
allowed to flap vertically as they rotate for stability reasons (Reference 7). The flapping
motion (shown in Figure 2.2 as the direction) is largely due to the asymmetric velocity
distribution on the rotor plane as the blade travels from the advancing side of the rotor to
the retreating side when the helicopter is moving forward. Furthermore, most modern
helicopter rotors also allow the blade to rotate in the direction of the disk plane. This
motion is called blade “lead-lag” (shown in Figure 2.2 as the direction) and has been
neglected in the development of the current model.

The asymmetric velocity distribution on the rotor plane in forward flight causes
asymmetry of lift (Reference 7). During hover, the lift is uniform across the entire rotor
disk. However, in forward flight, as the helicopter gains airspeed, the advancing blade
develops greater lift than the retreating blade because of the increased relative airspeed.
This asymmetry of lift is compensated for by allowing the blade to flap. The increased
relative airspeed (and corresponding lift increase) on the advancing blade causes the blade
to flap upward. On the other hand, decreasing speed and lift on the retreating blade causes
it to flap downward. This flapping process alters the effective angle of attack of the blade
as each blade rotates, and further causes the upward-flapping, advancing blade to produce
less lift, and the downward-flapping, retreating blade to produce a corresponding lift
increase. The result is a balanced lift distribution across the disk.

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
7

Rotor blades on helicopters flap in response to the centrifugal and aerodynamic forces they
experience. The flapping and coning motion of the blade could not be physically modelled
in the VBM as such a model would require the solution to the blade equation of motion,
taking into account the structural stiffness and response of the blade to the aerodynamic
forces. However, if the blade flapping and coning motion is known a-priori, the model can
account for the coning and the first harmonics by transforming the velocity components
from the RSP to the LRF (see Figure 2.3).

In the current model development, flapping is defined to be positive for upward motion of
the blade.

Figure 2.2: Blade motion schematic at an arbitrary azimuthal position, , on the rotor disk

The blade flap harmonic modes can be decomposed into longitudinal flapping and lateral
flapping. Thus, assuming that the blade is rigid along its span, the blade flap angle, ,
must be expressed as a Fourier series:

 ...2sin2cossincos 22110 scsc [Equation 2.5]

The first term in Equation 2.5 is termed the blade coning angle. Only the first sine and
cosine terms in the equation are considered in the current model. Furthermore, the
flapping velocity t / , which typically contributes to the velocity normal to the blade
path, has been neglected.

Figure 2.3 shows a sketch of the blade in flapping and coning planes and the definition of
the rotor TPP and RSP. Note that while the rotor disk in the mesh represents the RSP, the
rotor disk region modelled in the VBM corresponds to the LRF, not the RSP. The LRF is a
moving frame of reference that follows the blade path as it flaps and cones.

g

Rotor shaft

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
8

Figure 2.3: A schematic of the RSP, LRF and TPP on a flapping and coning blade

2.3 Model Description

2.3.1 The Virtual Blade Model

The numerical model used for predicting the momentum sources in the rotor disk region
adopted in this report was first introduced by Rajagopalan et al. (References 8 and 9). Since
then, several studies have been carried out to investigate the validity of this model in a
simplified environment where accurate experimental data can be taken. These studies
(available at References 4 and 10) have shown that well-known, qualitative features of the
rotor wake are well approximated by this model. Furthermore, these references also show
that the numerically predicted flow-field and the experimentally measured flow-field data
are quantitatively in good agreement.

At References 2 and 11, the numerical algorithm introduced by Zori et al. (Reference 4)
was implemented in the Fluent environment. Furthermore, at Reference 1 DSTO
independently developed an in-house implementation of the VBM in Fluent. The model
implemented in OpenFOAM follows closely the numerical algorithm presented at
References 1, 2 and 4.

The model implementation in Reference 11 addresses several shortcomings of the previous
model at Reference 4. The most notable shortcoming is that accurate aerodynamic
predictions are only possible if the rotors operate at desired thrust and zero moment about
the hub. This is attained by perturbing the collective (thrust) and the cyclic (moments)
blade pitch angles (a procedure performed by trim routines embedded in the VBM model)
until the desired rotor thrust and moments are achieved during the simulation. The
numerical trim routine implemented in the OpenFOAM VBM model utilises a Newton-
Raphson iterative method to account for the non-linear relation between blade pitch and
rotor performance.

As previously discussed in Section 2.1, the VBM model approximates the time-averaged
effect of the rotor blades in the flow-field by explicitly introducing momentum sources

180
0

TPP

RSP

c10

x

z

LRFzLRFz

RSPz

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
9

inside the disk volume swept by the spinning rotor. This volume is referred to as the rotor
disk region. The procedure used to calculate the momentum sources can be summarised as
follows:

1. The flow-field around the rotor disk region is solved.

2. The blade forces on each point in the rotor disk region are calculated using: the local
fluid velocity; the modelled blade geometric angles; the blade 2D lifting line; and the
blade 2D drag curve.

3. The momentum sources imparted by the blade onto the fluid are approximated using
the calculated blade forces at each point in the rotor disk region.

4. Check convergence and return to step 1, if necessary.

2.3.2 Frame of Reference Transformations

The following frame of reference transformations are applied to transform the local
velocity vector acting on each blade element from the global stationary Cartesian frame to
a rotating frame of reference that follows the blade path (termed the LRF):

1. The Global Cartesian Frame of Reference. The Navier-Stokes Equations are solved in
the global Cartesian frame of reference during the simulation. This frame of reference
are defined by the three orthogonal base vectors, x ,y and z. The three components of
the velocity vector of the fluid in this frame of reference are denoted as xv , yv and zv .

2. The RSP Stationary Cartesian Frame of Reference. To account for the RSP pitch and
bank angle, the local velocity vector acting one each blade element is transformed from
the global Cartesian frame to the RSP Cartesian frame using the following equation:

z

y

x

z

y

x

v

v

v

v

v

v

RSP

RSP

RSP

cossin0

sincos0

001

cos0sin

010

sin0cos

 [Equation 2.6]

where the RSP pitch angle, , and bank angle, , are calculated using the RSP normal

vector, RSPz with respect to the global z direction (i.e. 0 and 0 for a non tilted

rotor disk).

3. The RSP Rotating Cylindrical Frame of Reference. The local velocity vector in the
RSP stationary Cartesian frame is transformed into the RSP rotating cylindrical frame
using the following equation:

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
10

RSP

RSP

RSP

RSP

RSP

RSP

z

y

x

z

r

v

v

v

v

v

v

100

0cossin

0sincos

 [Equation 2.7]

where the angle is the rotor azimuth angle in the stationary RSP cylindrical frame of
reference, and is related to the stationary RSP Cartesian system as follows:

 22 yxrRSP and

x

y
RSP

1tan [Equation 2.8]

The x and y coordinates used in Equation 2.8 are Cartesian coordinates in the stationary
RSP frame of reference.

4. The LRF Rotating Cylindrical Frame of Reference. The local velocity vector in the
RSP rotating cylindrical frame is transformed into the LRF rotating cylindrical frame
using the following equation:

RSP

RSP

RSP

LRF

LRF

LRF

z

r

z

r

v

v

v

v

v

v

cos0sin

010

sin0cos

 [Equation 2.9]

where the angle is the compounded flapping and coning angle previously given by
Equation 2.5. Note that this frame of reference is rotating with the blade and following
the blade flapping and coning motion.

Figure 2.4 shows a schematic of the RSP stationary cylindrical frame of reference and the
LRF rotating cylindrical frame of reference.

Figure 2.4: Schematic of the blade element in the RSP stationary cylindrical frame of reference and

the LRF rotating cylindrical frame of reference

180

270

constant radius line

90

0

a blade element

RSPz

RSPr

LRFz
LRF

LRFr

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
11

2.3.3 Blade Forces Calculation

A schematic of the blade element representation in the LRF rotating cylindrical frame of
reference is shown at Figure 2.5. It is important to note that the coordinate system shown
in this figure is already in the LRF rotating cylindrical frame of reference.

The blade element area is given by:

).(rrA [Equation 2.10]

Since the blade is not physically modelled in the VBM, each cell in the rotor disk region is
assumed to represent a blade element. However, it is important to note that the
computational cells in the disk mesh are in the RSP frame of reference, NOT in the LRF
frame of reference.

Each cell in the rotor disk region can be described by the radial position vector relative to

the disk origin, r (x,y,z) and the rotor azimuth angle, . As previously discussed in

Section 2.3.2(3), the vector r and azimuth angle are approximated using the Cartesian
coordinates of each cell relative to the rotor disk centre in the mesh in the stationary RSP

frame of reference. The same vector r and azimuth angle have been used for the
calculation of the force acting on each cell in the LRF frame of reference. Therefore, it is
expected that some errors are introduced in the calculation due to this approximation.
However, this error was deemed acceptably small when the RSP pitch and bank angles are
small (typically less than five degrees), and when the compounded blade flap and cone
angles are also small (typically less than five degrees).

Figure 2.5: Blade element

A schematic of the drag and lift forces acting on the blade element at any arbitrary
coordinate in the LRF is shown in Figure 2.6.

0

90

a blade element

LRFr

LRF

LRFr

LRF
LRFLRFr .

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
12

Figure 2.6: Schematic of the forces acting on the blade element in the LRF

LRFi is the induced AOA in the LRF, which is given by:

LRF

LRF

LRF v

vz
i

'

tan 1
 [Equation 2.11]

where
LRFzv was previously calculated using Equation 2.9.

LRF
v ' is the total relative fluid

velocity with respect to the blade tangential velocity, and is given by:

 LRFrvv
LRFLRF

 ' [Equation 2.12]

where the first term in Equation 2.12 refers to the local fluid velocity in the direction
parallel to the blade path as previously given in Equation 2.9, and the second term refers
to the blade linear velocity component in the direction parallel to the blade path. The
velocity component acting on the blade element in the direction orthogonal to the blade
path,

LRFzv is previously given by Equation 2.9.

To estimate the forces acting on fluid particles, consider the forces acting on the two-
dimensional blade section shown in Figure 2.6. Note that the positive rotation of the airfoil
is in the positive z-direction. Components of the blade force acting in the normal and
tangential direction to the blade chord are given by the following equations:

LRFLRFLRF idilz fff sincos [Equation 2.13]

LRFLRFLRF idil fff cossin [Equation 2.14]

zero lift axis

lift,

drag,

lf

df

LRFzf

LRF
f

LRFi

LRFi
LRFe

LRFi

LRFg

LRFv' LRFzv

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
13

2.3.4 Blade Section Lift and Drag

The blade sectional lift, lf , and sectional drag, df , on each blade element (seen in

Equations 2.13 and 2.14) are calculated based on the effective AOA seen by the blade
element and the airfoil lift and drag coefficients. From Figure 2.6, the effective AOA seen
by each blade element (

LRFe) is given by:

LRFLRFLRF ige [Equation 2.15]

Using the effective AOA, the sectional lift and drag coefficients can be obtained as a
function of AOA using a predefined lookup table. The lookup tables are user inputs which
can be obtained using the two-dimensional lifting line theory for a given blade airfoil
shape.

It is important to note that this model neglects any compressibility effect due to the
moving blade. The blade lift coefficient is assumed to be directly proportional to the

effective AOA, i.e.
LRFelC .

The sectional forces acting on the blade are given by:

 llocall cCUf 2

2

1 [Equation 2.16]

 dlocald cCUf 2

2

1 [Equation 2.17]

where:
 c is the chord length at the location of the blade element,
 lC and dC are the sectional lift and drag coefficient respectively, and

 localU is the local induced fluid velocity experienced by the blade element.

The local velocity is given by the following expression for each blade element:

 22 '
LRFLRF

vvU zlocal [Equation 2.18]

The radial fluid velocity component in the rotor disk region has not been included in

Equation 2.18 in accordance to the BET assumption.
LRFzv and

LRF
v ' were previously

calculated using Equation 2.9 and Equation 2.12 respectively.

The blade sectional lift and drag in Equations 2.16 and 2.17 can subsequently be
substituted into Equations 2.13 and 2.14 to obtain the rotor thrust and torque forces which
are the forces normal and parallel to the rotor disk plane respectively.

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
14

Finally the elemental thrust, torque, and power on each blade element can be calculated
using:

 drfNdT
LRFzb [Equation 2.19]

 rdrfNdQ
LRFb [Equation 2.20]

 rdrfNdQdP
LRFb . [Equation 2.21]

where bN is the number of blades in the rotor disk. The total forces on the rotor disk are

obtained by integrating over the blade span from root to tip. The root cutout can be
modelled as a “hole” in the centre of the disk.

2.3.5 Blade Tip Effect

As previously discussed, at each spanwise location of the blade (which is equal to the
radial direction of the rotor disk) local lift and drag forces are computed assuming two-
dimensional flow. This assumption is violated in close proximity to the blade tip due to
the presence of increasingly strong secondary flow around this area.

To account for the loss of blade lift near the tip, a simple correction factor was applied to
the force calculations in the region near the edge of the rotor disk. In the corrected model,
the blade lift is assumed to be zero for blade elements that are located outward of a certain
user-selected threshold value. This threshold is in the form of a radial distance from the
rotor disk origin, normalised by the rotor disk radius. For example, a value of 0.96 means
that from a normalized span of 0.96 outward, the lift forces are set to zero while the drag
forces are still accounted for (using the two-dimensional assumption). Hence, using this
example, the last four per cent of the blade span produces no lift (just recirculation around
the blade) while it still produces drag. A tip loss factor of 0.96 is typical for a helicopter
rotor (Reference 12).

2.3.6 Momentum Sources

Figure 2.7 shows a typical structured mesh used for CFD modelling of a rotor disk using
the VBM. The rotor disk is represented in the CFD model by a collection of cells (in this
case of hexahedral form). In the VBM, momentum sources that represent the effect of the
blade forces on the fluid flow are introduced in each of the computational cells in the rotor
disk region.

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
15

Figure 2.7: Typical structured mesh used to model the rotor disk using the VBM

The method for calculating the blade forces on each blade element represented by each of
the cells in Figure 2.7 has been outlined in Sections 2.3.1 through 2.3.5. It is important to
note that there is no direct relationship between the blade element and the computational
cell in the mesh. However, the method used to calculate the forces acting on the blade
element can be applied to calculate the equivalent blade forces at each computational cell
in the rotor disk.

In this section, the method for converting the calculated instantaneous blade forces into
the time-averaged momentum sources will be described.

The forces acting on each cell in the LRF are given by Equations 2.13 and 2.14. However,
these calculated forces are instantaneous forces experienced by the cell as the blade is
traversing through air. In a time-averaged simulation, such as steady RANS, the time-
averaged force experienced by each cell in the rotor disk region is only a fraction of these
instantaneous forces. Therefore, assuming a constant rotational speed of the rotor, time-
averaging over one period is identical to geometric averaging over an angle of 2 . Thus,
the time-averaged forces experienced by each cell can be obtained by scaling the
instantaneous forces (Equations 2.13 and 2.14) by a scaling factor of:

r

r
rNS b

2

 [Equation 2.22]

where the ratio
r

r

2

 is the ratio of the arc length of a blade element to the circumference

of the rotor disk, and bN is the number of blades in the rotor disk.

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
16

Applying the scaling factor in Equation 2.22 to the instantaneous forces given by
Equations 2.13 and 2.14 yields the resultant time-averaged forces acting on each cell as:

r

rr
NfSfF bzzz LRFLRFLRF

2

.
. [Equation 2.23]

r

rr
NfSfF bLRFLRFLRF

 2

.
. [Equation 2.24]

For a structured mesh in the rotor disk, the term rr. is equivalent to the blade element
area A (refer to Equation 2.10). This assumption is only valid if the cell is of the form of a
hexahedra, where the sides are parallel to the radial lines and the other two sides are lying
on concentric circles. Therefore, the mean forces acting on each cell can be calculated as
follows:

cell

cell

cellz
b

cellz
r

A
f

N
F

LRFLRF

2

 [Equation 2.25]

cell

cell

cell

b

cell r

A
f

N
F

LRFLRF

 2

 [Equation 2.26]

This implementation limits the cell type that can be used for meshing the rotor disk region
in the CFD model to only structured hexahedral cells.

The forces on each cell given by Equations 2.25 and 2.26 are forces in the LRF rotating
cylindrical frame of reference. Therefore, these forces need to be transformed back into the
RSP rotating cylindrical frame of reference using the following operation:

LRF

LRF

LRF

RSP

RSP

RSP

z

r

z

r

F

F

F

F

F

F

cos0sin

010

sin0cos

 [Equation 2.27]

Following this transformation, the forces in the rotor RSP rotating cylindrical frame of
reference need to be transformed into the RSP stationary Cartesian frame of reference
using the following equation:

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
17

RSP

RSP

RSP

RSP

RSP

RSP

z

r

z

y

x

F

F

F

F

F

F

100

0cossin

0sincos

 [Equation 2.28]

The calculated forces in the RSP stationary Cartesian frame of reference can finally be
transformed to the global Cartesian frame using the rotor disk pitch and bank angles as
follows:

RSP

RSP

RSP

z

y

x

z

y

x

F

F

F

F

F

F

cossin0

sincos0

001

cos0sin

010

sin0cos

 [Equation 2.29]

Finally, the rotor forces in the global Cartesian frame can be converted into volumetric
momentum sources on every cell in the rotor disk region by dividing the cell forces by the
cell volume as follows:

 cell
cell

cellU F
V

S
1

 [Equation 2.30]

where cellF is the force vector in the global Cartesian frame at every cell in the rotor disk

region as given by Equation 2.29, and cellV is the cell volume.

2.3.7 Rotor Trim Model

According to Reference 4, accurate aerodynamic predictions are only possible if the rotors
are operating at the correct thrust level. This means that a trimming computation is
needed during the CFD simulation if the blade parameters necessary to achieve the correct
thrust level are not known a priori. Furthermore, during a steady hover or level flight, the
rotor moments are generally zero; hence, this must be accurately represented by the VBM
during the simulation.

At any arbitrary flight mode, the total thrust and rotor pitching and rolling moments
acting on the rotor disk can be calculated by integrating the cell forces across the entire
rotor disk region as follows:

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
18

nCell

i
iRSPiii

nCell

i
iRSPiii

nCell

i
RSPi

roll

pitch

thrust

yrF

xrF

zF

M

M

F

1

1

1

.

.

.

 [Equation 2.31]

The effect of flapping hinge offset is neglected from the moment calculations, shown in
Equation 2.31. Since the relationship between the rotor aerodynamic parameters and the
blade pitch is non-linear, an iterative technique is needed to obtain a converged trim
result. In such a method, the collective and cyclic pitch angles are iteratively perturbed in
the simulation in order to achieve the desired thrust coefficient, and eliminate the
moments around the hub. The updates to the blade angles, which are treated as a control
input at each trim iteration, can be obtained using a Newton-Raphson method applied to a
linearised system of coupled equations relating the rotor response (i.e. the rotor thrust and
moments) to the control vector.

Let the control input vector be denoted by x , and the rotor response vector be denoted by

y , as follows:

B

Ax
collective

, and

roll

pitch

thrust

M

M

F

y

A first order Taylor expansion for the rotor response about x can then be written as:

 ... xJxyxxy [Equation 2.32]

where xxy is the rotor response vector due to the new control input vector xx .

Equation 2.32 can then be re-arranged into:

 xyxxyxJ [Equation 2.33]

The tensor J is the Jacobian of the dependant quantities (response variables in terms of
the control input (i.e. thrust, pitching and rolling moments), and is given by the following
tensor:

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
19

B

M

A

MM
B

M

A

MM
B

F

A

FF

rollroll

collective

roll

pitchpitch

collective

pitch

thrustthrust

collective

thrust

 [Equation 2.34]

Each term in the Jacobian tensor can be discretised using first order Taylor expansion for
solving with the Newton-Raphson method. For example, the Jacobian for the thrust can be
discretised into:

22

 initthrustinitthrustthrust FFF
 [Equation 2.35]

Equation 2.35 is solved for an initial guess value of BAcollective ,, . Following the initial

solution a perturbed solution is obtained from the small perturbation angle of 2 .
The iterations stop and an estimate for the changes to the perturbed angles

BAcollective ,, is obtained in the form of:

)1()0(

)0(

)0(

.

roll

pitch

thrustcollective

rollroll

collective

roll

pitchpitch

collective

pitch

thrustthrust

collective

thrust

roll

pitch

thrust

M

M

F

B

A

B

M

A

MM
B

M

A

MM
B

F

A

FF

M

M

F

 [Equation 2.36]

Note that for this method to work the Jacobian must be constructed from a frozen flow-
field and perturbing the pitch angles independently. With the new as the initial guess,
the above iterative procedure continues until the target thrust and moments are achieved,
and the flow-field is converged.

2.3.8 Dimensionless Parameters

It is sometimes convenient to specify the target thrust and moments acting on the rotor
disk by using a set of dimensionless parameters. The following dimensionless parameters
are commonly used to describe the rotor performance:

Coefficient of Thrust:
 2diskdisk

thrust
T

RA

F
C

 [Equation 2.37]

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
20

Coefficient of Pitching Moment:
 diskdiskdisk

pitch
Mx

RRA

M
C

2
 [Equation 2.38]

Coefficient of Rolling Moment:
 diskdiskdisk

roll
My

RRA

M
C 2

 [Equation 2.39]

In the current implementation, the rotor trim model utilises the total rotor thrust and
moment values as the desired trim target. However, the dimensionless parameters are
commonly used for specifying the desired rotor performance. Therefore, the target forces
and moments must be calculated from the dimensionless parameters using Equations 2.37
through 2.39.

2.3.9 Summary

A VBM model for modelling the flow through a simplified rotor disk in a RANS
simulation has been described in detail in this section. This model, which is derived from
the well-known BET, accounts for the time-averaged effect of the motion of the blade in a
rotor disk region embedded inside a larger computational domain used in CFD.

The model introduces volumetric momentum sources in each computational cell that
collectively make up the rotor disk region. The momentum sources are computed based on
the time-averaged blade forces (per unit cell volume) imparted by the blade onto the fluid
as it traverses through the air. The VBM also accounts for the blade flapping and coning.
Furthermore, the blade collective pitch, cyclic pitch, and twist angles are mathematically
modelled in the VBM.

The model description presented in this section will form the basis of its implementation
in OpenFOAM, which will be presented in Section 3.

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
21

3. Model Implementation in OpenFOAM

3.1 Overview

This section describes the specific implementation of the VBM in the OpenFOAM
environment. The description contained in this Section will focus on providing the reader
with an overview of the code structure, as well as the integration of the VBM with the flow
solver in OpenFOAM. A complete copy of the code is provided at Appendix A.

As previously described in Section 2, the VBM essentially introduces momentum sources
in the cells that collectively make up the rotor disk region. Therefore, the description of the
implementation of this model in OpenFOAM will begin by describing how these
additional momentum sources are incorporated into the global fluid momentum equations
that are solved by the RANS solvers. Following this, a detailed explanation of the object-
orientation structure used in the VBM will be presented. A procedure on how to compile
the code in the OpenFOAM environment will be given at the end of this Section.

In order to understand the way in which the OpenFOAM library and solvers work, some
background knowledge of C++, the base language of OpenFOAM, is required. A
description of the C++ language, the object-oriented programming paradigm, and its best
practice are outside the scope of this report. However, the OpenFOAM User Guide
(Reference 13) and Programming Guide (Reference 14) provide a good overview of the
general code structure, the use of object-orientation paradigm in OpenFOAM, and several
base classes and operators used in OpenFOAM.

The description contained in this Section of the report shall assume that the reader has
some familiarity with the C++ object-oriented paradigm, but minimal knowledge of the
OpenFOAM classes and solvers.

3.2 Applicable OpenFOAM Version

OpenFOAM is continuously updated through the use of its online repository at Reference
3. The final version of the code developed in this report was ensured to be fully compatible
with OpenFOAM version 2.1.x (dated 26 June 2012). Consequently, all OpenFOAM code
described in this report refers to the aforementioned version release.

Due to potential changes implemented in the base OpenFOAM code between version
updates, the VBM code delivered in this report may not compile or run with the later
version. However, to an experienced OpenFOAM user, relatively minor changes can be
implemented in the current VBM code to make it compatible with the later releases of
OpenFOAM.

Similarly, the VBM code delivered in this report is not guaranteed to be compatible with
any OpenFOAM versions earlier than the version 2.1.x (dated 26 June 2012).

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
22

3.3 The Flow Solvers

3.3.1 Overview of RANS Solvers in OpenFOAM

The standard OpenFOAM distribution includes a collection of top-level flow solvers.
These flow solvers are the top-most level executable files in OpenFOAM, and are
differentiated based on the flow physics that are being solved. Table 3.1 provides a set of
examples of the variety of OpenFOAM standard solvers that are typically used in the IRSA
group. Note that the standard OpenFOAM distribution includes a larger number of
standard solvers than that shown in Table 3.1.

Table 3.1: List of standard OpenFOAM flow solvers that are applicable to the IRSA Group

Basic' CFD Solver

laplacianFoam
Solves a simple Laplace equation, e.g. for thermal diffusion
in a solid

potentialFoam
Simple potential flow solver which can be used to generate
starting fields for full Navier-Stokes codes

Incompressible Flow Solvers

boundaryFoam
Steady-state solver for incompressible, 1D turbulent flow, typically to
generate boundary layer conditions at an inlet, for use in a simulation

icoFoam
Transient solver for incompressible, laminar flow of Newtonian
fluids

simpleFoam
Steady-state solver for incompressible, turbulent flow based on SIMPLE
algorithm

SRFSimpleFoam
Steady-state solver for incompressible, turbulent flow of non-Newtonian
fluids in a single rotating frame

pisoFoam Transient solver for incompressible flow based on PISO algorithm

Compressible Flow Solvers
rhoSimpleFoam simpleFoam solver for compressible flow

rhoSimplecFoam
Steady-state SIMPLEC solver for laminar or turbulent RANS
flow of compressible fluids

rhoPimpleFoam
Large time-step transient solver for compressible flow using
the PIMPLE (merged PISO-SIMPLE) algorithm

rhoCentralFoam
Density-based compressible flow solver based on central upwind
schemes of Kurganov and Tadmor

Heat Transfer and Buoyancy Driven Flow Solvers

buoyantBaffleSimpleFoam
Steady-state solver for buoyant, turbulent flow of compressible
fluids using thermal baffles

buoyantBoussinesqSimpleFoam
Steady-state solver for buoyant, turbulent flow of incompressible fluids
based on SIMPLE algorithm and Boussinesq approximation

buoyantSimpleFoam
Steady-state solver for buoyant, turbulent flow of compressible fluids
based on SIMPLE algorithm

Combustion

rhoReactingFoam
Solver for combustion with chemical reactions using density
based thermodynamics package

fireFoam Transient Solver for Fires and turbulent diffusion flames

PDRFoam
Solver for compressible premixed/partially-premixed combustion with
turbulence modelling

dieselEngineFoam Solver for diesel engine spray and combustion

The VBM code was developed to be compatible with any of the above listed flow solvers.
However, further modification to the standard flow solvers may be needed to implement
the VBM model in the solvers.

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
23

In this report, an example of how one may modify the off-the-shelf steady-state
compressible flow solver, rhoSimpleFoam, to include the VBM calculation in the
simulation will be provided. However, the same procedure can be applied to any of the
above listed flow solvers.

3.3.2 Overview of the rhoSimpleFoam Solver

The standard rhoSimpleFoam source code can be found in the following path:

 $FOAM_APPLICATIONS/solvers/compressible/rhoSimpleFoam

rhoSimpleFoam, like any other flow solver in OpenFOAM, is largely procedural since it
is a close representation of solution algorithms and equations, which are procedural in
nature (Reference 13). Therefore, users do not necessarily need a deep knowledge of
object-oriented paradigm and C++ programming to write a solver but should know the
principles behind object-oriented paradigm and classes, and to have a basic knowledge of
some C++ code syntax. An understanding of the underlying equations, models and
solution method and algorithms is deemed to be far more important in developing new
flow solvers in OpenFOAM.

The main implementation of rhoSimpleFoam is contained in the file rhoSimpleFoam.C.
As the name implies, the solution algorithm is based on the Semi-Implicit Pressure-Linked
Equation (SIMPLE) algorithm (Reference 13) which is shown graphically in Figure 3.1.

As shown in Figure 3.1, the algorithm basically consists of:

1. assembling of the discretised momentum equations into a matrix,

2. solving the momentum equations by first treating the pressure gradient term
explicitly,

3. solving the pressure equation based on the computed momentum field, and

4. computing the pressure-corrected momentum field for the next flow iteration.

In this implementation, the additional momentum sources that are introduced by the VBM
will be incorporated explicitly into the momentum matrix . The assembling of the
momentum matrix is contained in the file UEqn.H which is reproduced in Figure 3.2.

The momentum matrix, UEqn, assembled in the code in Figure 3.2 incorporates both the
convective term and diffusive terms in the momentum equation; however, no source terms
are present in the above code.

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
24

Figure 3.1: Implementation of the SIMPLE algorithm in rhoSimpleFoam

Figure 3.2: UEqn.H in rhoSimpleFoam

In OpenFOAM, there already a C++ class exists that allows generic source terms to be
added to the momentum equation. This class is called “basicSource” class, and its
source code lives in the following path

$FOAM_SRC/finiteVolume/cfdTools/general/fieldSources/basicSources

The class constructor to the basicSources class will be described later in Section 3.3.4.
However, it is useful to know at this stage that the UEqn.H can be modified as shown in
Figure 3.3 to incorporate a source term in the momentum equation. Furthermore, it is
equally important to note at this stage that the basicSource class is an “abstract class”,
which means it contains no specific implementation of the source terms that are to be
introduced in the momentum equation. This specific implementation will be derived from
the VBM implementation as described in Section 3.3.5.

 // Solve the Momentum Equation

 tmp<fvVectorMatrix> UEqn
 (
 fvm::div(phi, U)
 + turbulence->divDevRhoReff(U)
);

 UEqn().relax();

 solve(UEqn() == -fvc::grad(p));

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
25

Figure 3.3: Modified UEqn.H in rhoSimpleFoam with basicSource term

The “sources” object added to the modified UEqn.H shown in Figure 3.3 needs to be
instantiated in the rhoSimpleFoam solver. This can be done by adding the following line
to the last line of the createFields.H file located in the rhoSimpleFoam source
directory:

 IObasicSourceList sources(mesh);

From the above example, a new class was constructed, IObasicSourceList, which is
derived from both a List class and basicSource class (see Section 3.3.4) in order to
accommodate the need to have multiple sources in the simulation (such as having multiple
rotor disks).

No other modification is required since the VBM implementation will be called by the
instantiated basicSource class object during solver execution. Note that the
basicSource class can also be used to introduce thermal energy source terms in the
energy equation.

3.3.3 Creating a New rhoSimpleSourceFoam Solver

It is considered best practice to copy the standard rhoSimpleFoam solver code and place
the user-modified version in a new directory, typically:

 $FOAM_USER_APP/rhoSimpleSourceFoam

New names are needed for the directory and relevant .C files to avoid ambiguity with the
standard solver. In this example, the rhoSimpleFoam.C has been renamed to
rhoSimpleSourceFoam.C, which will also be the executable name of the new solver.
The modifications previously shown in Section 3.3.2 can then be applied to the source files
in the $FOAM_USER_APP/rhoSimpleSourceFoam.

A set of programming code files in UNIX/Linux systems is often organised and delivered
to the compiler using the standard UNIX “make” utility. OpenFOAM, however, is
supplied with a specialised “wmake” compilation script, that is based on make but is
considerably more versatile and specific, to compile and link the code to the existing

 // Solve the Momentum Equation

 tmp<fvVectorMatrix> UEqn
 (
 fvm::div(phi, U)
 + turbulence->divDevRhoReff(U)
 ==
 sources(rho, U) // source terms
);

 UEqn().relax();

 sources.constrain(UEqn());

 solve(UEqn() == -fvc::grad(p));

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
26

OpenFOAM library. The process of compiling a new code or library in OpenFOAM using
the wmake script is given at Reference 14.

OpenFOAM applications are organised using a standard convention that requires the
source code of each application to be placed in a directory whose name is that of the
application. The top level source file takes the application name with the .C extension.
This convention must be adhered to when creating new solvers or applications in
OpenFOAM. For example, the source code for the newly created rhoSimpleSourceFoam
solver would reside in a directory rhoSimpleSourceFoam and the top level file would
be rhoSimpleSourceFoam.C as shown in Figure 3.4. The directory must also contain a
“Make” sub-directory containing two files, “options” and “files”.

Figure 3.4: Directory structure for an application in OpenFOAM

The final step that needs to be done prior to compiling the new solver,
rhoSimpleSourceFoam, is to modify the Make/files and Make/options to include
the entries shown in Figure 3.5.

Figure 3.5: Modified Make/files and Make/options for compiling rhoSimpleSourceFoam

$ cat Make/files

 rhoSimpleSourceFoam.C
 EXE = $(FOAM_USER_APPBIN)/rhoSimpleSourceFoam
 // The EXE variable determines where the new executable binary will be
 // placed. It is important to use $(FOAM_USER_APPBIN) path instead of
 // the standard $(FOAM_APPBIN) for revision control.

$ cat Make/options

 EXE_INC = \
 -I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \
 -I$(LIB_SRC)/turbulenceModels \
 -I$(LIB_SRC)/turbulenceModels/compressible/RAS/RASModel \
 -I$(LIB_SRC)/finiteVolume/cfdTools \
 -I$(LIB_SRC)/finiteVolume/lnInclude \
 -I$(LIB_SRC)/meshTools/lnInclude

 EXE_LIBS = \
 -lbasicThermophysicalModels \
 -lspecie \
 -lcompressibleTurbulenceModel \
 -lcompressibleRASModels \
 -lfiniteVolume \
 -lmeshTools

$FOAM_USER_APP/rhoSimpleSourceFoam

rhoSimpleSourceFoam.C

HeaderFiles.H

Make

files

options

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
27

Finally the new rhoSimpleSourceFoam solver can be compiled by executing wmake
from the code parent directory using the following commands:

 $ cd $FOAM_USER_APP/rhoSimpleSourceFoam
 $ wmake

3.3.4 The basicSource Class

The momentum sources introduced by the VBM will be implemented in the flow solver
through the use of the class basicSource. Therefore, before the newly developed VBM
model can be introduced, it is important for the reader to first understand the
implementation of the basicSource class in OpenFOAM.

Figure 3.6: Class hierarchy of basicSource class in OpenFOAM

Figure 3.6 shows the basicSource class hierarchy. The hierarchy diagram has been
generated using doxygen. Further details on doxygen legend can be found at Reference 15.
As seen from this figure, the VBM code will be implemented as a new class, called
“rotorDiskSource”, which will inherit attributes from the basicSource class. Since
the basicSource class is an abstract class with no implementation (by using virtual
functions), the implementation of the VBM using this class in the flow solver can be made
by adding the VBM libraries into the runTimeSelectionTable of this class. This means
that the rotorDiskSource class (and all other classes derived from the
rotorDiskSource class) that contains the specific implementation of the VBM will
contain a series of functions that can be “hooked-up” with the virtual functions in the

rotorDiskSource The new class containing the
implementation of the VBM in
OpenFOAM.

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
28

basicSource class. Virtual functions that are used in the implementation of the
rotorDiskSource class are listed below:

 virtual void isActive(). This virtual function reads the input dictionary of
the source model and determines if the source is active during a simulation.

 virtual bool read (const dictionary &dict). This virtual function
reads the input dictionary of the source model for relevant parameters to be used
in the model implementation.

 virtual void addSup(fvMatrix<type> &UEqn, const label fieldI).
This virtual function adds the momentum sources explicitly into the passed
momentum matrix.

Interested users and readers are recommended to further explore the functionality
provided by the basicSource class by reviewing its source code.

One of the major advantages of using the basicSource class as a template abstract class
for deriving the VBM library is that multiple source term objects of different kind can be
spawned in the simulation. This means that the simulation can include multiple rotor
disks, multiple heat source terms, and multiple porosity terms.

The basicSource class is a registeredIOObject class, which means any
basicSource object spawned during runtime is automatically tracked globally by the
solver. However, since the basicSource class is an abstract class, the specific
implementation of the source term (e.g. VBM or heat source term) can vary depending on
the specific classes that are derived from this basicSource class. Some examples of such
derived classes are rotorDiskSource (VBM), actuationDiskSource (momentum
sink) and porousMedia (porosity momentum sink).

3.3.5 Overview of the VBM Library Classes

The VBM code developed in OpenFOAM comprises multiple C++ classes. The file
structure grouped by the class name is shown in Figure 3.7. Calculation of the blade forces
and momentum source terms using the methodology outlined in Section 2 is implemented
in the main class, rotorDiskSource. A hard copy of all the source code included in
Figure 3.7 is available from Appendix A, sorted by the class hierarchy.

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
29

Figure 3.7: Overview of the directory and file structure of the VBM source code in OpenFOAM

As previously discussed, the rotorDiskSource class must inherit from the abstract base
class basicSource in order to be implemented in the flow solvers. This is reflected in the
file rotorDiskSource.H (Appendix A.2.1), which includes the class declaration
statement shown in Figure 3.8. The rotorDiskSource.H also contains a declaration for
the class constructor function, all private and public data members, as well as all the
private and public member functions of the rotorDiskSource class. It is important to
note that because this class inherits from the basicSource class, any change in the

 [rotorDiskSource]
|
|---- [Make]
| |---- files
| \---- options
|
|---- [bladeModel]
| |---- bladeModel.C
| \---- bladeModel.H
|
|----- [profileModel]
| |
| |---- [lookup]
| | |---- lookupProfile.C
| | \---- lookupProfile.H
| |
| |---- profileModel.C
| |---- profileModel.H
| |---- profileModelList.C
| |---- profileModelList.H
| |
| \---- [series]
| |---- seriesProfile.C
| \---- seriesProfile.H
|
|---- rotorDiskSource.C
|---- rotorDiskSource.H
|---- rotorDiskSourceI.H
|---- rotorDiskSourceTemplates.C
|
 \----- [trimModel]
 |
 |---- [fixed]
 | |---- fixedTrim.C
 | \---- fixedTrim.H
 |
 |---- [targetForce]
 | |---- targetForceTrim.C
 | \---- targetForceTrim.H
 |
 \---- [trimModel]
 |---- trimModel.C
 |---- trimModel.H
 \---- trimModelNew.C

The main class for the VBM implementation.
This class inherits from the basicSource class.

An abstract class for different methods of
constructing the Cl and Cd lookup tables. It
allows for easy addition of new methods of
constructing the blade Cl and Cd curves.

The class “lookup” inherits from profileModel
and uses linear interpolation to construct the Cl
andCd curves.

The class “series” inherits from profileModel
and uses a harmonic function to construct the Cl
and Cd curves.

A class for constructing the blade geometrical
angle of attack as a function of the disk radial
and azimuthal positions.

An abstract class for different rotor trim
models. It allows for easy addition of new trim
models.

Classes that inherit from the abstract class
trimModel, and contain different
implementations of the rotor trim model, i.e.

- fixed: No trimming
- targetForce: Perturb the blade AOA to

achieve the user specified target forces
and moments

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
30

constructor of the basicSource class in a later release of OpenFOAM must also be
propagated to this class.

Figure 3.8: Class declaration in rotorDiskSource.H showing inheritance from basicSource

In order for the rotorDiskSource class to “hook-up” with the basicSource class, the
following two criteria must be satisfied:

1. The class must contain implementations of the basicSource class virtual
functions listed in previously in Section 3.3.4, and

2. The class must inherit from the basicSource class, have a specific typeName,
and contain an implementation that allows for the class to be registered in the
runTimeSelectionTable of the basicSource class.

The implementation of the two criteria above in the rotorDiskSource will be discussed
in the following paragraphs.

Implementation of the basicSource virtual functions in rotorDiskSource.

The implementation of the virtual function addSup() which returns the momentum
sources to the flow solvers is shown in Figure 3.9. Note that the addSup() in the
rotorDiskSource actually calls another protected internal member function calculate()
included in the rotorDiskSource. Similarly, the implementation of the virtual functions
read() and writeData() can also be found in the rotorDiskSource.C.

Adding the rotorDiskSource class to the runTimeSelectionTable.

The basicSource is an abstract class that allows for new source models to be introduced
and registered to its runTimeSelectionTable. This mechanism allows the user to select
the different source models to be run with the flow solvers without re-compiling the entire
base code prior to each run. In the case of the rotorDiskSource, this process is done
using a static member function in the rotorDiskSource.C as shown in Figure 3.10. Note
that this process is generic in OpenFOAM, and can be copied for adding any new source
models or boundary conditions in the future.

$cat rotorDiskSource.H

class rotorDiskSource
:
 public basicSource
{

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
31

Figure 3.9: Implementation of the virtual void addSup() in the rotorDiskSource class

Figure 3.10: Adding rotorDiskSource class to the basicSource runTimeSelectionTable

3.4 The VBM Library in OpenFOAM

3.4.1 The rotorDiskSource Class

The rotorDiskSource class encapsulates both data and member functions that are
needed to implement the VBM. The private data in this class are the variables or
parameters (e.g. rotor RPM, blade pitch angle, etc.) that are needed for the VBM
calculation. These data are not available for access from outside of this class.

The private data have also been designed to be read as user inputs, which means that
when the solver rhoSimpleSourceFoam is run, the basicSource object in the solver
will look for a “dictionary” file in the case directory structure. In the case of the
rotorDiskSource model, the dictionary file for the source is called
sourceProperties, and must be placed in the constant directory of the case. An
example of a sourceProperties file is given at Appendix B.2.5. This
sourceProperties file is only read at the start or restart of a simulation.

$ cat rotorDiskSource.C

using namespace Foam::constant;

namespace Foam
{
 defineTypeNameAndDebug(rotorDiskSource, 0);
 addToRunTimeSelectionTable(basicSource, rotorDiskSource, dictionary);
}

$ cat rotorDiskSource.C

void Foam::rotorDiskSource::addSup(fvMatrix<vector>& eqn, const label fieldI)

// The momentum matrix UEqn is passed by reference to this class
// from the basicSource class.
{
…
 const volVectorField& U = eqn.psi();

 const vectorField Uin = inflowVelocity(U);

 //Initiate the rotor trim routine
 trim_->correct(Uin, force);

 //The blade forces and momentum sources are calculated
 calculate(Uin, trim_->alphag(), force);

 // add source to rhs of UEqn. The object “force” was returned by the
 // calculate()function and is already in the unit of force per unit volume
 eqn -= force;
}

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
32

A flowchart showing the implementation of the rotorDiskSource class in the
OpenFOAM rhoSimpleSourceFoam solver is shown in Figure 3.11. However, the
rotorDiskSource class has been written as a generic class that can readily be
implemented in any of the other OpenFOAM flow solvers (previously listed in Table 3.1)
by following the method previously outlined in Sections 3.3.2 through 3.3.3.

The class declaration and definition for rotorDiskSource is given in the
rotorDiskSource.H. The main implementation of the class is given in the
rotorDiskSource.C. The bulk implementation of the BET is given in the
Foam::rotorDiskSource::calculate() function in rotorDiskSource.C.

A notable feature in the code structure is that calculation of the local blade geometric AOA
is not implemented inside the rotorDiskSource class, but in a separate trimModel
class (refer to Figure 3.13). This allows the future addition of a new trim model while
avoiding significant re-structure of the rotorDiskSource class. Further description of
the trimModel class will be given in Section 3.4.3.

Other features of the rotorDiskSource class that allow for ease of future expansion are as
follows:

1. Addition of new Lifting Line Models (in profileModel class). Currently two
different models are implemented, i.e:

a. using a Lookup Table (profileModel::lookupProfile class), and

b. using Fourier Series (profileModel::seriesProfile class). The series
definition is hard-coded in the seriesProfile.C file, and is defined by
the following series equation:

n

i
effilL iCC

1

sin
 [Equation 3.1]

n

i
effiDD iCC

1

cos

2. Addition of new blade geometric models (in bladeModel class). Currently the
blade can only be tapered linearly (i.e. the blade chord varies linearly with the cell
radial distance from the rotor disk origin). The model also accommodates multiple
taper angles along the blade radius. Future blade models may allow the variation
of the blade chord along the radius to be described using a more complex function.

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
33

Figure 3.11: Implementation of the VBM using rotorDiskSource class and rhoSimpleSourceFoam

solver in OpenFOAM

START

INIT MESH AND
FLUX FIELD

SOLVE
MOMENTUM EQN
USING EXPLICIT

PRESSURE

<SIMPLE>
SOLVE

PRESSURE EQN

CORRECT
VELOCITY USING

PRESSURE

SOLVE
TURBULENCE
MODEL EQNS

ADD SOURCE
TERM

<basicSource>

CONVERGED?

END

INIT ROTOR OBJECT
<rotorDiskSource>

Mesh information,
current velocity field

CALCULATE
EFFECTIVE AOA ON

EACH CELL

CALCULATE
LOCAL THRUST AND DRAG

<Blade Element Theory>

CONVERT BODY FORCES
TO VOLUMETRIC

MOMENTUM SOURCE

INIT BLADE TRIM
MODEL

<trimModel>

INIT BLADE LIFTING
LINE MODEL

<profileModel>

TRIM
CONVERGED

?

CALCULATE
GLOBAL ROTOR
DISK MOMENTS

AND THRUST

CALCULATE BLADE
GEOMETRIC AOA

<bladeModel>

CALCULATE LOCAL
INFLOW ANGLE

CALCULATE
FLAPPING

BLADE TRIMMING LOOP:
Perturb blade cyclic and
collective pitch angles

Calculation in the
Local Rotor Disk
Cyclindrical
Coordinate

READ
sourceProperties

rotorDiskSource Class rhoSimpleSourceFoam Solver

YES

YES

NO

NO

Momentum
sources are
returned in the
Global Cartesian
Frame

Helper Classes

WRITE ROTOR FORCE
[volVectorField]

IOObject
NO_READ
AUTO WRITE

NOTE:
1. Shaded boxes indicate separate classes

Return local blade
geometric AOA

Return lift and drag lookup
database

SOLVER
SIMPLE
ITERATION

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
34

3.4.2 The rotorDiskSource Input/Output (IO)

In the current implementation, the user must specify the rotor characteristics as input
using the sourceProperties (Appendix B.2.5) file, which must be placed in the
constant directory of each case. This file is read during the class construction by the
function Foam::rotorDiskSource::read(). Any changes made by user to the
sourceProperties file will be monitored and effected continuously during runtime at
each iteration.

The rotorDiskSource output consists of the following:

1. Field variable data output. In the current implementation, the lift and drag forces
per unit cell volume are written out for post-processing as a vector field data type.
The body forces can be visualised using paraview using a similar filter to that
used to visualise the velocity field.

2. RunTime console output. In the current implementation, the rotor disk global
pitching and rolling moments, and the total thrust is printed to the screen of the
running Linux shell. An example of this output is given in Figure 3.12.

Additional data quantities, such as cell inflow angle, the cell’s cylindrical coordinate, and
the cell’s effective AOA, can be written out using the provided templated function
Foam::RotorDiskSource::writeField(), which is implemented in the source file
rotorDiskSourceTemplates.C.

Figure 3.12: Linux shell output of rotorDiskSource during runtime

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
35

3.4.3 The Rotor trimModel Class

The trimModel class is an abstract class that carries out the blade trimming calculation
required by the rotorDiskSource. The trimModel class is not derived from the
rotorDiskSource. A private object called “trim_” of class type trimModel is
instantiated inside the rotorDiskSource class during its construction. This trim_ object
acts as the conduit between the trimming routine and the rotorDiskSource class during
the calculation of the rotor forces.

The implementation of the trimModel as an abstract class allows for different trim
models to be added in the future without needing to alter any other part of the code.
Currently, two classes are derived from the trimModel, which are user-selectable from
the sourceProperties file. The two sub-classes provide two different trimming
algorithms, as described below:

1. trimModel::fixedTrim class. The fixedTrim calculates the compounded
blade geometric AOA variation with respect to cell radial and azimuthal position
based on constant blade collective pitch angles and cyclic pitch coefficients. These
coefficients must be provided by the user in the sourceProperties file. The use
of this class is equivalent to an “untrimmed” VBM model.

2. trimModel::targetForceTrim class. The targetForceTrim class perturbs
the local blade geometric AOA at a frozen flow state (at each flow solver iteration)
to find a combination of blade collective pitch angles and cyclic pitch coefficients
that will return the global thrust and moments on the rotor disk that match the
user-specified target rotor thrust and moments. To use this trim model, the
following parameters must be specified in the sourceProperties file:

a. The target global rotor thrust, rolling and pitching moments.

b. The initial guess of the blade collective pitch angle and cyclic pitch
coefficients (refer to Equation 2.4).

c. The interval (in flow iterations) in-between trimming routines.

d. The angles by which the local blade AOA needs to be perturbed during
trimming. The default value is 0.05 degree.

e. The under-relaxation factor for the newly calculated AOA during trimming.
Note that this factor should be kept at one unless the trimming routine is
unable to find a trimmed solution within its iteration limits.

The maximum number of iterations, and the minimum force and moments residuals
allowed during trimming before a solution is deemed converged (or fully trimmed) are
not user-specifiable. Currently, these are set to default values of 50 and 1x10-8 for the
maxIter and residuals tolerance respectively. These values are hard-coded in the
constructor function of the trimModel::targetForceTrim class, which can be found
in the targetForceTrim.C file.

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
36

A flowchart showing the implementation of the trimming routine in the
targetForceTrim class is shown in Figure 3.13. It shows that the targetForceTrim
class uses the Foam::rotorDiskSource::calculate() function to calculate the local
forces and moments. This is done to avoid any coding repetition in the two classes. Note
that the trimming process shown in the flowchart in Figure 3.13 occurs at a “frozen” flow
state, meaning the flow iteration is not progressed during the trimming loop.

Figure 3.13: Implementation of the targetForceTrim model in the rotorDiskSource class

The targetForceTrim class, if activated, will print out a set of messages to the screen of
the running Linux shell. An example of this output is given in Figure 3.14.

ADD SOURCE
TERM

<basicSource>

ROTOR OBJECT
<rotorDiskSource>

INIT BLADE TRIM
MODEL

<trimModel>

CALCULATE BLADE
GEOMETRIC AOA

<bladeModel>

READ
sourceProperties

Mesh information,
current velocity field,
local fluid inflow angles

Initial blade
collective and cyclic
pitch angles

Blade taper and
chord information

Source Parameters

FIXED
TRIM?

FUNCTION
CALLS

YES INIT TARGET FORCE
TRIM MODEL

<targetForceTrim>

NO

Return local blade
geometric AOA

CALCULATE
LOCAL THRUST AND DRAG

<Blade Element Theory>

Read
targetForceTrim
parameters

FUNCTION
CALLS

Use the calculate function in
the rotorDiskSource

blade
geometric
AOA

CALCULATE
GLOBAL DISK THRUST AND

MOMENTS
<Blade Element Theory>

TRIM
CONVERGED?

PERTURB THE BLADE
COLLECTIVE AND CYCLIC

PITCH ANGLES

New blade
geometric
AOA

Return the global disk thrust
and moments based on
current geometric AOA and
local flow angles

Return local blade geometric
AOA YES

NO

NOTE:
1. Shaded boxes indicate separate classes
2. dotted lines indicate information request,

NOT process flow

BLADE TRIMMING
LOOP

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
37

Figure 3.14: Linux shell output of targetForceTrim class during runtime

3.5 Compiling the Code

The steps required to compile rotorDiskSource as a non-executable library in
OpenFOAM differs to that required to compile an executable solver (e.g.
rhoSimpleSourceFoam). A set of instructions on how to compile the
rotorDiskSource will be given in the following paragraphs.

3.5.1 Preparation

Prior to code compilation, all the VBM library source codes (previously shown in Figure
3.7) can be placed at any location on the machine while maintaining the directory structure
and naming; however, it is recommended that the source codes are placed at the following
standard path, which is separate from the standard OpenFOAM source codes:

New blade pitch to be used in
the next flow iteration
(collective and cyclic)

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
38

 ${WM_PROJECT_USER_DIR}/lib

It is considered a good practice to keep any third-party code separates from the standard
OpenFOAM library. Linking the VBM library to the standard OpenFOAM library will be
done during compilation. The code compilation must be done from inside the
rotorDiskSource directory. The first step of the compilation involves cleaning the
directory from any previous compilation artefacts, such as any “.o” or “.dep” files. This
can be done as follows:

 $ cd ${WM_PROJECT_USER_DIR}/lib/rotorDiskSource
 $ rmdepall; wclean

3.5.2 Linking the VBM Library to the Standard OpenFOAM Libraries

By default, the compiler links to shared object library files in the following directory
paths, which are specified with the -L option in the wmake:

1. The ${FOAM_LIBBIN} path;

2. Platform dependent paths set in files in the
 ${WM_DIR}/rules/${WM_ARCH} directory, e.g./usr/X11/lib and
 ${MPICH_ARCH_PATH}/lib;

3. Other directories specified in the Make/options file.

It is considered standard practice for any third-party object files or executables be placed
in the ${FOAM_USER_LIBBIN}, which is separate from the standard OpenFOAM
installation path. The ${FOAM_USER_LIBBIN} is a standard OpenFOAM environment
variable set during installation. However, the user must check if ${FOAM_USER_LIBBIN}
is valid on their OpenFOAM installation. This can be done using the standard utility
foamInstallationTest.

The library files to be linked must be specified using the -l option and removing the lib
prefix and “.so” extension from the library file name, e.g.
libbasicThermophysicalModels.so is included with the flag
-lbasicThermophysicalModels.

By default, wmake loads the following libraries for any third-party code compilation:

1. The libOpenFOAM.so library from the ${FOAM_LIBBIN} directory;

2. Platform dependent libraries specified in set in files in the
${WM_DIR}/rules/${WM_ARCH} , e.g. /usr/X11/lib/libm.so and
${LAM_ARCH_PATH}/lib/liblam.so;

3. Other libraries specified in the Make/options file. The following standard
OpenFOAM libraries must also be linked during compilation of the
rotorDiskSource:

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
39

a. –lmeshTools

b. -lfiniteVolume

All of the above steps can be accounted for by creating a “Make” directory in the
rotorDiskSource root directory. The Make directory will contain two new files, i.e.
options and files. The Make/options file contains the full directory paths, links to
the standard libraries, and the new library name. The Make/files file contains the list of
source code to be compiled. The content of the Make/options and Make/files files
needed to compile the rotorDiskSource library are shown in Figure 3.15 and Figure
3.16 respectively. Note that from this example, the VBM is to be compiled to a library
named “librotorDiskSource”.

Figure 3.15: Content of the “Make/options” needed to compile rotorDiskSource

Figure 3.16: Content of the “Make/files” needed to compile rotorDiskSource

3.5.3 Compiling the VBM Library (librotorDiskSource.so)

Finally the code can be compiled by running the following command from the
rotorDiskSource root directory:

 $ wmake libso

The libso option is a flag for the make script to compile the librotorDiskSource as a
dynamically linked library instead of a static library or an executable. This means that the
library is not loaded by the solver, unless a “rotorDiskSource” object is instantiated by
the “basicSource” object. Compiling third-party library into a dynamically linked
library in OpenFOAM is also considered to be a standard practice. Following a successful

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
40

compilation, a librotorDiskSource.so binary file should be available at
${FOAM_USER_LIBBIN} path.

3.6 Updating the VBM Code for Compatibility with Future OpenFOAM
Version

All classes included in the VBM library developed in this report are only dependant on the
structure of the basicSource class. Therefore, any changes in the OpenFOAM solver(s)
or other standard OpenFOAM libraries in the future versions should not be detrimental to
the VBM library. However, this library must be re-compiled with every new OpenFOAM
release prior to its use. The procedure for compiling the code is described in Section 3.5.
Furthermore, any necessary solver modifications as described in Section 3.3.3 will also be
required.

Changes made to the structure of the basicSource class in future OpenFOAM versions
may cause compilation of the VBM library code to fail. However, should this occur, it is
expected that the changes required to the VBM codes will be minimal, and are expected to
only be made to the constructor of the rotorDiskSource class. While it is almost
impossible to predict what changes may occur in the future OpenFOAM versions, the
following steps may serve as a starting point to identify the changes required to the VBM
code should it fail to compile with a future OpenFOAM version:

1. Check that the library names included in the Make/options file are still relevant.
These dependency libraries are the standard OpenFOAM libraries that contain
low-level classes that are not likely to change in future release. These libraries are:

a. lmeshTools. The VBM libraries need the lmeshTools for getting access
to mesh information, such as cellZone and faceZone, cell addressing,
etc.

b. lfiniteVolume. The VBM libraries need the lfiniteVolume for getting
access to FVM related information in the mesh, such as the cell-centres, cell-
face flux field, templated data type and operation (volVectorField,
coordinateSystems), etc.

2. Check that the names and constructors of the basicSource class’s virtual
functions implemented in the rotorDiskSource class are still relevant. These
virtual functions are:

a. virtual void addSup (fvMatrix<vector>& eqn,
 const label fieldI);

b. virtual void writeData (Ostream&) const;

c. virtual bool read (const dictionary& dict);

3. The names and constructors of the virtual functions listed in point 2 above can be
checked at the following path:

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
41

${FOAM_SRC}/finiteVolume/cfdTools/general/fieldSources/basicS
ource/basicSource

The implementation of these virtual functions in the rotorDiskSource class can be
found in both rotorDiskSource.H and rotorDiskSource.C. The names and
constructors of these functions in the rotorDiskSource must match those in the
basicSource class.

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
42

4. Case Setup in OpenFOAM using the rotorDiskSource
Library

4.1 Case Setup

This section provides an overview of a typical case setup in OpenFOAM. Unlike many
other commercial CFD packages, such as ANSYS, the standard OpenFOAM distribution
does not have a Graphical User Interface (GUI) that may aid the user in preparing a case.

Case preparation in OpenFOAM typically involves the manual preparation of all the
required input and mesh files. These files must adhere to a specific format and use specific
keywords as given in the Chapter 4 of the OpenFOAM User Guide (Reference 13).
Furthermore, the required files and formats vary significantly depending on the
OpenFOAM solvers and Boundary Conditions to be used. Therefore, to limit the scope of
this report, only the case set up relevant to running a compressible RANS simulation using
the rotorDiskSource will be discussed.

4.1.1 File Structure

An OpenFOAM case is defined using a series of standard files that are arranged with a
specific directory structure and naming convention. This standard structure of files and
directories is shown in Figure 4.1. Different OpenFOAM solvers and libraries may require
additional input files in the case setup, which may not be shown in Figure 4.1. Basic
descriptions of each file shown in Figure 4.1 are given in Table 4.1.

An example of a case setup using the VBM with a steady state RANS solver is provided in
Appendix B.

An OpenFOAM case directory can be placed anywhere in the hard-drive space; however,
it is normally located at a standard location given by the standard environmental variable,
${FOAM_RUN}. In setting up a new case, all file names and directory names as shown in
Figure 4.1 must be preserved. The directory name of the case root directory as indicated in
Figure 4.1 may be changed to better reflect the case name. All cases must be run using a
shell terminal from the case root directory location.

It is important to note that the input format for each of the files described in Table 4.1
follows some general principles of C++ source code as follows (Reference 14):

1. Files have free form, with no particular meaning assigned to any column and no
need to indicate continuation across lines.

2. Lines have no particular meaning except to a // comment delimiter which makes
OpenFOAM ignore any text that follows it until the end of line.

3. A comment over multiple lines is done by enclosing the text between /* and
*/delimiters.

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
43

Figure 4.1: OpenFOAM minimal case directory structure required for running a RANS

simulation using the rotorDiskSource library

<Case root directory>

system

 controlDict

 fvSchemes

 fvSolution

 decomposeParDict

constant

 RASProperties

 thermophysicalProperties

 sourceProperties

polyMesh

Mesh related files

0

 p

 U

 k

 Epsilon or Omega

 T

 mut

 alphat

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
44

Table 4.1: Brief description of the files in a standard OpenFOAM case

Directory
Name File Name Description

Chapter in
OpenFOAM
User Guide
(Reference
13)

system ControlDict

A dictionary file where run control parameters are
set including start/end time, time step and parameters for data
output. This file is continuously monitored for change during
runTime.

Chapter 4.3

fvSchemes
A dictionary file where discretisation schemes used in the
solution are specified. This file is continuously monitored for
change during runTime.

Chapter 4.4

fvSolution
A dictionary file where the linear matrix solvers, tolerances and
other algorithm controls are specified for the run. This file is
continuously monitored for change during runTime.

Chapter 4.5

decomposeParDict

A dictionary file where the domain decomposition methods and
the number of sub-domains to be used on a parallel MPI run
are specified. This file is only read when the decomposePar
command is run as a pre-processing step.

Chapter 3.4

constant RASProperties A dictionary file where the turbulence modelling technique is

specified, i.e. kEpsilon, kOmegaSST, etc.
Chapter 7.2

thermophysicalPrope
rties

A dictionary file where the fluid thermophysical model and
properties are specified (e.g. constant specific heat model with
evaluation of enthalpy).

Chapter 7.1

transportProperties A dictionary file where the transport model (e.g. Newtonian,

Bird-Carreau, etc) and the fluid molecular viscosity is specified
Chapter 7.1

sourceProperties A dictionary file where all zones with source term models are

specified, including the rotorDiskSource.
N/A

constant/
polyMesh boundary

Automatically generated mesh file that contains a list of patches
(or domain boundaries), containing a dictionary entry for each
patch, declared using the patch name, e.g. wall or inlet patch.
The patch name can be updated manually by the user by
modifying entries in this file.

Chapter
5.2.1

faces
Automatically generated mesh file that contains a list of faces,
each face being a list of indices to vertices in the points list,
where the first entry in the list represents face 0, etc.

Chapter 5.1

neighbour

The polyMesh description is based around faces and as such,
internal cells connect 2 cells and boundary faces address a cell
and a boundary patch.
Each face is therefore assigned an ‘owner’ cell and ‘neighbour’
cell so that the connectivity across a given face can simply be
described by the owner and neighbour cell labels. This file is
automatically generated during mesh conversion.

Chapter 5.1

 owner See description for neighbour file above. Chapter 5.1

Table continues over page …

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
45

Table continued …

Directory
Name File Name Description

Chapter in
OpenFOAM
User Guide
(Reference
13)

points
Automatically generated mesh file that contains a list of points
in the mesh, defined by a vector in units of metres (m). The
points are compiled into a list and each point is referred to by a
label, which represents its position in the list, starting from zero.

Chapter 5.1

0

p, U, T, mut,
alphat, epsilon,
omega, R, k

A Boundary Condition (BC) must be specified for every patches
that exist in the constant/polyMesh/boundary file. In
OpenFOAM, each flow variables that are solved must have a
BC specified against each patch. This means, the 0 directory
must have p and U files as a minimum when solving a laminar
flow. When solving a turbulent flow using RANS "mut", epsilon
or omega and k must exist. When solving a compressible flow,
T and alphat must exist.

Each file must also contain the initial field solution, whether
specified as a “uniform” value, or as a list of non-uniform
values.

Chapter
5.2.2
through
Chapter
5.2.4

The various inputs specified in the files listed in Table 4.1 contain “token” or keywords.
Such method of specifying inputs is called “dictionary entries”. A dictionary is an entity
that contains data entries that can be retrieved by the I/O by means of keywords.
Therefore, these files are commonly referred to as “dictionary files” in OpenFOAM.
Furthermore, the keyword entries follow the general format:

 <keyword> <dataEntry1> … <dataEntryN>;

 <keyword> <dataEntry>;

As described in Reference 13, most OpenFOAM data files are themselves dictionaries
containing a set of keyword entries. Dictionaries provide the means for organising entries
into logical categories and can be specified hierarchically so that any dictionary can itself
contain one or more dictionary entries. The format for a dictionary is to specify the
dictionary name followed by keyword entries enclosed in curly braces {} as follows:

<dictionaryNames>
{
 <keyword> <dataEntry>;
 <keyword> <dataEntry1> <dataEntry2> … <dataEntryN>;
}

4.1.2 Time Directory (Output)

Before solving for a flow case, a directory named “0” must exist as shown in Table 4.1.
This “0” directory is the first time directory, named after the “start time”. Note that the
solver will look for the same time directory number which matches that specified by the
keyword startTime in the controlDict file, and usually equals “0”. The “0” directory
contains the initial field values and the boundary conditions for all flow variables that are
going to be solved. A typical boundary conditions setup that can be used for running both

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
46

incompressible and compressible external aerodynamic flow with field momentum
sources present in the domain will be discussed later in Section 4.4.

Results are written out in the manner specified by the keywords writeControl and
writeInterval in the controlDict file. Allowable parameters for these are specified
in Table 4.2. Results are written out into a time directory with the directory name
corresponding to the current iteration count or the flow time step.

Table 4.2: Specifying writeData control in the controlDict File

Keyword AllowableValue Description

stopAt endTime Stops at time specified by the endTime keyword entry.

 writeNow Stops simulation on completion of current time step and writes data.

 noWriteNow
Stops simulation on completion of current time step and does not write
out data.

 nextWrite
Stops simulation on completion of next scheduled write time, specified
by writeControl.

deltaT [floating point]
Time step of the simulation. If steady, it can be specified as 1 to be used
as the iteration counter.

writeControl timeStep
Controls the timing of write output to file. Writes data every writeInterval
time steps.

 runTime Writes data every writeInterval seconds of simulated time.

 adjustableRunTime

Writes data every writeInterval seconds of simulated time, adjusting the
time steps to coincide with the writeInterval if necessary — used in
cases with automatic time step adjustment (based on Courant Criteria).

 cpuTime Writes data every writeInterval seconds of CPU time.

 clockTime Writes data out every writeInterval seconds of real time.

writeInterval [floating point] Scalar used in conjunction with writeControl described above.

purgeWrite [floating point]

Integer representing a limit on the number of time directories that are
stored by overwriting time directories on a cyclic basis. Example of t0 =
5s, Δt = 1s and purgeWrite 2;
data written into 2 directories, 6 and 7, before returning to write the data
at 8 s in 6, data at 9 s into 7, etc.
To disable the time directory limit, specify purgeWrite 0; For steady-state
solutions, results from previous iterations can be continuously
overwritten by specifying purgeWrite 1;

4.2 Specifying the rotorDiskSource Properties in the
sourceProperties Dictionary File

4.2.1 Basic Selection Mechanism

In order to use the rotorDiskSource library in a simulation, a sourceProperties file
containing the parameters required by the rotorDiskSource library must exist in the
constant directory for the case considered.

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
47

As previously discussed in Section 3.3.4, an abstract class (basicSource) is used in the
solver. The implementation of this basicSource class depends on the “type” entry in
the case sourceProperties4 dictionary file as shown in Figure 4.2. This selection
mechanism allows user to specify multiple source regions in the computational domains
with differing implementations. An example of this is the ability to specify two source
regions where one region contains the VBM model, and the other contains a heat source.
In the example shown in Figure 4.2, a rotorDisk object, arbitrarily named “mainrotor”,
is instantiated in the domain for all computational cells included in the “fluid-
mainRotor” cellZone5. When a rotorDisk type source object is selected, the user
must then define all parameters inside the rotorDiskCoeffs keyword entry as required
by rotorDiskSource class as described in Section 4.2.2 through Section 4.2.4.

Multiple rotorDisk regions are allowed, provided that each cellZone representing the
rotor disk region is attached to only one object. An example of this is also shown in Figure
4.2, where a second rotorDisk, named “tailrotor” object, is instantiated in the
domain on all cells included in the fluid-tailRotor cellZone. There is no limit on
the number of rotorDisk objects that can be instantiated in a computational domain.

Figure 4.2: Source term model selector in the sourceProperties file

4 Note that sourceProperties file is a common “dictionary” file that is read by many different source
term implementations in OpenFOAM.
5 The term cellZone in OpenFOAM refers to the same cell-zone in the ANSYS Fluent terminology.

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
48

4.2.2 Specifying Basic rotorDiskSource Coefficients

All keyword entries shown in Figure 4.3 must be specified for each rotorDisk object. In
an incompressible simulation, the fluid density, rho, is not computed; hence, a reference
value for rho must be specified using the keyword rhoRef.

Figure 4.3: Basic rotorDiskCoeffs parameters in the sourceProperties file

The keyword geometryMode indicates the method that rotorDiskSource will use to
determine the rotor disk origin. When the “auto” mode is selected, the code will calculate
the origin of the rotor disk cellZone using a cell volume-weighting method. The origin
vector is mathematically described by Equation 4.1:

cellI
i

cellI
ii

disk
V

CV
O [Equation 4.1]

where iV is the cell volume, and iC is the cell-centre position vector.

The rotor disk axis will also be calculated using the orientation of the face normal vectors
on each cell included in the rotor disk cellZone. The rotor disk axis vector is determined
by summing the face area vector on every cell included in the rotor disk cellZone that
are closely aligned with the pointAbove vector. The axis is expressed as a unit vector,
which is mathematically shown in Equation 4.2:

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
49

cellI
f

cellI
f

disk

i

i

S

S
N [Equation 4.2]

where
if

S is the surface area vector of each cell face that is normal to the disk surface.

The user must always check for the correctness of the calculated rotor disk origin and axis
during runtime by looking at the runtime log printed to the screen.

For the main rotor, the refDirection and pointAbove are vectors in the direction of
the positive X-axis and positive Z-axis in the mesh respectively. It is good practice to create
the helicopter and rotor disk model in the mesh with the helicopter nose pointing in the
negative X-direction direction, and the lift vector pointing close to the positive Z-direction.
These refDirection and pointAbove vectors are used in the code to construct the
Cartesian to cyclindrical coordinate transformation matrix, and do not have to precisely
reflect the orientation of the freestream flow and lift vector.

The keyword rpm is the rotor blade speed in revolutions per minute (RPM). This quantity
needs to be an integer, and is specified as positive when the rotor blade is rotating counter-
clockwise when viewed from above (i.e. a view in the negative-lift direction).

The keyword nBlades is the number of rotor blades in the rotor.

The keyword inletFlowType specifies the type of inlet flow into the rotorDisk region.
When this is specified as “local”, the code will use the local velocity value in the
rotorDisk region. Otherwise, a user-defined velocity profile on the rotorDisk can be
specified by setting this parameter value to either “fixed” or “surfaceNormal”. An
example of the latter settings is shown in Figure 4.4.

Figure 4.4: Methods of specifying inlet flow into the rotor disk in the sourceProperties file

The keyword tipEffect specifies the blade radius position over which the momentum
source in the disk will be reduced to zero. This parameter is specified as a non-
dimensionalised radial position on the disk normalised by the rotor radius, i.e. a value of 1

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
50

corresponds to the tip of the rotor disk region, while a value of 0.96 represents a radial
position at 96 per cent of the disk radius relative to the disk origin.

The keyword flapCoeffs specifies the blade flapping constants, sco 11 ,, , as given in

Equation 2.5 at Section 2.2.3. These constants represent the coning, cosine and sine
flapping angles respectively; and thus have a unit of degrees.

4.2.3 Specifying Blade Trim Parameters

A “trim” model must always be specified for each rotor disk region in the
sourceProperties file. An untrimmed rotor is deemed to have a “fixedTrim” model
as shown in Figure 4.5. If a fixedTrim model is selected, a set of trim coefficients need to be
specified in accordance to the definition shown in Equation 2.3 at Section 2.2.2. These trim
coefficients, denoted as BAc ,, in the sourceProperties file, correspond to the blade

collective pitch angle, and the cosine and sine cyclic pitch angles respectively. These angles
should always be specified in their first-quadrant values irrespective of the direction of
rotation. For example, a blade collective pitch, c , of positive 10 represents a blade pitch

angle of 10 degrees regardless whether the blade is rotating in the counter-clockwise or
clockwise direction. Note that changing these values will not alter the rotor disk
orientation in the mesh.

Figure 4.5: Cyclic and collective pitch trim parameters in the sourceProperties file

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
51

The blade trimming calculation can be “activated” by specifying “targetForceTrim” as
the trimModel. When blade trimming is carried out in the simulation, the
fixedTrimCoeffs entries will be ignored by the code. Instead, the user must specify the
targetForceTrimCoeffs entries as shown in Figure 4.5.

As previously discussed in Section 2.3.7 and Section 3.4.3, the trimming is done by
perturbing the blade collective and cyclic pitch angles at a frozen flow state (at each flow
solver iteration) to find a combination of blade collective and cyclic pitch angles that will
return the global thrust and moments on the rotor disk that match the user-specified target
rotor thrust and moments. The keyword fThrust shown in Figure 4.5 specifies the
desired total thrust acting on the disk in Newtons. The keywords mRoll and mPitch
specify the desired total rolling and pitching moments acting on the disk in
Newton-meters.

Usually the rotor total thrust and moments for a particular flight condition are specified by
the Original Equipment Manufacturer (OEM) as non-dimensionalised quantities of
coefficients of thrust and coefficients of moments as given by Equations 2.37 through 2.39
in Section 2.3.7.

The keyword alphaCIni, AIni and BIni are the initial guesses of the blade collective
pitch angle and cyclic pitch coefficients (refer to Equation 2.36 in Section 2.3.7).

The keyword calcFrequency specifies the interval (in flow iterations) in-between
trimming routines. The keyword dTheta specifies the angles by which the local blade
AOA needs to be perturbed during trimming (the default value is 0.05 degree).

The URF for the newly calculated AOA during trimming is specified by the keyword
relax as shown in Figure 4.5. Note that for stability reasons, this factor should be kept at
one unless the trimming routine is unable to find a trimmed solution within its iteration
limits. This iteration limit in the trimming loop is “hard-coded” to be 50 iterations, in the
source file “targetForceTrim.C”. However, the user may override this setting by
adding a keyword nIter and specifying an integer value in the line following the relax
keyword.

4.2.4 Specifying Blade Geometry and Section Profile

A blade geometry and blade section profile must be specified for each of the rotor objects
created in the “sourceProperties” file. An example of a setup for a linearly tapering
blade with a NACA0015 section is shown in Figure 4.6. In this example, the blade has zero
twist along its radius, and is linearly tapered from a chord length of 0.086 m at r = 0.45 m,
to a chord length of 0.075 m at its tip. The blade radius is shown to be 0.8 m. Note that
currently only a linear taper is supported by the code.

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
52

Figure 4.6: Blade geometry and profile specification in the sourceProperties file

The “NACA0015” shown in Figure 4.6 can be arbitrarily named. However, this naming
must correspond to the “profile” entry setup as described later in Section 4.2.5.

The setup shown also allows the blade to be defined in multiple segments, where in each
segment an independent section profile, and a linear variation of twist angle and taper, can
be defined. Each blade segment can be defined using a pair of entries specifying the
segment start and end radii, blade twist angle, and chord.

4.2.5 Specifying Section Profile Lift and Drag Curves

Following the blade geometry and section profile specification, the lift and drag curves for
a range of AOA must be specified for each blade segment. Using the example shown in
Figure 4.6, NACA0015 lift and drag curves as a function of AOA must be specified. This is
shown in Figure 4.7.

As shown in Figure 4.7, there are two ways of specifying the lift and drag curves for the
selected NACA0015 airfoil, i.e. using a “series” mode or a “lookup” mode. In the
“series” mode, the Cl curve is represented using a sine series, while the Cd curve is
represented using a cosine series as shown by the equations in the same Figure. The
numbers shown in the sourceProperties file (Figure 4.7) are the ith coefficient ilC

and idC for the respective series equations. These coefficients have been generated by

fitting the Cl and Cd versus AOA using the sine or cosine series respectively. The fitted
raw data for the Cl and Cd must cover AOA ranging from – to +.

In the “lookup” mode, the lift and drag curves are described using point data as shown in
Figure 4.7. During computation, the values for Cl and Cd for any AOA are linearly
interpolated from the point data specified in the sourceProperties file. The data must
cover AOA ranging from – to +.

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
53

Figure 4.7: Airfoil section lift and drag curves specification in the sourceProperties file

4.3 Mesh Requirement

As previously discussed in Section 2.3.6, the rotorDiskSource library introduces a
momentum source on each cell included in a separate cell zone or fluid region. This
separate rotor cell zone must be made up of a collection of one-cell thick hexahedral cells
forming a cylindrical disk. The thickness of the cells must be chosen so as to give the best
possible aspect ratio (close to one) to the hexahedral cells.

The rotor disk may also have an inner central hole to allow for the rotor shaft with a no-
aerofoil region (also called “blade root cutout”). The addition of the central hole in the
middle of the rotor disk is also considered a good practice for avoiding mesh singularity at
the centre of the disk.

n

i
effiDD iCC

1

cos

n

i
effilL iCC

1

sin

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
54

An example of this setup is shown in Figure 4.8. Note that due to the specific
implementation of the momentum source terms (discussed in Section 2.3.6), only
hexahedral cells are allowed in the rotor disk region.

Figure 4.8: An example of rotor disk mesh using structured hexahedral cells

Although the rotor disk region can only be constructed from hexahedral cells, other parts
of the domain may be constructed using any other type of cells, i.e. tetrahedral or
polyhedral. However, if tetrahedral cells are used in the domain, a series of pyramid
shaped cells need to be attached on the rotor disk surfaces in order to smoothly blend the
hexahedral cells in the rotor disk region to the tetrahedral cells in the domain. An example
of this is shown in Figure 4.9.

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
55

Figure 4.9: An example of pyramid cells attachment on the rotor disk mesh in a fully unstructured

tetrahedral cell domain – generated using ANSYS TGrid

OpenFOAM does not include robust geometry manipulation and meshing tools. Hence, as
a standard practice, the geometry and mesh need to be generated using third party
software packages. A range of third party meshing software packages that have been
tested to be compatible with OpenFOAM are shown in Figure 4.10.

From the range of third-party geometry modeller and meshing software shown in Figure
4.10, Pointwise and ANSYS Gambit/TGrid have been successfully used for creating the
geometry and meshes used in this project. Pointwise has the ability to natively export the
created mesh into an OpenFOAM format. However, meshes created using ANSYS Gambit
and TGrid need to be first exported into ANSYS Fluent format. The resulting ANSYS
Fluent mesh can then be converted into an OpenFOAM mesh using the
fluent3DMeshToFoam utility which is included in the standard OpenFOAM
distribution.

Pyramidal cells on the side and
bottom surfaces of the rotor
disk

Pyramidal cells on the inner cap
of the rotor disk

NOTE: Pyramidal cells attached to the rotor
disk top surface have been omitted from view
for clarity

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
56

Figure 4.10: OpenFOAM user environment

The ANSYS Gambit and ANSYS TGrid software are widely available within DSTO.
Therefore, only the method of generating the rotor disk mesh using ANSYS Gambit and
TGrid will be discussed in this report.

4.3.1 Generating Rotor Disk Mesh Using ANSYS Gambit and ANSYS TGrid for
Use in OpenFOAM

Reference 1 provides a detailed discussion on the development of the VBM in the ANSYS
Fluent environment. A detailed procedure on how to create the rotor disk mesh in a CFD
model using ANSYS Gambit and TGrid is also included in Section 3.2 of Reference 1.
Therefore, this procedure will not be repeated in this report. However, during review of
Reference 1, it was found that the use of prismatic cells to construct the rotor disk is not
appropriate for the VBM method (refer to Section 2.3.6). Therefore, it is recommended that
the rotor disk region is constructed in ANSYS Gambit (or any other preferred geometry
modelling software) using structured hexahedral cells only. Pyramidal cell caps can then
be placed on the rotor disk surfaces to transition the hexahedral cells to the tetrahedral
cells for meshing the fluid domain as per the guidance given in Reference 1.

Following the procedure given at Reference 1, the mesh can be saved as a Fluent type
mesh file format (.msh)6. Although the OpenFOAM translation routine,
“fluent3DMeshToFoam” is able to translate the .msh file into OpenFOAM format, it was
found that the same routine performs better with ANSYS Fluent case file format (.cas).
Therefore, it is considered to be a good practice to load the ANSYS Gambit/TGrid
generated mesh into ANSYS Fluent, and then save the mesh into a “dummy” case file (in
.cas format).

6 IMPORTANT: the Fluent case file will need to be written in ASCII format for translation
into OpenFOAM format.

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
57

Conversion of an ANSYS Fluent case into an OpenFOAM format requires the user to first
set up a standard OpenFOAM case directory structure (previously shown in Figure 3.7) in
the intended OpenFOAM working path. For the purpose of importing the mesh from a
Fluent format into OpenFOAM, the “polyMesh” directory inside the case directory
structure must be empty. The conversion routine will subsequently populate this directory
to contain the files needed to define the mesh in OpenFOAM.

Prior to the mesh conversion, the “dummy” ANSYS Fluent case file needs to be copied
into the OpenFOAM case “root directory”. This is the top level location in the case
directory structure. Following this, the mesh conversion can be started by issuing the
following command from the Bash shell terminal from the case root directory location:

$ fluent3DMeshToFoam –scale <factor> <filename.cas> -writeZones
-writeSets

The input <factor> is the mesh geometric scaling factor to be applied during conversion,
e.g. if the mesh was created in the unit of mm, the entry <factor> should be replaced
with 0.001. The input <filename.cas> should be replaced with the ANSYS Fluent case
filename, including the full or relative path to the ANSYS Fluent case file.

Following a successful mesh conversion, the polyMesh directory will be populated with
the files as shown in Figure 4.11. Details on the mesh topology and conventions used in
OpenFOAM are available from Chapter 5 of Reference 13.

Figure 4.11: polyMesh directory structure in an OpenFOAM case

The “points”, “cells”, and “faces” files contain a long list of numbers which are used
for cell and face addressing. The “boundary” file contains the patch definition in the mesh.
It is important to note that the patch definitions contained in the “boundary” file are not
the boundary conditions for the case. The boundary conditions need to be set up in the “0”
directory in the case directory. Boundary conditions setup will be discussed in Section 4.4.

Prior to setting up the boundary conditions for the case, the user should check if the
separate cellZone or region that the rotor disk was created in has been preserved

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
58

correctly during the mesh conversion. The simplest way to check this is to make sure that
the “cellZone” file located in the polyMesh directory has at least two separate
cellZone as indicated in Figure 4.12.

The final step involved in the process of preparing an OpenFOAM mesh from an ANSYS
Fluent mesh is to reorder the mesh addressing in the domain to improve the
computational performance of the solvers. The reordering procedure involves rearranging
the points, faces and cells addressing to improve the bandwidth of the FV Matrix, once
constructed, during runtime. In general, the faces and cells are reordered so that the
neighboring cells are near each other in the zone and in memory. Since most of the
computational loops are over faces (e.g. calculation of the cell face flux), it is best to place
two adjacent cells next to each other in the memory addressing slots.

The imported mesh can be reordered by issuing the following command from the case root
directory:

 $ renumberMesh -overwrite

Figure 4.12: polyMesh directory structure in an OpenFOAM case

4.4 Setting Up the Boundary Conditions

The OpenFOAM mesh conversion utility, fluent3DMeshToFoam, will attempt to capture
the ANSYS Fluent boundary condition definitions as much as possible. However, since
there is no clear, direct correspondence between the OpenFOAM and ANSYS Fluent
boundary conditions, the user must make manual adjustments in the OpenFOAM case

Total number of cellZones (or regions) in the mesh

rotor disk region name

Total cell count in rotor disk region

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
59

prior to running the case. The following sub-sections will provide a high-level overview of
boundary conditions that are readily available in OpenFOAM for typical cases involving
the use of VBM.

4.4.1 Overview of Boundary Patches and Boundary Conditions in OpenFOAM

Following a successful mesh conversion from an ANSYS Fluent mesh format to an
OpenFOAM format, a “boundary” file will be automatically created by
fluent3DMeshToFoam and placed inside the polyMesh directory. The “boundary” file
contains the type associated with each imported domain boundary surface included in the
Fluent mesh that are readily recognisable by the fluent3DMeshToFoam. These boundary
types include: patch, wall, symmetry plane, and cyclic plane. If a 2D mesh is imported, then a
pair of empty plane or wedge plane will be created to simulate the symmetry plane or the cyclic
plane for the 2D planar and 2D axisymmetric case respectively. Note that a 2D mesh is not
suitable for using the rotorDiskSource library.

In OpenFOAM, a boundary surface is generally broken up into a set of patches. One patch
may include one or more enclosed areas of the boundary surface which do not necessarily
need to be physically connected (Reference 13). The type definition included in the
boundary file is therefore only associated with the mesh hierarchy. In addition to the type
definition included in the boundary file, a numerical boundary condition must also be
defined for each boundary surface.

In summary, there are two attributes associated with a “patch” that are described below in
their natural hierarchy. Figure 4.13 also shows the names of different patch types
introduced at each level of the hierarchy.

 Base type. The type of patch described purely in terms of geometry or a data
‘communication link’.

 Numerical type. The boundary conditions describing the treatment of field
variables on a particular base type patch. These are split into two categories:

a. Primitive type. The base numerical patch condition assigned to a field
variable on the patch. Some examples of these are: the Dirichlet Condition
(fixdValue), zero Neumann Condition (zeroGradient), etc.

b. Derived type. A complex patch condition, derived from the primitive type,
assigned to a field variable on the patch. Some examples of these are: the
totalPressure, inletOutlet, flowRateInletVelocity, etc.

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
60

Figure 4.13: Boundary patch hierarchy in an OpenFOAM case (reproduced from Reference 13)

4.4.2 Setting Up Boundary Conditions for an OpenFOAM Case

As discussed in the previous Section, the OpenFOAM mesh conversion utility,
fluent3DMeshToFoam, is capable of recognising the “base type” of each boundary patch.
This means that boundary surfaces with the following attributes: wall; symmetry plane; and
periodic (cyclic); are automatically setup in the boundary file. However, all other derived
types, such as: velocity inlet, pressure inlet, pressure outlet, etc, from ANSYS Fluent are
assigned a basic type of patch in the boundary file. Whilst each of these boundary
condition types carries a specific numerical definition in ANSYS Fluent, they are not made
available to the public. Therefore, a set of numerical boundary conditions that is
considered to be equivalent to that in ANSYS Fluent was investigated.

In addition to setting up the “base type” for each of the boundary surfaces in the
boundary file, a “numerical type” must also be assigned for each of the field variables at
each of the boundary surfaces included in the mesh. Setting up the numerical boundary
conditions in OpenFOAM involves creating a series of text files in a “0” directory as
previously shown in Figure 3.7. An example of an OpenFOAM case that was used for
validating the rotorDiskSource code has also been enclosed in this report (in
Appendix B), and may serve as a template for setting up future cases. Further details on
the more specific format of these boundary condition files are provided at Chapter 5.2 of
the OpenFOAM User Guide at Reference 13.

Table 4.3 provides a map translating the commonly used ANSYS Fluent boundary
conditions to those that are readily available in OpenFOAM. The OpenFOAM boundary
conditions shown in the map are not exhaustive, and are typically the simplest available
types. There is very limited information on some of these boundary conditions available in
the OpenFOAM User Guide (Reference 13, Chapter 5.2). Thus, in the author’s opinion, the
simplest way to learn more about the types of boundary conditions that are available in
OpenFOAM and their numerical implementation is through the source code. The source

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
61

code for all available boundary conditions in OpenFOAM can be found at the following
path:

 ${FOAM_SRC}/finiteVolume/fields/fvPatchFields/derived

The method and entries required to set up a boundary condition in OpenFOAM are not
necessarily uniform across all types. However, description of such methods required to
setup each boundary condition available in OpenFOAM is considered to be beyond the
scope of the current report. Nonetheless, the sample cases provided in Appendix B of this
report provide some examples on how the boundary conditions are typically set up in a
case involving a helicopter in forward flight. The boundary conditions setup can be found
in the files located inside the “0” directory of the case as given in Appendices B.2.6
through B.2.12. These files need to be created manually in every case set up. The methods
required for specifying any other boundary conditions apart from those included in
Appendix B can always be obtained from the source code.

4.4.3 Rotor Disk Boundary Conditions in OpenFOAM

The construction of the rotor disk geometry as shown in Figure 4.8 and Figure 4.9 requires
construction of several internal surfaces bounding the disk. Following the meshing of the
rotor disk, it is customary to define these disk internal surfaces as “interior” type
boundaries in ANSYS Gambit and ANSYS TGrid. Unfortunately, there is currently no
boundary condition in OpenFOAM that is equivalent to the “interior” type that is
available in ANSYS Fluent (and most of other commercial CFD packages, such as ANSYS
CFX). Any “interior” type boundaries in the ANSYS Fluent mesh will be ignored during
the conversion; hence such boundary will not appear in the “polyMesh/boundary” file
in the OpenFOAM mesh.

However, the geometry definition of the surface of such boundaries is retained in the
OpenFOAM mesh in the form of a “faceZone”. This faceZone may still prove useful for
post-processing the result using paraview. Therefore, it is still considered to be beneficial
to place the “interior” type surface or boundary when creating the ANSYS Fluent mesh for
post-processing purposes. Section 4.6 will provide limited guidance on how an “interior”
surface may be used for post-processing in OpenFOAM using paraview.

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
62

Table 4.3: Mapping of ANSYS Fluent boundary conditions to standard OpenFOAM numerical type boundary conditions

OpenFOAM 2.1.x
"Numerical Type" in Time Directory (If simulation is started from 0, the Time Directory is 0)

ANSYS Fluent
BC Type

OpenFOAM
2.1.x
"Base
Type" in
constant/
polyMesh/
boundary

0/p 0/U 0/k 0/epsilon

mass flow rate
inlet

patch zeroGradient;

waveTransmissive

1

flowRateInletVelocity fixedValue;

mappedFixedValue

2
;

turbulentIntensityKineticEnergyInlet

fixedValue;

mappedFixedValue

2
;

compressible::turbulentMixingLengthDissipationRateInlet

3

velocity inlet patch zeroGradient;

waveTransmissive

1

fixedValue;

uniformFixedValue;

mappedFixedValue

2

fixedValue;

mappedFixedValue

2
;

turbulentIntensityKineticEnergyInlet

fixedValue;

mappedFixedValue

2
;

turbulentMixingLengthDissipationRateInlet

3

pressure inlet patch fixedValue;

totalPressure

4

zeroGradient;

pressureInletVelocity

5

outletInlet outletInlet

pressure outlet patch zeroGradient;

totalPressure

4
;

inletOutlet;

pressureInletOutletVelocity

6

inletOutlet inletOutlet

wall - no slip wall zeroGradient fixedValue
7
 fixedValue

8
;

compressible::kqRWallFunction

10

zeroGradient
9
;

compressible::epsilonWallFunction

10

wall - slip wall slip slip slip slip

interior N/A N/A N/A N/A N/A

symmetry symmetry symmetryPlane symmetryPlane symmetryPlane symmetryPlane

periodic cyclic cyclic cyclic cyclic cyclic

N/A empty
13

 empty empty empty empty

N/A wedge
14

 wedge wedge wedge wedge

Table continues over page…

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
63

…Table continued

OpenFOAM 2.1.x
"Numerical Type" in Time Directory (If simulation is started from 0, the Time Directory is 0)

ANSYS
Fluent
BC Type

OpenFOAM
2.1.x
"Base
Type" in
constant/
polyMesh/
boundary

0/omega 0/T 0/mut 0/alphat

mass flow
rate inlet

patch fixedValue;

mappedFixedValue

2
;

compressible::turbulentMixingLengthDissipationRateInlet

3

fixedValue;

mappedFixedValue

2
;

totalTemperature

4

calculated calculated

velocity inlet patch fixedValue;

mappedFixedValue

2
;

fixedValue;

mappedFixedValue

2
;

calculated calculated

pressure inlet patch outletInlet zeroGradient;

outletInlet;

inletOutletTotalTemperature

11

calculated calculated

pressure
outlet

patch inletOutlet zeroGradient;

inletOutlet;

inletOutletTotalTemperature

11
;

calculated calculated

wall - no slip wall zeroGradient
9
;

compressible::epsilonOmegaFunction

10

zeroGradient;

compressible::temperatureThermoBaffle1D

12

mutKWallFunction
15

;

mutUWallFunction

16

alphatWallFunction;

alphatJayatillekeWallFunction

wall - slip wall slip slip slip slip

Note:

1. waveTransmissive is a boundary conditions that may be used if strong pressure reflection on the boundary is detected during the simulation, that causes
numerical instability to develop. Otherwise, the use of zeroGradient is recommended.

2. mappedFixedValue is used when the distribution of the “value” across the boundary is not uniform and is known. For example: parabolic velocity inlet.

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
64

3. The compressible::turbulentMixingLengthDissipationRateInlet can only be used for compressible flow solvers (e.g. rhoSimpleFoam). If an incompressible flow
solver is used (e.g. simpleFOAM), use the equivalent turbulentMixingLengthDissipationRateInlet.

4. totalPressure and totalTemperature should be used when running a compressible flow solver.

5. Use pressureInletVelocity for U when totalPressure is used for p.

6. Use pressureInletOutletVelocity for U when totalPressure is used for p.

7. Set value to “uniform 0”.

8. Set turbulent kinetic energy at the wall (k) to zero only when the mesh resolution at the wall is adequate to resolve the flow to the wall (low Reynolds number
mesh). Otherwise, use wall function.

9. Use zeroGradient for epsilon and/or omega at the wall only when the mesh resolution at the wall is adequate to resolve the flow to the wall (low Reynolds number
mesh). Otherwise, use wall function.

10. These BCs are for compressible flow solvers. When running an incompressible flow solver, remove the “compressible::” from the BC type name.

11. Use inletOutletTotalTemperature on a pressure boundary when totalTemperature is specified at an inlet boundary.

12. BC for calculating 1D normal conduction through a thin wall. zeroGradient condition for temperature at a wall will result in an adiabatic wall.

13. BC for the “front” and “back” planes of a planar 2D mesh – only used in a 2D simulation.

14. BC for the wedge planes of an axisymmetric 2D mesh – only used in a 2D axisymmetric simulation.

15. Wall function for turbulent vicosity based on near wall values of turbulent kinetic energy (k).

16. Wall function for turbulent vicosity based on near wall values of velocity.

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
65

4.5 Solution Driving Strategy

4.5.1 Overview

The steady-state RANS solvers included in the standard OpenFOAM distribution are
pressure-based segregated solvers that are based on the SIMPLE algorithm. The numerical
stability of such RANS algorithm is often determined by a range of interacting factors.
These factors are generally associated with:

1. appropriateness of the boundary conditions chosen;
2. appropriateness of the chosen initial condition;
3. the orthogonality of the cell faces in the mesh;
4. the number of PDEs being solved simultaneously during the simulation;
5. the method of solving the coupled PDEs, either by using a segregated method

(explicit coupling with quasi-linearisation) or direct implicit coupling method;
6. selection of the numerical discretisation scheme for each term in the PDEs being

solved;
7. selection of linear solvers employed in the algorithm, and
8. selection of the under-relaxation factors.

The original SIMPLE method was first introduced by Patankar and Spalding at Reference
16. The method was further extended for compressible flow and heat transfer application
at Reference 17. However, its suitability is often only limited to weakly compressible flow
(Ma < 0.7). In general, the SIMPLE algorithm seeks to convert the continuity equation into
an equation for pressure (often referred to as “pressure corrector”), and to use the
corrected pressure to correct the initial solution of the momentum equation. The solution
is then iterated until a “converged solution” is reached, meaning the pressure corrector
becomes zero anywhere in the solution. This particular method, while proven to be low-
cost and effective in solving the steady-state version of the Navier-Stokes equations, is
inherently unstable because the solution may change abruptly from one iteration to the
next, leading to a divergence in the calculation. Therefore, an appropriate combination of
solver settings and solution control methods needs to be applied to the case to stabilise the
run.

Unfortunately due to the diverse flow regimes (even when the simulated flow is only
limited to the incompressible and compressible flow regimes), there is no single method
that will ensure a stable simulation for all possible flow conditions and flow regimes while
at the same time maintaining a reasonable accuracy of the solution. For example, using a
Gauss upwind discretisation scheme (1st order accurate scheme) for all convective terms in
the momentum equation may lead to a more numerically stable run than using a Gauss
linear scheme (2nd order accurate scheme). However, this may lead to a less accurate
solution as the upwind scheme introduces a higher degree of numerical diffusion (artificial
diffusion) in the solution. An alternative method would be to start the run with a Gauss
upwind scheme for the convective terms until the pressure field is fully developed in the
domain, then switching to the Gauss linear scheme in the more advanced stage of the
iteration to get a better converged solution. The numerical stability may also be enhanced
by heavily under-relaxing the pressure field, which may dampen any numerical
fluctuations that occur in the pressure solution.

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
66

In an OpenFOAM case, the numerical discretisation schemes are specified in the
fvSchemes file located inside the system directory of the case. The linear solver settings
and solution control methods are set using the fvSolution file located inside the
system directory of the case. Users will need to create these files manually following the
specifications given in Section 4.4 and Section 4.5 of the OpenFOAM User Guide
(Reference 13). While the User Guide (Reference 13) provides some explanations of the
numerical schemes and linear solver settings that are available in OpenFOAM, they are by
no means exhaustive. Therefore, it may also be useful to refer to the sample case files
provided in Appendix B of this report.

The following sub-sections will discuss some of the more important considerations that
may help in stabilising the steady RANS simulation in OpenFOAM using the
simpleFoam or rhoSimpleFoam solvers. These strategies are generally applicable, but
not limited, to cases typically considered by IRSA, e.g. transport of hot exhaust plumes
around a helicopter in-flight.

4.5.2 Appropriateness of Boundary Conditions

Inappropriate boundary conditions are the most common cause for numerical instability in
performing a steady RANS simulation. This difficulty with setting-up proper boundary
conditions for a problem set has largely been alleviated in a lot of market-leading
commercial CFD packages (such as ANSYS Fluent or ANSYS CFX) for many commonly
considered flow cases. Many of the commercial CFD packages now employ an extensive
use of GUI to simplify the case set up procedure, and at the same time automate the
process of setting up the numerical boundary condition type for each of the field variables.
The main reasoning behind this automation is to minimise the chance of human error by
minimising the amount of user’s input. However, this has an adverse effect of obscuring
the actual implementation of the boundary conditions from the user.

In OpenFOAM, the user has the ability to set every boundary condition that is required to
solve each equation (refer to Section 4.4). However, this may also lead to inappropriate
specification of boundary conditions which causes the system of equations to be
“numerically stiff”, and eventually leading to a divergence solution during the iteration.
To minimise the chance of setting-up a numerically stiff case, the user needs to consider
the following factors:

1. Avoid using a Dirichlet type condition (e.g. fixedValue) for both the pressure and
velocity on a boundary. For example, if a fixedValue velocity is set at an inlet
boundary, a zeroGradient pressure must be selected on that boundary.

2. A case must not have fixedValue pressure being setup on all boundaries in a
computational domain, nor a zeroGradient pressure being setup on all
boundaries.

3. If the flow is compressible, a totalPressure boundary condition must be used
for pressure on all inlet and outlet boundaries (refer to Table 4.3).

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
67

4. Use the inletOutlet or pressureInletOutletVelocity type boundary
conditions for velocity on a pressure boundary for incompressible flow and
compressible flow cases respectively. This is particularly important on boundaries
where “back-flow” is expected. This is because the inletOutlet type is a
“mixed condition” that sets a zeroGradient condition on the boundary face if the
face flux vector on that face is pointing out of the domain, and sets a fixedValue
condition if the face flux vector on that face is pointing into the domain (i.e.
backflow). inletOutlet is also a better boundary condition for turbulence
quantities across a pressure boundary.

5. Ramp-up the velocity (or mass flow rate) at the inlet boundary by using the
“timeVarying” set up of the fixedValue or flowRateInletVelocity
boundary conditions. An example of how to use the time-varying option with the
flowRateInletVelocity is shown at Figure 4.14. Note that a volumetric flow
rate (instead of a mass flow rate) must be defined for flowRateInletVelocity
when used with an incompressible flow solver (e.g. simpleFoam).

4.5.3 Appropriateness of Initial Condition

An initial condition must be set for each of the field variables being solved. The initial
conditions are set up using the keyword internalField (refer to the sample case setup
at Appendix B). The simplest type of initial condition in OpenFOAM is as follows:

 internalField “uniform (0 0 0)” for a vector field;
 internalField “uniform 0” for a scalar field.

Starting the simulation from a zero solution is known to potentially cause numerical
instability in the flow-field at later stages during the iteration. Regions in the flow-field
with strong gradients (such as the engine exhaust exit plane in a helicopter simulation) are
particularly prone to numerical instability. Therefore, where a complex simulation is
concerned (such as flow around a helicopter in forward flight with hot exhaust plume), it
is recommended that the solution is developed gradually. In such a scenario, the
simulation may be started from a quiescent condition by first running a potential flow
solver (potentialFoam) or incompressible flow solver (simpleFoam) without modelling
the compressible flow feature. This will initially establish the pressure field and rough
wake field around the helicopter. The incompressible solution can subsequently be
mapped or interpolated into a new compressible flow case with the exhaust plume
activated. Ramping up the exhaust plume flow rate will also aid in stabilising the run.

The standard distribution of OpenFOAM comes with a utility to map or interpolate field
solution between meshes or cases. The following command can be used to map fields:

$ mapFields –consistent –sourceTime <time> -targetTime <time>
<sourceCasePath>

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
68

Figure 4.14: Using the “timeVarying” option of the flowRateInletVelocity boundary

condition across a mass flow rate inlet boundary

4.5.4 Cell Orthogonality Consideration

Highly non-orthogonal cells (i.e. skewed cells) may lead to large interpolation errors in the
calculation of the cell face flux for discretising both the convective and diffusive terms. The
cell quality is largely controlled and inspected during the meshing process. However, it
may not be possible to completely avoid the inclusion of highly-skewed cells in a mesh
containing highly complex geometry. Therefore, a correction needs to be applied in the
solving stage.

The standard OpenFOAM utility for checking mesh quality is

 $ checkMesh

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
69

The user must observe the reported average value and maximum value of the mesh
non-orthogonality from running the checkMesh utility. An average value of less than 30
is considered good. At least 1 or 2 nonOrthogonalCorrectors are needed when
checkMesh reports an average value of higher than 50. The number of
nonOrthogonalCorrectors can be set in the “system/fvSolution” file of the case,
under the keyword nNonOrthogonalCorrectors.

If checkMesh reports a maximum cell non-orthogonality of higher than 50, it is
recommended that a leastSquares method is used for calculating the gradient terms,
instead of the Gauss linear scheme. The discretisation scheme for the gradient term is
set in the case “system/fvSchemes” file, under the keyword gradSchemes.

4.5.5 Selection of Numerical Discretisation Scheme

OpenFOAM requires the user to set up the discretisation schemes that are to be used for
each PDE being solved. These include all gradient terms, convective terms (divergence
term), diffusion terms (laplacian term), and surface normal gradient terms. The numerical
schemes are specified in the “system/fvSchemes” file for each case.

Section 4.4 of the OpenFOAM User Guide (Reference 13) contains some limited
explanations on the numerical discretisation setup in a case. An example of the
fvSchemes file has also been included in the attached sample case files at Appendix
B.2.14.

There are several differences in the way the discretisation schemes are setup (or selected)
in OpenFOAM and ANSYS Fluent cases. A map translating the commonly used ANSYS
Fluent numerical schemes (or discretisation schemes) to those that are readily available in
OpenFOAM is shown in Table 4.4. Due to the limited information available from the
ANSYS Fluent manual, some educated judgement was applied to deduce the possible
implementation of the same discretisation scheme in Fluent.

It is considered a standard practice to start a complex flow simulation (using steady
pressure-based RANS formulation) with first order accurate schemes for the divergence
terms (i.e. Gauss upwind). The residuals are then monitored during runtime. The
solution may be restarted using higher order-schemes (such as Gauss linear) when the
residuals have shown a significant drop (approximately by two orders of magnitude), and
any instabilities in the pressure residuals have gradually disappeared. A more
conservative approach would be to restart the solution using higher order schemes from a
fully converged first order accurate solution.

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
70

Table 4.4: Mapping of ANSYS Fluent discretisation schemes to standard OpenFOAM discretisation schemes – excluding Laplacian schemes

Pressure-Velocity Coupling: Segregated - SIMPLE

ANSYS Fluent - Setup in GUI OpenFOAM - $FOAM_CASE/system/fvSchemes Numerical Behaviour of OpenFOAM Scheme

Gradient grad(p); grad(U)

Green Gauss Node Based Gauss pointLinear Second order, Gaussian Integration - Using Node values

Green Gauss Cell Based Gauss linear Second order, Gaussian Integration - Using Cell centre values

Least Squares Cell Based leastSquares Second order, least squares fitting

N/A fourth Fourth order, least squares fitting

Flux Limiter in Gradient Term

Cell-to-Face Limiting faceLimited <gradScheme> 1 Cell limited version of one of the above grad schemes

Cell-to-Cell Limiting CellLimited <gradScheme> 1 Face limited version of one of the above grad schemes

Cell Centre-to-Face Centre Interpolation

Unknown linear Central differencing, unbounded

Unknown upwind phi Upwind differencing, bounded

Unknown limitedLinear <factor> phi

Blending of central differencing and bounded upwind differencing based on
<factor>, e.g.
limitedLinear 0.5 phi

Pressure div(U,p)

Standard Gauss upwind First order, upwind differencing

PRESTO! N/A Unknown

Linear Gauss linear Second order, central differencing

Second Order Gauss linear Second order, central differencing

Body Force Weighted Gauss limitedLinear 1 Unknown

Table continues over page…

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
71

Table continued…

ANSYS Fluent - Setup in GUI OpenFOAM - $FOAM_CASE/system/fvSchemes Numerical Behaviour of OpenFOAM Scheme

Momentum (Vector Field) div(phi,U)

First Order Upwind Gauss upwind <fluxLimiterScheme> First order, bounded

Second Order Upwind Gauss linearUpwind <fluxLimiterScheme> First/second order, upwind differencing with a blending function, bounded

N/A Gauss linear Second order, central differencing for face flux term, unbounded

Power Law N/A Unknown

QUICK Gauss QUICK Second order, bounded

Third Order MUSCL Gauss MUSCL Second order, Total Variation Diminishing (TVD) scheme, bounded

N/A Gauss skewLinear First/Second order, upwind differencing with skewness correction, bounded

N/A Gauss limitedLinearV First/Second order, TVD scheme, limitedLinear differencing, bounded

N/A Gauss limitedCubicV First/Second order, TVD scheme, cubic differencing with flux limiter, bounded

N/A Gauss SFCD
First/Second order, Normalised Variation Diminishing (NVD) scheme,
Self-Filtered Central Differencing, bounded

N/A Gauss vanLeerV First/Second order, NVD scheme, bounded

k, epsilon,
omega, energy
(Scalar Field)

div(phi,k); div(phi,epsilon);
div(phi,omega); div(phi,K);
div((muEff*dev2(T(grad(U)))));
div((muEff*dev2(grad(U).T())))

First Order Upwind Gauss upwind <fluxLimiterScheme> First order, bounded

Second Order Upwind Gauss linearUpwind <fluxLimiterScheme> First/second order, upwind differencing with a blending function, bounded

N/A Gauss linear Second order, central differencing, unbounded

Power Law N/A Unknown

QUICK Gauss QUICK Second order, bounded

Third Order MUSCL Gauss MUSCL Second order, Total Variation Diminishing (TVD) scheme, bounded

N/A Gauss cubicCorrected Fourth order, unbounded, cubic differencing

N/A Gauss skewLinear First/Second order, upwind differencing with skewness correction, bounded

N/A Gauss limitedLinear First/Second order, TVD scheme, limitedLinear differencing, bounded

N/A Gauss limitedCubic First/Second order, TVD scheme, cubic differencing with flux limiter, bounded

Table continues over page…

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
72

Table continued…

ANSYS Fluent - Setup in GUI OpenFOAM - $FOAM_CASE/system/fvSchemes Numerical Behaviour of OpenFOAM Scheme

k, epsilon,
omega, energy
(Scalar Field)

div(phi,k); div(phi,epsilon);
div(phi,omega); div(phi,K);
div((muEff*dev2(T(grad(U)))));
div((muEff*dev2(grad(U).T())))

N/A Gauss SFCD
First/Second order, Normalised Variable (NV) scheme,
Self-Filtered Central Differencing, bounded

N/A Gauss limitedVanLeer <LowerBound> <UpperBound>
First/Second order, NVD scheme for strictly bounded scalar, e.g.
Gauss limitedVanLeer 0.1 1.0

Note:
1. The shaded row was found to be the most robust scheme for a mesh of typical industrial type and quality.

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
73

The central differencing interpolation (Gauss linear) used in the convective flux
reconstruction is second order accurate, which often causes numerical oscillations during a
steady RANS simulation. On the other hand, the upwind differencing scheme does not
induce numerical oscillations, but is numerically very diffusive. Hence, a blend between
the two schemes is the preferred method in most cases.

The simplest method to blend the central differencing scheme with the upwind
differencing scheme is by introducing a blending function into the interpolation scheme.
This method is implemented in the Gauss linearUpwind scheme, which is similar to
the ANSYS Fluent’s second order upwind discretisation scheme.

Furthermore, there exist a large number of other flux reconstruction schemes, such as the
TVD and NVD schemes, that attempt to apply various form of flux limiting schemes to
increase the boundedness of the scheme. While these schemes may reduce numerical
oscillations and at the same time achieve higher than first order accuracy, they have not
been found to be significantly more robust than the linearUpwind scheme. It is also
important to note that the overall accuracy of the Gauss schemes is limited to second order
despite the use of higher order flux reconstruction schemes (i.e.
Gauss cubicCorrected scheme will still be second order accurate despite the fourth
order accurate interpolation scheme being used).

Generally, in the author’s opinion, the bounded second order linearUpwind scheme
with a faceLimited option provides an optimum balance between numerical stability
and order of accuracy. However, for a strictly bounded scalar, such as turbulence kinetic
energy, a vanLeer or limitedLinear TVD schemes may provide better damping to any
numerical oscillation that may arise in the solution, particularly if strong gradients are
expected to occur in the domain (Reference 18).

All Laplacian terms have been excluded from Table 4.4 as there is no sufficient information
available to deduce the type of Laplacian Schemes used in ANSYS Fluent. In OpenFOAM,
a numerical scheme must be specified for all Laplacian terms found in the PDEs that are
being solved. These are also specified in the “system/fvSchemes” file for each case. The
Gauss scheme is the only choice of discretisation, and it requires a selection of both an
interpolation scheme for the diffusion coefficient, and a surface normal gradient scheme.
The following example illustrates the method of specifying a Laplacian discretisation
scheme in OpenFOAM.

Consider a typical Laplacian term found in the incompressible Navier-Stokes Equation,

 U

This is represented in OpenFOAM syntax as:

laplacian(nu,U)

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
74

The Gauss scheme can be applied to the above Laplacian term by applying a divergence

scheme to the velocity gradient term, U . Note that the term U must be evaluated as a

surface normal gradient of velocity U at the face centre (in a similar fashion to the flux
evaluation in the convection term). Thus, to summarise, the entries required are:

laplacian(nu,U) Gauss <interpolationScheme> <snGradScheme>;

The interpolation scheme can be chosen from those listed in Table 4.4. It is recommended
that linear interpolation is used. The user must then specify the Surface Normal
Gradient (snGrad) scheme from those listed in Table 4.5.

Table 4.5: Surface normal gradient discretisation schemes for specifying Laplacian schemes in

OpenFOAM

OpenFOAM - $FOAM_CASE/system/fvSchemes Numerical Behaviour of OpenFOAM Scheme

snGrad Scheme

corrected Unbounded, second order, conservative

uncorrected Bounded, first order, non-conservative

limited <ψ>
1
 Blending of corrected and uncorrected schemes

bounded First order for bounded scalars ONLY

fourth Unbounded, fourth order, conservative

Note: 1. The shaded row was found to be the most robust for a mesh of typical industrial type and quality.
The <ψ> corresponds to a floating point number between 0 and 1 (refer to the following paragraph for further
explanation).

The “corrected” and “fourth” snGrad schemes were found to induce numerical
instability when used with an unstructured tetrahedral mesh. Therefore, it is
recommended that the limited <ψ> scheme is used for most cases. According to
Reference 13, the blending coefficient (0 ≤ ψ ≤ 1.0) for the limited scheme is based on the
following criteria:

Selection of the appropriate blending coefficient to use should be based on the cell
orthogonality measure. As a rule of thumb, when the maximum non-orthogonality in the
mesh is found to be higher than 50°, the “Gauss linear limited 0.5” scheme
should be used, and if the maximum cell non-orthogonality is found to be higher than 70°,
the “Gauss linear limited 0.333” should be used.

The simplest way to test the appropriateness of the choice of the Laplacian scheme is by
running a potential flow solver (i.e. potentialFoam) using the prepared mesh. The

potentialFoam solves the potential flow equation (0.;02 Up), which is the

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
75

Laplacian of the pressure (laplace(1,p) Gauss linear limited 0.5;). Thus,
any numerical instability that arises during the potentialFoam simulation is solely due
to the discretisation of the Laplacian term.

A summary of the optimum second order discretisation schemes for running compressible
flow cases typically considered within the IRSA group is shown in Table 4.6. Note that
since the momentum source introduced by the rotorDiskSource library is an explicit
source term, no additional discretisation scheme needs to be specified in the fvScheme
file apart from those required by the solver.

Table 4.6: Recommended second order accurate discretisation scheme set up for use with the

rhoSimpleFoam solver

Term / keyword in fvSchemes FV Scheme Comment

ddtSchemes

default steadyState; rhoSimpleFOAM compressible flow
solver

gradSchemes

default cellLimited Gauss linear 1; Use "cellLimited Gauss
pointLinear 1" if Mach > 0.5.

grad(U) cellLimited leastSquares 1; Cell-to-Cell flux limited to 1
neighbouring cell. LeastSquares fit
interpolation.

grad(p) cellLimited Gauss linear 1; Can be changed to leastSquares if
large number of highly non-orthogonal
cells exist in the mesh.

grad(K) faceLimited Gauss linear 1; Cell-to-Face flux limited to 1
neighbouring cell. Linear interpolation
(central differencing).

divSchemes

default none;

div(phi,U) Gauss linearUpwindV grad(U); grad(U) is the flux limited scheme - set
in the gradSchemes.

div(U,p) Gauss linear; Use Gauss linear only to maintain
accuracy for the pressure equation.

div(phi,k) Gauss limitedLinear 0.5; The coefficient "0.5" can be reduced to
"0.1" to set the scheme closer
to upwind behaviour.
Gauss linearUpwind with flux limiter
can also be used. Alternatively, use
Gauss vanLeer.

div(phi,epsilon) Gauss limitedLinear 0.5; The coefficient "0.5" can be reduced to
"0.1" to set the scheme closer
to upwind behaviour.
Gauss linearUpwind with flux limiter
can also be used. Alternatively, use
Gauss vanLeer.

Table continues over page…

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
76

Table continued…

Term / keyword in fvSchemes FV Scheme Comment

div(phi,omega) Gauss limitedLinear 0.5; The coefficient "0.5" can be reduced to
"0.1" to set the scheme closer
to upwind behaviour.
Gauss linearUpwind with flux limiter
can also be used. Alternatively, use
Gauss vanLeer.

div(phi,K) Gauss linearUpwind grad(K); grad(K) is the flux limited scheme - set
in the gradSchemes.

div(muEff*dev2(grad(U).T()))) Gauss linear; Use Gauss linear only to maintain
accuracy for the turbulence modelling.

div(nuEff*dev(T(grad(U))))) Gauss linear; Use Gauss linear only to maintain
accuracy for the turbulence modelling.

laplacianSchemes

default none; Default can be set to "Gauss linear
limited 0.333". All the other
Laplacian entries will be omitted.

laplacian(muEff,U) Gauss linear limited 0.333; Can be omitted if the default is used. It
is recommended all laplacian terms
used the same scheme.

laplacian((rho*(1/|A(U))),p) Gauss linear limited 0.333; Can be omitted if the default is used.

laplacian(alphaEff,h) Gauss linear limited 0.333; Can be omitted if the default is used.

laplacian(DkEff,k) Gauss linear limited 0.333; Can be omitted if the default is used.

laplacian(DepsilonEff,epsilon) Gauss linear limited 0.333; Can be omitted if the default is used.

laplacian(DomegaEff,omega) Gauss linear limited 0.333; Can be omitted if the default is used.

interpolationSchemes

default linear;

upwind phi;

Can be changed to leastSquares for
highly non-orthogonal mesh at a higher
CPU cost.

“upwind phi” scheme provides a
bounded upwind interpolation.

snGradSchemes

default limited 0.333; flux limited scheme with non-orthogonal
correction.

4.5.6 Selection of Linear Solvers

The type of linear solver used for solving each of the PDEs must be specified by the user in
the “fvSolution” file located in the “system” directory of a case. Section 4.5 of
Reference 13 contains some limited explanations on the setup of solution method for a

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
77

case. An example of the fvSolution file has also been included in the attached case files
at Appendix B.2.15.

There are several differences between the linear solver setup in OpenFOAM and ANSYS
Fluent. ANSYS Fluent by default sets up the multigrid solver to be used for all PDEs.
While, the same set up can also be used in an OpenFOAM case, it is not a recommended
setting. Table 4.7 shows the recommended linear solver set up for a compressible
OpenFOAM case.

4.5.7 Under-Relaxation Factors

Under-Relaxation Factors (URF) can be used to stabilise a steady-state RANS simulation
run. In an OpenFOAM case, the URFs are setup in the “system/fvSolution” file under
the keyword “relaxationFactors”.

The most commonly accepted set of URFs as recommended in the ANSYS Fluent User
Manual is to use a URF of 0.3 for pressure, and 0.7 for the momentum equation.
Furthermore, ANSYS Fluent recommends using a URF ranging from 0.7 to 0.9 for the
energy and turbulence model equations. This particular setup has been found to be
unsuitable for running steady highly compressible flow cases in OpenFOAM. Severe
numerical instability growth in the pressure field has been seen in the early iterations,
which eventually led to numerical divergence.

A recommended URF setup for running a steady compressible flow case using
OpenFOAM is shown in Figure 4.15. The recommended URF for pressure is ranging
between 0.001 and 0.1. Flow cases with higher Mach numbers will tend to require a lower
URF for pressure during the early iterations (typically for the first 1000 – 2000 iterations).
The URF for pressure may be increased in the later iterations to speed up convergence.

Figure 4.15: Recommended URF setup for running rhoSimpleSourceFoam solver for a moderately

compressible flow case

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
78

Table 4.7: Recommended linear Solver Set Up for Use with the rhoSimpleSourceFoam Solver

PDE
Linear Solver
Type

Recommended Setup
(optimised)

Alternative Setups Comments

p

Preconditioned
Conjugate
Gradient
Method (PCG)

p
{
 solver PCG;
 preconditioner
 {
 preconditioner GAMG;
 tolerance 1e-05;
 relTol 1e-03;
 smoother DICGaussSeidel;
 nPreSweeps 0;
 nPostSweeps 2;
 nBottomSweeps 2;
 cacheAgglomeration false;
 nCellsInCoarsestLevel 20;
 agglomerator faceAreaPair;
 mergeLevels 1;
 }
 tolerance 1e-06;
 relTol 1e-02;
}

p
{
 solver GAMG;
 tolerance 1e-06;
 relTol 1e-02;
 smoother GaussSeidel;
 nPreSweeps 1;
 nPostSweeps 2;
 nBottomSweeps 2;
 cacheAgglomeration true;
 nCellsInCoarsestLevel 20;
 agglomerator faceAreaPair;
 mergeLevels 1;
}

ALTERNATIVELY

p
{
 solver PCG;
 // Use PBiCG for transonic
 preconditioner DIC;
 // Use DILU for transonic
 tolerance 1e-06;
 relTol 1e-02;
}

The recommended setup uses the smoothed
Geometric Algebraic Multi Grid (GAMG) solver as
the matrix preconditioner for the PCG solver. This
results in a highly optimised solution method for
pressure as the GAMG preconditioner
dramatically reduces the number of PCG
iterations needed. However, the user may opt to
use the GAMG as the main solver as a cheaper
alternative.

Another more expensive alternative would be to
use the PCG solver with a Cholevsky method
preconditioner (DIC).

If the maximum Mach Number in the field is
higher than 0.6, it is recommended that the
'transonic' options is enabled in the
system/fvSolution file by adding the following
entry:

SIMPLE
{
 transonic yes;
}

If the transonic option is enabled, the PBiCG
solver must be used in place of PCG. The
transonic option, when enabled, will write the p
matrix in its full non-symmetric form.
The PCG solver is only for solvng a symmetric
matrix equation, while the PBiCG is the PCG
counterpart for solving non-symmetric matrix
equation.

Table continues over page…

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
79

Table continued…

PDE
Linear Solver
Type

Recommended Setup
(optimised)

Alternative Setups Comments

U, h, k,
epsilon,
omega,
R,
nuTilda

Geometric
Algebraic
Multi Grid
(GAMG) Solver

"(U|h|k|epsilon|omega|R|nuTilda)"
{
 solver GAMG;
 tolerance 1e-08;
 relTol 1e-02;
 smoother GaussSeidel;
 nPreSweeps 1;
 nPostSweeps 2;
 nBottomSweeps 2;
 cacheAgglomeration true;
 nCellsInCoarsestLevel 20;
 agglomerator faceAreaPair;
 mergeLevels 1;
}

"(U|h|k|epsilon|omega|R|nuTilda)"
{
 solver smoothSolver;
 smoother GaussSeidel;
 tolerance 1e-08;
 relTol 1e-02;
}

ALTERNATIVELY

"(U|h|k|epsilon|omega|R|nuTilda)"
{
 solver PBiCG;
 smoother DILU;
 tolerance 1e-07;
 relTol 1e-02;
}

It is recommended to use the the same solver
type for U,h, k, epsilon, omega, and R. epsilon,
omega, or R must be specified depending on
the selection of turbulence model.

Note that the expression
"(U|h|k|epsilon|omega|R)" represents the
boolean operation "or" wildcard.

The recommended setup uses the GAMG
solver with a GaussSeidel smoother. A cheaper
alternative is to use the Gauss-Seidel solver
(smoothSolver).

Using the PBiCG is considered to be the most
robust and accurate solution method, however
at a higher computing cost. The Incomplete
L-U Decomposition method (DILU) can be used
as a preconditioner for the PBiCG solver.

If any instability in the turbulence quantities
develops during a simulation run, it is
recommended to create a separate entry for
"(k|epsilon|omega|R)", and using the
smoothSolver for these PDEs.

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
80

4.6 Plotting Results on the Rotor Disk Surface using ParaviewTM

ParaviewTM is a third-party post-processing software that is included in the standard
distribution of OpenFOAM. An extensive user guide is readily available from the
Paraview official website at Reference 19.

The discussion here will be limited to the important aspects of post-processing results
generated using the rhoSimpleSourceFoam solver and the rotorDiskSource library.
Readers are assumed to have a working knowledge of how to use Paraview’s basic
functionality.

As previously discussed in Section 4.3 and Section 4.4, the rotor disk surfaces are created
using ANSYS TGrid as “interior” type surfaces. Since OpenFOAM does not recognise an
interior type surface as a boundary condition, the rotor disk surfaces are translated into a
“faceZone” during the mesh translation routine.

Two methods are available in Paraview for plotting the flow-field variables on the rotor
disk surface, i.e.:
1. By defining a new plane source7 in Paraview which has the same dimensions, position

and orientation as the rotor disk surface. This method can be difficult to implement if
the exact position and orientation of the disk is unknown.

2. By converting the rotor disk region contained in the OpenFOAM mesh into a VTK
format, which can then be readily read into Paraview. This is the preferred method, as
the disk surface mesh and geometrical information preserved as a faceZone in the
OpenFOAM mesh can then be read directly in the Paraview environment.

4.6.1 Plotting Flow-field Variables on the Rotor Disk using a New Plane Source in
Paraview

After loading up the OpenFOAM case and data into Paraview, a new rotor disk surface
plane can be defined in Paraview by selecting the following menu entry:

 Sources > Disk

The dimensions, radial resolution and circumferential resolution of the newly created
plane source must be set to correspond to the rotor disk mesh. Following this, the user
must then apply a “transform” filter to the newly created disk to re-position and re-orient
the disk to the correct location and orientation. This can be done through the following
menu entry:

 Filters > Alphabetical > Transform

7 The term “source” in Paraview refers to a geometry definition (for example: a surface plane,
cylinder, etc.) that is created exclusively within the Paraview environment.

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
81

Finally, the flow-field data can be mapped onto the newly created disk using the following
menu entry:

 Filters > Alphabetical > Resample With Dataset

Note that for the “Resample With Dataset” filter to work, the user must first select the
main case name entry in the Selection Tree.

4.6.2 Plotting Flow-field Variables on the Rotor Disk using a VTK File

To use this method, the OpenFOAM mesh containing the rotor disk source region must
first be exported into a VTK format. This can be done using the following command from
the root directory of the corresponding OpenFOAM case:

 $ foamToVTK –latestTime

The foamToVTK utility will write the mesh and point data into a new directory named
VTK. Inside the VTK directory, each patch and faceZone is arranged into a separate
directory. The user must then identify the name of the faceZone that corresponds to the
rotor disk surface. The VTK file that is located inside the directory with the faceZone
name contains the point and cell data for the corresponding faceZone surface.

The newly created VTK file can be read into the Paraview environment using the standard
“file > open” menu entry in Paraview, and can be subsequently used as the “source” for
the “Resample With Dataset” filter as previously described in Section 4.6.1.

This method is more efficient than the previous one as it does not require the user to know
the exact position and orientation of the rotor disk surface.

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
82

5. Validation and Verification Test Case

5.1 Overview

An experimental dataset based on a rotor - fuselage aerodynamic interaction study is
available from References 20 through 24. This dataset was identified as a suitable
validation case for the rotorDiskSource model in OpenFOAM. The same case has been
previously used by the ANSYS Fluent team at Reference 2 for validating the Fluent VBM
model.

The validation effort consists of modelling the wind tunnel experiment described in
Reference 20 (which will be referred to hereafter as the Georgia Tech case) using both
OpenFOAM and ANSYS Fluent. The results from both CFD packages will be compared to
the experimental data. The OpenFOAM result will also be compared to the ANSYS Fluent
result for verification purposes. The ANSYS Fluent VBM Model (version 9.0) provided by
ANSYS directly (Reference 25) was used in this work.

5.2 Summary of Georgia Institute of Technology (Georgia Tech) Rotor-
Airframe Interaction Experimental Setup

The wind tunnel experiment in Reference 20 involves placement of a simple fuselage body
in a 2.3 m x 2.74 m low speed wind tunnel with a uniform freestream velocity. The tunnel
freestream turbulence level was measured to be below 1 per cent.

A two-bladed teetering rotor was placed above the fuselage to simulate a helicopter rotor.
Using this setup, the rotor and the airframe were linked solely through the flow-field.
Figure 5.1 shows a schematic of the experimental setup, which has been reproduced from
Reference 20.

According to References 20, 22 and 23, the fuselage geometry was a cylinder with a
hemispherical nose. The cylinder diameter was 134 mm. The total length of the fuselage
was 1,350 mm. The rotor hub was located 274.2 mm above the fuselage, and was placed
along the fuselage symmetry line, at an axial length of 914 mm downstream from the
fuselage nose tip.

The rotor blade was made with an un-tapered NACA 0015 profile, with an 86 mm chord
length. The rotor diameter was 914 mm. The blade hub diameter was 24.5 mm. The blade
collective pitch angle was preset at 10 degrees during the experiment. The rotor plane was
tilted at 6 degrees forward to simulate the forward flight condition, and the rotor speed
was set at a constant 2100 rpm. In the experiment reported in Reference 22, the advance
ratio (which is defined as the ratio of the tunnel freestream velocity to the rotor tip speed)
was set to 0.10. This advance ratio was for a tunnel freestream velocity of 10 m/s.

During the experiment, coning of the blade was measured to be negligible due to the
stiffness of the blade and the absence of hinges at the rotor hub; however, the blade was
free to flap laterally and longitudinally. The blade flapping angles were measured by

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
83

tracking the position of the blade tip. Reference 23 reported that the blade’s longitudinal
and lateral flapping angles were 4.06 deg and 2.03 deg upwards respectively.

The cylindrical fuselage in Reference 23 was instrumented with 94 static pressure taps.
Furthermore, velocity field measurements at several locations in the flow-field were taken
using the Laser Doppler Velocimetry (LDV) technique.

Figure 5.1: Georgia Tech rotor - airframe interaction wind tunnel experimental setup – reproduced

from Reference 23

5.3 CFD Model

5.3.1 Geometry and Mesh

A CFD model of the Georgia Tech experiment was created as part of the current validation
effort. The geometry and mesh were created using the ANSYS Gambit and TGrid
software. The mesh was then converted to an OpenFOAM mesh using the
fluent3DMeshToFoam utility.

Unstructured tetrahedral cells were used to mesh the entire computational domain, which
comprises of approximately 1.4 million cells. The tetrahedral cells in the domain and on
the fuselage wall were then converted to unstructured polyhedral cells to increase
computational efficiency. The rotor domain mesh was of structured hexahedral type with
approximately 30,000 cells. The computational domain was a 5.5m x 2.7m x 2.3m block.

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
84

Figure 5.2 shows the mesh configuration used in this CFD model. The teeter hinge used to
mount the rotor was not modelled in the computational domain.

Figure 5.2: Mesh configuration

5.3.2 Boundary Conditions

Dirichlet and Zero Neumann boundary conditions were used for velocity and pressure
respectively across the domain inlet boundary. The velocity at the outlet boundary was set
to Zero Neumann condition, while the gauge pressure across the outlet boundary was set
to a uniform fixed value of 0 Pa.

The standard k-ε turbulence model was used in the simulation. Dirichlet conditions were
used for k and ε at the inlet boundary. The k value at the inlet was estimated using
Equation 5.1 to be 12 m2/s2 based on 10 m/s tunnel freestream velocity and 1% upstream
turbulence intensity.

 25.1 turbinlet IUk [Equation 5.1]

(Reference 26)

The ε value at the inlet was estimated using Equation 5.2 to be 32 m2/s3 based on tunnel
hydraulic diameter of 3 m, and freestream turbulence kinetic energy of 12 m2/s2.

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
85

 HD

kC

07.0

5.175.0
 [Equation 5.2]

(Reference 26)

where:
 HD is the tunnel hydraulic diameter,

 C is a k-ε model constant (commonly accepted value is 0.09).

Zero Neumann conditions were used for k and ε at the outlet boundary.

Non-slip wall conditions were used on all the domain boundaries except at the domain
inflow and outflow boundaries. Zero Neumann conditions were used for pressure at
walls, while the velocity is set to zero. The standard k and ε wall functions were used on
all walls. The computed turbulent viscosity, ύ, was fitted with a standard wall function on
the wall.

The boundary condition set up for the Georgia Tech case is provided at Appendices B.2.6
through B.2.12.

5.3.3 Rotor Modelling

All of the rotor modelling parameters that are measured in the experiment (summarised in
Section 5.2) can be incorporated into the VBM. It is important to point out that the pitch
angle of the teetering rotor in the Georgia Tech experiment was fixed at 10° collective
without any possibility of adjusting the cyclic pitch. The same collective pitch was entered
as a rotor parameter in the VBM; however, the cyclic pitch has been assumed to be zero.

The 2D lifting line and drag curves for the NACA 0015 airfoil were obtained from running
a 2D panel method code called XFoil. The Cl and Cd profiles for a range of AOA are
shown in Figure 5.3.

5.3.4 FV Discretisation Scheme and Linear Solvers

The same FV discretisation schemes as those presented in Table 4.6 were used to run the
Georgia Tech case.

The pressure equation was solved using the Geometric-Algebraic Multi Grid solver with a
Gauss-Seidel smoother. All the other equations were solved using an iterative Gauss-
Seidel method (smoothSolver). The iterative solver tolerances were set to 10-7 for the
pressure solver, and 10-8 for all the other equations.

An under relaxation factor of 0.2 was used for the pressure field during the simulation run.
All other field variables were under-relaxed by a factor of 0.3 during runtime.

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
86

Samples of the FV discretisation scheme and linear solver setup for the Georgia Tech case
are provided at Appendix B.2.14 and Appendix B.2.15 respectively.

Figure 5.3: Cl and Cd profiles for NACA 0015 airfoil over a range of AOA

5.3.5 ANSYS Fluent Case Setup

For verification purposes, an identical mesh and geometry to that used in OpenFOAM was
setup and run using ANSYS Fluent. In ANSYS Fluent, the equations were initially
discretised using first order upwind schemes. The schemes were later changed to second
order upwind after 1000 iterations. The Multi-Grid solver was used for all equations in
ANSYS Fluent.

5.3.6 Solution Driving Strategy and Residual Trend

The OpenFOAM case was initially run for 1000 iterations using the Gauss upwind (first
order upwind) scheme for all the divergence terms. The schemes were then switched to

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
87

the Gauss linearUpwind (second order upwind) scheme from the 1000th iteration
onwards, until convergence was achieved. The Flow-field convergence was observed after
4000 iterations.

Figure 5.4 shows the residual curves for an OpenFOAM run of the untrimmed Georgia
Tech case. The residuals are seen to exhibit cyclic behaviour at convergence, possibly due
to some unsteadiness in the flow-field which cannot be modelled using the steady-state
RANS model.

Figure 5.4: Residual curves of the Georgia Tech case run using the rhoSimpleSourceFoam solver

5.4 Verification and Validation Result

The Georgia Tech Rotor-Airframe experiment was simulated for both the untrimmed rotor
and trimmed rotor conditions. In the untrimmed rotor simulation, the blade collective and
cyclic pitch angles were set to the experimentally measured values. However, in the
trimmed rotor simulation, the blade collective and cyclic pitch angles were allowed to
change during the simulation until the experimentally measured total rotor thrust was
obtained in the simulation. Due to the lack of data, the rotor pitching and rolling moments
in the experiment were assumed to be zero for the trimmed rotor condition (See
Section 5.4.3).

5.4.1 Calculated Rotor Thrust and Moments

A comparison between converged rotor disk thrust and moments obtained using different
solvers is shown in Table 5.1. It shows that the predicted rotor thrust obtained using the
simpleFoam (incompressible) solver for the untrimmed condition compares well with the

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
88

experimentally measured value of 72.8 N. The rhoSimpleFoam (compressible) solver and
ANSYS Fluent are shown to under-predict the rotor thrust.

Table 5.1: Calculated rotor thrust and moments

Total Rotor Disk

Flow Solver
Untrimmed
/ Trimmed?

Blade Cyclic
Pitch Angles

Blade
Collective

Angle Thrust (N)
Pitching
Moment

(N.m)

Rolling
Moment

(N.m)

Untrimmed
0° (Lat and

Long)
1

10°
1
 71.96 2.72 -2.08

simpleFoam
(Incompressible)

Trimmed
2.37° (Lat)

-2.88 (Long)
12° 72.8

 2
 0 0

Untrimmed
0° (Lat and

Long)
1

10°
1
 66.93 2.46 -1.99

rhoSimpleSourceFoam
(Compressible)

Trimmed
2.24° (Lat)

-2.54 (Long)
11.2° 72.8

2
 0 0

ANSYS Fluent
(Incompressible)

Untrimmed
0° (Lat and

Long)
1

10°
1
 68.158 3.05 -3.32

Note:

1. Based on experimentally measured values (Reference 24).

2. Based on experimentally measured Coefficient of Thrust of 0.0092 (Reference 24).

5.4.2 Untrimmed Rotor Simulation Result

Pressure Field

The mean static gauge pressure contour plots on the x-z plane and on the y-z plane passing
through the rotor disk centre for the untrimmed rotor run are shown in Figure 5.5 and
Figure 5.6 respectively.

The figures show that the mean pressure field obtained using OpenFOAM and ANSYS
Fluent compare favourably. Furthermore, result obtained using the modified OpenFOAM
compressible flow solver (rhoSimpleSourceFoam) was also shown to be similar to that
obtained using the incompressible flow solver (simpleFoam).

From Figure 5.5, the effect of the forward tilt of the rotor disk plane is seen by the
formation of a low pressure region at the forward tip of the rotor disk plane. Furthermore,
Figure 5.6 shows that the lateral pressure distribution is not symmetrical although no
lateral tilt is present on the rotor disk. The lateral pressure imbalance on the rotor disk is
consistent with the predicted non-zero disk moments in the calculation. However, the
actual rotor moments acting on the disk were not measured during these experiments;
hence further comparison is prevented.

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
89

Figure 5.5: Mean static gauge pressure contour plot on the x-z plane which passes through the

rotor disk centre

ANSYS Fluent

simpleFOAM

rhoSimpleSourceFoam

Pa

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
90

Figure 5.6: Mean static gauge pressure contour plot on the y-z plane which passes through the

rotor disk centre

Fuselage Coefficient of Pressure

The mean Coefficient of Pressure (Cp) on the fuselage was experimentally measured and is
available from Reference 24. The mean pressure distribution was measured on the top and

ANSYS Fluent

simpleFOAM

rhoSimpleSourceFoam

Pa

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
91

bottom surfaces, and on the port and starboard sides of the fuselage. Figure 5.7 shows the
contour plot of Cp and pressure tapping locations on the fuselage. The Cp on the fuselage
was defined as follows:

2

2

1

U

PP
C wall

p

 [Equation 5.3] (Reference 24)

Figure 5.7: Computed mean Cp on the fuselage without force and moment trimming

Figure 5.8 shows a comparison between the CFD computed Cp on the fuselage and the
experimentally measured values. The comparison shows that the predicted Cp using both
the OpenFOAM incompressible and compressible flow solvers compares favourably with
the ANSYS Fluent’s prediction. However, both the OpenFOAM and ANSYS Fluent results
have failed to capture the experimentally measured pressure peaks on the top and port
sides of the fuselage. According to Reference 24, the disagreements in the pressure peaks
occur at the locations where the blade tip vortices impinge on the fuselage body, as
illustrated by the schematic shown at Figure 5.9. The momentum sources introduced by
the VBM are based on time-averaged forces acting on the blade; thus, it cannot capture
transient flow features, such as: formation of the blade tip vortices; and the effect of the
blade passage as it moves through air.

According to Reference 11, a possible explanation of the strong under-prediction of the
pressure peak on the top surface of the fuselage near the nose is that it is due to the
presence of a periodic tip vortex that retards the freestream airflow, causing a rise in the
stagnation pressure at this location.
Furthermore, although the blade thickness has been ignored in the present simulations,
this may have a more pronounced effect on the pressure field when the blade is passing in

Note:
The red and blue lines on the fuselage indicate locations of static
pressure taps during the Georgia Tech experiment

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
92

close proximity to the fuselage surface. At this instance, the narrow space between the
fuselage and the blade is expected to create a “venturi effect”, which causes local
interaction between the rotor downwash and the freestream flow.

Figure 5.8: Comparison of measured and computed mean Cp on the fuselage without force and

moment trimming

Figure 5.9: Schematic representation of the instantaneous flow-field above the fuselage –

reproduced from Reference 22

-1

-0.5

0

0.5

1

1.5

0 0.5 1 1.5 2 2.5 3

C
p

-1.5

-1

-0.5

0

0.5

1

1.5

0 1 2 3

x/R

-0.5

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3

C
p

-2

-1.5

-1

-0.5

0

0.5

1

1.5

0 1 2 3

x/R

Fuselage Top Fuselage Bottom

Fuselage Starboard Side Fuselage Port Side

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
93

A comparison between the gauge static pressure contour produced using ANSYS Fluent
and the simpleFoam solver on the top surface of the rotor disk is shown in Figure 5.10.
The same comparison for the rotor disk bottom surface is shown in Figure 5.11. These
figures show that the pressure distribution patterns on the disk surfaces are generally
similar in both the ANSYS Fluent and the OpenFOAM results. However, ANSYS Fluent
predicts much lower pressure occurring on the front part of the disk compared to that
shown in the OpenFOAM result.

Figure 5.10: Gauge static pressure contour on the rotor disk top surface

Figure 5.11: Gauge static pressure contour on the rotor disk bottom surface

Pa

ANSYS Fluent

simpleFoam

Pa

ANSYS Fluent

simpleFoam

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
94

Velocity Field

Figure 5.12 shows a comparison between the flow streamlines coloured by velocity
magnitude computed using OpenFOAM and ANSYS Fluent. It can be seen that the two
results compare favourably to each other, albeit there are slight differences in the colour
contrast and line thickness between the two results. There is no experimental data
available that enables comparison with the streamlines.

The “tip vortices” shown in Figure 5.12 are not the blade tip vortices; rather these are
vortices that are formed due to the pressure gradient that exists between the top and
bottom surfaces of the rotor disk, similar to those formed on the tip of a fixed wing. The
comparison shows that generally the rotor flow is convected downstream by the
freestream.

Figure 5.12: Streamlines coloured by velocity magnitude. Velocity magnitude contour plot is

shown on the rotor disk bottom surface

ANSYS Fluent

Mag(U)(m/s)

simpleFoam

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
95

Reference 20 provides the time-averaged measurement of the rotor downwash velocity
normalised by the freestream velocity at a plane located 12.7 mm below the rotor disk.
Contour plots of the rotor downwash velocity were generated from the CFD results to
enable comparison with experimental data. This comparison is shown at Figure 5.13.

Figure 5.13: Contour plot of mean downwash velocity measured 12.7 mm below the rotor disk -

negative values denote upflow

Figure is reproduced from
Reference 20

simpleFOAM

ANSYS Fluent

Uz/U(m/s)

FWD Side Aft Side

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
96

From Figure 5.13, the OpenFOAM result generally agrees very well with the
experimentally measured values. The mean downwash velocity distribution is shown by
both the CFD results and the experimental data to be asymmetrical with respect to the
longitudinal axis. The upflow region near the hub is clearly seen on the retreating side of
the rotor disk. There is also an upflow region observed in both results throughout the front
part of the disk. According to Reference 20, the upflow region near the hub is largely
attributed to the flow separation on the blade downstream of the hub, and the rotation
imparted to the flow by the viscous effect near the hub.

The strongest downwash flow is shown in both the experimental data and the OpenFOAM
result to occur at around 70 and 290 rotor azimuth degrees towards the aft side of the disk,
near the blade tip.

The experimental data at Reference 20 includes a plot of the normalised velocity profile at
a vertical location below the rotor disk, at z/R=0.178 (refer to Figure 5.14). The profile was
measured along the fuselage body centreline axis. The same plot was constructed from the
CFD results and compared to the available experimental data. This comparison is shown
in Figure 5.15.

From Figure 5.15, it can be seen that OpenFOAM under-predicts the streamwise velocity
component compared to Fluent by approximately 14 per cent. However, there is a good
agreement between the Fluent and OpenFOAM predicted downwash velocity profile, and
the experimentally measured values.

Figure 5.14: Velocity measurement location at Reference 20

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
97

Figure 5.15: Comparison of measured and computed mean dtreamwise velocity profile (Top) and

downwash velocity profile (Bottom) at Z/r=0.178

5.4.3 The Effect of Thrust and Moments Trimming

To evaluate the performance of the trimming routine incorporated into the OpenFOAM
VBM, the Georgia Tech case was re-run with force and moments trimming set to active.
The simulation with trim calculation was started from a quiescent flow condition to avoid
any hysteresis effect appearing in the result. The trim calculation was carried out every
five flow-iterations.

As previously discussed, the trimming routine varies both the collective and cyclic pitch
angles until the target rotor thrust and moments are obtained. Another equivalent method
of numerical trimming of the rotor involves solving for the equation of motion of the blade
in flapping mode by accounting for the aerodynamic forces acting on the blade and the

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25

U
x/

U
in

f

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25

x/R

U
z/

U
in

f

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
98

blade structural response. The latter method may not always be achievable. Often this is
because of the lack of blade structural data. Nonetheless, it is important to note that as far
as the mean rotor aerodynamic behaviour is concerned, one degree of cyclic pitch
produces the same aerodynamic effect as one degree of blade flapping.

In the context of the present validation work, the cyclic pitch in the Georgia Tech teetering
rotor was not adjustable. Furthermore, the total moments acting on the teetered rotor were
not measured experimentally. Therefore, the present simulation assumes that the total
moments acting on the rotor disk are zero.

Table 5.2 shows the trim parameters that were used in the OpenFOAM simulation. The
effect of trimming to the blade collective and cyclic pitch angles were presented previously
in Table 5.1.

Table 5.2: Rotor trim parameters for the GIT validation case

Trim Parameter Value

Target Rotor Thrust 72.8 N

Target Rotor Rolling Moment 0 N.m

Target Rotor Pitching Moment 0 N.m

Initial Blade Collective Pitch
Angle

5 deg

Initial Longitudinal Cyclic Pitch
Angle

0 deg

Initial Lateral Cyclic Pitch Angle 0 deg

Trim Calculation Interval 5

dTheta (Perturbation Angle) 0.1

Relaxation Factor 1

Trim Solver Tolerance 1.00E-06

Pressure Field

Figure 5.16 provides a comparison of the fuselage Cp obtained from simulations with the
trimming routine active. The Cp plots were generated at the probe locations shown in
Figure 5.7. A comparison between Figure 5.8 (without trim) and Figure 5.16 (with trim)
reveals that the trimmed result matches the experimental data more closely than the
untrimmed solution. In particular, the computed pressure distributions on the top,
starboard side and port side of the fuselage agree well in the trimmed case with the
experimental data, apart from the pronounced pressure peaks that were previously
identified to have been caused by the impingement of tip vortices on the fuselage.
Furthermore, it is also shown that the simpleFoam solver produces results that are closer
to the experimental data than the rhoSimpleFoam results.

Minimal differences are observed in the pressure distribution on the bottom surface of the
fuselage between the untrimmed and trimmed results. This is due to the rotor air-wake–
fuselage interaction being less prominent on the bottom surface of the fuselage.

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
99

Figure 5.16: Comparison of measured and computed mean Cp on the fuselage with the thrust and

moment trimming activated

Velocity Field

The effect of thrust and moments trimming on the downwash velocity profile is shown in
Figure 5.17. The figure shows that no significant improvement is gained by activating the
thrust and moment trimming. However, the trim feature can be useful if the blade
collective and cyclic pitch angles are not known, but the rotor disk total thrust and
moments are known.

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.5 1 1.5 2 2.5 3

x/R
-2

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.5 1 1.5 2 2.5 3

x/R

-1

-0.5

0

0.5

1

1.5

0 0.5 1 1.5 2 2.5 3

p

-0.5

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3

p

Fuselage Top Fuselage Bottom

Fuselage Starboard Side Fuselage Port Side

Note:
The blue dotted lines highlight the area of improvement when
compared to the plotted data shown previously in Figure 5.8.

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
100

Figure 5.17: Comparison of measured and computed streamwise velocity (Top) and downwash

velocity (Bottom) at Z/r=0.178 with the thrust and moment trimming activated

Tip Effect

Figure 5.18 shows the effect of using a tip factor of 0.96 instead of 1.0 on the fuselage Cp, to
account for the loss of lift near the blade tip. It can be seen from this figure that the
predicted Cp trends on the fuselage top and port side surfaces have been slightly
improved from the previous results shown in Figure 5.16. The value of 0.96 is considered
to be typical. Therefore, it is recommended that a tip factor is specified in the simulation.

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25

U
x/

U
in

f

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25

x/R

U
z/

U
in

f

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
101

Figure 5.18: Mean Cp on the fuselage with the thrust and moment trimming activated and using a

tip factor of 0.96

-0.5

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3

p

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.5 1 1.5 2 2.5 3

x/R

Fuselage Top

Fuselage Port Side

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
102

6. Conclusions and Recommendations

A new OpenFOAM library, rotorDiskSource, has been developed to include the effect
of helicopter rotor flow into existing OpenFOAM steady-state RANS flow solvers. Being
part of a free open-source software suite allows high performance computer cluster
hardware to be used at minimum cost. This allows large-scale whole-of-airframe
computations to be routinely made in support of accurate infrared signature modelling.

In the new library, rotorDiskSource, the helicopter rotor is approximated as a thin one-
cell-thick disk. The mean flow through the rotor is approximated by introducing time-
averaged momentum sources on the rotor disk, which are calculated based on the two-
dimensional Blade Element Theory. The rotorDiskSource model incorporates a range
of blade characteristics, such as: the blade lifting line and drag profiles, variations in the
blade collective and cyclic pitch angles, blade flapping and coning effect, as well as rotor
thrust and moments trimming. Integration of the rotorDiskSource library into existing
OpenFOAM RANS flow solvers has also been demonstrated.

An experimental dataset based on a rotor - fuselage aerodynamic interaction study done at
the Georgia Institute of Technology was identified as a suitable validation case for the
rotorDiskSource model in OpenFOAM. The same case has been previously used by
the ANSYS Fluent team at Reference 2 for validating the Fluent VBM model. The
validation effort consists of modelling the Georgia Tech wind tunnel experiment using
both OpenFOAM and ANSYS Fluent. The mean velocity and pressure fields predicted by
both OpenFOAM and ANSYS Fluent software were shown to agree well with the time-
averaged experimental data. However, both the OpenFOAM and ANSYS Fluent models
failed to capture the effect of vortex shedding from the blade tip. Nonetheless, this
shortcoming is to be expected from the current model, as only time-averaged momentum
sources are being introduced on the rotor disk. The VBM is also not expected to capture
any other transient flow features.

Having completed validation, the rotorDiskSource library is being used to model the
transport of the hot exhaust plume around various ADF helicopter types for a range of
flight conditions. An example whole-of-aircraft flow-field prediction can be seen for the
MRH-90 in Figure 6.1 and Figure 6.2. The details of these results and related modelling
will be published in forthcoming DSTO reports.

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
103

Figure 6.1: Flow streamlines coloured by temperature used for visualising the interaction between

the exhaust plume and the rotor downwash around the MRH-90 in hover outside of
ground effect.

Figure 6.2: Predicted MRH-90 fuselage temperature in hover with different prevailing relative

wind angles.

Note: Temperature is shown in Kelvin.

-150 Deg Wind (Portside)

-30 Deg Wind (Portside)

+150 Deg Wind (Starboard side)

+30 Deg Wind (Starboard side)

Note: 1. Temperature is shown in Kelvin.
 2. The exhaust gas is visualised using iso-temperature contour plot.
 3. The prevailing wind is relative to the aircraft heading.

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
104

7. References

1. Saripalli, S. R., “Virtual Blade Element Model Developments to Study Rotor Down
Wash Effects (U)”, DSTO Technical Report, DSTO-TR-2311, June 2009.

2. Ruith, M. R., and Wirogo, S., “Unstructured, Multiplex Rotor Source Model with Thrust
and Moment Trimming – Fluent’s VBE Model, AIAA 2005-5217, 23rd AIAA Applied
Aerodynamics Conference, Toronto, Canada, 9 June 2005.

3. OpenCFD, http://www.openfoam.com, “OpenFOAM Official Website”, OpenFoam
Foundation, ESI, Ltd., France.

4. Zori, L. A. J. and Rajagopalan, R. G., “Navier-Stokes Calculation of Rotor-Airframe
Interaction in Forward Flight”, Journal of the American Helicopter Society, Vol. 40,
Issue 2, 1995.

5. Wahono, S., “CFD Simulation of MRH-90 in Hover using OpenFOAM”, Draft DSTO
Technical Report, TBA.

6. Advanced Rotorcraft Technology, Inc., “FlightLab”, Computer Software, March 2003.

7. Prouty, R. W., “Helicopter Aerodynamics”, Second Edition, Phillips Business
information, Inc., 2007.

8. Rajagopalan, R. G. and Lim C. K., “Laminar Flow Analysis of a Rotor in Hover”,
Journal of American Helicopter Society, Vol .36(1), 1991.

9. Rajagopalan, R. G. and Mahur, S. R., “Three Dimensional Analysis of a Rotor in
Forward Flight”, Journal of American Helicopter Society, Vol. 38, Issue 3, 1993.

10. Poling D.R., Rosenstein H. and Rajagopalan R.G., “Use of a Navier-Stokes Code in
Understanding Tiltrotor Flowfields in Hover”, Journal of American Helicopter Society,
Vol.43, pp. 103-109, 1998.

11. Ruith, M. R., “Unstructured, Multiplex Rotor Source Model with Thrust and Moment
Trimming – Fluent’s VBM Model”, Fluent Technical Notes, TN293, June 2005.

12. Johnson, W., “Helicopter Theory”, Dover Publications, 1994.

13. OpenCFD, “OpenFOAM User Guide”, Version 2.1.1, 16 May 2012.

14. OpenCFD, “OpenFOAM Programmer’s Guide”, Version 1.6, 24 July 2009.

15. OpenCFD, http://www.openfoam.org/docs/cpp/, “OpenFOAM Source Guide -
Doxygen”, OpenFoam Foundation, ESI, Ltd., France.

16. Caretto, L. S., Gosman, A. D., Patankar, S. V., and Spalding, D. B., “Two Calculation
Procedures for Steady, Three-Dimensional Flows with Recirculation, Proc. 3rd
International Conferences for Numerical Methods in Fluid Dynamics, Paris, 1972.

17. Patankar, S. V., “Numerical Heat Transfer and Fluid Flow”, McGraw-Hill, New York,
1980.

http://www.openfoam.com/�
http://www.openfoam.org/docs/cpp/�

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
105

18. Yee, C. S., Warming, R. F., and Harten, A., “Implicit Total Variation Diminishing (TVD)
Schemes for Steady-State Calculations”, NASA Technical Memorandum, N83-23085,
March 1983.

19. Kitware, Inc., http://paraview.org/paraview/help/documentation.html, “Paraview
Official Website”.

20. Liou, S. G., Komerath, N. M., and McMahon, H. M., “Velocity Measurements of
Airframe Effects on a Rotor in Low-Speed Forward Flight”, Journal of Aircraft, Vol. 26,
Issue. 4, 1989.

21. Brand, A., Komerath, N. M., and McMahon, H. M., “Results from Laser Sheet
Visualization of a Periodic Rotor Wake”, Journal of Aircraft, Vol. 26, Issue. 5, 1989.

22. Liou, S. G., Komerath, N. M., and McMahon, H. M., “Velocity Field of a Cylinder in the
Wake of a Rotor in Forward Flight”, Journal of Aircraft, Vol. 27, Issue. 9, 1990.

23. Liou, S. G., Komerath, N. M., and McMahon, H. M., “Measurements of the Interaction
Between a Rotor Tip Vortex and a Cylinder”, AIAA Journal, Vol. 28, Issue. 6, 1990.

24. Mavris, D. N., Komerath, N. M., and McMahon, H. M., “Prediction of Aerodynamic
Rotor-Airframe Interactions in Forward Flight”, Journal of American Helicopter
Society, October 1989.

25. Leap, Pty. Ltd., Fluent VBM UDF Version 9.0, Computer Code, Personal
Communication via email, 5 January 2011.

26. OpenCFD, “OpenFOAM Andvanced Training Guide”, Version 1.6, 26 April 2010.

http://paraview.org/paraview/help/documentation.html�

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
106

Appendix A Source Code for the rotorDiskSource

A.1. High Level Description of the Source Code Files

This Appendix contains the source code needed for the implementation of the VBM in
OpenFOAM 2.1.x. The code needs to be compiled as an OpenFOAM library following the
instructions given in Section 3.5. Table A.1 shows a complete list of all files included in the
overall code along with a brief description of the content of each file.

A hardcopy of all files is included in Section A.2 of this Appendix, arranged following the
order shown in Table A.1. Comments in the code have been shown in blue to improve
readability.

Table A.1: Summary of all source files in the rotorDiskSource code

File Name Location Description
rotorDiskSource.H rotorDiskSource Contains the class definition for the main

rotorDiskSource class. It is derived from the
basicSource class.

rotorDiskSource.C rotorDiskSource Contains the main implementation of the
rotorDiskSource Class. It contains the class
constructor and several private member functions and
implementation of the basicSource class virtual
functions.

The basic geometrical information of the rotor disk
radius, centre, orientation, cell face areas are also
subtracted from the mesh in this class. These
procedures are contained in the following private
functions:

 rotorDiskSource::createCoordinateSystem(),
 rotorDiskSource::constructGeometry(), and
 rotorDiskSource::setFaceArea().

The momentum source calculation is included in the
member function rotorDiskSource::calculate(). The
momentum source is added to the solver in the
function rotorDiskSource::adSup().

rotorDiskSourceTemplates.C rotorDiskSource Contains a templated function
rotorDiskSource::writeField() which can be used to
write out to external data file any variable computed
in the rotorDiskSource class as a field variable.

rotorDiskSourceI.H rotorDiskSource Contains the implementation of several data access
functions as protected public member functions.
These functions are handy for accessing and passing
various protected and private data in the
rotorDiskSource to any external classes.

Table continues over page …

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
107

Table continued …
File Name Location Description
rotorDiskSource.dep rotorDiskSource This file was automatically generated using the wmake

utility. It contains a list of all dependencies and their
corresponding paths to the other standard
OpenFOAM classes included in the OpenFOAM 2.1.x
standard distribution.

bladeModel.H rotorDiskSource/
bladeModel

Contains the class definition of bladeModel class. This
class is the container class for various blade geometry
features as defined in the sourceProperties file, such
as the blade radial section, twist angle and chord.

bladeModel.C rotorDiskSource/
bladeModel

Contains the constructor for bladeModel class and a
linear interpolation function. Linear interpolation of
the chord and twist angles between radial sections in
the rotor disk is implemented in this class.

This class is constructed in the Foam::rotorDiskSource
class as a private object called “blade_”. The
bladeModel::interpolate() function is called inside the
rotorDiskSource::calculate() function.

profileModel.H rotorDiskSource/
profileModel

Contains the class definition of profileModel class.
This class is the container class for various lifting and
drag line profiles as defined in the sourceProperties
file.

The profileModel class is an abstract class for the two
methods of specifying the blade section lift and drag
coefficients curves, i.e. the “lookup” method and the
“series” method.

profileModel.C rotorDiskSource/
profileModel

Contains the constructor for profileModel class and a
virtual function, profileModel::Cdl() which calculates
and returns the Cd and Cl for a given AOA.

This class is constructed in the Foam::rotorDiskSource
class as a private object called “profile_”. The
profileModel::Cdl() function is called inside the
rotorDiskSource::calculate() function.

profileModelList.H rotorDiskSource/
profileModel

Contains the class definition of profileModelList class.
This class is derived from the template Foam::PtrList
class which takes the profileModel class as its type.

profileModelList.C rotorDiskSource/
profileModel

Contains the constructor for profileModelList class
and a virtual function,
profileModelList::connectBlades() which sets the
bladeModel – to - profileModel addressing.

Table continues over page …

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
108

Table continued …
File Name Location Description
lookupProfile.H rotorDiskSource/

profileModel/lookup
Contains the class definition of lookupProfile class,
which inherits from the abstract class
Foam::profileModel. This class holds the Cd, Cl and
AOA data. This class is only constructed during
runtime if “lookup” entry is specified in the
sourceProperties file.

lookupProfile.C rotorDiskSource/
profileModel/lookup

Contains the constructor for lookupProfile class and
the implementation of the virtual function
Foam::profileModel::Cdl(). This function looks-up the
supplied Cl, Cd Vs AOA data from the
sourceProperties file, and then linearly interpolates
the Cl and Cd for a supplied AOA.

seriesProfile.H rotorDiskSource/
profileModel/series

Contains the class definition of seriesProfile class,
which inherits from the abstract class
Foam::profileModel. This class holds the Cd, Cl and
AOA data. This class is only constructed during
runtime if “series” entry is specified in the
sourceProperties file.

seriesProfile.C rotorDiskSource/
profileModel/series

Contains the constructor for seriesProfile class and the
implementation of the virtual function
Foam::profileModel::Cdl(). This function reads the
supplied coefficients for calculating Cl and Cd for a
given AOA from the sourceProperties file, and then
calculate the Cl and Cd based on the Fourier series
equations specified in Section 3.4.1.

trimModel.H rotorDiskSource/
trimModel/
trimModel

Contains the class definition of trimModel class. This
class is the container (abstract) class for various blade
trimming methods as defined in the sourceProperties
file.

In the current implementation, there are two
trimming methods available, i.e. the “fixed trim” and
the “targetForce” trim. The default is fixed trim
method, which is equivalent to an untrimmed
solution.

trimModel.C rotorDiskSource/
trimModel/
trimModel

Contains the constructor for trimModel class and a
virtual function, trimModel::correct(). This virtual
function returns the updated blade forces when called
using the new blade pitch parameters.

This class is constructed in the Foam::rotorDiskSource
class as a private object called “trim_”. . The
trimModel::correct() function is called inside the
rotorDiskSource::addSup() function.

Table continues over page …

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
109

Table continued …
File Name Location Description
trimModelNew.C rotorDiskSource/

trimModel/
trimModel

Contains a procedure to create “clones” of the
trimModel class objects during runtime to account for
multiple rotor objects.

fixedTrim.H rotorDiskSource/
trimModel/fixed

Contains the class definition of fixedTrim class, which
inherits from the abstract class Foam::trimModel. This
class reads blade collective and cyclic pitch angles
from the sourceProperties file, and returns the
geometric angle of attack.

This class is only constructed during runtime if
“fixed” trim entry is specified in the sourceProperties
file.

fixedTrim.C rotorDiskSource/
trimModel/fixed

Contains the constructor for fixedTrim class and the
implementation of the virtual functions
Foam::trimModel::alphag() and
Foam::trimModel::correct().

In this class, the Foam::trimModel::correct() function
does nothing.

targetForceTrim.H rotorDiskSource/
trimModel/
targetForce

Contains the class definition of targetForceTrim class,
which inherits from the abstract class
Foam::trimModel.

This class reads blade collective and cyclic pitch
angles from the sourceProperties file, and returns the
updated geometric angle of attack after a force and
moments trimming calculation is carried out.

This class is only constructed during runtime if
“targetForce” trim entry is specified in the
sourceProperties file.

targetForceTrim.C rotorDiskSource/
trimModel/
targetForce

Contains the constructor for targetForceTrim class and
the implementation of the virtual functions
Foam::trimModel::alphag() and
Foam::trimModel::correct().

The implementation of the force and moments
trimming using the Newton-Raphson method as
described in Section 2.3.7 is contained in the
Foam::targetForceTrim::correct() function inside this
class.

files rotorDiskSource/
Make

Contains a list of .C files to be compiled using wmake
libso. The compiled library name is also specified in
this file.

Options rotorDiskSource/
Make

Contains a list of compiler options and include files to
be included in the library compilation using wmake
libso.

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
110

A.2. Source Code for the rotorDiskSource

A.2.1 rotorDiskSource.H

/*---*\
 ========= |
 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
 \\ / O peration |
 \\ / A nd | Copyright (C) 2011-2012 OpenFOAM Foundation
 \\/ M anipulation |

License
 This file is part of OpenFOAM.

 OpenFOAM is free software: you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
 for more details.

 You should have received a copy of the GNU General Public License
 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Class
 Foam::rotorDiskSource

Description
 Cell based momentum source

 Source approximates the mean effects of rotor forces on a cylindrical
 region within the domain

 Sources described by:

 rotorDiskSourceCoeffs
 {
 fieldNames (U); // names of fields on which to apply source
 rhoName rho; // density field if compressible case
 nBlades 3; // number of blades
 tipEffect 0.96; // normalised radius above which lift = 0

 inletFlowType local; // inlet flow type specification

 geometryMode auto; // geometry specification

 refDirection (-1 0 0); // reference direction
 // - used as reference for psi angle

 trimModel fixed; // fixed || targetForce

 flapCoeffs
 {
 beta0 0; // coning angle [deg]
 beta1 0; // lateral flapping coeff
 beta2 0; // longitudinal flapping coeff
 }

 blade
 {
 ...
 }

 profiles
 {
 ...
 }
 }

 Where:

 geometryMode =
 auto : determine rototor co-ord system from cells
 specified : specified co-ord system

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
111

 inletFlowType =
 fixed : specified velocity
 surfaceNormal : specified normal velocity (positive towards rotor)
 local : use local flow conditions

SourceFiles
 rotorDiskSource.C
 rotorDiskSourceTemplates.C

---/

#ifndef rotorDiskSource_H
#define rotorDiskSource_H

#include "basicSource.H"
#include "cylindricalCS.H"
#include "NamedEnum.H"
#include "bladeModel.H"
#include "profileModelList.H"
#include "volFieldsFwd.H"
#include "dimensionSet.H"

// * //

namespace Foam
{

// Forward declaration of classes
class trimModel;

/*---*\
 Class rotorDiskSource Declaration
---/

class rotorDiskSource
:
 public basicSource
{
public:

 enum geometryModeType
 {
 gmAuto,
 gmSpecified
 };
 static const NamedEnum<geometryModeType, 2> geometryModeTypeNames_;

 enum inletFlowType
 {
 ifFixed,
 ifSurfaceNormal,
 ifLocal
 };
 static const NamedEnum<inletFlowType, 3> inletFlowTypeNames_;

protected:

 // Helper structures to encapsulate flap and trim data
 // Note: all input in degrees (converted to radians internally)

 struct flapData // on-the-fly data encapsulation declaration
 {
 scalar beta0; // coning angle
 scalar beta1; // lateral flapping coeff
 scalar beta2; // longitudinal flapping coeff
 };

 // Protected data

 //- Name of density field
 word rhoName_;

 //- Reference density if rhoName = 'none'
 scalar rhoRef_;

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
112

 //- Rotor debug mode
 bool rotorDebug_;

 //- Rotational speed [rad/s]
 // Positive anti-clockwise when looking along -ve lift direction
 scalar omega_;

 //- Number of blades
 label nBlades_;

 //- Inlet flow type
 inletFlowType inletFlow_;

 //- Inlet velocity for specified iinflow
 vector inletVelocity_;

 //- Tip effect [0-1]
 // Ratio of blade radius beyond which lift=0
 scalar tipEffect_;

 //- Blade flap coefficients [rad/s]
 flapData flap_;

 //- Cell centre positions in local rotor frame
 // (Cylindrical r, theta, z)
 List<point> x_;

 //- Rotation tensor for flap angle
 List<tensor> R_;

 //- Inverse rotation tensor for flap angle
 List<tensor> invR_;

 //- Area [m2]
 List<scalar> area_;

 //- Rotor co-ordinate system (r, theta, z)
 cylindricalCS coordSys_;

 //- Maximum radius
 scalar rMax_;

 //- A list of psi angle in the rotor zone for IO
 List<scalar> psiList_;

 //- Trim model
 autoPtr<trimModel> trim_;

 //- Blade data
 bladeModel blade_;

 //- Profile data
 profileModelList profiles_;

 //- Rotor bank angle
 scalar bankAng_;

 //- Rotor pitch angle
 scalar pitchAng_;

 //- Transofrmation from Carteisan to Pitch/Bank plane
 tensor PB_;

 //- Transformation from Pitch Bank plane to Cartesian
 tensor invPB_;

 // Protected Member Functions

 //- Check data
 void checkData();

 //- Set the face areas per cell, and optionally correct the rotor axis
 void setFaceArea(vector& axis, const bool correct);

 //- Create the co-ordinate system
 void createCoordinateSystem();

 //- Construct geometry
 void constructGeometry();

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
113

 //- Return the inlet flow-field
 tmp<vectorField> inflowVelocity(const volVectorField& U) const;

 //- Helper function to write rotor values
 template<class Type>
 void writeField
 (
 const word& name,
 const List<Type>& values,
 const bool writeNow = false
) const;

public:

 //- Runtime type information
 TypeName("rotorDisk");

 // Constructors

 //- Construct from components
 rotorDiskSource
 (
 const word& name,
 const word& modelType,
 const dictionary& dict,
 const fvMesh& mesh
);

 //- Destructor
 virtual ~rotorDiskSource();

 // Member Functions

 // Access

 //- Return the cell centre positions in local rotor frame
 // (Cylindrical r, theta, z)
 inline const List<point>& x() const;

 //- Return the rotor co-ordinate system (r, theta, z)
 inline const cylindricalCS& coordSys() const;

 //- Return rhoName_
 inline const word& getRhoName() const;

 //- Return rhoRef_
 inline const scalar& getRhoRef() const;

 // Evaluation

 //- Calculate forces
 void calculate
 (
 const vectorField& U,
 const scalarField& alphag,
 vectorField& force,
 const bool divideVolume = true,
 const bool output = true
) const;

 // Source term addition

 //- Source term to fvMatrix<vector>
 virtual void addSup(fvMatrix<vector>& eqn, const label fieldI);

 // I-O
 //- Write the source properties
 virtual void writeData(Ostream&) const;

 //- Read source dictionary
 virtual bool read(const dictionary& dict);
};

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
114

// * //

} // End namespace Foam

// * //

#include "rotorDiskSourceI.H"

// * //

#ifdef NoRepository
 #include "rotorDiskSourceTemplates.C"
#endif

// * //

#endif

// *** //

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
115

A.2.2 rotorDiskSource.C

/*---*\
 ========= |
 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
 \\ / O peration |
 \\ / A nd | Copyright (C) 2011-2012 OpenFOAM Foundation
 \\/ M anipulation |

License
 This file is part of OpenFOAM.

 OpenFOAM is free software: you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
 for more details.

 You should have received a copy of the GNU General Public License
 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

---/

#include "rotorDiskSource.H"
#include "addToRunTimeSelectionTable.H"
#include "mathematicalConstants.H"
#include "trimModel.H"
#include "unitConversion.H"
#include "fvMatrices.H"
#include "syncTools.H"

using namespace Foam::constant;

// * * * * * * * * * * * * * Static Member Functions * * * * * * * * * * * * //

namespace Foam
{
 defineTypeNameAndDebug(rotorDiskSource, 0);
 addToRunTimeSelectionTable(basicSource, rotorDiskSource, dictionary);

 template<> const char* NamedEnum<rotorDiskSource::geometryModeType, 2>::
 names[] =
 {
 "auto",
 "specified"
 };

 const NamedEnum<rotorDiskSource::geometryModeType, 2>
 rotorDiskSource::geometryModeTypeNames_;

 template<> const char* NamedEnum<rotorDiskSource::inletFlowType, 3>::
 names[] =
 {
 "fixed",
 "surfaceNormal",
 "local"
 };

 const NamedEnum<rotorDiskSource::inletFlowType, 3>
 rotorDiskSource::inletFlowTypeNames_;
}

// * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * * //

void Foam::rotorDiskSource::checkData()
{
 // set inflow type
 switch (selectionMode())
 {
 case smCellSet:
 case smCellZone:
 case smAll:

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
116

 {
 // set the profile ID for each blade section
 profiles_.connectBlades(blade_.profileName(), blade_.profileID());
 switch (inletFlow_)
 {
 case ifFixed:
 {
 coeffs_.lookup("inletVelocity") >> inletVelocity_;
 break;
 }
 case ifSurfaceNormal:
 {
 scalar UIn
 (
 readScalar(coeffs_.lookup("inletNormalVelocity"))
);
 inletVelocity_ = -coordSys_.e3()*UIn;
 break;
 }
 case ifLocal:
 {
 // do nothing
 break;
 }
 default:
 {
 FatalErrorIn("void rotorDiskSource::checkData()")
 << "Unknown inlet velocity type" << abort(FatalError);
 }
 }

 break;
 }
 default:
 {
 FatalErrorIn("void rotorDiskSource::checkData()")
 << "Source cannot be used with '"
 << selectionModeTypeNames_[selectionMode()]
 << "' mode. Please use one of: " << nl
 << selectionModeTypeNames_[smCellSet] << nl
 << selectionModeTypeNames_[smCellZone] << nl
 << selectionModeTypeNames_[smAll]
 << exit(FatalError);
 }
 }
}

void Foam::rotorDiskSource::setFaceArea(vector& axis, const bool correct)
{
 area_ = 0.0;

 static const scalar tol = 0.8;

 const label nInternalFaces = mesh_.nInternalFaces();
 const polyBoundaryMesh& pbm = mesh_.boundaryMesh();
 const vectorField& Sf = mesh_.Sf();
 const scalarField& magSf = mesh_.magSf();

 vector n = vector::zero;

 // calculate cell addressing for selected cells
 labelList cellAddr(mesh_.nCells(), -1);
 UIndirectList<label>(cellAddr, cells_) = identity(cells_.size());
 labelList nbrFaceCellAddr(mesh_.nFaces() - nInternalFaces, -1);

 // add internal field contributions
 for (label faceI = 0; faceI < nInternalFaces; faceI++)
 {
 const label own = cellAddr[mesh_.faceOwner()[faceI]];
 const label nbr = cellAddr[mesh_.faceNeighbour()[faceI]];

 if ((own != -1) && (nbr == -1))
 {
 vector nf = Sf[faceI]/magSf[faceI];

 if ((nf & axis) > tol)
 {
 area_[own] += magSf[faceI];

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
117

 n += Sf[faceI];
 }
 }
 else if ((own == -1) && (nbr != -1))
 {
 vector nf = Sf[faceI]/magSf[faceI];

 if ((-nf & axis) > tol)
 {
 area_[nbr] += magSf[faceI];
 n -= Sf[faceI];
 }
 }
 }

 forAll(pbm, patchI)
 {
 const polyPatch& pp = pbm[patchI];

 if (pp.coupled())
 {
 forAll(pp, i)
 {
 label faceI = pp.start() + i;
 label nbrFaceI = faceI - nInternalFaces;
 label own = mesh_.faceOwner()[faceI];
 nbrFaceCellAddr[nbrFaceI] = cellAddr[own];
 }
 }
 }

 // correct for parallel running
 syncTools::swapBoundaryFaceList(mesh_, nbrFaceCellAddr);

 // add boundary contributions
 forAll(pbm, patchI)
 {
 const polyPatch& pp = pbm[patchI];
 const vectorField& Sfp = mesh_.Sf().boundaryField()[patchI];
 const scalarField& magSfp = mesh_.magSf().boundaryField()[patchI];

 if (pp.coupled())
 {
 forAll(pp, j)
 {
 const label faceI = pp.start() + j;
 const label own = cellAddr[mesh_.faceOwner()[faceI]];
 const label nbr = nbrFaceCellAddr[faceI - nInternalFaces];
 const vector nf = Sfp[j]/magSfp[j];

 if ((own != -1) && (nbr == -1) && ((nf & axis) > tol))
 {
 area_[own] += magSfp[j];
 n += Sfp[j];
 }
 }
 }
 else
 {
 forAll(pp, j)
 {
 const label faceI = pp.start() + j;
 const label own = cellAddr[mesh_.faceOwner()[faceI]];
 const vector nf = Sfp[j]/magSfp[j];

 if ((own != -1) && ((nf & axis) > tol))
 {
 area_[own] += magSfp[j];
 n += Sfp[j];
 }
 }
 }
 }

 if (correct)
 {
 reduce(n, sumOp<vector>());
 axis = n/mag(n);
 }
}

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
118

void Foam::rotorDiskSource::createCoordinateSystem()
{
 // construct the local rotor co-prdinate system
 vector origin(vector::zero);
 vector axis(vector::zero);
 vector refDir(vector::zero);

 geometryModeType gm =
 geometryModeTypeNames_.read(coeffs_.lookup("geometryMode"));

 switch (gm)
 {
 case gmAuto:
 {
 // determine rotation origin (cell volume weighted)
 scalar sumV = 0.0;
 const scalarField& V = mesh_.V();
 const vectorField& C = mesh_.C();
 forAll(cells_, i)
 {
 const label cellI = cells_[i];
 sumV += V[cellI];
 origin += V[cellI]*C[cellI];
 }
 reduce(origin, sumOp<vector>());
 reduce(sumV, sumOp<scalar>());
 origin /= sumV;

 // determine first radial vector
 vector dx1(vector::zero);
 scalar magR = -GREAT;
 forAll(cells_, i)
 {
 const label cellI = cells_[i];
 vector test = C[cellI] - origin;
 if (mag(test) > magR)
 {
 dx1 = test;
 magR = mag(test);
 }
 }
 reduce(dx1, maxMagSqrOp<vector>());
 magR = mag(dx1);

 // determine second radial vector and cross to determine axis
 forAll(cells_, i)
 {
 const label cellI = cells_[i];
 vector dx2 = C[cellI] - origin;
 if (mag(dx2) > 0.5*magR)
 {
 axis = dx1 ^ dx2;
 if (mag(axis) > SMALL)
 {
 break;
 }
 }
 }
 reduce(axis, maxMagSqrOp<vector>());
 axis /= mag(axis);

 // correct the axis direction using a point above the rotor
 {
 vector pointAbove(coeffs_.lookup("pointAbove"));
 vector dir = pointAbove - origin;
 dir /= mag(dir);
 if ((dir & axis) < 0)
 {
 axis *= -1.0;
 }
 }

 coeffs_.lookup("refDirection") >> refDir;

 // set the face areas and apply correction to calculated axis
 // e.g. if cellZone is more than a single layer in thickness
 setFaceArea(axis, true);

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
119

 break;
 }
 case gmSpecified:
 {
 coeffs_.lookup("origin") >> origin;
 coeffs_.lookup("axis") >> axis;
 coeffs_.lookup("refDirection") >> refDir;

 setFaceArea(axis, false);

 break;
 }
 default:
 {
 FatalErrorIn("rotorDiskSource::createCoordinateSystem()")
 << "Unknown geometryMode " << geometryModeTypeNames_[gm]
 << ". Available geometry modes include "
 << geometryModeTypeNames_ << exit(FatalError);
 }
 }

 coordSys_ = cylindricalCS("rotorCoordSys", origin, axis, refDir, false);
 // BEWARE WHEN USING THIS cylindricalCS CLASS. IT IS INCOMPLETE!

/* // ========== THIS METHOD RETURNS SEG FAULT ON MRH90 CASE ============= //
 // Calculate rotor pitch and bank angles from local co-ordinate system
 // normalised pitch-bank plane normal
 vector nNPB = coordSys_.e3()/mag(coordSys_.e3());

 // Projection of normal onto cartesian Y-Z plane
 vector nPBYZ = vector(0, coordSys_.e3().y(), coordSys_.e3().z());
 vector nNPBYZ = nPBYZ/mag(nPBYZ);

 // Projection of normal onto cartesian X-Z plane
 vector nPBXZ = vector(coordSys_.e3().x(), 0, coordSys_.e3().z());
 vector nNPBXZ = nPBXZ/mag(nPBXZ);

 // Rotation of PB plane about X axis (bank angle)
 bankAng_ = -acos(nNPB & nNPBYZ)*(coordSys_.e3().y()/mag(coordSys_.e3().y()));

 // Rotation of PB plane about Y axis (pitch angle)
 pitchAng_ = acos(nNPB & nNPBXZ)*(coordSys_.e3().x()/mag(coordSys_.e3().x()));
*/ // == //

 // alternative way of calculating pitch and bank angles
 bankAng_ = atan2(coordSys_.e3().y(), coordSys_.e3().z());
 pitchAng_ = atan2(coordSys_.e3().x(), coordSys_.e3().z());

 // Tensor for transforming from Cartesian into Pitch/Bank Plane
 scalar cp = cos(pitchAng_);
 scalar sp = sin(pitchAng_);
 scalar cb = cos(bankAng_);
 scalar sb = sin(bankAng_);
 PB_ = tensor(cp, sp*sb, sp*cb, 0, cb, -sb, -sp, cp*sb, cp*cb);

/*
 // Alternative way of constructing the rotational tensor
 scalar cp = cos(pitchAng_);
 scalar sp = sin(pitchAng_);
 scalar cb = cos(-bankAng_);
 scalar sb = sin(-bankAng_);

 // rotation tensor about the cartesian X-Axis by bankAng_
 tensor bankRotate = tensor(1, 0, 0, 0, cb, sb, 0, -sb, cb);

 // rotation tensor about the cartesian Y-axis by pitchAng_
 tensor pitchRotate = tensor(cp, 0, -sp, 0, 1, 0, sp, 0, cp);

 // combined bank and pitch rotations
 PB_ = pitchRotate * bankRotate;

 // manual check of the combined rotational tensor
 //PB_ = tensor(cp, -sp*sb, -sp*cb, 0, cb, -sb, sp, cp*sb, cp*cb);

*/

 // Tensor for transforming from Pitch/Bank Plane into Cartesian
 invPB_ = PB_.T();

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
120

 const scalar sumArea = gSum(area_);
 const scalar diameter = Foam::sqrt(4.0*sumArea/mathematical::pi);
 Info<< " =================================== " << nl
 << " # Using rotorDiskSource 20120822 # " << nl
 << " =================================== " << nl << endl;
 Info<< " Rotor gometry:" << nl
 << " - disk diameter = " << diameter << nl
 << " - disk area = " << sumArea << nl
 << " - origin = " << coordSys_.origin() << nl
 << " - r-axis = " << coordSys_.e1() << nl
 << " - psi-axis = " << coordSys_.e2() << nl
 << " - z-axis = " << coordSys_.e3() << nl
 << " - disk pitch angle = " << pitchAng_ << nl
 << " - disk bank angle = " << bankAng_ << endl;
}

void Foam::rotorDiskSource::constructGeometry()
{
 const vectorField& C = mesh_.C();

 forAll(cells_, i)
 {
 if (area_[i] > ROOTVSMALL)
 {
 const label cellI = cells_[i];

 // position in (planar) rotor co-ordinate system
 x_[i] = coordSys_.localPosition(C[cellI]);

 // cache max radius
 rMax_ = max(rMax_, x_[i].x());

 // swept angle relative to rDir axis [radians] in range 0 -> 2*pi
 scalar psi = x_[i].y();

 if (rotorDebug_)
 {
 psiList_[i] = radToDeg(psi);
 }

 // blade flap angle [radians]
 scalar beta =
 flap_.beta0 - flap_.beta1*cos(psi) - flap_.beta2*sin(psi);

 // determine rotation tensor to convert from planar system into the
 // rotor cone system
 scalar c = cos(beta);
 scalar s = sin(beta);
 R_[i] = tensor(c, 0, -s, 0, 1, 0, s, 0, c);
 invR_[i] = R_[i].T();
 }
 }

 // reduce rMax_ for parallel running
 reduce(rMax_, maxOp<scalar>());
}

Foam::tmp<Foam::vectorField> Foam::rotorDiskSource::inflowVelocity
(
 const volVectorField& U
) const
{
 switch (inletFlow_)
 {
 case ifFixed:
 case ifSurfaceNormal:
 {
 return tmp<vectorField>
 (
 new vectorField(mesh_.nCells(), inletVelocity_)
);

 break;
 }
 case ifLocal:
 {
 return U.internalField();

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
121

 break;
 }
 default:
 {
 FatalErrorIn
 (
 "Foam::tmp<Foam::vectorField> "
 "Foam::rotorDiskSource::inflowVelocity"
 "(const volVectorField&) const"
) << "Unknown inlet flow specification" << abort(FatalError);
 }
 }

 return tmp<vectorField>(new vectorField(mesh_.nCells(), vector::zero));
}

// * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * * //

Foam::rotorDiskSource::rotorDiskSource
(
 const word& name,
 const word& modelType,
 const dictionary& dict,
 const fvMesh& mesh

)
:
 basicSource(name, modelType, dict, mesh),
 rhoName_("none"),
 rhoRef_(1.2),
 rotorDebug_(false),
 omega_(0.0),
 nBlades_(0),
 inletFlow_(ifLocal),
 inletVelocity_(vector::zero),
 tipEffect_(1.0),
 flap_(),
 x_(cells_.size(), vector::zero),
 R_(cells_.size(), I),
 invR_(cells_.size(), I),
 area_(cells_.size(), 0.0),
 coordSys_(false),
 rMax_(0.0),
 psiList_(cells_.size(), 0.0),
 trim_(trimModel::New(*this, coeffs_)),
 blade_(coeffs_.subDict("blade")),
 profiles_(coeffs_.subDict("profiles"))
{
 read(dict);
}

// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //

Foam::rotorDiskSource::~rotorDiskSource()
{}

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //

void Foam::rotorDiskSource::calculate
(
 const vectorField& U,
 const scalarField& alphag,
 vectorField& force,
 const bool divideVolume,
 const bool output
) const
{
 const vectorField& C = mesh_.C();
 const scalarField& V = mesh_.V();
 const bool compressible = rhoName_ != "none";

 tmp<volScalarField> trho
 (
 compressible
 ? mesh_.lookupObject<volScalarField>(rhoName_)
 : volScalarField::null()
);

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
122

 // logging info
 scalar dragEff = 0.0;
 scalar liftEff = 0.0;
 scalar AOAmin = GREAT;
 scalar AOAmax = -GREAT;
 scalar epsMin = GREAT;
 scalar epsMax = -GREAT;
 scalar CdMin = 10.0;
 scalar CdMax = VSMALL;
 scalar ClMin = 10.0;
 scalar ClMax = VSMALL;

 scalar totalThrust = 0.0;
 scalar totalPitchingMoment = 0.0;
 scalar totalRollingMoment = 0.0;

 // begin looping over all rotor cells
 forAll(cells_, i)
 {
 if (area_[i] > ROOTVSMALL)
 {
 const label cellI = cells_[i];

 const scalar radius = x_[i].x();
 const scalar psi = x_[i].y();

 // velocity in local cylindrical reference frame
 // the localVector function below is just for position vector.
 //vector Uc = coordSys_.localVector(U[cellI]);

 // velocity in local cylindrical reference frame
 // This assumes that the Uz is the same as the rotorDiskPlane normal axis.

 // aligning U to the pitch bank angle plane
 vector Upb = PB_ & U[cellI];

 vector Uc = vector
 (
 Upb.x()*cos(psi)+Upb.y()*sin(psi),
 -Upb.x()*sin(psi)+Upb.y()*cos(psi),
 Upb.z()
);
/*
 // transforming velocity to rotor local cylindrical frame
 // using the dot products of the two systems' base vectors
 const vector e1Global = vector (1, 0, 0);
 const vector e2Global = vector (0, 1, 0);
 const vector e3Global = vector (0, 0, 1);
 vector Uc = vector (0, 0, 0);
 Uc.x() = U[cellI].x() * (coordSys_.e1() & e1Global) +
 U[cellI].y() * (coordSys_.e2() & e1Global) +
 U[cellI].z() * (coordSys_.e3() & e1Global);

 Uc.y() = U[cellI].x() * (coordSys_.e1() & e2Global) +
 U[cellI].y() * (coordSys_.e2() & e2Global) +
 U[cellI].z() * (coordSys_.e3() & e2Global);

 Uc.z() = U[cellI].x() * (coordSys_.e1() & e3Global) +
 U[cellI].y() * (coordSys_.e2() & e3Global) +
 U[cellI].z() * (coordSys_.e3() & e3Global);

 // ==> This method does not work because the coordSys_.e1(), e2()
 // and e3() does not return the base vectors of r, psi, z in terms of
 // i, j, k for each cell. In fact only e3() vector is correct.
 // e1() and e2() were found to not vary with cell position.

*/
 // transform from rotor cylindrical into local coning system
 Uc = R_[i] & Uc;

 // set radial component of velocity to zero
 Uc.x() = 0.0;

 // total Utheta
 //scalar Ut = radius*omega_ + Uc.y();

 // set blade normal component of velocity
 Uc.y() = radius*omega_ - Uc.y();

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
123

 // air angle (rad)
 //scalar eps = atan2(Uc.z(), fabs(Ut));
 scalar eps = atan2(-Uc.z(), Uc.y());

 if (eps < -mathematical::pi)
 {
 eps = (2.0*mathematical::pi + eps);
 }
 if (eps > mathematical::pi)
 {
 eps = (eps - 2.0*mathematical::pi);
 }

 epsMin = min(epsMin, eps);
 epsMax = max(epsMax, eps);

 // determine blade data for this radius
 // i2 = index of upper radius bound data point in blade list
 scalar twist = 0.0;
 scalar chord = 0.0;
 label i1 = -1;
 label i2 = -1;
 scalar invDr = 0.0;
 blade_.interpolate(radius, twist, chord, i1, i2, invDr);

 // flip geometric angle if blade is spinning in reverse (clockwise)
 scalar alphaGeom = alphag[i] + twist;
 if (omega_ < 0)
 {
 alphaGeom = mathematical::pi - alphaGeom;
 }

 // effective angle of attack
 scalar alphaEff = alphaGeom - atan2(-Uc.z(), Uc.y());

 if (alphaEff < -mathematical::pi)
 {
 alphaEff = (2.0*mathematical::pi + alphaEff);
 }
 if (alphaEff > mathematical::pi)
 {
 alphaEff = (alphaEff - 2.0*mathematical::pi);
 }

 AOAmin = min(AOAmin, alphaEff);
 AOAmax = max(AOAmax, alphaEff);

 // determine profile data for this radius and angle of attack
 const label profile1 = blade_.profileID()[i1];
 const label profile2 = blade_.profileID()[i2];

 scalar Cd1 = 0.0;
 scalar Cl1 = 0.0;
 profiles_[profile1].Cdl(alphaEff, Cd1, Cl1);

 scalar Cd2 = 0.0;
 scalar Cl2 = 0.0;
 profiles_[profile2].Cdl(alphaEff, Cd2, Cl2);

 scalar Cd = invDr*(Cd2 - Cd1) + Cd1;
 scalar Cl = invDr*(Cl2 - Cl1) + Cl1;

 CdMin = min(CdMin, fabs(Cd));
 CdMax = max(CdMax, fabs(Cd));
 ClMin = min(ClMin, fabs(Cl));
 ClMax = max(ClMax, fabs(Cl));

 // apply tip effect for blade lift
 scalar tipFactor = 1.0;
 if ((radius/rMax_) > tipEffect_)
 {
 tipFactor = 0.0;
 }

 //scalar tipFactor = neg(radius/rMax_ - tipEffect_);

 // calculate forces perpendicular to blade
 scalar pDyn = 0.5*magSqr(Uc);
 if (compressible)

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
124

 {
 pDyn *= trho()[cellI];
 }

 scalar f = pDyn*chord*nBlades_*area_[i]/radius/mathematical::twoPi;

 // forces in blade coordinate system
 //scalar ftc = (f*Cd*cos(eps) - tipFactor*f*Cl*sin(eps));
 //scalar fnc = (f*Cd*sin(eps) + tipFactor*f*Cl*cos(eps));

 // Implementation of Kim et al [7th OpenFOAM Workshop]
 scalar ftc = (f*Cd*cos(eps) + tipFactor*f*Cl*sin(eps));
 scalar fnc = (-f*Cd*sin(eps) + tipFactor*f*Cl*cos(eps));

 //vector localForce = vector(0.0, -f*Cd, tipFactor*f*Cl);
 vector localForce = vector(0.0, -ftc, fnc);

 if (compressible)
 {
 // accumulate forces
 dragEff += localForce.y();
 liftEff += localForce.z();
 }
 else
 {
 dragEff += rhoRef_*localForce.y();
 liftEff += rhoRef_*localForce.z();
 }

 if (rotorDebug_)
 {
 if (i == 0)
 {
 Info << "CellI psi radius alphaEff "
 << "eps Cl Cd f fn fth" << nl << endl;
 }

 Info << cellI << " " << psiList_[cellI] << " " << radius << " "
 << radToDeg(alphaEff) << " "
 << radToDeg(eps) << " "
 << Cl << " " << Cd << " "
 << f << " " << localForce.y() << " " << localForce.z()
 << endl;
 }

 // convert force from local coning system into rotor cylindrical
 localForce = invR_[i] & localForce;

 // convert force to global cartesian co-ordinate system
 // similarly to the localVector function, the globalVector is
 // only meant for the position vector.
 //force[cellI] = coordSys_.globalVector(localForce);

 // convert force to global cartesian co-ordinate system
 // the line below assumes that there is zero tilt on the rotorDiskPlane
 localForce = vector
 (
 localForce.x()*cos(psi) - localForce.y()*sin(psi),
 localForce.x()*sin(psi) + localForce.y()*cos(psi),
 localForce.z()
);

 force[cellI] = invPB_ & localForce;

/*
 // transforming force from rotor local cylindrical to global cartesian
 // using the dot products of the two systems' base vectors
 vector globalForce = vector (0, 0, 0);
 globalForce.x() = localForce.x() * (coordSys_.e1() & e1Global) +
 localForce.y() * (coordSys_.e2() & e1Global) +
 localForce.z() * (coordSys_.e3() & e1Global);

 globalForce.y() = localForce.x() * (coordSys_.e1() & e2Global) +
 localForce.y() * (coordSys_.e2() & e2Global) +
 localForce.z() * (coordSys_.e3() & e2Global);

 globalForce.z() = localForce.x() * (coordSys_.e1() & e3Global) +
 localForce.y() * (coordSys_.e2() & e3Global) +
 localForce.z() * (coordSys_.e3() & e3Global);

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
125

 force[cellI] = globalForce;

 // ==> This method does not work because the coordSys_.e1(), e2()
 // and e3() does not return the base vectors of r, psi, z in terms of
 // i, j, k for each cell. In fact only e3() vector is correct.
 // e1() and e2() were found to not vary with cell position.
*/

 if (compressible)
 {
 // calculate global thrust and moment
 vector moment = force[cellI]^(C[cellI] - coordSys_.origin());
 totalThrust += force[cellI] & coordSys_.e3();
 totalPitchingMoment += moment & coordSys_.e2();
 totalRollingMoment += moment & coordSys_.e1();
 }
 else
 {
 vector moment = force[cellI]^(C[cellI] - coordSys_.origin());
 totalThrust += (rhoRef_ * (force[cellI] & coordSys_.e3()));
 totalPitchingMoment += (rhoRef_ * (moment & coordSys_.e2()));
 totalRollingMoment += (rhoRef_ * (moment & coordSys_.e1()));
 }

 if (divideVolume)
 { // calculate momentum source
 force[cellI] /= V[cellI];
 }

 }
 }

 if (output)
 {
 reduce(AOAmin, minOp<scalar>());
 reduce(AOAmax, maxOp<scalar>());
 reduce(epsMin, minOp<scalar>());
 reduce(epsMax, maxOp<scalar>());
 reduce(dragEff, sumOp<scalar>());
 reduce(liftEff, sumOp<scalar>());
 reduce(totalThrust, sumOp<scalar>());
 reduce(totalPitchingMoment, sumOp<scalar>());
 reduce(totalRollingMoment, sumOp<scalar>());

 Info<< type() << " output:" << nl
 << " min/max(AOA) = " << radToDeg(AOAmin) << ", "
 << radToDeg(AOAmax) << nl
 << " min/max(induced AOA) = " << radToDeg(epsMin) << ", "
 << radToDeg(epsMax) << nl
 << " Effective blade drag = " << dragEff << nl
 << " Effective blade lift = " << liftEff << nl
 << " Total Thrust = " << totalThrust << nl
 << " Total Pitching Moment = " << totalPitchingMoment << nl
 << " Total Rolling Moment = " << totalRollingMoment << endl;
 }
}

void Foam::rotorDiskSource::addSup(fvMatrix<vector>& eqn, const label fieldI)
{
 dimensionSet dims = dimless;
 if (eqn.dimensions() == dimForce)
 {
 coeffs_.lookup("rhoName") >> rhoName_;
 dims.reset(dimForce/dimVolume);
 }
 else
 {
 coeffs_.lookup("rhoRef") >> rhoRef_;
 dims.reset(dimForce/dimVolume/dimDensity);
 }

 volVectorField force
 (
 IOobject
 (
 "rotorForce",
 mesh_.time().timeName(),
 mesh_,
 IOobject::NO_READ,

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
126

 IOobject::NO_WRITE
),
 mesh_,
 dimensionedVector("zero", dims, vector::zero)
);

 const volVectorField& U = eqn.psi();

 const vectorField Uin = inflowVelocity(U);

 trim_->correct(Uin, force);

 calculate(Uin, trim_->alphag(), force);

 // add source to rhs of eqn
 eqn += -force;

 if (mesh_.time().outputTime())
 {
 force.write();
 }
}

void Foam::rotorDiskSource::writeData(Ostream& os) const
{
 os << indent << name_ << endl;
 dict_.write(os);
}

bool Foam::rotorDiskSource::read(const dictionary& dict)
{
 if (basicSource::read(dict))
 {
 coeffs_.lookup("fieldNames") >> fieldNames_;
 applied_.setSize(fieldNames_.size(), false);

 // read if rotorDebug is active
 coeffs_.lookup("rotorDebugMode") >> rotorDebug_;

 // read co-ordinate system/geometry invariant properties
 scalar rpm(readScalar(coeffs_.lookup("rpm")));
 omega_ = rpm/60.0*mathematical::twoPi;

 coeffs_.lookup("nBlades") >> nBlades_;

 inletFlow_ = inletFlowTypeNames_.read(coeffs_.lookup("inletFlowType"));

 coeffs_.lookup("tipEffect") >> tipEffect_;

 const dictionary& flapCoeffs(coeffs_.subDict("flapCoeffs"));
 flapCoeffs.lookup("beta0") >> flap_.beta0;
 flapCoeffs.lookup("beta1") >> flap_.beta1;
 flapCoeffs.lookup("beta2") >> flap_.beta2;
 flap_.beta0 = degToRad(flap_.beta0);
 flap_.beta1 = degToRad(flap_.beta1);
 flap_.beta2 = degToRad(flap_.beta2);

 // create co-ordinate system
 createCoordinateSystem();

 // read co-odinate system dependent properties
 checkData();

 constructGeometry();

 // reading rhoName_
 coeffs_.lookup("rhoName") >> rhoName_;
 coeffs_.lookup("rhoRef") >> rhoRef_;

 trim_->read(coeffs_);

 if (debug)
 {
 writeField("alphag", trim_->alphag()(), true);
 writeField("faceArea", area_, true);
 }

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
127

 return true;
 }
 else
 {
 return false;
 }
}

// *** //

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
128

A.2.3 rotorDiskSourceTemplates.C

/*---*\
 ========= |
 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
 \\ / O peration |
 \\ / A nd | Copyright (C) 2011 OpenFOAM Foundation
 \\/ M anipulation |

License
 This file is part of OpenFOAM.

 OpenFOAM is free software: you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
 for more details.

 You should have received a copy of the GNU General Public License
 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

---/

#include "rotorDiskSource.H"
#include "volFields.H"

// * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * * //

template<class Type>
void Foam::rotorDiskSource::writeField
(
 const word& name,
 const List<Type>& values,
 const bool writeNow
) const
{
 typedef GeometricField<Type, fvPatchField, volMesh> fieldType;

 if (mesh_.time().outputTime() || writeNow)
 {
 tmp<fieldType> tfld
 (
 new fieldType
 (
 IOobject
 (
 name,
 mesh_.time().timeName(),
 mesh_,
 IOobject::NO_READ,
 IOobject::NO_WRITE
),
 mesh_,
 dimensioned<Type>("zero", dimless, pTraits<Type>::zero)
)
);

 Field<Type>& fld = tfld().internalField();

 if (cells_.size() != values.size())
 {
 FatalErrorIn("") << "cells_.size() != values_.size()"
 << abort(FatalError);
 }

 forAll(cells_, i)
 {
 const label cellI = cells_[i];
 fld[cellI] = values[i];
 }

 tfld().write();
 }
}
// *** //

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
129

A.2.4 rotorDiskSourceI.H

/*---*\
 ========= |
 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
 \\ / O peration |
 \\ / A nd | Copyright (C) 2012 OpenFOAM Foundation
 \\/ M anipulation |

License
 This file is part of OpenFOAM.

 OpenFOAM is free software: you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
 for more details.

 You should have received a copy of the GNU General Public License
 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

---/

#include "rotorDiskSource.H"

const Foam::List<Foam::point>& Foam::rotorDiskSource::x() const
{
 return x_;
}

const Foam::cylindricalCS& Foam::rotorDiskSource::coordSys() const
{
 return coordSys_;
}

const Foam::word& Foam::rotorDiskSource::getRhoName() const
{
 return rhoName_;
}

const Foam::scalar& Foam::rotorDiskSource::getRhoRef() const
{
 return rhoRef_;
}

// *** //

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
130

A.2.5 bladeModel.H

/*---*\
 ========= |
 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
 \\ / O peration |
 \\ / A nd | Copyright (C) 2011 OpenFOAM Foundation
 \\/ M anipulation |

License
 This file is part of OpenFOAM.

 OpenFOAM is free software: you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
 for more details.

 You should have received a copy of the GNU General Public License
 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Class
 Foam::bladeModel

Description
 Blade model class

SourceFiles
 bladeModel.C

---/

#ifndef bladeModel_H
#define bladeModel_H

#include "List.H"
#include "dictionary.H"

// * //

namespace Foam
{

/*---*\
 Class bladeModel Declaration
---/

class bladeModel
{

protected:

 // Protected data

 //- Corresponding profile name per section
 List<word> profileName_;

 //- Corresponding profile ID per section
 List<label> profileID_;

 //- Radius [m]
 List<scalar> radius_;

 //- Twist [deg] on input, converted to [rad]
 List<scalar> twist_;

 //- Chord [m]
 List<scalar> chord_;

 //- File name (optional)
 fileName fName_;

 // Protected Member Functions

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
131

 //- Return ture if file name is set
 bool readFromFile() const;

 //- Return the interpolation indices and gradient
 void interpolateWeights
 (
 const scalar& xIn,
 const List<scalar>& values,
 label& i1,
 label& i2,
 scalar& ddx
) const;

public:

 //- Constructor
 bladeModel(const dictionary& dict);

 //- Destructor
 virtual ~bladeModel();

 // Member functions

 // Access

 //- Return const access to the profile name list
 const List<word>& profileName() const;

 //- Return const access to the profile ID list
 const List<label>& profileID() const;

 //- Return const access to the radius list
 const List<scalar>& radius() const;

 //- Return const access to the twist list
 const List<scalar>& twist() const;

 //- Return const access to the chord list
 const List<scalar>& chord() const;

 // Edit

 //- Return non-const access to the profile ID list
 List<label>& profileID();

 // Evaluation

 //- Return the twist and chord for a given radius
 virtual void interpolate
 (
 const scalar radius,
 scalar& twist,
 scalar& chord,
 label& i1,
 label& i2,
 scalar& invDr
) const;
};

// * //

} // End namespace Foam

// * //

#endif

// *** //

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
132

A.2.6 bladeModel.C

/*---*\
 ========= |
 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
 \\ / O peration |
 \\ / A nd | Copyright (C) 2011-2012 OpenFOAM Foundation
 \\/ M anipulation |

License
 This file is part of OpenFOAM.

 OpenFOAM is free software: you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
 for more details.

 You should have received a copy of the GNU General Public License
 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

---/

#include "bladeModel.H"
#include "unitConversion.H"
#include "Tuple2.H"
#include "vector.H"
#include "IFstream.H"

// * * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * //

bool Foam::bladeModel::readFromFile() const
{
 return fName_ != fileName::null;
}

void Foam::bladeModel::interpolateWeights
(
 const scalar& xIn,
 const List<scalar>& values,
 label& i1,
 label& i2,
 scalar& ddx
) const
{
 i2 = 0;
 label nElem = values.size();

 if (nElem == 1)
 {
 i1 = i2;
 ddx = 0.0;
 return;
 }
 else
 {
 while ((values[i2] < xIn) && (i2 < nElem))
 {
 i2++;
 }

 if (i2 == nElem)
 {
 i2 = nElem - 1;
 i1 = i2;
 ddx = 0.0;
 return;
 }
 else
 {
 i1 = i2 - 1;
 ddx = (xIn - values[i1])/(values[i2] - values[i1]);
 }

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
133

 }
}

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

Foam::bladeModel::bladeModel(const dictionary& dict)
:
 profileName_(),
 profileID_(),
 radius_(),
 twist_(),
 chord_(),
 fName_(fileName::null)
{
 List<Tuple2<word, vector> > data;
 if (readFromFile())
 {
 IFstream is(fName_);
 is >> data;
 }
 else
 {
 dict.lookup("data") >> data;
 }

 if (data.size() > 0)
 {
 profileName_.setSize(data.size());
 profileID_.setSize(data.size());
 radius_.setSize(data.size());
 twist_.setSize(data.size());
 chord_.setSize(data.size());

 forAll(data, i)
 {
 profileName_[i] = data[i].first();
 profileID_[i] = -1;
 radius_[i] = data[i].second()[0];
 twist_[i] = degToRad(data[i].second()[1]);
 chord_[i] = data[i].second()[2];
 }
 }
 else
 {
 FatalErrorIn("Foam::bladeModel::bladeModel(const dictionary&)")
 << "No blade data specified" << exit(FatalError);
 }
}

// * * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * //

Foam::bladeModel::~bladeModel()
{}

// * * * * * * * * * * * * Public Member Functions * * * * * * * * * * * * //

const Foam::List<Foam::word>& Foam::bladeModel::profileName() const
{
 return profileName_;
}

const Foam::List<Foam::label>& Foam::bladeModel::profileID() const
{
 return profileID_;
}

const Foam::List<Foam::scalar>& Foam::bladeModel::radius() const
{
 return radius_;
}

const Foam::List<Foam::scalar>& Foam::bladeModel::twist() const
{
 return twist_;

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
134

}

const Foam::List<Foam::scalar>& Foam::bladeModel::chord() const
{
 return chord_;
}

Foam::List<Foam::label>& Foam::bladeModel::profileID()
{
 return profileID_;
}

void Foam::bladeModel::interpolate
(
 const scalar radius,
 scalar& twist,
 scalar& chord,
 label& i1,
 label& i2,
 scalar& invDr
) const
{
 interpolateWeights(radius, radius_, i1, i2, invDr);

 twist = invDr*(twist_[i2] - twist_[i1]) + twist_[i1];
 chord = invDr*(chord_[i2] - chord_[i1]) + chord_[i1];
}

// *** //

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
135

A.2.7 profileModel.H

/*---*\
 ========= |
 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
 \\ / O peration |
 \\ / A nd | Copyright (C) 2011 OpenFOAM Foundation
 \\/ M anipulation |

License
 This file is part of OpenFOAM.

 OpenFOAM is free software: you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
 for more details.

 You should have received a copy of the GNU General Public License
 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Class
 Foam::profileModel

Description
 Abstract class for profile models

SourceFiles
 profileModel.C

---/

#ifndef profileModel_H
#define profileModel_H

#include "autoPtr.H"
#include "runTimeSelectionTables.H"
#include "dictionary.H"

// * //

namespace Foam
{

/*---*\
 Class profileModel Declaration
---/

class profileModel
{

protected:

 // Protected data

 //- Coefficients dictionary
 const dictionary dict_;

 //- Name of profile model
 const word name_;

 //- File name (optional)
 fileName fName_;

 // Protected Member Functions

 //- Return ture if file name is set
 bool readFromFile() const;

public:

 //- Runtime type information
 TypeName("profileModel");

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
136

 // Declare run-time constructor selection table
 declareRunTimeSelectionTable
 (
 autoPtr,
 profileModel,
 dictionary,
 (
 const dictionary& dict,
 const word& modelName
),
 (dict, modelName)
);

 // Selectors

 //- Return a reference to the selected basicSource model
 static autoPtr<profileModel> New(const dictionary& dict);

 //- Constructor
 profileModel(const dictionary& dict, const word& modelName);

 //- Destructor
 virtual ~profileModel();

 // Member functions

 // Access

 //- Return const access to the source name
 const word& name() const;

 // Evaluation

 //- Return the Cd and Cl for a given angle-of-attack
 virtual void Cdl
 (
 const scalar alpha,
 scalar& Cd,
 scalar& Cl
) const = 0;
};

// * //

} // End namespace Foam

// * //

#endif

// *** //

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
137

A.2.8 profileModel.C

/*---*\
 ========= |
 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
 \\ / O peration |
 \\ / A nd | Copyright (C) 2011 OpenFOAM Foundation
 \\/ M anipulation |

License
 This file is part of OpenFOAM.

 OpenFOAM is free software: you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
 for more details.

 You should have received a copy of the GNU General Public License
 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

---/

#include "profileModel.H"
#include "addToRunTimeSelectionTable.H"

// * //

namespace Foam
{
 defineTypeNameAndDebug(profileModel, 0);
 defineRunTimeSelectionTable(profileModel, dictionary);
}

// * * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * //

bool Foam::profileModel::readFromFile() const
{
 return fName_ != fileName::null;
}

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

Foam::profileModel::profileModel(const dictionary& dict, const word& name)
:
 dict_(dict),
 name_(name),
 fName_(fileName::null)
{
 dict.readIfPresent("fileName", fName_);
}

// * * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * //

Foam::profileModel::~profileModel()
{}

// * * * * * * * * * * * Public Member Functions * * * * * * * * * * * * * //

const Foam::word& Foam::profileModel::name() const
{
 return name_;
}

Foam::autoPtr<Foam::profileModel> Foam::profileModel::New
(
 const dictionary& dict
)
{
 const word& modelName(dict.dictName());

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
138

 const word modelType(dict.lookup("type"));

 Info<< " - creating " << modelType << " profile " << modelName << endl;

 dictionaryConstructorTable::iterator cstrIter =
 dictionaryConstructorTablePtr_->find(modelType);

 if (cstrIter == dictionaryConstructorTablePtr_->end())
 {
 FatalErrorIn("profileModel::New(const dictionary&)")
 << "Unknown profile model type " << modelType
 << nl << nl
 << "Valid model types are :" << nl
 << dictionaryConstructorTablePtr_->sortedToc()
 << exit(FatalError);
 }

 return autoPtr<profileModel>(cstrIter()(dict, modelName));
}

// *** //

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
139

A.2.9 profileModelList.H

/*---*\
 ========= |
 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
 \\ / O peration |
 \\ / A nd | Copyright (C) 2011 OpenFOAM Foundation
 \\/ M anipulation |

License
 This file is part of OpenFOAM.

 OpenFOAM is free software: you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
 for more details.

 You should have received a copy of the GNU General Public License
 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Class
 Foam::profileModelList

Description
 Base class for profile models

SourceFiles
 profileModelList.C

---/

#ifndef profileModelList_H
#define profileModelList_H

#include "PtrList.H"
#include "profileModel.H"

// * //

namespace Foam
{

/*---*\
 Class profileModelList Declaration
---/

class profileModelList
:
 public PtrList<profileModel>
{

protected:

 // Protected data

 //- Dictionary
 const dictionary dict_;

public:

 //- Constructor
 profileModelList(const dictionary& dict, const bool readFields = true);

 //- Destructor
 ~profileModelList();

 // Member Functions

 //- Set blade->profile addressing
 void connectBlades
 (
 const List<word>& names,

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
140

 List<label>& addr
) const;
};

// * //

} // End namespace Foam

// * //

#endif

// *** //

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
141

A.2.10 profileModelList.C

/*---*\
 ========= |
 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
 \\ / O peration |
 \\ / A nd | Copyright (C) 2011 OpenFOAM Foundation
 \\/ M anipulation |

License
 This file is part of OpenFOAM.

 OpenFOAM is free software: you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
 for more details.

 You should have received a copy of the GNU General Public License
 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

---/

#include "profileModelList.H"

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

Foam::profileModelList::profileModelList
(
 const dictionary& dict,
 const bool readFields
)
:
 PtrList<profileModel>(),
 dict_(dict)
{
 if (readFields)
 {
 wordList modelNames(dict.toc());

 Info<< " Constructing blade profiles:" << endl;

 if (modelNames.size() > 0)
 {
 this->setSize(modelNames.size());

 forAll(modelNames, i)
 {
 const word& modelName = modelNames[i];

 this->set
 (
 i,
 profileModel::New(dict.subDict(modelName))
);
 }
 }
 else
 {
 Info<< " none" << endl;
 }
 }
}

// * * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * //

Foam::profileModelList::~profileModelList()
{}

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //

void Foam::profileModelList::connectBlades
(

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
142

 const List<word>& names,
 List<label>& addr
) const
{
 // construct the addressing between blade sections and profiles
 forAll(names, bI)
 {
 label index = -1;
 const word& profileName = names[bI];

 forAll(*this, pI)
 {
 const profileModel& pm = this->operator[](pI);

 if (pm.name() == profileName)
 {
 index = pI;
 break;
 }
 }

 if (index == -1)
 {
 List<word> profileNames(size());
 forAll(*this, i)
 {
 const profileModel& pm = this->operator[](i);
 profileNames[i] = pm.name();
 }

 FatalErrorIn("void Foam::connectBlades(List<word>& names) const")
 << "Profile " << profileName << " could not be found "
 << "in profile list. Available profiles are"
 << profileNames << exit(FatalError);
 }
 else
 {
 addr[bI] = index;
 }
 }
}

// *** //

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
143

A.2.11 lookupProfile.H

/*---*\
 ========= |
 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
 \\ / O peration |
 \\ / A nd | Copyright (C) 2011 OpenFOAM Foundation
 \\/ M anipulation |

License
 This file is part of OpenFOAM.

 OpenFOAM is free software: you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
 for more details.

 You should have received a copy of the GNU General Public License
 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Class
 Foam::lookupProfile

Description
 Look-up based profile data - drag and lift coefficients are lineraly
 interpolated based on the supplied angle of attack

 Input in list format:

 data
 (
 (AOA1 Cd1 Cl2)
 (AOA2 Cd2 Cl2)
 ...
 (AOAN CdN CdN)
);

 where:
 AOA = angle of attack [deg] converted to [rad] internally
 Cd = drag coefficient
 Cl = lift coefficient

SourceFiles
 lookupProfile.C

---/

#ifndef lookupProfile_H
#define lookupProfile_H

#include "profileModel.H"
#include "List.H"

// * //

namespace Foam
{

/*---*\
 Class lookupProfile Declaration
---/

class lookupProfile
:
 public profileModel
{

protected:

 // Protected data

 //- List of angle-of-attack values [deg] on input, converted to [rad]
 List<scalar> AOA_;

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
144

 //- List of drag coefficient values
 List<scalar> Cd_;

 //- List of lift coefficient values
 List<scalar> Cl_;

 // Protected Member Functions

 //- Return the interpolation indices and gradient
 void interpolateWeights
 (
 const scalar& xIn,
 const List<scalar>& values,
 label& i1,
 label& i2,
 scalar& ddx
) const;

public:

 //- Runtime type information
 TypeName("lookup");

 //- Constructor
 lookupProfile(const dictionary& dict, const word& modelName);

 // Member functions

 // Evaluation

 //- Return the Cd and Cl for a given angle-of-attack
 virtual void Cdl(const scalar alpha, scalar& Cd, scalar& Cl) const;
};

// * //

} // End namespace Foam

// * //

#endif

// *** //

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
145

A.2.12 lookupProfile.C

/*---*\
 ========= |
 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
 \\ / O peration |
 \\ / A nd | Copyright (C) 2011-2012 OpenFOAM Foundation
 \\/ M anipulation |

License
 This file is part of OpenFOAM.

 OpenFOAM is free software: you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
 for more details.

 You should have received a copy of the GNU General Public License
 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

---/

#include "lookupProfile.H"
#include "addToRunTimeSelectionTable.H"
#include "vector.H"
#include "unitConversion.H"
#include "IFstream.H"

// * //

namespace Foam
{
 defineTypeNameAndDebug(lookupProfile, 0);
 addToRunTimeSelectionTable(profileModel, lookupProfile, dictionary);
}

// * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * * //

void Foam::lookupProfile::interpolateWeights
(
 const scalar& xIn,
 const List<scalar>& values,
 label& i1,
 label& i2,
 scalar& ddx
) const
{
 i2 = 0;
 label nElem = values.size();

 if (nElem == 1)
 {
 i1 = i2;
 ddx = 0.0;
 return;
 }
 else
 {
 while ((values[i2] < xIn) && (i2 < nElem))
 {
 i2++;
 }

 if (i2 == nElem)
 {
 i2 = nElem - 1;
 i1 = i2;
 ddx = 0.0;
 return;
 }
 else
 {
 i1 = i2 - 1;

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
146

 ddx = (xIn - values[i1])/(values[i2] - values[i1]);
 }
 }
}

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

Foam::lookupProfile::lookupProfile
(
 const dictionary& dict,
 const word& modelName
)
:
 profileModel(dict, modelName),
 AOA_(),
 Cd_(),
 Cl_()
{
 List<vector> data;
 if (readFromFile())
 {
 IFstream is(fName_);
 is >> data;
 }
 else
 {
 dict.lookup("data") >> data;
 }

 if (data.size() > 0)
 {
 AOA_.setSize(data.size());
 Cd_.setSize(data.size());
 Cl_.setSize(data.size());

 forAll(data, i)
 {
 AOA_[i] = degToRad(data[i][0]);
 Cd_[i] = data[i][1];
 Cl_[i] = data[i][2];
 }
 }
 else
 {
 FatalErrorIn
 (
 "Foam::lookupProfile::lookupProfile"
 "("
 "const dictionary&, "
 "const word&"
 ")"
) << "No profile data specified" << exit(FatalError);
 }
}

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //

void Foam::lookupProfile::Cdl(const scalar alpha, scalar& Cd, scalar& Cl) const
{
 label i1 = -1;
 label i2 = -1;
 scalar invAlpha = -1.0;
 interpolateWeights(alpha, AOA_, i1, i2, invAlpha);

 Cd = invAlpha*(Cd_[i2] - Cd_[i1]) + Cd_[i1];
 Cl = invAlpha*(Cl_[i2] - Cl_[i1]) + Cl_[i1];
}

// *** //

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
147

A.2.13 seriesProfile.H

/*---*\
 ========= |
 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
 \\ / O peration |
 \\ / A nd | Copyright (C) 2011-2012 OpenFOAM Foundation
 \\/ M anipulation |

License
 This file is part of OpenFOAM.

 OpenFOAM is free software: you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
 for more details.

 You should have received a copy of the GNU General Public License
 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Class
 Foam::seriesProfile

Description
 Series-up based profile data - drag and lift coefficients computed as
 sum of cosine series

 Cd = sum_i(CdCoeff)*cos(i*AOA)
 Cl = sum_i(ClCoeff)*sin(i*AOA)

 where:
 AOA = angle of attack [deg] converted to [rad] internally
 Cd = drag coefficent
 Cl = lift coefficent

 Input in two (arbitrary length) lists:

 CdCoeffs (coeff1 coeff2 ... coeffN);
 ClCoeffs (coeff1 coeff2 ... coeffN);

SourceFiles
 seriesProfile.C

---/

#ifndef seriesProfile_H
#define seriesProfile_H

#include "profileModel.H"
#include "List.H"

// * //

namespace Foam
{

/*---*\
 Class seriesProfile Declaration
---/

class seriesProfile
:
 public profileModel
{

protected:

 // Protected data

 //- List of drag coefficient values
 List<scalar> CdCoeffs_;

 //- List of lift coefficient values
 List<scalar> ClCoeffs_;

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
148

 // Protected Member Functions

 // Evaluate

 //- Drag
 scalar evaluateDrag
 (
 const scalar& xIn,
 const List<scalar>& values
) const;

 //- Lift
 scalar evaluateLift
 (
 const scalar& xIn,
 const List<scalar>& values
) const;

public:

 //- Runtime type information
 TypeName("series");

 //- Constructor
 seriesProfile(const dictionary& dict, const word& modelName);

 // Member functions

 // Evaluation

 //- Return the Cd and Cl for a given angle-of-attack
 virtual void Cdl(const scalar alpha, scalar& Cd, scalar& Cl) const;
};

// * //

} // End namespace Foam

// * //

#endif

// *** //

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
149

A.2.14 seriesProfile.C

/*---*\
 ========= |
 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
 \\ / O peration |
 \\ / A nd | Copyright (C) 2011-2012 OpenFOAM Foundation
 \\/ M anipulation |

License
 This file is part of OpenFOAM.

 OpenFOAM is free software: you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
 for more details.

 You should have received a copy of the GNU General Public License
 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

---/

#include "seriesProfile.H"
#include "addToRunTimeSelectionTable.H"
#include "IFstream.H"

// * //

namespace Foam
{
 defineTypeNameAndDebug(seriesProfile, 0);
 addToRunTimeSelectionTable(profileModel, seriesProfile, dictionary);
}

// * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * * //

Foam::scalar Foam::seriesProfile::evaluateDrag
(
 const scalar& xIn,
 const List<scalar>& values
) const
{
 scalar result = 0.0;

 forAll(values, i)
 {
 result += values[i]*cos(i*xIn);
 }

 return result;
}

Foam::scalar Foam::seriesProfile::evaluateLift
(
 const scalar& xIn,
 const List<scalar>& values
) const
{
 scalar result = 0.0;

 forAll(values, i)
 {
 result += values[i]*sin(i*xIn);
 }

 return result;
}

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

Foam::seriesProfile::seriesProfile

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
150

(
 const dictionary& dict,
 const word& modelName
)
:
 profileModel(dict, modelName),
 CdCoeffs_(),
 ClCoeffs_()
{
 if (readFromFile())
 {
 IFstream is(fName_);
 is >> CdCoeffs_ >> ClCoeffs_;
 }
 else
 {
 dict.lookup("CdCoeffs") >> CdCoeffs_;
 dict.lookup("ClCoeffs") >> ClCoeffs_;
 }

 if (CdCoeffs_.empty())
 {
 FatalErrorIn
 (
 "Foam::seriesProfile::seriesProfile"
 "("
 "const dictionary&, "
 "const word&"
 ")"
) << "CdCoeffs must be specified" << exit(FatalError);
 }
 if (ClCoeffs_.empty())
 {
 FatalErrorIn
 (
 "Foam::seriesProfile::seriesProfile"
 "("
 "const dictionary&, "
 "const word&"
 ")"
) << "ClCoeffs must be specified" << exit(FatalError);
 }
}

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //

void Foam::seriesProfile::Cdl(const scalar alpha, scalar& Cd, scalar& Cl) const
{
 Cd = evaluateDrag(alpha, CdCoeffs_);
 Cl = evaluateLift(alpha, ClCoeffs_);
}

// *** //

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
151

A.2.15 trimModel.H

/*---*\
 ========= |
 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
 \\ / O peration |
 \\ / A nd | Copyright (C) 2012 OpenFOAM Foundation
 \\/ M anipulation |

License
 This file is part of OpenFOAM.

 OpenFOAM is free software: you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
 for more details.

 You should have received a copy of the GNU General Public License
 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Class
 Foam::trimModel

Description
 Trim model abstract class

SourceFiles
 trimModel.C

---/

#ifndef trimModel_H
#define trimModel_H

#include "rotorDiskSource.H"
#include "dictionary.H"
#include "runTimeSelectionTables.H"

// * //

namespace Foam
{

/*---*\
 Class trimModel Declaration
---/

class trimModel
{

protected:

 // Protected data

 //- Reference to the rotor source model
 const rotorDiskSource& rotor_;

 //- Name of model
 const word name_;

 //- Coefficients dictionary
 dictionary coeffs_;

public:

 //- Run-time type information
 TypeName("trimModel");

 // Declare runtime constructor selection table

 declareRunTimeSelectionTable
 (

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
152

 autoPtr,
 trimModel,
 dictionary,
 (
 const rotorDiskSource& rotor,
 const dictionary& dict
),
 (rotor, dict)
);

 // Constructors

 //- Construct from components
 trimModel
 (
 const rotorDiskSource& rotor,
 const dictionary& dict,
 const word& name
);

 // Selectors

 //- Return a pointer to the selected trim model
 static autoPtr<trimModel> New
 (
 const rotorDiskSource& rotor,
 const dictionary& dict
);

 //- Destructor
 virtual ~trimModel();

 // Member functions

 //- Read
 virtual void read(const dictionary& dict);

 //- Return the geometric angle of attack [rad]
 virtual tmp<scalarField> alphag() const = 0;

 //- Correct the model
 virtual void correct(const vectorField& U, vectorField& force) = 0;
};

// * //

} // End namespace Foam

// * //

#endif

// *** //

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
153

A.2.16 trimModel.C

/*---*\
 ========= |
 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
 \\ / O peration |
 \\ / A nd | Copyright (C) 2012 OpenFOAM Foundation
 \\/ M anipulation |

License
 This file is part of OpenFOAM.

 OpenFOAM is free software: you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
 for more details.

 You should have received a copy of the GNU General Public License
 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

---/

#include "trimModel.H"

// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //

namespace Foam
{
 defineTypeNameAndDebug(trimModel, 0);
 defineRunTimeSelectionTable(trimModel, dictionary);
}

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

Foam::trimModel::trimModel
(
 const rotorDiskSource& rotor,
 const dictionary& dict,
 const word& name
)
:
 rotor_(rotor),
 name_(name),
 coeffs_(dictionary::null)
{
 read(dict);
}

// * * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * //

Foam::trimModel::~trimModel()
{}

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //

void Foam::trimModel::read(const dictionary& dict)
{
 coeffs_ = dict.subDict(name_ + "Coeffs");
}

// *** //

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
154

A.2.17 trimModelNew.C

/*---*\
 ========= |
 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
 \\ / O peration |
 \\ / A nd | Copyright (C) 2012 OpenFOAM Foundation
 \\/ M anipulation |

License
 This file is part of OpenFOAM.

 OpenFOAM is free software: you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
 for more details.

 You should have received a copy of the GNU General Public License
 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

---/

#include "trimModel.H"

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

Foam::autoPtr<Foam::trimModel> Foam::trimModel::New
(
 const rotorDiskSource& rotor,
 const dictionary& dict
)
{
 const word modelType(dict.lookup(typeName));

 Info<< " Selecting " << typeName << " " << modelType << endl;

 dictionaryConstructorTable::iterator cstrIter =
 dictionaryConstructorTablePtr_->find(modelType);

 if (cstrIter == dictionaryConstructorTablePtr_->end())
 {
 FatalErrorIn
 (
 "trimModel::New(const rotorDiskSource&, const dictionary&)"
) << "Unknown " << typeName << " type "
 << modelType << nl << nl
 << "Valid " << typeName << " types are:" << nl
 << dictionaryConstructorTablePtr_->sortedToc()
 << exit(FatalError);
 }

 return autoPtr<trimModel>(cstrIter()(rotor, dict));
}

// *** //

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
155

A.2.18 fixedTrim.H

/*---*\
 ========= |
 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
 \\ / O peration |
 \\ / A nd | Copyright (C) 2012 OpenFOAM Foundation
 \\/ M anipulation |

License
 This file is part of OpenFOAM.

 OpenFOAM is free software: you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
 for more details.

 You should have received a copy of the GNU General Public License
 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Class
 Foam::fixedTrim

Description
 Fixed trim coefficients

SourceFiles
 fixedTrim.C

---/

#ifndef fixedTrim_H
#define fixedTrim_H

#include "trimModel.H"

// * //

namespace Foam
{

/*---*\
 Class fixedTrim Declaration
---/

class fixedTrim
:
 public trimModel
{

protected:

 // Protected data

 //- Geometric angle of attack [rad]
 scalarField alphag_;

public:

 //- Run-time type information
 TypeName("fixedTrim");

 //- Constructor
 fixedTrim(const rotorDiskSource& rotor, const dictionary& dict);

 //- Destructor
 virtual ~fixedTrim();

 // Member functions

 //- Read
 void read(const dictionary& dict);

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
156

 //- Return the geometric angle of attack [rad]
 virtual tmp<scalarField> alphag() const;

 //- Correct the model
 virtual void correct(const vectorField& U, vectorField& force);
};

// * //

} // End namespace Foam

// * //

#endif

// *** //

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
157

A.2.19 fixedTrim.C

/*---*\
 ========= |
 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
 \\ / O peration |
 \\ / A nd | Copyright (C) 2012 OpenFOAM Foundation
 \\/ M anipulation |

License
 This file is part of OpenFOAM.

 OpenFOAM is free software: you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
 for more details.

 You should have received a copy of the GNU General Public License
 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

---/

#include "fixedTrim.H"
#include "addToRunTimeSelectionTable.H"
#include "unitConversion.H"
#include "mathematicalConstants.H"

using namespace Foam::constant;

// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //

namespace Foam
{
 defineTypeNameAndDebug(fixedTrim, 0);

 addToRunTimeSelectionTable(trimModel, fixedTrim, dictionary);
}

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

Foam::fixedTrim::fixedTrim(const rotorDiskSource& rotor, const dictionary& dict)
:
 trimModel(rotor, dict, typeName),
 alphag_(rotor.cells().size(), 0.0)
{
 read(dict);
}

// * * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * //

Foam::fixedTrim::~fixedTrim()
{}

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //

void Foam::fixedTrim::read(const dictionary& dict)
{
 trimModel::read(dict);

 scalar alphaC = degToRad(readScalar(coeffs_.lookup("alphaC")));
 scalar A = degToRad(readScalar(coeffs_.lookup("A")));
 scalar B = degToRad(readScalar(coeffs_.lookup("B")));

 const List<vector>& x = rotor_.x();
 forAll(alphag_, i)
 {
 scalar psi = x[i].y();
 alphag_[i] = alphaC + A*cos(psi) + B*sin(psi);
 }
}

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
158

Foam::tmp<Foam::scalarField> Foam::fixedTrim::alphag() const
{
 return tmp<scalarField>(alphag_);
}

void Foam::fixedTrim::correct(const vectorField& U, vectorField& force)
{
 // do nothing - untrimmed model
}

// *** //

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
159

A.2.20 targetForceTrim.H

/*---*\
 ========= |
 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
 \\ / O peration |
 \\ / A nd | Copyright (C) 2012 OpenFOAM Foundation
 \\/ M anipulation |

License
 This file is part of OpenFOAM.

 OpenFOAM is free software: you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
 for more details.

 You should have received a copy of the GNU General Public License
 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

Class
 Foam::targetForceTrim

Description
 Target force trim coefficients

SourceFiles
 targetForceTrim.C

---/

#ifndef targetForceTrim_H
#define targetForceTrim_H

#include "trimModel.H"
#include "tensor.H"
#include "vector.H"

// * //

namespace Foam
{

/*---*\
 Class targetForceTrim Declaration
---/

class targetForceTrim
:
 public trimModel
{

protected:

 // Protected data

 //- Number of iterations between calls to 'correct'
 label calcFrequency_;

 //- Target force [N]
 vector target_;

 //- Pitch angles (collective, roll, pitch) [rad]
 vector alpha_;

 //- Maximum number of iterations in trim routine
 label nIter_;

 //- Convergence tolerance
 scalar tol_;

 //- Under-relaxation coefficient
 scalar relax_;

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
160

 //- Perturbation angle used to determine jacobian
 scalar dTheta_;

 // Protected member functions

 //- Calculate the rotor forces
 vector calcForce
 (
 const vectorField& U,
 const scalarField& alphag,
 vectorField& force
) const;

public:

 //- Run-time type information
 TypeName("targetForceTrim");

 //- Constructor
 targetForceTrim(const rotorDiskSource& rotor, const dictionary& dict);

 //- Destructor
 virtual ~targetForceTrim();

 // Member functions

 //- Read
 void read(const dictionary& dict);

 //- Return the geometric angle of attack [rad]
 virtual tmp<scalarField> alphag() const;

 //- Correct the model
 virtual void correct(const vectorField& U, vectorField& force);
};

// * //

} // End namespace Foam

// * //

#endif

// *** //

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
161

A.2.21 targetForceTrim.C

/*---*\
 ========= |
 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
 \\ / O peration |
 \\ / A nd | Copyright (C) 2012 OpenFOAM Foundation
 \\/ M anipulation |

License
 This file is part of OpenFOAM.

 OpenFOAM is free software: you can redistribute it and/or modify it
 under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
 for more details.

 You should have received a copy of the GNU General Public License
 along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.

---/

#include "targetForceTrim.H"
#include "addToRunTimeSelectionTable.H"
#include "unitConversion.H"
#include "mathematicalConstants.H"

using namespace Foam::constant;

// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //

namespace Foam
{
 defineTypeNameAndDebug(targetForceTrim, 0);

 addToRunTimeSelectionTable(trimModel, targetForceTrim, dictionary);
}

// * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * * //

Foam::vector Foam::targetForceTrim::calcForce
(
 const vectorField& U,
 const scalarField& alphag,
 vectorField& force
) const
{
 rotor_.calculate(U, alphag, force, false);

 const labelList& cells = rotor_.cells();
 const vectorField& C = rotor_.mesh().C();

 const vector& origin = rotor_.coordSys().origin();
 const vector& rollAxis = rotor_.coordSys().e1();
 const vector& pitchAxis = rotor_.coordSys().e2();
 const vector& yawAxis = rotor_.coordSys().e3();

 vector f(vector::zero);
 forAll(cells, i)
 {
 label cellI = cells[i];

 vector moment = force[cellI]^(C[cellI] - origin); //cross product
 f[0] += force[cellI] & yawAxis; //dot product
 f[1] += moment & pitchAxis;
 f[2] += moment & rollAxis;
 }

 reduce(f, sumOp<vector>());

 return f;
}

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
162

// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //

Foam::targetForceTrim::targetForceTrim
(
 const rotorDiskSource& rotor,
 const dictionary& dict
)
:
 trimModel(rotor, dict, typeName),
 calcFrequency_(-1),
 target_(vector::zero),
 alpha_(vector::zero),
 nIter_(50),
 tol_(1e-8),
 relax_(1.0),
 dTheta_(degToRad(0.05))
{
 read(dict);
}

// * * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * //

Foam::targetForceTrim::~targetForceTrim()
{}

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //

void Foam::targetForceTrim::read
(
 const dictionary& dict
)
{
 trimModel::read(dict);

 const dictionary& targetDict(coeffs_.subDict("target"));

 const bool IsCompressible = rotor_.getRhoName() != "none";

 if (IsCompressible != 0)
 {
 target_[0] = readScalar(targetDict.lookup("fThrust"));
 target_[1] = readScalar(targetDict.lookup("mPitch"));
 target_[2] = readScalar(targetDict.lookup("mRoll"));
 }
 if (IsCompressible == 0)
 {
 target_[0] = (readScalar(targetDict.lookup("fThrust")))/(rotor_.getRhoRef());
 target_[1] = (readScalar(targetDict.lookup("mPitch")))/(rotor_.getRhoRef());
 target_[2] = (readScalar(targetDict.lookup("mRoll")))/(rotor_.getRhoRef());
 }

 const dictionary& pitchAngleDict(coeffs_.subDict("pitchAngles"));
 alpha_[0] = degToRad(readScalar(pitchAngleDict.lookup("alphaCIni")));
 alpha_[1] = degToRad(readScalar(pitchAngleDict.lookup("AIni")));
 alpha_[2] = degToRad(readScalar(pitchAngleDict.lookup("BIni")));

 coeffs_.lookup("calcFrequency") >> calcFrequency_;

 coeffs_.readIfPresent("nIter", nIter_);
 coeffs_.readIfPresent("tol", tol_);
 coeffs_.readIfPresent("relax", relax_);

 if (coeffs_.readIfPresent("dTheta", dTheta_))
 {
 dTheta_ = degToRad(dTheta_);
 }
}

Foam::tmp<Foam::scalarField> Foam::targetForceTrim::alphag() const
{
 const List<vector>& x = rotor_.x();

 tmp<scalarField> ta(new scalarField(x.size()));
 scalarField& a = ta();

 forAll(a, i)

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
163

 {
 scalar psi = x[i].y();
 a[i] = alpha_[0] + alpha_[1]*cos(psi) + alpha_[2]*sin(psi);
 }

 return ta;
}

void Foam::targetForceTrim::correct(const vectorField& U, vectorField& force)
{
 if (rotor_.mesh().time().timeIndex() % calcFrequency_ == 0)
 {
 // iterate to find new pitch angles to achieve target force
 scalar err = GREAT;
 label iter = 0;
 tensor J(tensor::zero);

 while ((err > tol_) && (iter < nIter_))
 {
 // cache initial alpha vector
 vector alpha0(alpha_);

 // set initial values
 // gets re-initialised everytime this function is called
 vector old = calcForce(U, alphag(), force);

 // construct Jacobian by perturbing the pitch angles
 // by +/-(dTheta_/2)
 for (label pitchI = 0; pitchI < 3; pitchI++)
 {
 alpha_[pitchI] -= dTheta_/2.0;
 vector f0 = calcForce(U, alphag(), force);

 alpha_[pitchI] += dTheta_;
 vector f1 = calcForce(U, alphag(), force);

 vector ddTheta = (f1 - f0)/dTheta_;

 J[pitchI + 0] = ddTheta[0];
 J[pitchI + 3] = ddTheta[1];
 J[pitchI + 6] = ddTheta[2];

 alpha_ = alpha0;
 }

 // calculate the change in pitch angle vector
 vector dAlpha = inv(J) & (target_ - old);

 // update pitch angles
 vector alphaNew = alpha_ + relax_*dAlpha;

 // update error
 err = mag(alphaNew - alpha_);

 // update for next iteration
 alpha_ = alphaNew;

 // next iteration
 iter++;
 }

 const bool IsCompressible = rotor_.getRhoName() != "none";

 if (iter == nIter_)
 {
 WarningIn
 (
 "void Foam::targetForceTrim::correct"
 "("
 "const vectorField&, "
 "vectorField&"
 ")"
) << " Trim routine not converged in " << iter
 << " iterations, max residual = " << err << endl;
 }
 else
 {
 if (IsCompressible)
 {

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
164

 Info<< type() << ": Target Force and Moments " << nl
 << " Target Thrust = " << target_.x() << nl
 << " Target Pitching Moment = " << target_.y() << nl
 << " Target Rolling Moment = " << target_.z() << nl
 << " isCompressible = " << IsCompressible << endl;
 }
 if (!IsCompressible)
 {
 Info<< type() << ": Target Force and Moments " << nl
 << " Target Thrust = "
 << (target_.x()*rotor_.getRhoRef()) << nl
 << " Target Pitching Moment = "
 << (target_.y()*rotor_.getRhoRef()) << nl
 << " Target Rolling Moment = "
 << (target_.z()*rotor_.getRhoRef()) << nl
 << " isCompressible = " << IsCompressible << endl;
 }

 Info<< type() << ": converged in " << iter << " iterations" << nl
 << " residual = " << err << endl;
 }

 Info<< " new pitch angles:" << nl
 << " alphaC = " << radToDeg(alpha_[0]) << nl
 << " A = " << radToDeg(alpha_[1]) << nl
 << " B = " << radToDeg(alpha_[2]) << nl
 << endl;
 }
}

// *** //

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
165

A.2.22 Make/files

rotorDiskSource.C
bladeModel/bladeModel.C
profileModel/profileModel.C
profileModel/profileModelList.C
profileModel/lookup/lookupProfile.C
profileModel/series/seriesProfile.C
trimModel/trimModel/trimModel.C
trimModel/trimModel/trimModelNew.C
trimModel/fixed/fixedTrim.C
trimModel/targetForce/targetForceTrim.C

LIB=$(FOAM_USER_LIBBIN)/librotorDiskSource

A.2.23 Make/options

EXE_INC = \
 -DFULL_DEBUG -g -O0 \
 -I$(LIB_SRC)/meshTools/lnInclude \
 -I$(LIB_SRC)/finiteVolume/lnInclude

LIB_LIBS = \
 -lmeshTools \
 -lfiniteVolume

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
166

Appendix B A Sample Case Set Up using the Georgia
Tech Validation Case for Running

rhoSimpleSourceFoam Solver with rotorDiskSource
Active

B.1. Overview

This appendix provides a copy of the OpenFOAM case files used for running the Georgia
Tech Rotor-Airframe Validation Case using OpenFOAM 2.1.x. The purpose of this
appendix is to provide user with an example of a typical case setup needed for running a
steady compressible (pressure-based) solver, rhoSimpleSourceFoam, using the
rotorDiskSource library.

The mesh files have been omitted from this Appendix. However, to aid in providing a
context for the boundary conditions set up, the “constant/polyMesh/boundary” file
have been included. The “boundary” file provides the list of the names of the domain
boundary patches included in the mesh.

The current setup assumes that there is one rotor disk cellZone included in the mesh,
named rotorcell. The targetForce trim is used with the same trim parameters as
those specified in Section 5.4.3.

Table B.1 presents a sorted list of the case configuration files shown in Section B.2. To
improve readability, comments in the code have been shown in blue.

Table B.1: Summary of a sample rhoSimpleSourceFoam case configuration files

Section path/filename
(path is assumed to be relative to
the case PWD)

Description

 constant/polyMesh/boundary Contains patch names and addressing. This file is part
of the mesh files, which is automatically generated
during mesh conversion process, or by using
blockMesh

 constant/RASProperties Contains RANS turbulence model selection
 constant/thermophysicalProperties Contains the fluid thermophysical properties, such as

molecular viscosity and Prandtl number
 constant/transportProperties Contains the fluid transport model selection, such as

Newtonian or Bird-Carreau, etc…
 constant/sourcesProperties Contains selections and definitions of field sources,

such as the rotorDiskSource
Multiple sources (even of varying types) must be
defined in this file.

 0/p Boundary condition for pressure
 0/U Boundary condition for velocity
 0/T Boundary condition for temperature
 0/k Boundary condition for turbulent kinetic energy
 0/epsilon Boundary condition for turbulent dissipation rate

Table continues over page …

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
167

Table continued …
Section path/filename

(path is assumed to be relative to
the case PWD)

Description

 0/mut Boundary condition for turbulent viscosity
 0/alphat Boundary condition for turbulent heat dissipation

coefficient
 system/controlDict Contains runtime control parameters, such as startTime,

endTime, saveInterval, etc…
 system/fvSchemes Contains numerical discretisation schemes selections
 system/fvSolution Contains linear solvers selections and URF

specifications
 system/decomposeParDict Contains domain decomposition methods and setup

parameters
 monitorResiduals A simple Gnuplot script that can be used to plot

residuals during runtime
 runCaseOnSeadragonCluster A sample PBS script that can be used to submit a job

through the PBS installation on a cluster

B.2. Case Configuration Files

B.2.1 Constant/polyMesh/boundary

/*--------------------------------*- C++ -*----------------------------------*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: 2.1.x
\\ / A nd	Web: www.OpenFOAM.org
\\/ M anipulation	
---/
FoamFile
{
 version 2.0;
 format ascii;
 class polyBoundaryMesh;
 location "constant/polyMesh";
 object boundary;
}
// * //

4
(
 inlet
 {
 type patch;
 nFaces 82;
 startFace 451463;
 }
 outlet
 {
 type patch;
 nFaces 80;
 startFace 451545;
 }
 wall-tunnel
 {
 type wall;
 nFaces 1084;
 startFace 451625;
 }
 wall-body
 {
 type wall;
 nFaces 5756;
 startFace 452709;
 }
)

// *** //

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
168

B.2.2 constant/RASProperties

/*--------------------------------*- C++ -*----------------------------------*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: dev
\\ / A nd	Web: www.OpenFOAM.org
\\/ M anipulation	
---/
FoamFile
{
 version 2.0;
 format ascii;
 class dictionary;
 object RASProperties;
}
// * //

RASModel kEpsilon; //realizableKE;

turbulence on;

printCoeffs on;

kEpsilonCoeffs
{
 Cmu 0.09;
 C1 1.44;
 C2 1.92;
 C3 -0.33;
 sigmak 1.0;
 sigmaEps 1.11; //Original value is 1.44
 Prt 1.0;
}

// *** //

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
169

B.2.3 constant/thermophysicalProperties

/*--------------------------------*- C++ -*----------------------------------*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: 2.0.0
\\ / A nd	Web: www.OpenFOAM.org
\\/ M anipulation	
---/
FoamFile
{
 version 2.0;
 format ascii;
 class dictionary;
 location "constant";
 object thermophysicalProperties;
}
// * //

thermoType
hPsiThermo<pureMixture<constTransport<specieThermo<hConstThermo<perfectGas>>>>>;

mixture
{
 specie
 {
 nMoles 1;
 molWeight 28.966;
 }
 thermodynamics
 {
 Cp 1006.43;
 Hf 0.0; //not used – no heat release
 }
 transport
 {
 mu 17.894e-06;
 Pr 0.7;
 }
}

// *** //

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
170

B.2.4 constant/transportProperties

/*--------------------------------*- C++ -*----------------------------------*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: dev
\\ / A nd	Web: www.OpenFOAM.org
\\/ M anipulation	
---/
FoamFile
{
 version 2.0;
 format ascii;
 class dictionary;
 object transportProperties;
}
// * //

transportModel Newtonian;

nu nu [0 2 -1 0 0 0 0] 1.5e-05;

// *** //

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
171

B.2.5 constant/sourcesProperties

/*--------------------------------*- C++ -*----------------------------------*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: dev
\\ / A nd	Web: www.OpenFOAM.org
\\/ M anipulation	
---/
FoamFile
{
 version 2.0;
 format ascii;
 class dictionary;
 location "constant";
 object sourcesProperties;
}
// * //

mainrotor //arbitrary object name
{
 type rotorDisk;
 active on;
 timeStart 0.0;
 duration 100000.0;
 selectionMode cellZone;
 cellZone rotorcell;

 rotorDiskCoeffs
 {
 fieldNames (U);

 rhoName none;
 rhoRef 1.225;

 rotorDebugMode false;
 rotorURF 1.0;

// geometryMode specified;
// origin (0.456998 0.0 0.137100);
// axis (0 0 1);
// refDirection (1 0 0);

 geometryMode auto;
 refDirection (1 0 0);
 pointAbove (0 0 1);

 rpm 2100;
 nBlades 2;
 inletFlowType local;
 tipEffect 0.96;

 flapCoeffs
 {
 beta0 0;
 beta1 1.94;
 beta2 2.03;
 }

 trimModel targetForceTrim; // targetForceTrim; // fixedTrim;

 fixedTrimCoeffs
 {
 alphaC 10;
 A 0;
 B 0;
 }

 targetForceTrimCoeffs
 {
 target
 {
 fThrust 72.8;
 mRoll 0;
 mPitch 0;
 }
 pitchAngles
 {
 alphaCIni 5;

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
172

 AIni 0;
 BIni 0;
 }
 calcFrequency 5;
 dTheta 0.1;
 relax 1;
 }

 blade
 { //radius twist chord
 data
 (
// (NACA0015-ser (0 0 0.086))
// (NACA0015-ser (0.456978 0 0.086))

 (NACA0015-Lookup (0 0 0.086))
 (NACA0015-Lookup (0.456978 0 0.086))
);
 }

 profiles
 {
 NACA0015-ser
 {
 type series;
 CdCoeffs
 (
 1.09853905176285 -0.0254111379715975 -1.01464921175951
 0.000297893132963066 -0.0805674417410576 0.0003478832627729604
 0.0183641071501486 -0.00187212740610965 0.00738154463596278
 -0.0271646860125189 -0.0201573706491855 0.00310230620458444
 -0.00738192972395497 0.0172792907248443 0.0141795478822924
 0.0228307118297743
);
 ClCoeffs
 (
 0.0 0.122067939602577 1.12197137626962 -0.0198082665751631
 0.091486923514929 0.0146427968325049 0.0511391044755384
 0.0158813079932265 0.105584091108421 0.00367478325400266
 0.127744823649244 -0.00715619228634737 0.100691143636163
 -0.0108010398622889 0.0564061685913662 -0.00846889180607761
);
 }

 NACA0015-Lookup
 {
 type lookup;
 data
 (
 //alpha Cd Cl
 (-180 0.02 0)
 (-175 0.06 0.49)
 (-170 0.13 0.75)
 (-165 0.24 0.68)
 (-160 0.3 0.65)
 (-140 1.04 1)
 (-120 1.65 0.75)
 (-110 1.85 0.48)
 (-100 2.02 0.21)
 (-90 2.02 -0.06)
 (-80 1.96 -0.34)
 (-70 1.84 -0.61)
 (-60 1.66 -0.88)
 (-50 1.39 -1.15)
 (-30 0.56 -0.98)
 (-20 0.35 -0.75)
 (-19 0.28 -0.76)
 (-18 0.21 -0.77)
 (-17 0.17 -0.78)
 (-16 0.15 -0.79)
 (-15 0.14 -0.83)
 (-14 0.14 -0.86)
 (-13 0.1 -0.93)
 (-12 0.04 -1)
 (-11 0.02 -0.99)
 (-10 0.02 -0.94)
 (-9 0.02 -0.87)
 (-8 0.02 -0.79)
 (-7 0.01 -0.7)
 (-6 0.01 -0.61)

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
173

 (-5 0.01 -0.52)
 (-4 0.01 -0.43)
 (-3 0.01 -0.32)
 (-2 0.01 -0.22)
 (-1 0.01 -0.11)
 (0 0.01 0)
 (1 0.01 0.11)
 (2 0.01 0.22)
 (3 0.01 0.32)
 (4 0.01 0.43)
 (5 0.01 0.52)
 (6 0.01 0.61)
 (7 0.01 0.7)
 (8 0.02 0.79)
 (9 0.02 0.87)
 (10 0.02 0.94)
 (11 0.02 0.99)
 (12 0.04 1)
 (13 0.1 0.93)
 (14 0.14 0.86)
 (15 0.14 0.83)
 (16 0.15 0.79)
 (17 0.17 0.78)
 (18 0.21 0.77)
 (19 0.28 0.76)
 (20 0.35 0.75)
 (30 0.56 0.98)
 (50 1.39 1.15)
 (60 1.66 0.88)
 (70 1.84 0.61)
 (80 1.96 0.34)
 (90 2.02 0.06)
 (100 2.02 -0.21)
 (110 1.85 -0.48)
 (120 1.65 -0.75)
 (140 1.04 -1)
 (160 0.3 -0.65)
 (165 0.24 -0.68)
 (170 0.13 -0.75)
 (175 0.06 -0.49)
 (180 0.02 0)
);
 }
 }
 }
}

/*

ADD NEW ROTOR HERE

tailrotor //arbitrary object name
{
 type rotorDisk;
 active on;
 timeStart 0.0;
 duration 100000.0;
 selectionMode cellZone;
 cellZone rotorcell;

 rotorDiskCoeffs
 {

… }
*/

// *** //

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
174

B.2.6 0/p

/*--------------------------------*- C++ -*----------------------------------*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: dev
\\ / A nd	Web: www.OpenFOAM.org
\\/ M anipulation	
---/
FoamFile
{
 version 2.0;
 format ascii;
 class volScalarField;
 object p;
}
// * //

dimensions [1 -1 -2 0 0 0 0];

internalField uniform 101325;

boundaryField
{
 wall-tunnel
 {
 type zeroGradient;
 }

 wall-body
 {
 type zeroGradient;
 }

 outlet
 {
 type totalPressure;
 U U;
 phi phi;
 rho rho;
 psi psi;
 gamma 1.4;
 p0 uniform 101325;
 }

 inlet
 {
 type zeroGradient;
 }

}

// *** //

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
175

B.2.7 0/U

/*--------------------------------*- C++ -*----------------------------------*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: dev
\\ / A nd	Web: www.OpenFOAM.org
\\/ M anipulation	
---/
FoamFile
{
 version 2.0;
 format ascii;
 class volVectorField;
 location "0";
 object U;
}
// * //

dimensions [0 1 -1 0 0 0 0];

internalField uniform (10 0 0);

boundaryField
{

 wall-tunnel
 {
 type fixedValue;
 value uniform (0 0 0);
 }

 wall-body
 {
 type fixedValue;
 value uniform (0 0 0);
 }

 outlet
 {
 type pressureInletOutletVelocity;
 value uniform (10 0 0);

 /* Alternative BC
 type inletOutlet;
 inletValue uniform (0 0 0);
 value $internalField;
 */
 }

 inlet
 {
 type fixedValue;
 value $internalField;
 }
}

// *** //

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
176

B.2.8 0/T

/*--------------------------------*- C++ -*----------------------------------*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: dev
\\ / A nd	Web: www.OpenFOAM.org
\\/ M anipulation	
---/
FoamFile
{
 version 2.0;
 format ascii;
 class volScalarField;
 location "0";
 object T;
}
// * //

dimensions [0 0 0 1 0 0 0];

internalField uniform 300;

boundaryField
{
 wall-tunnel
 {
 type zeroGradient;
 }
 wall-body
 {
 type zeroGradient;
 }
 outlet
 {

 type inletOutletTotalTemperature;
 U U;
 phi phi;
 psi psi;
 gamma 1.4;
 T0 uniform 300;

 /* Alternative BC
 type inletOutlet;
 inletValue $internalField;
 value $internalField;
 */
 }
 inlet
 {
 type totalTemperature;
 U U;
 phi phi;
 psi psi;
 gamma 1.4;
 T0 uniform 300;

 /* Alternative BC
 type fixedValue;
 value $internalField;
 */
 }
}

// *** //

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
177

B.2.9 0/k

/*--------------------------------*- C++ -*----------------------------------*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: 2.0.x
\\ / A nd	Web: www.OpenFOAM.org
\\/ M anipulation	
---/
FoamFile
{
 version 2.0;
 format ascii;
 class volScalarField;
 location "0";
 object k;
}
// * //

dimensions [0 2 -2 0 0 0 0];

internalField uniform 0.00375;

boundaryField
{
 wall-tunnel
 {
 type compressible::kqRWallFunction;
 value uniform 0.00375;
 }
 wall-body
 {
 type compressible::kqRWallFunction;
 value uniform 0.00375;
 }
 outlet
 {
 type inletOutlet;
 inletValue uniform 0.00375;
 value uniform 0.00375;
 }
 inlet
 {
 type turbulentIntensityKineticEnergyInlet;
 intensity 0.01;
 value uniform 12; //based on avgU of 10 m/s
 }
}

// *** //

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
178

B.2.10 0/epsilon

/*--------------------------------*- C++ -*----------------------------------*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: 2.0.x
\\ / A nd	Web: www.OpenFOAM.org
\\/ M anipulation	
---/
FoamFile
{
 version 2.0;
 format ascii;
 class volScalarField;
 location "0";
 object epsilon;
}
// * //

dimensions [0 2 -3 0 0 0 0];

internalField uniform 0.0005;

boundaryField
{
 wall-tunnel
 {
 type compressible::epsilonWallFunction;
 Cmu 0.09;
 kappa 0.41;
 E 9.8;
 value uniform 0.0005;
 }
 wall-body
 {
 type compressible::epsilonWallFunction;
 Cmu 0.09;
 kappa 0.41;
 E 9.8;
 value uniform 0.0005;
 }
 outlet
 {
 type inletOutlet;
 inletValue uniform 0.0005;
 value uniform 0.0005;
 }
 inlet
 {
 type compressible::turbulentMixingLengthDissipationRateInlet;
 mixingLength 0.21; // 0.07 x Tunnel Dia
 value uniform 32; // based on k of 12
 }
}

// *** //

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
179

B.2.11 0/mut

/*--------------------------------*- C++ -*----------------------------------*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: 2.0.x
\\ / A nd	Web: www.OpenFOAM.org
\\/ M anipulation	
---/
FoamFile
{
 version 2.0;
 format ascii;
 class volScalarField;
 location "0";
 object mut;
}
// * //

dimensions [1 -1 -1 0 0 0 0];

internalField uniform 0;

boundaryField
{
 wall-tunnel
 {
 type mutkWallFunction;
 Cmu 0.09;
 kappa 0.41;
 E 9.8;
 value uniform 0;
 }
 wall-body
 {
 type mutkWallFunction;
 Cmu 0.09;
 kappa 0.41;
 E 9.8;
 value uniform 0;
 }
 outlet
 {
 type calculated;
 value uniform 0;
 }
 inlet
 {
 type calculated;
 value uniform 0;
 }
}

// *** //

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
180

B.2.12 0/alphat

/*--------------------------------*- C++ -*----------------------------------*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: 2.0.x
\\ / A nd	Web: www.OpenFOAM.org
\\/ M anipulation	
---/
FoamFile
{
 version 2.0;
 format ascii;
 class volScalarField;
 location "0";
 object alphat;
}
// * //

dimensions [1 -1 -1 0 0 0 0];

internalField uniform 0;

boundaryField
{
 wall-tunnel
 {
 type alphatWallFunction;
 Prt 0.85;
 value uniform 0;
 }
 wall-body
 {
 type alphatWallFunction;
 Prt 0.85;
 value uniform 0;
 }
 outlet
 {
 type calculated;
 value uniform 0;
 }
 inlet
 {
 type calculated;
 value uniform 0;
 }
}

// *** //

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
181

B.2.13 system/controlDict

/*--------------------------------*- C++ -*----------------------------------*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: dev
\\ / A nd	Web: www.OpenFOAM.org
\\/ M anipulation	
---/
FoamFile
{
 version 2.0;
 format ascii;
 class dictionary;
 object controlDict;
}
// * //

libs ("librotorDiskSource.so");

application rhoSimpleSourceFoam;

startFrom startTime;

startTime 0;

stopAt endTime; //writeNow;

endTime 6000;

deltaT 1;

writeControl timeStep;

writeInterval 1000;

purgeWrite 5;

writeFormat ascii;

writePrecision 12;

writeCompression uncompressed;

timeFormat general;

timePrecision 6;

runTimeModifiable yes;

// *** //

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
182

B.2.14 system/fvSchemes

/*--------------------------------*- C++ -*----------------------------------*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: dev
\\ / A nd	Web: www.OpenFOAM.org
\\/ M anipulation	
---/
FoamFile
{
 version 2.0;
 format ascii;
 class dictionary;
 object fvSchemes;
}
// * //

ddtSchemes
{
 default steadyState;
}

gradSchemes
{
 default leastSquares; //Gauss linear; //Gauss pointLinear;
 grad(p) Gauss linear;
 grad(U) faceLimited Gauss linear 1;
 limitedGrad(h) cellLimited Gauss linear 1;
}

divSchemes
{
 default none;
 div(phi,U) Gauss upwind grad(U); //1st order upwind
 //div(phi,U) Gauss linearUpwindV grad(U); //2nd order blended upwind

 div(phi,h) Gauss upwind;
 //div(phi,h) Gauss linearUpwind limitedGrad(h); //2nd order blended upwind

 div(phi,k) Gauss upwind;
 div(phi,epsilon) Gauss upwind;

 div(phi,k) Gauss limitedLinear 0.5; // TVD 2nd Order Scheme
 div(phi,epsilon) Gauss limitedLinear 0.5;

 div(phi,K) Gauss upwind;
 div(U,p) Gauss linear;
 div((nuEff*dev(T(grad(U))))) Gauss linear;
 div((muEff*dev2(T(grad(U))))) Gauss linear;
}

laplacianSchemes
{
 default Gauss linear limited 0.333;
}

interpolationSchemes
{
 default linear;
}

snGradSchemes
{
 default limited 0.333;
}

fluxRequired
{
 default no;
 p;
}

// *** //

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
183

B.2.15 system/fvSolution

/*--------------------------------*- C++ -*----------------------------------*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: dev
\\ / A nd	Web: www.OpenFOAM.org
\\/ M anipulation	
---/
FoamFile
{
 version 2.0;
 format ascii;
 class dictionary;
 object fvSolution;
}
// * //

solvers
{
 p
 {
 solver GAMG;
 tolerance 1e-7;
 relTol 0.1;
 smoother GaussSeidel;
 nPreSweeps 0;
 nPostSweeps 2;
 cacheAgglomeration on;
 agglomerator faceAreaPair;
 nCellsInCoarsestLevel 10;
 mergeLevels 1;
 }

 U
 {
 solver smoothSolver;
 smoother GaussSeidel;
 tolerance 1e-8;
 relTol 0.1;
 nSweeps 1;
 }

 k
 {
 solver smoothSolver;
 smoother GaussSeidel;
 tolerance 1e-8;
 relTol 0.1;
 nSweeps 1;
 }

 epsilon
 {
 solver smoothSolver;
 smoother GaussSeidel;
 tolerance 1e-8;
 relTol 0.1;
 nSweeps 1;
 }

 h
 {
 solver smoothSolver;
 smoother GaussSeidel;
 tolerance 1e-8;
 relTol 0.1;
 nSweeps 1;
 }

}

SIMPLE
{
 nNonOrthogonalCorrectors 0;

 // pRefCell 0;
 // pRefValue 0;

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
184

 rhoMin rhoMin [1 -3 0 0 0] 1;
 rhoMax rhoMax [1 -3 0 0 0] 1.4;

 residualControl
 {
 p 1e-8;
 U 1e-9;
 "(k|epsilon)" 1e-9;
 }
}

relaxationFactors
{
 rho 1.0;
 p 0.2;
 U 0.3;
 k 0.3;
 epsilon 0.3;
 h 0.3;
}

cache
{
 grad(U);
}

// *** //

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
185

B.2.16 system/decomposeParDict

/*--------------------------------*- C++ -*----------------------------------*\
=========	
\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
\\ / O peration	Version: 1.7.0
\\ / A nd	Web: www.OpenFOAM.com
\\/ M anipulation	
---/
FoamFile
{
 version 2.0;
 format ascii;
 class dictionary;
 object decomposeParDict;
}
// * //

numberOfSubdomains 256;

//method simple;
//method metis;
//method parMetis;

method scotch;

simpleCoeffs
{
 n (28 1 1);
 delta 0.001;
}

hierarchicalCoeffs
{
 n (4 2 1);
 delta 0.0001;
 order xyz;
}

manualCoeffs
{
 dataFile "cellDecomposition";
}

metisCoeffs
{
 processorWeights (1 1 1 1 1 1 1 1);
}
 distributed no;
 roots ();

// *** //

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
186

B.2.17 monitorResiduals

to run this script issue the commands:
$ gnuplot monitorResiduals

set logscale y
set grid

plot "< cat script.log | grep Ux | cut -d' ' -f9 | tr -d ','" t "Ux" with lines, "< cat
script.log | grep Uy | cut -d' ' -f9 | tr -d ','" t "Uy" with lines, "< cat script.log |
grep 'for omega,'| cut -d' ' -f9 | tr -d ','" t "omega" with lines, "< cat script.log | grep
Uz, | cut -d' ' -f9 | tr -d ','" t "Uz" with lines, "< cat script.log | grep 'for h,' | cut
-d' ' -f9 | tr -d ','" t "energy" with lines, "< cat script.log | grep local | cut -d' ' -f9
| tr -d ','" t "local_continuity" with lines, "< cat script.log | grep 'for p,' | cut -d' '
-f9 | tr -d ','" t "p" with lines

pause 1 # update interval (s)
reread #live plotting mode

Uncomment all four lines below to save the plot to a png file ####
#set terminal png
#set size 1,1
#set output "residuals.png"
#replot

File name: save.plt - save a Gnuplot plot as a PostScript file
to save the current plot as a postscript file issue the commands:
gnuplot> load 'saveplot'
gnuplot> !mv my-plot.ps another-file.ps

set size 1.0, 0.6
set terminal postscript portrait enhanced mono dashed lw 1 "Helvetica" 14
set output "my-plot.ps"
replot

UNCLASSIFIED
DSTO-TR-2931

UNCLASSIFIED
187

B.2.18 runCaseOnSeadragonCluster

#!/bin/bash

PBS ###
#PBS -N GTITrimmed
#PBS -S /bin/bash -j oe -k o -r n
#PBS -l walltime=100:00:00
#PBS -l select=16:ncpus=16:mpiprocs=16

PBS -l select=32:ncpus=16:mpiprocs=16
PBS -l select=28:ncpus=16:mpiprocs=16

qsub -l select=8:ncpus=16:mpiprocs=16 ./Allrun

select=number_of_nodes (1 to 32 nodes in cluster)
ncpus=number_of_cores_per_node (for dual AMD 6220 processor nodes, ncpus=16)
mpiprocs=number_of_mpi_processes_per_node (mpiprocs=16)

source /data1/OpenFOAM/OpenFOAM-SGIRHEL62-2.1.X_X8664_07JUNE12_REPO/setup.sh DP SGIMPI

export NCORES=`cat $PBS_NODEFILE | wc -l`

#######################
cd $PBS_O_WORKDIR # NOTE THAT THIS SCRIPT MUST BE SUBMITTED FROM THE WORK DIRECTORY
#######################

rm -rf processor* log logs script.log

. $WM_PROJECT_DIR/bin/tools/RunFunctions

unset FOAM_SIGFPE
echo ' ' > script.log
echo 'Starting the Run' >> script.log
echo '==============================' >> script.log
echo "PBS: Allocated $NCORES core(s) on node(s) "`cat $PBS_NODEFILE | sort -u` >> script.log
echo "PBS: Submitted to $PBS_QUEUE@$PBS_O_HOST" >> script.log
echo "PBS: Working directory is $PBS_O_WORKDIR" >> script.log
echo "PBS: Job identifier is $PBS_JOBID" >> script.log
echo "PBS: Job name is $PBS_JOBNAME" >> script.log
echo '==============================' >> script.log
echo ' '

System variables
HOST=`uname -n`
OSTYPE=`uname -s`
echo 'running on '$HOST $OSTYPE ' using mpi routine '$FOAM_MPI >> script.log
echo '' >> script.log

CURDIR=`pwd`

runApplication foamInstallationTest
cat log.foamInstallationTest >> script.log

runApplication checkMesh
cat log.checkMesh >> script.log

Tell PBS of available nodes on the cluster
export MPI_DSM_CPULIST="0-15:allhosts"

Add job sequence here ###

decomposePar -force -cellDist > log.decomposePar 2>&1
cat log.decomposePar >> script.log

foamJob -parallel -screen rhoSimpleSourceFoam >> script.log 2>&1
foamLog log

reconstructPar > log.reconstructPar 2>&1
cat log.reconstructPar >> script.log

rm -rf processor*
echo ''
echo ===
echo RUN IS FINISHED
echo ===
echo ''

Page classification: UNCLASSIFIED

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

DOCUMENT CONTROL DATA 1. DLM/CAVEAT (OF DOCUMENT)

2. TITLE

Development of Virtual Blade Model for Modelling Helicopter
Rotor Downwash in OpenFOAM

3. SECURITY CLASSIFICATION (FOR UNCLASSIFIED REPORTS
THAT ARE LIMITED RELEASE USE (L) NEXT TO DOCUMENT
CLASSIFICATION)

 Document (U)
 Title (U)
 Abstract (U)

4. AUTHOR(S)

Stefano Wahono

5. CORPORATE AUTHOR

DSTO Defence Science and Technology Organisation
506 Lorimer St
Fishermans Bend Victoria 3207 Australia

6a. DSTO NUMBER
DSTO-TR-2931

6b. AR NUMBER
AR-015-836

6c. TYPE OF REPORT
Technical Report

7. DOCUMENT DATE
December 2013

8. FILE NUMBER
2013/1020983/1

9. TASK NUMBER
07/225

10. TASK SPONSOR
Commander AOSG

11. NO. OF PAGES
188

12. NO. OF REFERENCES
26

13. DOWNGRADING/DELIMITING INSTRUCTIONS

To be reviewed three years after date of publication

14. RELEASE AUTHORITY

Chief, Aerospace Division

15. SECONDARY RELEASE STATEMENT OF THIS DOCUMENT

Approved for Public release

OVERSEAS ENQUIRIES OUTSIDE STATED LIMITATIONS SHOULD BE REFERRED THROUGH DOCUMENT EXCHANGE, PO BOX 1500, EDINBURGH, SA 5111
16. DELIBERATE ANNOUNCEMENT

No Limitations

17. CITATION IN OTHER DOCUMENTS Yes
18. DSTO RESEARCH LIBRARY THESAURUS

Computational Fluid Dynamics, CFD, rotor downwash, helicopter rotor, blade element, Infrared Signatures, OpenFOAM, ANSYS
Fluent

19. ABSTRACT

This report documents the development of a computational model to simulate the complex flow induced by helicopter rotors, using an
open-source computational fluid dynamics (CFD) code, OpenFOAMTM. This computational code is now being used to perform large-
scale multi-physics simulations of the flow field around helicopters including exhaust plumes and their airframe impingement. The
rotor downwash model was validated against available experimental data on rotor-fuselage interactions published by the Georgia
Institute of Technology. The OpenFOAM predicted result was also shown to compare favourably with ANSYS Fluent predictions.

Page classification: UNCLASSIFIED

	ABSTRACT
	Executive Summary
	Author
	Contents
	Glossary
	Notation
	1. Introduction
	2. Physical Model and Assumptions
	2.1 Overview of Rotor Blade Modelling Techniques in CFD
	2.2 Overview of Rotor Aerodynamics
	2.3 Model Description

	3. Model Implementation in OpenFOAM
	3.1 Overview
	3.2 Applicable OpenFOAM Version
	3.3 The Flow Solvers
	3.4 The VBM Library in OpenFOAM
	3.5 Compiling the Code
	3.6 Updating the VBM Code for Compatibility with Future OpenFOAM Version

	4. Case Setup in OpenFOAM using the rotorDiskSource Library
	4.1 Case Setup
	4.2 Specifying the rotorDiskSource Properties in the sourceProperties Dictionary File
	4.3 Mesh Requirement
	4.4 Setting Up the Boundary Conditions
	4.5 Solution Driving Strategy
	4.6 Plotting Results on the Rotor Disk Surface using ParaviewTM

	5. Validation and Verification Test Case
	5.1 Overview
	5.2 Summary of Georgia Institute of Technology (Georgia Tech) Rotor-Airframe Interaction Experimental Setup
	5.3 CFD Model
	5.4 Verification and Validation Result

	6. Conclusions and Recommendations
	7. References
	Appendix A Source Code for the rotorDiskSource
	A.1. High Level Description of the Source Code Files
	A.2. Source Code for the rotorDiskSource

	Appendix B A Sample Case Set Up using the Georgia Tech Validation Case for Running rhoSimpleSourceFoam Solver with rotorDiskSource Active
	B.1. Overview
	B.2. Case Configuration Files

	DISTRIBUTION LIST
	DOCUMENT CONTROL DATA

