AFRL-RV-PS- AFRL-RV-PS-
TR-2014-0018 TR-2014-0018
|

AE9/AP9/SPM MODEL APPLICATION
PROGRAMMING INTERFACE, VERSION 1.00.000

Paul Whelan

Atmospheric and Environmental Research, Inc.
131 Hartwell Ave.
Lexington, MA 02421

18 February 2014

Technical Report

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

AIR FORCE RESEARCH LABORATORY
Space Vehicles Directorate

3550 Aberdeen Ave SE

AIR FORCE MATERIEL COMMAND
KIRTLAND AIR FORCE BASE, NM 87117-5776

DTIC COPY

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or corporation;
or convey any rights or permission to manufacture, use, or sell any patented invention that
may relate to them.

This report was cleared for public release by the 377 ABW Public Affairs Office and is
available to the general public, including foreign nationals. Copies may be obtained from the
Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RV-PS-TR-2014-0018 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

//SIGNED/ / //SIGNED/ /
Michael J. Starks, DR-III Edward J. Masterson, Colonel, USAF
Senior Electrical Engineer, RVBXR Chief, Battlespace Environment Division

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

Approved for public release; distribution is unlimited.

REPORT DOCUMENTATION PAGE oMo e Do o6

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
18-02-2014 Technical Report 01 Jan 2009 to 31 Jan 2012
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER
AE9/AP9/SPM MODEL APPLICATION PROGRAMMING INTERFACE, VERSION

1.00.000 FA9453-12-C-0231

5b. GRANT NUMBER

5¢. PROGRAM ELEMENT NUMBER

63401F
6. AUTHOR(S) 5d. PROJECT NUMBER
Paul Whelan 5021
5¢. TASK NUMBER
PPM00012091
5f. WORK UNIT NUMBER
EF007946
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER
Atmospheric and Environmental Research, Inc.
131 Hartwell Ave.
Lexington, MA 02421
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)
Air Force Research Laboratory AFRL/RVBXR

Space Vehicles Directorate
3550 Aberdeen Avenue SE
Kirtland AFB, NM 87117-5776

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)
AFRL-RV-PS-TR-2014-0018

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited. (377ABW-2012-1187 dtd 5 Sep 2012)

13. SUPPLEMENTARY NOTES

14. ABSTRACT

While the AE9/AP9/SPM Radiation and Plasma Environment Model is distributed with both GUI and command-line applications for
running the model, there are situations where it is more appropriate to more directly integrate other applications with the model. The model
is distributed with an Application Programming Interface (API) suite for such situations. This report provides documentation on the API
suite for AE9/AP9/SPM, covering installation and setup and details on the APIs for C++, C, and FORTRAN.

15. SUBJECT TERMS
AE9/AP9/SPM, radiation belt model, space plasma model, application programming interface

16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER | 19a. NAME OF RESPONSIBLE PERSON
OF ABSTRACT OF PAGES Dr. Michael Starks

a. REPORT b. ABSTRACT c. THIS PAGE 46 19b. TELEPHONE NUMBER (include area

Unclassified Unclassified Unclassified Unlimited code)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. 239.18

This page is intentionally left blank.

Approved for public release; distribution is unlimited.

AE9/AP9/SPM Model Application
Programming Interface, Version 1.00.000

Table of Contents

OVEIVIBW ittt ettt ettt et e ettt e e e e e s bbbt e e e e e e e s e aab bt eeeeee s e s aanbeeaeeeee s assbebaeeeeesaansnbebeeeesesannnnreaaeaanens 1
LGy o =) = =T PSPPSRt 1
T 1] YT g T T e BT=1 AU ISR 1
Shared Objects, DLLS and Static LIDrari@seeeec ittt e et e e e e e e e e s nrre e e e e e e e e eanes 2
(68 Y o] T T OO PPPPTTP 2
OO A 2
FOIEIan API ...ttt e e e e ettt et e e e e s e bbbttt e e e e e e aabs et e eeeeeesaansbbaeaeeeeeaaannnrneaaaeeens 2
370 PArtY DEPENAENCIES et eeeee e eeee e eeeeeeeeeeeeeee e eeeteeeseeseeeeteseeeeseesesesesseseseeseseeseeesasseseseseseeesesees 3
F N I] =T =T o T TP 4
(68 Y o] OO PSPTTR 4
JAYCY YN oo Y o] o] [Tof= A oo W 61 F= 113 SR 4
JANCES T o1 7Y o] o] [Tt | d Lo o IS USSR 4

0 YooY o1 7AYo o] o= Y o o [SRR 4
VOId SETMOUEIDAtASOUICE. ..c.uviiiiiieiiie ettt ettt sttt e ste e st e e sabe e sbaesabeesabeesbaeesabaesneeenases 4
VOid SetKPhINeUralNetDAtaSOUICEcvcuiiii ittt e e s sbee e s s sbeee s e saneas 5
vOid SEtKHMINNEUIalINEtDAtaSOUICEuiiieiiiiiiieiee ettt ettt st ste et e st e st e e sabeesaaeesabeeenees 5
void setMagfieldMOodeIDataSOUICEcccccuiiiiiiiiieeciee et e e e s s abe e e e s nree e e enneeas 5

INT SETFIUXENVIFTONMENT ...iiiiiiiii et st e s st e e s s abe e e s sabee e e sabeeessnnes 6

INT SEEFIUXENVIFONMENT ..ciuiiiiiiiiiieeete ettt sttt sbe e st s ba e e sbe e sab e e sabeesabaeesabaesbeeennee 6

[LaL o 1Y 1] AV, =T [o PP 7

INE FIYINPErtUrDEAMEANeeieeeeeee e et e e et e e e e abe e e e eabae e e e abaeeeennraes s 8

oL 1Y [T ol =Y o a1 PP 8

Lok 1Y [0 1Yol =T T o o TSP 8
(oo o Y A T =8 T Y o L o)l = SRR .9

F AN 10 o T A o] o F: == 1 o L ol O - 1SRRI 9
JAN 10 o T A o] o F- == o] PRSP .9

0 @1 oT] el o T 1 o] PR 10
VOId SETPropagatOrTYPESGPA ..ottt e e e e e te e e e s bte e e e s baeeeessteeeesnseeas 10
void SetPropagatorTYPESAtEPN......ccouiiii e e e 10
VOid SEtPropPagatorTYPEKEPIENeei ettt e etee e et e e e e eate e e e e eabe e e e eenreeeeennees 10
VOid USESGPAIMPIrOVEAMOUEccccueiiieiiieiee ettt ettt e e et e e et ae e e e ea e e e s aaaeeeesntaaeeesnnaeees 10
VOId SEESGPAWGSCONSE7201. ... eeiiiiieie ittt sree e e s sbee e e ssbee e s ssabeeessnnres 11

Approved for public release; distribution is unlimited.

i

(Vo]0 Y=Y Y €1 aZ AN VL 1 0] s 1) 7 27 T 11

VOId SETSGPAWGSCONSEBAcoueiiiiiieiiee ettt ettt ettt site e sbe e st e e sabe e sbae s sabeesabeesbaeesabeessaeesasens 11
VOIT SEETLEFIIR..ceiiteiiiieiiiee ettt ettt si e s be e e sabe e sabe e sbteesabaesnbaeesateesabaeesaseesanes 11
(Vo] e ol 1=T- Tl N i T= o PP 12
(o] Lo B Te Lo I I I TP U PP 12
VOIT SEETLES. ..eiiutiiiiiieiiee ettt ettt ettt et s bt st e e st e e s bt e e sabeesaba e e sabeesabaessteesabeeensaeesabaesnsseesasaesns 13
VOId SEEMEANEIEMENTS . et e e s s bte e e e s bee e e e s bee e e s nanreas 14
VOIT SEETIMIES 1eintieiiit ettt sttt sbe e s rtt e e s abe e s bt e e sateesbteesabeesabaesabaesabeeenabeesabaesnseesaseean 15
VOIT SEETIMIES 1niiieeiit ettt ettt ettt e sbe e st e e s bt e s bt e e sabeesbaeesabeesabaesabeesabaeenbbeesabaessseesaseean 15
A o1 Lo IEY=Y { @ 15 o1 ol IV o SRRt 15
vOid setOrbitalEIEMENTEPOCKvviiiiieie e et e e s eata e e e eenraeeeenes 16
VOId SEtUSEI2PErtUIDAtIONS .oeiieiiieictiiee et e e s s bee e s s sbee e s s sabee e e s nabeeas 16
AV Lo] e =14 g ol 11 g =1 d o T o DO PP PR PP 16
AV Lo] o] 0 sl olol =T | 1 o (ol Y AR 16
VOId SEEATZOTPEIIZEE «...veiee ettt ettt e e et e e e et e e e e seataeeeseataeeesestaseesstasaesantasaesansasaasnes 17
void setMeanAnOMalYALEPOCN.........u e e e e 17
VOId SEEMEANIMOTION .ueiieiiiieiiee ettt st sbe e st e s bt e e bt e e s abeesbbeesabeesabeessnteesaseeen 17
VOId SETRIGNTASCENSIONiiiiiiciee ettt e et e e e et e e e e et e e e e e abeee e e abeeeeessseeeeennseeeeennsens 17
VOId SELAILITUAEOTPEIIZEE .. .eii ittt et e e et e e e e te e e e e eate e e e eatae e e enreeaeennreas 17
VOId SELAIItUAEOTAPOGEE. ...cci ittt e re e s e e e et e e e esabee e e senbaeeeenreeas 18
VOId SEtLOCAITIMEOTFAPOZEE ..ottt ettt e e ettt e e e et e e e e ette e e e sbteeeesbtaeeeestaeaesaseaeaeanns 18
void setLocalTiImeOfMaxINCHNAtION.c.iiiiiieiee et ebee e saaeeens 18
(o] o B Al I g =10 T o= PRSPPI 18
A oY [0 Y=Y Y=Y 0 0 [T F= T o 3 USPRR 19
VOId SETPOSITIONGEN ..ciiiiiiiiiiie ettt sttt e e st e e e s eabe e e e sabeeeesaabaeeesanbaeeesanes 19
(Lo o I A V=] Lo Yol AV G =t PR 19
A oY [0 YN { CT=To 1Y g ol o] oY =1 (U e [SRR 19
VOid SEtMAGFIElAMOTEIDB ...ttt e e e e e e tee e e e e bt e e e e ebtaeeeenraaeeeanes 20
Taiarele] aaY oTUN =] o o] aT=T 0 o 1T o SRR 20
Y Yo T o] 01 - 1SRN 20
JAN Y o f=d =T = - | o] S 21
VIFEUGL MAEAGEIEEATON .. uiiiiiiiiee e ettt ettt e ettt e e ettt e e e ete e e e seatae e e sentaeeesestaeeesntaeessantaeessastaeessansaeeennes 21
VIFEUQI VOIA FESEL ..t e e e bee e e s s ee e e s sbee e e esabee e e esabeeesenares 21
VIFEUATINT @00 ettt st e s ba e e s be e sba e e sabeesabeesateesabeeenees 21
virtual void getAggregatedData....ccccciiii i e 22
virtual void clearAggregatedDataccve e i e e e e e eannes 22
iNt etAZEregatioNINtEIVAl........coo i e et e e e e s e e e e e aaaeeean 22
VOid SEtAGEIegatioNINTEIVAL....c.cuviii i e e e e e e 22
CLANBUABE APl 24
int AESAPIAPP _setFIUXENVIrONMENT_C.ovvvrieieiiiec ettt ettt e e e e e 24
int AESAPIAPP_setFIUXENVIrONMENTDII_C .uvvviiiiiieeiiiiee ettt et e e e ae e e 25
iNT AESAPOAPP_FIYINIMIEAN .ttt e et e e et e e e e s e e e e e abt e e e eeaateeaeenseneaeennens 26

Approved for public release; distribution is unlimited.

il

int AE9APIAPP_flyINPerturb@dMEaN _C.......cuuvviiiiieiciciiieiee ettt e e ctre e e e e e e e e anrre e e e e e e e esnnnnes 26

iNt AE9APOAPP_flyINPErCENTIIE _C..uuvveeeeiiiee ettt e e st r e e e aaaee s 27
iNt AEGAPOAPP_flyINSCENAIIO _Cuviieeirieeiiiieee ettt ettt e et e et e et e e e e aae e e e e aae e e esnnseeeesnnanees 27
const char® AEGAPOAPP _GEtErTOITEXE C..veeeeeerieeeeiiieeeecieeeeeeteeeeectteeeeeetteeeeeeabeeeeesseeesenseeeeenneeas 28
int AE9APOAPP_SetMOdeIDataSOUINCE_C ...uueeiiuiieeeiiiieeecitee e ciite e e ere e s re e e e erae e s esarae e e s earaeeeenaeeeas 28
int AE9APOAPP_setKPhiNeuralNetDataSOUICe_C....ccveiiiiiiiieeiiieeecitee et e e e e e e e e 29
int AE9QAPOAPP_setKHMINNeuralNetDataSOoUIrCEe C....coviiiieeiiciiiiiieee e e e et e e e e e eeevree e e e e e e e eennnes 29
int AE9APOAPP_setMagfieldModelDataSoUrCe_C.....coviiiiciieiiieiieee et 29
(VLo o I YN e Y o ol == o U o N o SRR 30
const char® AEGAPIAPP _GEtVEISION Cu..uuvreeeeiieieeeiiee e ettt e ectiee e e ettt e e e ettt e e e e eabee e s earaeeeenraeaeenreeas 30
FOIEIan AP ... et e e e st e e e s e s e e e e e e e e e s e nbr e e e e e e e e e s nnrnnees 31
int ae9ap9app_SetfluXenVIroNMENT ..o e et 31
int ae9ap9app_setfluxenvironmentdir f..........ccoooiiii i 32
iNt ae9ap9apPP_FIYINMEAN_fo 33
int ae9ap9app_flyinperturbedmean _f ... 34
int ae9ap9app_FIYINPEIrCENTIlE f.......ooo e e et naee e 34
int 2ae9ap9apPP_FIYINSCENAIIO_f oooc e s nraee s 35
iNt 2€9aP9aPP_BELEITOITEXE f...ueiiiiiiiee e et e e e ar e e e e ae e e e eanes 35
int ae9ap9app_setmModeldatasoUrCe f........o et 35
int ae9ap9app_setkphineuralnetdatasource_f ... 36
int ae9ap9app_setkhminneuralnetdatasource f........cciiiie i e 36
int ae9ap9app_setmagfieldmodeldatasource f.........ccooiiiiiiii i 37
e [o Tl oL T o oI [=F- 11U o N PP 37
o [oL o] oI =Y aVL<T Y (o] o TN (SR 37

Approved for public release; distribution is unlimited.

il

This page is intentionally left blank.

Approved for public release; distribution is unlimited.

Vi

Overview

The AE-9/AP-9 Radiation Belt model is distributed with a GUI client application and a command-line
driven utility application that can be used to run the model either interactively or through batch driven
processes. For situations in which it is more appropriate to integrate the AE-9/AP-9 model calls and data
directly into a new or existing application, an Application Programming Interface (API) is also distributed
with the model.

The AE-9/AP-9 Radiation Belt model supports programmatic access through a suite of APIs accessible
from a number of programming languages. The model is written in C++ and direct access to all classes
and methods of the model is available using the source distribution of the model. Additional APIs are
provided through a set of C and Fortran wrapper methods at the highest level of the model, using a set
of “fly-in” routines modeled after those found in the Irbemlib API.

Getting Started

Installation and Setup

AE-9/AP-9 is distributed as a zip file that comes with a pre-built Windows 32-bit binary distribution of
the model and a complete set of source for building API libraries, as well as binary distributions for other
platforms. To generate a set of libraries, shared objects and/or dll files, please refer to the build
instructions provided with the distribution in Ae9Ap9/documents/ Build_Instructions_for_AE9AP9.pdf.

Note that the source distribution build process uses CMake to generate an “out-of-source” build. That
means that output binary and library files are located in a separate directory structure from the source
files. This is done to facilitate builds for multiple platforms, as well as debug and release builds for any
given platform. However, the ramification of this is that the location of libraries and header files will
depend on the choices made during the build process and may vary. This is reflected in the library paths
shown below through the use of curly brackets {}'.

The following directories within the AE-9AP-9 distribution will contain header files that may be required
to compile an application that utilizes the AE-9AP-9 libraries:

... Ae9Ap9/source/Ae9Ap9/trunk/models/include
... Ae9Ap9/source/SpWx_Ae9Ap9/Common/include
... Ae9Ap9/source/SpWx_Ae9Ap9/Models/include

After performing a source build, the following directories within the AE-9AP-9 distribution will contain
library, shared object and/or dll files that may be required to link and run an application with AE-9AP-9
libraries.

... Ae9Ap9/source/build_{linux|win32}/Ae9Ap9/trunk/lib{/debug|release}
... Ae9Ap9/source/build_{linux|win32}/Ae9Ap9_SpWx/Models/lib{/windows/Debug.Net|Release.Net}

Approved for public release; distribution is unlimited.

1

Shared Objects, DLLs and Static Libraries

Applications can link to the AE-9 model using static libraries or through DLLs under Windows or shared
object files under Linux operating systems. To run an application that references the AE-9 through either
DLL or shared object implementations, those binaries must be moved to a directory specified in the
PATH (Windows) or LD_LIBRARY_PATH (Linux) environment variables. Alternatively, the directories in
which they reside can be added to those path specifications. Those directories are as follows:

...Ae9Ap9/source/build_win32/Ae9Ap9/trunk/bin{/Debug|Release} - ae9ap9.dll
...Ae9Ap9/source/build_linux/Ae9Ap9/trunk/lib - libae9ap9.so
...Ae9Ap9/source/build_linux/Ae9Ap9_SpWx/Models/lib - various shared objects

C++ API

The AE-9/AP-9 application is written in C++ and all source and header files are provided with the
distribution. This gives the client application developer a great deal of freedom in determining at what
level and granularity to integrate with the model. However, for most applications it is recommended
that client applications access the model through the top level “Application” layer. The application layer
consists of the Ae9Ap9Application and AEOrbitPropagator classes, along with a small suite of optional
aggregation classes derived from the AEAggregator class. These classes and their methods are described
in detail in the C++ API Reference section of this document.

A note to Windows C++ developers: The AE-9/AP-9 classes heavily utilize STL containers and classes as
method parameters. This makes it problematic to expose these methods across a dll boundary. Only
functions of the C APl are exposed from the ae9ap9.dll. Therefore, it is recommended that on the
Windows platform, C++ client applications either link statically to AE-9/AP-9 libraries or call the model
through the C interface methods to use the dll. On Linux platforms, client applications can use the C++
API to call directly into the shared object implementation of the model.

CAPI

The AE-9/AP-9 C language API is provided for access to the model from C and other compatible language
client applications. It can also be used to access the DLL implementation of the model on the Windows
platform from C++ applications. The C API utilizes client allocated array data structures in place of
collection classes used by the underlying C++ interface and classes. Note that the C APl assumes that all
buffers for return data are allocated at the client application level and that relevant sizes are passed into
the API by the calling routine. This is intended to eliminate any ambiguity as to responsibility for
memory allocation and deallocation and to reduce or eliminate memory leaks. The AE-9/AP-9 C
language APl is defined in the file AECInterface.h. The methods of this interface are described in detail in
the C APl Reference section of this document.

Fortran API

The AE-9/AP-9 Fortran language APl is provided for access to the model from Fortran and other
compatible language client applications. The Fortran APl is comparable to the C API, however, native

Approved for public release; distribution is unlimited.

2

Fortran applications pass data by reference and use different calling conventions. The Fortran API also
utilizes client allocated array data structures in place of collection classes used by the underlying C++
interface and classes. Note that the Fortran APl assumes that all buffers for return data are allocated at
the client application level and that relevant sizes are passed into the API by the calling routine. This is
intended to eliminate any ambiguity as to responsibility for memory allocation and deallocation and to
reduce or eliminate memory leaks. The AE-9/AP-9 Fortran language API is defined in the file
AEFInterface.h. The methods of this interface are described in detail in the Fortran APl Reference
section of this document.

3rd Party Dependencies

The AE-9/AP-9 model has dependencies on the external 3" party libraries Boost® (for linear algebra
functions and data structures) and on HDF5® (for internal databases). Please refer to the
Build_Instructions_for_AE9AP9.pdf document in the Ae9Ap9/documents directory for details on
installation of these libraries. It is likely that include and library directories from these installations will
need to be added to build settings for client applications and that shared binaries will need to be added
to the appropriate system paths.

Approved for public release; distribution is unlimited.

3

API Reference

C++ API

Ae9Ap9Application Class
Header file: Ae9Ap9Application.h

Description: This class is the main entry point into the application layer of the Ae9Ap9 project.
The Ae9Ap9Application class provides a suite of methods that provide synchronous
access to the underlying Ae9Ap9 model. Client applications requiring multi-processing
capabilities should access the model through the underlying Ae9Ap9Model class.

Public methods:

Ae9Ap9Application
Usage: Default constructor
Parameters: none

Return values: none

~Ae9Ap9Application

Usage: Destructor
Parameters: none

Return values: none

void setModelDataSource

(const string& strDataSource)

Usage: Set the path and file name of the hdf5 format database containing
the data of the selected model. (ie: for high energy electrons, pass
“{path}/ AE9V10_runtime_tables.mat”) Call this once at startup to
initialize the model.

Approved for public release; distribution is unlimited.

4

Parameters:
strDataSource — path and file name of the hdf5 database

Return values: none

void setkKPhiNeuralNetDataSource
(const string& strDataSource)
Usage: Set the path and file name of the hdf5 format database containing

the K/Phi space neural network used by the selected model.

(ie: pass “{path}/ fastPhi_net.mat”) Call this once at startup to initialize
the model.

Parameters:
strDataSource — path and file name of the hdf5 neural net database

Return values: none

void setKHMinNeuralNetDataSource
(const string& strDataSource)

Usage: Set the path and file name of the hdf5 format database containing
the K/Hmin space neural network used by the selected model.

(ie: pass “{path}/ fast_hmin_net.mat”) Call this once at startup to
initialize the model.

Parameters:
strDataSource — path and file name of the hdf5 neural net database

Return values: none

void setMagfieldModelDataSource

(const string& strDataSource)

Usage: Set the path and file name of the hdf5 format database containing
the magnetic field model data used by the selected model.

(ie: pass “{path}/ igrfDB.h5”) . Call this once at startup to initialize
the model.

Parameters:
strDataSource — path and file name of the hdf5 database

Return values: none

Approved for public release; distribution is unlimited.

5

int setFluxEnvironment

Usage:

(eModelType, eFluxType, vvdEnergies,
vdTimes, eCoordSys, vdCoordsAxis1,
vdCoordsAxi2, vdCoordsAxis3)

This method computes flux weights for a grouping of satellite
positions at a given set of energies and times when computing
omnidirectional flux. It should be called once prior to calling
any combination of fly-in flux computation methods for that
time period. Note: use as large a grouping of satellite
positions as can be processed on available hardware.

Parameters:
eModel - type of model to be run: eAEModelElectron, eAEModelProton,

eAEModelSpecies

eFluxType - enum defining type of flux to compute (1 point differential, 2 point

differential, integral) see AEEnums.h

vvdEnergies - 2 dimensional vector of doubles defining energy levels (MeV)

at which to compute flux. Note: column 2 used only for 2 pt
differential flux type, which requires computation of flux between
two energy levels

vdTimes - vector of date/times in modified julian date format at which to

compute flux. Lengths of time and position vectors must match,
with time corresponding to a position at that index in the vectors.

eCoordSys - enum defining the coordinate system of positions and directions
vdCoordsAxis],

vdCoordsAxis2,

vdCoordsAxis3 - Coordinates along axes in 3d space in the eCoordSys coordinate

system of each position at which flux is to be computed. These vectors
should match the vdTimes vector in length and correspond to those
times at each position.

Return values:
int — 0 success, else (see AEErrors.h)

int setFluxEnvironment

Usage:

(eModelType, eFluxType, vvdEnergies,
vdTimes, eCoordSys, vdCoordsAxis1,
vdCoordsAxi2, vdCoordsAxis3,
vvdFluxDirl, vwdFluxDir2, vwdFluxDir3)

This method computes flux weights for a grouping of satellite

positions at a given set of energies and times when computing

directional flux. This method provides an alternative to computing a single
omnidirectional flux. It allows the user to specify one or more flux directions at

Approved for public release; distribution is unlimited.

6

each time and position. The flux for each combinatin of passed time, position
and direction will be computed.

Flux directions should be passed as x,y,z components of unit vectors using the
passed coordinate system. This method should be called once prior to calling
any combination of fly-in flux computation methods for that time period.
Note: use as large a grouping of satellite positions as can be processed on
available hardware.

Parameters:

eModel - type of model to be run: eAEModelElectron, eAEModelProton,
eAEModelSpecies

eFluxType - enum defining type of flux to compute (1 point differential, 2 point
differential, integral) see AEEnums.h

vvdEnergies - 2 dimensional vector of doubles defining energy levels (MeV)
at which to compute flux. Note: column 2 used only for 2 pt
differential flux type, which requires computation of flux between
two energy levels

vdTimes - vector of date/times in modified julian date format at which to
compute flux. Lengths of time and position vectors must match,
with time corresponding to a position at that index in the vectors.

eCoordSys - enum defining the coordinate system of positions and directions

vdCoordsAxis1,

vdCoordsAxis2,

vdCoordsAxis3 - Coordinates along axes in 3d space in the eCoordSys coordinate
system of each position at which flux is to be computed. These vectors
should match the vdTimes vector in length and correspond to those
times at each position.

vvdFluxDirl,

vvdFluxDir2,

vvdFluxDir3 - Directions at which to compute flux at each timestep in vdTimes.

Multiple directions can be computed at each timestep. Thus, these
vectors are 2 dimensional (nTimes,nDirections).

Return values:
int — 0 success, else (see AEErrors.h)

int flylnMean
(vwdvector& vvvdFluxData)

Usage: This method computes mean flux at each position, time, energy and
optionally direction passed in the most recent call to setFluxEnvironment.
Bad values are returned as AE_NaN (defined in AEErrors.h). The function
ae9ap9::isnan(value) should be used to test for bad values.

Parameters:
vvvdFluxData —a returned 3 dimensional vector (time, energy, direction)
of flux values (in MeV)

Approved for public release; distribution is unlimited.

7

Return Values:
int — 0 success, else (see AEErrors.h)

int flylnPerturbedMean
(int iScenario, vvdvector& vvvdFluxData)

Usage: This method computes perturbed mean flux at each position, time, energy and
optionally direction passed in the most recent call to setFluxEnvironment.
Perturbed means are a statistical distribution of mean flux based on
measurement uncertainty only. Bad values are returned as AE_NaN (defined
in AEErrors.h). The function ae9ap9::isnan(value) should be used to test for
bad values.

Parameters:
iScenario — perturbed mean scenario number (1..999) for repeatability
vvvdFluxData — a returned 3 dimensional vector (time, energy, direction)
of flux values (in MeV)

Return Values:
int — 0 success, else (see AEErrors.h)

int flylnPercentile
(int iPercentile, vvdvector& vvvdFluxData)

Usage: This method computes percentile flux at each position, time, energy and
optionally direction passed in the most recent call to setFluxEnvironment.
Bad values are returned as AE_NaN (defined in AEErrors.h). The function
ae9ap9::isnan(value) should be used to test for bad values.

Parameters:
iPercentile — percentile (1..99) flux to compute at each time, energy and position
vvvdFluxData — a returned 3 dimensional vector (time, energy, direction)
of percentile flux values (in MeV)

Return Values:
int — 0 success, else (see AEErrors.h)

int flylnScenario

(dEpoch, iScenario, vvvdFluxData, bPerturbFluxMap = true)

Usage: This method computes monte carlo flux at each position, time, energy and
optionally direction passed in the most recent call to setFluxEnvironment.
Monte carlo fluxes are a statistical distribution of flux based on both

Approved for public release; distribution is unlimited.

8

measurement and temporal uncertainty. Bad values are returned as
AE_NaN (defined in AEErrors.h). The function ae9ap9::isnan(value) should
be used to test for bad values.

Parameters:

dEpoch — start date/time (in Modified Julian Date) for the scenario

iScenario — monte carlo scenario number (1..999) for repeatability

vvdFluxData - a returned 3 dimensional vector (time, energy, direction)
of percentile flux values (in MeV)

bPerturbFluxMap — if false, turns off measurement uncertainty mean
perturbation. Do Not Use. For testing purposes only.

Return Values:
int — 0 success, else (see AEErrors.h)

const string& getErrorText

Usage: Retrieves the text associated with a non-zero returned error code

Parameters: none

Return Values:
const string& - text associated with a previously returned error code

AEOrbitPropagator Class
Header file: AEOrbitPropagator.h
Description: This class encapsulates three choices of underlying orbit propagator

implementations; an SGP4-based propagator, a SatEph implementation and
a Kepler+J2 only propagator. Clients of this class can choose which to use.

Public methods:

AEOrbitPropagator

Usage: Default constructor
Parameters: none

Return values: none

Approved for public release; distribution is unlimited.

9

~AEOrbitPropagator

Usage: Destructor
Parameters: none

Return values: none

void setPropagatorTypeSGP4

Usage: Forces use of the SGP4 orbit propagator (default)
Parameters: none

Return values: none

void setPropagatorTypeSatEph

Usage: Forces use of the SatEph orbit propagator
Parameters: none

Return values: none

void setPropagatorTypeKepler

Usage: Forces use of the Kepler-J2 orbit propagator
Parameters: none

Return values: none

void useSGP4ImprovedMode
(bool bUse)

Usage: Enables or disables use of the “improved mode” when using the
SGP4 propagator

Approved for public release; distribution is unlimited.

10

Parameters:
bUse - if true, enables “improved mode”, else uses standard mode

Return values: none

void setSGP4WGSConst720Id

Usage: Sets use of the WGS 1972 Old mode constant datum for SGP4
Parameters: none

Return values: none

void setSGP4WGSConst72

Usage: Sets use of the WGS 1972 newer constant s when using SGP4
Parameters: none

Return values: none

void setSGP4WGSConst84

Usage: Sets the use of WGS 1984 datum constants when using SGP4
Parameters: none

Return values: none

void setTLEFile
(const string& strTLEFile)

Usage: Sets the name of a TLE (two line element) file to be used in orbit propagation

Parameters:
strTLEFile — path and file name of the TLE file to read

Return values: none

Approved for public release; distribution is unlimited.

11

void clearTLEFields

Usage: Resets all internal TLE-related fields to default values
Parameters: none

Return values: none

void addTLE

(const string& strTLELinel,
long [SatelliteNumber,
char cClass,
int ilntDesYear,
int iLaunchNumber,
const string& strPiece,
int iEpochYear,
double dEpochDayOfYear,
double dMeanMotion1stDeriv,
double dMeanMotion2ndDeriv,
double dBStar,
int iEphemType,
int iElementNumber,
const string& strTLELine2,
double dinclination,
double dRightAscension,
double dEccentricity,
double dArgofPerigee,
double dMeanAnomaly,
double dMeanMotion,
long IEpochRevolution

)

Usage: Adds a set of fields defining a two line element to an internal
collection of TLEs to be used in orbit propagation

Parameters:
strTLELinel — string representing line 1 of the two line element
ISatelliteNumber — five digit satellite number
cClass — character classification ‘U’ for unclassified
ilntDesYear — last two digits of launch year
iLaunchNumber — launch number of the year
strPiece — piece of the launch
iEpochYear — last two digits of the year

Approved for public release; distribution is unlimited.

12

dEpochDayOfYear — day and fractional day
dMeanMotion1stDeriv — first derivative of mean motion
dMeanMotion2ndDeriv — second derivative of mean motion
dBStar — b star drag term

iEphemType — ephemeris type

iElementNumber — element number

strTLELine2 — string representing line 2 of the two line element
dinclination — inclination in degrees

dRightAscension — right ascension of ascending node in degrees
dEccentricity - eccentricity

dArgofPerigee — argument of perigee in degrees
dMeanAnomaly — mean anomaly in degrees

dMeanMotion — mean motion in revs per day
I[EpochRevolution — revolution number at epoch

Return values: none

void setTLEs

(const vector<string>& vstrTLELinels,

const vector<long>& vlSatelliteNumbers,
const vector<char>& vcClasses,

const vector<int>& vilntDesYears,

const vector<int>& vilaunchNumbers,
const vector<string>& vstrPieces,

const vector<int>& viEpochYears,

const vector<double>& vdEpochDaysOfYear,
const vector<double>& vdMeanMotion1stDerivs,
const vector<double>& vdMeanMotion2ndDerivs,
const vector<double>& vdBStars,

const vector<int>& viEphemTypes,

const vector<int>& viElementNumbers,
const vector<string>& vstrTLELine2s,

const vector<double>& vdinclinations,

const vector<double>& vdRightAscensions,
const vector<double>& vdEccentricities,
const vector<double>& vdArgsofPerigee,
const vector<double>& vdMeanAnomalies,
const vector<double>& vdMeanMotions,
const vector<long>& vlEpochRevolutions

)

Usage: Uses a set of field vectors defining two line elements to populate
an internal collection of TLEs to be used in orbit propagation

Approved for public release; distribution is unlimited.

13

Parameters:

vstrTLELinels — vector of strings representing line 1 of the two line elements
viSatelliteNumbers — vector of five digit satellite numbers

vcClasses — vector of character classification ‘U’ for unclassified
vilntDesYears — vector of last two digits of launch year

viLaunchNumbers — vector of launch number of the year

vstrPieces — vector of piece of the launch

viEpochYears — vector of last two digits of the year

vdEpochDaysOfYear — vector of day and fractional day
vdMeanMotion1stDerivs — vector of first derivative of mean motion
vdMeanMotion2ndDerivs — vector of second derivative of mean motion
vdBStars — vector of b star drag terms

viEphemTypes — vector of ephemeris types

viElementNumbers — vector of element numbers

vstrTLELine2s — vector of strings representing line 2 of the two line element
vdInclinations — vector of inclination in degrees

vdRightAscensions — vector of right ascension of ascending node in degrees
vdEccentricities — vector of eccentricities

vdArgsofPerigee — vector of arguments of perigee in degrees
vdMeanAnomalies — vector of mean anomalies in degrees

vdMeanMotions — vector of mean motions, in revs per day
vlEpochRevolutions — vector of revolution numbers at epoch

Return values: none

void setMeanElements

(double dElementTimeMJD,
double dinclination,
double dArgofPerigee,
double dMeanAnomaly,
double dMeanMotionl1stDeriv,
double dEccentricity,
double dRightAscension,
double dMeanMotion,
double dMeanMotion2ndDeriv,
double dBStar)

Usage: Sets the required mean orbital elements when using orbital elements
to drive the orbit propagator.

Parameters:
dElementTimeMJD — date/time (MJD) of the orbital elements
dinclination - inclination in degrees
dArgofPerigee - argument of perigee in degrees
dMeanAnomaly — mean anomaly in degrees

Approved for public release; distribution is unlimited.

14

dMeanMotionlstDeriv — first derivative of mean motion
dEccentricity - eccentricity

dRightAscension - right ascension of ascending node in degrees
dMeanMotion — mean motion in revs per day
dMeanMotion2ndDeriv — second derivitive of mean motion
dBStar — b star drag term

Return values: none

void setTimes
(double dStartMJD, double dEndMJD, double dTimestepSecs)
Usage: Sets the time range and cadence for calculating ephemeris
Parameters:
dStartMJD — start date/time (in MJD) of the ephemeris timeframe
dEndMJD - end date/time (in MJD) of the ephemeris timeframe

dTimestepSecs — cadence (in seconds) at which to calculate ephemeris

Return values: none

void setTimes

(const vector<double>& vdTimesMJD)

Usage: Sets times at which to generate ephemeris when using TLEs to
drive the orbit propagator

Parameters:
vdTimesMJD — date/times (in MJD) at which to generate ephemeris

Return values: none

void setOrbitType
(const string& strOrbit)
Usage: Sets the type of orbit to compute for the Kepler/J2 propagator. Valid values are
‘classical’, ‘mean’,’solar’,’rv’,’geosync’. This setting dictates which orbital elements are

required for input. See the Ae9Ap9 User’s Guide for details.

Parameters:
strOrbit — text string representing above Kepler orbit types

Return values: none

Approved for public release; distribution is unlimited.

15

void setOrbitalElementEpoch
(double dEpochMJD)

Usage: Sets the date and time for the passed orbital element (Kepler only)

Parameters:
dEpochMID — date /time (MJD) of orbital element epoch

Return values: none

void setUseJ2Perturbations

(bool bUseJ2)

Usage: Enables or disables computation of J2 perturbations (Kepler only)

Parameters:
bUsel2 — boolean indicating whether to use J2 perturbation computation

Return values: none

void setinclination

(double dinclinationinDeg)
Usage: Sets the orbital inclination in degrees (Kepler only)

Parameters:
dinclinationIinDeg — orbital inclination in degrees

Return values: none

void setEccentricity

(double dEccentricity)
Usage: Sets the eccentricity of the orbit (Kepler only)

Parameters:
dEccentricity — eccentricity of orbit

Return values: none

Approved for public release; distribution is unlimited.

16

void setArgOfPerigee
(double dArgOfPerigeelnDeg)

Usage: Sets the argument of perigee in degrees (Kepler only)

Parameters:
dArgOfPerigeelnDeg — argument of perigee (Dg)

Return values: none

void setMeanAnomalyAtEpoch
(double dMeanAnomalylnDeg)

Usage: Sets the mean anomaly at the epoch time (Dg) (Kepler only)

Parameters:
dMeanAnomalylnDeg — mean anomaly in degrees

Return values: none

void setMeanMotion

(double dMeanMotionInRevPerDay)
Usage: Sets the mean motion (rev/day) (Kepler only)

Parameters:
dMeanMotionInRevPerDay — mean motion in rev/day

Return values: none

void setRightAscension

(double dLongitudelnDeg)
Usage: Sets the right ascension of ascending node in degrees (Kepler only)

Parameters:
dLongitudelnDeg —longitude of ascending node (Dg)

Return values: none

void setAltitudeOfPerigee
(double dAltitudelnKm)

Approved for public release; distribution is unlimited.

17

Usage: Sets the altitude (km) at perigee (Kepler only)

Parameters:
dAltitudelnKm — altitude in km at perigee

Return values: none

void setAltitudeOfApogee
(double dAltitudelnKm)

Usage: Sets the altitude (km) at apogee (Kepler only)

Parameters:
dAltitudelnKm — altitude in km at apogee

Return values: none

void setLocalTimeOfApogee

(double dLocalTimelnHours)
Usage: Sets the local time (Hrs) at apogee (Kepler only)

Parameters:
dLocalTimelnHours — local time (hrs) at apogee

Return values: none

void setLocalTimeOfMaxInclination

(double dLocalTimelnHours)
Usage: Sets the local time (hrs) at max inclination (Kepler only)

Parameters:
dLocalTimelnHours — local time (hrs) at max inclination

Return values: none

void setTimeOfPerigee

(double dTimeMJD)

Usage: Sets the time (MJD) of perigee (Kepler only)

Approved for public release; distribution is unlimited.

18

Parameters:
dTimeMJD — time in MJD of perigee

Return values: none

void setSemimajorAxis

(double dAxisInRe)
Usage: Sets the length (RE) of the orbit semimajor axis (Kepler only)

Parameters:
dAxisInRe — length in RE of the semimajor axis

Return values: none

void setPositionGE|

(double dX, double dY, double dZ)
Usage: Sets the position (GEI) at epoch (orbital element time) (Kepler only)

Parameters:
dX, dY, dZ — vector defining position in GEl at epoch

Return values: none

void setVelocityGEl
(double dU, double dV, double dW)

Usage: Sets the velocity (GEI) at epoch (orbital element time) (Kepler only)

Parameters:
dU, dV, dW — vector defining velocity in GEIl at epoch

Return values: none

void setGeosyncLongitude

(double dLongitudeDeg)
Usage: Sets the longitude (Dg) for a geosynchronous orbit (Kepler only)

Parameters:
dLongitudeDeg — longitude (Dg) of a geosynchronous orbit

Approved for public release; distribution is unlimited.

19

Return values: none

void setMagfieldModelDB
(const string& strDb)

Usage: Sets the path of the magnetic field model database for use in coordinate
conversions by the Kepler model.

Parameters:
strDb — path and file name of the magnetic field model db (same db used in model).

Return values: none

int computeEphemeris

(vector<double>& vdTimesMJD,
vector<double>& vdXsGEO,
vector<double>& vdYsGEO,
vector<double>& vdZsGEO,
vector<double>& vdXDotsGEO,
vector<double>& vdYDotsGEO,
vector<double>& vdZDotsGEOQ)

Usage: Compute ephemeris for previously set TLE or mean elements and timeframe

Parameters:

vdTimesMJD — (returned) vector of times at which ephemeris computed
vdXsGEO — (returned) vector of x axis components of positions
vdYsGEO — (returned) vector of y axis components of positions

vdZsGEO — (returned) vector of z axis components of positions
vdXDotsGEO — (returned) vector of x axis components of velocity
vdYDotsGEO — (returned) vector of y axis components of velocity
vdZDotsGEO — (returned) vector of z axis components of velocity

Return values:
int — 0 success, else (see AEErrors.h)

AEAggregator Class

base class (public interface for all aggregator classes)

Header file: AEAggregator.h

Approved for public release; distribution is unlimited.

20

Description: This class is the base class for all flux aggregators supplied with Ae9Ap9.
Classes derived from this class summarize 3d floating point data in a variety
of ways. The base class simply defines a common interface.

Public methods:

AEAggregator
Usage: Default constructor
Parameters: none
Return values: none

virtual ~AEAggregator

Usage: Destructor
Parameters: none

Return values: none

virtual void reset

Usage: clears in-progress aggregated results
Parameters: none

Return values: none

virtual int add

(const dvector& vdDateTimes, const vvdvector& vvvdData)
Usage: inserts new data into an existing aggregation
Parameters:

vdDateTimes — vector of date/times (in MJD) of data to add to the aggregation
vvvdData — 3d vector of data (time,energy,direction) to aggregate

Approved for public release; distribution is unlimited.

21

Return values:
0 — success, else error (see AEErrors.h)

virtual void getAggregatedData

(dvector& vdDateTimesMJD,
vvdvector& vvvdData,
bool bincludelncompletelnterval = false)

Usage: retrieves completed aggregation intervals, and
optionally, the one currently in progress

Parameters:
vdDateTimesMID — (return) vector of date/times (in MJD) of aggregated data
vvvdData — (return) 3d vector of aggregated data (time,energy,direction)
bincludelncompletelnterval — if true, current period summed even if short
of aggregation interval (usually used at end of orbit)

Return values:
0 — success, else error (see AEErrors.h)

virtual void clearAggregatedData

Usage: empties the collection of completed aggregation intervals
Parameters: none

Return values: none

int getAggregationinterval

Usage: returns the aggregation interval (in # samples)
Parameters: none

Return values:
int — aggregation interval (in # samples)

void setAggregationinterval

(int iNumSamples)

Approved for public release; distribution is unlimited.

22

Usage: set the aggregation interval (in # samples)

Parameters:
iNumSamples — aggregation interval (in number of samples)

Return values: none

Approved for public release; distribution is unlimited.

23

C Language API

Header file: AECInterface.h

Description: AECInterface.h provides C language wrapper functions to the methods of the
Ae9Ap9Application class described above in the C++ APl section of this document.
The C interface can be used to access the model when linking statically or as a
shared object or dIl. Note that access to aggregation classes and orbit propagators
are not currently supported through the C interface.

Methods:

int AESAPSAPP_setFluxEnvironment c

(char* szModelType,

char* szFluxType,

char* szCoordSys,

int iNumEnergylLevels,

int iNumEnergyDimes,

double* pdEnergies,

int iNumTimes,

const double* pdTimes,

const double* pdCoordsAxis1,
const double* pdCoordsAxis2,
const double* pdCoordsAxis3)

Usage: This method computes flux weights for a grouping of satellite
positions at a given set of energies and times when computing
omnidirectional flux. It should be called once prior to calling
any combination of fly-in flux computation methods for that
time period. Note: use as large a grouping of satellite
positions as can be processed on available hardware.

Parameters:

szModelType - type of model to be run: Electron, Proton, ModelSpecies (plasma)

szFluxType - type of flux to compute (1 point differential “1PTDIFF”, 2 point
differential “2PTDIFF”, integral “INTEGRAL”)

szCoordSys - coordinate system of positions and directions: GEO, GEIl, GDZ,

GSM, GSE, SSM, MAG, SPH, RLL

iNumEnergyLevels — number of energies passed (per dimension)

iNumEnergyDims — number of energy dimensions (1 unless 2pt. diff flux type)

pdEnergies - array of doubles defining energy levels (MeV) at which to compute
flux. Note: column 2 used only for 2 pt differential flux type, which
requires computation of flux between two energy levels (row major)

iNumTimes — number of time values passed in pdTimes

Approved for public release; distribution is unlimited.

24

pdTimes - array of date/times in modified julian date format at which to
compute flux. Lengths of time and position arrays must match,
with time corresponding to a position at the same index in the arrays.

pdCoordsAxisl,

pdCoordsAxis2,

pdCoordsAxis3 - Coordinates along axes in 3d space in the eCoordSys coordinate
system of each position at which flux is to be computed. These arrays
should match the vdTimes array in length and correspond to those
times at each position.

Return values:
0 — success, else error (see AEErrors.h)

int AESAPSAPP_setFluxEnvironmentDir_c

(char* szModelType,

char* szFluxType,

char* szCoordSys,

int iNumEnergylLevels,

int iNumEnergyDims,

double* pdEnergies,

int iNumTimes,

const double* pdTimes,

const double* pdCoordsAxis1,
const double* pdCoordsAxis2,
const double* pdCoordsAxis3,
int iNumDirs,

double* pdFluxDirl,

double* pdFluxDir2,

double* pdFluxDir3)

Usage: returns the aggregation interval (in # samples)

Parameters:

szModelType - type of model to be run: Electron, Proton, ModelSpecies (plasma)

szFluxType - type of flux to compute (1 point differential “1PTDIFF”, 2 point
differential “2PTDIFF”, integral “INTEGRAL")

szCoordSys - coordinate system of positions and directions: GEO, GEI, GDZ,

GSM, GSE, SSM, MAG, SPH, RLL

iNumEnergyLevels — number of energies passed (per dimension)

iNumEnergyDims — number of energy dimensions (1 unless 2pt. diff flux type)

pdEnergies - array of doubles defining energy levels (MeV) at which to compute
flux. Note: column 2 used only for 2 pt differential flux type, which
requires computation of flux between two energy levels (row major)

iNumTimes — number of time values passed in pdTimes

Approved for public release; distribution is unlimited.

25

pdTimes - array of date/times in modified julian date format at which to
compute flux. Lengths of time and position arrays must match,
with time corresponding to a position at the same index in the arrays.

pdCoordsAxis1,

pdCoordsAxis2,

pdCoordsAxis3 - Coordinates along axes in 3d space in the eCoordSys coordinate
system of each position at which flux is to be computed. These arrays
should match the vdTimes array in length and correspond to those
times at each position.

iNumDirs — size of the directions dimension in the 2d direction arrays below

pdFluxDir1l,

pdFluxDir2,

pdFluxDir3 — Directions at which to compute flux at each timestep. Multiple
directions can be computed at each timestep. Thus, the arrays are
2d (time,direction). Defined in szCoordSys coordinates

Return values:
0 — success, else error (see AEErrors.h)

int AESAPSAPP_flyInMean_c
(double* pdFluxData)

Usage: This method computes mean flux at each position, time, energy and
optionally direction passed in the most recent call to setFluxEnvironment.
Bad values are returned as AE_NaN (defined in AEErrors.h).

Parameters:
pdFluxData —(return) 3D array (time,energy,direction) of flux data (MeV)
Sufficient memory should be allocated by caller, as follows:
(# times passed to setFluxEnvironment * # Energy levels *
directions [1 for omni]), storage order: row major
tleldl, tleld2, tleld3, tle2d1, tle2d2, tle2d3, t2eld1l...

Return Values:
int — 0 success, else (see AEErrors.h)

int AESAP9APP_flyinPerturbedMean _c

(int iScenario, double* pdFluxData)

Usage: This method computes perturbed mean flux at each position, time, energy and
optionally direction passed in the most recent call to setFluxEnvironment.
Perturbed means are a statistical distribution of mean flux based on

Approved for public release; distribution is unlimited.

26

measurement uncertainty only. Bad values are returned as AE_NaN (defined
in AEErrors.h).

Parameters:

iScenario — perturbed mean scenario number (1..999) for repeatability

pdFluxData —(return) 3D array (time,energy,direction) of flux data (MeV)
Sufficient memory should be allocated by caller, as follows:
(# times passed to setFluxEnvironment * # Energy levels *
directions [1 for omni]), storage order: row major
tleldl, tleld2, tleld3, tle2d1, tle2d2, tle2d3, t2eldl...

Return values:
int — 0 success, else (see AEErrors.h)

int AESAP9APP_flyinPercentile_c

(int iPercentile, double* pdFluxData)

Usage: This method computes percentile flux at each position, time, energy and
optionally direction passed in the most recent call to setFluxEnvironment.

Bad values are returned as AE_NaN (defined in AEErrors.h). The function
ae9ap9::isnan(value) should be used to test for bad values.

Parameters:

iPercentile — percentile (1..99) flux to compute at each time, energy and position
pdFluxData —(return) 3D array (time,energy,direction) of flux data (MeV)
Sufficient memory should be allocated by caller, as follows:
(# times passed to setFluxEnvironment * # Energy levels *
directions [1 for omni]), storage order: row major
tleldl, tleld2, tleld3, tle2d1, tle2d2, tle2d3, t2eldl...

Return values:
int — 0 success, else (see AEErrors.h)

int AESAP9APP_flylnScenario_c

(double dEpoch,
int iScenario,
double* pdFluxData,
bool bPerturbFluxMap = true);

Usage: This method computes monte carlo flux at each position, time, energy and
optionally direction passed in the most recent call to setFluxEnvironment.
Monte carlo fluxes are a statistical distribution of flux based on both

Approved for public release; distribution is unlimited.

27

measurement and temporal uncertainty. Bad values are returned as
AE_NaN (defined in AEErrors.h).

Parameters:

dEpoch — start date/time (in Modified Julian Date) for the scenario
iScenario — monte carlo scenario number (1..999) for repeatability
pdFluxData —(return) 3D array (time,energy,direction) of flux data (MeV)
Sufficient memory should be allocated by caller, as follows:
(# times passed to setFluxEnvironment * # Energy levels *
directions [1 for omni]), storage order: row major
tleldl, tleld2, tleld3, tle2d1, tle2d2, tle2d3, t2eldl...
bPerturbFluxMap — if false, turns off measurement uncertainty mean
perturbation. Do Not Use. For testing purposes only.

Return values:

int — 0 success, else (see AEErrors.h)

const char* AE9AP9APP_getErrorText c

Usage: retrieve text associated with a returned error code
Parameters: none

Return values:

const char* - ptr to a null terminated string of error text

int AESAP9APP_setModelDataSource ¢
(const char* szDataSource, int iLength);

Usage: Set the path and file name of the hdf5 format database containing
the data of the selected model. (ie: for high energy electrons, pass

“{path}/ AE9V10_runtime_tables.mat”) Call this once at startup to
initialize the model.

Parameters:

szDataSource — path and file name of the hdf5 database
iLength — length of the path/file name string passed

Return values:

int — 0 success, else (see AEErrors.h)

Approved for public release; distribution is unlimited.

28

int AESAP9APP_setKPhiNeuralNetDataSource ¢

(const char* szDataSource, int iLength)

Usage: Set the path and file name of the hdf5 format database containing
the K/Phi space neural network used by the selected model.

(ie: pass “{path}/ fastPhi_net.mat”) Call this once at startup to initialize
the model.

Parameters:

szDataSource — path and file name of the hdf5 neural net database
iLength — length of the path/file name string passed

Return values:

int — 0 success, else (see AEErrors.h)

int AESAP9APP_setKHMinNeuralNetDataSource c

(const char* szDataSource,
intiLength);

Usage: Set the path and file name of the hdf5 format database containing
the K/Hmin space neural network used by the selected model.

(ie: pass “{path}/ fast_hmin_net.mat”) Call this once at startup to
initialize the model.

Parameters:

szDataSource — path and file name of the hdf5 neural net database
iLength — length of the path/file name string passed

Return values:

int — 0 success, else (see AEErrors.h)

int AESAP9APP_setMagfieldModelDataSource c

(const char* szDataSource, int iLength)

Usage: Set the path and file name of the hdf5 format database containing
the magnetic field model data used by the selected model.

(ie: pass “{path}/ igrfDB.h5") . Call this once at startup to initialize
the model.

Parameters:

szDataSource — path and file name of the hdf5 database
iLength — length of the path/file name string passed

Approved for public release; distribution is unlimited.

29

Return values:
int — 0 success, else (see AEErrors.h)

void AESAPSAPP_cleanup_c

Usage: Call this to ensure the underlying model gets deallocated.
Failure to do so can result in HDF5 console messages on exit.

Parameters: none

Return values: none

const char* AE9AP9APP_getVersion_c

Usage: Call to obtain version number of Ae9Ap9 library in use
Parameters: none

Return values:
const char* — null terminated string containing Ae9Ap9 version

Approved for public release; distribution is unlimited.

30

Fortran API

Header file: AEFInterface.h

Description:

AEFInterface.h provides Fortran language wrapper functions to the methods of the

Ae9Ap9Application class described above in the C++ API section of this document.
The Fortran interface can be used to access the model when linking statically or as a
shared object or dll. Note that access to aggregation classes and orbit propagators
are not currently supported through the Fortran interface.

Methods:

int ae9ap9app_setfluxenvironment_f

(char* pchModelType,
int* piModelTypelen,
char* pchFluxType,
int* piFluxTypelen,
char* pchCoordSys,
int* piCoordSysLen,
int* piNumeEnergies,
int* piNumEnergyDims,
double* pdEnergies,
int* piNumTimes,
const double* pdTimes,
const double* pdCoordsAxis1,
const double* pdCoordsAxis2,
const double* pdCoordsAxis3)

Usage: This method computes flux weights for a grouping of satellite
positions at a given set of energies and times when computing
omnidirectional flux. It should be called once prior to calling
any combination of fly-in flux computation methods for that
time period. Note: use as large a grouping of satellite
positions as can be processed on available hardware.

Parameters:

pchModelType - type of model to be run: Electron, Proton, ModelSpecies (plasma)

piModelTypelLen — length of preceding model type character array

pchFluxType - type of flux to compute (1 point differential “1PTDIFF”, 2 point
differential “2PTDIFF”, integral “INTEGRAL”)

piFluxTypeLen — length of preceding flux type character array

pchCoordSys - coordinate system of positions and directions: GEO, GEI, GDZ,

GSM, GSE, SSM, MAG, SPH, RLL

piCoordSysLen — length of preceding coordinate system character array

piNumEnergyLevels — number of energies passed (per dimension)

piNumEnergyDims — number of energy dimensions (1 unless 2pt. diff flux type)

Approved for public release; distribution is unlimited.

31

pdEnergies - array of doubles defining energy levels (MeV) at which to compute
flux. Note: column 2 used only for 2 pt differential flux type, which
requires computation of flux between two energy levels (row major)

piNumTimes — number of time values passed in pdTimes

pdTimes - array of date/times in modified julian date format at which to
compute flux. Lengths of time and position arrays must match,
with time corresponding to a position at the same index in the arrays.

pdCoordsAxis1,

pdCoordsAxis2,

pdCoordsAxis3 - Coordinates along axes in 3d space in the eCoordSys coordinate
system of each position at which flux is to be computed. These arrays
should match the vdTimes array in length and correspond to those
times at each position.

Return values:
0 — success, else error (see AEErrors.h)

int ae9ap9app_setfluxenvironmentdir_f

(char* pchModelType,

int* piModelTypelen,

char* pchFluxType,

int* piFluxTypelen,

char* pchCoordSys,

int* piCoordSysLen,

int* piNumeEnergies,

int* piNumEnergyDims,
double* pdEnergies,

int* piNumTimes,

const double* pdTimes,

const double* pdCoordsAxis1,
const double* pdCoordsAxis2,
const double* pdCoordsAxis3,
int* piNumFluxDirs,

double* pdFluxDirl,

double* pdFluxDir2,

double* pdFluxDir3);

Usage: This method computes flux weights for a grouping of satellite
positions at a given set of energies and times when computing
directional flux. It should be called once prior to calling
any combination of fly-in flux computation methods for that
time period. Note: use as large a grouping of satellite
positions as can be processed on available hardware.

Approved for public release; distribution is unlimited.

32

Parameters:

pchModelType - type of model to be run: Electron, Proton, ModelSpecies (plasma)

piModelTypelen — length of preceding model type character array

pchFluxType - type of flux to compute (1 point differential “1PTDIFF”, 2 point
differential “2PTDIFF”, integral “INTEGRAL")

piFluxTypeLen — length of preceding flux type character array

pchCoordSys - coordinate system of positions and directions: GEO, GEI, GDZ,

GSM, GSE, SSM, MAG, SPH, RLL

piCoordSysLen — length of preceding coordinate system character array

piNumEnergyLevels — number of energies passed (per dimension)

piNumEnergyDims — number of energy dimensions (1 unless 2pt. diff flux type)

pdEnergies - array of doubles defining energy levels (MeV) at which to compute
flux. Note: column 2 used only for 2 pt differential flux type, which
requires computation of flux between two energy levels (row major)

piNumTimes — number of time values passed in pdTimes

pdTimes - array of date/times in modified julian date format at which to
compute flux. Lengths of time and position arrays must match,
with time corresponding to a position at the same index in the arrays.

pdCoordsAxis1,

pdCoordsAxis2,

pdCoordsAxis3 - Coordinates along axes in 3d space in the eCoordSys coordinate
system of each position at which flux is to be computed. These arrays
should match the vdTimes array in length and correspond to those
times at each position.

piNumDirs — size of the directions dimension in the 2d direction arrays below

pdFluxDir1l,

pdFluxDir2,

pdFluxDir3 — Directions at which to compute flux at each timestep. Multiple
directions can be computed at each timestep. Thus, the arrays are

2d (time,direction). Defined in szCoordSys coordinates

int ae9ap9app_flyinmean f
(double* pppdFluxData);

Usage: This method computes mean flux at each position, time, energy and
optionally direction passed in the most recent call to setFluxEnvironment.
Bad values are returned as AE_NaN (defined in AEErrors.h).

Parameters:
pppdFluxData —(return) 3D array (time,energy,direction) of flux data (MeV)
Sufficient memory should be allocated by caller, as follows:
(# times passed to setFluxEnvironment * # Energy levels *
directions [1 for omni]), storage order: row major
tleldl, tleld2, tleld3, tle2d1l, tle2d2, tle2d3, t2eldl...

Approved for public release; distribution is unlimited.

33

Return Values:
int — 0 success, else (see AEErrors.h)

int ae9ap9app_flyinperturbedmean_f
(int* piScenario, double* pppdFluxData);

Usage: This method computes perturbed mean flux at each position, time, energy and
optionally direction passed in the most recent call to setFluxEnvironment.
Perturbed means are a statistical distribution of mean flux based on

measurement uncertainty only. Bad values are returned as AE_NaN (defined
in AEErrors.h).

Parameters:
piScenario — perturbed mean scenario number (1..999) for repeatability
pppdFluxData —(return) 3D array (time,energy,direction) of flux data (MeV)
Sufficient memory should be allocated by caller, as follows:
(# times passed to setFluxEnvironment * # Energy levels *
directions [1 for omni]), storage order: row major
tleldl, tleld2, tleld3, tle2dl, tle2d2, tle2d3, t2eldl...

Return values:
int — 0 success, else (see AEErrors.h)

int ae9ap9app_flyinpercentile_f
(int* piPercentile, double* pppdFluxData);

Usage: This method computes percentile flux at each position, time, energy and
optionally direction passed in the most recent call to setFluxEnvironment.
Bad values are returned as AE_NaN (defined in AEErrors.h). The function
ae9ap9::isnan(value) should be used to test for bad values.

Parameters:
piPercentile — percentile (1..99) flux to compute at each time, energy and position
pppdFluxData —(return) 3D array (time,energy,direction) of flux data (MeV)
Sufficient memory should be allocated by caller, as follows:
(# times passed to setFluxEnvironment * # Energy levels *
directions [1 for omni]), storage order: row major
tleldl, tleld2, tleld3, tle2dl, tle2d2, tle2d3, t2eldl...

Return values:
int — 0 success, else (see AEErrors.h)

Approved for public release; distribution is unlimited.

34

int ae9ap9app_flyinscenario_f

(double* pdEpoch,
int* piScenario,
double* pppdFluxData,
bool* pbPerturbFluxMap = NULL);

Usage: This method computes monte carlo flux at each position, time, energy and
optionally direction passed in the most recent call to setFluxEnvironment.
Monte carlo fluxes are a statistical distribution of flux based on both
measurement and temporal uncertainty. Bad values are returned as
AE_NaN (defined in AEErrors.h).

Parameters:
pdEpoch — start date/time (in Modified Julian Date) for the scenario
piScenario — monte carlo scenario number (1..999) for repeatability
pppdFluxData —(return) 3D array (time,energy,direction) of flux data (MeV)
Sufficient memory should be allocated by caller, as follows:
(# times passed to setFluxEnvironment * # Energy levels *
directions [1 for omni]), storage order: row major
tleldl, tleld2, tleld3, tle2dl, tle2d2, tle2d3, t2eldl...
pbPerturbFluxMap — if false, turns off measurement uncertainty mean
perturbation. Do Not Use. For testing purposes only.

Return values:
int — 0 success, else (see AEErrors.h)

int ae9ap9app_geterrortext f
(char* pchErrorText, int* pilength);

Usage: retrieve text associated with a returned error code

Parameters:
pchErrorText — buffer to hold error text
piLength — max length of text (buffer size)

Return values:
int — 0 success, else (see AEErrors.h)

int ae9ap9app_setmodeldatasource f
(const char* pchDataSource, int* piLength);
Usage: Set the path and file name of the hdf5 format database containing

the data of the selected model. (ie: for high energy electrons, pass

Approved for public release; distribution is unlimited.

35

“{path}/ AE9V10_runtime_tables.mat”) Call this once at startup to
initialize the model.

Parameters:

pchDataSource — path and file name of the hdf5 database
piLength — length of the path/file name string passed

Return values:

int — 0 success, else (see AEErrors.h)

int ae9ap9app_setkphineuralnetdatasource_f

(const char* pchDataSource,
int* piLength);

Usage: Set the path and file name of the hdf5 format database containing
the K/Phi space neural network used by the selected model.

(ie: pass “{path}/ fastPhi_net.mat”) Call this once at startup to initialize
the model.

Parameters:

pchDataSource — path and file name of the hdf5 neural net database
piLength — length of the path/file name string passed

Return values:

int — 0 success, else (see AEErrors.h)

int ae9ap9app_setkhminneuralnetdatasource_f

(const char* pchDataSource,
int* piLength);

Usage: Set the path and file name of the hdf5 format database containing
the K/Hmin space neural network used by the selected model.

(ie: pass “{path}/ fast_hmin_net.mat”) Call this once at startup to
initialize the model.

Parameters:

pchDataSource — path and file name of the hdf5 neural net database
piLength — length of the path/file name string passed

Return values:

int — 0 success, else (see AEErrors.h)

Approved for public release; distribution is unlimited.

36

int ae9ap9app_setmagfieldmodeldatasource f

(const char* pchDataSource,
int* piLength);

Usage: Set the path and file name of the hdf5 format database containing
the magnetic field model data used by the selected model.

(ie: pass “{path}/ igrfDB.h5”) . Call this once at startup to initialize
the model.

Parameters:

pchDataSource — path and file name of the hdf5 database
piLength — length of the path/file name string passed

Return values:

int — 0 success, else (see AEErrors.h)

void ae9ap9app_cleanup_f

Usage: Call this to ensure the underlying model gets deallocated.
Failure to do so can result in HDF5 console messages on exit.

Parameters: none

Return values: none

int ae9ap9app_getversion_f

(char* pchVersionText, int* pilength);

Usage: Call to obtain version number of Ae9Ap9 library in use

Parameters:

pchVersionText — buffer to hold version number text
piLength — size of buffer

Return values:

int — 0 success, else (see AEErrors.h)

Approved for public release; distribution is unlimited.

37

DISTRIBUTION LIST

DTIC/OCP
8725 John J. Kingman Rd, Suite 0944
Ft Belvoir, VA 22060-6218 lcy

AFRL/RVIL
Kirtland AFB, NM 87117-5776 2 cys

Official Record Copy
AFRL/RVBXR/Dr. Michale Starks lcy

Approved for public release; distribution is unlimited.

38

	AE9/AP9/SPM Model Application Programming Interface, Version 1.00.000
	Overview
	Getting Started
	Installation and Setup
	Shared Objects, DLLs and Static Libraries
	C++ API
	C API
	Fortran API
	3rd Party Dependencies

	API Reference
	C++ API
	Ae9Ap9Application
	~Ae9Ap9Application
	void setModelDataSource
	void setKHMinNeuralNetDataSource
	int flyInScenario
	const string& getErrorText
	AEOrbitPropagator
	~AEOrbitPropagator
	void setPropagatorTypeSGP4
	void setPropagatorTypeSatEph
	void setPropagatorTypeKepler
	void useSGP4ImprovedMode
	void setSGP4WGSConst72Old
	void setSGP4WGSConst72
	void setSGP4WGSConst84
	void setTLEFile
	void clearTLEFields
	void addTLE
	void setTLEs
	void setMeanElements
	void setTimes
	void setTimes
	void setOrbitType
	void setOrbitalElementEpoch
	void setUseJ2Perturbations
	void setInclination
	void setEccentricity
	void setArgOfPerigee
	void setMeanAnomalyAtEpoch
	void setMeanMotion
	void setRightAscension
	void setAltitudeOfPerigee
	void setAltitudeOfApogee
	void setLocalTimeOfApogee
	void setLocalTimeOfMaxInclination
	void setTimeOfPerigee
	void setSemimajorAxis
	void setPositionGEI
	void setVelocityGEI
	void setGeosyncLongitude
	void setMagfieldModelDB
	int computeEphemeris
	AEAggregator
	virtual ~AEAggregator
	virtual void reset
	virtual int add
	virtual void getAggregatedData
	virtual void clearAggregatedData
	int getAggregationInterval
	void setAggregationInterval

	C Language API
	int AE9AP9APP_setFluxEnvironment_c
	int AE9AP9APP_setFluxEnvironmentDir_c
	int AE9AP9APP_flyInMean_c
	int AE9AP9APP_flyInPerturbedMean_c
	int AE9AP9APP_flyInPercentile_c
	int AE9AP9APP_flyInScenario_c
	const char* AE9AP9APP_getErrorText_c
	int AE9AP9APP_setModelDataSource_c
	int AE9AP9APP_setKPhiNeuralNetDataSource_c
	int AE9AP9APP_setKHMinNeuralNetDataSource_c
	int AE9AP9APP_setMagfieldModelDataSource_c
	void AE9AP9APP_cleanup_c
	const char* AE9AP9APP_getVersion_c

	Fortran API
	int ae9ap9app_setfluxenvironment_f
	int ae9ap9app_setfluxenvironmentdir_f
	int ae9ap9app_flyinmean_f
	int ae9ap9app_flyinperturbedmean_f
	int ae9ap9app_flyinpercentile_f
	int ae9ap9app_flyinscenario_f
	int ae9ap9app_geterrortext_f
	int ae9ap9app_setmodeldatasource_f
	int ae9ap9app_setkphineuralnetdatasource_f
	int ae9ap9app_setkhminneuralnetdatasource_f
	int ae9ap9app_setmagfieldmodeldatasource_f
	void ae9ap9app_cleanup_f
	int ae9ap9app_getversion_f

	Cover.pdf
	Paul Whelan
	AIR FORCE RESEARCH LABORATORY
	Space Vehicles Directorate
	3550 Aberdeen Ave SE
	AIR FORCE MATERIEL COMMAND
	KIRTLAND AIR FORCE BASE, NM 87117-5776

