
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions,

searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments

regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington

Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection of

information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

a. REPORT

Comparing IndexedHBase and Riak for Serving Truthy:

Performance of Data Loading and Query Evaluation

14. ABSTRACT

16. SECURITY CLASSIFICATION OF:

This report summarizes our performance evaluation of IndexedHBase and Riak in their support of

the Truthy system. We used data from June 2012 to test the performance of these platforms in two

aspects: data loading and query evaluation. The total data size is 352GB. Queries tested can be

found online. For IndexedHBase, we conducted scalability tests for data loading using more nodes

on Alamo in FutureGrid (see appendix) while basic tests where done on 8 nodes of the FutureGrid

1. REPORT DATE (DD-MM-YYYY)

4. TITLE AND SUBTITLE

13. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department

of the Army position, policy or decision, unless so designated by other documentation.

12. DISTRIBUTION AVAILIBILITY STATEMENT

Approved for public release; distribution is unlimited.

UU

9. SPONSORING/MONITORING AGENCY NAME(S) AND

ADDRESS(ES)

6. AUTHORS

7. PERFORMING ORGANIZATION NAMES AND ADDRESSES

U.S. Army Research Office

 P.O. Box 12211

 Research Triangle Park, NC 27709-2211

15. SUBJECT TERMS

performance evaluation, distributed database, noSQL, HBase, indexing

Xiaoming Gao, Judy Qiu

Indiana University at Bloomington

Trustees of Indiana University

509 E 3RD ST

Bloomington, IN 47401 -3654

REPORT DOCUMENTATION PAGE

b. ABSTRACT

UU

c. THIS PAGE

UU

2. REPORT TYPE

Technical Report

17. LIMITATION OF

ABSTRACT

UU

15. NUMBER

OF PAGES

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

5c. PROGRAM ELEMENT NUMBER

5b. GRANT NUMBER

5a. CONTRACT NUMBER

W911NF-12-1-0037

Form Approved OMB NO. 0704-0188

61766-NS-DRP.32

11. SPONSOR/MONITOR'S REPORT

NUMBER(S)

10. SPONSOR/MONITOR'S ACRONYM(S)

 ARO

8. PERFORMING ORGANIZATION REPORT

NUMBER

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER

Alessandro Flammini

812-856-1830

3. DATES COVERED (From - To)

Standard Form 298 (Rev 8/98)

Prescribed by ANSI Std. Z39.18

-

Comparing IndexedHBase and Riak for Serving Truthy: Performance of Data Loading and Query Evaluation

Report Title

ABSTRACT

This report summarizes our performance evaluation of IndexedHBase and Riak in their support of

the Truthy system. We used data from June 2012 to test the performance of these platforms in two

aspects: data loading and query evaluation. The total data size is 352GB. Queries tested can be

found online. For IndexedHBase, we conducted scalability tests for data loading using more nodes

on Alamo in FutureGrid (see appendix) while basic tests where done on 8 nodes of the FutureGrid

Bravo cluster.

Comparing IndexedHBase and Riak for Serving Truthy

Performance of Data Loading and Query Evaluation

Xiaoming Gao and Judy Qiu

August 1, 2013

Digital Science Center, Indiana University

http://salsahpc.indiana.edu/

http://salsahpc.indiana.edu/

1.Introduction

This report summarizes our performance evaluation of IndexedHBase and Riak in their support of

the Truthy system. We used data from June 2012 to test the performance of these platforms in two

aspects: data loading and query evaluation. The total data size is 352GB. Queries tested can be

found online. For IndexedHBase, we conducted scalability tests for data loading using more nodes

on Alamo in FutureGrid (see appendix) while basic tests where done on 8 nodes of the FutureGrid

Bravo cluster.

Compared with Riak, IndexedHBase provides a 6 or more times faster data loading speed for

historical data. On the Bravo cluster with 8 nodes, IndexedHBase can load one month’s data in less

than 2 days (45.47 hours) and handle streaming data at a rate that is 6 times faster than the current

daily incoming data rate. Riak is better at query evaluation for queries involving short time

windows (shorter than 1 day) and small result sizes, while IndexedHBase is significantly faster for

queries with time windows at the week or month level. For queries that can be completed by only

accessing the index data, IndexedHBase can finish within seconds. For queries that need an extra

MapReduce phase, IndexedHBase can complete evaluation processes involving analysis of millions

of tweets within minutes. Adding improvements such as use of the lightweight Twister MapReduce,

IndexedHBase will be able to finish queries with smaller result sizes with comparable speed to Riak

so that it is always 1-6 times faster than Riak.

2.Methods

2.1 IndexedHBase

IndexedHBase (http://salsaproj.indiana.edu/IndexedHBase) is a research project that extends the

HBase system with dynamic inverted indices to support incremental data updating and interactive

analysis. It incorporates a high performance indexing framework that allows users to flexibly define

the most suitable customized index structures to facilitate query evaluation. This framework is

further extended with a two-phase parallel query evaluation strategy that can make the best use of

user-defined customized index structures and executes complicated queries using MapReduce.

Figure 1. System Architecture of IndexedHBase Figure 2. Parallel Data Loading and Index Building

IndexedHBase is used to support the Truthy project (http://truthy.indiana.edu/) to build a public

social data observatory as an efficient and scalable storage solution to host TB-level large-scale

structured social datasets containing both historical files and real-time streams. Furthermore, the

storage systems must provide efficient evaluation mechanisms for its unique type of query, which

could potentially involve analysis of hundreds of millions of social updates. For example, the Truthy

social data observatory hosts data from Twitter, and a query may be required to extract all the

HBase

Data tables Index tables

Customizable Indexing
Framework

Historical
Data

Loader

Streaming
Data

Loader

Parallel Query Evaluation
Strategy

Truthy Applications for
Generating Statistics and

Visualizations

Dynamic HBase deployment

Data Loading (MapReduce)

Parallel Batch Index Building (MapReduce)

Online Indexing Tests

TextDataTable

PosVecIndexTableFreqIndexTable

Index Feature Analysis Other Potential Tests

https://github.iu.edu/ovarol/NoSql_Benchmark/wiki/Queries
http://salsaproj.indiana.edu/IndexedHBase
http://truthy.indiana.edu/

retweet edges from all tweets containing common hashtags created during a given time window.

With the purpose of finding a solution for these challenges, we evaluate NoSQL databases such as

Solandra, Riak, and MongoDB, which support text search using distributed inverted indices.

However, our investigation shows that traditional inverted indices used in these systems are

designed for text retrieval purposes with unnecessary storage and computation overhead for the

use case of a social data observatory.

For IndexedHBase, we created two tables to host the original data contained in the .json.gz files,
along with a series of index tables to facilitate query evaluation. Table schemas are illustrated in

Figure 1. The user table employs a concatenation of user ID and tweet ID as the row key in order to

keep track of changes in user metadata associated with each tweet posted. One set of tables is

created for each month. This management has two benefits. First, the loading of streaming data

only changes the tables relative to the current month and does not impact tables for previous

months. Secondly, during query evaluations, the amount of index data and original data that needs

to be scanned is limited by the months covered under the time window parameter.

Figure 1. Table schemas used in IndexedHBase.

To load the Truthy dataset into these tables, we propose two separate data-loading strategies in

regards to historical data and streaming data. The historical data-loading strategy is implemented

as a MapReduce job. Each job can be launched to load one month of data, with multiple jobs running

concurrently in the system, (available resources permitting). This will create multiple mappers with,

each trying to load one .json.gz file for the corresponding month. Every mapper continues reading

the next tweet from the .json.gz file to create tweet table records, user table records, and all related

index table records based on the tweet content. Afterwards it inserts the records into

corresponding tables on the fly.

The streaming data-loading strategy is illustrated in Figure 2. To make the loading process more

efficient, we suggest running multiple loaders concurrently in the system, each responsible for a
portion of the stream. In a simple prototype implementation, all loaders are assigneda unique

loader ID and separately connected to the Twitter gardenhose stream using the Twitter streaming

API. Upon receiving a tweet, the loader decides whether to process this tweet by way of a modulus

operation of the tweet ID over the total number of loaders, then checking if the result matches its

loader ID. If the answer is yes, it will create all the related table records and insert them into the

tables.

Figure 2. Streaming data-loading strategy on IndexedHBase.

Based on the data tables and index tables, we design a two-phase parallel query evaluation strategy

on IndexedHBase, as illustrated in Figure 3. For any given query, the first phase uses multiple

threads to find the IDs of all related tweets from the index tables in relevant months. The second

phase launches a MapReduce job to process tweets in parallel and extract the necessary

information to complete the query.

Figure 3. Two-phase parallel evaluation process for an example “user-post-count” query

2.2 Riak

Our implementation on Riak is an extension of Karissa and Clayton’s previous work. Specifically, we

use different buckets to manage data in different months. Within each bucket, <key, value> pairs

are employed to directly store the tweet ID and JSON string of each tweet. Afterwards an extra

“truthy_memes” field is added which contains all the hashtags, user-mentions, and URLs in the

tweet, separated by a ‘\t’ character.

Riak search is enabled on the buckets to facilitate query evaluation. In the search schema, the

“user_id”, “truthy_memes”, “text”, “retweeted_status_id”, “user_screen_name”, and “created_at”

fields are indexed. The “created_at” field is set to “inline only”, meaning that it does not have a

separate index, but is stored together with the entries of other indices to enable inline filtering for

queries on the other fields.

To load historical data to Riak, we created one bucket for June 2012, and distributed the 30 files for

that month among all 8 nodes of the cluster. The end result of this was that each node had 3 or 4

files. Then an equal number of threads per node were created to load all the files concurrently.

Threads continue receiving the next tweet, apply preprocessing with the “created_at” field and

“truthy_memes” field and then send the tweet as an object of mime type “JSON” to the Riak server,

with the tweet ID as the key. Once the Riak server receives the object, the Riak search module will

automatically index all the fields as defined in the search schema before adding the object into the

bucket.

Riak supports MapReduce over Riak search results, which means the Truthy queries can be

implemented in a similar way to the two-phase evaluation strategy on IndexedHBase. Figure 4

shows an example query in Riak. When this query is submitted, it will first use the index on
“truthy_memes” to find related tweet objects (as specified in the “input” field), then apply the map

and reduce functions to these tweets (as defined in the “query” field) to get the final result.

Figure 4. A sample Truthy query implementation on Riak

3.Experimental Results

3.1 Historical Data Loading

Table 2 summarizes the data loading time and loaded data size on both platforms. We can see that

IndexedHBase is over 6 times faster than Riak in loading historical data, and uses significantly less

disk space for storing the data. Considering the original file size of 352GB and a replication level of

2, the storage space overhead for index data on IndexedHBase is moderate.

Table 2. Historical data loading performance comparison

 Loading time

(hours)

Loaded total

data size (GB)

Loaded original

data size (GB)

Loaded index

data size (GB)

Riak 294.11 3258 2591 667

IndexedHBase 45.47 1167 955 212

Comparative ratio of

Riak / IndexeHBase

6.47 2.79 2.71 3.15

We analyze these performance measurements below. By storing data with tables, IndexedHBase

applies a certain degree of data model normalization, and thus avoids storing some redundant data.

For example, many tweets in the original .json.gz files contain a retweeted status, and many

retweeted statuses are retweeted multiple times. This means they appear in the JSON string of

numerous tweets. In IndexedHBase, the original tweet and the retweet are stored in two separate

rows. Therefore, even if a tweet is retweeted repeatedly, only one record is kept for it in the tweet

table. In Riak, such a “popular” original tweet will be stored together with every corresponding

retweet.

Riak uses inverted indices to index the fields specified in the search schema. However, traditional

inverted indices are mainly designed for information retrieval purposes – given a query composed

of a set of keywords, they are used for finding the top-K most relevant documents. To achieve this

target, information such as frequency and position of keywords is stored in the index, and

documents are scored during query evaluation time. This is pure overhead , since queries in Truthy

do analysis about all related tweets instead of the top-K most related. This issue is avoided in

IndexedHBase by using specially customized index tables. Note that IndexedHBase compresses

table data using Gzip, which generally provides better compression ratio than Snappy used in Riak.

The difference in loaded data size explains only a part of the gap in total loading time. Two other

major reasons are:

(1) On IndexedHBase, the loaders are responsible for generating both data tables and index tables.

So when the JSON string of each tweet is loaded to the system, it is parsed only once when it is

read from the .json.gz files, upon which its content is converted to table records and inserted

into different tables. On Riak, since indexing is done by Riak servers instead of the loaders, the

JSON string of each tweet is actually parsed twice – first by the loaders for preprocessing, and

again by the Riak server for extracting indexed field values.

(2) When building inverted indices, Riak not only uses more spaces to store the frequency and

position information, but also spends more time collecting such information.

3.2 Scalable Data Loading

We also tested the scalability of historical data loading in terms of cluster size on IndexedHBase.

Since we only have 8 nodes on the Bravo cluster, this test was done on the Alamo cluster of

FutureGrid. In it we fix the data set to files for two months, May 2012 and June2012, and measure

the total loading time at different cluster sizes with 16, 24, and 32 data nodes. The results are

illustrated in Figure 5. As shown here, when the cluster size is doubled from 16 to 32 data nodes,

the total loading time drops from 142.72 hours to 93.22 hours, which implies a sub-linear

scalability. Due to concurrent access from the mappers of the historical data loading jobs to HBase

region servers, it is almost impossible to get an ideal linear scalability. Still, our results here clearly

demonstrate that we can get more system throughput and faster data loading speed by adding

more nodes to the cluster.

Figure 5. Historical data loading scalability to data size Figure 6. Results for streaming data loading test

3.3 Streaming Data Loading on IndexedHBase

The purpose of streaming data loading tests on IndexedHBase is to verify that it can provide enough

data throughput to accommodate the growing data rate coming from the Twitter streaming API. To

test the performance of IndexedHBase for handling potential data rates even faster than the current

streams, we design a simulation test using a recent .json.gz file for July 03, 2013. In this test, we

vary the number of distributed streaming loaders and test the system data loading throughput

against different number of loaders. For each amount of distributed loaders, the whole 2013-07-

03.josn.gz file is split into the same number of fragments with equal size, which are then distributed

evenly across all the nodes. One loader is started to process each fragment on the same

corresponding node. The loader reads data from the stream of the local file fragment rather than

Twitter streaming API. So this test measures how the system performs when each streaming loader

gets an extremely high incoming data rate that is equal to local disk I/O speed. For every case, we

measure the total time for the loaders to finish loading the whole file, thereby allowing us to

estimate the system’s capacity accordingly.

Figure 6 shows the total loading time when the number of distributed loaders increases by powers
of 2 from 1 to 16. Once again, concurrent access to the fixed number of region servers sees a

decrease in speed-up as the number of loaders is doubled each time. Specifically, the system

throughput is almost saturated when we have 8 distributed loaders. For the case of 8 loaders, it

takes 3.85 hours to load all 45,753,194 tweets for July 3, 2013, indicating the number of tweets that

can be processed per day on 8 nodes is about 6 times the current daily data rate. Therefore,

IndexedHBase can easily handle the streaming data load in Truthy. In the case of vastly accelerated

data rates, we can always increase the system throughput by adding more nodes.

3.4 Query evaluation

We choose one popular meme “#euro2012” within the loaded dataset, as along with a time window

whose length varies from 3 hours to 16 days. This is done to test the query evaluation performance

of Riak and IndexedHBase for handling queries involving different number of tweets and different

result sizes. The start point of the time window is fixed at 2012-06-08T00:00:00, and the end point

is correspondingly varied exponentially from 2012-06-08T02:59:59 to 2012-06-23T23:59:59. This

time period covers a major part of the 2012 UEFA European Football Championship.

The queries can be grouped into 3 categories based on the manner in which they are evaluated in

Riak and IndexedHBase:

(1) No MapReduce on either Riak or IndexedHBase.

The “meme-post-count” query falls into this category. On IndexedHBase, query evaluation can be
done by simply going through the rows in meme index tables for each meme in the query and

counting the number of qualified tweet IDs. In the case of Riak this is accomplished by issuing an

HTTP query for each meme, only fetching the “id” field of each tweet. There is no way to directly

access the index data – we have to fetch at least one field to finish the query.

Figure 7 shows the query evaluation time for “meme-post-count” on Riak and IndexedHBase. As the

time window gets longer, the query evaluation time increases for bothHowever, the absolute

evaluation time is much shorter for IndexedHBase, because Riak has to spend extra time to retrieve

the “id” field.

Figure 7. Query evaluation time for “meme-post-count” Figure 8. Query evaluation time for “timestamp-count”

(2) No MapReduce on IndexedHBase; MapReduce on Riak
“timestamp-count” falls under this category. Inferring from the schema of the meme index table,

this query can also be evaluated by only accessing the index data on IndexedHBase. Riak,

implements itwith MapReduce over Riak search results, where the MapReduce phase completes the

timestamp counting based on the content of the related tweet.

Figure 8 shows the query evaluation time for “timestamp-count” on Riak and IndexedHBase. Since

IndexedHBase does not need to analyze the content of the tweets at all, its query evaluation speed

is orders of magnitude faster than Riak.

(3) MapReduce on both Riak and IndexedHBase.
Most queries require a MapReduce phase on both Riak and IndexedHBase. Figure 9 shows the

query evaluation time for several of these. An obvious trend is that Riak is faster on queries

involving a smaller number of related tweets and a small result set, but IndexedHBase is

significantly faster on queries involving a larger number of related tweets and results. Table 3 lists

the results sizes (number of unique tweets, users, memes, edges, etc.) for these queries.

Figure 9. Query evaluation time for queries requiring MapReduce on both platforms

Table 3. Result sizes for queries tested

 get-tweets-

with-meme

user-post-

count

meme-

cooccurrence-count

mention-

edges

retweet-

edges

get-tweets-

with-text

3 hours 1287 1155 372 673 356 1547

6 hours 2539 2292 698 1367 642 3009

12 hours 9342 8476 2190 4885 2112 11707

24 hours 87596 69788 10017 31330 16884 94877

2 days 144575 106679 15414 49265 26143 154506

4 days 234643 162743 23911 80547 43012 249126

8 days 434043 262952 39522 145498 79701 458140

16 days 606062 341840 51775 207783 115788 639386

The main reason for the performance difference observed is the different manner in which the

MapReduce model is implemented on these two platforms. IndexedHBase relies on Hadoop

MapReduce, which is designed for fault tolerant parallel processing of large batches of data. It

implements the full semantics of the MapReduce computing model, and applies a kind of

heavyweight initialization process for setting up the runtime environment for MapReduce tasks on

the worker nodes (such as distributed cache). Hadoop MapReduce uses local disks on worker nodes

to save intermediate data, and does grouping and sorting of intermediated data based on their keys

before they are passed to reducers for final processing. A job can be configured to use zero or

multiple reducers.

By comparison, the MapReduce framework on Riak is more lightweight, designed for use cases

where users can just write some simple query logics with JavaScript and get them running on the

data nodes quickly without a complicated initialization process. There is always a single reducer

running for each MapReduce job. Intermediate data is not saved on local disks of the worker nodes,

but transmitted directly from mappers to the reducer. The format of intermediate data in Riak

MapReduce is a list of values instead of list <key, value> pairs, so no sorting or grouping is done

with the intermediate data. The whole chunk is passed to the reducer directly through the memory

stack, so the reducer will crash for large intermediate data sizes. Furthermore, the default timeout

of reducer is set to 5 seconds, which also demonstrates the lightweight use cases for which Riak

MapReduce is designed. We actually had to change this parameter in the source codes and

recompile Riak to get some of the above queries working.

Since most of queries in Truthy use time windows at the level of weeks or months, IndexedHBase is

more suitable for the queries above. Further we can use a lighter MapReduce such as our own

Twister with HBase.

Riak is especially fast for queries with small result sets, such as get-tweets-with-user and get-

retweets, as illustrated in Figure 10 and 11. Specifically, for cases where “get-retweets” returns no

results, a naïve implementation on IndexedHBase still runs for ~15 seconds, which gives an

estimate of the pure job initialization overhead of Hadoop MapReduce. In order to improve the

performance of IndexedHBase for such queries, we modified the query implementations, so that for

smaller number of results (less than 30,000), the query client will try to retrieve the tweets

sequentially. After this improvement, IndexedHBase can achieve query evaluation speed at the

same level as Riak for queries with smaller result sizes.

Figure 10. Query evaluation time for “get-tweets-with-

userid”

Figure 11. Query evaluation time for “get-retweets”

3.4 Changing Index Schemas for Faster Evaluation

One advantage of IndexedHBase is that it can accept dynamic changes to the index structures to

achieve more efficient query evaluation. After the index structures are changed, we can use an

efficient MapReduce algorithm to rebuild the changed index table based on the existing data tables,

without reloading the whole data set. To verify this, we extended the meme index table to also

include user IDs of tweets in the cell values, as illustrated in Figure 12. Using this new index

structure, IndexedHBase is able to evaluate the “user-post-count” query by only accessing index

data, which could be dramatically faster than the current implementation.

Figure 12. Extended meme index table schema

We tested this schema change on the tables for the 2012-06 dataset. The time taken for rebuilding

the meme index table was 3.89 hours. The table size increased from 14.23GB to 18.13GB, which is

27.4% larger. Figure 13 illustrated the query evaluation time comparison. In cases where the “user-

post-count” query is frequently used, the query evaluation speed improvement is definitely worthy

the storage overhead.

Figure 13. Query evaluation time comparison with modified meme index table schema

Appendix

Each node’s configuration is listed in Table 4. For IndexedHBase, one node is used to host the HDFS

headnode, Hadoop jobtracker, Zookeeper, and HBase master. The other seven nodes are used to

host HDFS datanodes, Hadoop tasktrackers, and HBase region servers. For Riak, all eight nodes are

used to construct a Riak ring. The data replication level is set to 2 on both platforms. IndexedHBase

table data is compressed using Gzip, while Riak uses LevelDB as the storage backend and data is

compressed with Snappy.

Table 4. Per-node configuration used in the testing environment

CPU RAM Hard Disk Network

8 * 2.40GHz 192MB 2TB 40Gb InfiniBand

Acknowledgement

We would like to thank Evan Roth for his help on performance evaluation and the Truthy group for their continued

assistance.

