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Abstract—In this paper, we propose a novel method for
characteristic patterns discovery in time series. This method,
called SAX-VSM, is based on two existing techniques - Symbolic
Aggregate approXimation and Vector Space Model. SAX-VSM is
capable to automatically discover and rank time series patterns
by their importance to the class, which not only creates well-
performing classifiers and facilitates clustering, but also provides
an interpretable class generalization. The accuracy of themethod,
as shown through experimental evaluation, is at the level ofthe
current state of the art. While being relatively computationally
expensive within a learning phase, our method provides fast,
precise, and interpretable classification.

I. I NTRODUCTION

Time series classification is an increasingly popular area
of research providing solutions to the wide range of fields
including data mining, image and motion recognition, signal
processing, environmental sciences, health care, and chemo-
metrics. Within last decades, many time series representa-
tions, similarity measures, and classification algorithmswere
proposed following the rapid progress in data collection and
storage technologies [1]. Nevertheless, to date, the best over-
all performing classifier in the field is a nearest-neighbor
algorithm (1NN), that can be easily tuned for a particular
problem by the choice of a distance measure, an approximation
technique, or smoothing [4]. As pointed by dozens of papers,a
simple “lazy” nearest neighbor classifier is accurate and robust,
depends on a very few parameters and requires no training [1],
[3], [4], [13]. However, while possessing these qualities,1NN
technique has a number of significant disadvantages, where
the major shortcoming is that it does not offer any insight
into the classification results. Another limitation is its need
for a significantly large training set, that represents a class
variance, in order to achieve a good accuracy. Finally, while
having trivial initialization, 1NN classification is computation-
ally expensive. Thus, the demand for a simple, efficient, and
interpretable classification technique capable of processing of
large data collections remains.

In this work, we address outlined above limitation by
proposing an alternative to 1NN algorithm that provides a
superior interpretability, learns efficiently from a smalltraining
set, and has a low computational complexity in classification.

The paper is structured as follows. Section II provides
background into the existing algorithms and discusses rele-
vant work. Section III, provides background for a proposed
algorithm. In Section IV, we describe our algorithm, and in
Section V, we evaluate its performance. Finally, we form our
conclusions and discuss future work in Section VII.

II. PRIOR AND RELATED WORK

Almost all of the existing techniques for time series clas-
sification can be divided in two major categories [2]. The
first category of classification techniques is based on shape-
based similarity metrics - where distance is measured directly
between time series points. Classical example of methods
from this category is a nearest neighbor classifier built upon
Euclidean distance [5] or SpADe [6]. The second category con-
sists of classification techniques based on structural similarity
metrics which employ some high-level representations of time
series based on their global or local features. Examples from
this category include classifier based on Discrete Fourier Trans-
form [7] and a classifier based on Bag-Of-Patterns representa-
tion (BOP) [8]. The development of these distinct categories
can be explained by differences in their performance: while
shape-based similarity methods virtually unbeatable on short,
often pre-processed time series data [3], they usually failon
long and noisy data sets [9], where structure-based solutions
demonstrate a superior performance.

As possible alternatives to these two categories, two relevant
to our work techniques, were recently proposed. The first
technique is the time series shapelets algorithm, that was
introduced in [10] and is featuring a superior interpretability
and a compactness of delivered solution. A shapelet is a short
time series “snippet”, that is a representative of class member-
ship and is used for a decision tree construction facilitating
class identification and interpretability [11]. In order tofind a
branching shapelet, the algorithm exhaustively searches for a
best discriminatory shapelet on data split via an information
gain measure. The algorithm’s classification is built upon the
similarity measure between a branching shapelet and a full
time series, defined as a distance between the shapelet and a
closest subsequence in the series when measured by the nor-



malized Euclidean distance. This technique, potentially,com-
bines the superior precision of shape-based exact similarity
methods, and the high-throughput classification capacity and
efficiency of feature-based approximate techniques. However,
while demonstrating a superior interpretability, robustness,
and similar to kNN algorithms performance, shapelets-based
algorithms are computationally expensive (O(n2m3), where
n is a number of objects andm is the length of a longest
time series), which makes difficult its adoption for many-
class classification problems [12]. While a better solutionwas
recently proposed (O(nm2)), it is an approximate algorithm,
that is based on iSAX approximation and indexing [18].

The second relevant to our work approach is the 1NN
classifier built upon the Bag-Of-Patterns (BOP) representation
of time-series [8]. BOP representation of a time series is
equated to IR “bag of words” concept, and is obtained by
extraction, symbolic approximation with SAX, and counting
of occurrence frequencies of short overlapping subsequences
(patterns) along the time series. By applying this procedure
to a training set, algorithm converts the data into the vector
space, where each of the original time series is representedby
a pattern (a SAX word) occurrence frequency vector. These
vectors are classified with 1NN classifier built upon Euclidean
distance, or Cosine similarity on raw frequencies or with
tf∗idf ranking. It was shown by the authors, that BOP has
several advantages: it has a linear complexity (O(nm)), it
is rotation-invariant and considers local and global structures
simultaneously, and it provides an insight into patterns distribu-
tion through frequency histograms. Through an experimental
evaluation the authors concluded, that the best classification
accuracy of BOP-represented time series is achieved by using
1NN classifier based on Euclidean distance between frequency
vectors.

Our proposed algorithm has similarities with aforemen-
tioned techniques. Similarly to shapelet-based approach,it
finds time series subsequences which are characteristic repre-
sentatives of a whole class, thus enabling superior interpretabil-
ity. However, instead of recursive search for discriminating
shapelets, our algorithm ranks by importance all potential
candidate subsequencesat oncewith a linear computational
complexity of O(nm). To achieve this, similarly to BOP,
SAX-VSM converts all of the training time series into the
vector space and computes tf∗idf ranking. But instead of
building of n bags (for each of the training time series), our
algorithm builds asingle bag of words for each of classes, that
effectively provides a compact solution ofN weight vectors
(N is the number of classes,N << n), and a fast classification
time of O(m).

As we shall show, these distinct features: the generalization
of the class’ patterns with a single bag and tf∗idf ranking,
allow SAX-VSM to achieve high accuracy, and tolerate noise
in data.

III. B ACKGROUND

SAX-VSM is based on two well-known techniques. The first
technique is Symbolic Aggregate approXimation [14], which

is a high-level symbolic representation of time series data. The
second technique is a well known in Information Retrieval
(IR) Vector Space Model [15]. By utilizing a sliding window
subsequence extraction and SAX, our algorithm transforms
labeled time series into collections of SAX words (terms).
At the following step, it utilizestf∗idf terms weighting for
a classifier construction. The SAX-VSM classification relies
on cosine similarity metric.

SAX algorithm, however, requires two parameters to be
provided as an input, and as per today, there is no efficient
solution for parameters selection known to the best of our
knowledge. To solve this problem, we employ a global opti-
mization scheme based on the divided rectangles (DIRECT)
algorithm that does not require any parameters [16]. DIRECT
is a derivative-free optimization process that possesses local
and global optimization properties. It converges relatively
quickly and yields a deterministic, optimized solution.

A. Symbolic Aggregate approXimation (SAX)

Symbolic representation of time series, once introduced
[14], has attracted much attention by enabling an application
of numerous string-processing algorithms, bioinformatics, and
text mining tools to temporal data. The method provides a
significant reduction of the time series dimensionality anda
low-bounding to Euclidean distance metric, which guarantees
no false dismissal [17]. These properties are often leveraged
by other techniques, which embed SAX representation in
their algorithms for indexing and approximation. For exam-
ple, adoption of SAX indexing allowed significant shapelets
discovery speed improvement in Fast-Shapelets [18] (but made
the algorithm approximate).

Configured by two parameters - a desired word sizew and
an alphabet sizeA, SAX produces a symbolic approximation
of a time-seriesT of a lengthn by compressing it into a string
of the lengthw (usuallyw << n), whose letters are taken from
the alphabetα (|α| = A). At the first step of the algorithm,T
is z-normalized (to unit of standard deviation) [19]. At the
second step, a dimensionality of the normalized time series
is reduced fromn to w by obtaining its Piecewise Aggregate
Approximation (PAA) [20]; for this, the normalized time series
is divided intow equal-sized segments and mean values for
points within each segment are computed. The aggregated
sequence of these mean values forms PAA approximation ofT .
Finally, each ofw PAA coefficients is converted into a letter
of an alphabetα by the use of the lookup table. This table
is pre-built by defining a set of breakpoints that divide the
normalized time series distribution space intoα equiprobable
regions. The design of these tables rests on the assumption
that normalized series tend to have Gaussian distribution [21].

B. Bag of words representation of time series

Following its introduction, SAX was shown to be an
efficient tool for solving problems of finding motifs and
discords in time series [17], [22]. The authors employed a
sliding window-based subsequence extraction technique and
augmented data structures (hash table in [22] and trie in



[17]) in order to build SAX words “vocabularies”. Further,
by analyzing words frequencies and locations, they were able
to capture frequent and rare SAX words representing motifs
and discords subsequences. Later, the same technique based
on the combination of sliding window and SAX was used in
the numerous works, most notably in time series classification
using bag of patterns [8].

We also use this sliding window technique to convert a time
seriesT of a lengthn into the set ofm SAX words, where
m = (n − ls) + 1 and ls is the sliding window length. By
sliding a window of lengthls across time seriesT , extracting
subsequences, converting them to SAX words, and placing
these words into an unordered collection, we obtain thebag
of wordsrepresentation of the original time seriesT .

C. Vector Space Model (VSM) adaptation

We use Vector space model exactly as it is known in
information retrieval (IR) [15]. Similarly to IR, we define and
use termsdocument, bag of words, corpus, andsparse matrix
in our workflow. Note however, that we use termsbag of words
and documentfor abbreviation of an unordered collection of
SAX words interchangeably, while in IR these usually bear
different meaning, where adocumentusually presumes certain
words ordering (semantics). Although, similar definitions, such
asbag of featuresor bag of patterns, were previously proposed
for techniques built upon SAX [8], we usebag of wordssince
it reflects our workflow precisely. The termcorpusis used for
a structured collection of bags of words.

Given a training set, SAX-VSM builds bags of SAX-
generated words representing each of the training classes and
assembles them into a corpus. This corpus, by its construc-
tion, is a sparseterm frequency matrix. Rows of this matrix
correspond to the set of all SAX words found inall classes,
while each column of the matrix denotes a class of the training
set. Each element of this matrix is an observed frequency of
a word in a class. Many elements of this matrix are zeros -
because words extracted from one class are often not found
in others (Figure 4). By its design, this sparse term frequency
matrix is a dictionary of all SAX words extracted from all
time series of a training set, which accounts for frequencies
of each word in each of the training classes.

Following to the common in IR workflow, we employ the
tf∗idf weighting scheme for each element of this matrix in
order to transform a frequency value into the weight coefficient.
The tf∗idf weight for a term is defined as a product of two
factors: term frequency (tf ) and inverse document frequency
(idf ). For the first factor, we use logarithmically scaled term
frequency [23]:

tft,d =

{

log(1 + ft,d), if f t,d > 0

0, otherwise
(1)

where t is the term,d is a bag of words (adocument), and
ft,d is a frequency of the term in a bag.

The inverse document frequency we compute as usual:

idft,D = log
10

|D|

|d ∈ D : t ∈ d|
= log

10

N

dft
(2)
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Fig. 1. An overview of SAX-VSM algorithm: at first, labeled time series
are converted into bags of words using SAX; secondly,tf∗idf statistics
is computed resulting in a single weight vector per trainingclass. For
classification, an unlabeled time series is converted into aterm frequency
vector and assigned a label of a weight vector which yields a maximal cosine
similarity value. This isltc.nnn weighting schema in SMART notation [23].

whereN is the cardinality of corpusD (the total number of
classes) and the denominator dft is a number of documents
where the termt appears.

Then,tf∗idf value for a termt in the documentd of a corpus
D is defined as

tf * idf (t, d,D) = tft,d × idft,D = log(1 + ft,d)× log
10

N

dft
(3)

for the all cases where ft,d > 0 and dft > 0, or zero otherwise.
Once all terms of a corpus are weighted, the columns of
a sparse matrix are used asclass term weights vectorsthat
facilitate the classification using cosine similarity.

Cosine similarity measure between two vectors is based on
their inner product. For two vectorsa andb that is:

similarity(a, b) = cos(θ) =
a · b

||a|| · ||b||
(4)

IV. SAX-VSM CLASSIFICATION ALGORITHM

As many other classification techniques, SAX-VSM con-
sists of two parts - the training phase, and the classification
procedure.

A. Training phase

At first, algorithm transforms all labeled time series into
symbolic representation. For this, it converts time seriesinto
SAX representation configured by four parameters: the sliding
window length (W), the number of PAA frames per win-
dow (P), the SAX alphabet size (A), and by the numerosity
reduction strategy (S) (the choice of these parameters we
shall discuss later). Each of the subsequences, extracted with
overlapping sliding window, is normalized to unit standard
deviation before being processed with PAA [19]. If, however,
the standard deviation value falls below a fixed threshold, the
normalization procedure is not applied in order to avoid a
possible over-amplification of a background noise.

By applying this conversion procedure to all time series
from N training classes, algorithm builds a corpus ofN bags,
to which, in turn, it appliestf∗idf ranking. These steps result
in N real-valued weight vectors of equal length representing
N training classes.

As shown, because of the need to scan the whole training set,
training of SAX-VSM classifier is computationally expensive



(O(nm)). However, there is no need to maintain an index of
training series, or to keep any of them in the memory at a
runtime: the algorithm simply iterates over all training time
series incrementally building a single bag of SAX words for
each of training classes. Once built and processed withtf∗idf,
corpus is also discarded - only a resulting set ofN real-valued
weight vectors is retained for classification.

B. Classification phase

In order to classify an unlabeled time-series, SAX-VSM
transforms it into the terms frequency vector using exactly
the same sliding window technique and SAX parameters that
were used within the training phase. Then, it computes cosine
similarity values between this terms frequency vector andN

tf∗idf weight vectors representing the training classes. The
unlabeled time series is assigned to the class whose vector
yields the maximal cosine similarity value.

C. Sliding window size and SAX parameters selection

At this point of SAX-VSM classification algorithm develop-
ment, it requires a sliding window size and SAX parameters
to be specified upfront. Currently, in order to select optimal
parameters values while knowing only a training data set,
we use a common cross-validation scheme and DIRECT
(DIviding RECTangles) algorithm, which was introduced in
[26]. DIRECT optimization algorithm is designed to search
for global minima of a real valued function over a bound
constrained domain, thus, we use the rounding of a reported
solution values to the nearest integer.

DIRECT algorithm iteratively performs two procedures -
partitioning the search domain, and identifying potentially
optimal hyper-rectangles (i.e., having potential to contain good
solutions). It begins by scaling the search domain to a n-
dimensional unit hypercube which is considered as potentially
optimal. The error function is then evaluated at the center
of this hypercube. Next, other points are created at one-third
of the distance from the center in all coordinate directions.
The hypercube is then divided into smaller rectangles that are
identified by their center point and their error function value.
This procedure continues interactively until error function
converges. For brevity, we omit the detailed explanation ofthe
algorithm, and refer the interested reader to [16] for additional
details. Figure 2 illustrates the application of DIRECT to
SyntheticControldata set problem.

D. Intuition behind SAX-VSM

First of all, by combiningall SAX words extracted from
all time series of single class into asingle bag of words,
SAX-VSM manages not only to capture observed intraclass
variability, but to efficiently “generalize” it through smoothing
with PAA and SAX.

Secondly, by partially discarding the original ordering of
time series subsequences and through subsequence normal-
ization, SAX-VSM is capable to capture, and to recognize
characteristic subsequences in distorted by rotation or shift
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Fig. 2. Parameters optimization with DIRECT forSyntheticControldata
set (6 classes). Left panel shows all points sampled by DIRECT in the space
PAA∗Window∗Alphabet where red points correspond to high error values
in cross-validation experiments, while green points indicate low error values.
Note the green points concentration atW=42. Middle panel shows an error-
rate heat map when the sliding window size is fixed to 42; this figure was
obtained by a complete scan of all 432 points of the slice. Right panel shows
the optimized by DIRECT sampling. The optimal solution (W=42,P=8,A=4)
was found by sampling of 43 points.

time series, as well, as to recover a signal from partially
corrupted or altered by noise.

Thirdly, the tf∗idf statistics naturally “highlights” terms
unique to a class by assigning them higher weights, while
terms observed in multiple classes are assigned weights in-
versely proportional to their interclass presence frequency.
This weighting scheme improves the selectivity of classifi-
cation by lowering a contribution of “confusive” multi-class
terms while increasing a contribution of class’ “defining”
terms to a final similarity value.

When combined, these features make SAX-VSM time series
classification approach unique. Ultimately, algorithm compares
a set of subsequences extracted from an unlabeled time series
with a weighted set of all characteristic subsequences rep-
resenting a whole of a training class. Thus, unknown time
series is classified by its similarity not to a given number
of “neighbors” (as in kNN or BOP classifiers), or to a
pre-fixed number of characteristic features (as in shapelets-
based classifiers), but by its combined similarity to all known
discriminative subsequences found in a whole class during
training.

This, as we shall show, contributes to the excellent classi-
fication performance on temporal data sets where time series
have a very low intraclass similarity at the full length, but
embed characteristic to the class subsequences.

V. RESULTS

We have proposed a novel algorithm for time series classifi-
cation based on SAX approximation of time series and Vector
Space Model called SAX-VSM. Here, we present a range
of experiments assessing its performance in classification
and clustering and show its ability to provide insight into
classification results.

A. Analysis of the classification accuracy

To evaluate our approach, we selected thirty three data
sets. Majority of the data sets was taken from the UCR time
series repository [27], the Ford data set was downloaded from
IEEE World Congress on Computational Intelligence website
[28], the ElectricDevices data set was downloaded from sup-
porting website for [12]. Overall, SAX-VSM classification



Table I
Classifiers error rates comparison.

Data set
Nb. of
classes

1NN-
Euclidean

1NN-
DTW

Fast
Shapelet
Tree

Bag
Of

Patterns

SAX-
VSM

Adiac 37 0.389 0.396 0.515 0.432 0.381
Beef 5 0.467 0.467 0.447 0.400 0.033
CBF 3 0.148 0.003 0.053 0.013 0.002
Coffee 2 0.250 0.180 0.067 0.036 0.0
ECG200 2 0.120 0.230 0.227 0.140 0.140
FaceAll 14 0.286 0.192 0.402 0.219 0.207
FaceFour 4 0.216 0.170 0.089 0.011 0.0
Fish 7 0.217 0.167 0.197 0.074 0.017
Gun-Point 2 0.087 0.093 0.060 0.002 0.007
Lightning2 2 0.246 0.131 0.295 0.164 0.196
Lightning7 7 0.425 0.274 0.403 0.466 0.301
Olive Oil 4 0.133 0.133 0.213 0.133 0.100
OSU Leaf 6 0.483 0.409 0.359 0.236 0.107
Syn.Control 6 0.120 0.007 0.081 0.037 0.010
Swed.Leaf 15 0.213 0.210 0.270 0.198 0.251
Trace 4 0.240 0.0 0.002 0.0 0.0
Two patterns 4 0.090 0.0 0.113 0.129 0.004
Wafer 2 0.005 0.020 0.004 0.003 0.0006
Yoga 2 0.170 0.164 0.249 0.170 0.164

performance was found to be at the level of 1NN classifiers
based on Euclidean distance, DTW, or BOP, and a shapelet-
tree. This result is not surprising taking in account “No Free
Lunch theorems” [29], which assert, that there will not be a
single dominant classifier for all TSC problems.

Table I compares the performance of SAX-VSM and
four competing classifiers: two state-of-the-art 1NN classifiers
based on Euclidean distance and DTW, the classifier based on
the recently proposed Fast-Shapelets technique [18], and the
classifier based on BOP [8]. We selected these particular tech-
niques in order to position SAX-VSM in terms of accuracy and
interpretability. The presented comparison data sets selection
is limited to the number of previously published or provided
by the authors benchmark results for all of four competing
classifiers. The performance of SAX-VSM for the rest of
the data setswill be made online along with our reference
implementation if accepted.

In our evaluation, we followed train/test split of the data
(exactly as provided by UCR or other sources). We exclusively
used train data in cross-validation experiments for selection
of SAX parameters and numerosity reduction strategy using
our DIRECT implementation. Once selected, the optimal set
of parameters was used to assess SAX-VSM classification
accuracy which is reported in the last column of the Table
I.

B. Scalability analysis

For synthetic data sets, it is possible to create as many
instances as one needs for experimentation. We used CBF [30]
in order to investigate and compare the performance of SAX-
VSM and 1NN Euclidean classifier on increasingly large data
sets.

In one series of experiments, we varied a training size from
ten to one thousand, while test data set size remained fixed
to ten thousands instances. For small training data sets, SAX-
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Fig. 3. Comparison of classification precision and run time of SAX-VSM
and 1NN Euclidean classifier on CBF data. SAX-VSM performs significantly
better with limited amount of training samples (left panel). While SAX-VSM
is faster in time series classification, its performance is comparable to 1NN
Euclidean classifier when training time is accounted for (right panel).

VSM was found to be significantly more accurate than 1NN
Euclidean classifier. However, by the time we had more than
500 time series in our training set, there was no statistically
significant difference in accuracy (Fig. 3, left). As per the
running time cost, due to the comprehensive training, SAX-
VSM was found to be more expensive than 1NN Euclidean
classifier on small training sets, but outperformed 1NN on
large training sets. However, SAX-VSM allows to perform
training offline and loadtf∗idf weight vectors when needed. If
this option can be utilized, our method performs classification
significantly faster than 1NN Euclidean classifier (Fig. 3,
right).

In another series of experiments we investigated the scala-
bility of our algorithm with unrealistic training set sizes- up to
one million of instances of each of CBF classes. As expected,
with the grows of a training set size, the curve for a total
number of distinct SAX words and curves for dictionary sizes
of each of CBF classes reflected a significant saturation (Fig.
4, left). For the largest of training sets - one million instances
of each class - the size of the dictionary peaked at 67’324 of
distinct words (which is less than 10% of all possible words
of length 7 from an alphabet of 7 letters), and the longest
tf∗idf vector accounted for 23’569 values (Fig. 4, right). In
our opinion, this result reflects two specificities: the firstis
that the diversity of words which are possible to encounter in
CBF dataset is quite limited by its classes configuration and
by our choice of SAX parameters (smoothing). The second
specificity is that IDF (Inverse Document Frequency, Equation
2) efficiently limits the growth of dictionaries by eliminating
those words, which are observed in all of them.
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panel).SAX-VSM Optcurves correspond to results obtained with “optimized”
for each case SAX parameters (we re-trained a classifier).

C. Robustness to noise

In our experimentation with many data sets, we observed,
that the growth of a dimensionality oftf∗idf weight vectors
continuously follows the growth of a training set size, which
indicates that SAX-VSM is actively learning from class vari-
ability. This observation, and the fact that a weight of each
of the overlapping SAX words is contributing only a small
fraction to a final similarity value, prompted an idea that
SAX-VSM classifier might be robust to the noise and to the
partial loss of a signal in test time series. Intuitively, insuch
a case, the cosine similarity between high dimensional weight
vectors might not degrade significantly enough to cause a
misclassification.

While we plan to perform more exploration, current exper-
imentation with CBF data set revealed promising results. In
one series of experiments, by fixing a training set size to two
hundred fifty time series, we varied the standard deviation
of Gaussian noise in CBF model (whose default value is
about 17% of a signal level). We found, that SAX-VSM
increasingly outperformed 1NN Euclidean classifier with the
growth of a noise level (Fig.5 Left). Further improvement
of SAX-VSM performance was achieved by fine tuning of
smoothing - through a gradual increase of the size of SAX
sliding window proportionally to the growth of a noise level
(Fig.5 Left, SAX-VSM Optcurve).

In another series of experiments, we randomly replaced up
to fifty percent of a span of an unlabeled time series with a
random noise. Again, SAX-VSM performed consistently better
than 1NN Euclidean classifier regardless of a training set size,
which we varied from five to one thousand. TheSAX-VSM
Opt curve at Fig.5 (Right) depicts the case with fifty training
series when the sliding window size was decreased inversely
proportionally to the growth of a signal loss.

D. Interpretable classification

While the classification performance results in previous sec-
tions show that SAX-VSM classifier has a very good potential,
its major strength is in the level of allowed interpretability of
classification results.

Previously, in original shapelets work [10], [11], it was
shown that the resulting decision trees provide interpretable
classification and offer an insight into the data specific features.
In successive work based on shapelets [12], it was shown
that the discovery of multiple shapelets provides even better
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Fig. 6. An example of the heatmap-like visualization of subsequence
“importance” to a class identification. Here, for three CBF time series from
a training set, a color value of each point was obtained by combining tf∗idf
weights of all patterns which cover the point. If a pattern was found in a SAX-
VSM-built dictionary corresponding to the time-series class, we added its
weight, if, however, a pattern was found in another dictionary - we subtracted
its weight. Highlighted by the visualization features corresponding to a sudden
rise, plateau, and a sudden drop in Cylinder; increasing trend in Bell; and to
a sudden rise followed by a gradual drop in Funnel, align exactly with the
design of these classes [30].

resolution and intuition into the interpretability of classifica-
tion. However, as the authors noted, a time cost of multiple
shapelets discovery in many class problems could be very sig-
nificant. Contrary, SAX-VSM extracts and weights all patterns
at once, without any added cost. Thus, it could be the only
choice for interpretable classification in many class problems.

1) Heatmap-like visualization:Since SAX-VSM builds
tf∗idf weight vectors using all subsequences extracted from
a training set, it is possible to find out the weight of any
arbitrary selected subsequence. This feature enables a novel
visualization technique that can be used to gain an immediate
insight into the layout of “important” class-characterizing
subsequences as shown at Figure 6.

2) Gun Point data set:Following previously mentioned
shapelet-based work [10], [12], we used a well-studiedGun-
Point data set [31] to explore the interpretability of classifi-
cation results. This data set contains two classes: time-series
in Gun class correspond to the actors’ hands motion when
drawing a replicate gun from a hip-mounted holster, pointing
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Fig. 7. Best characteristic subsequences (right panels, bold lines) discovered
by SAX-VSM in Gun/Point data set. Left panel shows actor’s stills and
time series annotations made by an expert, right panels showlocations of
characteristic subsequences. Note, that while the upward arm motion found to
be more “important” inGun class (gun retrieval and aiming), the downward
arm motion better characterizesPoint class (an “overshoot” phenomena in
propless arm return). This result aligns with previous work[10] and [12].
(Stills and annotation used with a permission from E. Keogh)



it at a target for a second, and returning the gun to the
holster; time-series inPoint class correspond to the actors
hands motion when pretending of drawing a gun - the actors
point their index fingers to a target for about a second, and
then return their hands to their sides.

Similarly to previously reported results [10], [12], SAX-
VSM was able to capture all distinguishing features as shown
at the Figure 7. The most weighted by SAX-VSM patterns
in Gun class corresponds to fine extra movements required
to lift and aim the prop. The most weighted SAX pattern in
Point class corresponds to the “overshoot” phenomena which
is causing the dip in the time series. Also, similarly to the
original work [31], SAX-VSM highlighted as second to the
best patterns inPoint class the lack of distinguishing subtle
extra movements required for lifting a hand above a holster
and reaching down for the gun.

3) OSU Leaf data set:According to the original data source,
Ashid Grandhi [32], with the current growth of digitized
data, there is a huge demand for automatic management and
retrieval of various images. TheOSULeafdata set consist of
curves obtained by color image segmentation and boundary
extraction (in the anti-clockwise direction) from digitized
leaf images of six classes:Acer Circinatum, Acer Glabrum,
Acer Macrophyllum, Acer Negundo, Quercus Garryana and
Quercus Kelloggii. The authors were able to solve the problem
of leaf boundary curves classification by use of DTW, achiev-
ing 61% of classification accuracy. However, as we pointed
above, DTW provided a very little information about why it
succeeded of failed.

In contrast, SAX-VSM application yielded a set of class-
specific characteristic patterns for each of six leaves classes
from OSULeafdata set. These characteristic patterns closely
match known techniques of leaves classification based on leaf
shape and margin [33]. Highlighted by SAX-CSM features
include the slightly lobed shape and acute tips of Acer
Circinatum leaves, serrated blade of Acer Glabrum leaves, the
acuminate tip and characteristic serration of in Acer Macro-
phyllum leaves, pinnately compound leaves arrangement of
Acer Negundo, the incised leaf margin of Quercus Kelloggii,
and a lobed leaf structure of Quercus Garryana. Figure 8
shows a subset of these characteristic patterns and original
leaf images with highlighted corresponding features.

4) Coffee data set:Another illustration of interpretable
classification with SAX-VSM is based on the analysis of its
performance on Coffee dataset [34]. The curves in this dataset
correspond to spectra obtained with diffuse reflection infrared
Fourier transform (DRIFT) and truncated to 286 data points
in the region 800-1900 cm−1. The two top-ranked by SAX-
VSM subsequences in both datasets correpond to spectrogram
intervals of Chlorogenic acid (best) and Caffeine (second
to best). These two chemical compounds are known to be
responsible for the flavor differences in Arabica and Robusta
coffees; moreover, these spectrogram intervals were reported
as discriminative when used in PCA-based technique by the
authors of the original work [34].

Acer GlabrumAcer Circunatum Quercus Garryana

Fig. 8. Best characteristic subsequences (top panels, boldlines) discovered
by SAX-VSM in OSULeaf data set. These patterns align with well known
in botany discrimination techniques by lobe shapes, serrations, and leaf tip
types [33].
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Second to best class-characteristic subsequences - Caffeine Arabica
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Fig. 9. Best characteristic subsequences (left panels, bold lines) discovered
by SAX-VSM in Coffee data set. Right panels show zoom-in viewon these
subsequences in Arabica and Robusta spectrograms. These discriminative
subsequences correspond to chlorogenic acid (best subsequence) and to
caffeine (second to best) regions of spectra. This result aligns with the original
work based on PCA [34] exactly.

VI. CLUSTERING

Clustering is a common tool used for data partitioning, visu-
alization, exploration, and serves as an important subroutine in
many data mining algorithms. Typically, clustering algorithms
are built upon a distance function, and the overall performance
of an algorithm is highly dependent on a performance of
the chosen function. Thus, an experimental evaluation of
the proposed technique in clustering provides an additional
perspective on its performance and applicability beyond the
classification.

A. Hierarchical clustering

Probably, one of the most used clustering algorithms is
hierarchical clustering which requires no parameters to be
specified [35]. It computes pairwise distances between all
objects and produces a nested hierarchy of clusters offering
a great data visualization power.

Previously, it was shown that the bag-of-patterns time
series representation and Euclidean distance provide a superior
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clustering performance [8]. For comparison, we performed
similar experiments which differ in time series representation
and distance metric - we relied ontf∗idf weight vectors and
cosine similarity. Affirming the previous work, we found, that
the combination of SAX and Vector space model outperforms
classical shape-based distance metrics. For example, figure
10 depicts the result of hierarchical clustering of a subsetof
SyntheticControldata. As one can see, SAX-VSM is superior
in clustering performance to Euclidean and DTW distance
metrics in this particular setup - it produced a hierarchy which
properly partitions the data set into three branches.

B. k-Means clustering

Another popular choice for data partitioning is k-Means
clustering algorithm [36]. The basic intuition behind this
algorithm is that through the iterative reassignment of objects
into different clusters the intra-cluster distance is minimized.
As was shown, k-Means algorithm scales much better than
hierarchical partitioning techniques [37]. Fortunately,this clus-
tering technique is well studied in IR field. Previously, in
[38], the authors extensively examined seven different criterion
functions for partitional document clustering and found, that
k-prototypes partitioning with cosine dissimilarity delivers an
excellent performance.

Following this work, we implemented a similar to [39]
spherical k-means algorithmand found, that algorithm con-
verges quickly and delivers a satisfactory partitioning onshort
synthetic data sets. Further, we evaluated our technique onthe
long time series from PhysioNet archive [40]. We extracted
two hundred fifty series corresponding to five vital signals:
two ECG leads (aVR and II), and RESP, PLETH, and CO2
waves, trimming them to 2’048 points. Similarly to [8], we
run a reference k-Means algorithm implementation based on
Euclidean distance, which achieved the maximum clustering
quality of 0.39, when measured as proposed in [41] on the
best clustering (the one with the smallest objective function
in 10 runs). SAX-VSM spherical k-Means implementation
outperformed the reference technique yielding clusters with
the quality of 0.67 (on 10 runs with SAX parameters set to
W=33,P=8, A=6).

VII. C ONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel interpretable
technique for time series classification based on characteristic
patterns discovery. We have shown, that our approach is
competitive with, or superior to, other techniques on a variety
of classic data mining problems. In addition, we described
several advantages of SAX-VSM over existing structure-based
similarity measures, emphasizing its capacity to discoverand
rank short subsequences by their class characterization power.

The current limitations of our SAX-VSM implementation
suggest a number of future work directions. First of all,
while Vector space model naturally supports processing of
bags of words composed of terms of variable length, our
current “stable” implementation lacks this capacity. Inspired by
the recently reported superior performance of multi-shapelets
based classifiers [12], we prioritize this development. Secondly,
as mentioned before, DIRECT optimization it is designed for
a function of a real variable. By using rounding in our im-
plementation, we have observed DIRECT iteratively sampling
redundant locations in suboptimal neighborhood, thus, a more
appropriate optimization scheme is needed. Finally, we are
designing and experimenting with an extension of SAX-VSM
to multidimensional time series. Currently we are evaluating
two candidate implementations: the first is based on a single
bag of words accommodating all dimensions for a class (by
prefixing SAX words extracted from different dimensions);
while the second is based on the use of a single bag of words
per each of dimensions. The preliminary results on synthetic
data sets look promising and we expect to report our finding
soon.
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