

Lincoln Laboratory
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LEXINGTON, MASSACHUSETTS

 Project Report

CA-1

Systems and Methods for
Composable Analytics

L.H. Fiedler

T.J. Dasey

29 April 2014

Prepared for ASD(R&E) under Air Force Contract FA8721-05-C-0002.

Approved for public release; distribution is unlimited.

This report is based on studies performed at Lincoln Laboratory, a federally
funded research and development center operated by Massachusetts
Institute of Technology. This work was sponsored by the Assistant Secretary
of Defense for Research and Engineering, ASD(R&E), under Air Force
Contract F A872l-05-C-0002.

This report may be reproduced to satisfy needs of U.S. Government
agencies.

The 66th Air Base Group Public Affairs Office has
reviewed this report, and it is releasable to the National
Technical Information Service, where it will be available
to the general public, including foreign nationals.

This technical report has been reviewed and is appt·ovcd for puhlieation.

FOR TilE CO"\IIMANDER

~~~ Atln;il:i:tJ:~f~e Coutraetin~ Offi•·cr 
Entcqu·is<~ A<'<JIIisiliun Division 

Non-Lincoln Recipients 

PLEASE DO NOT RETURN 

Permission has been given to destroy this 
document when it is no longer needed. 



 

Systems and Methods for Composable Analytics 

L.H. Fiedler 
T.J. Dasey 
Group 45 

 
 

29 April  2014 

 
 
 
 

 

 

Massachusetts Institute of Technology 

Lincoln Laboratory 

Project Report CA-1 

Lexington  Massachusetts 

Approved for public release; distribution is unlimited. 
 
 

 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 



 

 iii 

ABSTRACT  

Composable Analytics is a web-based software platform that enables community researchers, 
analysts, and decision makers to collaboratively explore complex, information-based problems through 
the creation and use of customized analysis applications. 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 



 

v 
  

TABLE OF CONTENTS 

  Page 
 

Abstract iii	  
List of Illustrations vii	  

1. MOTIVATION 1	  

2. APPROACH 3	  

3. TECHNICAL DETAILS 5	  

3.1 Application Model 5	  
3.2 Plugin Development 10	  
3.3 Module Type Implementation 12	  
3.4 Activation 13	  
3.5  Results 14	  
3.6 Discovery and Exploration  14	  
3.7 Boards 15	  
3.8 Groups 17	  
3.9 Security  17	  
3.10  Social Media 19	  

4. USABILITY 23	  

4.1 How-To Videos 23	  
4.2 Examples Applications 23	  
4.3 Descriptions 23	  

5. SOFTWARE ARCHITECTURE 25	  

5.1 Presentation Layer 26	  
5.2 Web Services 26	  
5.3 Data Layer 26	  

  



 

 
 

 vi 

TABLE OF CONTENTS 
(CONTINUED) 

  Page  

6. LEN PREPARATION 29	  

6.1 Fixing Security Vulnerabilities 29	  
6.2 CDC Morbidity and Mortality Weekly Report Data 29	  

7. FUTURE WORK 31	  

7.1 Commercialization 31	  
7.2 Technical Features 31	  

8. FINAL THOUGHTS 35	  

APPENDIX A. LIST OF MODULES 37	  

 

 



 

vii 

LIST OF ILLUSTRATIONS 

Figure  Page  
No. 
 
1 Core system entities and their relationships. 3	  

2 Data integration platform. 4	  

3 Application in designer with intermediate results. 6	  

4 Application designer showing a run-time error. 8	  

5 Simplistic module. 11 

6 Simple web service created in designer. 14	  

7 Discover page showing application previews. 15	  

8 Results and applications organized on a board. 16

9        Example access control list for an application. 19	  

10 Options for linking social media accounts. 20 

11 Application landing page. 21	  

12 Three-tier architecture. 25	  

13 Entity relational diagram. 27	  

14 Technologies used. 28

 	  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 



 

1 

1. MOTIVATION 

Today’s analysts gather more data than ever before. More importantly, analysts have or wish to 
have access to a considerable number of disparate data sets. There are many questions surrounding the 
nature of integrating and analyzing data; users need a flexible environment to investigate data, and to 
easily explore new techniques. Furthermore, most analysts do not examine the same data every day, nor 
are they continually using the same methods. Their workloads are variable, and require adaptability over 
short periods of time. 

When creating a system to process data, the most common approach involves hiring a team of 
developers to automate the reading of data and send it through various analytical methods. Obvious 
shortcomings to this method include cost and flexibility. Each change an analyst wants to make requires 
modifications by the developers. Opportunities are lost when software developers cannot work quickly 
enough to meet event-driven analyst needs, or when the cost of developing custom software is 
prohibitive. 

Users and analysts have a wide variety of issues and characteristics that can be overcome through 
end-user development techniques, such as Composable Analytics. Analysts typically do not have the 
development skills necessary to develop complete end-to-end software solutions for their work. They are 
typically under a considerable amount of time pressure and have limited software development budgets, 
which can result in a reduction in analysts’ effectiveness. If we were to provide end-user development 
techniques to shift the development of new capabilities onto the user, enable collaboration aides, and 
allow for rapid construction of applications, then users could be in much better position to accomplish 
their tasks. 

Furthermore, current software is not capable of meeting analysts’ necessary goals when 
unanticipated needs and issues arise, typically at the worst time. To add to these complexities, data is 
typically distributed and in an unfamiliar format and ontology, causing issues in pulling all the necessary 
data together to answer the question at hand. Providing ways for users to create new data processing 
schemes and visualizations allows them to be much more productive. 

Users’ domains and functional areas within those domains are variable. While analysts are typically 
trying to solve domain-specific problems, at the end of the day, they are all viewing and manipulating 
data. It would beneficial to provide a core data and integration platform, and allow users to plugin in their 
domain specific functions. 

A growing population considers themselves “programmers.” While they use this term loosely, they 
are creating new software functionality. Some of this functionality includes websites, interactive 
visualizations, and online surveys. In fact, Gartner predicts that more than 25% of business applications 



 

2 

will be developed by “citizen developers” in 2014.1 People no longer want to be passive users of 
software, but active participants in the development cycle. Users no longer want to simply create data 
artifacts, they desire to create functional software artifacts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                        

1 http://www.gartner.com/newsroom/id/1744514 

 



 

3 

2. APPROACH 

The power of adaptability should extend beyond the realm of software developers and into the 
capacity of analysts and users.  

Composable Analytics is a web-based environment for users to explore, create, and collaborate on 
analytical methods. We recognize collaboration is a key factor in the way users create methods and 
understand their results. In the system, users can explore and find existing applications that others have 
created. If an application meets their needs, they can use it wholesale. However, if their requirements are 
slightly different, they can either reuse the application inside another, or they can clone the application 
and modify it for larger software behavioral changes. Once users run their applications and produce 
results, they can begin to organize their results in boards. Boards are a way for users to reference results, 
applications, and other information, and share it with colleagues in a meaningful way. 

There are five core entities within the Composable Analytics environment: users, groups, 
applications, boards, and results/runs. All entities are considered securable resources and have various 
access control permissions that can be applied to the individual resources. As users begin to explore and 
use the system, we anticipate groups forming around common interests and social structures. Groups can 
also serve as a way of managing permissions for a large number of users. Users are at the root of the 
system, and we anticipate environments initially being seeded by a small number of users creating 
applications. As results are formed, and boards are created, users will have content to review and modify. 
Seedling applications will begin to be cloned, modified, and run with new datasets. 

 

 
 

 

 

 

 

 

Figure 1. Core system entities and their relationships. 



 

4 

Composable Analytics can be viewed as a data and process integration platform. We live in an 
extremely chaotic data environment. Data exists everywhere in different formats, and analysts have 
access to tremendous amounts of it; yet, most data is silo’d in individual systems, and these systems 
typically have different tools for viewing the data. When needs arise for cross-cutting analysis or for 
analysis methods not supplied by the individual systems, the data is typically downloaded and analyzed 
offline in tools such as MATLAB, R, or Excel. Furthermore, if there’s a requirement to develop software 
to integrate the data sets, typically the analysis will not be performed because the software cannot be 
developed quickly enough, or a new data strategy will be created and a large development effort is 
started, resulting in lag time and substantial cost.  

Composable Analytics allows users to query many information sources in a variety of formats and 
integrate them using a flow-based application. Entire datasets do not need to be pulled; only aggregated or 
selected data is transferred. Processes and queries can be sent to other data systems, rather than the data 
being sent to the process. Existing analysis code can also be reused and integrated – whether it is written 
in MATLAB, Excel, or other languages. Composable Analytics separates the method from the data, 
allowing users to simply share and reuse applications, and visually display applications and data in a 
cohesive manner. 

 

 

 

 

 

 

 

 

 

 

Figure 2. Data integration platform. 

 



 

5 

3. TECHNICAL DETAILS 

3.1 APPLICATION MODEL 

3.1.1 Overview 

An application within Composable Analytics consists of functional blocks strung together with 
connections to create new functionality. These functional blocks, called modules, have multiple inputs 
and outputs. A module is analogous to a function in any programming language. A module takes in one or 
many inputs, and produces one or many outputs. These outputs can then be connected to any number of 
other module inputs. 

An application can also reference and call another application. This reference is just like any other 
module, but its functionality is to call the referenced application. To provide inputs into the application, 
and retrieve certain outputs, the referenced application developer needs to mark certain module inputs and 
outputs as externalized with additional data (name and description). The user does this by adding special 
modules that externalize inputs and outputs. These external modules then become the inputs and outputs 
in the ‘application reference module’ in the calling application. 

Our application model is very similar to dataflow models. At its roots, the model is a directed 
graph, where the nodes are the modules, and the edges are the connections between module inputs and 
outputs. 

Each input and output on a module has a name, description and a type. Inputs and outputs are 
strongly typed and we are leveraging the .NET framework type system. Objects of the same type can be 
assigned, and objects having types that extend base types can be assigned to inputs of the base types. For 
example, outputs of types ‘integer’ can be fed into a module input of type ‘object.’ We also allow 
convertibility. For example, if a user connects an output of type ‘string’ to an input of type ‘integer,’ then 
we try and do the conversion for them automatically. Note that this can result in exceptions during the 
running of the application. We are currently using the built-in conversion framework in our type system, 
and new input and output types can register conversions by creating casting operator. 

 

 

 

 

 



 

6 

Figure 3. Application in designer with intermediate results. 

3.1.2 Running of Applications 

The most common way of running an application is in the designer. As users develop an 
application, they can run it at any time by clicking the run button. Because an application is 
fundamentally a directed graph, the system knows the order in which modules need to be executed (there 
can be many valid orders). The system then loops through this order and execute the modules. Before 
each module execution, the system assigns the inputs to the module based on the input connections. 

Although the user creates and interacts with the application in a web browser, the actual execution 
of the application occurs in the backend web servers and status and results are sent back and forth in a 
real-time manner.2 Whenever the application is run from the user interface (UI), the entire application 
                                                        

2 Note that if a module in an application is actually a web service, it can also result in computations or 
queries on remote systems outside the Composable Analytics server. 



 

7 

model in the browser is sent to the application web service for execution. This is required because the 
user may want to change the application and run it, without saving the application to the database. 
Designing and running an application within the same space creates a very interactive experience for the 
user. 

3.1.3 Debugging Applications 

We have developed a debugger to aide in troubleshooting the creation and running of applications. 
Users can step through an application run, halting execution after each module execution. This allows 
users to understand the order in which modules are running and also look at intermediate outputs. If an 
application is calling another application, the user can ‘step into’ and start debugging the referenced 
application run. Assuming they have read and execute permissions, the referenced app and the current 
execution context is loaded in another designer tab, where they can then step through and debug the 
application just like the parent application. Once complete, they can then switch back to the parent 
application to continue debugging the current run. 

If the user has enabled debugging, the execution context is set with a debug flag, and the 
application executor on the server will wait for a “step” call from the user before continuing execution. If 
the engine is stepping over a module, the call step returns the results of that module, and also notes which 
module will be executed next. This allows the UI to let the user know which modules have been executed, 
and also which one will be executed next. If the module that is executing is a reference to another 
application, the step call returns handle information, giving the UI the ability to launch the designer 
loaded with the nest application in debug mode. The calling application will then wait until the nested app 
is complete, similar to other module step calls. 

3.1.4 Error Handling 

If an error occurs during an application run, an exception is thrown and the run is stopped. If a 
module throws the error (from validating inputs, connection errors, or timeouts), then we bookmark 
which module threw the exception, and display the error on the correct module in the designer. In 
addition, if the exception is due to the assignment of a module output to an input, we also bookmark this 
information and highlight the input and connection in the designer for the user. This allows users to 
understand and resolve the root causes of application errors.  

  



 

8 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Application designer showing where a run-time error occurred.  

3.1.5 Code Modules 

3.1.5.1 Sandboxing User Code 

We cannot predict and develop all the modules users will ever need. However, we strive to make 
inserting new functionality easy, and provide various tiers of flexibility. One of these tiers allows users to 
employ a ‘just-in-time coding’ methodology. In addition, we do not want to allow any user to develop a 
module and have the system trust its execution. To provide this flexibility, and also meet our security 
requirements, we have developed a ‘code module.’ Like any other module, it has inputs and outputs. 
However, the input to this module is user code, which can be written in C# or VB.NET. The user code is 
compiled and then run in a partial trust application domain, also known as a sandbox. Users are not able 
to access the file system, registry, or network. They also have limited memory and runtime constraints. 
Note that because the code is actually an input into the module, a user can potentially create some very 
dynamic programs. Applications can now receive code from external sources like emails or web services, 
and even modify the code based on other factors while the application is running. 

 



 

9 

When using a code module, the user specifies the language, class name, and method that should be 
called in the sandbox. The module also takes in a collection of inputs. These inputs correspond to the 
parameters on the method. For example, if the method took in three parameters (string, Table, integer), 
then the application designer would link up three connections to the method input collection. The output 
of the module is of type object. This corresponds to the return value of the method called in code. If the 
method returns a void, then null is returned. 

3.1.5.2 Execute MATLAB Code 

We also currently support the execution of MATLAB code. There are, however, several differences 
in the way we execute MATLAB code versus sandboxing .NET code. We use MATLAB’s automation 
server to host an instance of the MATLAB runtime, and use the automation server’s application 
programming interfaces (APIs) for creating workspaces, executing commands, and retrieving and setting 
variables in the runtime. Currently, there is no way to sandbox and restrict the execution of MATLAB 
code. This opens serious security vulnerabilities. To mitigate the security issues, we execute the 
automation server under a limited user account. However, even under a limited Windows user account, 
there are still many serious operations the caller can execute that we would like to prevent (i.e., directory 
browsing, creating files). Therefore, execution of the MATLAB module is currently only supported for 
certain user accounts.3  

Each run of an application that contains a MATLAB module creates a new workspace in the 
MATLAB automation server. This provides isolation from other application runs. MATLAB code can be 
a series of commands that are interconnected through sharing state within the workspace. For this reason, 
execution is slightly different from the .NET code module. There are three modules that the application 
designer uses to interact with MATLAB. The first is the ‘Put Variable” module. This module will put a 
value from the executing application into the current MATLAB workspace. Data with atomic types 
(integer, string, double, etc.) and multidimensional arrays are supported. The “MATLAB Code” module 
will execute the specified command in the current workspace. Finally, to retrieve values from the 
workspace, the designer can use the “Get Variable” module that will retrieve a variable from the 
workspace, and set the module’s single output value using the MATLAB variable. 

 

                                                        

3 Note that this brings up a small, but required design change. Module types are not currently securable 
resources, and can be executed by anyone. If we want to restrict users from executing certain module 
types, module types should be promoted to securable resources – just like applications, groups, and 
boards. This will allow administrators to change the permissions on an individual module type. 
Permissions on a module type may include: Discover, Execute, Write. 



 

10 

3.2 PLUGIN DEVELOPMENT 

The palette of modules the user can choose from dictates the kinds of applications that can be 
created and also steers the information domain and use of Composable Analytics. Therefore, we set off to 
make it very easy for a developer to quickly add new modules to the system. An ‘App Store’ concept is a 
possible avenue we can take to include new visualizations and first-class modules into the system. The 
business case and revenue stream for developers to submit new modules would need review based on the 
application area needs and constraints.  

3.2.1 Module Type 

Creating a new module type is the primary extension point a developer can make use of in the 
environment. The module type defines its name, description, icon, category, inputs, outputs, metadata on 
the inputs and outputs, and the actual class that will be executed when an application is running. These 
‘first class’ modules can be written in any CIL (Common Intermediate Language) compliant language. 
Some of these languages include: C#, C++, VB.NET, IronPython.4  

Below is a very simplistic module that performs a mathematical operation on two numbers. The 
most important method is the Execute() method. This will get called when it is the module’s turn to run. 
Within the Execute() method, the module can get access to the values of its inputs (whether the values are 
coming from connections, or set directly on the inputs), do any processing it needs, and then sets its 
output values. The inputs and outputs are set as properties on the class. ModuleInput<> and 
ModuleOutput<> are generic classes, and the use of these determines the type of data they will accept or 
return. In addition, an input control is also specified in the example below. In this example, the 
mathematical operator can only be chosen from a preconfigured list through a combo box. By adding a 
control attribute to the input, the UI knows to use the specified control when the user wants to enter in the 
input. 

 

 

                                                        

4 A full list of CIL languages can be viewed here: http://en.wikipedia.org/wiki/List_of_CLI_languages 



 

11 

   [ModuleType(Name = "Calculator", Namespace = "edu.mit.ll.companalytics", Category = ModuleCategory.Operator, Icon = 
"./images/module-icons/calculator.png")] 

    [Description("Performs numerical operation on two numbers")] 
    public class CalculatorModuleExecutor : ModuleExecutor 
    { 
        [Description("First numerical input")] 
        public ModuleInput<double> Param1 { get; set; } 
 
        [ComboBoxControl("*", "+", "-", "/", "%", "^")] 
        [Description("Numerical operation")] 
        public ModuleInput<string> Operator { get; set; } 
 
        [Description("Second numerical input")] 
        public ModuleInput<double> Param2 { get; set; } 
 
        [Description("Output of operation")] 
        public ModuleOutput<double> Result { get; set; } 
 
        public override Module GetDefaultModule() 
        { 
            Module module = base.GetDefaultModule(); 
            module.ModuleInputs.First(m => m.Name == "Param1").ValueObj = (double)1; 
            module.ModuleInputs.First(m => m.Name == "Operator").ValueObj = "+"; 
            module.ModuleInputs.First(m => m.Name == "Param2").ValueObj = (double)2; 
            return module; 
        } 
 
        public override void Execute(ExecutionContext context) 
        { 
            double param1 = this.Param1.Get(context); 
            string op = this.Operator.Get(context); 
            double param2 = this.Param2.Get(context); 
 
            double result = this.Operate(param1, param2, op); 
            this.Result.Set(context, result); 
        } 
 
        double Operate(double val1, double val2, string op) 
        { 
            switch (op) 
            { 
                case "*": 
                    return val1 * val2; 
                case "+": 
                    return val1 + val2; 
                case "-": 
                    return val1 - val2; 
                case "/": 
                    return val1 / val2; 
                case "%": 
                    return val1 % val2; 
                case "^": 
                    return (double)((int)val1 ^ (int)val2); 
                default: 
                    throw new NotSupportedException(String.Format("Operator {0} is not supported", op)); 
            } 

Figure 5. Simplistic module. 



 

12 

3.3 MODULE TYPE IMPLEMENTATION 

3.3.1 Types 

When defining a module type, the data types for each of the module’s inputs and outputs are 
specified in the property declaration. These types determine which information can be sent between 
modules, and defines how modules interact with each other. Module type developers can simply create 
new data types by creating a new class and then using that class when defining a new module input or 
output. These types must be serializable so the information can be sent to the UI, and also saved to the 
database. Because these types are known at compile time, registration and loading of the types is inherent 
in the .NET framework. 

3.3.2 Input Controls 

Input controls help users set the value of a module’s input. Not all values can come from 
connections, so the module developer should provide an easy way to choose values. Developers can 
register new input controls into the system. Module developers can make use of these by adding the input 
annotation to the input property in the module type class. When creating a new input control, there are 
several components that need to be created. 

Registering Attribute – This is how module developers make use of the control and let the system 
know to use the control type on the specified input. Any options on the UI control are also typically 
specified here. In the example above, the module developer used a ComboBoxControl attribute so users 
could choose the operator from a dropdown. The attribute also specifies the JavaScript file containing the 
user interaction methods. 

Data Parameters Class – Any optional parameters need to be serialized and sent from the services to 
the UI when loading the input controls. Any parameters set in the attribute are placed in this object and 
marshaled to the UI. 

Java Script Control – On the UI side, the input control extends from a base InputControl class and 
must implement several methods. Some of these include operations for setting the input value, rendering, 
and getting the value from the control. 

3.3.3 Output Rendering 

Developers can also register how certain output types are rendered. Unlike input controls, which are 
defined at the module input level, output rendering affects all module outputs with the same type. From 
our experience, inputs typically need different ways of getting data from the user, even if the type is the 
same. For example, if the input is of type string, some modules may need a dropdown list of predefined 
values, while others may want a textbox. However, if the result is a string, then typically a textbox 
displaying the string is sufficient. 



 

13 

3.4 ACTIVATION 

Applications do not always have to be run by the user. Users can design applications to be triggered 
by other external factors including: time, email, and web requests. If a user wants to run an application at 
the same time every day, he can add a timer module to his application and set the specific schedule. We 
have an activation service running in the backend looking for applications with timer modules, and 
checking whether it is time to run the application.  

We also have a server periodically checking a system email inbox for application emails. If an 
email is received with an application ID, the message contents are assigned to the email module inputs in 
the application, and the application is run. 

An application can also act like a web service or a web page. Users can simply drag a ‘web receive’ 
and a ‘web send’ module into their application. Next, users fill in the logic of processing the request and 
assigning the response with more modules and connections. The web request activator running in the 
backend receives web requests, and determines which application needs to run based on the specified 
application ID in the request. The service then assigns the web request contents to the web receive module 
and runs the application. The activator then takes the results from the application and assigns them to the 
web response. Users cannot only coordinate calls to web services, but now they can graphically program 
the internal workings of web services. Callers of the application web service need execute permissions on 
the application. The web request for the application should have a correct authentication cookie, or if 
everyone has been given ‘execute’ permissions on the application, then an anonymous web request will 
be accepted. 



 

14 

 
Figure 6. Simple web service created in designer. 

3.5 RESULTS 

As applications are executed by users or through external activation, runs are produced. A run 
consists of results for each module’s outputs. Results are strongly typed objects, and correspond to the 
output of a module. Examples of results include graphs, charts, maps, strings, integers, and tables. 

Runs and results are also securable resources, similar to applications, boards, etc. Currently, a run 
and its included results share the same access control entry. This is something that could change in the 
future if users feel the need for finer grain sharing on their results.  

3.6 DISCOVERY AND EXPLORATION 

Reusability is a key tenant to Composable Analytics. And to promote reusability, users need a way 
to find existing applications. We have developed a search capability for users to find the five main 
resources in our system: users, applications, boards, groups, and results. Users can search by keywords 
and specific attributes on the entity. We are using a full text indexer on the names and descriptions of 



 

15 

entities. For example, a user could search for applications that contain ‘tornados’ in the description and 
the structure of the application contains a visualization module of type ‘line chart.’ Also note that users 
only see search results of entities that have discover permissions; results are an intersection of key words, 
attributes, and permissions. 

Figure 7. Discover page showing application previews. 

3.7 BOARDS 

3.7.1 Overview 

Boards give users a way to organize application results and information in a meaningful way. For 
example, the output of an application may be a graph, but a lone graph does not have any context or 
anyway to compare itself with other graphs. To resolve this issue, users can pin the graph to their board, 



 

16 

drag it to the appropriate location, write text describing the result, and even compare it to other graphs on 
the board. Boards are similar to wikis or web page development where they give users flexibility to 
develop a view of their data. However, boards are purely visual. Users do not need to know a wiki 
language, or know HTML. They simply drag, resize, write text, and adjust attributes like color and font 
size of their objects.  

Boards can be shared and multiple users can contribute results to a particular board. Boards can be 
automatically updated by applications publishing results to a board. We anticipate communities forming 
around boards, consisting of users that either want to contribute or stay informed about a particular 
information domain.  

Boards contain a list of board items. A board item is associated with a resource (application, result, 
group, etc.) and also contains some additional metadata about the visualization of the resource. Some 
metadata attributes for a board item include: name, color, font, size, and position. 

 

 

 

 

 

 

 

 

 

Figure 8. Results and applications organized on a board. 

3.7.1.1 Live Elements 

As resources are created, changed, and used, this information is recorded into an activities table. 
Users may want a quick way to know what actions/activities have been taken on resources. For example, 



 

17 

if an application has been updated and run, the activity log will show what user has updated the 
application, and also who has executed it recently. These lists can be pinned on an individual’s board, and 
will be updated whenever changes occur. In addition, queries for resources in the system can also be 
placed on the board. For example, if the user typically wants see new applications that have been created 
in the system, they can create a query and view a live element list of the results on the board.  

3.7.1.2 Resources  

All types of resources can be added to the board. The most commonly added resource is a result 
(chart, map, or table). However, other resources (applications, groups, and other boards) can also be 
added. Previews of the resources are visible, allowing users to quickly jump to and make use of the 
resource. 

3.7.2 Main Dashboard 

Main dashboards actually function and are stored exactly like any other board in the system; 
however, when a user logs on, the user is redirected to the main dashboard. Individuals can customize 
their own dashboard. In addition, while dashboards can be shared like any other board, we anticipate only 
the owners having access. By default, the main dashboard displays live elements for favorite boards, 
groups, and applications. Other default live elements include newly created and highest rated applications. 
While users can post results to the dashboard, we anticipate the main dashboard being used as a quick link 
to resources. 

3.8 GROUPS 

Groups are another type of resource in the system and serve two primary purposes. Groups first 
provide a collaborative mechanism, allowing users of common interests to find each other. In addition, 
groups aide in securing other resources within the system. Rather than giving permissions at the 
individual user level, permissions can be specified at the group level. For example, if you want to give 
only certain people write permissions to an application, you can create a group, assign the group write 
permissions to the application, and then add users to the group.  

Users can be added to the group by the owner, and also by any user or any other group, with write 
access to the group. Users can also request to join a group. Group owners are sent an email when a join 
request is created, and owners have the option to accept or reject it. 

3.9 SECURITY 

We have gone to great lengths in securing Composable Analytics, and security is a key aspect in all 
of our design decisions. 

There are several security infrastructure mechanisms currently in place. At a transport level, all web 
traffic is encrypted and sent over SSL (Secure-Socket-Layer). Web server and activation processes run as 



 

18 

limited privilege accounts (NT Authority/Network Service). Processes accessing data use accounts with 
the minimum rights necessary for retrieving and saving the data.  

Application designers are provided a considerable amount of power when using modules. For 
example, they can issue web requests to remote web services, run queries on external databases, run 
custom code modules, and automatically send emails. We have worked to not only protect the system 
from malicious users, but also to protect users from one another. At a system level, employing a web 
proxy and spam filters can mitigate some malicious use cases, but resource quotas must also be 
implemented in the future. We plan to address system resource quotas as our user-base grows. Granting 
users the tools to secure their applications is also important. Users currently have the ability to specify 
granular permissions on applications (i.e., who can execute, write, and read private variables). 

3.9.1 Accounts 

Users create accounts in a similar fashion to any other website.  

The typical registration workflow steps include: 

• User creates an account through a web form 

• Email is sent to user ensuring a valid email exists.  

• The user clicks on a verification link in the email. 

• An email is sent to an authoritative person to accept or reject pending the account. 

• If the account is accepted, then the account is enabled. 

• Email is sent to the user letting them know the account is active. 

Some email addresses can be auto-approved. If an email address domain (i.e., ll.mit.edu) is white-
listed, then an authoritative person does not need to review the request. Once the account has been 
verified, it is automatically enabled. 

3.9.2 Resource Permissions 

While one of Composable Analytics’ key tenants is to promote sharing, we recognize that users still 
need the ability to have fine-grained permissions on their applications and data. By default, any resource 
created by a user can only be seen by that user. A user can assign either another user or group particular 
permissions to an entity. For an application, the permissions are ‘discover,’ ‘read,’ ‘read-private,’ ‘write,’ 
‘execute,’ and ‘clone.’ For boards and groups, the permissions are ‘discover,’ ‘read,’ and ‘write.’ Note the 
circular dependency between groups and permissions. This allows users to create interesting permission 



 

19 

functionality like allowing individuals within a group to see who else is in the group. This functionality 
can be achieved by giving the group read access to itself. 

 

Figure 9. Example access control list for an application. 

3.10 SOCIAL MEDIA 

We recognize that most people want to share their work. In light of this, we have integrated with 
Facebook and Twitter. Users can link their Facebook and Twitter accounts to Composable Analytics 
using the Oauth protocols, and give Composable Analytics permission to post on their behalf. We have 
Facebook and Twitter modules that allow people to automatically publish either text or images to their 
feeds. Users can now automate and script daily public status updates. 

Composable Analytics can also be used to automate social web applications. Users can create 
processing schemes to automate the process of posting to Facebook and other social sites. For example, if 



 

20 

a company has an approval process for posting daily updates to a social site, the workflow can be 
orchestrated within the Composable Analytics environment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Options for linking social media accounts. 

3.10.1 Activities 

As users create and run applications, or make updates to boards and groups, we record those 
actions. Users can then view the activities of other users, or other resources. Note that the activities a user 
can view represent an intersection of the discover permissions they have on the entities and the resources 
referenced in an activity.  



 

21 

3.10.2 Comments 

Users can comment on resources such as applications and boards, and create message threads. 
Example comments may include: what they are using the application for, what issues they ran into, etc. 

3.10.3 Reviews 

As the number of applications in the system grows and the similarity of applications blurs, it 
becomes hard for users to know which application is the ‘best fit.’ Reviews allow the users to rate 
applications and provide feedback on functionality.  

Figure 11. Application landing page shows activities and comments (left), rating (top), and preview (center). 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 



 

23 

4. USABILITY 

Usability is an area where we strive for continual innovation. Composable Analytics is nothing 
without its users. Modifying and creating applications is the most important area for generating new 
content within Composable Analytics. Users need to easily be able to tweak applications, create new 
applications, and generate results to share with others. We have created a few methods to help ameliorate 
the barrier to entry. 

4.1 HOW-TO VIDEOS 

We have created screen-cast videos demonstrating how to develop applications within Composable 
Analytics. Because creating an application is very interactive (i.e., drag and drop), a video captures all the 
nuances that would otherwise be hard to explain through text. 

4.2 EXAMPLES APPLICATIONS 

When starting to use a module within an application, users may have questions surrounding its 
functionality. To alleviate some of this initial ambiguity, every module includes an associated example 
application. With a simple click in the application designer, users can open an example application and 
understand how the module can be used. All example applications can be executed without any 
modification. 

4.3 DESCRIPTIONS 

Each module and its inputs and outputs contain descriptions of their functionality and what values 
are expected. These can be visible when a user hovers over the module with the mouse. Understanding a 
module’s inputs, its functionality, and what it returns are required before we can expect a user to begin 
using it successfully in an application.  

 

  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 



 

25 

5. SOFTWARE ARCHITECTURE 

We are currently using a three-tier architecture: UI/web pages, web services, and a database. We are 
developing our front-end using .NET Aspx web pages, jQuery, JavaScript, and CSS. The pages are 
loaded from the web server, which then make Ajax requests to our web services (middle tier). The web 
services provide a means of serving up data to the web pages and also allows for web clients to save data. 
The web service layer is also how clients execute applications and get information on the lifecycle of an 
application. All the web services are hosted in an IIS web server. The processing of triggers occurs in the 
activation host. The activation host receives emails, web requests and timer events, and runs the 
corresponding application. The activation host must also communicate with the database to load 
applications for execution and store the results.  

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 12. Three-tier architecture: (1) web clients/browsers, (2) web services and activation host, and (3) database. 



 

26 

5.1 PRESENTATION LAYER 

The presentation layer consists mostly of JavaScript. We’ve relied heavily on the jQuery library to 
support DOM manipulation, third-party plugins, and functional structure.  

A script dependency issue initially arose during front-end development. For example, script A may 
depend on B, which then depends on C. For the page to work, all three would need to be included in the 
page – resulting in root JavaScript code knowing about dependency C. There are other scenarios where 
two nondependent pieces have a common dependency, which needs to come first. To alleviate this 
dependency nightmare and possible double inclusion of scripts, we developed an Asset Service and a 
dependency chain markup in JavaScript. 

If a JavaScript file requires another script to work properly, it places a require comment in its script. 

//=require otherfile.js 

In addition, root JavaScript files can be loaded through the Asset Service through seed JavaScript 
loading functions. The asset service will load these root JavaScript files and look for any require tags. If 
any of them exist, then those files are loaded before continuing to load the current file. The file will not be 
reloaded if it has already been loaded (i.e., two files require the same library). This allows scripts to 
articulate dependencies without each webpage needing to include all the possible dependencies in the 
correct order.  

5.2 WEB SERVICES 

All of our web services communicate with the user interface through the JavaScript Object Notation 
(JSON) wire format. This allows clients and the UI to easily construct requests and parse the results. 
Windows Communication Framework (WCF) is currently being used for construction of the web services 
and data contracts. 

5.3 DATA LAYER 

We are using a SQL Server relational database to store all of our resource data. To interact with the 
database, we are using the Entity Framework, an object relational mapper (ORM). Note that this data is 
different from the data that applications typically query, and at some level can be considered system 
metadata. 

Because runs and results are considered securable resources, they are stored in our database. Some 
results artifacts are stored to disk. Each application run gets a folder where modules can save information. 
Examples of data saved to this area include: CSV files, images, sql-lite databases. 

Below is our entity relational diagram. SQL database tables and classes are automatically generated 
from this model. We can then use these classes to store data and create queries to retrieve the data. 



 

27 

Figure 13. Entity relational diagram. 

• ·1 .. i '"'"""~f· r ripnp~lfH ~~ fJPF . · 
I 



 

28 

Databases 

Activation 

Browser 

Web	  
Server 

Figure 14. Technologies used. 



 

29 

6. LEN PREPARATION 

Composable Analytics will be hosted on the Laboratory’s external network (LEN). This will give 
us an opportunity to get user feedback from the community. The Public Health Community is the first 
audience we are planning to target.  

6.1 FIXING SECURITY VULNERABILITIES 

We have currently been in the process of fixing security vulnerabilities in the code base. Some of 
these changes included protection from SQL injection, locking the system down to only authenticated 
users, and adjusting the user account creation process. 

6.2 CDC MORBIDITY AND MORTALITY WEEKLY REPORT DATA 

We have also seeded the LEN environment with CDC’s weekly disease counts for each division 
and state in the United States. While this information is publicly available for anyone to view, little 
analysis has been done due to the format in which the data is released. This information was placed in a 
relational database and applications were then created within Composable Analytics to query, analyze, 
and plot the results.  

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 



 

31 

7. FUTURE WORK 

7.1 COMMERCIALIZATION 

We have started conversations with business and venture related groups on campus, including the 
Venture Mentoring Services and Innovation Teams. There are wide variety of possible target domains and 
licensing approaches. Some of the industries that could benefit from Composable Analytics include 
pharmaceuticals, health care, insurance, actuaries, and financial markets. One great benefit of 
Composable Analytics is the data and the modules plugged in to the system dictate the applicable 
domains. We can very easily target multiple domains and quickly create functional demos for potential 
customers. 

While analytics may be a huge market, there is another that may be just as big. This includes 
automating human workflows, and in particular automating the interaction with web applications. There 
is a large group of individuals who are looking at social sites and performing multiple queries on a daily 
basis. With Composable Analytics, these users could create applications to query the services, bring the 
data together and push out the updates and relevant information. Applications that synchronize social web 
technologies like Flickr, Facebook, and Twitter could also be developed. 

7.2 TECHNICAL FEATURES 

7.2.1 Default Permissions 

Because our permission model is at the individual resource level, it can be tedious to update 
permissions for every resource. Users require the ability to update permissions for many entities at once. 
An example would be, ‘update all the runs for a particular app with group x having read permissions.’  

In addition, default permissions currently set the owner of the resource to the author, and no one 
else is on the permission list. While this is the most secure and alleviates issues where items are 
unexpectedly shared, it can be tedious to constantly need to change permissions. If a user or system 
executes an application, the user is required to change the permissions after each run if they want to share 
the result with someone else. Instead, it would be easier for a user to set default permissions. An example 
would be, ‘for a specific application, set any future runs to be publicly readable.’ 

7.2.2 User Resource Quotas 

Currently users can create and run as many applications as they want. In addition, there are no disk 
usage restrictions in place. Most commercial email services place restrictions on inbox sizes. Similarly, 
we will also need to place limits on the number of applications run, and the amount of disk used for 
results.  



 

32 

7.2.3 Advisory Services for Applications 

7.2.3.1 Semantic Compatibility 

As the number of modules and applications grows, the opportunities for users to be build ‘incorrect’ 
applications increases. Not all modules can be connected together. Obviously the input and output types 
have to be well matched; but even modules operating on the same types may not be compatible with each 
other. Additional data that describes the meaning of the modules may lead to better insight in recognizing 
application ‘correctness.’ 

An intuitive approach to evaluating the compatibility of the modules within an application is to, 
once a reasonable set of module features has been established, employ techniques from machine learning 
to classify the collection of modules as being a potentially successful or unsuccessful analytic. The 
module feature space would need to indicate which modules are compatible with analytic contexts, which 
include statistical analysis, data visualization, signal processing, etc. These features would be discovered 
through combination of unsupervised learning techniques, such as hierarchical clustering, from module 
usage statistics as well as indications given by the module developer. Once the classifier is trained on the 
module feature space, we will be able to, in the event that an application is classified as potentially 
unsuccessful, issue a warning to the application designer that the combination of modules selected are not 
likely to produce meaningful analysis. This allows the user to either redesign the application to be more 
appropriate for the intended task or run the application anyway. We allow this latter function as a means 
to allow the Composable Analytics user base to help us discover novel uses for existing modules. 
Provided a sufficient amount of usage statistics, the classification engine deeming an application as 
successful or unsuccessful can be tuned through observing newer, creative applications in which modules 
are successfully employed outside of their originally intended analytic context. 

Of course, during the alpha phase, there will be an insufficient amount of usage data. Hence, feature 
space learning and training the classifier used for semantic compatibility evaluation will not be possible. 
To remedy this dilemma, we will, in early versions of Composable Analytics, use fuzzy logic to evaluate 
the compatibility of modules within an application. Upon the creation of a new module we will ask the 
developer to assign the module membership to a set of analytic contexts. Using the analytic context 
memberships of the modules that comprise it, we will determine the membership of the application. In the 
event that the application has weak membership to any one of the predetermined analytic contexts we will 
issue the application’s designer a warning. In the event that the designer chooses to run the application in 
spite of the warning and is pleased with the results, as indicated through the user, say, rating the 
application highly, we can tune the analytic context memberships of modules that appear in the 
application accordingly. Once a sufficient amount of usage statistics becomes available, we can either 
switch to the machine learning approach of compatibility evaluation, or fuse it with the fuzzy logic 
approach. 

 



 

33 

7.2.3.2 Application Similarity 

Finding applications that have similar structure and behavior can lead to an increase in reuse and 
give users the ability to find colleagues working on similar solutions. This can also help in discovering 
applications based on inputs, outputs and behavior. 

7.2.3.3 Recommendation Services 

There are two notions of recommendation services that we are currently considering. At a basic 
level, we are investigating popularity metrics for applications and boards. As the number of applications 
in the system grows, understanding what is popular provides additional measurements in making 
recommendation decisions. Popularity of an application can be a function of ratings, number of clones, 
number of runs by unique users, etc. By producing an affine combination of these values for each 
application or board, we can develop ranked lists of the most popular ones. This allows new users to get a 
feel for Composable Analytics through pre-vetted entities. Also, popularity rankings provide a foundation 
on which to build more sophisticated application or board recommendations. For instance, applying filters 
or keyword searches to the popularity ranking allows users an opportunity to discover existing analyses 
that may be pertinent to his or her goals.  

Additionally, we are developing helper modules that future developers can recommend be used in 
conjunction with the module they are creating. For instance, many statistical analyses and signal 
processing procedures rely on the assumption that the data under observation is normally distributed. A 
helper module for one of these modules would be a goodness-of-fit test on the normality of the input data. 
We intend to provide a pathway for the developer to issue a pop-up message that indicates that the 
module assumes the input data to be normally distributed and recommend the goodness-of-fit helper 
module to the application designer. 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 



 

35 

8. FINAL THOUGHTS 

We will focus our future attention on three main areas: user outreach, user-experience services, and 
platform. We need to engage a user base sooner rather than later. Placing Composable Analytics on the 
LEN will be a key stepping-stone to accomplishing this goal. As our user base grows, we will have more 
data and insight in developing targeted recommendation and advisory services, and overcoming usability 
issues. Performance issues will most likely arise as our user-base grows, and the need to redesign and 
develop certain features will most likely occur. Finally, we will continue to improve the platform and 
framework so we can build additional features. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 



 

37 

APPENDIX  A 
LIST OF MODULES 

Name Description Category 

RabbitMQ Subscriber Activates the execution of the application by receiving a 
message on a RabbitMQ topic 

activators 

Receive Email Activates an application by receiving an email with the 
appId in the subject. The subject should be begin with: 
<appId> 

activators 

Timer Activates an application based on the user specified 
schedule 

activators 

Web Receive Activates an application by receiving a web request on the 
URI 
~/services/WebActivationService.svc/Activate?appId=xxx 

activators 

Web Send Sets the response to a web request directed to the 
application 

activators 

Csv Reader Reads in delimited data from Uri and returns in table 
format 

datasources 

File Uploader Reads and uploads file from the browser machine to the 
server, and returns its Uri on the server 

datasources 

Google Insights For 
Search 

NULL datasources 

Image Fetcher Retrieves image from specified Uri datasources 

Odbc Insert Inserts table data into a SQL database table datasources 

Odbc Query Queries odbc database and returns data as a Table datasources 

Odbc Select Query Creates a select statement for an odbc database and 
returns data as a Table 

datasources 

Reportable Diseases NULL datasources 



 

38 

Name Description Category 

Rss Client Retrieves Rss or Atom feed from Uri and returns parsed 
feed information 

datasources 

Sql Query Queries sql database and returns data as a Table datasources 

Sql Select Query Queries sql database and returns data as a Table datasources 

WebClient Retrieves contents at specified Uri datasources 

XML Reader Reads xml from string and returns in tabular format at 
specified root 

datasources 

Age Groups Selects CDC Age Groups health 

CDC MMWR Disease NULL health 

CDC MMWR Region NULL health 

Date to Week and Year Converts DateTime to an Epi Week number and Year health 

DiseaseToSyn Converts a Disease to a list of typical syndromes for the 
disease 

health 

Florida Counties NULL health 

HealthMap NULL health 

Syndromes NULL health 

Syndromic Data NULL health 

Syndromic Data What NULL health 

Syndromic Data Where NULL health 

Highchart Scatter 
Series Input 

NULL inputs 

Highchart Series Input NULL inputs 

String Input Simply forwards input string to result, allowing for an inputs 



 

39 

Name Description Category 

input to be specified in separate module 

Image Hist Equalizer NULL MATLAB 

Image Intensity NULL MATLAB 

MATLAB Executes MATLAB code MATLAB 

MATLAB Get 
Variable 

Returns a variable from the MATLAB workspace MATLAB 

MATLAB Put 
Variable 

Sets a variable in the MATLAB workspace MATLAB 

Plotter Constructs a plot using MATLAB  

Array Indexer Returns object at specified index operators 

Branch Conditionally executes modules connected to the then and 
else results 

operators 

Calculator Performs numerical operation on two numbers operators 

Code Executes a user coded function in a sandbox operators 

Consolidator Takes in a list of optional inputs and will return the first 
one in the list. Not all input connections need to return a 
value. 

operators 

Date/Time Calculator Performs timespan operation on a date/time operators 

Key Value Pair Constructs a KVP object from incoming Key and Value operators 

Replacement Rule Creates a dictionary of two strings (value and reference 
value) from two lists of strings 

operators 

Sql Conditional Combines multiple sql clauses using the specified 
condition 

operators 

Sql Expression Constructs a sql clause using column names, operators 
and value 

operators 



 

40 

Name Description Category 

Sql Like Operator Produces SQL clause by concatenating column name and 
values with the 'like' operator 

operators 

Sql Operator Constructs a sql clause using name, operator and value operators 

SQL Replacement Generates SQL query for replacing column values operators 

Sql Timestamp 
Expression 

Constructs a sql clause using column names, operators 
and value 

operators 

State To Counties Returns counties in a state operators 

String Formatter Combines multiple strings together using the specified 
format 

operators 

SyndicationToTable Create a table structure from syndication feed operators 

Syndromic Data Demo Queries syndromic data by disease, county, and date operators 

Uri Builder Creates a Uri object operators 

Uri Param Parser Creates a Uri object operators 

Board Publisher Sends the incoming result to the board operators 

Csv Writer Writes a table to a file in the Comma Separated Value 
format 

outputs 

Facebook Publishes a status update to Facebook outputs 

Mail Sender Sends an email to specified addresses outputs 

RabbitMQ Publisher Publishes a message onto a RabbitMQ topic outputs 

Twitter Publishes a status update to Twitter outputs 

Lilliefors Normality 
Test 

Uses Lilliefors hypothesis test to determine if a data set is 
normally distributed 

statistics 

TwoByTwoTable NULL statistics 



 

41 

Name Description Category 

Column Type 
Converter 

Converts table columns to the desired type. tables 

Table Aggregator Aggregates the data based on columns and operation tables 

Table Column Reducer Returns a table containing only the columns specified 
from the original table. 

tables 

Table Column Type 
Input 

Returns user specified table column type tables 

Table Filter Filters the data based on clauses tables 

Table Filter Logic 
Clause 

Filters the data based on multiple clauses tables 

Table Filter Operator 
Clause 

Filters the data based on operation tables 

Table Scaler Scales a column of a table by a column in another table tables 

Table Set Operation Performs a set operation on a collection of tables tables 

Table Sort Column 
Input 

Returns user specified sorting direction of a table column tables 

Table Sorter Sorts a table by column tables 

TableColumn Pulls out a particular column from a table tables 

TableCreator Creates table based on inputs tables 

CountyHeatMap Creates Kml Heat Map from county tabular data visualizers 

DivisionHeatMap Creates Kml Heat Map from division tabular data visualizers 

Google Charts NULL visualizers 

Highchart Bar Chart NULL visualizers 

Highchart Line Chart NULL visualizers 



 

42 

Name Description Category 

Highchart Scatter 
Chart 

NULL visualizers 

Highchart to Image NULL visualizers 

Kmz Zips up multiple Kml files into a single Kmz file visualizers 

StateHeatMap Creates Kml Heat Map from state tabular data visualizers 

Table to Kml Creates a Kml file of placemarkers using data in the 
specified table 

visualizers 

ZipCodeHeatMap NULL visualizers 

 



 

 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the 
data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing 
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-
4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently 
valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 
1. REPORT DATE (DD-MM-YYYY) 

29 April 2014 
2. REPORT TYPE 
 Project Report 

3. DATES COVERED (From - To) 
  

4. TITLE AND SUBTITLE 
 
 
 
 
 
 

5a. CONTRACT NUMBER 
FA8721-05-C-0002 

Systems and Methods for Composable Analytics 5b. GRANT NUMBER 
 

 
 

5c. PROGRAM ELEMENT NUMBER 
 

6. AUTHOR(S) 
 

5d. PROJECT NUMBER 
 

Lars H. Fiedler and Timothy J. Dasey 5e. TASK NUMBER 
 

 
 
 
 

5f. WORK UNIT NUMBER 
 
 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

 
AND ADDRESS(ES) 

8. PERFORMING ORGANIZATION REPORT   
    NUMBER       

MIT Lincoln Laboratory 
244 Wood Street 
Lexington, MA 02420-9108 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
CA-1 

 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 
Assistant Secretary of Defense, Research and Technology  ASD(R&E) 
4800 Mark Center Drive 
 

  
Suite 16F09-02  11. SPONSOR/MONITOR’S REPORT  
Alexandria, VA 22350-3600        NUMBER(S) 
   
12. DISTRIBUTION / AVAILABILITY STATEMENT 
 
Approved for public release; distribution is unlimited. 

13. SUPPLEMENTARY NOTES 
 

14. ABSTRACT 
 

Composable Analytics is a web-based software platform that enables community researchers, analysts, and decision makers to 
collaboratively explore complex, information-based problems through the creation and use of customized analysis 
applications. 
 

15. SUBJECT TERMS 
 

16. SECURITY CLASSIFICATION OF: 
 

17. LIMITATION  
OF ABSTRACT 

18. NUMBER 
OF PAGES 

19a. NAME OF RESPONSIBLE PERSON 
 

a. REPORT 
Unclassified 

b. ABSTRACT 
Unclassified 

c. THIS PAGE 
Unclassified 

Same as report 42 19b. TELEPHONE NUMBER (include area 
code) 
 

 Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39.18 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 



 

 

 


	Systems and Methods for Composable Analytics
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF ILLUSTRATIONS
	1. MOTIVATION
	2. APPROACH
	3. TECHNICAL DETAILS
	3.1 APPLICATION MODEL
	3.2 PLUGIN DEVELOPMENT
	3.3 MODULE TYPE IMPLEMENTATION
	3.4 ACTIVATION
	3.5 RESULTS
	3.6 DISCOVERY AND EXPLORATION
	3.7 BOARDS
	3.8 GROUPS
	3.9 SECURITY
	3.10 SOCIAL MEDIA

	4. USABILITY
	4.1 HOW-TO VIDEOS
	4.2 EXAMPLES APPLICATIONS
	4.3 DESCRIPTIONS

	5. SOFTWARE ARCHITECTURE
	5.1 PRESENTATION LAYER
	5.2 WEB SERVICES
	5.3 DATA LAYER

	6. LEN PREPARATION
	6.1 FIXING SECURITY VULNERABILITIES
	6.2 CDC MORBIDITY AND MORTALITY WEEKLY REPORT DATA

	7. FUTURE WORK
	7.1 COMMERCIALIZATION
	7.2 TECHNICAL FEATURES

	8. FINAL THOUGHTS
	APPENDIX A. LIST OF MODULES



