Benchmarking GNU Radio Kernels and
Multi-Processor Scheduling

Nathan West, Doug Geiger, George Scheets
January 14, 2013

1 Introduction

The growth of Software Defined Radio (SDR) using general purpose processors
(GPPs) brings a new engineering decision of processor selection to radio design.
In this study we are concerned with comparing the performance of an SDR
toolkit called GNU Radio on different processors. Properly selecting a processor
for a radio application will depend on the application; however, a generic list of
benchmarks would include

e Floating Point OPerations per second (FLOPs) for common routines on
multiple-processors

e time to complete common math/type conversions
e system latency

Knowledge of an application could then be paired with benchmark comparisons
of potential processors to make an informed decision on the best processor for
size, weight, power or cost constrained applications.

This study focuses on the first two items and leaves latency measurements as
another project. [7] worked on latency measurements between an earlier version
of GNU Radio and an Ettus USRP with a USB connection. Tallying FLOPs for
FIR and FFT blocks in series and parallel covers two commonly used processes
and tests the ability of a processor to multitask parallel operations and the abil-
ity of a processor to use multiple threads [3]. The second benchmark is common
math and type conversions. GNU Radio provides the Vector Optimized Library
of Kernels (VOLK) library that selects the best Single Instruction Multiple Data
(SIMD) architecture for a given processor and operation to speed up computa-
tion [10, 12]. An example of this might be in a dot product, a common signal
processing operation, which requires a point-by-point multiplication of two vec-
tors followed by the sum of the products. In many cases, taking advantage of a
SIMD architecture yields faster processing time than the equivalent C-style loop
[10, 14, 13]. Examples of SIMD architectures are the SSE instructions common
in Intel and AMD platforms, while on the ARM architecture the NEON instruc-
tion set provides a similar set of SIMD instructions. VOLK, which has been

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
14 JAN 2013 2. REPORT TYPE 00-00-2013 to 00-00-2013
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Benchmarking GNU Radio Kernelsand Multi-Processor Scheduling £b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Research Laboratory,Center for Applied Research in Artificial REPORT NUMBER
Intelligence, 4555 Overlook Ave., SW,Washington,DC,20375

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONY M(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
New England Workshop for Software Defined Radio (NEWSDR’ 13), Worcester, MA, 17 May 2013.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17.LIMITATION OF | 18.NUMBER | 19a NAME OF
ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE Same as 23
unclassified unclassified unclassified Report (SAR)

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

included in GNU Radio since December 2010, attempts to easily take advan-
tage of SIMD instruction sets on all processors without having the application
programmer be concerned about using SIMD instructions [10, 11, 12]. The first
attempt to benchmark VOLK performance, in February 2012, released tools to
time specific math and type-conversion kernels [11]. The current work combines
the efforts to benchmark VOLK and multiprocessor scheduling of FFTs and
FIRs to a single suite with the intention of comparing potential processors.

Since the interest is in comparing hardware performance, a build framework,
called Open Embedded (OE), is used to install Linux with GNU Radio on the
different machines. OE is a collection of tools and metadata that can cross-
compile a complete Linux system with any applications pre-installed [15]. The
OE metadata is separated into layers based on the use and maintainability of the
software being built [4]. Most of the required system tools are hosted in a layer
called openembedded-core (oe-core); the kernel, and machine description for real
hardware comes from a board support package layer; the applications and de-
velopment tools come from meta-openembedded [4]. There are other layers that
describe the file system layout, software to be installed and corresponding ver-
sions, and a build system that comes from distribution layers such as Angstrom
or Poky [15, 9].

2 Methodology

This study uses a range of hardware to test the effectiveness of benchmarking.
The processors tested so far include

e Intel i7 with hyper threading

e Intel Atom with hyper threading

e AMD E350 APU, comparable to Atom

e ARM Cortex A8 running on a Gumstix Overo on an Ettus USRP E110
The general testing procedure consists of

e Build Linux, GNU Radio, and file system for target machine

e Run benchmarking scripts with VOLK enabled

e Run benchmarking scripts with VOLK disabled

e Optionally run oprofile with desired application

The results from each type of benchmark can be compared with the appli-
cation profile to select the appropriate processor.

2.1 Open Embedded

In order to compare the differences in hardware, the software should be as
controlled as reasonably possible. Using OE to build the Linux kernels and GNU
Radio provides a reasonably fair platform to run benchmarking tools from [8].
OE is also a reasonable choice for creating the benchmark system since the main
interest is in size, weight, and power constrained systems, which will generally
be embedded. We use the Poky distribution that is included via the meta-yocto
layer of OE, and define our custom image which is based on core-image-minimal.
Our new image installs GNU Radio, which is provided in meta-openembedded,
and brings in the integrated benchmarking suite.

2.2 Existing Benchmarking Code

We modified the existing benchmarking tools to store data in a consistent format
that is text-based to avoid dependencies on databases and make results more
portable. The plotting tools for the multi-processor scheduler benchmarking
(FFT/FIR arrays) were changed to use MatPlotLib so that the whole suite uses
the same tools [5]. The plotting for VOLK benchmarking was also changed to
retrieve data from the new format and to create consistent coloring of the results
for easier comparisons.

2.3 Application Profiling

For benchmarking an application we use oprofile, which samples the CPU either
after a certain number of CPU events occur or after a regular time specified, to
return the percentage of running time used in various functions [8, 2]. It is im-
portant that debug symbols be included in the target image so that applications
can be profiled [8]. Since each function call, for example a single VOLK kernel,
becomes a compiler symbol, by profiling a running GNU Radio application the
functions that use the most time can be easily identified.

3 Results

3.1 Open Embedded

Getting a Poky distribution build with GNU Radio to boot on x86_64 (Intel
Atom and AMD E350) and ARM (TT OMAP 3530) created several initial prob-
lems since the primary meta-oe development is done by Angstrom developers
[1] which focuses primarily on ARM architectures. The primary issue was with
the device manager and systemd; specifically, building GNU Radio brings in
systemd through a chain of dependencies. To solve the booting issues on x86_64
and build GNU Radio we used the version of udev provided by oe-core and
use BBMASK variables to mask out everything in the GNU Radio dependency
chain that would lead to systemd or meta-oe udev versions being built. Falling
back on older and more stable oe-core tools where necessary resulted in a Linux

image with GNU Radio that could boot and run the exact same software on the
AMD-based Gumstix board (Ettus E110), the Intel Atom, and the AMD E350
APU.

3.2 Multi-Processor Scheduling

GFLOP/sec

111

Figure 1: GFLOPs per second through an FFT array on an Intel i7.

Example output from multi-processor scheduling tests on an Intel i7 are
shown in Figures 1, 2, 3, 4. The big performance differences come from using
VOLK while doing parallel FFTs. On the FFT plots, Figures 1 and 2, comparing
the gradient in the direction of pipes verses stages yields an interesting difference
between generic kernels and using VOLK. Using generic kernels adding stages
causes a larger increase to FLOPs/s compared to adding pipes; in contrast with
VOLK enabled adding pipes causes an equivalent increase in FLOPs/s as adding

GFLOP/sec

111

Figure 2: GFLOPs per second through an FFT array with VOLK enabled on
an Intel i7.

stages does. Every processor will have a peak in the measured FLOPs where
adding more pipes and stages will not yield an increase in FLOPs and past
which the measured FLOPs will decrease, likely due to the increased need to
store and fetch samples from memory.

The FIR filter results do not seem affected by VOLK kernels being used as
opposed to the generic kernels. This is likely because FIR filter blocks have
already been hand-tuned to use SIMD instructions without VOLK [6].

GFLOP/sec

0ToT

Figure 3: GFLOPs per second through an FIR filter array on an Intel i7.

3.3 VOLK kernels

Figures 5 and 6 show the results of benchmarking VOLK math operations im-
plemented as stand-alone GNU Radio blocks using generic kernels and with
VOLK optimizations, respectively. Type conversions with generic and VOLK

GFLOP/sec

01°1

Figure 4: GFLOPs per second through an FIR filter array with VOLK enabled
on an Intel i7.

improvements are shown in Figures 7 and 8. The height of each bar in these
four graphs is the total time to repeat the named operation 1 billion times; the
black bar shows one standard deviation of those 1 billion measurements.

w
[V
o

atom_gr353_generic
i7_gr353_generic

e110_gr353_generic
e350_gr353_generic

o
o

o w o v
o o o o

Processing time (sec) [1E+Q9 items]
w
o

Figure 5: VOLK math results using a generic VOLK kernel for different pro-
Cessors.

The Intel i7 is obviously much faster than other processors, and the E110 is
obviously much slower. The E110 sees no improvement from VOLK across all
benchmarks because ARM processors use the NEON architecture that is not
well supported in VOLK yet. Some highlights from the VOLK results are that
nearly all instructions on the x86 processors do see improvement from generic
kernels. It is also clear that some processors have more performance gain from
VOLK than others. For example comparing the multiply_cc, which executes a
complex multiply and outputs a complex result, in Figure 5 the Atom is clearly
faster than the E350 using generic kernels. Using VOLK, Figure 6 shows that
the E350 is now slightly faster than the Atom. Similar results appear Figures 5
and 6 with multiply_conjugate_cc, complex_to_mag in Figures 7 and 8.

Some VOLK kernels are actually on par with or slower than the generic
kernels. Since this occurs mostly on the simpler instructions such as add_ff
and multiply_const_ff the likely cause is compilers and processors are already
fine-tuned to do these instructions efficiently.

300

atom_gr353_volked
i7_gr353_volked

e110_gr353_volked
e350_gr353_volked
e200_gr362_volked

%
o

o
o

Processing time (sec) [1E+09 items]
w
o

Figure 6: VOLK math results using VOLK kernels for different processors.

4 Conclusion

Multi-processor scheduling and speed of vector math will play an important
role in processor selection for a software radio application. Being able to pick
a processor that matches size, weight, and power constraints that match de-
sired specifications requires knowledge of processor performance. By integrat-
ing and enhancing existing tools and working through the bugs to run GNU
Radio through a Poky distribution build of OE we have introduced a bench-
marking platform which can assist in choosing the best platform for embedded
software radios. We have also introduced benchmarking results for a small set
of potentially suitable processors for software radio.

References

[1] Contributors to openembedded /meta-oe, October 2012.
https://github.com/openembedded /meta-oe/graphs/contributors.

[2] Oprofile, August 2012. http://oprofile.sourceforge.net/about/.

[3] Eric Blossom. GNU Radio - MP Scheduler
Performance. GNU Radio, 9 edition, July 2008.
http://gnuradio.org/redmine/projects/gnuradio/wiki/MPSchedulerPerformance.

N
ul
=]

atom_gr353_generic

i i7_gr353_generic
£ e110_gr353_generic
.3200 e350_gr353_generic

€200_gr362_volked

o wu
o o

Processing time (sec) [1E+09
3

Figure 7: VOLK type conversion results using a generic VOLK kernel for dif-
ferent processors.

10

N
ul
=]

atom_gr353_volked

[
i B i7_gr353_volked

£ B e110_gr353_volked
oo B 350 gr353 volked
=) HEEl 200_gr362_volked
o

+

1]

()

= 50

—

o

(]

("]

)

(]

€100

=

()]

£

(0]

[1)]

@ 50

(9]

o

1

o

Figure 8: VOLK type conversion results using VOLK kernels for different pro-
Cessors.

11

[4]

[15]

Paul Eggleton and Lloyd Chang. Openembedded-core, September 2012.
http://www.openembedded.org/wiki/OpenEmbedded-Core.

John Hunter, Darren Dale, Eric Firing, and Michael Droettboom. mat-
plotlib, November 2012. http://matplotlib.org/contents.html.

Sean Nowlan. Discuss-gnuradio, November 2011.
http://lists.gnu.org/archive/html/discuss-gnuradio/2011-
11/msg00151.html.

George Nychis, Thibaud Hottelier, Zhuocheng Yang, Srinivasan Seshan,
and Peter Steenkiste. Enabling mac protocol implementations in software-
defined radios. NSDI'09 Proceedings of the 6th USENIX symposium on
Networked systems design and implementation, 2009.

Richard Purdie. The Yocto Project Reference Manual. Linux Foun-
dation, July 2012. http://www.yoctoproject.org/docs/current/poky-ref-
manual /poky-ref-manual.html.

Scott Rifenbark. The Yocto Project Development Manual. Intel and Linux
Foundation, July 2012. http://www.yoctoproject.org/docs/current/dev-
manual/dev-manual . html.

Thomas Rondeau. Volk: Vector-optimized library of kernels. blog,
December 2010. http://www.trondeau.com/blog/2010/12/11 /volk-vector-
optimized-library-of-kernels.html.

Thomas Rondeau. Volk benchmarking. blog, February 2012.
http://www.trondeau.com/blog/2012/2/17 /volk-benchmarking.html.

Tom Rondeau and Dimitrios Symeonidis. GNU Radio
- VOLK. GNU Radio, 11 edition, March 2012.

http://gnuradio.org/redmine/projects/gnuradio/wiki/Volk.

Kees van Berkel, Frank Heinle, Patrick P. E. Meuwissen, Kees Moerman,
and Matthias Weiss. Vector processing as an enabler for software-defined
radio in handheld devices. EURASIP J. Appl. Signal Process., 2005:2613—
2625, January 2005.

M. Woh, Yuan Lin, Sangwon Seo, T. Mudge, and S. Mahlke. Analyz-
ing the scalability of simd for the next generation software defined radio.
In Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. ITEEE
International Conference on, pages 5388 —5391, 31 2008-april 4 2008.

Yocto Project. Openembedded Core, October 2012.
http://www.yoctoproject.org/projects/openembedded-core.

12

13

17

21

©

13

17

21

Listing 1: Benchmark control script.
#!/bin/sh

1st parameter is processor description

2nd parameter is gnuradio version

ARCH=$1

GR_VERSION=$2

FNAME=S$1"_"S$2"_"

export PYTHONPATH=utils/

volk_profile

mp-sched/run_synthetic_fft.py -m 10 -D ’synth_fft.txt’ -L SFNAME"
fft_volked"

mp-sched/run_synthetic_fir.py -m 10 -D ’synth_fir.txt’ -L SFNAME"
fir_volked"

volk/volk_math.py -L $FNAME"volked" -D volk_math.db --all

volk/volk_types.py -L $FNAME"volked" -D volk_types.db --all

Change all architectures in volk_profile to generic

with sed magic

echo ’'o0ld volk_config moved to ~/.volk/volk_config.volked’

echo ’'generic volk_config being generated’

mv ~/.volk/volk_config ~/.volk/volk_config.volked

sed ’'s/\ (orc\|neon\|ss\) [a-z0-9_]*/generic/’ ~/.volk/volk_config.volked
> 7/.volk/volk_config

mp-sched/run_synthetic_fft.py -m 10 -D ’synth_fft.txt’ -L S$FNAME"
fft_generic"

mp-sched/run_synthetic_fir.py -m 10 -D ’synth_fir.txt’ -L $SFNAME"
fir_generic.raw"

volk/volk_math.py -L $FNAME"generic" -D volk_math.db --all

volk/volk_types.py -L $FNAME"generic" -D volk_types.db --all

Listing 2: Modified helper functions for testing.

#!/usr/bin/python
#!/usr/bin/env python

from gnuradio import gr
import math, sys, os,time, re,pickle

try:
import numpy

except ImportError:
sys.stderr.write ("Unable_to_import Numpy\n")
sys.exit (1)

tables can have names with any letter, number, underscore, period, or

dash
table_name_chars = "[a-zA-Z0-9_._-1"

def common_args (parser) :

parser.add_argument (' -D’, ’--database’, type=str, required=True,
help='Database_ (pickled_file) to_rw_results’)
parser.add_argument (' —-listtables’,

default=False, action=’store_true’,
help='print _a_list_of_tables_in_the_database
file’)

[

return parser

13

25 def create_connection (fname) :

29

33

37

41

45

49

53

57

61

69

73

T

def

def

def

def

rrzs

return a file object. If it’s not createx
rrs
try:
return open (fname,’'r+’)
except IOError:
return open (fname,’w+’)

new_table (conn, tablename):

rrs

Create a new "table" of sorts for the results. Each table
should be for a different architecture/machine/type. It’s
best to keep these names unique, but there’s no checker
planned for that.

You should run list_tables first to make sure that you
aren’t duplicating a table. I don’t know what will happen
rrs

conn.seek (0,0s.SEEK_END) # go to end

command is the string to write to file

cmd = "\n<{0}>\n".format (tablename)

conn.write (cmd)

insert_results (conn, res):

Insert results that are apparently dictionary values into
the table. Since this is a text file we pickle the list.
rrs

because mp-sched was designed to be two independent

programs (why oh why oh why?! - fix this later)

appending to a file is the "best" way to insert results
conn.seek (0,2) # go to the last byte in the file

the whole dictionary gets pickled

conn.write ("$newdatarows$")

pickle.dump (res, conn)

list_tables (conn) :
rrs

return a list of all tables in the database
rrs

conn.seek (0)

fstring = conn.read()
match as few characters as possible inside angle brackets
table_names = re.findall ("< ("+table_name_chars+"x?)>", fstring)

return table_names

get_results (conn, tname):

gets all results in tname. tname should match an arch+gr version
No testing is done on originality of tname

rrs

pickle_string = ' (\([a-zA-Z0-9\’"\n]*s\.)?’

conn.seek (0)

fstring = conn.read()

match the < to begin a table

14

81

85

89

93

97

13

17

21

25

29

33

tables = re.split (' (<.*>)?’,fstring)
for i,table in enumerate (tables) :
if table.startswith (’<’+tname+’>’):

res = list ()
entries = re.split ("\Snewdatarow\$", tables[i+1]
for row in entries:
try:
rdata = pickle.loads (row)
except:
yikes! I hope that wasn’t data!
print
else:
rdata

res.append (rdata)
return res

def close_connection (conn) :
conn.close()

Listing 3: Modified MatPlotLib for VOLK results plotting.

#!/usr/bin/python
#!/usr/bin/env python

import sys, math

import argparse

from common_test_funcs import x
import collections

try:
import matplotlib
import matplotlib.pyplot as plt
except ImportError:
sys.stderr.write ("Could_not, import, Matplotlib_ (http://matplotlib.
sourceforge.net/)\n")
sys.exit (1)

def main():
desc=’Plot _Volk_performance_results_from_a SQLite_database. ' + \
’"Run_one_of _the _volk tests_first_(e.g,_volk _math.py)’
parser = argparse.ArgumentParser (description=desc)

parser.add_argument (’-D’, ’--database’, type=str,
default='volk_results.db’,
help=’Database file to read data from [default
% (default)s]”)
parser.add_argument ('-E’, ’'--errorbars’,

action=’store_true’, default=False,
help=’Show_error bars_(l_standard dev.)’)
parser.add_argument (' -P’, ’'--plot’, type=str,
choices=["mean’, ’'min’, 'max’],
default="mean’,
help=’Set_the_type_of_plot_to_produce_[default:
_% (default)s]’)
parser.add_argument (' -%’, ’'--percent’, type=str,
default=None, metavar="table",
help=’Show_percent_difference_to_the_given_type
_ldefault: % (default)s]’)
parser.add_argument (' -T’, ’'--tables’, type=str, nargs=’x’,

15

default=None,
help='select the _tables _to _plot’)

parser.add_argument (' -o’, '—--output’, type=str, default="_",
help='file_to_save_output _to_ (svg)’)
parser = common_args (parser)

args = parser.parse_args()

conn = create_connection (args.database)
if (args.listtables):
tables = list_tables (conn)
for t in tables:
print t
exit (0)

Set up global plotting properties

matplotlib.rcParams [’ figure.subplot.bottom’] = 0.2
matplotlib.rcParams|[’ figure.subplot.top’] = 0.95
matplotlib.rcParams [’ figure.subplot.right’] = 0.98
matplotlib.rcParams[’ytick.labelsize’] = 16
matplotlib.rcParams[’xtick.labelsize’] = 16
matplotlib.rcParams[’legend.fontsize’] = 18

Get list of tables to compare
tables = list_tables (conn)
print args.tables
try:
if set (args.tables) & set(tables) == set (args.tables):
tables=args.tables
else:
print ’sorry_couldnt_find_all of, your_tables, try,a —-—
listtables’
exit (0)
except TypeError:
print ’'Empty_list_of_tables provided, _plotting_all’

M = len(tables)

Colors to distinguish each table in the bar graph
More than 5 tables will wrap around to the start.
colors = ['b’, 'r’, 'g’, 'm’, "k’]

Set up figure for plotting
f0 = plt.figure (0, facecolor='w’, figsize=(14,10))
sO = f0.add_subplot(1,1,1)

Create a register of names that exist in all tables
tmp_regs []
for table in tables:

Get results from the next table

res = get_results(conn, table)

tmp_regs.append(list())
for r in res:
try:
tmp_regs[-1].index (r[’kernel’])

16

93

97

101

105

113

121

125

133

137

except ValueError:
tmp_regs[-1].append(r[’'kernel’])

Get only those names that are common in all tables
name_reg = tmp_regs[0]
for t in tmp_regs[l:]:

name_reg = list (set (name_reg) & set(t))
name_reg.sort ()

Pull the data out for each table into a dictionary

we can ref the table by it’s name and the data associated
with a given kernel in name_reg by it’s name.

This ensures there is no sorting issue with the data in the
dictionary, so the kernels are plotted against each other.
table_data = collections.OrderedDict ()

for i,table in enumerate (tables) :

Get results from the next table

print ’results_from_’+table

res = get_results (conn, table)

S R R ¥

data = dict ()
for r in res:
datal[r[’kernel’]] = r

table_data[table] = data

if args.percent is not None:
for i,t in enumerate (table_data):
if args.percent == t:
norm_data = []
for name in name_reg:

if (args.plot == "max’):
norm_data.append(table_datal[t] [name] ['max’])
elif (args.plot == 'min’):
norm_data.append (table_datal[t] [name] ['min’])
elif (args.plot == 'mean’):

norm_data.append(table_datal([t] [name] ["avg’])

Plot the results
x0 = xrange (len (name_regqg))
i=20
put in to an ordered dict (and order by key) so similar tables
come out
with matching colors —-- could probably be improved by using
orderdict to start
table _data = collections.OrderedDict (sorted(table_data.items(),
key=lambda t: t[0]))
for t in (table_data):
ydata = []
stds = []
for name in name_reg:
stds.append(math.sqgrt (table_datalt] [name] ["var’]))

if (args.plot == 'max’):
ydata.append(table_data([t] [name] ['max’])
elif (args.plot == 'min’):

ydata.append (table_data[t] [name] ['min’])

17

elif (args.plot == "mean’):
ydata.append (table_data([t] [name] ["avg’'])

if args.percent is not None:
ydata = [-100x(y-n)/y for y,n in zip(ydata,norm_data)]
if (args.percent != t):
makes x values for this data set placement
width of bars depends on number of comparisons
wdth = 0.80/ (M-1)
xl = [x + i*wdth for x in x0]
i+=1

sO.bar (x1, ydata, width=wdth,
color=colors[(i-1)%M], label=t,
edgecolor="k’, linewidth=2)

else:
makes x values for this data set placement
width of bars depends on number of comparisons
wdth = 0.80/M
x1l = [x + ixwdth for x in x0]
i+=1

if (args.errorbars is False):
sO.bar (x1, ydata, width=wdth,
color=colors[(i-1)%M], label=t,
edgecolor="k’, linewidth=2)
else:
sO.bar (x1, ydata, width=wdth,
yerr=stds,
color=colors[i%M], label=t,
edgecolor="k’, linewidth=2,
error_kw={"ecolor": ’'k’, "capsize":5,
"linewidth":2})

nitems = res[0] [’nsamples’]
if args.percent is None:
sO0.set_ylabel ("Processing_time_ (sec) [{0:G} _items]".format (
nitems),

fontsize=22, fontweight=’'bold’,
horizontalalignment='center’)

else:
sO0.set_ylabel ("% _Improvement _over_ {0} [{1:G}_items]".format (
args.percent, nitems),
fontsize=22, fontweight=’'bold’)
s0.legend()

s0.set_xticks (x0)

s0.set_xticklabels (name_req)

for label in s0.xaxis.get_ticklabels():
label.set_rotation (45)
label.set_fontsize (16)

if args.output == " _":
plt.show ()
else:
plt.savefig(args.output, format='pdf’)

18

201

10

14

18

22

26

30

34

38

42

46

if name == "__main__":

main ()

Listing 4: MatPlotLib plotting tools for mp-sched results.

#!/usr/bin/python
#!/usr/bin/env python

import sys, math

import argparse

from common_test_funcs import =x

from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm

try:

import matplotlib

import matplotlib.pyplot as plt
except ImportError:

sys.stderr.write ("Could,_not_import Matplotlib_ (http://matplotlib.

sourceforge.net/)\n")
sys.exit (1)

def main():

desc='Plot_synthetic FFT/FIR_filters_from_a_pickled_file of_results

R

"Run_one_of the_synthetic tests_first_ (preferbly with_

run_benchmarking)’

parser = argparse.ArgumentParser (description=desc)
parser.add_argument (' -T’, ’'—--tables’, type=str, nargs=’'x’,

default=None,

help='select the _tables _to _plot’)
parser.add_argument (' -o’, '—--output’, type=str, default="_",
help='file_to_save_output _to_(svg)’)

parser = common_args (parser)
args = parser.parse_args()
conn = create_connection (args.database)

tables = list_tables (conn)
if (args.listtables):
for t in tables:
print t
exit (0)

Set up global plotting properties

matplotlib.rcParams [’ figure.subplot.bottom’]
"figure.subplot.top’]
"figure.subplot.right’]

matplotlib.rcParams [
matplotlib.rcParams [
matplotlib.rcParams[’ytick.labelsize’]
matplotlib.rcParams[’xtick.labelsize’]
matplotlib.rcParams|[’legend.fontsize’]

Get list of tables to compare
tables = list_tables (conn)

19

16
16
18

=0.2
0.95
= 0.98

54

62

66

70

T4

78

82

86

920

94

98

102

H

try:

print ’'sorry_couldnt_find_all_of _your_tables, _try_ a_—-—

if tables.__contains__ (args.tables[0]):
tables=args.tables[0]
else:
listtables’
exit (0)

except TypeError:

print ’'Empty, list _of tables_provided!’

exit (1)

f0 = plt.figure (0, facecolor=’'w’, figsize=(14,14))

s0 = f0.add _subplot(1,1,1)

fl = plt.figure(l, facecolor=

117, figsize=(14,14))

sl = fl.add_subplot (111, projection=’'3d’, azim=230)
res = get_results (conn, tables)

max_stages = 0

max_pipes = 0

min_stages = 20

min_pipes = 20

results = numpy.zeros((10,10)

for r in res:

max_stages = max (max_stages, r[’'stages’])
min_stages = min(max_stages, r[’stages’])

max_pipes = max (max_pipes, r[’'pipes’])
min_pipes = min(max_pipes, r[’'pipes’])
results[r[’'pipes’]-1,r[’'stages’]-1] = r[’'pseudoflopreal’]

stages = numpy.arange (min_stages, max_stages)
pipes = numpy.arange (min_stages, max_stages)

stages = numpy.arange(l,11)
pipes = numpy.arange(l,11)

pipes3d, stages3d = numpy.meshgrid(pipes, stages)

print results.size
print pipes.size
print stages.size

surf = sl.plot_surface(pipes3d, stages3d, results,

cstride=1, cmap=cm. jet,

linewidth=0,

fl.colorbar (surf, shrink=0.5, aspect=5)
sl.set_zlim3d(results[min_pipes—-1, min_stages-1]/2, results.max/()

*1.05)

rstride=1,

antialiased=True)

contour_plot = s0.contour (pipes, stages, results/ (10%x9))
plt.title ('GFLOP/sec’, fontsize=28)
plt.xlabel (' #_pipes’, fontsize=20)
plt.ylabel (' #_stages’, fontsize=20)

plt.clabel (contour_plot, inline=1, fontsize=14)

if args.output == " _":
plt.show ()

else:
plt.savefig(args.output,

format='"pdf’)

20

106

13

17

21

25

29

33

37

41

45

if name == "_main__":

main ()

Listing 5: Modified mp-sched testing for FFTs

#!/usr/bin/python
#!/usr/bin/env python

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

#

#
#

Copyright 2008 Free Software Foundation, Inc.
This file is part of GNU Radio

GNU Radio is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.

GNU Radio is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY, without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along
with this program; 1f not, write to the Free Software Foundation, Inc

.7

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Run synthetic.py for npipes in [1,16], nstages in [1,16]

import re

import sys

import os

import tempfile

from optparse import OptionParser
from common_test_funcs import x

current_dir = os.path.dirname(__file_)

def write_shell_script (f, description, ncores, gflops,

max_pipes_and_stages, database):

mmrn

f is the file to write the script to

data_filename is the where the data ends up

description describes the machine

ncores 1s the number of cores (used to size the workload)

gflops 1is the estimated GFLOPS per core (used to size the workload)

mon

f.write ("#!/bin/sh\n")
f.write (" (\n")
if description:
f.write("echo_’ #D_%s’\n" % (description,))

21

49

53

61

69

73

T

81

85

89

for npipes in range(l, max_pipes_and_stages + 1):
for nstages in range(l, max_pipes_and_stages + 1):
We’d like each run of synthetic to take ~10 seconds

desired_time_per_run = 10

est_gflops_avail = min(nstages x npipes, ncores) x gflops

nsamples = (est_gflops_avail * desired_time_per_run)/(512.0
* nstages * npipes)

nsamples = int (nsamples x 1le9)

cmd = "./%$s/synthetic_fft.py,_-m_-s_%d_-p._%d_-N_%d_-D_%s\n"

o

% (current_dir, nstages, npipes, nsamples, database)
f.write (cmd)
f.write("if_test_$7?_-ge _128; _then_exit _128;_fi\n’)

f.write(")_2>&1_\n")

f.flush ()
def main():
description = """%prog gathers multiprocessor scaling data using

the ./synthetic.py benchmark.
All combinations of npipes and nstages between 1 and —-max-pipes—-and-
stages are tried.
The -n and -f options provides hints used to size the workload. We’d
like each run
of synthetic to take about 10 seconds. For the full 16x16 case this
results in a
total runtime of about 43 minutes, assuming that your values for -n and
-f are reasonable.
For x86 machines, assume 3 FLOPS per processor Hz. E.g., 3 GHz machine
-> 9 GFLOPS.
plot_flops.py will make pretty graphs from the output data generated by
Iprog.
mmn
usage = "usage:_%prog,[options]_-D_results.db_-L_label"
parser = OptionParser (usage=usage, description=description)
parser.add_option("-d", "--description", metavar="DESC",
help="machine_description,_e.qg.,_\"Dual_qguad-core
_Xeon 3 _GHz\"", default=None)
parser.add_option("-n", "--ncores", type="int", default=1,
help="number_of processor cores_[default=%default
)
parser.add_option("-g", "--gflops", metavar="GFLOPS", type="float",
default=3.0,
help="estimated GFLOPS _per core_[default=%default
)
parser.add_option("-m", "--max-pipes-and-stages", metavar="MAX",
type="int", default=1l6,
help="maximum_number_of_pipes_and_stages_to_use_[
default=%default]")
parser.add_option("-D", "--database", metavar="CONN", type="str")
parser.add_option("-L", "--table", metavar="TABLE", type="str")

(options, args) = parser.parse_args ()

22

93

97

101

105

shell = os.popen("/bin/sh", "w")

write_shell_script (shell,
options.description,
options.ncores,
options.gflops,
options.max_pipes_and_stages,
options.database)

c=create_connection (options.database)

new_table (c, options.table)

close_connection(c)

if _ name_ == '_ _main_ ':

main ()

23

