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Abstract 

Sensitive Microelectromechanical System (MEMS) cantilever designs were 

modeled, fabricated, and tested to measure the photoacoustic (PA) response of gasses to 

terahertz (THz) radiation.  Surface and bulk micromachining technologies were 

employed to create the extremely sensitive devices that could detect very small changes 

in pressure.  Fabricated devices were then tested in a custom made THz PA vacuum test 

chamber where the cantilever deflections caused by the photoacoustic effect were 

measured with a laser interferometer and iris beam clipped methods.  The sensitive 

cantilever designs achieved a normalized noise equivalent absorption coefficient of 

2.83×10-10 cm-1 W Hz-½ using a 25 µW radiation source power and a 1 s sampling time.  

Traditional gas phase molecular spectroscopy absorption cells are large and bulky.  The 

outcome of this research resulted was a photoacoustic detection method that was virtually 

independent of the absorption path-length, which allowed the chamber dimensions to be 

greatly reduced, leading to the possibility of a compact, portable chemical detection and 

spectroscopy system. 
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MEMS CANTILEVER SENSOR FOR THZ PHOTOACOUSTIC CHEMICAL 
SENSING AND SPECTROSCOPY 

 
 
 

I. Introduction 

1.1. Challenges for Terahertz Photoacoustic Chemical Sensing and Spectroscopy 

Advancements in Microelectromechanical System (MEMS) fabrication 

technology over the last several decades has been a driving force behind the 

miniaturization and increased reliability of sensor designs.  MEMS devices are an 

enabling technology and through modification of engineering design parameters, 

extremely sensitive sensors can be created.  The primary objective of this research was to 

design, model, and fabricate a compact photoacoustic spectroscopy gas sensor system 

responsive to sub-millimeter/terahertz (THz) radiation.  Micro-fabrication of these 

sensitive MEMS devices presents challenges because as the cantilever sensitivity 

improves, the difficultly in the manufacturability also increases.  The challenge here was 

to create the cantilever sensor to be as sensitive as possible and yet robust enough to 

withstand the required fabrication processes, handling, transportation, and experimental 

photoacoustic (PA) measurement conditions. 

Spectroscopy is the study of the interaction between physical matter and 

electromagnetic radiation [1, 2].  Atoms and molecules absorb and dissipate energy 

through various pathways such as radiative, vibrational, rotational, translational, or 

electronic means [3].  Many sensing techniques over the years have been employed for 

molecular spectroscopy and detection of trace gases [4].  One very compact spectral 
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detection method can take advantage of the photoacoustic (PA) effect on gas phase 

sample species.  The photoacoustic effect is the result of molecules absorbing energy 

from an electromagnetic wave; where the absorbed energy is then released through 

collisions and other non-radiative pathways into translational energy, resulting in an 

increased pressure.  This pressure wave can then be detected by a cantilever or other 

pressure sensing device.  Photoacoustic detection of radiation is an experimental 

technique widely used for spectral detection in solids, liquids, and gasses [4-7].   

Traditional gas phase molecular spectroscopy absorption cells can range from 2-

10 feet long, making them only practical in a dedicated laboratory setting.  The novelty of 

this work was realized through the combination of a sensitive fabricated MEMS 

cantilever transducer, the miniature size of the custom designed photoacoustic chamber, 

the high spectral resolution, and broad frequency range capabilities of the THz radiation 

source.  The outcome of this research was a virtually baseline free photoacoustic spectral 

detection method, independent of the absorption cell path-length which allowed the 

chamber size to be greatly reduced.  The compact MEMS cantilever-based PA cell 

developed during this research was a significant reduction in size when compared to 

traditional THz spectroscopy methods.  This work was also a critical step in the 

development of a technology that may lead to portable or hand held THz chemical 

sensing systems.  

1.2. Potential Applications 

There are numerous applications for PA chemical sensing technology in scientific 

and industrial communities, as well as, in the Air Force and across the Department of 
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Defense.  An obvious scientific application of PA spectroscopy is analyzing gaseous 

samples.  With the compact PA method developed here, this system could be paired with 

an existing spectroscopy cell to enhance measurements or ultimately replace the larger 

traditional THz spectroscopy absorption cell systems.  This technology could also be 

applied in an industrial setting to perform chemical leak or contamination detection for 

multiple hazardous chemicals in the workplace due to the specificity enabled by the high 

spectral resolution and broad frequency range of the THz radiation source. 

Additional applications of MEMS and THz radiation technologies have also been 

investigated for imaging purposes.  The incorporation of superconductor [8] and 

metamaterial [9] layers on MEMS devices has enabled the direct absorption and sensing 

of THz radiation.  As an acoustic sensor, arrays of piezoelectric cantilever and spiral-

beam-supported diaphragm transducers have shown increased sensitivity by about 30 

times when many transducers were connected in parallel [10].   

A mobile chemical detection system would be a valuable tool for troops; giving 

them the ability to monitor environmental conditions as they moved through the 

battlefield.  In the event a chemical weapons attack, multiple detection units deployed 

around an air base could monitor the toxicity levels of the chemical agents.  The ability to 

identify chemical agents and also their concentration is a powerful tool; providing critical 

information about chemical threats.  A compact chemical sensing system, like the one 

designed here, could be used on board a vehicle or medium sized unmanned aerial 

vehicle (UAV) if noise mitigation techniques were employed.  The vehicle or UAV could 

map and track airborne contamination from a hazardous waste or chemical attack incident 
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in real time.  The broad frequency range capability of the radiation source should allow 

for the excitation and thereby identification of a wide range of chemical compounds. 

1.3. Summary 

MEMS cantilever pressure sensors are designed, modeled, fabricated and tested in 

a unique THz PA chamber designed to measure molecular absorption spectra at low 

chamber pressures.  Based on the modeling results, improved sensor designs were created 

and fabrication process improvement techniques were developed to create very sensitive 

cantilever designs.  The MEMS sensor and PA measurement techniques developed in this 

work allowed for the overall dimensions of the system to be reduced in size; an order of 

magnitude smaller when compared to traditional spectroscopy absorption cell designs.  

The compact analyzer system offers a virtually baseline free measurement of molecular 

absorption since the PA signal is a direct measure of the power absorbed by the gas under 

investigation.  The remaining five sections of this dissertation document are: II. 

Background, III. Photoacoustic and Cantilever Modeling, IV. Fabrication, V. 

Experimental Results, and VI. Conclusions. 
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II. Background 

The background for this research effort is broken down into two main areas, 

chemical sensing/spectroscopy and MEMS sensor technologies for PA detection.  In the 

first portion of this section, current techniques used for chemical sensing and 

spectroscopy are discussed.  The various detection methods, sensors used, and 

performance factors of each scenario are also evaluated.  Then sensor technologies for 

PA detection are discussed which includes MEMS sensor technologies, fabrication 

methods, piezoelectric thin films and thin film conditioning techniques are discussed. 

Gas phase chemical sensing and photoacoustic spectroscopy has an advantage 

over traditional transmittance spectroscopy measurements in that the absorption chamber 

dimensions can be made much more compact and still achieve high sensitivity.  The 

significantly more compact size of the PA chamber is made possible through the use of 

MEMS sensor technologies to create sensitive miniature microphones.  

2.1.  Chemical Sensing and Spectroscopy 

Chemical sensing and spectroscopy measurements of gas phase species can be 

made through different means.  “A chemical sensor is a device that transforms chemical 

information, ranging from the concentration of a specific sample component to total 

composition analysis, into an analytically useful signal” [11].  The sensor is a critical part 

of the analyzer, which is typically an automated system that can sample, process, and 

record data about the analyte or chemical sample under investigation.  Chemical sensors 

can be classified according to the principle of operation of the transducer, be it: optical, 
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absorbance, reflectance, luminescence, florescence, refractive index, optothermal effect, 

or light scattering [11].  Many chemical sensor systems have two functional segments, a 

receptor and a transducer portion.  The receptor portion of a sensor often transforms 

information from a chemical sample into energy.  The transducer part of the sensor then 

converts the energy into a usable signal for analysis.  Chemical sensing methods can 

occur based on many principles, but they are predominantly divided into categories of 

either physical or chemical reactions.  Sensors based on physical phenomenon where no 

chemical reaction takes place use measurements of absorbance, changes in refractive 

index, conductivity, pressure, or mass to analyze samples.  While in the second method, 

chemical sensors rely on a chemical reaction to occur or sense changes at the molecular 

level in a sample of interest [11].  In some cases like absorption based sensors, they can’t 

always be classically divided into two separate categories because they operate based on 

the chemical makeup of a material which in turn can cause or rely on a physical 

phenomenon to occur. 

Absorbance is a physical property of an analyte and widely used method for a 

chemical analysis, which typical utilizes an absorption measurement technique using a 

radiation source, detector, and an absorption cell.  A notional layout of a traditional 

absorption spectrometer is shown in Figure 1. 

 
Figure 1. Traditional absorption spectrometer systems can be large; with typical path-
lengths of 3 ft or more for increased sensitivity. 
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In the configuration shown in Figure 1, radiation emitted by the source passes 

through an absorption cell, the gas in the cell absorbs a portion of the energy, and the 

remaining transmitted energy is detected by the receiver.  Attached to the absorption cell 

is a port to allow in a sample species for investigation and a vacuum pump on another 

port to control the pressure in the cell which allows for flexibility of testing gas species 

over a range of pressures.  Gas species in the cell can absorb a portion of the radiation 

and when the right conditions are satisfied, the absorbance of the gas in the system will 

follow the Beer-Lambert law.  The absorption coefficient for a sample species is a 

function of frequency and the units are typically given in units of reciprocal length, cm-1 

or m-1.  The absorption coefficient, α, in the Beer-Lambert law is defined as 

( ) (0)e lI l I    (2.1) 

where l is the path-length the radiation traveled through the cell, I(0) is the intensity of 

the radiation entering the sample, I(l) is the transmitted light intensity that exits the cell 

[12].  This law is valid when a small fraction of the radiation is absorbed by the gas and 

when light losses due to scattering are negligible [13].  In this absorption cell 

configuration, the intensity of the radiation that exits the cell is typically an exponential 

function of the product of the absorption coefficient and the cell path-length.  For weakly 

absorbing species, ΔI~αl, and the sensitivity scales linearly with the cell length.  For 

either case, the sensitivity of the measurement is enhanced by making the cell path-length 

longer for traditional spectroscopy techniques.  

This change in energy is an essential aspect of spectroscopy, therefore relevant 

equations and some basic terminology are discussed next.  A photon in an 

electromagnetic wave has energy E, represented as 
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 E h  (2.2) 

where the photon energy is the product of Planck’s constant h=6.626×10-34 J s and the 

frequency ν, of the radiation [14].  The absorbed energy required to excite a molecule 

from energy level E1 to a higher allowed energy level E2 is also related to the exposed 

radiation frequency through 

2 1E E h  . (2.3) 

Spectral absorbance plots are often represented in terms of the radiation frequency, 

wavelength, or wavenumber.  The wavelength λ of the radiation is defined as 

 
c


  (2.4) 

where c is the speed of light.  The other common way to relate spectral absorbance plots 

is through the wavenumber  , defined as 

1


 . (2.5) 

Units for the wavenumber are also often given in cm-1, depending on the wavelength of 

the radiation.   

The energy absorbed by the molecules can be absorbed into rotational or 

vibrational motion, or into electrical states depending on the excitation 

frequency/wavelength.  The change in radiation power observed at the detector at specific 

frequencies is due to the molecules absorbing a portion of the radiation energy into 

specific allowable energy states.  The allowed energy states are unique to each molecular 

structure, which enables the specificity of the absorption measurement technique.  At 

longer wavelengths of the microwave, THz, and far infrared spectral region, absorption 
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lines are due primarily to energy absorbed into quantized rotational transitions.  As the 

wavelength of the radiation decreases in the infrared, visible, and ultra violet, excitable 

vibrational states also have specific absorption lines.  Finally at shorter x-ray 

wavelengths, electronic transitions in the molecules occur when the electrons of the 

atoms are excited to higher energy states [15].  

For absorption spectroscopy applications, some typical radiation sources include 

blackbody, arc lamps, microwaves, lasers, or tunable lasers.  White et al. developed 

several absorption cell designs that could achieve very long path-lengths to collect gas 

phase absorption spectra with the use of mirrors inside the cell, which caused the 

radiation to make multiple passes through the gas under investigation.  An infrared 

grating spectrometer presented in reference [16] where the absorption cell had an overall 

physical length of 1 m; but through adjustments to the internal cavity, path-lengths of 4-

32 m path-lengths could be achieved.  The spectra collected of N2O (nitrous oxide) was a 

direct measurement of the radiation transmittance and radiation source wavelength.  The 

radiation used was generated from a carbon arc source.  The final wavelength of the 

radiation that was passed into the cell was achieved through the use of prisms, gratings, 

and specific slit configurations.  Due to the complicated optical setup, cell size, and 

radiation source filtering, the spectrometer system had a large physical footprint of 

approximately 4×8 ft2 [16].  

Other developed absorption cells were more compact; which had an overall length 

of ~45 cm, an internal volume of 6 liters, and weighed 29 lbs.  This smaller cell could be 

operated at elevated pressures of up to 10 atmospheres, and could utilize path-lengths of 

10 cm, 1 m, or 10 m [17].  An absorption cell developed by Pilston et al. was slightly 
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more compact measuring in at ~31 cm long.  The effective cell length could be set to 

1.25_m, and increased in length at increments of 1.25 m, all the way up to 10 m.  The 

developed long-path cell was connected to a commercial Perkin-Elmer Model 12 or 

Model 112 spectrometer [18].  For all of these “compact”, long path-length absorption 

designs, the efficiency of the transmitted energy decreased with effective cell length.  

Efficiency losses of up to 40% were observed between the 1.25 m and 10 m path-lengths 

due to reflections, scattering, variations of mirror reflectivity for different wavelengths, 

and atmospheric absorption [18].   

Matsuura et al. created a highly tunable THz source through difference frequency 

mixing of three fiber-coupled lasers [19].  They used low-temperature-grown ultra-fast 

GaAs photoconductors and the THz radiation was amplified through a master-oscillator 

power amplifier.  To demonstrate the frequency control of the THz generation, absorption 

spectroscopy analysis of methyl cyanide (CH3CN) was performed through a small 

absorption cell, 8 cm long and 1 inch in diameter.  Experimental setup of the THz 

generation scheme is shown in Figure 2 (a) and the resultant spectral signature of the 

CH3CN taken at 60 mTorr around 312 GHz region is shown in Figure 2 (b).  The second 

derivative of the absorption spectra collected illustrates the JK = 16K→17K rotational 

transitions.  The second derivative of recorded spectra enhances the identification of 

absorption peak frequencies for partially overlapping absorption lines.  The K=0-11 

numbered rotational transitions are labeled the graph in Figure 2 (b), as well as some 

isotopic absorption features in the inset image between K=5 and K=6.  The spectra was 

collected at a 2 MHz/s sweep rate and had an estimated minimum detectable absorption 

of ~10-5, limited by the detector noise [19].  The THz system demonstrated by Matsuura 
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et al. exhibited very good frequency generation control and the sensitivity of their 

spectroscopy measurements would have likely improved had they used a longer 

absorption cell. 

 
(a)      (b) 

Figure 2. Terahertz photomixing used three fiber-coupled lasers in (a) to generate THz 
radiation and collect absorption spectra of CH3CN at 60 mTorr chamber pressure, © 
IEEE 2000 [19]. 
 

THz spectral signatures enable chemical sensor designs capable of near ‘absolute’ 

selectivity in complex gas phase chemical mixtures due to the intrinsic narrowness of 

spectral signatures [20, 21].  Spectral line width are typically less than 1 MHz; this near 

‘absolute’ selectivity, good sensitivity, and low amounts of sample necessary for 

detection make THz spectral range very attractive for detection of polar molecular 

species.  An additional benefit of THz is that normal atmospheric constituents at low 

pressures do not cause significant spectral interference.  Inexpensive technology is 

commercially available up to 100 GHz courtesy of the wireless communications industry 

[21]. 

As mentioned previously, traditional absorption cells are often made to create 

very long path-lengths to increase sensitivity.  Options like folded cells [21] or multi-pass 
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enhancement techniques [4, 16-18] were used to reduce the overall physical dimensions 

of the absorption cell designs, but they are still rather large.  For radiation sources in the 

THz range, the absorption spectra are primarily due to the rotational degrees of freedom 

of molecules.  Complex absorption spectra of a mixture of 20 gaseous species were 

recorded at the Doppler-limited rotational spectrum with a backward-wave-oscillator-

based fast scan submillimeter spectroscopy technique (FASSST) system [21].  The gas 

mixture was simultaneously tested in the 2.5 cm diameter, 1.2 m long folded absorption 

cell.  

Because rotational energy level spacings are small in comparison to thermal 

energy, a spectrum with a complex redundancy and specific molecular fingerprint 

resulted.  The density of these spectra is a strong function of molecular size and 

symmetry.  Spectra in the ~320–380 GHz region, with the exception of a few relatively 

light species, any comparable bandwidth can access suitable fingerprints for the large 

majority of molecules.  A small segment of spectra from the mixture spanned a 200 MHz 

frequency range and took about 10 ms to acquire [21].  An advantage to the FASSST 

spectral data collection technique was that it has a very rapid spectral data collection rate, 

and slightly more compact configuration due to the folded cell geometry. 

Traditional absorption spectroscopy measurements over the years have used a 

variety of radiation sources and absorption cell designs to achieve very good sensitivity.  

The primary detractor for the absorbance based spectroscopy technique is that the 

detection limits improve with cell length, which can make the overall system size large.  

Another small detractor to the traditional absorption measurement technique is that a 

baseline measurement, with an evacuated absorption cell is required.  The baseline 
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accounts for losses inherent to the cell design and generated standing waves which can 

causes fluctuations in the detector signal at different wavelengths.  Baseline variations 

caused by the standing waves can obscure absorption lines and therefore must be 

accounted for in order to get a more accurate record of the absorption signature for the 

gasses to be investigated.  

A more compact technique to make spectroscopic measurements on gaseous 

samples takes advantage of the photoacoustic effect.  The PA effect is a direct result of 

the energy absorbed by the gaseous sample and the generated pressure wave is then 

detected by a pressure sensitive device.  This shorter absorption path-length 

photoacoustic sensing and spectroscopy technique is discussed in greater detail in the 

next section. 
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2.2. Photoacoustic Sensing 

The photoacoustic effect was published by Alexander Graham Bell in 1880-1881 

when he found that modulated sun light incident on a thin disk generated sound waves 

[7].  A drawing of one of Bell’s many devices to study the PA effect was a 

‘spectrophone’, shown in Figure 3.  When the light radiation was modulated, regions of 

generated sound and silence were observed for given radiation spectra, and “that the 

sounds are in every case due to those rays of the spectrum that are absorbed by the body” 

[7].  

 
Figure 3. A.G. Bell’s ‘spectrophone’ developed to investigate PA effect on samples of 
interest [7].  

Since the initial discovery, photoacoustic detection methods have found many 

applications to include trace gas analysis and spectroscopy.  The photoacoustic effect 

when used on solid, liquid, or gas specimens is used to investigate the electromagnetic 

absorption properties of those materials.  Most chemical detection methods take 

advantage of the fact that different chemicals have their own unique absorption 

coefficients.  For PA gas sensing systems, the pressure operating conditions have 
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classically been divided into intrinsic, molecular, or viscous regimes [22].  Each pressure 

regime was named after the dominant damping mechanisms.  Chamber pressures higher 

than 750 mTorr, operate in the pressure spectrum dominated by viscous damping effects.  

The molecular regime has been defined as the range of 7.5-750 mTorr (1-100 Pa) and the 

intrinsic regime is defined as pressure environments less than 7.5 mTorr [22].  As 

mentioned earlier, this background work will primarily focus on photoacoustic analysis 

of gaseous species. 

Before delving into specific examples of recent PA detection systems, figures of 

merit and other terms traditionally used to evaluate system performance must be 

discussed.  For PA trace chemical detection and spectroscopy systems, figures of merit 

that are most frequently used are a detection limit, signal-to-noise ratio (SNR), 

sensitivity, and normalized noise equivalent absorption (NNEA).  When PA systems 

perform trace chemical detection, the chemical species of interest is then diluted with 

nitrogen, argon, ambient air, or other a non-absorbing buffer gas.  The detection limit, 

describes what minimum detectable concentration of the species of interest the system 

can achieve.  Normally the detection limit is given in parts per million (ppm) or parts per 

billion (ppb), for a SNR equal to one. 

Many parameters affect the detection sensitivity of a PA system.  One of the key 

parameters that affects the sensitivity are the noise in the source and detector 

measurements.  Typical sources of noise in a PA system are electrical, Brownian, and 

vibrational noise.  The SNR for the PA system is defined as 

SNR Signal

Noise

PA

PA
   (2.6) 
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where PASignal is the measure of the PA signal strength on an absorption line center and 

PANoise is the PA signal strength when the radiation is tuned to an off absorption line 

frequency.  To determine the noise floor of the PA signal, the root-mean-squared (RMS) 

value of the PA signal is calculated over some sample interval measured away from an 

absorption line.  In some cases, the radiation frequency cannot be shifted away from an 

absorption line, so the PANoise is determined when the radiation source is either blocked or 

turned completely off.   

The sensitivity αmin, of a system describes what minimum absorption strength the 

system can detect, and it is defined as 

min SNR
peak

    (2.7) 

where αpeak is the strength of the absorption coefficient measured divided by the SNR of 

the measurement.  To achieve the best sensitivity, signals can be averaged over a period 

of several minutes.  Since PA systems can be configured differently, another useful figure 

of merit is the normalized noise equivalent absorption (NNEA) coefficient and it is 

expressed as 

minNNEA oP T  . (2.8) 

NNEA calculations allow for a better performance comparison between different PA 

systems by taking into account the system sensitivity, Po the radiation source power, and 

T, the PA signal averaging time. 

For comparison purposes, the maximum achievable SNR of a traditional THz 

absorption spectrometer is determined by the noise arising from the mixing of the 

background thermal fluctuations with the power generated by the radiation source [23].  
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Equation (2.9) gives the expression for the maximum signal-to-noise in terms of source 

power Po, receiver noise temperature Tr, and electrical post detection bandwidth, Δν.  

max

o

r o

PP

P kT P 
     

  (2.9) 

For example, Po=10 mW, and Tr=1500 K, the maximum signal-to-noise approximately 

equals 6×108 Hz-1/2.  Given a 1 cm absorption path-length, the minimum detectable 

absorption coefficient is ~10-9 cm-1Hz -1/2.  If the incoming power is too high, it can 

saturate the molecular transition, resulting in a lower sensitivity.  To avoid saturation, the 

radiation source power can be attenuated, and is usually kept below 100 W, which 

corresponds to 10-8 cm-1 sensitivity for 1 cm of absorption path-length.  

2.3. MEMS Fabrication Technology 

MEMS and Nanoelectromechanical systems (NEMS) are a tremendously diverse 

field, where devices from the sub-nanometer to millimeter scale can be created via 

numerous means.  Techniques to create these miniature devices are accomplished through 

many fabrication methods; including surface micromachining, bulk micromachining, 

micromolding, and wafer bonding technologies.  MEMS structures can be fabricated 

using crystalline semiconductors, metals, polycrystalline, amorphous, and polymer 

materials.  Surface micromachining techniques are the processing steps performed above 

the surface of the substrate, through the deposition and removal of layers [24].  Bulk 

micromachining includes processing techniques that remove large portions of the 

substrate to form large pits or holes through a wafer [24]. 
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Crystalline semiconductors, in particular Silicon, have been the focus of bulk 

micromachining efforts due to its availability, low cost, mature processing techniques, 

crystal plane structure, and potential for integration with microelectronic circuits [24].  

The atoms in crystalline silicon form four covalent bonds in a diamond-cubic structure, 

which can be represented two face-centered cubic lattices interpenetrating one another by 

(1/4,
 1/4,

 1/4) [25].  The atoms in the lattice form crystal planes and the {111} family of 

planes represent the highest packing density.  The difference in packing density of the 

atomic planes can cause differences in the achieved etch rates, which is discussed further 

in section on 2.3.1 Etching.  Wafers can be formed in different crystal plane orientations.  

When the {100} set of planes is parallel to wafer surface, they are referred to as (100) 

wafers.  Likewise, when one of the other major crystal planes are normal to the surface, 

they are called (110) or (111) wafers [26]. 

Material properties play an important role in MEMS, Young's modulus EY, of a 

material describes the deformation of a material in the elastic region, which is represented 

by a form of Hooke's law as 

 YE



  (2.10) 

where σ is the stress applied in force per area and ε is the resulting strain to the material.  

Young’s modulus for silicon is generally reported to be 130-190 GPa, depending on the 

crystal orientation of the wafer [25, 27].   

To create patterned structures on a wafer substrate, virtually all MEMS and 

semiconductor integrated circuits are created through the use of photoresist and 

photolithography systems.  Photoresists are photosensitive films that come in two distinct 
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varieties, positive or negative tone resists.  When a region of a positive resist is exposed 

to an appropriate dosage of ultraviolet (UV) light, the exposed region can then be 

selectively removed; dissolved away by a developer solution.  Negative tone resists 

function in the opposite manner, areas exposed to UV light will remain on the wafer 

surface after the develop process.  Optical lithography systems, used to expose the 

samples, can be grouped into contact and non-contact methods.  Contact 

photolithography is performed with a typical mask aligner system where the sample to be 

patterned can be touching the surface of the metalized photomask.  Mask aligner systems 

can typically specify proximity, soft, low vacuum, high vacuum, or hard contact exposure 

modes.  Resolution of the contact exposure mask aligner systems is limited by several 

factors, the resist thickness rt, the separation distance between the mask and the resist 

surface s, and the wavelength λ of the exposure radiation.  Based on those parameters, the 

diffraction limited minimum transferable feature size, minfeature can be defined as [25] 

 
3

min
2 2

t
feature

r
s    

 
 . (2.11) 

The achievable minimum feature size is reduced by minimizing the separation distance, 

utilizing a thinner resist layer, and a shorter wavelength for the exposure radiation.   

Non-contact exposure systems include optical projection steppers, electron and  

ion beam lithography, and laser direct write systems.  Non-contact systems offer an 

advantage in that contaminants or other debris cannot be transferred to the sample 

through coming into contact with the mask surface.  Smaller feature sizes are achievable 

when using optical projection techniques; features projected onto the wafer are factor of 5 

to 10 times smaller than the features on the mask depending on the system configuration.  
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For example, a 1 µm feature on the mask results in a 0.1 µm feature size in the resist for a 

10× reduction system.  Stepper projection systems can replicate an area of approximately 

1-1.5 cm2 onto a wafer, the wafer is then moved to the next location and the same pattern 

can be exposed at the new position.  Stepper systems can produce high resolution at 

relatively high production rates.  Single electron and ion beam lithography systems can 

achieve extremely small resolutions of 3-100 nm, but single beam systems are limited in 

their production rates [25, 28-30].  Arrays of electron beam writing systems have been 

developed to increase the production rates [31].   

2.3.1. Etching 

Etching thin films and bulk micromachining of materials is classically grouped 

into two categories, liquid and dry etch technologies.  The type of etch used to remove 

the unwanted material depends on material properties, the desired etch profile, mask 

material used, and etchant selectivity.  Etch profiles produced are also grouped into two 

categories, isotropic and anisotropic, where the etch profile results can vary depending on 

the etch conditions.  A completely isotropic etch, shown in Figure 4 (a), ideally removes 

the target material uniformly in all directions below the opening in the mask layer.  

Anisotropic etch, shown in Figure 4 (b) had a preferential etch in the vertical direction 

and in Figure 4 (c) can be created due to the slower etching of the {111} crystal planes, 

creating a 54.7° angle to the surface.  
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(a)     (b)    (c) 

Figure 4. Isotropic etch in (a) removes the desired material uniformly in all directions, 
while (b) and (c) are examples of anisotropic etches which exhibited preferential etch 
directions. 

2.3.1.1. Wet etching  

Wet etching methods can produce isotropic or anisotropic results depending on 

the material being etched and the etch chemistry.  Wet etching is one of the simplest 

ways to remove thin films and bulk material.  The etch rate of the material is function of 

the temperature at which the etch is performed and the concentration of the etchant used.  

The enthalpy of a chemical reaction is “the difference between the enthalpies of the 

products and the enthalpies of the reactants” which represents the energy given off or 

absorbed in the reaction [32].  Elevated temperatures provide more energy for the 

reaction, making the etch process occur more rapidly as a function of temperature.  The 

concentration strength of the etchant also affects the etch rate; solutions are typically 

diluted to a level that creates the desirable uniform, repeatable etch profile.  Uniformity 

of wet etch chemistry can be limited by mass transport.  Agitation of the liquid etchant 

allows fresh reactant and removal of the reaction byproducts below the mask opening to 

increase the etch uniformity [24]. 

Mask material selection is typically chosen for a high etch selectivity ratio.  Most 

bulk silicon etch processes use LPCVD Si3N4, SiO2, or a few different metallic films for 

the mask layer.  The mask layer needs to be robust and defect free, since pin hole defects 
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through the mask layer allow unwanted etching.  Photoresist masks are not typically used 

during bulk silicon wet etching because they do not hold up well to etchants with 

oxidizing agents.  Common liquid etchants for silicon are KOH, TMAH, 

HF/HNO3/CH3COOH, and HNO3/BOE/water solutions [25, 33].   

2.3.1.2. Dry Etching 

Dry etching techniques are typically performed through vapor or plasma systems.  

A plasma is considered to be the fourth state of matter, it is a quasi-neutral collection of 

charged particles that exhibit collective effects [34].  In plasma etch systems, the ions and 

free radicals in the low pressure gas mixture can be generated through different sources.  

Reactive ion etch (RIE) systems utilize a parallel plate configuration, biasing the cathode 

chuck with a radio frequency (RF) power source, typically at 13.56 MHz, to generate the 

plasma.  Another reactor configuration is an inductively coupled plasma (ICP) system, 

where a liquid cooled helical coil around the outer circumference of the chamber is 

connected to a RF source to generate the plasma.  ICP sources can create a high density, 

low energy plasma due to the electron confinement generated by the RF source.  

Microwave electron cyclotron resonance (ECR) systems are another means of creating 

high density plasmas.  ECR systems have reported etch rates 10 times faster than 

traditional RIE systems while operating at lower chamber pressures [35].   

Deep reactive ion etch (DRIE), often referred to as the “Bosch process”, was 

developed and patented by Robert Bosch GmbH, in 1996 [36].  Since then, many 

companies have claimed patent rights to modified version of deep silicon etch 

technologies.  DRIE systems utilize RIE and ICP power sources, etch chemistry that 
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utilizes a mixture of gasses, and pressure changes to achieve an overall anisotropic etch 

of silicon.  There are three general sequences to the DRIE process which are illustrated in 

Figure 5, where the first step is the etch of the Si material with SF6 rich plasma.  Next a 

conformal passivation polymer layer is deposited over the entire surface using a C4F8 gas.  

In the next step, the polymer layer on the horizontal surfaces is removed with increased 

ion energy.  The sidewalls maintain the passivation layer and the SF6 gas is again used to 

etch a small thickness of the exposed silicon material.  The etch profile through each step 

is controlled through achieving the desired chamber conditions of pressure, gas 

chemistry, and RF power.  The sequence of passivation and etch steps are repeated until 

the desired etch depth is achieved.   

 
Figure 5. Illustration of DRIE process sequence of etch, deposit polymer, and etch, 
where sidewall passivation leads to an overall vertical, anisotropic etch profile [37]. 

Hooda et al. performed a systematic evaluation on DRIE performance 

characteristics; studying the effects of etchant gas flow, pressure, platen power, ICP 
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power, platen temperature, etch, and passivation cycle times [38].   They provided a 

detailed analysis on the effect that each etch parameter had on the etch rates and sidewall 

profile angles.  Shorter passivation cycles and higher flow rates of SF6 lead to negative 

sloped sidewalls.  A phenomenon occurred, as the platen temperature increased, the etch 

rate decreased due to the lower residence time of the free radicals near the surface [38].  

Parasuraman et al. created ultra high aspect ratios of 160:1 with 250 nm wide trenches 

using DRIE and 120:1 ratio with 35 nm wide trenches using a cryogenic DRIE process 

[39].  

Plasma etch system reactions can be complex but more versatile in the achievable 

etch profiles than wet etch chemistries.  Plasma etch rates and profiles are a function of 

several variables.  In a parallel plate RF RIE system, a negative DC bias builds up at the 

cathode due to the significantly higher electron velocities in the plasma.  Chamber 

pressure plays an important role in the etch process because the pressure affects the mean 

free path of the ions.  Ion impact velocities increase at the cathode due to an increase in 

DC bias and when the chamber pressure is reduced.  

Two examples of vapor etching methods include etching SiO2 with HF vapor and 

Si etching using XeF2.  The chemical reaction of SiO2 with HF vapor is described as 

SiO2 (s) + 4HF(g) → 2H2O(g + l) + SiF4 (g) 

where this thermodynamically favorable reaction at room temperature creates gas phase 

SiF4 and H2O in the gas and liquid phases.  If the desorption rate of the H2O from the 

surface is slower than the reaction rate, liquid H2O can accumulate on the surface, 

inhibiting the etch process. 
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Etching Si with XeF2 can be performed through vapor etching.  When XeF2 in 

solid form is exposed to low pressures in the 4 Torr range, it vaporizes and will react with 

silicon.  Samples are exposed to cycles for XeF2 vapor followed by low vacuum; etch 

rates for wafer level processing of 0.2-0.5 µm cycle were reported, while rates were 

higher for small sample sizes [40].  To demonstrate the silicon vapor etching process, 

thermal isolation of thermocouples was performed by removing the Si substrate material 

under the MEMS device.   

2.3.2. Deposition of Films 

The majority of additive surface micromachining is performed through the 

deposition of additional films through physical or chemical vapor deposition (CVD) 

techniques.  Physical vapor deposition (PVD) is performed through evaporation, pulsed 

laser deposition (PLD) [41, 42], sputtering, molecular beam epitaxy (MBE), and atomic 

layer deposition (ALD).  The characteristic attribute of PVD is that the material arrives at 

the substrate based on the line-of-sight from the deposition source.  Evaporation is 

typically performed under high vacuum conditions, and can utilize different heating 

methods: resistive, e-beam, RF induction, or lasers [25].  The heated target material 

vaporizes due to the elevated temperature, high vacuum, and the plume of material is 

deposited on the substrate suspended over the source.  Electron beam evaporation can 

produce extremely pure films, while resistive and RF heaters can introduce 

contamination.  Due to the highly directional deposition from a small source, evaporated 

films exhibit poor step coverage.  PLD is a physical deposition method performed under 

high vacuum or with a backfill of a reactive gas.  A high energy laser is focused on the 
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target material; localized heating at the surface of the target creates a vapor plume of the 

target material that is then deposited on the substrate.   

Sputtering offers a larger selection of deposition materials and can create a more 

conformal coating with better step coverage than evaporation.  Sputtering is typically 

performed with inert gasses such as Ar or Xe, resulting in films composed of the target 

material.  The elevated chamber pressure utilized for sputtering means the particles 

dislocated from the target have a shorter mean free path, going through multiple 

collisions causing a random arrival angle before particles reach the substrate.  Sputter 

cathodes for conductive targets can utilize DC plasma, for nonconductive ceramic targets, 

RF magnetron cathodes must be used.  Reactive sputtering can be performed where a gas 

such as oxygen is added to the chamber during the sputter deposition resulting in 

oxidized films.  Several factors affect the resulting sputtered film quality, chamber 

pressure, sputter power, bias voltage, substrate temperature, and electrode distance [25].  

Deposition through CVD consists of a vapor phase of precursors and reactants 

that adsorb to a heated substrate surface to form the deposited film.  CVD processes 

require an energy source for the favorable reactions to occur at the wafer surface, and can 

create uniform conformal step coverage on complex surface geometries.  Resultant CVD 

films are not limited by line-of-sight deposition, but are a function of the reactant gas 

flow, mean free path, and surface migration of the reactant molecules.  Energy sources 

commonly used are RF-induced plasmas, microwave plasmas, or resistive thermal 

heaters.  Low-pressure CVD (LPCVD) systems can deposit polysilicon films, SiO2, and 

phosphosilicate glass (PSG) which are used to create surface micromachines.  LPVCD 

allows a large batch wafer processes with uniform film growth, with low deposition rates, 
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at relatively high operating temperatures [25].  Thermal CVD processes have also been 

widely utilized for the growth and synthesis of carbon nanotubes [43-49].  

Plasma enhance (PECVD) growth techniques supply the necessary energy to the 

reactants which allows the substrate to be maintained at a lower temperature.  Low 

temperature processes are good for devices that cannot be exposed to the high 

temperatures of thermal CVD systems which could affect dopant profiles or metal contact 

quality.  PECVD systems are commonly used to deposit SiO2 films, which can be used as 

dielectric insulator or passivation layers on devices [50].  Growth of SiO2 in PECVD 

reactors is also affected by RF-power, gas flow rates, gas ratios, and post deposition 

anneals which affect the film's stress and etch rate [51].  Higher chamber pressure 

deposition results in films having a tensile stress, as the pressure is lowered, the deposited 

films tend be become denser producing a compressive stress in the films [25].   

To create thick, high aspect ratio MEMS devices, electroplating can be performed 

through a patterned photoresist.  The LIGA process is a specific way to create thick 

MEMS structures through patterned electroplating which then can be used to transfer the 

pattern into molds [52].  Named after the three primary steps in the fabrication process, 

"LIGA is the German acronym for x-ray lithography (x-ray lithographie), 

electrodeposition (galvanoformung), and molding (abformtechnik)" [25].  The LIGA 

process uses a several hundred micron thick layer of polymethyl methacrylate (PMMA), 

which is photosensitive to x-ray radiation, to create the pattern for the devices.   One of 

the key technologies was the use of a synchrotron radiation source to expose the resist, 

which produced collimated x-rays at wavelengths of ~0.5 nm.  The exposure and develop 

steps took several hours for each step [52].   



28 

In the next step, the Ni seed layer exposed below the PMMA pattern is 

electroplated in a nickel sulfamate bath.  Due to non-uniformity of the nickel plating, the 

Ni surface was then ground flat while still in the PMMA mold.  The PMMA mold was 

then dissolved in a solvent solution, leaving only the thick grown Ni structures.  Injection 

molding was performed in the next phase where a plastic or resin was injected around the 

Ni structures and curd.  Once the Ni and mold are separated, the molds could be used 

again to re-created the Ni structures almost identical to the original; recreating features 

less than 0.1 µm, once again through electroplating.  Original, 300 µm thick Ni 

separation nozzle structures were created from the PMMA cast, and additional Ni nozzles 

were created from the secondary plastic templates.  The plastic templates were used 100 

times with no visible damage to the mold, leading to the potential that the molds could be 

used for mass-production [52].   

LIGA like processes have been used to create thick structures of micro 

manipulators with sub micron features [53], accelerometers [54, 55], and have extended 

the fabrication techniques to alloys and ceramic materials [56].  Processes have also been 

developed to utilize SU-8 resist to create the mold for electroplating, creating Ni 

electrostatic micromotors 160 µm thick in a 300 µm deep mold [57].  The primary 

advantage to LIGA processes is the ability to create devices with large thicknesses, high 

aspect ratios, with smooth surfaces, out of metal or polymer components through 

replication techniques [58]. 
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2.3.3. MEMS Electrical Sensor Methods 

In MEMS sensor technologies, there are three primary means to detect 

displacement of a MEMS device through an electrical readout: piezoelectric, 

piezoresitance, or capacitive.  Capacitive sensing methods rely on the relative movement 

of the MEMS structure to another, typically a fixed surface where the change in the 

capacitance is determined by the separation gap distance.  While the piezoelectric and 

piezoresistive effects rely on the changes in material stresses induced through the motion 

of the device.   

The piezoelectric effect was first discovered by Pierre and Paul-Jacques Curie in 

1880 when they found that when an external force was applied to a single crystal of 

quartz, the surface of the quartz developed a charge [24].  They also found that an applied 

voltage across a piezoelectric material would cause the material to deform.  Due to the 

proportional conversion of mechanical stress to electrical charge, many different 

piezoelectric materials have been used to make sensor devices.  The converse effect, used 

to make actuators where an applied electric potential causes mechanical displacement in a 

device.  The piezoelectric effect is known to occur in many materials such as crystals, 

ceramics, bones, dentin, ivory, silk, wood, nucleic acid, and many more [25].   

Some of the commonly used piezoelectric materials include quartz, barium 

titanate (BaTiO3), zinc oxide (Zn2O3), lead zirconate titanate (Pb[ZrxTi1-x]O3), lead 

titanate (PbTiO3), lithium niobate (LiNbO3), sodium potassium niobate ((K,Na)NbO3), 

and polyvinylidene fluoride (PVDF).  Lead zirconate titanate, commonly referred to as 

PZT is one of the more widespread piezoceramics in use today.  Thin piezoelectric films 
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can be deposited via sputtering [59-66], the sol-gel process [61, 67, 68], metal organic 

chemical vapor deposition (MOCVD) [69], or pulsed laser deposition (PLD) [41, 42, 70-

72].  The sol-gel method requires many iterative steps which consist of spinning on a 

suspension solution, followed by an anneal step to remove the liquid and other undesired 

compounds from the film.  Multiple layers can be applied in this sequence to make a 

thicker film.  MOCVD uses precursor gases that are flowed into a chamber over a heated 

substrate.  A chemical reaction occurs on the heated surface and a thin film is grown 

mono-layers at a time while the by-products of the chemical reaction are flowed out of 

the chamber.   

Piezoelectricity in most cases is described by anions (-) and cations (+) bonded in 

a lattice structure of the material that displace in opposite directions when put under the 

influence of a mechanical or electrical force.  The opposite displacement of the anions 

and cations causes dipoles and a net potential difference across the material.  

Piezoelectric materials can have an amorphous or a crystal structure.  Most often the 

crystal forms can be described by seven crystal structure groups, which are triclinic, 

monoclinic, orthorhombic, tetragonal, trigonal, hexagonal, or cubic.  Several ceramic 

piezoelectric materials have the perovskite structure of type ABX3 with the oxygen atom 

at the face center.  The oxygen anion bonds the different sized (A & B) cautions in the 

crystal structure.  Perovskite materials can take on cubic, orthorhombic, tetragonal, or 

disordered structures. 

Different crystal lattice configurations and orientations are possible for 

piezoelectric materials, the piezoelectric coefficients are best described in an orthogonal 

Cartesian coordinate system (x, y, z) and are specified for each direction.  This is due to 
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the difference is atomic spacing and composition along each crystal plane.  Frequently a 

tensor notation is used to describe the piezoelectric coefficients along specific directions 

in the coordinate system.  For example, when two parallel surfaces on a cantilever form a 

bottom electrode and top electrode with PZT material in between them as illustrated in 

Figure 6, the transverse piezoelectric constant is given as d31.  An induced strain in the x 

axis causes a charge separation in the perpendicular z axis, generating a potential.  The d 

coefficient is the same for both sensing and actuating applications. 

 
Figure 6. Cantilever tip displacement in the -z direction causes the PZT material to 
elongate a small amount Δx in the +x direction, generating a net potential difference on 
the opposite surfaces of the PZT material in the z direction. 

Performance characteristics of several different types of cantilever piezoelectric 

benders was presented by Wang et al. [73].  For a uniform pressure p, applied a 

piezoelectric cantilever bender, the anticipated voltage generated was defined as 
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where hp is the thickness of the piezoelectric layer, ε33 dielectric coefficient of the 
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piezoelectric coupling coefficient.  The A term in Equation (2.12) is the ratio of the 

Young’s modulus of the cantilever material Em over the Young’s modulus of the 

piezoelectric material Ep, 

 m

p

E
A

E
 . (2.13) 

The B term is the ratio of the cantilever material thickness hm over the piezoelectric 

material layer thickness, 
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h
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To make the cantilever sensor as sensitive as possible, the piezoelectric material should 

have a high 31 33/d   ratio and a high k31. 

To optimize performance, most ceramic piezoelectric thin films have to go 

through a poling process to align the randomly oriented dipoles after deposition.  To align 

the dipoles in the material, samples are exposed to a large electric field at an elevated 

temperature.  Required electric field strengths are normally on the order of 10 kV/cm.  

While the sample is subjected to the electric field, they are heated to just above the Curie 

point.  The Curie point is the temperature at which the dipoles in the material can take on 

a random orientation.  With the electric field still applied, samples are then cooled back 

down to room temperature.  The molecules cannot re-order in the cooled state due to the 

accumulated mechanical stress and are 'frozen' in the crystal orientation created during 

the poling process [25]. 
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PZT films sputter deposited on prepared Ti cantilevers, by Kanda et al., in an RF 

magnetron system utilized a 600 °C substrate temperature and 200 W of RF power on a 

Zr:Ti target ratio of 53:47 with PbO excess [74].  The gas composition in the sputter 

chamber was Ar+O2 (19.5 sccm + 0.5 sccm) and the operating pressure was 0.33 Pa (2.5 

mTorr).  The deposited PZT films were 3.8 μm thick.  Samples were further annealed at 

650 °C for one hour to enhance the crystal structure of the film.  The hysteresis loop 

taken using the Sawyer-Tower circuit showed the remnant polarization to be 20 μC/cm2 

and coercive electric field to be -50 and 70 kV/cm.  Before cantilevers were tested, they 

were poled with -30 V (-79 kV/cm), a field strength greater than coercive field on the top 

electrode.  Then in tip displacement tests, the roughly 1 mm long cantilevers exhibited 

good linear tip displacement versus applied voltage from 0 to -19 V, reaching 1 μm 

deflection at -19 V [74].  

Direct patterning sol-gel method of PZT films has been performed by Hwang et 

al. where they added photo-reactive ortho-nitrobenzaldehyde compound to the PZT 

precursor solution.  After the combined solution was spin-deposited and dried on a 

hotplate at 60 °C, the samples were exposed to UV light under a negative tone mask.  The 

then patterned samples were then annealed at 400 °C to remove the carbon ligands from 

the film; one group in ambient air the other in an O2 atmosphere.  Then a sequential 

anneal step was then performed at 650 °C for 45 minutes in O2.  Samples from the 

intermediate anneal in O2 resulted in films that had better piezoelectric and ferroelectric 

properties.  The surface structure of the PZT films did contain some micro-voids due to 

the organics burning out of the films in an oxygen rich environment, but a direct-

patternable PZT film was successfully demonstrated [75]. 
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The transverse piezoelectric coefficient, d31 of PZT films, was studied in detail by 

Shepard Jr. et al. with the use of a wafer flexure apparatus which used air pressure to 

cause mechanical stress on the films.  Two poling tests were conducted and then tested in 

the apparatus.  One test applied different electric field strengths (50-250 kV/cm) for less 

than 1 min and then took measurements to obtain d31 value.  This quick poling field 

application yielded d31 coefficients of 5-16 pC/N.  The second series of tests poled the 

samples at a constant 150 kV/cm for durations of 1 min up to ~21 hours and resulted in 

d31 coefficients of ~25-58 pC/N.   

The d31 coefficient increased rapidly for poling times up to 20 mins; after which 

time the gain began to taper off.  A maximum of -59 pC/N for d31 was achieved after 

poling the sample for ~21 hours, which is very similar value to the value Lee et al. 

reported -58 pC/N when they poled the sample at a lower field and elevated temperature.   

A PZT microcantilever, built by Lee et al. for a scanning force microscopy 

application, was an excellent demonstration of the sensing and actuating capabilities of a 

piezoelectric cantilever.  Fabricated cantilevers were relatively small, only 125 μm long 

and 50 μm wide.  The bottom electrode material was Ti/Pt on SiO2 similar to what many 

others have used previously [77].  A sol-gel deposited PZT layer was 1.25 μm thick and 

in a previous work, they baked the spun on PZT film layer at 600 °C for 20 min [78].  

After the 0.25 μm Au/Cr top metal contact material, PZT films were poled with an 

applied electric field of 30 kV/cm at 110 °C [78].  The low poling temperature allowed 

Au to be used as the upper contact metal.  At resonance operation, the vibrational 

amplitude of the 125 μm cantilever was approximately 24 nm/mV.  The d31 piezoelectric 

coefficient of the PZT film was calculated to be -58 pC/N [77]. 
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Properties of piezoelectric materials, deposition methods, fabrication techniques, 

and some basic applications of piezoelectric sensors were discussed.  Platinum electrodes 

have been the favored by most research groups due to high temperatures samples can 

experience during deposition, anneal, or poling processes.  The fabrication methods and 

techniques used to created piezoelectric devices varied greatly depending on the materials 

used. 

2.4. PA Sensor Systems 

Several research groups have tackled the photoacoustic analysis of gasses and 

other materials using fabricated cantilever, bridges, and membrane microphones.  

Cantilever designs can be used in a wide range of sensor applications.  Cantilever feature 

dimensions can be on the millimeter scale all the way down to the nanometer scale 

depending on the application.  For sensor applications, there are many ways to extract 

information based on the cantilever behavior.  Changes in the cantilever resonant 

frequency, tip amplitude displacement, piezoelectric signal, or combinations of these 

signal behaviors can be used to infer information about changes to the environment.   

De Paula et al. reported an early optical microphone for PA spectroscopy of solids 

where they optically measured the deflection of a pellicle placed over a duct outside a PA 

chamber [79].  The sensor used was a mirrored 25 µm thick Mylar droplet shaped pellicle 

cantilever which was 13 mm long, 2.5 mm wide at the tip, with a narrower anchor 

segment of 1.5 mm wide.  A 1,000 W Xeon lamp was used at the radiation source which 

was then filtered using 10 nm band pass slits.  PA spectra of a blackened Teflon surface 

was collected over the approximately 300-900 nm wavelength range at a sweep rate of 50 
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nm/min, a time constant of 3 s, and a modulation frequency of 17 Hz [79].  Modulation 

frequency scans of the radiation source showed the maximum PA signal was achieved at 

17 Hz due to the long, flexible design of the Mylar pellicle sensor. 

Ledermann et al. fabricated piezoelectric acoustic sensors out of bridge and 

cantilever structures for CO2 detection [80].  Samples were fabricated out of a solid 

silicon wafer that was backside etched to determine the device layer thicknesses, which 

ranged from 5-20 μm.  One of the 2×2×0.017 mm3 (length × width × thickness) 

fabricated cantilever designs used a 5 µm gap around the edge of the beam.  A pulsed 

incandescent lamp was used in the test chamber as the radiation source.  The 

photoacoustic results produced 200-1,300 μV for the measured voltage generated by the 

PZT material on the cantilever design depending on the CO2 concentration.  The 

cantilever design by far outperformed the bridge sensor by almost a factor of two; with 

the cantilever producing 170 mV/Pa and the bridge sensor producing 93 mV/Pa.  

For the fabrication process, Ledermann et al. used a 1 μm thick thermal oxide 

under the bottom electrode to compensate for stress in the cantilever that built up as the 

additional layers were added [80].  The TiO2/Ti and Pt bottom electrode materials along 

with a {100}-oriented PbTiO3 seed layer was used to improve the crystal formation of the 

deposited lead zirconate titanate (PZT) films.  The seed layer established the desired 

orientation and texture for the preferential crystal formation of the PZT.  Deposited by 

chemical solution deposition (sol-gel), a 1 μm thick PZT film was used as the 

piezoelectric material layer.  During the PZT spin on deposition process, samples went 

through multiple bakes at 350 °C and a final anneal at 650 °C under a flow of oxygen.  

X-ray diffraction (XRD) analysis was performed on the annealed PZT films which 
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showed good film crystallinity.  After the top Cr/Au contact layer was in place, the PZT 

film was hot poled at 150 °C for 10 minutes with a 200 kV/cm applied electric field, 

which is about a 20 V applied potential [80].  

Kuusela et al. has made recent progress in making a small photoacoustic trace gas 

detection chamber with cantilever sensor and laser interferometer measurements [5, 6].  

In 2009, they tested six different gases in their chamber with a 10 μm thick silicon 

cantilever that was 3×1.5×0.01 mm3 with 5 μm gap around edge of the cantilever.  In the 

tests, three different LED sources centered at 3.4, 4.2, and 7.0 μm wavelengths were used 

to excite the gaseous species that had absorption lines within those wavelengths.  The 

lowest detection limit achieved was 6 ppm for propane with a 1 s sample integration time.  

Experiments were performed at atmospheric pressure (760 Torr) and the gas species were 

diluted with nitrogen to control the concentration [6].  LED’s offered a compact, low cost 

option for the for PA excitation source.  The broad emitted power spectrum of the LED 

sources, spanned multiple absorption lines of the gasses under investigation.  Dips in the 

spectral output power of the 7 µm wavelength LED was due to the absorption lines of 

water.  Due to the broad spectral output of the LED’s, this system design could only 

perform chemical detection for a limited number of gases.  

Work done by McNaghten et al., published in 2012, reported on interferometer 

based photoacoustic cantilever detection method that used multiplexed tunable diode 

lasers as the radiation sources for trace gas detection in a PA chamber manufactured by 

Gasera Ltd [81].  The cylindrical PA absorption cell region was 11.5 cm long and a 

diameter of 3 mm.  Normal data collection times to analyze a gaseous sample was 

approximately 2.62 s.  To achieve the best sensitivity, signals were averaged over several 
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minutes.  Over a 12 hour data collection run, they found that the Michelson 

interferometer setup showed some instability and fluctuations in signal intensity.  They 

attributed the shifts in signal intensity to acoustic noise in the room and phase shifts in the 

interferometer setup seen at the photodiode.  The Michelson interferometer setup 

remained stable for up to one hour before realignment was needed.  PA measurements 

were taken on gas samples over a range of pressures from very low up to atmosphere  

They found that the optimal photoacoustic signal for their system configuration was at 

93.7 Torr (125 mbar) [81]. 

In an earlier work by Kauppinen et al. they performed trace detection of methane 

(CH4) in a diluted nitrogen environment [82].  The chamber pressure was set at 465 Torr 

(0.6 atm) and a sensitive 4×2×0.005 mm3 cantilever with a 30 μm gap around the device 

was used to detect CH4 down to an estimated detection limit of 0.2-0.8 ppb.  They used 

an optically chopped black body source and a band pass filter that allowed 2.94-3.85 μm 

wavelength radiation to excite the methane gas which has an absorption line at 3.33 μm 

[82].   

In another work by Koskinen et al. they devised a photoacoustic sensor system, 

operated at atmospheric pressure, for trace chemical detection of CO2 in an argon dilution 

[83].  They used a 30 mW tunable laser diode source centered around 1,572 nm 

wavelength, which spanned one absorption line of CO2.  They achieved a normalized 

noise equivalent sensitivity of 1.7×10-10 cm-1W/Hz1/2, which was 10 times better than 

previously reported results.  The increased sensitivity of the system over previous designs 

was achieved by reducing the PA chamber diameter from 10 mm down to 3 mm and by 

using an improved cantilever design.  The exact dimensions of the cantilever and gap 
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used in the work were not discussed.  The photoacoustic test chamber provided by Gasera 

Ltd, used a compact integrated Michelson type interferometer for displacement 

measurements [83].  PA results with the laser on and in the off state was used to compare 

the signal to noise ratio in the system.  The achieved detection limit with the system was 

0.3 ppm and required a 100 s measurement time [83]. 

Adamson et al. used an atomic force microscopy (AFM) cantilever with some 

post processing, and a position sensitive detector (PSD) to perform photoacoustic spectral 

detection on a 2% acetylene (C2H2) mixture in a helium dilution [84].  The cantilever 

used was 1 μm thick, 500 μm long, and 100 μm wide, which was positioned over a 1.5 

mm diameter hole in the acoustic chamber.  PA data was collected at a chamber pressure 

of 37.5 Torr (50 mbar) with a 14!mW modulated laser diode radiation source.  Using a 

1_s acquisition time, the NNEA for the system was 1.2×10-7 cm-1W Hz-1/2.  The PA 

spectra took ~30 min to collect and spanned the 6,520–6,550 cm−1 wavenumber  

(λ=1,533-1,525 nm) range [84].  The absorption path-length in the chamber was only 3 

mm, the cantilever size and the large hole around the cantilever contributed to the lower 

sensitivity of the system. 

Peltola et al. did recent work on gas phase species that utilized an interferometer 

based analyzer system, which included the cantilever sensor, PA chamber, and software, 

manufactured by Gasera Ltd. in Turku, Finland [85].  They investigated the detection 

limits of hydrogen cyanide (HCN) and methane.  The cantilever sensor was 5×1.5× 0.01 

mm3 and they used a continuous-wave optical parametric oscillator (OPO) centered at ~3 

µm wavelength as the radiation source.  The detection limit for HCN was calculated to be 

190 ppt (parts per trillion) in nitrogen and the NNEA was 1.8×10-9 cm-1 W Hz-½ with an 
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OPO power of 0.5 W, and a 1 s signal averaging time.  PA measurements were conducted 

at 300 Torr (~0.4 atm) while the HCN and nitrogen mixture was flowed through the 

chamber at ~1 L/min [85]. 

Sievilä et al. fabricated and tested several different cantilever sensor designs [86, 

87].  They recently performed PA spectral measurements on solid sample species where 

they compared the performance of three different cantilever lengths (3, 4, & 5 mm) and 

two different cantilever thicknesses (5 & 10 µm).  The fabrication process to make their 

cantilever devices started with an SOI wafer which then through two iterations of SiO2 

depositions and 30 minute anneals at 1,000 °C.  The added SiO2 layer was used to 

mitigate residual stress issues later in the release process.  The deposited oxide layer was 

then patterned using optical lithography and etched via RIE to define the cantilever shape 

in the surface oxide layer.  The backside of the handle wafer material was removed 

through DRIE.  Then the device layer was etched in a hot TMAH solution to define the 

cantilever shape.  After removing the oxide layers with a buffered hydrofluoric acid 

solution, the final step in the fabrication process was to coat both sides of the devices 

with a reflective Ti/Au evaporated coating.  The completed cantilever devices had gaps at 

the corners of the cantilever, as a result of the TMAH etch of the device layer.  The 

cantilevers fabricated by Sievilä et al. were then tested in a PA301 photoacoustic 

accessory from Gasera Ltd [87].  The performance comparison of the different cantilever 

designs was accomplished by collecting a small PA spectra of polyethene that contained 

~4 strong absorption lines.  The PA signal strength for the thinner 5 µm thick cantilever 

devices was markedly stronger than the 10 µm thick beams.  For all three cases, SNR 
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improved for the thinner cantilever designs, and had the largest SNR improvement of 

25% was seen for the 5×1.2×0.005 mm3 device [87].  

In the mid 1970's, Krupnov et al. constructed a sub-millimeter PA spectrometer 

which utilized a membrane sensor to measure the PA effect on gases [88].  The sensor 

was a Mylar membrane capacitive microphone, 3 μm thick and 5 cm in diameter.  Their 

cylindrical absorption cell was 13 cm long and 2 cm in diameter.  A smaller diameter 

tube lead away from the center of the absorption tube into the membrane sensor area.  

The active electrode area on the membrane microphone was 2 cm in diameter and placed 

a distance of 40 μm above the bottom electrode of the capacitive sensor setup.  The 

radiation source used was a broadband submillimeter backward wave oscillator (BWO) 

that could produce wavelengths of 1.5-0.28 mm.  Due to the wavelengths produced by 

the radiation source, transmissive Teflon windows were used as end caps on the 

cylindrical chamber.  The radiation source could be used on one absorption cell or on 

multiple absorption cells aligned end to end.  Recorded microphone PA data presented in 

the work was the first derivative of the absorption profile.  They tested chemicals such as 

HCOOH (formic acid), SO2 (sulfur dioxide), and N2O in the chambers to examine the 

rotational energy transitions of the molecules.  Chamber pressures tested ranged from 

0.05-10 Torr and were able to achieve sensitivities of 6×10-9 cm-1 with a radiation source 

power of 10 mW [88].   

Hippler et al. created a sensitive microphone based PA detection system that 

utilized a cavity-enhanced resonance [89].  The absorption lines of water vapor in an 

ambient air background were measured at 0.2 bar.  Due to the multiple reflections of the 

laser source in the cavity, they achieved a NNEA of 2.6×10-11 cm-1W Hz-½, and has the 
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lowest reported PA sensitivity.  This cavity-enhanced technique utilizes a continuous 

wave laser and the PA signal is generated through the resonant acoustic modes of the 

chamber cavity.  

Many factors contribute to the performance of a photoacoustic detection and 

chemical sensing system.  The PA chamber, sensor design, radiation source power, and 

absorption strength of the chemical under investigation can greatly affect the achievable 

detection limits and sensitivity of the system.  Table 1 presents a performance summary 

of the recent trace gas phase PA detection and spectroscopy systems.  Factors from each 

previous work highlight the gas investigated, sensor type used, radiation source power, 

NNEA, and the detection limit of the PA system if available.  

Table 1. Recent PA detection system performance limits. 

Gas Sensor 

Source 
Power 
(mW) 

NNEA  
(cm-1W Hz-½) 

Detection 
Limit 
(ppb) Reference 

CH4 
Tuning 
Fork 2 1.2×10-7  [90] 

CH3OH 
Tuning 
Fork 0.04 2.0×10-10 7,000 [91] 

N2O Membrane 10 6.0×10-11  [88] 
C2H2 Membrane   1.5 [92] 
HCl Microphone 2  3,000 [93] 
CH4 Microphone 10  500 [93] 
H2O Microphone 3 2.6×10-11  [89] 
C3H8 Cantilever 0.15  6,000 [6] 
CO Cantilever 2.93 3.4×10-9 249,600 [81] 

C2H2 Cantilever 1.71 3.6×10-9 1,500 [81] 
CH4 Cantilever 0.81 1.4×10-9 293,700 [81] 
CH4 Cantilever   0.8 [82] 
CO2 Cantilever 30 1.7×10-10 300 [83] 
C2H2 Cantilever 14 1.2×10-7  [84] 
HCN Cantilever 500 1.8×10-9 0.19 [85] 
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2.5. Other Sensing Applications 

Cantilever sensors have been used for many other applications besides PA 

chemical detection such as imaging, wind speed, mass detection, or anomaly detection in 

harsh environments.  THz radiation sources also have been used in other sensing 

applications.  Microelectronics and THz radiation technologies have been utilized to 

demonstrate advanced imaging capabilities.  Ariyoshi et al. built microelectronics 

detector arrays using a niobium based superconductor material to detect THz radiation for 

astronomy and industrial applications [8].  The superconducting detector array was 

operated in a cryostat, which was cooled to temperatures around 0.3-4.2 K.  THz 

radiation can propagate through some materials that are optically opaque in the visible 

light spectrum while absorbed or reflected by other materials.  Their experiments 

examined the signal that was transmitted through thin materials that were transparent to 

the THz radiation wavelengths.  Raster scans were performed on a piece of paper with 

metallic patterns on it and a plastic card that contained integrated circuits.  The THz 

radiation propagated through the plain paper and plastic areas, while the regions that 

contained metal blocked the radiation from getting to the detector [8].  

A MEMS THz detector array was developed by Tao et al. that enabled the direct 

absorption of THz radiation at room temperature using metamaterials [9].  A thin silicon 

nitride layer was used create the physical structure of the plate suspended by two 

cantilever arms.  On the nitride layer, a split ring resonator (SSR) made of Cr/Au was 

deposited and used as the energy absorbing structure.  At THz resonance frequencies of 

the SSR, the device experiences ohmic heating due to the induced current.  The generated 



44 

heat was primarily dissipated through the cantilever legs that were comprised of a bi-

layer material of silicon nitride and Cr/Au.  The difference in the coefficients of thermal 

expansion between the bi-layer materials resulted in the deflection of the cantilever arms.  

The resulting deflection of a single plate was measured optically with a laser and position 

sensitive photodetector (PSD) [9].  An advantage to this sensing technique was that the 

experiments were conducted at room temperature and pressure; meaning the detector 

didn't have to be cryogenically cooled. 

Piezoresistive cantilever style sensor designs have been fabricated for wind and 

airflow detectors.  Wang et al. utilized rectangular cantilever and paddle designs using a 

1 µm thick silicon nitride layer that comprised the cantilever structure and platinum 

traces as the pizeoresistive layer to create airflow sensors [94].  Residual stress in the 

deposited nitride layer caused the cantilever structures to curve up out of plane.  The 

paddle designs had narrow anchor widths to reduce the spring constant and large tip 

surface area to capture the pressure from the airflow across the surface of the sensor.  

Tests were performed at ambient temperature with airflow rates of 0-45 m/s.  The three 

sensor designs tested are shown in Figure 7.  The connecting anchor width was held 

constant at 0.4 mm wide. The other two designs, the top half of the cantilever tip was 

widened to 1.2 mm (center) and 2 mm wide at the tip (on right) in Figure 7.  The widest 

cantilever tip design had the highest sensitivity during the wind tunnel measurements, 

producing a change in resistance of 0.0284 Ω/(m/s).   
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Figure 7. Cantilever and paddle style pizeoresistive airflow sensors with different tip 
widths; from left to right, 0.4, 1.2, and 2 mm wide respectively [94]. 

Du et al. made a two cantilever pizeoresistive wind speed sensor that utilized a 

Wheatstone bridge configuration.  The designed cantilevers, etched out of silicon wafer, 

were 1.53×0.5×0.012 mm3 with deposited platinum traces covering the anchor half of the 

beams.  The wind tunnel tests were conducted at wind speed velocities from 0-8 m/s.  

The input of the Wheatstone bridge was set to a constant potential of 5 V and the output 

voltage of the bridge sensor dropped with increasing velocity from ~25-22 mV.  

Sensitivity of this configuration was found to be 0.49 mV/(m/s). 

Chen et al. created piezoelectric cantilever and spiral-beam-supported diaphragm 

transducers to generate and sense acoustic pressure [10].  The physical support layer for 

the cantilever designs was a 0.8 µm thick layer of low-pressure chemical vapor 

deposition (LPCVD) silicon nitride.  Sputtered ZnO was used as the piezoelectric 

material and evaporated aluminum was used for the electrode material.  The cantilever 

devided were somewhat warped due to stresses between the layers of the deposited films.  

Individual 250 µm long by 250 µm wide cantilever designs with 5-25 µm gap widths 

around the cantilever edge were tested to examine the effect on the generated acoustic 

pressure.  Using a calibrated microphone 3 mm away from the sample; the generated 
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acoustic pressure from the cantilever was measured for the different cantilever gap 

dimensions.  The device was operated at the resonant excitation frequency of 21 kHz and 

a 75 V peak-to-peak sinusoidal driving voltage.  The generated output pressures dropped 

by about 50% of the maximum value achieved when the larger 25 µm gap was used [10].   

Chen et al. also evaluated arrays of the devices connected in parallel.  An 8×8 

array connected 64 transducers in parallel.  When four of the 64 transducer arrays were 

connected in series, the output pressure generated increased to 10 Pa.  The sensitivity as a 

arrayed sensor increased to 2.9 mV/Pa compared to 0.1 mV/Pa for an individual 

transducer.  In the sensor mode, the arrayed configuration increased the sensitivity by 

about 30 times when the four, 64 transducer parallel device arrays were connected in 

series [10].  With some modifications to Chen's design, similar arrays of piezoelectric 

cantilever designs have the potential to be used for PA detection or imaging applications. 

Another application of cantilever sensors has been mass detection.  Minute 

changes in mass on the cantilever cause a detectable shift in the resonant frequency.  Kim 

et al. used alkane chain molecules with thiol groups as a cross-link receptor to detect 

prostate specific antigen-antibodies in liquid [96].  They achieved a mass detection 

resolution of 1.56 ng/cm2/Hz on 1.1 mm long cantilevers.  PZT films 20-40 μm thick 

were made on the silicon substrates via multiple screen-printing and drying steps.  Lee et 

al. used smaller PZT cantilevers, 100 μm long, to detect insulin binding protein and poly 

T-sequence DNA that had masses on the order of 10-15 g [97].  The smaller cantilever 

designs had much higher resonant frequencies of ~1.25 MHz and could detect smaller 

changes in mass based on the shift in resonant frequency of the beam. 
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Kim et al. made improvements to a parallel operation AFM system through the 

uses of thin film PZT to actuate the cantilever instead of a conventional piezotube 

scanner configuration [98].  Signals read from a piezoresistor in the cantilever allowed 

the improved design to have a scan rate of 1 mm/s, much better than the 180 μm/s 

conventional piezotube scan speed.  Cantilever tip displacements of 0.55 μm per applied 

volt were observed along with non-linear behavior for large tip displacements [98].  

Murakami et al. in Japan fabricated diaphragm and cantilever PZT microphone 

sensors for anomaly detection in machines such as turbines or engines in the presence of 

large background noise [99].  Through the sol-gel process, a 1 μm PZT film required 12 

layers of spin coated film and was annealed at 600 °C for ten minutes in an oxygen 

environment every three layers.  Studying the generated output voltage signals from the 

cantilevers; typical transient signals lasted for ~2-3 ms in the ambient pressure 

environment from a sound pulse caused from electrical discharge.  A sample cantilever 

with rough dimensions of 1 mm long by 0.5 mm wide had a sensitivity of 7.1 mV/Pa at 

the resonant frequency of 21.4 kHz [99]. 

Surface adhesion can play a large role in the frequency shift of a resonating 

cantilever.  Sharma et al. used piezoelectric-excited millimeter-sized cantilever sensors to 

investigate adhesion effects at the second-order excitation mode, which was operated at 

resonant frequencies of 57-78 KHz [100].  When a dry 300 μg quartz sample was placed 

on the end of an oscillating cantilever, surprisingly no appreciable frequency shift was 

observed.  When 400 μg of water was added to the tip of the cantilever, the additional 

mass caused a 1,495 Hz reduction in the oscillation frequency.  When a quartz sample 

with a residual water film was placed on the cantilever the additional mass caused an 
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instant shift in the resonant frequency lowering it 1,527 Hz.  In comparison, when ethanol 

was used instead of water on the quartz sample as the interfacial layer, the observed shift 

in resonant frequency was not as great, roughly 40% less than that of water.  Thusly, 

adhesion to the cantilever did play a significant role in the observed frequency shift and 

water, the stronger adhesive layer, caused a larger frequency decrease for the same 

applied mass [100]. 

2.6. Summary 

Traditional spectroscopy measurements using the long path-length absorption 

techniques have been shown to be very accurate and fast at acquiring molecular spectra 

due to improvements in broadband radiation sources and detector sensitivities [20, 21, 

101].  In order to significantly reduce the overall dimensions of a traditional spectroscopy 

system, another method to measure the absorption must be used.  Photoacoustic detection 

of trace amounts of gaseous compounds in nitrogen or argon dilution have shown to be 

both a compact and sensitive chemical detection method [6, 80-85, 102, 103].  The 

increased sensitivity of PA detection is largely attributed to the improved MEMS 

cantilever fabrication and PA chamber designs.   

Several of the PA detection systems discussed used broad-spectrum radiation 

sources that spanned many absorption lines of the chemical species under investigation.  

PA molecular spectroscopy on gas phase samples requires a controllable, extremely 

narrow frequency line-width radiation source, capable of covering a wide spectral range.  

Several groups have performed PA spectral analysis using tunable lasers, primarily at 

short wavelengths in the infrared.   
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Cantilever sensor designs have been used for a wide range of applications.  Many 

of the applications utilize the unique properties of the cantilever behavior to interpret 

changes to environmental conditions such as pressure, mass, or temperature.  The 

environmental changes can cause the cantilever motion to shift in resonant frequency, 

amplitude of deflection, or both.  Techniques employed to measure the induced 

cantilevers deflections have been predominantly optical, piezoelectric, or piezoresistive; 

while the optical measurement techniques have shown to be more sensitive due to 

differences in cantilever designs [80, 83].  

In the next chapter, the photoacoustic chamber design and anticipated pressure 

conditions are discussed.  The MEMS cantilever sensor designs are analyzed and finite 

element model simulations are developed to evaluate the cantilever performance in the 

PA chamber.  
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III. Photoacoustic and Cantilever Modeling 

 The performance of the THz photoacoustic molecular sensing and spectroscopy 

system developed in this work relies on the configuration of the PA chamber and 

sensitive MEMS cantilever designs.  Pressure generated in the small absorption cell 

depends upon the dimensions of the cell, absorption strength of the gas, and radiation 

power.  In this next section, the generated PA chamber pressure will be analyzed.  The 

anticipated pressure is then used to investigate different cantilever designs in order to 

make them as sensitive as possible.  Estimations for the anticipated cantilever deflections 

and resonant frequency are calculated analytically and through finite element modeling to 

predict the sensor performance. 

3.1. Chamber Photoacoustics 

The THz photoacoustic chamber design and resulting analyzer performance is 

based on several factors.  In order to develop an adequate model to predict cantilever 

behavior in the photoacoustic chamber, the range of anticipated pressures must be 

evaluated.  Expected pressures generated in a PA cell are anticipated through the use of 

the ideal gas law and kinetic theory of gasses.  The absorption cell portion of the PA 

chamber shown in Figure 8 is assumed to have a cylindrical shape with characteristic 

length, l and radius, r.  For this analysis, it is assumed that the THz radiation energy from 

the source is uniformly distributed and that the radius of the beam closely matches that of 

the absorption cell radius.  The radiation source power inserted into the chamber is 

defined as Po, while P is the amount of power that exits the chamber.   
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Figure 8. Notional diagram of the chemical absorption cell illustrates the characteristic 
dimensions and other parameters used for the chamber design.  

Over long distances, molecular absorption of radiation is best described by the 

Beer-Lambert law, described in Equation (2.1).  For cases when the concentration of the 

analyte is low and the chamber length is short, the absorbance of a species can be 

described as a linear function of the absorption coefficient α, multiplied by the cell 

length, and the absorbed power ΔP follows the relationship  

 · · 1  l l
o o oo oP P P P P e P e P l         . (3.1) 

Equation (3.1) therefore describes the effective power absorbed by the gas as a function 

of the radiation source power, absorption coefficient, and the short absorption cell length.  

When the THz radiation source is amplitude modulated on and off, the energy absorbed, 

ΔE by the gas during each pulse is described as 

2 m

P
E

f


   (3.2) 

where ΔP is the power absorbed by the gas and fm is the radiation source amplitude 

modulation frequency.  Therefore, 1/(2fm) is the duration of time the radiation source is 

on per period, assuming a 50% duty cycle.  The amount of energy absorbed per pulse can 

then be described by the kinetic theory of gasses as  

3

2 BE Nk T    (3.3) 
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where N is the number of molecules in the enclosed system, kb is Boltzmann’s constant, 

and ΔT is the induced temperature change.  The ideal gas law is then used to determine 

the change in pressure, Δp generated by a temperature increase of ΔT, in the fixed 

volume V of the cylindrical absorption cell.  This change in pressure is described as 

B

N
p k T

V
   . (3.4) 

Substituting Equations (3.1), (3.2), and (3.3) into Equation (3.4) yields an expression for 

the anticipated change in pressure, Δp as function of several variables.  
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     (3.5) 

Equation (3.5) describes the anticipated change in chamber pressure per cycle as a 

multivariable function of radiation source power, px the partial pressure factor of the gas, 

absorption coefficient, chamber radius, and the radiation modulation frequency.  Here, 

the partial pressure factor describes the volumetric fractional abundance of the species 

and can be set equal to one since no backfill of gas is used to dilute the gas species under 

investigation.  Although, for long spectral data collections, the partial pressure factor will 

play a role in the PA response based on the chamber leak rate.  For the derived change in 

pressure shown in Equation (3.5), there is no dependence on the length of the absorption 

cell.  Therefore, this PA spectroscopy technique becomes “virtually” independent of 

absorption path-length, and allows the cell dimensions to be very small compared to 

traditional absorption molecular spectroscopy techniques. 

Absorption line strengths for different chemicals are available through several 

online databases.  The NASA Jet Propulsion Laboratory (JPL) is one database that 
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provides detailed molecular spectroscopy information on many compounds [104].  

Shown in Figure 9 is the complete listing of absorption line strengths for methyl cyanide 

(CH3CN) from the JPL catalog.  This stem plot shows all 1,728 listed absorption lines for 

CH3CN in the JPL catalog, which provides the distinct absorption “finger print” for the 

molecule.  Molecular absorption spectra are also available from another database called 

HITRAN, which stands for High Resolution Transmission [105]. 

 

Figure 9. Absorption spectra plot of CH3CN from JPL database. 

Figure 9 contains a lot of information with closely spaced absorption lines and no 

broadening conditions applied.  Shown in Figure 10 is a small segment of simulated 

absorption coefficient α (m-1) spectra for methyl cyanide, at 18 mTorr with Doppler and 

pressure broadening conditions.  
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Figure 10. Small portion of simulated absorption coefficient spectra of methyl cyanide at 
18 mTorr after appropriate pressure broadening conditions are applied. 

Based on these design space parameters, the anticipated changes in pressures 

could span a very large range depending on the absorption coefficient of the gas and the 

radiation source power.  Changes in pressure could be in the tens of Pascal down to ~0 Pa 

depending on the gas composition, radiation frequency, radiation source power, and 

chamber pressure.  Under ideal conditions, based on Equation (3.5), the change in 

chamber pressure per cycle is expected to be approximately 0.77 mPa (5.79 µTorr) when 

a radiation source power of 0.1 mW, α = 1 m-1, r = 5 mm, and fm = 550 Hz are used.  If 

the chamber radius were reduced by half, down to r = 2.5 mm, and all other contributing 

factors remained constant, the chamber in pressure per cycle would be 3.09 mPa 

(23.15_µTorr), an increase of four times the larger chamber design.  With the anticipated 

photoacoustic conditions in mind, multiple cantilever designs were considered 

analytically and modeled in the CoventorWare® software. 
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3.2. Cantilever Model 

To develop the model of the cantilever sensor, the material attributes of a plain 

silicon cantilever were used.  Of particular interest are the spring constant k and the 

natural resonant frequency fo of the cantilever beam. The physical dimensions of a 

rectangular cantilever of length L, width w, and thickness h, shown in Figure 11, can be 

designed to optimally respond to the change in PA pressure generated in the chamber.  

The cantilever tip displacement and behavior is analyzed under static and dynamic load 

conditions. 

 
Figure 11. Rectangular, single fixed end cantilever beam design of length L, width w, and 
thickness h.  

3.2.1. Cantilever Under Static Load Conditions 

The spring constant of the cantilever determines how far the tip will deflect for an 

applied load.  An equation for the spring constant k of a single fixed beam cantilever 

under a uniform applied load is written as  

3
2

· ·
3 Y

h
k E w

L
   
 

 (3.6) 

where EY is Young’s modulus of silicon.  This equation generates two comments on 

potential beam designs.  The stiffness of the cantilever increases linearly as a function of 
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width and is a cubic function of the thickness over length ratio.  Through modification of 

the physical dimensions of the cantilever, the spring constant or stiffness of the cantilever 

design can easily be modified. 

Hooke’s law describes cantilever deflection when a small static force, F is applied 

to a cantilever with spring constant k.  The resultant deflection distance, y away from 

steady state as defined by Hooke’s law is  

F
y

k
 . (3.7) 

Represented by a one-dimensional cantilever shape function, cantilever deflection 

caused by a uniformly distributed static pressure load pL can be written as  

2 2 2(6 4 )
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24
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x L Lx x p
y x

E I

 
 . (3.8) 

For the uniform pressure load pL = (force / length) applied in the y direction, the vertical 

displacement in the y direction for any point x along the length of the beam, and I is the 

bending moment of inertia for a rectangular beam, given as 

3

12

wh
I  . (3.9) 

Substituting Equation (3.9) into Equation (3.8), the total tip deflection, y(L) at the free 

end of the cantilever due to pL can then be written as 
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Notice that the tip displacement function y(L) is now also linear function of the cantilever 

width.  The dependence of the tip displacement on cantilever width can be removed from 
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the equation by considering the pressure load is changed to a two dimensional load 

pressure pwL =  (force / (width × length)), then 

4

3

3
( )
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y L

E h
 . (3.11) 

In Equation (3.11), the cantilever tip displacement is a linear function of the uniform two 

dimensional applied pressure.  In a photoacoustic test chamber, the changes in pressure 

caused by the radiation can be extremely small, so a lower spring constant would allow 

for greater deflection of the cantilever.   

To compare potential cantilever designs, Equation (3.8) can be rewritten as 
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and the resultant cantilever curvature and displacements were investigated for a small 

pressure load of 10 mPa.  For the calculations, the Young’s modulus for a (100) silicon 

device layer was used such that EY =130 GPa.  Figure 12 shows the results for three 

initial cantilever designs considered which had lengths of 3, 5, and 7 mm, and fixed 

widths and device layer thicknesses of 2 mm and 10 µm respectively.  As the length of 

the cantilever is increased, the effective spring constant decreases, therefore resulting in a 

corresponding increase in cantilever deflection.  Under the 10 mPa load, Equation (3.11) 

predicts the tip displacements to be 9, 72 and 277 nm for the corresponding 3, 5, and 

7!mm long cantilever designs.  Moving away from the 3 mm long device to the 5 mm 

long device design, the anticipated deflection increased by a factor of 8 times.  Once 

again, moving from the 5 mm to the 7 mm long design, the anticipated deflection 

increased by a factor of 3.8 times.  The rate of increase in the tip deflection amplitude 
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gained diminishes as the cantilever designs become longer.  The length over thickness 

ratios of the three designs listed above are 300, 500, and 700 respectively.  It is therefore  

clear that devices with a higher length over thickness ratio displace more and would be 

more sensitive to small pressure loads. 

 

Figure 12. Deflections for three different cantilever designs under a 10 mPa uniform 
static pressure load. 

3.2.2. Cantilever Dynamic Behavior 

The other physical characteristic of interest is the natural resonant frequency, fo of 

the cantilever.  The natural resonance motion of a spring and mass oscillator system 

shown in Figure 13 is described by Newton's 2nd Law of motion and Hooke's Law.  
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Figure 13. Mass and spring oscillator motion described through Hooke's Law and 
Newton's second law of motion.   

Neglecting damping effects, the movement of the object is determined by the 

spring force kx from the spring and the weight of the object mg, where g is the 

acceleration due to gravity, and ma is the mass acceleration force, x is the relative 

displacement distance, and the acceleration a= 2 2/d x dt .   From Newton's 2nd Law of 

motion, the resulting differential equation is 

 
2

2

d x
mg kx m

dt
   . (3.13) 

A solution to the deferential equation has the form 

 sin( )x A t B     . (3.14) 

Solving for the A & B coefficients results in  
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and the solution to Equation (3.13) formulates the natural resonant frequency of motion 

to the spring constant and mass as 
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For cantilever motion, an effective mass meff, is used to represent the mass of the 

cantilever and k is the spring constant shown earlier in Equation (3.5).  This natural 

resonant frequency is of interest because the PA system could be operated in three 

distinct frequency modes; below resonance, on resonance, or above the resonant 

frequency of the cantilever.  Operating the system at the first resonant frequency mode 

would cause greatest displacement of the cantilever tip for small applied PA pressures 

compared to operating at frequencies off resonance. 

The effective mass of the cantilever can be found using Rayleigh’s method 

through the conservation of energy.  In most cases, the Rayleigh-Ritz solution provides 

an approximation where the stiffness is generally over predicted [106].  Applying 

Rayleigh’s conservation of energy method, it can be shown that the effective mass of the 

cantilever is 

104 1

405 4effm whL whL    (3.17) 

where ρ is the density of the material. 

Under an external dynamic load condition, cantilever tip displacement again 

becomes a function described through a differential equation, which includes damping 

effects.  This motion in an under damped system is again described by Newton's 2nd Law 

of motion, where all the internal and external forces can be setup in a detailed balance 

equation.  Two cases of motion are of particular interest, driven oscillation and damped 

harmonic oscillation.  Figure 14 shows the forces acting on an equivalent mass-spring-
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damper configuration, which represents the cantilever tip displacement under an external 

driving force. 

 
Figure 14. Equivalent mass-spring-damper model for cantilever displacement which 
describes the forces, mass, spring, and damping conditions for the system. 

For driven oscillation, as the external force F acts on the system, movement of the 

object is opposed by the spring force kx and the damping force bv. Where m used here is 

the effective mass, x is the relative displacement distance, v= /dx dt  the velocity, a=

2 2/d x dt  the acceleration, and b is the damping coefficient.  Using Newton's 2nd Law of 

motion, the resulting differential equation is 

 
2

2
cos

d x dx
m b kx F t

dt dt
      (3.18) 

where F the amplitude of the driving force, ω is the angular frequency of excitation, and 

φ is the phase term.  The damping term b, greatly affects the response of the system.  

There are three regions of possible damping conditions, over damped, critically damped, 

or under damped.  Critical damping is the case where the motion of the spring mass 

system returns to a steady state condition as quickly as possible, without any oscillation.   

The system is critically damped when the damping coefficient b=bo, where bo is the 

critical damping defined as  
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 2ob mk  . (3.19) 

When b>bo, the system is over damped and the system returns to equilibrium more 

slowly, again with no oscillation.  While the third case is under damped, when b<bo,  

the system will oscillate before returning to equilibrium.  The smaller the damping 

coefficient in the under damped regime, the longer the system will oscillate, slowly 

dissipating the stored energy in the spring. 

The tip displacement position x(t) for a periodic applied force, reaches a steady 

state solution after a sufficient amount of time and is described by  

( ) cos( )x t A t    (3.20) 

where A is the amplitude of the displacement, which is also function of the angular 

modulation frequency ω, the angular resonant frequency ωo of the cantilever, the time 

constant τ, and of the applied force, F.  The amplitude of the response is a function of ω 

and is described as 
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The time constant τ, is defined as 

 
2m

b
  , (3.22) 

represents how quickly the system responds to external stimuli.  If the applied force and 

time constant of the system are held constant, and a modulation frequency scan is 

performed, the amplitude of deflection reaches a maximum value when the modulation 

frequency is equal to the resonant frequency of the cantilever, ω = ωo.  Implementing 
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Equation (3.21) using a 5×2×0.01 mm3 cantilever design, a 0.2 mPa harmonic excitation 

pressure and a damping condition of 5.76×10-7 kg/s resulted in the frequency response 

curve shown in Figure 15.  The damping condition used in Figure 15 was based on an 

under damped system where 5.76×10-7 kg/s was 0.1% of the calculated critical damping 

condition calculated from Equation (3.19). 

 
Figure 15. Amplitude of the frequency response curve for 5×2×0.01 mm3 cantilever 
design with a 0.2 mPa harmonic excitation and a damping condition of 5.76×10-7 kg/s. 

When the system is modulated at the resonant frequency (ω = ωo), Equation (3.21) can be 

simplified to 
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  . (3.23) 

When operated at the resonant frequency of the cantilever, examination of Equation 

(3.23) reveals that greatest amplitude of deflection, for the same applied force, is 

achieved when the damping conditions in the system are minimized and when a 

cantilever with a lower natural resonant frequency is used.  
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Now the cantilever dynamic response to a periodic external applied force is 

discussed.  When the cantilever is at rest, with initial position and initial velocity equal to 

zero; an external periodic force is applied to the system and the resulting tip displacement 

x(t) is 

 ( ) 1 sin( )
t

hx t A e t  
 

   
 

. (3.24) 

Applying Equations (3.22), (3.23), and (3.24) to the 5×2×0.01 mm3 cantilever design; a 

0.2 mPa harmonic excitation and a damping condition of 5.76×10-7 kg/s produced the tip 

displacement plots in Figure 16.  In Figure 16 (a) at time t=0, the 0.2 mPa pressure load is 

applied at sinusoidal frequency of ω = ωo; due to the high frequency, only the envelope 

of the amplitude tip displacement is visible and grows according to the time constant in 

Equation (3.22).    Under the above conditions, the tip displacement clearly reaches a 

periodic steady state amplitude deflection of ~0.82 µm in 2 s.  Shown in Figure 16 (b) is a 

zoomed in view of the first 42 ms of the cantilever excitation. 
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  (a)      (b) 

Figure 16. Envelope of the tip displacement in (a) of a 5×2×0.01 mm3 cantilever design 
when a harmonic pressure of 0.2 mPa was initiated at time t=0 under damping condition 
of b = 5.76×10-7 kg/s.  A zoomed in view of the tip displacement due to the excitation 
load is shown in (b). 

The second case of interest was damped harmonic oscillation with the external 

excitation force removed.  The cantilever tip position given an initial tip displacement 

amplitude decays as  

( ) sin( ' )
t

hx t Ae t  


   (3.25) 

where A is the initial amplitude of oscillation at t=0, τ is the same time constant used in 

Equation (3.21), ωʹ is the angular frequency of oscillation due to the damping conditions, 

and φh is again a phase shift term of the sine wave.  For example, the same 

5×2×0.01_mm3 cantilever given an initial amplitude displacement of 0.82 µm and the 

same damping conditions used in the above example, the cantilever displacement 

dampens out as shown in Figure 17 (a) and a zoomed in time scale view of the signal in 

Figure 17 (b). 
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  (a)      (b) 

Figure 17. Tip displacement in (a) of 5×2×0.01 mm3 cantilever design after PA pressure 
of 0.2 mPa was removed at time t=0 under damping condition of b = 5.76×10-7 kg/s and a 
zoomed in view in (b) of the tip displacement decay due to damping. 

The above equations described the anticipated cantilever behavior in the PA 

system.  The overall cantilever tip displacement is a complex function of the applied 

pressure loads, damping conditions, and resonant frequency of the cantilever design.  It 

could take several seconds for the cantilever to reach full amplitude tip deflection.  A 

longer required excitation time means it will take longer to collect PA spectral data.     

3.3. Finite Element Modeling of Cantilever Designs 

Finite element method (FEM) or finite element analysis (FEA) involves numerical 

problem solving methods to find approximate solutions to a field problem [106].  Field 

problems, described by differential equations, seek to determine "the spatial distribution 

of one or more dependent variables" [106].  FEM takes a physical structure or region and 

divides it into finite elements; the small conjoined element pieces created represent the 

entire physical structure.  The locations where the elements meet is called a node.  The 
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arrangement of the elements in the structure is defined as the mesh.  The finite element 

mesh created in the structure "is represented by a system of algebraic equations to be 

solved for unknowns at the nodes" [106].  Approximate solutions for the structure are 

performed element by element in a piecewise fashion, and the accuracy of the solution 

can be increased by utilizing a smaller mesh size; increasing the number of elements in 

the structure.  The maximum number of mesh elements the software package can handle 

limits the smallest achievable mesh dimension.  This mathematical model of the structure 

is created through the formation of the discrete elements which form a piecewise 

continuous representation of the original structure.   

FEM can be used on a variety of problems to evaluate material stress, 

displacement, heat transfer, electromagnetic fields, and fluids.  FEM simulations are used 

to model the behavior of a particular problem, which is constrained by material 

properties, boundary conditions, and the applied external stimuli. 

Extensive modeling of potential cantilever sensor designs was performed with the 

CoventorWare® software package. Simulations of cantilever tip displacements under 

static and harmonic applied load conditions were evaluated.  In addition, design aspects 

of resonant frequency mode shapes and material stress levels were investigated.  Drawing 

layouts of the proposed cantilever designs, made in the Tanner L-Edit software, were 

imported into CoventorWare® for simulations.  Two-dimensional (2-D) mask layouts 

drawn in L-Edit, used in combination with a fabrication process file in CoventorWare® 

created three-dimensional (3-D) solid models of the devices.  Layer thicknesses of the 

silicon device, buried oxide, and metal layers were defined as part of the fabrication 

process file.  Each mask layer used corresponded to the fabrication steps of either 
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depositing or etching away the desired material layers.  From the constructed 3-D solid 

model, the devices then underwent a meshing step whereby the design was converted into 

a collection of smaller finite element segments.  A 3×1×0.01 mm3 cantilever mesh model, 

shown in Figure 18, was created using 25×25 µm2 square elements in the X-Y plane and 

extruded 10 µm in the Z-direction, the same thickness as the cantilever device.   

 
Figure 18. CoventorWare® mesh model of 3×1×0.01 mm3 cantilever using 25×25 µm2 
square elements, extruded 10 µm in the Z-direction. 

Available methods to create the mesh model depend on geometry of the device.  

When orthogonal geometries are used to create the 3-D model, and all intersecting planes 

meet to form a 90 degree angle; Manhattan, Extruded, or Mapped meshing can be 

performed.  A Manhattan brick mesh type is useful when “orthogonal or nearly 

orthogonal geometries” are used and the Manhattan mesh supports device designs with 

sloped sidewall profiles [107].  The Manhattan mesh allows the user to specify the 

desired element sizes along the X, Y, and Z directions.  While the Extruded mesh model 

allows for a specification of a square dimension in one plane and an extrusion length in 

the third direction.  Modeled objects with curvatures or non-orthogonal geometries must 

use the Tetrahedron mesh option.  The model in Figure 18 used extruded brick, partition 
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algorithm, and parabolic element order to create the mesh model which worked well due 

the geometry of the device and dimensions.   

To evaluate the performance of different mesh settings, a mesh quality study was 

performed to evaluate different extruded parabolic brick mesh sizes.  Mesh dimensions in 

the X-Y plane were varied from as large as 5 mm down to 5 µm lengths per side of the 

bricks.  The device used in the mesh study was the 5×2×0.01 mm3 cantilever design.  The 

cantilevers were subjected to a static pressure load of 1 mPa and the resulting tip 

displacements were recorded.  Figure 19 contains the results of the mesh study and the tip 

displacement results quickly converged for the smaller mesh sizes.  Based on the results, 

the 25 µm mesh was selected for modeling the majority of the devices.  The 25 µm mesh 

was within 0.2% agreement of 5 µm mesh performance but generated the displacement 

results 18 times faster.  The displacement results of the four smallest mesh sizes are 

shown in Figure 20, with a polynomial curve fit function displayed on the graph.  As the 

mesh size was reduced, the predicted displacement of the 5×2×0.01 mm3 cantilever from 

the polynomial fit function approached 5.5636 nm under a 1 mPa static load. 
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Figure 19. Tip displacement results of mesh study for the 5×2×0.01 mm3 cantilever 
design using a z-extruded parabolic brick mesh under 1 mPa static load.  

 
Figure 20. The finer mesh dimensions for the 5×2×0.01 mm3 cantilever shows the 
polynomial fit function predicted a displacement of 5.5636 nm for a 1 mPa load. 

A full design of a sample device was imported into CoventorWare® to show the 

complete view of layers and cantilever construction.  Shown in Figure 21, the surface of 

the device was subjected to a 1 Pa load pressure and the cantilever deflection is 

exaggerated to make the deflection more evident.  All other modeling was performed 

only on the cantilever portions, which included a very small anchor area of the BOX and 

the handle wafer which were held as fixed regions in the models. 
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Figure 21. Comprehensive CoventorWare® model created from L-Edit mask layouts and 
fabrication process file to define the handle wafer, device, and BOX layers.  The 10 µm 
thick device layer was subjected to a 1 Pa pressure load which caused a 4 µm tip 
displacement. 

With a mesh setting established, multiple cantilever designs were then evaluated 

and compared.  Traditional cantilever design parameters of length, width, and thickness 

were used to investigate designs sensitive to the lower end of the anticipated pressure 

spectrum.  Beam designs must take advantage of a large length over thickness ratio to 

reduce stiffness of the beam and allow greater deflection under small pressure loads.  Due 

to the large span of anticipated pressure conditions, both static and resonant modes of 

cantilever deflection were studied in CoventorWare®.  
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Cantilever designs from 3-9 mm long and widths of 1-5 mm were drawn and then 

imported into CoventorWare®.  Static load simulations were accomplished to study the 

resultant cantilever bending shape and tips displacements.  A static load of 10 mPa was 

imposed on each of the design variations which all had a 10 µm thick device layer, and 

the displacement results are summarized in Table 2.  A static load condition is somewhat 

representative of an operational test condition if the THz radiation was modulated at a 

very low frequency.  The magnitude of the tip displacement increased significantly with 

cantilever length.  As the width of the cantilevers increased, there was no change or a 

very slight decrease in the cantilever deflection observed in the simulations.  These 

results predict that there is very little difference in deflection for different cantilever 

widths, especially between the 1 mm and 2 mm wide designs, which is in agreement with 

Equation (3.11). 

Table 2. Tip displacement results, listed in nanometers of deflection, for 10 mPa static 
applied pressure load on the different cantilever designs with a 10_µm device layer 
thickness. 

  Cantilever Width (mm) 
 1 2 3 5 

Cantilever 
Length (mm) 

Displacement 
(nm) 

Displacement 
(nm) 

Displacement 
(nm) 

Displacement 
(nm) 

3 7.3 7.2 7.2  
5 55.5 55.5 55.5 55.5 
7 213.2 213.0 212.8 212.9 
9 582.2 582.0 581.7 581.5 

 

Shown in Figure 22 is the beam deflection of the 5×2×0.01 mm3 cantilever under 

a 1 mPa static pressure load and the resultant mises stress in Figure 23.  This beam 

configuration had a tip displacement of 5.5 nm and a maximum stress of 7.4×10-4 MPa 
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near the base of the beam.  Beams modeled under lighter load conditions showed even 

less bending as the tip displacement scaled linearly with changes in load pressures.  

 
Figure 22. CoventorWare® finite element model of a 5×2×0.01 mm3 cantilever under a 
1_mPa static load had a resultant beam deflection of 5.5 nm. 

 

 

Figure 23. Resultant mises stress generated in the 5×2×0.01 mm3 cantilever beam under 
the same 1 mPa static load. 

It is important to note that the mises stress profile in the silicon device layer 

attains a maximum value at the surface near the anchor point of the beam.  The surface 

stress in the silicon layer reduces along the cantilever length to near zero, just past the 

midpoint of the cantilever length.  Stress in the material layers is of great importance if a 

piezoelectric or peizoresistive layer were to be incorporated into the cantilever device.  
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Additional simulations using piezoelectric layers and different cantilever designs are 

discussed in Appendix A.  

A modal analysis was performed to determine the natural oscillation modes and at 

what frequencies they occurred for the cantilevers.  The first resonant mode is desirable 

as it exhibits the greatest tip deflection at the lowest resonant frequency.  All other higher 

order modes are undesirable since they experience much less tip deflection.  Shown in 

Figure 24 are the mode shape and frequency results for a 5×2×0.01 mm3 cantilever 

subjected to a 1 mPa sinusoidal load.  The second resonance is a torsional mode, third 

resonance is a small amplitude multi-peak longitudinal mode, while the fourth resonance 

is a combination longitudinal and torsional modes.  A desirable beam design would have 

a large separation between the first and second modes of resonance to minimize the 

potential of exciting the torsional mode during testing in the photoacoustic chamber.   
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Figure 24. Cantilever resonant mode shapes and frequencies for a 5×2×0.01_mm3 
cantilever due to a sinusoidal load. 

A summary of the first and second resonant frequency results is shown in Table 3 

for each of the beam designs modeled.  As the beam width increased, the second 

resonance mode moved significantly closer to the lower first resonant mode frequency.  

As the cantilever beam width increased, the first resonant mode increased only slightly.  

Cantilever designs that utilized the 5 mm beam widths produced significantly lower 

second mode resonant frequencies.  Based on these results, it is advantageous to select 

beam designs that have a narrow width since increased widths cause the second harmonic 

mode to shift down closer toward the first resonance mode.  Also, for these standard 

rectangular cantilever pressure sensor designs, there is no advantage to utilizing an 

increased width, other than to make alignment in the PA system easier.    
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Table 3. Mode 1 and 2 resonant frequencies for each beam design length and width 
tested, utilizing a 10 µm thick device layer. 

 Width (mm) 
 1 2 3 5 
Length 
(mm) 

Mode 1 
(Hz) 

Mode 2 
(Hz) 

Mode 1 
(Hz) 

Mode 2 
(Hz) 

Mode 1 
(Hz) 

Mode 2 
(Hz) 

Mode 
1 (Hz) 

Mode 2 
(Hz) 

3 1,516.63 8,542.32 1,56.28 4,765.54 1,527.36 3,500.80   
5 549.92 3,445.98 550.12 2,629.64 550.25 1,869.13 550.40 1,261.26
7 280.67 1,758.70 280.76 1,759.10 280.93 1,264.61 280.90 830.15
9 169.83 1,064.09 169.86 1,064.13 169.91 953.96 169.96 614.70

 

The next examination performed was a harmonic modal analysis which computed 

the magnitude of cantilever tip deflection caused by a harmonic load applied to the 

surface of the cantilever as a function of frequency.  In this method, a cantilever damping 

parameter is used and is defined as a fraction of the critical damping coefficient bo.  A 

series of percentages of the critical damping coefficient values were selected and tested to 

represent a range of possible pressure damping effects in the test chamber from 

atmospheric down to low vacuum conditions.  Anticipated test conditions in the 

photoacoustic chamber were in the 5-600 mTorr pressure range.  In Figure 25, a 0.1 mPa 

harmonic load was applied to the 5×2×0.01 mm3 cantilever design under five different 

damping conditions from 10% down to 0.1% of the critical damping factor.  When 10% 

of the critical damping factor was used, which roughly represents atmospheric pressure 

conditions, the amplitude response was weak and occurred over a broad frequency.  As 

the percentage of the critical damping factor used was reduced, the amplitude response of 

cantilever increased sharply.  
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Figure 25. Amplitude displacement frequency response generated in FEM software of a 
5×2×0.01 mm3 cantilever under a 0.1 mPa harmonic load for different damping 
conditions. 

Harmonic modal analysis was then performed on a 7×2×0.01 mm3 cantilever 

design.  The relative amplitude displacement of the four lowest order modes were looked 

at for a 0.1 mPa applied harmonic load and using 10% of the critical damping factor.  The 

magnitude of the amplitude response for each of the four modes are shown in Figure 26, 

and the overall mode shapes are the same as those seen in Figure 24.  For modes 1 & 3, 

the magnitude of the displacement is the same anywhere along the tip of the cantilever.   

The maximum displacement for modes 2 & 4 occur at the corners of the cantilever tip, 

due to the torsional motion.  The two largest contributing modes to the amplitude 

deflection are the first and second modes, while the amplitude generated in the third and 

fourth modes were extremely small. 
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Figure 26. Amplitude displacement response shown for the first four lowest resonant 
modes of the 7×2×0.01 mm3 cantilever under a 0.1 mPa harmonic load and 10% of the 
critical damping coefficient. 

To further compare the damping effects, Figure 27 illustrates the resulting tip 

deflections for three cantilever beam designs under the 0.1 mPa sinusoidal load utilizing 

10% and 0.5% of the critical damping coefficients.  It is clear that the tip deflection of the 

0.5% damped cases greatly exceeded that of the 10% damped cases which have over an 

order of magnitude less deflection.  The 3×1×0.01 mm3 cantilever beam illustrated by the 

dashed blue line in Figure 27, had a maximum of 7 nm tip displacement at the first 

resonant frequency of 1,517 Hz with the 0.5% damping coefficient.  The 5×2×0.01 mm3 

cantilever illustrated with the black dashed line in Figure 27 had a maximum tip 

displacement of 56 nm at 550 Hz, under the 0.5% damping condition.  The final beam 
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illustrated by the red lines in Figure 27 is a 7×2×0.01 mm3 cantilever.  Under the same 

0.5% damping condition, it had a maximum tip displacement of 280 nm at 280 Hz 

modulation frequency.  The second resonance mode peak is observed with the 7×2×0.01 

mm3 cantilever which is the lowest peak on the graph with a 3 nm tip torsional 

displacement at 1,759 Hz.   

 
Figure 27. Three cantilever designs, using a 10 µm thick device layer, under a 0.1 mPa 
harmonic load with 0.5% damping illustrated by the dashed lines while a 10% damping 
factor results is significantly less deflection shown by the solid lines. 

Due to the small displacement of the 3×1×0.01 mm3 cantilever, they were not 

considered as candidates for fabrication.  Another series of simulations was performed 

using four different cantilever designs shown in Figure 28, which compares the 

performance of designs with 5 µm or 10 µm thick device layers.  In Figure 28, the 5 µm 

device layers are represented by a dashed line and the 10 µm thick device designs are 

shown with a solid line.  The simulation again used a 0.1 mPa sinusoidal load with 0.5% 

of the critical damping factor.  The more flexible 7×2×0.005 mm3 design showed 
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significantly more deflection than the other designs.  The next most sensitive design was 

the 5×2×0.005 mm3 cantilever, deflecting ~2 times more than the 7×2×0.01 mm3 design.  

 

Figure 28. Tip displacement results for four different cantilever designs under 0.1 mPa 
harmonic load, 0.5% of the critical damping coefficient, the more flexible 
7×2×0.005_mm3 design showed significantly more deflection. 

Additional simulations reduced the damping conditions for the analysis to 0.1% of 

the critical damping coefficient to simulate a lower pressure environment.  Shown in 

Figure 29 is the tip displacement amplitude response of a 5×2×0.01 mm3 silicon 

cantilever under four sinusoidal load conditions.  Simulated sinusoidal load pressures of 

0.03-7.5 µTorr (0.05-1 mPa) resulted in amplitude displacements of 0.14- 2.8 µm 

respectively.  The modeled results predict cantilever deflections which could easily be 

measured optically with a laser interferometer setup and provided a reasonable estimate 

of PA performance of the cantilever design. 
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Figure 29. Resultant tip deflections from modal harmonic analysis of a plain silicon 
5×2×0.01 mm3 cantilever design under four periodic load conditions using 0.1% of the 
critical damping coefficient.   

The predicted resonant frequency from the analytical and FEM models of the 

5×2×0.01 mm3 and 5×2×0.005 mm3 cantilever designs are summarized in Table 4.  Using 

the equations for the effective mass in Equation (3.17) to calculate the cantilever resonant 

frequency with Equation (3.16), the results produce higher resonant frequencies than the 

FEM simulation predict.  The actual resonant frequency of the cantilever devices is 

expected to fall between the two frequency predictions, with some deviation expected 

due to variations in the fabrication process and the final dimensions of the cantilevers.  

Table 4. Analytical and FEM resonant frequency calculations for two cantilever 
designs. 

 Resonant Frequency (Hz) 
Cantilever Design  

(mm3) 
Analytical 

(Hz) 
FEM 
(Hz) 

   5×2×0.01 766 550 
   5×2×0.005 383 275 
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There are several advantages to developing an accurate FEM simulation to 

evaluate cantilever performance in the PA chamber.  With a well established framework 

in place, both traditional rectangular and non-traditional racket and dual anchored 

cantilever designs could rapidly be evaluated in order to optimize the next generation 

THz PA sensor.  For a fixed device layer thickness, racket and dual anchor designs may 

present an advantageous means of modifying the spring constant of the beams by 

changing the anchor width while maintaining a larger tip area to capture the PA pressure. 

Analysis of the analytical equations and FEM results highlights the two factors 

that were considered in selection of a beam design for fabrication, the magnitude of the 

tip displacement and the cantilever's resonant frequency.  If the PA system is modulated 

at the resonant frequency of the cantilever, this results in the maximum deflection for the 

device design.  Selection of a reduced resonant frequency design due to Equation (3.5) 

showed the anticipated change in chamber pressure per cycle is inversely proportional to 

the modulation frequency, and a lower resonant frequency means a lower spring constant 

and therefore greater deflection of the cantilever.   

3.4.  Summary 

In this chapter, the anticipated pressure changes in the PA chamber were 

considered through the use of the ideal gas law and the kinetic theory of gasses.    Factors 

used to determine the anticipated change in pressure were based on the chamber 

dimensions, the THz radiation source power, modulation frequency, and the absorption 

coefficient of the gas under investigation.  The HITRAN and JPL databases were used to 
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find the molecular absorption coefficients for CH3CN and the absorption coefficients 

were used to calculate the anticipated pressure changes in the PA chamber.   

Several factors were considered in selection of a cantilever beam designs for 

fabrication.  Cantilever length, width, and thickness parameters affected the resultant tip 

displacement under static and dynamic load conditions, as well as the cantilever resonant 

frequencies.  The other factor that significantly affected the cantilever displacement was 

the amount of damping; reduced damping conditions lead to a sharp amplitude response 

when the applied pressure was modulated at the natural resonant frequency of the 

cantilever.  The anticipated change in chamber pressure per cycle is inversely 

proportional to the modulation frequency, so the selection of a reduced resonant 

frequency design would allow for more deflection.  From the modeled beam designs, the 

5×2×0.01 mm3 beam was selected first for fabrication.  This design was selected due to 

the moderately high resonant frequency and predicted tip deflections were adequate for 

low pressure loads.  To increase sensitivity, a 5×2×0.005 mm3 cantilever was selected for 

fabrication next due to the predicted increase in tip deflection and lower resonant 

frequency.   
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IV. Fabrication 

Based on the harmonic load deflection results from the FEM models and 

analytical predictions, several cantilever beam designs were fabricated using the device 

layer of Ultrasil SOI (100) wafers.  SOI technology offers several advantages for PA 

cantilever sensor fabrication.  Crystalline silicon as the device layer offered good 

uniformity, repeatability, and low residual stress that resulted in excellent PA cantilever 

designs.  SOI wafers with device layer thicknesses ranging from 5-20 μm were used to 

create cantilever sensors.  Conventional micro-fabrication systems were used at the AFIT 

class 1,000 and Air Force Research Laboratory (AFRL) class 100 cleanrooms to 

complete the necessary device fabrication steps.  Process development and proper 

execution of the fabrication techniques were critical to successfully making these 

sensitive devices.  The following sections will discuss in detail the Photolithography 

Mask Fabrication and Cantilever Device Fabrication processes that were developed and 

used to create the PA sensors in this effort. 

4.1.  Photolithography Mask Fabrication 

The photolithography mask design and fabrication process began with the 

drawing layouts created in the L-Edit software.  Layouts consisted of multiple layers, and 

each layer represented a step in the fabrication sequence.  All the photolithography mask 

design layouts and mask fabrication processes were conducted in-house using a 

Heidelberg µPG 101 direct write system, which allowed for rapid design concept to a 

completed photolithography mask that was used in a traditional contact mask aligner 
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system.  The µPG 101 system can read three data file format types: DXF, CIF, and BMP.  

DXF is the standard AutoCAD file format, CIF is the Caltech Intermediate Form format, 

and BMP is the MS-Windows® Bitmap format.  DXF and CIF file formats can be used to 

expose standard 2-D designs while the BMP format can be used to perform grayscale 

lithography to create 3-D structures in photoresist.  In the L-Edit software, mask designs 

are created as Tanner Database (TDB) file, then all the layers are changed to a single 

layer type, and the file is exported to a CIF file format prior to transferring the design to 

the Heidelberg direct write system. 

Heidelberg direct write systems with 3 µm or 1 µm minimum feature sizes were 

available in the cleanroom, and each system offered unique capabilities.  The Heidelberg 

3 µm mode µPG 101 machine can write to a maximum area of 100×100 mm2, using a 

405 nm wavelength diode laser, and yields a write speed of 30 mm2/min.  While the 1 µm 

mode µPG 101 machine has a maximum write area of 30×30 mm2, using a 375 nm 

wavelength laser, and yields a write speed of 3 mm2/min.  Actual write times for a mask 

was typically 4-7 hrs depending on the final dimensions of the design. 

Nanofilm photomasks, 4×4 in2 blank plates made of soda lime were used in the 

Heidelberg system to produce the photolithography masks.  The Heidelberg units could 

accept mask sizes up to 5×5 in2.  Mask blanks are available in a number of 

configurations, a low reflective chrome coating and AZ1518 photoresist options were 

used.  The chrome metallization layer was 100 nm and the photoresist layer was 530 nm 

thick.   

To determine the laser power settings for the µPG 101 systems with the Nanofilm 

photomasks, a series of power exposure tests were performed.  In the course power series 
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exposure, the laser power was held fixed and laser pulse duration on time was varied 

from 100% down to 10%, in 10% increments.  After exposure, the photomasks were 

developed for 30 s in a (3:1) solution of de-ionized (DI) water and 351 developer with 

slight agitation to refresh the developer at the surface of the mask.  Vernier marks from 

an exposure series test are shown in Figure 30 which illustrates the three conditions of 

exposure: under, correct, and over exposure.  Under exposure, shown in Figure 30 (a), 

left a thin layer of PR in the exposed areas which are the dark shaded regions in the 

optical microscope image.  Results of a correct level of exposure are displayed in Figure 

30 (b), which left all the verniers intact and the exposed PR was developed away down to 

the low reflective chrome.  Over exposure in Figure 30(c), shows that the narrow line 

segment of the verniers in the upper left corner developed away due to the high exposure 

dosage.  It was determined that 8 mw at 90% on the 3 µm machine produced very 

consistent results at desired minimum feature size with the Nanofilm masks.   

 Under Exposed  Good Exposure  Over Exposed 

 
(a)     (b)    (c) 

Figure 30. Verniers from the power exposure series result shown in (a) were under 
exposed, a good exposure level in (b), and over exposure dose in (c) where the narrow 
line of resist was removed during the develop process. 

After the photomasks were developed, the exposed chrome layer was removed 

using Cyantek CR-4 etchant.  CR-4 is a versatile, nitric acid etchant that can be used to 
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remove Cr, Cu, Ni, and NiCr metals.  The photomasks were etched in the CR-4 liquid 

with slight agitation for 60-90 seconds, with some small variation depending on the 

feature sizes and the amount of exposed chrome.  The masks were then rinsed with DI 

water, dried, and inspected under the microscope.  When the etch process was complete, 

the PR was removed from the mask through a standard acetone, methanol, isopropyl 

alcohol, and DI cleaning process.  Any remaining trace amounts of PR was then removed 

in an oxygen plasma asher for 4 minutes, leaving the mask surface extremely clean and 

ready for use.  

4.2.  Cantilever Device Fabrication  

The fabrication process begin with the device layer side of the 150 mm diameter 

SOI wafer being coated with 1818 photoresist and baked at 110 °C for 5 minutes.  The 

photoresist layer protected the silicon device layer during the dicing process as the wafer 

was cut into 1×1 in2 squares designed to fit into the PA chamber.  Based on the 1 inch 

square samples, a maximum of 21 samples could be made out of each 150 mm diameter 

SOI wafer.  The PR layer was then removed and the diced sample was cleaned in a 

buffered oxide etch (BOE) solution to etch away the native oxide on the device layer 

surface.  The BOE solution used was a 7:1 volume ratio of 40% NH4F in water to 49% 

HF in water and yielded a 78 nm/min etch rate of SiO2 at room temperature.  After 

approximately 30 s in the BOE solution, the device layer surface was completely 

hydrophobic during the subsequent DI water rinse, which was a good indicator that the 

native oxide layer was completely removed. 
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Beginning from a clean device layer surface, the remaining fabrication sequences 

used to create the cantilever sensors is summarized in Figure 31.  A reflective metal layer 

of Ti/Au (200/1,000 Å) was deposited via electron beam evaporation at the tip of the 

cantilever in Figure 31 (A).  In Figure 31 (B ), a patterned photoresist layer was then used 

to define the cantilever shape for the subsequent deep reactive ion etch (DRIE) through 

the device layer.  Shown in Figure 31 (C) is a two step DRIE and then a reactive ion etch 

(RIE) through the backside of the handle wafer.  The final etch step in the fabrication 

process was the removal of the BOX layer with HF vapor, as illustrated in Figure 31 (D).  

A completed 5×2×0.01 mm3 silicon device is shown in Figure 31 (E) which had a 6 µm 

gap etch through the device layer that defined this particular cantilever's dimensions.  A 

more detailed discussion of the fabrication processes is divided into the following Metal 

Deposition, Device Layer Etch, and Backside Etch sections.  
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Figure 31. Cantilever fabrication process began with the (A) deposit Ti/Au for reflective 
surface, (B) etch device layer to define cantilever, (C) backside etch through handle 
wafer, and (D) the removal of the exposed BOX with HF vapor.  An optical image (E) of 
a fabricated 5×2×0.01 mm3 silicon cantilever with a 6 µm gap etched through the device 
layer to define the cantilever beam. 

4.2.1. Metal Deposition 

To provide the necessary reflective surface for the laser and photodiode optical 

measurement technique in the PA chamber, a small reflective area near the tip of the 

cantilever was needed.  A bi-layer photoresist method was used to pattern the sample 

before metal deposition.  After the sample went through a dehydration bake, a coating of 

MicroChem PMGI SF-11 was spun on at 4,500 RPM and subsequently soft baked for 5 

minutes at 170 °C.  SF-11 is a specific make of the polydimethylglutarimide (PMGI) 
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series of resists, where the “11” represents an average coating thickness of 1.1 µm, 

depending on the application spin speed.  Then an imaging resist layer of 1805 was 

applied at 3,500 RPM and then soft baked at 110 °C for 90 s.  The 1805 PR layer was 

then exposed in a Karl Suss MJB3 mask aligner using vacuum contact mode and the 

metal deposition photomask pattern.  The exposed 1805 resist was developed away with a 

(5:1) solution of DI water and 351 developer for 30 s.  With the desired pattern defined in 

the 1805 PR layer, the sample was placed in an OAI deep UV (DUV) flood exposure 

system for 200 s.  The shorter 240-290 nm wavelengths of light emitted in the DUV 

system are absorbed by the 1800 series patterned resist protecting the PMGI layer below 

from exposure and exposes the uncapped SF-11 layer.  The sample was then soaked in 

101A developer for 60 s, which ensured remaining SF-11 was undercutting the 1805 

photoresist cap.  After a thorough rinse in DI water, the samples were dried off with the 

N2 gun and the sample was baked on the hotplate at 100 °C for 5 min.  Samples were 

then place in the oxygen plasma asher for 3 min at 75 W to remove any organic residue 

on the exposed silicon surface and to promote better adhesion for the subsequently 

deposited metal layers.  The photoresist patterned samples were finally ready for metal 

deposition 

Both a Torr International electron beam (e-beam) evaporation and a Denton 

plasma magnetron sputter deposition systems were available to deposit the desired thin 

film metal reflective layer.  Due to the more directional deposition of films, the e-beam 

evaporation system was selected to perform the metal deposition.  The evaporation 

system had four available pockets; Fabmate® crucibles were used to contain the Ti and 

Au evaporation materials. 



91 

Once the samples were loaded into the chamber, the evaporator system achieved a 

typical base pressure better than 7×10-7 Torr.  An adhesion layer of 200 Å of Ti was first 

deposited using an automated ramp, soak, and deposition sequence which yielded a stable 

deposition rate of 1 Å/s.  The material thickness and deposition rate was monitored by a 

quartz crystal thickness sensor, which provided status to the deposition controller to 

adjust the e-beam source power to maintain the desired deposition rate.  When the desired 

thickness was reached, the system automatically turned off the e-beam and closed the 

shutter.  After the crucible cooled for approximately 3 min, the pockets were rotated to 

the crucible containing the Au target material.  The quartz thickness monitor and 

deposition controller programs were then modified to perform the Au deposition; 

adjusting the appropriate Z-factor, tooling factor, material density, and desired deposition 

rate.  Then in a another automated sequence, 1,000 Å of Au was deposited at rate of 2 

Å/s.  The automated deposition sequences were developed to remove the manual 

monitoring and adjustments necessary to maintain the desired deposition rates.  The 

automated sequences also ensured consistent soak and power ramp rates to maintain 

repeatability from run to run. 

Metal lift-off was then performed in three steps: tape lift-off, acetone bath, and 

then two, 30 min soaks in a heated PG-Remover solution.  The tape lift-off process 

typically removed ~90% or more of the unwanted metal from the surface of the 

photoresist layer.  Deposited gold features on the samples were very sparse, tape lift-off 

significantly reduced the amount of time required in the solvent and stripper solutions to 

remove the PR coatings  Additionally, with the majority of the unwanted metal removed 

from the samples, less debris was in the solutions that could potentially be redeposited 
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back onto the surface of the devices.  After a standard cleaning process, the samples went 

through a dehydration bake again and were ready for the device layer etch. 

4.2.2. Device Layer Etch 

To pattern the cantilever shape into the silicon device layer, a thin layer of S1818 

photoresist was used.  The Microposit S1818 was spun on at 3,000 RPM, then baked at 

110 °C for 90 s, creating a 2.2 µm thick layer.  The sample was then exposed on the 

MJB3 mask aligner with the device layer etch mask using vacuum contact mode to 

achieve the best resolution.  Samples were then spray developed with the same (5:1) 

solution of 351 developer for 30 s.  The S1818 is a solvent based positive series 

photoresist.  To make the PR layer more robust, an additional dehydration bake was 

performed at 110 °C for 20 min to drive out the solvents. 

Using a single device layer etch mask designed with a 3 µm gap, multiple gap 

widths were achievable on different samples through varying the device layer etch 

conditions.  A deep reactive ion etch (DRIE) plasma tool was used to create narrow 3 µm 

gaps that were etched through the device layer surface of the SOI samples to define the 

cantilever shape.  The majority of the cantilever designs fabricated in this effort were 

5×2×0.01 mm3 and 5×2×0.005 mm3.  A DRIE only etch of the 3 µm patterned slit 

produced the smallest gap, while a subsequent isotropic RIE etch on other samples 

allowed gaps up to 8 µm wide in this work.  The advantage of using the DRIE is that it’s 

an anisotropic etch process, which results in a near vertical sidewall profile and virtually 

no mask under cut to create gap widths the same resolution as the photoresist mask 

pattern.  Shown in Figure 32 (a), a schematic layout of the cantilever devices created and 
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Figure 32 (b) an optical image of a device with a small 3 µm gap achieved with the DRIE 

process.   

 
  (a) (b) 
Figure 32. (a) Layout of cantilever design and in (b) an optical image of the 3 µm gap 
etched through the device layer with the Plasma-Therm DRIE system. 

To perform the DRIE, a Plasma-Therm Versaline DSE system was used; where 

DSE stands for Deep Silicon Etch technology.  The system can handle up to 4 in diameter 

wafers and the etch recipe used produced an overall average etch rate of 7.5 µm/min.  

The system utilizes a three-step sequence over a 5 s period, performing passivation and 

etch steps removing 625 nm of silicon per period.  The DRIE system utilizes rapid 

changes in chamber pressure, inductively coupled plasma (ICP) RF power, platen RF 

power, and platen DC bias to control the etch chemistry at the surface of the wafer.  

The Versaline etcher utilizes a load lock and smaller samples must be loaded into 

the system on a 4 in carrier wafer.  The carrier wafers were coated with a ~20 µm layer of 

SU-8 2025 which was hard baked for 30 min at 200 °C.  A small amount of Fomblin oil 

was used under the samples to hold the samples in place and provide thermal 

conductivity from the sample to the carrier wafer.  
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Cantilever designs were defined in the device layer of the SOI by etching a small 

gap around three sides of the cantilever beam. The 3 µm wide patterned gap formed a 

continuous 12 mm long trench around the cantilever edge.  To ensure the trench was 

formed completely through the silicon device layer, a 20% over etch was performed in 

the DRIE based on the 7.5 µm/min etch rate.  An advantage to using SOI wafers is that 

the buried oxide (BOX) layer acts as an excellent etch stop in the DRIE system.  

Some samples went through an additional isotropic RIE etch to increase the gap 

width; gaps up to about 8 µm wide were made.  A Trion Phantom RIE system was used 

to perform the isotropic etch.  Process conditions utilized 30 sccm SF6, 3 sccm O2, at a 

chamber pressure of 150 mTorr, and 150 W of RIE power.  The relatively high chamber 

pressure and low RIE power etched the silicon back under cutting the PR mask material. 

In Figure 33, the sample was etched under the above listed RIE conditions for 240 s and 

the image is shown with the PR mask layer still in place.  The etch undercut the PR mask 

layer 2.55 µm on both sides of the trench creating an 8.4 µm wide gap around the 

cantilever.  The RIE etch conditions caused a 638 nm/min undercut etch rate of the 

silicon device layer.  
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Figure 33. Larger 8.4 µm gap shown with photoresist mask still in place after additional 
isotropic etch.   

4.2.3. Backside Etch 

To complete the sensors, the backside of the carrier wafer and buried oxide below 

the cantilever had to be removed to completely release the cantilever beam. With the 

cantilever pattern etched in the device layer, the sample was then coated with a layer of 

SF-11 to protect the silicon and gold surfaces during subsequent processing steps.  The 

protective SF-11 layer was baked at 200 °C for 5 min, creating a robust film that could 

later be heated directly on a hotplate surface.  To pattern the portion of the handle wafer 

below the cantilever for removal, the backside of the wafer was coated with a 20 µm 

layer SU-8 25.  The backside of the sample was then exposed on a Suss MAB-6 backside 

mask aligner using the backside etch mask.  SU-8 is a negative tone epoxy based 

photoresist.  When the resist is exposed to UV radiation, a strong acid is formed in the 



96 

film.  During a post exposure bake (PEB) step, the newly formed acid and thermal 

heating causes the epoxy to cross-link and harden.  Samples were then immersed in a SU-

8 Developer solution for 4 min to remove any unexposed SU-8, creating a hole patterned 

below the cantilever .  After the develop steps, the sample was hard baked on a covered 

hotplate at 110 °C for 1 hour to further harden the SU-8.  The SU-8 was then 

permanently attached to the back side of the wafer after the hard bake step. 

The exposed silicon area of the handle wafer below the cantilever was then 

removed in the Plasma-Therm DRIE using the same etch recipe listed above, achieving a 

bulk etch rate of 8 µm/min.  Initially, the DRIE etch process was used to completely etch 

through the 450-525 µm thick handle wafers down to the BOX etch stop layer.  While 

that DRIE only bulk etch process worked, sample yield was extremely low, and some 

cantilevers broke off the samples in the DRIE.  Heat generated during the DRIE process 

combined with the Fomblin oil caused portions of the PMGI protective layer to crack and 

resulted in non-uniform stresses between the device layer and the PMGI.  The power and 

pressure variations utilized in the DRIE process proved to be too strong for the sensitive 

devices.  Therefore it was necessary to stop the DRIE process 20-30 µm away from the 

BOX layer, leaving a silicon support membrane in place.  The remaining silicon 

membrane of the handle wafer material was then removed in the RIE.  Process conditions 

used 30 sccm SF6, 3 sccm O2, 100 W RIE power, and a process pressure of 150 mTorr.  

This mild etch condition for the final etch allowed for a slow, uniform removal of the 

remaining Si that covered the BOX layer. 

    The cantilever beams were extremely fragile during the fabrication process due 

to their large length to thickness ratio (L/h).  The device created here had ratios of 500/1 
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for the 10 µm device layers and 1,000/1 for the 5 µm thick device layers.  Without the 

thin Si support layer, the residual stress between the device layer, BOX, and SF-11 often 

caused fractures through the cantilever structure, ruining the device.  Figure 34 (a) shows 

one of the sample surfaces where the SF-11 protective layer experienced some cracking 

near the anchor point of the cantilever, the darker region of the image is the cantilever 

curving out of plane.  Figure 34 (b) is another sample viewed from the backside, shows 

the resultant stress in the device and BOX layer due to the SF-11 cracking after the DRIE 

and RIE processes.   A small fracture in the device layer started under a crack in the SF-

11 on the left side of the cantilever near the base, propagated across the cantilever beam 

and caused the device to fail.  While a few cantilevers were successfully created using the 

SF-11 protective layer exclusively, improvements were needed in the fabrication 

processing methods and techniques to increase the device yield. 
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 Device Layer Surface Device Layer Backside 

 
 Cracks in SF-11     Crack Through Device 

(a)         (b) 
Figure 34. Device surface in (a) with cracks in protective SF-11 photoresist after 
backside DRIE.  Another sample viewed from the backside in (b) after DRIE and RIE, 
stress between the cracks in the SF-11, BOX, and device layer caused the cantilever to 
crack near the anchor. 

A successful processing method was developed where the backside DRIE was 

stopped leaving the thin silicon membrane in the handle wafer intact as described  earlier, 

but the PMGI layer was stripped off and replaced by a layer of 1818 which was applied at 

a low spin speed.  The thicker resist layer was then baked for 5 min on a 100 °C hotplate.  

With a new PR coating to protect the device layer and provide some physical support for 

the device layer, the remaining thin Si membrane on the backside was again removed in 

the RIE tool.  This new PR protective layer proved essential in the fabrication process 

and greatly improved the sample yield.  The protective PR layer didn't experience any 

undesirable heating effects such as cracking, which were observed on samples if they 

were completely etched in the DRIE and then in the RIE.  Results of the improved 

processing method is shown in Figure 35 where the images were taken from the backside 

of the devices.  The images show the tips of the cantilevers with the BOX and device 
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layers; where the samples still had the protective 1818 layer in place and the surfaces 

appeared very uniform, unlike the images in Figure 34.  Figure 35 (a) was a 5 µm device 

layer and Figure 35 (b) was a 10 µm device layer.  The dark shaded regions around the 

cantilever edges again indicates the curvature in the devices due to the residual stresses 

between the BOX and device layers with the greater deflection occurring in the a 5 µm 

device layer sample in Figure 35 (a). 

 Gap SU-8 Handle Wafer 

 
(a)      (b) 

Figure 35. Darker areas on cantilever are due curvature in device layer and BOX, 
viewed from backside, of 5 µm device layer in (a) and a 10 µm device layer in (b) with 
1818 PR used as protective/support layer on device surface.   

The next fabrication step was to remove the BOX layer and completely release 

the cantilevers.  Three methods to remove the oxide layer were considered, 49% HF, 

BOE, or a HF vapor etch.  Plasma etching of the oxide layer was not considered feasible 

due to the slow etch rate and low selectivity between Si and SiO2 when etching with a 

CF4 etch chemistry.  The 49% HF solution produces an extremely aggressive oxide etch 

and would present challenges in handling; transferring the sensitive samples from the 

etch solution into the DI water rinse in a timely manner would be difficult.  A BOE etch 
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would also work, but it takes approximately 13 minutes to etch through a 1 µm thick 

oxide layer at room temperature.  Also, moving the sample in liquid solution could cause 

the cantilever to move, break the PR support layer, and potentially break the cantilevers.  

The best solution to removing the oxide layer was to use a HF vapor etch.  Samples were 

suspended over the 49% hydrofluoric acid solution where the HF vapor then etched away 

the exposed BOX layer over a period of approximately 4 min.  The protective 1818 PR 

layer on the device surface was able to sufficiently protect the Ti/Au reflective layer 

during the HF vapor etch.  The protective photoresist layer was removed from the 

samples through a series of acetone soaks, a final rinse in isopropyl alcohol, and the 

samples were allowed to air dry.  Figure 36 (a) shows a residual PR film that tended to 

linger around the cantilever gap after the acetone cleaning process on the fully released 

cantilevers.  To remove any lingering PR from the cantilever surface and the narrow 

cantilever gap region, an O2 plasma ash was performed for several minutes to ensure the 

cantilever could oscillate unimpeded.  After a total of 15 min in a 125 W O2 plasma ash, 

the sample shown in Figure 36 (b) came out very clean, and all the residual PR residue 

was removed from the surface and the gap region. 
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(a)      (b) 

Figure 36. Residual PR in the highlighted areas remained around gap after acetone clean 
of released cantilever shown in (a) and same cantilever shown in (b) after 15 min O2 
plasma ash at 125 W had no remaining PR.  

The cantilever tip displacement of several completed devices were then measured 

on a Zygo white light interferometer.  A 3-D surface profile of a 5×2×0.01 mm3 

cantilever device is shown in Figure 37, the out of plane displacement at the tip of the 

cantilever was 15 µm.  The 5×2×0.005 mm3 devices measured had an average out of 

plane tip displacement of 12 µm.  For both the 10 µm and 5 µm thick device layer 

designs, the effective gap near the cantilever tips was increased to approximately 5-7 µm 

due to the small out of plane tip displacement.  The small curvature in the cantilever 

designs was acceptable, achieving a radius of curvature of roughly 0.83-1.04 m, and the 

devices were ready for testing in the THz PA chamber.   
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Figure 37. Zygo 3D model of a 5×2×0.01 mm3 cantilever design showed a 15 µm out of 
plane tip displacement. 

4.3.  Summary 

The entire process from initial sensor device concept design, mask fabrication, 

through completed fabrication of the cantilever sensors was performed in this work.  The 

cantilever beam designs were constructed using the device layer of Ultrasil SOI (100) 

wafers.  Selection of the SOI device layer and buried oxide layer thicknesses were 

important parameters that affect both the cantilever performance characteristics and 

manufacturability of the devices.  The BOX layer was used as an etch stop material for 

both the front and backside plasma etches used to define the cantilever device designs. 

Use of a 1 µm BOX layer yielded good manufacturability of the high aspect ratio 

cantilever devices, but selection of a thinner BOX layer should improve results even 

further.  
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The displacement sensitivity of the cantilever sensor design was a function of the 

cantilever length over thickness ratio as described in Equation (3.11), and the sensitivity 

improves as the length over thickness ratio is increased.  Large length over thickness 

ratios meant that the cantilever designs were sensitive, but they could also be very fragile.  

The brittle nature of macro scale silicon was observed when residual stress between the 

photoresist protective layer, device, and BOX layers caused highly localized stress points 

which cracked the earlier fabricated cantilever samples.  Challenges in the device 

fabrication process were overcome through extensive fabrication process development 

and utilization of photoresist support layers at different points along the fabrication 

process.  Length to thickness ratios of 500-1,000 were achieved in this work and the 

sensitive MEMS cantilevers were the key technology that enabled this very compact THz 

PA spectroscopy technique.  The high length/thickness ratios were necessary in order to 

be sensitive to the low pressure pulses generated in the THz photoacoustic chamber. 

As a sensor platform, the silicon cantilevers should perform well, elastically 

deforming for small cantilever tip deflections.  The successful fabrication of an extremely 

sensitive MEMS cantilever PA sensor was a challenging task.  Completed devices were 

then tested in the custom THz photoacoustic chamber described next in the Experimental 

Results section.   
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V. Experimental Results 

The experimental results are discussed in four distinct topic areas: the 

experimental setup, cantilever dynamic behavior, PA spectral data collection, and the 

sensitivity of the system.  The first important aspect to discuss is the cantilever sensor 

dynamic behavior in response to the PA effect in the test chamber.  Relevant information 

about the behavior of the cantilever sensor includes determining the resonant frequency, 

quality factor, time constants, and PA signal vs. cantilever deflection for the system over 

a range of tested pressures.  Based on the identified cantilever sensor traits, data 

collection rates, techniques, and PA spectral collection results are then discussed.  

Finally, the sensitivity and detection limits of this unique THz photoacoustic 

spectroscopy system developed in this work are evaluated.  

5.1. Experimental Setup 

The compact custom fabricated THz photoacoustic chamber had overall 

dimensions of approximately 2×2×2 in3 and was constructed out of stainless steel.  The 

test chamber consisted of two segments; a front and back half with the cantilever sensor 

mounted in between them.  The back portion of the chamber contained the absorption cell 

section while the front half had a small balance volume.  The absorption region portion 

has a cylindrical shape with dimensions 2 inches long and a diameter of 10 mm.  A 

schematic diagram of the back portion of the PA cell and cantilever position is shown in 

Figure 38.   
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Figure 38. Schematic diagram of photoacoustic cell shown with the front portion of the 
chamber removed; highlights the chamber dimensions and cantilever position in relation 
to the absorption cell volume. 

To seal the chamber for low vacuum conditions, Teflon windows were used to 

enclose the ends of the absorption cell and an antireflective (AR) coated glass window 

sealed the balance volume so optical measurements of the cantilever deflection could be 

made with a HeNe laser.  A Pfeiffer HiCubeTM turbo pumping station was used to 

evacuate the chamber and achieve a low base pressure vacuum level.  Methyl cyanide, 

also called Acetonitrile, was the first gas used to characterize the cantilever sensor.  

Liquid methyl cyanide was exposed to the low vacuum environment and allowed to 

vaporize.  Through a series of valves, the CH3CN vapor was allowed into the acoustic 

cell in a highly controlled manner and the absolute chamber pressure was continuously 

monitored with a MKS Baratron® capacitance monometer vacuum gauge. 

Photoacoustic data collection was controlled through a series of LabVIEW VI's 

and the signals were collected with a National Instruments (NI) USB-6221 multifunction 
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data acquisition (DAQ) card.  To generate the THz radiation and cause the photoacoustic 

effect, a Virginia Diodes Inc. (VDI) Amplifier Multiplier Chains were used.  The signal 

to the VDI THz radiation diode was provided by an Agilent E8254A PSG-A signal 

generator.  Controlled through the LabVIEW interface, the output of the signal generator 

was set to a specified THz radiation frequency which was then amplitude modulated on 

and off with a 50% duty cycle square wave at the desired modulation frequency.  Emitted 

power by the THz VDI source ranged from 0.6–1.4 mW and is frequency dependent.  At 

low chamber pressures, the output power of the THz source was too high and therefore 

had to be attenuated at low pressures to prevent molecular saturation.  On the opposite 

side of the chamber from the THz source, there’s a VDI detector positioned to monitor 

the transmitted power that exits the chamber and simultaneously measure the absorption 

spectra with traditional techniques.  For this experiment, the amplifier chain used 

radiation generated over the 0.250-0.375 THz frequency range.  An advantage to the test 

setup is that additional amplifier multiplier chains can be adapted to the system to reach 

higher frequencies, up to 1.5 THz if required. 

The PA chamber and optics for the experimental setup were mounted on an 

optical bench.  Two optical measurement techniques were employed to examine the 

photoacoustic effect; a diagram of the test setup is shown in Figure 39.  A HeNe (λ=633 

nm) laser beam, guided through a series of mirrors, beam splitter, irises, and focusing 

lens, was reflected off the tip of the cantilever, back to a photodiode where the laser beam 

power was measured.  An iris beam clipping method or optical beam deflection method, 

similar to Garcia-Valenzuela et al. [108] was used to collect PA spectral data in the THz 

test chamber when the reference mirror was blocked.    
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Figure 39. Diagram (not to scale) shows both the PA optical measurement techniques 
used; beam clipped by the iris when the reference mirror is blocked and a Michelson 
interferometer displacement measurement when the reference arm was used. 

To quantify the sinusoidal changes in power observed at the photodiode, a 

Michelson interferometer measurement was also incorporated into the experiment.  

Switching to the interferometer measurement was accomplished by unblocking the 

reference mirror, modifying the filter settings of the photodiode amplifier, and removing 

the iris closest to the PA chamber.  Accurate cantilever tip deflections measurements 

were made through the generated constructive and destructive inference signal measured 

at the diode detector.  For large cantilever deflections, the photodiode signal goes through 

maxima to minima interference patterns as the cantilever deflects a distance of λ/4.  

In both measurement techniques, the photodiode signal was sent to a Stanford 

Research Systems SR560 preamplifier, setup in a band pass filter configuration.  The 

photodiode signal was also sent to a Stanford Research Systems SR530 lock-in amplifier.  

The amplitude modulated frequency from the Agilent E8254A signal generator is used as 

the reference signal for the SR530 lock-in amplifier.  The two channel output of the lock-

in amplifier reported the magnitude and phase components of the amplified photodiode 

signal compared to the reference. 
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For the iris beam clipping method, the measured photoacoustic signal at the diode 

was greatly affected by the iris placement at distance x, in front of the cantilever and the 

positioning of the focal lens.  The focal lens was positioned such that the beam formed a 

tight spot at the tip of the cantilever and beam spot at the detector was smaller than the 

detector opening.  Iris placement in front of the cantilever served two purposes.  The first 

function was to reduce the diameter of the incoming beam before the laser light impinged 

the cantilever.  The second purpose was to act again as an aperture; light reflected off the 

deflected cantilever was then clipped by the iris before it reached the photodiode.  The 

diameter of the iris closest to the chamber was set to ~0.8 mm.  The final spot size of the 

HeNe laser beam at the photodiode was ~1.0 mm in diameter.  The beam displacement, 

d, from steady state shown in Figure 39, is expressed by 

1tan sin
x

d x
L

    
 

  (5.1) 

where, x is the distance from the cantilever steady state position to the iris, Δx is the 

cantilever deflection distance, and L is the cantilever length.  In order to obtain the 

optimal signal, the THz source was modulated at the resonant frequency of the cantilever 

and the chamber, mounted on a three axis stage, was adjusted until the photodiode signal 

produced a symmetric amplitude sine wave.  The HeNe laser beam at the photodiode is 

assumed to have a Gaussian profile which was passed through an aperture iris with a 0.8 

mm diameter, as shown in Figure 40.  The iris closest to the PA chamber allowed 

different amounts of HeNe laser light through depending on the positioning of the beam 

through the aperture.   
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Figure 40. Assumed Gaussian profile of the HeNe laser beam, passed through a 0.8 mm 
diameter iris, with normalized intensity color bar on right. 

The system was also equipped with an attenuator to control the intensity of the 

HeNe laser beam that was sent to through the optical setup.  The wheeled attenuator was 

placed ~6 inches away from the laser, and positioned at an angle a few degrees greater 

than perpendicular to the beam as to not reflect light back into the laser cavity.  A model 

of the signal at the photodiode was performed in MATLAB®, creating a 1,000×1,000 

mesh grid of the intensity element to represent the beam and aperture.  The sum of the 

intensities of the elements in the aperture represented the energy in beam.  Since the 

aperture size was considered fixed, the intensity of the light can be varied by modifying 

the attenuation level of the beam.  In Figure 41, five beam attenuation levels were swept 

across the entire aperture opening, centered along an axis, the intensities were summed 

up for each location of the beam.  
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Figure 41. Signal intensity strengths for five different attenuation levels of the HeNe 
laser beam centered on one axis and swept across the aperture along the other axis.  The 
strongly attenuated signal is the bottom curve and the above curves are due to decreasing 
the amounts of beam attenuation.    

If the center of the Gaussian beam is positioned approximately 0.33 mm off center 

on one axis, small displacements of the cantilever cause a linear change in the intensity.  

The peak-to-peak voltage signal created at the photodiode is due to the linear regions of 

the beam intensity profile caused by the clipping iris when the center of the beam was 

shifted by a total distance of 2d.  The sinusoidal peak-to-peak voltage signal from the 

photodiode and the magnitude of the lock-in amplifier signal were used to collect the 

photoacoustic spectral data from the sample gas.  The higher the intensity of the HeNe 

beam, the stronger the amplitude response of the PA signal.  The PA signal and 

interferometer measurements are discussed further in the results section.   

The photoacoustic test chamber, fabricated by the AFIT model shop team, shown 

in Figure 42, was setup in the THz Spectroscopy Research Laboratory at the Wright State 

University campus in Fairborn, Ohio. 
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Figure 42. Photograph of experimental setup highlights the PA chamber, optics, iris, 
detector for HeNe PA signal, THz radiation source, and THz detector.  

There is a welded feed through for an electrical signal line that can be used with a 

piezoelectric cantilever design. A single 1/4 in stainless steel vacuum line connection is 

also welded to the PA chamber.  The front surface of the chamber was modified to mount 

two gold coated pushpins which can provide an electrical connection to a top and bottom 

metal electrode for future cantilever designs.  The ends of the cylindrical absorption 

chamber are sealed with o-rings and ~1 mm thick Teflon windows which are pressed in 

place with a face plate and screws.  Teflon material is optically transparent over the 

wavelength spectrum we are investigating with the radiation source.  When the cantilever 

sample is mounted inside the chamber, it is centered behind a quartz or anti-reflective 

(AR) coated window that is connected to the chamber with o-rings and face plate in the 

same fashion as the Teflon windows.   
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Identified in Figure 42 is the THz radiation source and THz detector to capture the 

transmitted THz output signal.  In front of the chamber is a small lens with a 5 cm focal 

length to focus the laser on the tip of the cantilever.  The reflected signal off of the 

cantilever then goes back through the iris, off the beam splitter, and the final PA signal is 

measured at the silicon photo detector.  The HeNe photo detector outputs a voltage signal 

caused by either the iris clipped beam or the interferometer signal when the reference arm 

is used.  A metal housing around the detector successfully reduced some of noise in the 

detector output signal. 

5.2. Cantilever Dynamics 

To investigate the cantilever and photoacoustic chamber performance, methyl 

cyanide was selected because it has documented absorption lines over a large spectrum 

(0.018 – 1.8065 THz), making it an ideal gas since the radiation source can span a large 

portion of that spectrum.  Also, methyl cyanide has both strong and weak absorption line 

strengths within that frequency range, which would demonstrate the large dynamic range 

capability of the cantilever PA system.  Initial photoacoustic data was taken using an 

absorption line frequency of 312.633 GHz, identified as Freq 1 from here forward.  Then, 

to acquire the optimal PA signal from the cantilever, a modulation frequency scan was 

performed using the THz Freq 1 absorption line.  Modulation frequency scans from 1-700 

Hz found that the maximum PA signal was achieved when the system was modulated at 

the resonant frequency (ω ≅ ωo) of the cantilever.  Figure 43 shows the PA signal from 

the lock-in amplifier as a function of modulation frequency over the 3-400 mTorr 

pressure ranges tested using the 5×2×0.01 mm3 cantilever design. 
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Figure 43. PA response of the 5×2×0.01 mm3 cantilever as a function of modulation 
frequency for four different pressures tested revealed the maximum PA signal was 
achieved at slightly higher modulation frequencies with increased chamber pressure. 

A plot of the modulation frequencies that achieved the maximum amplitude 

displacement are shown versus the chamber pressure in Figure 44.  The required 

modulation frequency to achieve the maximum PA signal increased with a slight non-

linearity with increasing chamber pressure; approximately 8.8×10-4 Hz/mTorr for the 

5×2×0.01 mm3 cantilever over the pressures tested.   
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Figure 44. Resonant frequency of the 5×2×0.01 mm3 cantilever taken over a range of 
pressures shown with a second degree polynomial curve fit. 

The modulation frequency response of the 5×2×0.005 mm3 cantilever is shown in 

Figure 45.  The maximum chamber pressure tested for the 5 µm thick cantilever was 

lower due to the increased amplitude response of the more sensitive cantilever design.  

The frequency response of the 5×2×0.005 mm3 cantilever design increased at a very 

linear 4.3×10-3 Hz/mTorr, over the smaller pressure range tested.  The chamber pressure 

played a more significant role in the resonant frequency of the 5 µm thick cantilever.  The 

resonant frequency shift, with increasing chamber pressure was 4.86 times faster with the 

5 µm thick device compared to the 10 µm thick cantilever design.  
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Figure 45. Resonant frequency response for the 5×2×0.005 mm3 cantilever was taken 
over a smaller pressure range and had a linear increase with chamber pressure.  

The small observed shifts in the resonant frequencies of the cantilevers was 

attributed to an increase in the effective spring constant of the system due to the gas 

interactions with the cantilever, which increased the spring constants as a function of 

chamber pressure.  Several groups have reported similar shifts in resonant frequency with 

changes in pressure and for different gas compositions [87, 109, 110].    More 

importantly, from the modulation frequency scans, the quality factor of the cantilever in 

the low vacuum conditions was assessed.  Quality factor of a cantilever can be expressed 

as 

 o ofQ
f




 
 

 (5.2) 

where fo is the resonant frequency of the cantilever and Δf is the full width at half the 

maximum of the PA signal.  Due to the low damping conditions of the rarified gas in the 

PA chamber, the cantilevers had a sharp resonance response to the modulation frequency 

scan and small Δf values of 0.15-2.08 Hz were measured.  At the low vacuum pressures 

tested, the 5×2×0.01 mm3 and 5×2×0.005 mm3 cantilever design had very high quality 
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factors which are shown in Figure 46.  A high quality factor here is desirable because the 

cantilever amplitude displacement is increased for small applied pressure loads.  

 

Figure 46. Based on Equation (5.2), the quality factor for the 5×2×0.01 mm3 and 
5×2×0.005 mm3 cantilever designs were evaluated over a segment of low chamber 
pressures. 

Modulating the THz radiation at the resonant frequency of the cantilever found at 

each pressure, the dynamics of cantilever excitation and relaxation were investigated.  

Shown in Figure 47 is a sample of PA data collected from the system at a chamber 

pressure of 3 mTorr using THz Freq 1.  The duration of the modulated THz excitation 

was 8 s, and it can be seen in the graph that the lock-in PA signal was just approaching a 

steady state before the radiation was turned off.  The long required excitation time at 

lower chamber pressures is expected due to the extremely low pressure change generated 

per modulation pulse.   
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(a)      (b) 

Figure 47. PA data recorded at 3 mTorr in plot (a) shows the slow response of the lock-in 
amplifier and raw PA signals at the low chamber pressure and a quality factor of 4,085.  
Plot (b) is a zoomed in view of the raw PA signal from the diode and modulated THz 
signal as the radiation turned off. 

As the chamber pressures increased, the PA signal response time for the 

cantilever to reach a stable amplitude periodic deflection decreased.  Shown in Figure 48, 

PA data collected at a chamber pressure of 80 mTorr.  The higher chamber pressures 

showed a more rapid approach to periodic steady state conditions, generated a stronger 

PA signal, and the output of the lock-in amplifier signal reached a steady state value in 

approximately 4 s. 
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(a)      (b) 

Figure 48. PA data in plot (a), taken at 80 mTorr had a quality factor of 1,091 illustrates 
the quicker response time of the lock-in PA signal and raw PA signal from the THz 
excitation radiation at higher chamber pressure.  Plot (b) is a zoomed in view of the raw 
PA signal from the diode and modulated THz signal. 

For a range of pressures, the cantilever was brought up to an excited periodic 

amplitude deflection, the THz radiation was turned off, and the exponential decay of the 

PA signal was recorded.  An exponential curve fit was then performed on the PA data to 

extract the time constant, τ.  The resulting time constant versus pressure plot for the 

5×2×0.01 mm3 cantilever design is shown in Figure 49.  Time constants dramatically 

decreases as the chamber pressure gets lower and moves from the molecular to intrinsic 

damping pressure regime.  For the investigated pressures, an equation for the time 

constant as a function of pressure was found to be 

 0.3304( ) 0.2162c cp p   (5.3) 

where the chamber pressure pc is given in mTorr.  The resultant function shown in 

Equation (5.3) had a strong correlation to the experimental measurements and had an R-

squared value of 0.9994.   
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Figure 49. Time constants found through exponential curve fit to the decay of PA signals 
over the range of pressures shown for 5×2×0.01 mm3 cantilever. 

Equation (3.5) described the photoacoustic change in pressure as a linear function 

of the THz radiation source output power.  To investigate the linearity of the PA signal 

measurement, multiple power levels were evaluated by reducing the THz radiation power 

prior to insertion in the PA chamber.  In the THz region of the electromagnetic spectrum, 

a piece of thin plexiglass reduces the amount of transmitted power by ~50% through 

absorption and reflection mechanisms.  To establish a baseline, PA data was first 

collected with the THz radiation source unattenuated.  For this discussion, the 

unattenuated radiation power is referred to P0, meaning no plexiglass was used.  When 

one plexiglass plate is used between the THz source and the PA chamber, the condition is 

referred to as P1, two pieces as P2, and so on.  As the number of plexiglass plates 

increased, the PA signals decreased.  Figure 50 shows a zoomed in view of the four 

power conditions tested; the THz diode signals are the dashed lines and the PA signals 

are the corresponding sold lines of the same color. 
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Figure 50. Measured THz diode signal and corresponding PA signals for four different 
THz source powers P0-P3 inserted into the PA chamber.   

The data set collected above in Figure 50 is shown in its entirety below in Figure 

51 and includes the PA signals from the lock-in amplifier.  Due to the high frequency of 

the signals, the PA signals shown in red and the THz diode signals in blue are not 

individually resolvable in the figure.  The lock-in PA signals labeled P0-P3 in Figure 51 

grew uniformly under the excitation pressures at the four THz input powers.  The 

amplitude of the PA signal labeled P0 grew much more rapidly due to the higher THz 

radiation power.  The signals reached a stable excited state condition by time ≈ 6 s, then 

the THz radiation was turned off at time = 9 s and the PA signals decayed down to a near 

motionless state of rest.   
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Figure 51. PA Lock-in Signals generated due to the P0-P3 power levels of the THz 
radiation source. 

As the THz radiation power was attenuated with plexiglass, the relative changes 

in the THz diode signal and PA signals are compared in Table 5.  When the system was 

transitioned from no attenuation to one piece of plexiglass (P0→P1), there was a 48.33% 

reduction in the THz diode signal strength, 53.01% reduction in the PA signal, and a 

53.55% reduction in the PA lock-in signal.  The transitions from P1→P2 showed a 

38.27% reduction and P2→P3 had a 49.59% reduction in THz diode signal.  Differences 

in the amount of THz diode signal reduction was due to the small variation in thicknesses 

of the plexiglass sheets which were approximately 1/16th of an inch thick.  For all cases, 

the change in the lock-in PA signal was greater than the change in the raw PA signal. 
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Table 5. Relative change in PA signals as power inserted into the chamber is reduced. 

 Δ THz Diode 
 Signal (%) 

Δ PA 
(%) 

Δ Lock-in PA signal 
(%) 

P0→P1 48.33 53.01 53.55 
P1→P2 38.27 38.39 38.80 
P2→P3 49.59 55.56 56.06 

 
The mean of the PA signals over ten modulation periods taken after 8.9 s in the data set 

and was plotted versus the mean THz diode signal in Figure 52.  PA signal data in red 

and the lock-in PA signal in black showed linear responses to the changes in THz 

radiation input power.  The lock-in PA signal used a time constant of 300 ms, measuring 

the PA signal amplitude at the modulation frequency over a larger time interval.  The PA 

signal, measured over a smaller time scale contained the entire diode signal frequency 

spectrum in the real time measurements.  Both PA signals cross below the zero value on 

the Y-axis because the output of the THz diode voltage signal is non-zero even when the 

THz radiation source was off. 

 
Figure 52. Linear response of the PA Signal and PA Lock-in Signals produced versus the 
absolute value of the THz detector voltage.  
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To quantify the PA signal generated by the diode voltage measurements, 

cantilever displacement measurements with a Michelson interferometer configuration 

were performed.  Peak-to-peak PA signal and cantilever tip displacement measurements 

shown in Figure 53 were taken across a small range of pressures.  The diamond shaped 

markers represent the peak-to-peak PA signal, corresponding to the axis scale on the left 

side of the graph.  Circular data points on the graph with error bars correspond to the axis 

on the right which shows the amplitude of cantilever deflection from center position 

given in microns.  When the chamber was pumped down to a high vacuum condition, no 

THz PA signal could be measured.  It can be seen in the graph that as the pressure 

increased with the addition of methyl cyanide, the measured PA signal and cantilever 

deflection continued to increase with pressure.  Above ~7 µm deflection, the PA signal 

increased only slightly due to the positioning of the laser beam through the iris.  This 

strong correlation between the PA signal and deflection measurements provide good 

justification for using the iris clipped PA method for the range of deflections 

encountered.  An additional advantage of the of the iris clipped PA method is the modest 

required sampling rate; four channels of data can be digitized at 60k samples per second, 

allowing for multiple channels of data to be collected simultaneously. 
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Figure 53. Graph of measurements taken on 5×2×0.01 mm3 cantilever at different 
chamber pressures show PA peak-to-peak signals represented by a diamond shape 
corresponded to the scale on left while the interferometrically measured cantilever 
amplitude deflections, shown with a circle and error bars correspond to the deflection 
scale on the right. 

5.3. THz Photoacoustic Spectra 

Based on the pressure dependent dynamic cantilever behavior in the PA system, a 

few techniques were developed to accurately collect PA molecular spectra.  

Photoacoustic spectral data collection was also performed across a range of pressures.  As 

discussed earlier in the cantilever sensor analysis, chamber pressure greatly affected PA 

signal strength and response time.  Therefore, two data collection techniques were 

investigated; fast scan methods to coarsely cover a broader frequency spectrum and a 

slow scan method to achieve a stronger and more accurate PA signal.  Spectral data 

collection measurements were performed in two steps, excitation and signal averaging 

segments.  The amplitude modulated THz radiation at the specified THz frequency was 

turned on for a period of time, which was defined as the excitation time.  This excitation 

time or period allowed the cantilever to attain a stable periodic level of amplitude 
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displacement from the generated PA pressure pulses.  After the excitation time, the PA 

signal was averaged over the second specified interval, referred to as the signal averaging 

period.  The PA signal measured during the signal averaging period was recorded as the 

PA signal for that specific THz frequency.  The THz frequency was then increased by a 

small amount, referred to as the frequency step size, and the measurement sequence was 

repeated. 

To show the effects of excitation time and resulting PA signal, multiple excitation 

times were investigated.  The signal averaging period was held constant for each of the 

trials and was set to a 0.1 s duration.  Shown in Figure 54 are the results of three 

excitation times, recorded at a chamber pressure of 59 mTorr with a frequency step size 

of 0.05 MHz, and compared to the simulated absorption spectra.  The 2 s excitation PA 

spectral collection took 9.7 min, the 0.5 s excitation set took 2.8_min, and the 0.1 s 

excitation data set took 0.9 min to collect.  The PA response shows a pronounced 

frequency shift at the rapid 0.1 s excitation time and a reduction in PA signal strength.  

This observed frequency shift highlights three regions of particular interest in the PA 

signal.  First is the frequency location of the maximum PA signal, it should ideally occur 

at line center frequency where the maximum absorption occurs.  The other two important 

regions are the rising and the falling edge of the absorption curve about the maximum PA 

signal which are due to the line broadening mechanisms mentioned earlier. 
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Figure 54. Spectral PA signals taken at 59 mTorr with 2, 0.5, and 0.1 s excitation times 
using a 0.05 MHz step size, moving from low to high frequency; the PA peak response 
shifted to higher frequencies and reduced amplitudes as the excitation time was 
decreased. 

PA spectral data collection at low chamber pressures (2-60 mTorr) can take 

longer due to the slower cantilever amplitude displacement response times.  On the rising 

edge of the  PA signal, photoacoustic excitation to full periodic amplitude deflection 

under low pressure conditions can take more than 4-12 s due to the low excitation 

pressure generated in the chamber and the high quality factor of the cantilever resonator.  

Likewise on the falling edge of the PA signal, once the cantilever reaches a periodic 

excited state, the small damping coefficient at the lower chamber pressures and continued 

excitation at a lower absorption strength, causes the amplitude deflection to reduce 

slowly.  The brief excitation time results in an overall frequency shift in the line shape of 

the PA signal, which could potentially be accounted for in post data processing.  

Radiation excitation frequency and the corresponding PA response are the crucial 
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parameters which would be used for chemical identification applications, so they must be 

accurately identified. 

That being said, the fast scan technique tested above is extremely useful and could 

be used to quickly evaluate small spectral regions for absorption lines if an unknown 

chemical were evaluated with the system.  Then a slower more accurate scan could be 

performed to identify the line center absorption frequency and the relative PA amplitudes 

for each absorption line.  To achieve an accurate line center absorption frequency during 

a spectral scan, the excitation time had to be increased as the chamber pressure decreased.  

At the lower 2-5 mTorr pressures tested, spectral line broadening appeared to be 

dominated by Doppler broadening effects, and formed the narrowest spectral line widths.  

As line broadening increased with pressure, the frequency step size could be increased 

and the excitation time could be decreased.  In Figure 55 a small portion of spectra was 

recorded for three low pressure cases.  Each collection took 10-12 hours due the small 

0.05 MHz step size utilized and the 12-15 s excitation time before the subsequent 0.5 s 

average PA signal were recorded.  The PA spectra presented in Figure 55 is of interest for 

two reasons.  This spectral region contains strong absorption lines and it also contains 

two peaks in close proximity, separated by only 6 MHz.  The data in Figure 55 also 

shows the effects of pressure broadening in the PA signal as the two closely spaced 

absorption lines merge into one PA peak at higher chamber pressures. 
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Figure 55. PA spectral data plots of CH3CN collected with the 5×2×0.01 mm3 cantilever 
at three pressures utilized a 0.05 MHz step size and recorded the 0.5 s average PA signal 
for each frequency step. 

During the long data collection runs, the PA measurement scheme employed for 

the experiment using the iris clipped laser beam diode signal and lock-in amplifier signals 

proved to be extremely stable.  The PA chamber maintained low vacuum levels well, and 

over the course of long data collections, the chamber pressure increased very slowly with 

an average system leak rate of 0.5-1 mTorr/hr.   

A similar data spectral scan is shown in Figure 56, with the 5×2×0.005 mm3 

cantilever, which compares the difference between PA spectra when the THz source 

power was attenuated and unattenuated.  The two data collections utilized a 0.05 MHz 

frequency step size, which produced a high-resolution PA spectra.  Due to the difference 

in the exposed THz radiation power and corresponding PA responses, the collection 

parameters required modification.  Since the un-attenuated THz signal caused a higher 

amplitude of deflection in the cantilever, the excitation time was increased to 15 s, 5 s 

longer than the attenuated THz data collection.  The longer excitation time of the 
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unattenuated THz collection allowed the PA signal to reach a more stable steady state, 

achieve a higher signal to noise ratio, and somewhat decreased the variation in the PA 

signal around the 312.685 GHz  frequency compared to the attenuated collection.  It is 

clear in Figure 56 that the un-attenuated radiation source causes an increase in PA signal 

as well as increased broadening of the absorption line profile.    

 

Figure 56. PA spectra with the 5×2×0.005 mm3 cantilever recorded at 4 mTorr with the 
THz radiation source not-attenuated and attenuated by plexiglass.  

To demonstrate the broader spectral performance of the THz photoacoustic 

system, a 0.72 GHz frequency scan was performed spanning 312.07-312.79 GHz.  This 

low pressure PA signal taken at 13 mTorr successfully captured the 13 rotational 

absorption lines in the methyl cyanide spectral region scanned.  The data collection 

method utilized 0.2 MHz step size, 12 s excitation, and then the 0.5 s average signal from 

the lock-in amplifier was recorded.  This larger PA scan of methyl cyanide shown in 

Figure 57 took 12.5 hrs to collect and also compares the simultaneously recorded THz 

diode signal to the modeled absorption coefficient profile.  The scaled simulated spectra 
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very closely matched the measured PA signature of the gas with a small deviation at 

higher absorption strengths.  The PA signal also decreases somewhat over time, due to 

the chamber pressure leak rate; which discussed more later in this section.  

 
Figure 57. Photoacoustic data and the simultaneously recorded THz diode signal are 
compared to the simulated absorption spectra of methyl cyanide recorded at 13 mTorr 
with the 5×2×0.01 mm3 cantilever. 

Shown in Figure 58 are the THz diode signal in (a) and the PA signal in (b) of the 

rotational absorptions lines of CH3CN recorded over the 476.7-478.15 GHz range with a 

5×2×0.005 mm3 cantilever.  For the data collection, the system utilized a 0.2 MHz step 

size with an excitation period of 4 s, followed by a signal averaging time of 0.5 s.  This 

spectrum took approximately 9.1 hrs to collect, over which time the chamber pressure 

rose from 15 to 21 mTorr.  The recorded THz diode signal in Figure 58 (a) shows the 

signal strength after transmission through the PA chamber.  The voltage signal from the 

THz diode fluctuated from -0.6 to -1.08 V over the frequency range scanned, which 

illustrates the THz diode’s output strength and frequency dependence.  The strong 
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absorption lines are visible in the diode signal while weaker lines below 476.8 GHz, are 

masked by the fluctuations in the diode signal and the short absorption length.  

 
(a) 

 
(b) 

Figure 58. CH3CN spectra collected at 15 mTorr; THz diode measured transmittance 
shown in (a) and simultaneous recorded PA signal in (b) from the 5×2×0.005 mm3 
cantilever sensor.  

Another segment of spectra of CH3CN is shown in Figure 59 using the 5×2×0.005 

mm3 cantilever, which was recorded at 38 mTorr.  The THz diode transmittance in Figure 

59 (a) showed a large power increase in the 460-461 GHz range.   In Figure 59 (b), the 

strong PA signals below 459.7 GHz are primarily due the ground state rotational 

absorption lines.  The spectral collection used a THz frequency step size of 0.5 MHz, an 

excitation time of 4 s, and then recorded the 1 s averaged PA signal from the lock-in 

amplifier.   
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(a) 

 
(b) 

Figure 59. CH3CN spectra collected at 38 mTorr used the 5×2×0.005 mm3 cantilever 
sensor; THz diode transmittance shown in (a) had a large power increase between 460-
461 GHz and the simultaneously recorded PA signal shown in plot (b). 

A zoomed in view of the PA signals from the above plot in the 459.79-461.6 GHz 

range is shown in Figure 60 and the signals are due to the first excited state rotational 

absorption lines.  The overlaid simulated absorption spectra almost perfectly matched the 

PA data in Figure 60 that was created using a chamber pressure of 41 mTorr and a 

broadening conditions of 105 MHz/Torr.  The increased measured THz diode transmitted 

power around the 460.5 GHz frequency had a small effect on the PA signal, making the 

PA signal slightly stronger than the simulated spectra in that region.   
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Figure 60. Simulated spectrum of CH3CN matched very well to the PA spectral data of 
the first excited state rotational absorption lines in the 459.79-461.6 GHz range. 

Another zoomed in view of the PA data from Figure 59 highlights the signals in 

the 457.1-458.7 GHz range, which is shown in Figure 61.  The simulated absorption 

profile is due to the first excited state rotational absorption lines.  In this region of the 

spectrum, there are other stronger absorption lines; perhaps from an excited state that are 

masking the weaker, ground state absorption lines. 
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Figure 61. Stronger excited state absorption lines masked the weaker ground state 
absorption lines of the simulated spectrum at 457.186 GHz, 457.471 GHZ, and 457.992 
GHz. 

A final zoomed in view of the PA data from Figure 59 highlights the signals in the 

461.6-462.6 GHz range, shown in Figure 62.  Several excited state rotational absorption 

are observed over the 461.6-462.6 GHz interval, which are not accounted for in the 

simulations from the database. 
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Figure 62. PA spectra of higher excited state absorption lines not accounted for in the 
simulated spectrum are shown from 461.6-462.6 GHz. 

The highest chamber pressure used to collect PA spectra with the 5×2×0.005 mm3 

cantilever was 268 mTorr.  Simultaneously recorded THz diode signal from the spectral 

collection is shown in Figure 63, with the corresponding PA data shown in Figure 64 and 

Figure 65.  The spectra was collected using a 3 s excitation, 1 s signal averaging time, 

and 1 MHz frequency step size.  In the frequency range shown, the THz source data sheet 

listed an output power of ~50 µW.  At this low radiation power, fluctuations in the THz 

diode signal measurements were more apparent as the frequency was increased in the 

1_MHz steps.  The THz diode signal mean fluctuation was 2×10-4 V between each 

frequency step increment.  These fluctuations could be due to noise in the detector signal 

or due to fluctuation in the output power of the amplitude modulated radiation source.  If 

a small portion of the fluctuations are due changes in the output power, that would 

translate to some variation in the PA signal as well.  Other than the strong absorption 
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lines around 588 GHz, there are no obviously distinguishable absorption peak in the THz 

diode signal. 

 
Figure 63. CH3CN THz diode transmittance spectra collected at 268 mTorr showed a 
2×10-4 V mean fluctuation in the signal magnitude between frequency steps.  

The relatively high chamber pressure of 268 mTorr caused the absorption lines to 

broaden and generate the large PA signal shown in Figure 64.  A zoomed in view of the 

data set shown in Figure 65 highlights the large number of weak absorption lines below 

586 GHz that became more prominent due to the elevated chamber pressure. Another 

effect of the higher chamber pressure is that the broadening of the absorption lines 

elevates the effective noise floor of the measurements, reducing the SNR.  More analysis 

on the SNR value of the measurements is discussed later in this section.  
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Figure 64. PA spectra of CH3CN collected at 268 mTorr with the 5×2×0.005 mm3 
cantilever sensor showed significant line broadening due to the high chamber pressure.  

 

Figure 65. Zoomed in view of the same PA spectra shown in Figure 64 has a large 
number of weak spectral absorption lines below 586 GHz that are visible due to the high 
chamber pressure.     

The PA system setup had a low leak rate of 0.5-1 mTorr per hour, depending on 

the chamber pressure.  To evaluate the leak rate effect on the PA signal, a modulation 

frequency scan was performed over a 23 hour period, every hour, a modulation scan was 
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performed which took 15 min.  Over the course of the data collection, the chamber 

pressure rose from 10 mTorr to 22 mTorr in 23 hours.  The result of the modulation scans 

are shown in the two plots in Figure 66 and Figure 67.  The modulation scans were 

performed on the 5×2×0.005 mm3 cantilever, over the 260-270 Hz frequency range at 

0.05 Hz increments.  In Figure 66, the peak amplitude of the PA signal dropped a small 

percentage every hour and the amplitude of the PA signal was reduced by a total of 

66.9% over the 23 hour period.  In Figure 67, all 23 of the data sets are overlaid in the 

plot; the PA signal reduced in amplitude and increased in resonant frequency by 0.1 Hz 

due to the increase in chamber pressure.  The arrow in Figure 67 indicates the direction of 

the maximum PA signal strength over time.  As the chamber pressure rose, the partial 

pressure of the CH3CN gas in the chamber was reduced, which resulted in the 

corresponding reduction in PA signal strength.  The partial pressure factor was discussed 

in Equation (3.5) and it clearly affects the generated PA changes in pressure over long 

data collections.  The change in PA signal strength with respect to chamber pressure 

increases quickly at lower pressures because the quality factor of the cantilevers rapidly 

decreases with increased pressure below 50 mTorr (see Figure 46 for quality factors). 
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Figure 66. 3-D view of PA modulation frequency scan data collected over a 15 min 
period every hour for a 23 hr period showed a 66.9% reduction in PA signal amplitude 
over the test period.  

 

 

Figure 67. 2-D view of data scan showed a 0.1 Hz increase in the modulation frequency 
required to achieve maximum PA signal as the chamber pressure rose from 10 mTorr  to 
22 mTorr over the 23 hour period. 

Based on the PA spectra, the performance of the system was systematically 

evaluated for each data collection set.  The SNR, given in Equation (2.6), was first 
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evaluated by determining the maximum and minimum signals found in the spectra.  

Locating the maximum value was done through MATLAB® scripts, where the maximum 

PA signal value and the location in the array of data was found.  To determine the noise 

floor of the PA signals, several methods were considered.  The noise level of the PA 

measurement was assessed from the PA data with the THz source on.  For an optimal low 

noise signal, the noise measurements must be performed away from strong rotational 

absorption lines and away from any weak excited state ro-vibrational absorption lines.  

Strong absorption lines experience more line broadening with increasing chamber 

pressure.  Therefore, there can be significant PA signal in the tail of the absorption profile 

even at relatively low pressures.   

To locate the noise floor of the PA signal, the root-mean-squared (RMS) value of 

the signal was calculated for different interval sample sizes.  The SignalRMS value for the 

selected intervals were calculated by 

 
 2 2 2

1 2 n

RMS

s s s
Signal

n

  



 (5.4) 

where n is the number of samples in the interval, and s is the PA signal value measured at 

each frequency step.  From the first data point in the array to include the number of 

subsequent samples in the defined sample size, the RMS value of sample set size was 

calculated over the entire data set.  The calculated SNR for the different interval sample 

sizes is shown in Table 6.   
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Table 6. SNR results for multiple sample size intervals for data set in Figure 58 (b). 

Sample Size Max Signal (V) RMS Noise 
Frequency 

(GHz) SNR 
10 4.1814 0.0006 476.911 6,696.9 
25 4.1814 0.0010 476.941 4,156.1 
50 4.1814 0.0014 476.941 2,953.5 
100 4.1814 0.0017 476.911 2,479.0 
200 4.1814 0.0022 476.910 1,932.3 
500 4.1814 0.0025 476.854 1,668.3 
 

A sample size n=100 consecutive samples provided a conservative RMS noise 

floor for the PA spectral data, and was used for the remainder of the analysis.  Over the 

noise floor samples, the frequency must be away from any absorption lines and the 

external noise contributions during the sample set interval must also be small in order to 

obtain a low noise signal.  The molecular spectral collection shown in Figure 58, had a 

maximum PA signal of 4.1814, an RMS noise signal of 1.73×10-3 V measured with 

n=100 over the frequency interval 476.911 GHz, and established a SNR = 2,479 for that 

data set.  

Utilizing the sampling method described above, with n=100, the SNR for several 

of the collected data sets are shown in Figure 68.  Many factors affected the SNR for each 

data set.  Spectrums were collected over a large frequency ranges and utilized three 

different THz diode sources.  Settings on the photodiode and lock-in amplifiers required 

adjustment for large versus small cantilever deflections since large cantilever 

displacements caused PA signals greater than 10 V, which would over load the DAQ card 

±10 V limit.  The largest limitation appears to be the overall noise in PA system and in 

the PA measurements, which are discussed in the next section.    
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Figure 68. Calculated SNR using n=100 for the PA spectral data collections shown over 
the lower portion of the pressure range tested.    

With the method for evaluating the PA signal-to-noise ratio for each data set, the 

important factors of sensitivity and NNEA coefficients are evaluated.  Using Equation 

(2.7), the sensitivity ( min ) of the PA measurement determines what the smallest 

absorption coefficient the system could detect based on the absorption strength and SNR 

for the measurement.  The best sensitivity results for the two cantilever designs are 

shown in Table 7.  The 5×2×0.005 mm3 cantilever design was found to be 57.4% more 

sensitive than the 5×2×0.01 mm3 design.  

Table 7. Best sensitivity results for the two cantilever sensors. 

Cantilever 
Design (mm3) 

Chamber 
Pressure 
(mTorr) 

Radiation 
Frequency 

(GHz) peak  (cm-1) SNR min  (cm-1) 

5×2×0.01 13 312.633 0.02400 1,221 1.97×10-5 
5×2×0.005 38 459.627 0.05387 3,719 1.13×10-5 

 

Equation (2.8) defined the NNEA as a function of the radiation source output 

power Po, minimum detectable absorption coefficient min , and the sampling time T.  

Although the two data collections compared in Table 8 were performed at different 
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regions of the frequency spectrum, they were the best performers for their respective 

sensor designs.  The PA data set represented for the 5×2×0.01 mm3 cantilever design is 

shown in Figure 57, and PA results for the 5×2×0.005 mm3 design are displayed in 

Figure 59 (b).   

Table 8. Best NNEA's achieved by the system for each sensor design. 

Cantilever 
Design (mm3) 

Chamber 
Pressure 
(mTorr) Po (µW) T (s) 

NNEA 
(cm-1 W Hz-½) 

  5×2×0.01 13 ~100 0.5 1.39×10-9 
  5×2×0.005 38 ~25 1 2.83×10-10 

  

There are two factors used in the sensitivity and NNEA calculations which have 

some margin of error associated with then.  The first potential source of error is the peak 

absorption coefficient ( peak ) extracted from the simulation software which was used to 

calculate the sensitivity.  In order to make the simulations match the recorded PA spectral 

data, higher than expected line broadening coefficients were used.  Use of an increased 

broadening term also causes the peak absorption coefficient to increase, which in turn 

reduces the effective sensitivity.  The other factor that was estimated to a close a degree 

as possible was the power output of the THz radiation source.  There are insertion losses 

in power as the radiation entered the PA chamber, depending how close the source was to 

the Teflon window, and if the power was attenuated by plexiglass prior to entering the 

chamber.  Fluctuations in the THz diode output power are frequency dependent, which 

also contributes to the uncertainty of the power used to calculate the NNEA.   
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5.4. Performance Analysis and Limitations 

The ultimate performance of the PA system can be limited by several factors, 

which include noise in the PA signal measurement, fluctuations in gas pressure, 

fluctuations in radiation output power, acceleration noise, and electrical noise.  The 

frequency spectrum of the PA system noise and active PA signals were investigated 

while the chamber was at 200 mTorr.  In Figure 69, a 1 s duration of PA data from the 

iris clipped PA signal was evaluated using Fourier analysis of the PA signal to look at the 

noise contributions in the frequency domain.  In the inset image of Figure 69, is the 

single-sided amplitude of the FFT when the THz source was off.  With the THz source 

operated at Freq 1 at a modulation frequency of 626.02 Hz, the PA signal was well over a 

thousand times greater than the noise.  For this data collection, the PA system had a 

reasonably low level of spectral noise in the PA signal measurement.  Two portions of the 

spectrum that stood out slightly were the noise signals occurring below 200 Hz and 

region around the resonant frequency of the cantilever.  The beam block used in the data 

sample collection to prevent the reference arm from creating an interference signal 

generated diffuse reflections back to the photodiode.  The reflections off the diffuse 

surface, unknowingly at the time, also contributed to the noise in the signal.  The 

amplitude of the signal around the resonant frequency of the cantilever beam was 

attributed to the pickup of vibrations in the experimental setup due to noise and vibrations 

in the room.  
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Figure 69. Fourier analysis of a 1 s photoacoustic signal, collected at 200 mTorr taken at 
Freq 1, showed very low noise in the system with no single dominant noise frequency in 
the iris clipped PA measurement method with the 5×2×0.01 mm3 cantilever. 

The noise in the PA signal of the 5×2×0.005 mm3 cantilever design was also 

measured, at 268 mTorr and the results of the lower portion of the frequency spectrum 

are shown in Figure 70.  For the measurement, the THz source was powered on, but no 

radiation output was being generated.  The reference arm to the interferometer for this 

data set was blocked with a metallic surface, which reflected the laser beam down away 

from the photodiode detector, and further reduced the amount of noise in the signal 

spectrum.  In this configuration, the primary sources of noise not due to the cantilever 

occurred at intervals of the electrical noise sources: 60, 120, 180, 240, and 300 Hz.  The 

signal strength at the resonant frequency of the cantilever due to the small fluctuations in 

the cantilever position is approximately 3.5 times the strength of the electrical noise 

occurring at 120 Hz.   



146 

 

Figure 70. Lower portion of the frequency spectrum for the 5×2×0.005 mm3 cantilever in 
the larger PA cell at 268 mTorr, showed significant signal at the resonant frequency of 
the cantilever and at 60 Hz internals from electrical noise. 

Comparing the amplitudes of the noise signals in Figure 69 and Figure 70, shows 

that the signal strength for the more flexible 5×2×0.005 mm3 cantilever at the resonant 

frequency is approximately 2 times the amplitude of the thicker 5×2×0.01 mm3 

cantilever.  Assuming the cantilevers were exposed to similar external vibrational noise 

sources, the more flexible cantilever design would be expected to exhibit higher 

deflection.  An expanded view of the frequency spectrum data in Figure 70, is shown in 

its entirety out to 30 kHz in Figure 71.  The high frequency noise in the signal is largely 

attributed to noise from the HeNe laser.   
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Figure 71. Complete frequency spectrum from data in Figure 70 out to 30 kHz, 
highlights the high frequency noise attributed to the HeNe laser source for the PA 
measurements.  

The total noise in the measured HeNe laser PA signal is the sum of the 

fluctuations in the laser intensity, the photodiode, and electronic band pass amplifier 

noise.  The RMS noise fluctuations in the output amplitude of the HeNe laser is specified 

at <0.5% over a 30 Hz to 10 MHz frequency range.  Over long operating conditions, the 

laser output was rated to drift ±2 % per hour.  Since the PA data collection method relied 

on the relative changes in the photodiode signal over a short period of time, the maximum 

noise contribution from the laser output can be considered limited to <0.5% of the laser 

output, which equates to a maximum fluctuations of 5 µW of output power over the 

30_Hz to 10 MHz frequency range.  The Stanford Research Systems SR560 preamplifier 

was operated in a band pass, AC amplification mode, which still amplified the both the 

desired PA signal and a small portion of the laser power fluctuations.  The output noise 

on the SR560 is rated at <4 nV/Hz1/2 at 1 kHz; while the PA signal noise averaged around 

the 1 mV to -1 mV interval range.  The noise specification for the amplifier is at least two 
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orders of magnitude less than the measured PA signal average and was therefore 

minimally contributed to the overall HeNe laser measurement noise.  For the PA 

measurement configuration utilized in this experiment, the largest contributor to the noise 

in the PA signal was attributed to the fluctuation in the HeNe laser power. 

Thermal fluctuations of the gas pressure in PA chamber is another potentially 

limiting factor to the sensitivity of the PA measurement and is discussed in [111].  For 

random thermal motion of the gas, it was assumed that the number of atoms and the 

volume of the PA chamber are both fixed.  Also, it must be assumed that the sum of the 

translational energies of the atoms are the only energies that contribute to the chamber 

pressure in the PA cell.  The translational energy of atoms EA changes with the volume as 

V-2/3.  It then follows that pressure P, is related to the mean energy of the atoms through 
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where U is the potential energy of a monatomic gas, which is 
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In measuring the potential energy, the standard deviation δU, is related to the heat 

capacity CV of the gas as 
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Then the fluctuation in pressure δP, can be calculated using 2P and 
2

P , where 
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and 
2

P is used from Equation (5.5) to produce 
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From Equations (5.5) and (5.9), the relative fluctuations in pressure due to the thermal 

motion of the atoms is 
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The results of Equation (5.10) show the relationship of the relative fluctuations in 

pressure is related to the total number of particles in the enclosed system and that it is 

approximately N -1/2.  Therefore, this defines the smallest pressure load the cantilever 

sensor could be exposed to due to the relative thermal fluctuations of the gas in the 

chamber. 

Based on a PA chamber volume of 3.99 cm3, Table 9 shows several pressure 

changes due to thermal fluctuations over a range of operating condition pressures.  In this 

low pressure regime, the fluctuations in pressure are very small. The number of 

molecules at 400 mTorr in the volume increased by factor of 200 times the 2 mTorr 

pressure condition and the fluctuation in pressure only increased by an order of 

magnitude.   

Table 9. Pressure changes due to thermal fluctuations of the gas in a 3.99 cm3 PA 
chamber.     

Chamber Pressure (Torr) Number of Molecules 
1

2P PN


  (Torr) 
0.002 2.61×1014 1.24×10-10 
0.05 6.53×1015 6.19×10-10 
0.4 5.22×1016 1.75×10-9 
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To determine an estimate of the cantilever deflection caused by the thermal 

fluctuations, it was assumed that the fluctuations occur at random intervals and at no 

specific frequency.  The quality factors of the cantilevers were high in the low pressure 

environment, and the PA signals had full width half-max values were typically less than 

1_Hz.  Due to the very narrow resonance excitation frequency window; it is reasonable to 

use the steady state displacement equations for cantilever deflection due to a static load 

pressure.  Using Equation (3.11) and the fluctuation pressures P  from Table 9, 

estimated cantilever displacements due to the small fluctuations are shown for two 

different cantilever designs.  For the two cantilever designs, the estimated tip 

displacements due to the fluctuations in pressure ranged from 1.19×10-8 - 1.35×10-5 µm, 

which is extremely small. 

Table 10. Estimated cantilever deflections due to fluctuations in PA chamber pressure. 

  Cantilever Design 

Chamber Pressure 
(Torr) 

1

2P PN


  
(Torr) 

5×2×0.01 mm3 

Deflection (µm) 
5×2×0.005 mm3 

Deflection (µm) 

0.002 1.24×10-10 1.19×10-8 9.54×10-8 
0.05 6.19×10-10 5.95×10-8 4.76×10-7 
0.4 1.75×10-9 1.68×10-7 1.35×10-5 

 
Now consider what would be the minimum detectable absorption coefficient, αmin 

based on the fluctuation pressures listed in Table 10.  Rewriting Equation (3.5) allows 

αmin to be represented by the source power Po, modulation frequency fm, chamber pressure 

Pc, and cylindrical chamber dimensions of length L and radius r.   
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Notice that the minimum absorption coefficient based on the thermal fluctuation limited 

case is a function of the PA chamber dimensions.  The αmin function varies as /r L , so a 

PA chamber design that is longer and has a smaller radius should produce a slightly 

smaller absorption limit.  Increasing the radiation source output power should also 

improve the detection limit, as long as the source power is below the saturation limit of 

the gas under investigation.  The minimum absorption coefficient based on the thermal 

fluctuation levels at the resonant frequency of each of the cantilevers is shown in Table 

11.  The calculations assumed a radiation power level of 0.1 mW, a 3.99 cm3 PA cell, and 

used the measured resonant frequency of each cantilever design.  If the PA system was 

limited by the thermal fluctuations of the gas in the chamber, the minimum detectable 

absorption coefficient would be approximately 1.46×10-6 - 1.03×10-7 cm-1.  The 

minimum detectable absorption coefficients for the two cantilever designs shown in 

Table 7 suggest the measurable value by the system is an order of magnitude higher than 

the gas fluctuation limits shown in Table 11. 

Table 11. Minimum absorption coefficient at the gas thermal fluctuation limit for the 
3.99 cm3 PA cell. 

  Cantilever Design 

Chamber Pressure 
(Torr) 

p P   
(Torr) 

5×2×0.01 mm3 

αmin (cm-1) 
5×2×0.005 mm3 

αmin (cm-1) 
0.002 1.24×10-10 2.44×10-7 1.03×10-7 
0.05 6.19×10-10 1.22×10-6 5.15×10-7 
0.4 1.75×10-9 3.44×10-6 1.46×10-6 

 

Now the extent of cantilever motion due to thermal vibrations in the cantilever 

device is considered.  Garcia-Valenzuela et al. investigated several limiting conditions of 
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optical measurements of cantilever deflections [108].  If the thermal noise in the 

cantilever was the limiting factor for measuring the minimum detectable displacement 

(MDD), they developed an equation that was applicable for the first resonance and below 

the resonant frequency conditions 
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where Q is the quality factor, and Δν is the bandwidth of the detector and electronics.  For 

the case when thermal fluctuations occur at the cantilever resonant frequency, the 

equation simplified to  

   4 B
o

o

k T Q
MDD

k

 



  . (5.13) 

Similarly, when the thermal changes occur much lower than resonance, the equation 

becomes 

   4 B
o

o

k T
MDD

k Q

 



 . (5.14) 

Equation (5.14) is valid when the PA chamber is not subjected to external excitation 

radiation sources.  The temperature fluctuations of the cantilever in the chamber should 

be extremely slow due the large thermal mass of the stainless steel chamber and low 

pressure environment.  Minimum cantilever displacements from thermal fluctuations 

occurring when o   is shown in Table 12 for a range of quality factors.  The quality 

factor of the cantilevers varied a great deal due to the 2-400 mTorr pressure conditions 

tested. 
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Table 12. Minimum detectable cantilever displacement due to thermal fluctuations when 

o  .   

 Cantilever Design 

Quality Factor 
5×2×0.01 mm3

MDD (µm) 
5×2×0.005 mm3 

MDD (µm) 
4,000 2.73×10-8  
1,400 4.62×10-8 2.06×10-7 
500 7.73×10-8 3.36×10-7 
100  7.51×10-7 

   
The amplitude of the minimum detectable displacement due to thermal 

fluctuations in the cantilever varies significantly depending on the quality factor and the 

frequency of the thermal fluctuations.  The case when o   results in minimum 

displacement values 2-4 orders of magnitude greater than the o   cases.  In Table 13 

when o  , the MDD has a maximum value of 1.09-2.81 Å for the highest quality 

factors listed for each cantilever design.  Displacement measurements using different 

optical detection methods have reported the ability to sense vertical cantilever 

displacements of less than 0.1 nm [112].  With such small thermal fluctuations generated 

by the cantilever in Table 12 and Table 13, the thermal fluctuations of the cantilever is 

most likely not the limiting factor. 

Table 13. Minimum detectable cantilever displacement due to thermal fluctuations for 
the case when o  .   

 Cantilever Design 

Quality Factor 
5×2×0.01 mm3

MDD (µm) 
5×2×0.005 mm3 

MDD (µm) 
4,000 1.09×10-4  
1,400 6.47×10-5 2.81×10-4 
500 3.87×10-5 1.68×10-4 
100  7.51×10-5 
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Acceleration noise is due to external applied forces that induce cantilever motion.  

Sources of the acceleration noise can be coupled into the system through vibrations in the 

PA chamber, vacuum connections, and table.  Only the forces acting normal to the 

cantilever surface are coupled into the amplitude of the cantilever motion.   During long 

PA spectral collections, the excitation times between measurements was 4-12 s, 

depending on the pressure.  Strong spikes in the PA signal due to external acceleration 

noise typically showed up as isolated increases in the PA signal, and neighboring sample 

data points were measured at lower levels.  An extreme example of acceleration noise 

coupled into the cantilever PA signal is shown in Figure 72 where ~22 strong PA spikes 

were found over the 1.4 GHz frequency scan.  The PA spectra shown in Figure 72 

contained abnormally high amounts of noise spikes in the measurement, which was 

uncommon.  While the occasional strong noise peak is not a problem, reoccurring weak 

disturbances are and they can significantly raise the noise floor of the measurements.  

Therefore, coupling of acoustic noise and vibrations from the room into the cantilever 

motion was determined to be the strongest contributors to fluctuations in the PA 

measurements.   
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Figure 72. Example of PA signal spikes, which occurred due to acceleration noise 
coupled into the cantilever through the PA chamber and experimental setup. 

5.5. Summary 

In this section, the experimental setup and PA data collection techniques  were 

discussed.  Cantilever response to the photoacoustic effect was evaluated using two 

optical measurement methods, a laser beam iris clipped method and a Michelson 

interferometer configuration.  The laser beam clipped method was advantageous due to 

the large dynamic range of the cantilever deflections and the modest required data 

sampling rate which allowed the simultaneous collection of multiple data signals. 

Cantilever dynamic behavior was then investigated in the PA chamber and found 

that the strongest PA response occurred when the THz radiation source was amplitude 

modulated at the resonant frequency of the cantilever.  The cantilever response time to 

reach a steady state amplitude deflection was significant at low pressures and the 

response time decreased with increasing chamber pressure.  The quality factor of the 
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cantilevers was high due to the low pressure environments, causing the PA signal to 

decay very slowly from an excited periodic amplitude deflection.  

Response and decay times of the PA signal determined how quickly PA spectral 

data could be collected since the excitation time and frequency step size affected the 

results.  Therefore there are competing elements to spectral collections, an increased 

chamber pressure reduces the needed excitation time but also causes significant 

absorption line broadening.   If higher spectral line resolution is desired, the chamber 

must be at lower pressures, at the cost of a longer time required to collect the spectral 

signature.   

 Short and long THz frequency scans of the rotational absorption lines of CH3CN 

were performed over a range of pressures.  The best sensitivity of 1.13×10-5 cm-1 and a 

NNEA of 2.83×10-10 cm-1 W Hz-½ was achieved using the 5×2×0.005 mm3 cantilever 

design, with the spectra recorded at 38 mTorr.  Spectra recorded at 4 mTorr still produced 

a strong PA response, achieving a SNR=504.  The compact PA absorption cell was only 

2 inches long, which is orders of magnitude smaller than traditional long path absorption 

systems.  The spectroscopy system developed here performed exceptionally well at low 

chamber pressures compared to the other PA trace detection and spectroscopy systems 

shown in Table 1.  
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VI. Conclusions 

PA spectroscopy and chemical sensing is an exciting area of research that has 

many industrial and commercial applications.  Creating the sensitive MEMS cantilever 

sensors and analyzer was a multidisciplinary effort, which requires incorporation of 

chemistry, physics, and engineering principles.  In this research effort, sensitive PA 

cantilever sensors were successfully designed, modeled, fabricated, and tested under very 

low chamber pressures for THz molecular spectroscopy.  Design parameters of length, 

width, and thickness of the cantilever structures were analyzed and used to create 

cantilever designs that were sensitive to the low pressures generated in the PA chamber.  

Along the path to creating these sensitive devices, several fabrication processes and 

techniques were developed to make this effort successful.  The compact PA THz 

spectroscopy system developed in this work is significantly smaller than traditional long 

path gas phase molecular spectroscopy systems which creates a real possibility for a 

portable spectroscopy system. 

6.1. Contributions 

Several contributions to the field of MEMS and THz PA spectroscopy were 

accomplished in this work.  Summaries of each contribution area are discussed in the two 

following sections which cover the development of the sensitive cantilever fabrication 

processes and the collection of THz PA molecular spectroscopy using the sensitive 

cantilever devices at low chamber pressures. 
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6.1.1. Fabrication 

Through the development of the fabrication processes, very sensitive MEMS 

cantilever PA sensors with length over thickness ratios of 500 and 1,000 were created.  

The 5×2×0.005 mm3 cantilever design created here was more sensitive than cantilever 

devices used in [6, 79-82, 84-86, 102, 109, 113] and similar to designs in [87].  The 

fabrication method developed here allowed the patterned deposition of the Ti/Au 

reflective layer at the tip of the cantilever to be performed as the first step in the 

fabrication sequence.  Alignment marks created during the Ti/Au deposition made the 

later mask alignment steps extremely accurate.  The DRIE etch used to create the narrow 

gap through the device layer to define the cantilever shape was able to identically match 

the PR pattern.  A benefit of the DRIE process is that the etch is not affected by mask to 

wafer orientation or the crystal plane orientation of the silicon wafer.  DRIE of the device 

layer surface performed here eliminates large gaps in the corners of the cantilever designs 

seen in [87] due to their wet etch of silicon device layer.   

6.1.2. PA Spectroscopy and Sensitivity Results 

With this novel system, the first-ever cantilever based THz photoacoustic 

spectrum was collected and analyzed at low chamber pressures in the 2-60 mTorr range.  

The pressure regimes tested here were several orders of magnitude lower than the trace 

gas detection cantilever PA systems discussed earlier [5, 6, 80-82, 84, 85, 102].  

Significant PA signals were achieved at chamber pressures as low as 2 mTorr.  For THz 

spectroscopy applications, the sensor size and chamber pressures tested were also an 
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order of magnitude smaller than the membrane sensor system used by Krupnov et al. 

[88].  By collecting PA spectra in the 2 mTorr pressure regime, it allowed for a primarily 

Doppler limited line broadening of the methyl cyanide, making strong closely spaced 

absorption lines highly resolvable. 

In this research effort, the custom fabricated THz photoacoustic spectroscopy 

system achieved a sensitivity of 1.97×10-5 cm-1 and a NNEA of 1.39×10-9 cm-1 W Hz-½ 

with the 5×2×0.01 mm3 cantilever design.  The more sensitive 5×2×0.005 mm3 cantilever 

sensor design achieved a sensitivity of 1.13×10-5 cm-1 and a NNEA of 

2.83×10˗10·cm˗1·W·Hz-½.  The NNEA results shown in Table 8 for this work compare 

very well to previously reported, short path PA systems listed in Table 1.  The NNEA of 

our system was 4.72 times higher than the membrane system in [88], while the 

dimensions of their absorption chamber and sensor were 2.6 times longer and 10 times 

larger respectively.  Compared to the best reported trace detection cantilever sensor 

system [83], our system NNEA was 1.66 times higher and their absorption chamber 

dimensions were 2.3 times longer.  Finally, the NNEA of our system was 1.42 times 

higher than the tuning fork detector system [91], their chamber was 2.8 times longer and 

their sensor was 6.6 times larger than the cantilever designs.  

The PA system operated at significantly lower chamber pressures, taking 

advantage of the high quality factors.  Over the range of low vacuum environments 

tested, the experimental data collected provided valuable insight into the range of 

damping conditions in the PA chamber.  The quality factor of the 5×2×0.01 mm3 

cantilever designs ranged from 4,173-596 over the 3-400 mTorr chamber pressures.  The 
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more sensitive 5×2×0.005 mm3 cantilever design had quality factors of 1,474-128 over a 

smaller pressure range of 2-211 mTorr.   

Additionally, due to its compact size and with a few modifications, the PA system  

can be used as a portable chemical sensing and spectroscopy platform.  This is a great 

advantage in comparison to a large traditional absorption cells for spectroscopy 

applications, leading to a hand held THz chemical sensor or MEMS detector arrays for 

THz imaging applications.    

6.2. Future Research 

The sensitive MEMS sensors created here enabled the THz PA molecular 

spectroscopy system dimensions to be made significantly smaller than traditional long 

path absorption designs.  Recommendations for future research are discussed regarding 

improvements to the cantilever design and manufacturing, as well as modifications to the 

PA experimental setup.  The overall footprint of the PA test setup could be further 

reduced if a piezoelectric layer was incorporated on the cantilever designs.  A 

piezoelectric sensor configuration would provide a compact way of evaluating the 

cantilever response to the PA pressures and the optical measurement method could be 

used in tandem with or potentially be eliminated entirely, depending on the piezoelectric 

performance.  The cantilever fabrication process was developed to ensure the device 

layer surface was protected during every step of the fabrication sequence.  PZT or ZnO 

are promising piezoelectric layers that could be implemented into the designs.  The 

protective photoresist layer used during the cantilever release process would completely 

protect the piezoelectric materials from the strong HF vapors.  Miniaturized arrays of 
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piezoelectric cantilevers could be used for PA imaging applications where individual read 

outs from each cantilever would represent a pixel of the image.   

Promising improvements in cantilever fabrication include modifications to the 

selection of SOI material layer construction and to the cantilever designs.  Reduction in 

the BOX layer thickness to ~0.2 µm on the SOI wafers would significantly reduce the 

residual stress between the device layer and oxide layers during the release process.  A 

~0.2 µm BOX layer would still provide an adequate etch stop layer for the DRIE and RIE 

etch processes.  The final stages to release the cantilever device was the removal of the 

BOX layer over HF vapor.  Any defects in the protective PR coating leaves the potential 

of etching any deposited films on the device layer surface.  Removal of a thinner, 

~0.2_µm BOX would require 80% less time over the HF vapor compared to a 1 µm thick 

oxide, reducing the amount of time and risk to damaging deposited films on the device 

layer surface.   

The minimum detectable absorption coefficient for the system could further be 

reduced by creating a more sensitive cantilever design, with a lower resonant frequency.  

Analysis of the noise in the frequency spectrum of the PA signal for the cantilevers was 

performed in section 5.4 Performance Analysis and Limitations.  The dominant noise 

signals were electrical at intervals of 60 Hz and at the resonant frequencies of the 

cantilevers.  Creation of cantilever designs with length over thickness ratios >1,000 at 

resonant frequencies that fall between the electrical noise peaks would make for a device 

with an increased sensitivity.  Several SOI manufactures sell thinner device and BOX 

layer materials, which increases the number of potential designs.  Additional sensitive 

cantilever designs and fabrication modifications like filleting of the cantilever corners 
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would improve the integrity of the membrane surrounding the cantilever were discussed 

in Appendix A.   

With a few modifications, the experimental setup could be refined to increase the 

performance of this novel THz PA spectroscopy system.  The PA system had a very slow 

leak rate but the high quality factor of the cantilevers at the low chamber pressures tested 

meant the system performance was sensitive to changes in pressure.  To achieve the 

optimal amplitude deflection performance of the cantilever, the modulation frequency 

must be very accurate, within a few (1-3) hundredths of a Hertz.  Incorporation of the 

chamber pressure reading into the LabView control system would be beneficial; the 

modulation frequency could then be scaled based on the pressure readings during PA 

spectral collections.  Another option to increase the performance would be to periodically 

perform resonant frequency modulation scans during long spectra data collections, 

ensuring an optimal excitation.  Although, the additional frequency scan option would 

slightly increase the overall data collection time, it would provide a PA amplitude scaling 

measure that could be used in post data processing to correct for the changes in pressure.  

The second improvement would be the use of a lower noise laser source for the 

cantilever displacement measurements.  The HeNe laser used had some high frequency 

components that contributed a large portion of the additional noise in the raw PA signal 

measurements.   

The PA beam clipping measurement technique allowed for an accurate deflection 

measurement, which utilized low data sampling rates.  A data acquisition card with a 

higher sampling rate (1 MS/s or more) would allow for better resolution of a Michelson 

interferometer configuration where high frequencies would be encountered due to large 
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amplitude deflections of the cantilever.  Converting the experimental setup and data 

collection to a Michelson configuration would allow the optical layout to be further 

reduced in size by eliminating the beam clipping iris, making the system even more 

compact. 
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Appendix A. Additional Cantilever Design Models 

Additional cantilever shapes and piezoelectric cantilever designs were evaluated 

for their potential applications in the PA system.  Some dual anchored cantilever and 

rackets were the first non-traditional shapes considered.  A dual anchored 5×3×0.01 mm3 

design used two small anchor segments that were 1 mm long and 0.5 mm wide each and 

is shown in Figure 73.  The proposed cantilever design in Figure 73 offers a large surface 

area to capture the changes in pressure while creating a lower spring constant due to the 

small anchoring arms.  

 

Figure 73. Dual anchored cantilever design had total over all dimensions of 5×3×0.01 
mm3; the two anchor segments were 1 mm long and 0.5 mm wide.  Deflection was due to 
a 10 mPa static load condition. 

An image of the mises stress in the above design is shown in Figure 74, where a 

high concentration of stress is found where the small anchor arms attach to the plate.  

Highly localized stress points can be a failure point for MEMS devices and can be 

reduced through filleting the corners in the design.  Fillets reduce the amount of stress by 
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creating a radius of curvature in the design, which distributes the stress over a larger 

region, thereby reducing the peak value of the stress.   

 

Figure 74. Mises stress map showed a high concentration of stress in the corner where 
the anchor arm attachment to the plate. 

An improved version, is a dual anchored 5×3×0.005 mm3 design that used the 

same anchor segments of 1 mm long and 0.5 mm wide but the corners of the anchor 

points were filleted using a 300 µm radius.  A map of the mises stress distribution is 

shown in Figure 75, where the location of the highest stresses have moved away from the 

corners of the device to the surface area at the anchor location of the device.  
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Figure 75. Corners filleted using a 300 µm radius reduced the peak level of stress in the 
corners, and the stress is now at a maximum at the surface of the device at the anchor 
points.   

Another dual anchored 5×3×0.01 mm3 design used two larger anchor segments 

that were 1 mm long and 1 mm wide each, which increased the stiffness of the structures.  

The dual anchor designs with the two different anchor arm widths were all simulated 

using a 5 & 10 µm thick device layers.  A performance comparison between the 

traditional and dual anchored cantilever designs is presented in Figure 76.  The designs 

were subjected to a 0.1 mPa harmonic load and a damping condition of 0.5% times the 

critical damping coefficient.  The thinner 5 µm device layer designs shown with the 

dashed lines in the graph, experience much more deflection than their 10 µm device layer 

counter parts.  The resonant frequency of the designs also shifted lower as the spring 

stiffness was reduced.  Further modifications could be made to the duel anchor designs 

by adjusting the arm widths and lengths.  In modifying the designs, it would be important 
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to avoid resonant frequencies near the electrical noise sources observed in the PA 

measurements shown in Figure 70.     

 

Figure 76. Amplitude displacement comparison between traditional and dual anchored 
cantilever designs under 0.1 mPa harmonic load using 0.5% of the critical damping 
factor.   

In CoventorWare®, performance of piezoelectric cantilever devices was also 

performed.  In the software, the MemMech solver with the Piezoelectric option selected 

for the device physics to model the performance of the piezoelectric cantilever devices.  

Through the fabrication process file, the device, oxide, electrode, and PZT layer 

thicknesses were established.  The respective layer thicknesses built upon the 5 µm thick 

silicon device layer were a 0.25 µm oxide, 120 nm Ti/Pt, 1 µm PZT, and a 120 nm Ti/Pt 

top electrode.  Shown in Figure 77 is the mises stress distribution on a 5×2×0.005 mm3 

cantilever design with the PZT layer covering 1/16th the length of the cantilever from the 

base of the anchor point under 1 Pa static load. 
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Figure 77. Mises stress distribution on a 5×2×0.005 mm3 cantilever design with Pt 
electrodes and a piezoelectric layer of PZT covering 1/16th the length of the cantilever 
under a 1 Pa static load.  

A series of simulations were performed which investigated the generated output 

voltage from the piezoelectric layer for different PZT coverage lengths along the 

cantilever beam.  The fractional portion of the cantilever length covered by PZT was 

evaluated at ratios of 1, 1/2, 1/4, 1/16, 1/32, and zero.  A static 1 Pa pressure load was 

applied to the bottom side of the silicon device layer, causing the cantilever designs to 

deflect.  The resulting generated voltages are shown in Figure 78.  The highest voltage 

was generated by the design that had PZT on 1/16th the length of the beam.  The 

cantilever with PZT coverage along the entire length of the beam produced the lowest 

voltage and also experienced the least amount of deflection do to the applied pressure 

load.  The additional layers required to incorporate a piezoelectric material into the 

cantilever design increased the thickness of the cantilever by nearly 30%.  The cantilever 

designs with a large fraction of PZT coverage were less flexible, deformed less under the 

pressure load, and therefore generated less voltage.   
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Figure 78. Simulation results of the voltage generated for different fractional coverage 
lengths of PZT along the length of the cantilever.    

A potential advantage of the dual anchor cantilever designs is that the vast 

majority of the stress due to bending is focused across the length of the 1 mm long anchor 

arms.  A series connection between piezoelectric layers on the anchor arms in this highly 

stress region should create a stronger voltage signal, but further simulations were not 

performed.   
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Appendix B. PA Chamber Design 

The photoacoustic chamber design is a critical part in making a sensitive, compact 

analyzer for PA chemical sensing and spectroscopy [4, 114].  Three chamber 

configurations were created over the period of this research effort.  Chambers with a 1 cm 

and 0.5 cm absorption cell diameters were fabricated using the same chamber length of 2 

in.  Two balance volumes for the chamber designs were also created.  Chamber designs 

relied on compression seals with o-rings and three welds to achieve a high vacuum seal.  

The figures below provide additional views and dimensions of the PA chamber designs.  

A computer-aided design (CAD) model of an assembled PA chamber design is shown 

Figure 79 and an exploded view of the chamber is provided in Figure 80 prior to 

assembly. 
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Figure 79. Assembled CAD model of the PA chamber with labels of primary 
components.   

 

Figure 80. Exploded view of chamber shows the individual pieces prior to assembly.   
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The back half of the PA chamber with the cylindrical absorption cell area is shown in 

Figure 81.  Inner o-ring in the recessed area for the SOI device provides a stable 

mounting surface for the sample.  The outer o-ring, with a 4.87 cm outer diameter 

provides the seal for the front and back portions of the PA chamber.  The diameter of the 

cylindrical absorption cell on the left side of the diagram is shown at 1 cm; for the second 

chamber design, the diameter was reduced to a 0.5 cm diameter.  The same 1.56 cm outer 

diameter o-ring was used to seal the Teflon windows in place for both chamber 

diameters. 

 

Figure 81. Back half of the PA chamber which contains the absorption cell shows the 
area for the SOI device placement and location of o-rings to seal the chamber. 

A semi-transparent view of the PA chamber is shown from the side in Figure 82 (a) and a 

frontal view in Figure 82 (b) highlights the internal configuration of the system.  The 

balance volume shown in the right side of Figure 82 (a) was increased to a radius of 1.5 
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cm for the third chamber design, but not enough data was collected fully determine the 

effects of the larger balance region volume. 

 
(a)      (b) 

Figure 82. Side view in (a) and frontal view in (b) of PA chamber shown in semi-
transparency to highlight internal construction of the system. 
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Appendix C. Additional PA Spectral Data 

Numerous data collections were performed on CH3CN.  This appendix contains 

supplemental PA data and brief discussions of the results.  Due to the chamber vacuum 

leak rate, the strength of the PA signal decreases over time.  PA data in Figure 83 shows 

the raw recorded PA data, PA scaled for pressure increase effects, and the simulated 

absorption spectra for 38 mTorr of CH3CN.  The PA data was scaled such that the peak 

absorption line ratios were matched to the absorption ratios from the simulations. 

 
Figure 83. Full display of PA spectral snippet shown in Figure 59 (38 mTorr) with 
addition of scaled PA signal data due to the chamber pressure changes due to the vacuum 
leak rate. 

Figure 84 compares the raw PA signal, scaled Pa signal, and simulated absorption spectra 

for the strong ground state absorption lines early in the spectral recording.  The scaled 

strong absorption lines and simulated absorption lines matched very well.  Now 

compared to the later recorded data in Figure 85, the raw PA signal data has fallen due to 

the partial pressure of the CH3CN gas in the chamber.  The scaled PA data matches 
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simulated spectrum better for long data collections, although this particular scaled data 

slightly over predict the PA signal response.  Additional research into improved data 

collection techniques and data analysis could still improve the overall system 

performance. 

 
Figure 84. Zoomed in view of Figure 83 ground state absorption lines scaled PA signal 
matched up to the simulated spectrum. 

 



176 

 
Figure 85. Zoomed in view of ground state absorption scaled PA signal matched up to 
the simulated spectrum. 
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Appendix D. MATLAB® Code for PA Data Analysis 

The PA data collected in the LabVIEW software was analyzed using MATLAB® 

scripts written to read in and manipulate column data from a text file.  Below is the 

MATLAB® script used to analyze and plot the PA spectral data collected. 

%% Analysis PA Spectral Data  
% reads data from *.txt file 
clear all;  close all;  clc;  
  
%% Enter radiation source power 
power = 0.000025 % Power in watts   
  
%% Enter absorption strength at for the strongest line 
% Absorption coefficient in cm^-1 for  
absorption_max = 0.053871    
  
%% Enter the signal averaging time (sec) 
averaging_time = 1; 
%% Window sample size 
window_size = 100 
  
%% Description of Data file content 
% Column 1 is not used 
% Column 2 is the THz Diode excitation frequency, Loaded in THz from the file 
% Column 3 is the Oscilliscope signal from the HeNe diode   
% Column 4 is the THz Diode average voltage 
% Column 5 is the lock-in Ampliphier signal (R) 
  
[filename, pathname, filterindex] = uigetfile({  '*.*',  'All Files (*.*)'}, ... 
    'Select THz data files to process...', 'MultiSelect', 'on'); 
  
%% Loop over selected files, reading each into a data matrix 
%  Read in base pressure file first 
B = []; 
if ~iscell(filename) % handle single file selection 
    nFiles = 1; 
    filename = {filename}; 
else 
    nFiles = size(filename,2); 
end 
for i = 1:nFiles 
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    fid = fopen(fullfile(pathname,char(filename(i)))); 
    B = [B; textscan(fid, '%[^...] %f %f %f %f', 'delimiter', ' ', 'MultipleDelimsAsOne', 1)];  
    fclose(fid); 
end 
  
%% Plots the Oscilliscope signal 
figure; 
axes2 = axes('Parent',gcf,'FontSize',24,'FontName','Times New Roman'); 
box(axes2,'on'); 
hold(axes2,'all'); 
hold on; 
for i = 1:nFiles 
    hold on; 
    plot(1000*B{i,2},B{i,3}/1000,'g'); 
end 
ylabel('PA Signal (a.u.)','FontSize',30,'FontName','Times New Roman') 
xlabel('Frequency (GHz)','FontSize',30,'FontName','Times New Roman'); 
pf(1) = 4.5; 
pf(2) = 14.5; 
width =  40; % [cm] 
height = 10; % [cm] 
set(gcf,'Units','centimeters','Position',[pf(1) pf(2) width height]); 
hold off; 
  
%%  Finds the variance over a window_size interval 
dimension=size(B{1,5}); 
for i=1:dimension(1,1)-window_size 
        var1(i,1) = var(B{1,5}(i:i+window_size,1)); 
end 
[o,p] = min(var1); % locates the index of minimum varience 
  
for i=1:dimension(1,1)-window_size 
        var_THz(i,1) = var(B{1,4}(i:i+window_size,1)); 
end 
  
figure; 
axes2 = axes('Parent',gcf,'FontSize',24,'FontName','Times New Roman'); 
box(axes2,'on'); 
hold(axes2,'all'); 
plot(1000*B{1,2}(1:dimension(1,1)-window_size,1),var1); 
hold on; 
plot(1000*B{1,2}(1:dimension(1,1)-window_size,1),var_THz,'r'); 
ylabel('Variance','FontSize',30,'FontName','Times New Roman'); 
xlabel('Frequency (GHz)','FontSize',30,'FontName','Times New Roman'); 
pf(1) = 4.5; 
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pf(2) = 1.5; 
width =  40; % [cm] 
height = 10; % [cm] 
set(gcf,'Units','centimeters','Position',[pf(1) pf(2) width height]); 
hold off 
  
%% Fluctuations in THz signal 
for i=1:dimension(1,1)-1 
        THz_diode_fluctuations(i,1) = B{1,4}(i,1) - B{1,4}(i+1,1); 
end 
  
Sig_fluct=abs(THz_diode_fluctuations); 
THz_Fluctuation_mean=mean(sqrt(THz_diode_fluctuations.^2)) 
  
figure;   
axes2 = axes('Parent',gcf,'FontSize',24,'FontName','Times New Roman'); 
box(axes2,'on'); 
hold(axes2,'all'); 
plot(1000*B{1,2}(1:dimension(1,1)-1,1),Sig_fluct); 
hold on; 
plot(1000*B{1,2}(1:dimension(1,1)-1,1),THz_Fluctuation_mean,'g','LineWidth',2.5); 
ylabel('Mean Fluctuations in THz Diode Signal (V)','FontSize',30,'FontName','Times 
New Roman'); 
xlabel('Frequency (GHz)','FontSize',30,'FontName','Times New Roman'); 
  
pf(1) = 4.5; 
pf(2) = 1.5; 
width =  40; % [cm] 
height = 25; % [cm] 
set(gcf,'Units','centimeters','Position',[pf(1) pf(2) width height]); 
hold off 
  
%% Fluctuations in R-lock-in signal 
for i=1:dimension(1,1)-1 
     R_signal_fluctuations(i,1) = B{1,5}(i,1) - B{1,5}(i+1,1); 
end 
  
R_Sig_fluct=abs(R_signal_fluctuations); 
R_Fluctuation_mean=mean(sqrt(R_signal_fluctuations.^2)) 
  
figure;   
axes2 = axes('Parent',gcf,'FontSize',24,'FontName','Times New Roman'); 
box(axes2,'on'); 
hold(axes2,'all'); 
plot(1000*B{1,2}(1:dimension(1,1)-1,1),R_Sig_fluct); 
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hold on; 
plot(1000*B{1,2}(1:dimension(1,1)-1,1),R_Fluctuation_mean,'g','LineWidth',2.5); 
ylabel('Mean Fluctuations in PA Signal (a.u.)','FontSize',30,'FontName','Times New 
Roman'); 
xlabel('Frequency (GHz)','FontSize',30,'FontName','Times New Roman'); 
  
pf(1) = 4.5; 
pf(2) = 1.5; 
width =  40; % [cm] 
height = 25; % [cm] 
set(gcf,'Units','centimeters','Position',[pf(1) pf(2) width height]); 
hold off 
  
%% find RMS noise floor of R-signal for window size interval 
dimension=size(B{1,5}); 
for i=1:dimension(1,1)-window_size 
        RMS1(i,1) = sqrt(mean((B{1,5}(i:i+window_size,1)).^2));  
end 
[o1,p1] = min(RMS1); % locates the index of minimum RMS noise 
disp('Index start and frequency of lowest noise'); 
disp(p1)  
disp(1000*B{1,2}(p1,1)); 
  
figure; 
semilogy(1000*B{1,2}(1:dimension(1,1)-window_size,1),RMS1); 
hold on; 
semilogy(1000*B{1,2}(1:dimension(1,1)-window_size,1),var1,'r'); 
hold off; 
  
RMS_noise = sqrt(mean((B{1,5}(p1:p1+window_size,1)).^2)); 
disp('RMS Noise Floor'); 
disp(RMS_noise); 
  
Frequency1_of_noise_measured = 1000*B{1,2}(p1,1) 
Frequency2_of_noise_measured = 1000*B{1,2}(p1+window_size,1) 
  
Max_PA_signal = max(B{1,5}); 
  
disp('Max_PA_signal'); 
disp(Max_PA_signal); 
  
SNR = Max_PA_signal / RMS_noise; 
disp('SNR RMS_noise'); 
disp(SNR); 
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%% Sensitivity absorption_min 
alfa_min = absorption_max / SNR;   
  
disp('Sensitivity, alfa_min in cm^-1'); 
disp(alfa_min); 
  
%% NNEA 
NNEA = alfa_min * power * sqrt(averaging_time); 
disp('NNEA, in cm^-1 W Hz^(-1/2)'); 
disp(NNEA); 
  
%% Plots the "R" lock in signal 
  
figure; 
axes2 = axes('Parent',gcf,'FontSize',24,'FontName','Times New Roman'); 
box(axes2,'on'); 
hold(axes2,'all'); 
hold on; 
for i = 1:nFiles 
    hold on; 
    array_size = ones(size(B{i,2})); 
    plot(1000*B{i,2},B{i,5},'b'); 
    plot(1000*B{i,2},RMS_noise*array_size,'g') 
end 
ylabel('PA Signal (a.u.)','FontSize',30,'FontName','Times New Roman'); 
xlabel('Frequency (GHz)','FontSize',30,'FontName','Times New Roman'); 
pf(1) = 5; 
pf(2) = 2; 
width =  40; % [cm] 
height = 20; % [cm] 
set(gcf,'Units','centimeters','Position',[pf(1) pf(2) width height]); 
hold off; 
  
%% Plots the THz detector average voltage 
figure; 
axes2 = axes('Parent',gcf,'FontSize',24,'FontName','Times New Roman'); 
box(axes2,'on'); 
hold(axes2,'all'); 
  
for i = 1:nFiles 
    hold on; 
    plot(1000*B{i,2},2*B{i,4},'k') 
end 
ylabel('THz Diode (V)','FontSize',30,'FontName','Times New Roman'); 
xlabel('Frequency (GHz)','FontSize',30,'FontName','Times New Roman'); 
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pf(1) = 5; 
pf(2) = 15; 
width =  40; % [cm] 
height = 10; % [cm] 
set(gcf,'Units','centimeters','Position',[pf(1) pf(2) width height]); 
hold off; 
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Appendix E. Visual Bibliography 

A visual bibliography provides insight into the research topic areas, what groups 

are pursuing research on those topics and how they are interrelated.  Visual 

bibliographies can be organized by topic area, funding sources, research groups, or other 

relevant relationships.  Figure 86 is a visual bibliography showing how PA detect articles 

are related through direct references.   
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