
Safe Configuration of TLS Connections

Beyond Default Settings

Michael Atighetchi, Nathaniel Soule, Partha Pal,

Joseph Loyall

Raytheon BBN Technologies

10 Moulton Street, Cambridge, MA 02138

{matighet, nsoule, ppal, jloyall}@bbn.com

Asher Sinclair, Robert Grant

Air Force Research Laboratory

525 Brooks Road, Rome, NY 13441, USA

{asher.sinclair, robert.grant}@af.rl.mil

Abstract—Transport Layer Security (TLS) and its precursor

Secure Sockets Layer (SSL) are the most widely deployed

protocol to establish secure communication over insecure

Internet Protocol (IP) networks. Providing a secure session

layer on top of TCP, TLS is frequently the first defense layer

encountered by adversaries who try to cause loss of

confidentiality by sniffing live traffic or loss of integrity using

man-in-the-middle attacks. Despite its wide deployment and

evolution over the last 18 years, TLS remains vulnerable to a

number of threats at the protocol layer and therefore does not

provide strong security out-of-the-box, requiring tweaks to its

configuration in order to provide the expected security

benefits. This paper provides a summary of the current TLS

threat surface together with a validated approach for

minimizing the risk of TLS-compromise. The main

contributions of this paper include 1) identification of

configuration options that together maximize security

guarantees in the context of recent TLS exploits and 2)

specification of expected flows and automated comparison with

observed flows to flag inconsistencies.

Keywords: Transport Layer Security (TLS), Secure Socket

Layer (SSL), configuration, secure flow modeling

I. INTRODUCTION

Ever since its first specification in 1995, Secure Sockets
Layer (SSL) has been the predominant way of securing
interactions between clients communicating with servers on
the Internet. The latest version of this protocol, Transport
Layer Security (TLS 1.2) [1], specifies two sub-protocols, a
TLS Record Protocol and the TLS Handshake Protocol,
aiming to provide confidentiality and integrity of data
exchanges between two communicating applications. TLS
protects data in transit between two endpoints, with
authentication of at least one endpoint to the other. On the
Internet, web browsers typically use TLS to validate
identities of servers hosting web sites. In Department of
Defense (DoD) environments, TLS is frequently used to
perform mutual authentication, enabling servers to verify
identities of clients and clients to verify identities of servers.

SSL/TLS has evolved over 18 years from SSL 1.0 to
TLS 1.2 and has been widely deployed and accepted across
Internet servers. This has made it an appealing target for
attackers, who continuously launch attacks that directly
target the protocol’s design. Furthermore, complexities
associated with compatibility across a wide range of
potential browsers and platforms frequently leave servers
with weak configurations that can be exploited by
adversaries to cause loss of confidentiality and integrity.
Finally, configuring a full set of server endpoints so that they
have consistent strong settings is challenging. The difficulty
is frequently underestimated and it is easy to miss
communication flows, which leads to a lack of coverage.
Furthermore, the resulting configurations embody
information assurance tradeoffs that are often unclear to the
system administrators and users. All of these points together
lead to unprotected communications that are assumed to be
protected. What makes this even worse is that not only is
TLS generally the first layer of defense encountered by
adversaries, but often the only one.

The contributions of this paper are two-fold. First, this
paper provides a comprehensive summary of the current TLS
threat surface together with mitigation strategies and best
practice configuration settings for maximizing security
guarantees in DoD environments. Second, the paper presents
the beginnings of our work on TLSAnalyzer, a model-based
tool for specifying, observing, and cross checking TLS
connections for security properties.

The remainder of the paper is organized as follows.
Section II describes related work, Section III introduces the
Crumple Zone as an example motivating scenario, and
Section IV provides a generic threat model for TLS together
with best practice configuration guidance. Section V covers
the TLSAnalyzer tool. Section VI describes results of using
TLSAnalyzer during a Red Team exercise, while Section VII
describes future work and Section VIII concludes the paper.

II. RELATED WORK

This paper relates to previous work across a variety of
categories.

Formal methods: There exists a vast collection of work
on applying formal methods to build assurance in security

Distribution A. Approved for public release; distribution unlimited
(Case Number 88ABW-2013-2893). This work was sponsored by the
Air Force Research Laboratory (AFRL).

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
16 OCT 2013 2. REPORT TYPE

3. DATES COVERED
 00-00-2013 to 00-00-2013

4. TITLE AND SUBTITLE
Safe Configuration of TLS Connections

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Raytheon BBN Technologies,10 Moulton Street,Cambridge,MA,02138

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
6th IEEE Symposium on Security Analytics and Automation (SafeConfig 2013), Washington DC, October
16, 2013.

14. ABSTRACT
Transport Layer Security (TLS) and its precursor Secure Sockets Layer (SSL) are the most widely
deployed protocol to establish secure communication over insecure Internet Protocol (IP) networks.
Providing a secure session layer on top of TCP, TLS is frequently the first defense layer encountered by
adversaries who try to cause loss of confidentiality by sniffing live traffic or loss of integrity using
man-in-the-middle attacks. Despite its wide deployment and evolution over the last 18 years, TLS remains
vulnerable to a number of threats at the protocol layer and therefore does not provide strong security
out-of-the-box, requiring tweaks to its configuration in order to provide the expected security benefits. This
paper provides a summary of the current TLS threat surface together with a validated approach for
minimizing the risk of TLS-compromise. The main contributions of this paper include 1) identification of
configuration options that together maximize security guarantees in the context of recent TLS exploits and
2) specification of expected flows and automated comparison with observed flows to flag inconsistencies.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

8

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

protocols, including TLS. This work operates in large part at
the low level protocol layers as seen in the bottom boxes of
Figure 1 and seeks to establish a trusted base on which
higher levels of validation and verification can occur. The
work presented in [2][3] provides a good overview of formal
approaches for validating security protocols. Various work
related specifically to formal analysis of TLS exists, two
such examples include [4] which verifies an F#
implementation of TLS 1.0 both symbolically and
cryptographic-computationally, and the protocol analysis
provided in [5] which evaluates TLS by using the Isabelle
theorem-prover to generate proofs over abstract message
exchanges. The work described in this paper builds upon and
is complementary to formal methods by using empirical
information about attacks and engineering techniques to
minimize exposure. This paper focuses on securing TLS at
the configuration and usage levels under the assumption that
the underlying TLS protocol is itself largely secure, albeit
with a set of known vulnerabilities.

Automated Configuration Management: The Secure
Content Automation Protocol (SCAP) [6] NIST standard
specifies a multi-purpose framework for automated
configuration, vulnerability and patch checking, technical
control compliance, and security measurement. SCAP
expresses security assertions in concrete terms and focuses
on the configuration state of devices, while the constraints
presented in this paper are more abstract and include
interactions between multiple components.

Domain Specific Languages (DSLs): Lobster [7] is a
DSL for security policy configuration that allows modeling
of network flows between security domains. While Lobster
provides means for analyzing network models and refining
them into enforceable SELinux and Xen policies, it does not
provide capabilities to perform cross checking between
modeled and observed flows. ConfigChecker [8] uses binary
decision diagrams to model the network policy of a set of
network devices and uses model checking to perform
reachability analysis in order to check end-to-end security
properties. Compared to our work, ConfigChecker focuses
solely on security analysis and provides no direct means for
constructing the models from observed flow information or
generating enforceable target representations.

Trustworthy Internet Movement (TIM): The TIM [9] is a
non-profit, vendor-neutral organization with the goal of
fostering actionable change in IT security practices. The
global dashboard generated by SSL Pulse uses an empirical
approach similar to the work presented in this paper and
provides a large-scale view of TLS properties across Internet

web sites. The guidance provided in [10] describes best
practices for SSL/TLS with an intended deployment target
on the openly available Internet. This paper continues in a
similar vein, extended for and focused on controlled DoD
environments that have limited backward compatibility and
openness constraints.

III. EXAMPLE SCENARIO: THE CRUMPLE ZONE

Service Oriented Architecture (SOA) is a software
engineering technology that is increasingly used in many
important military and civilian systems. The features that
make SOA appealing, like loose coupling, dynamism and
composition-oriented system construction, make securing
SOA systems complicated. These features ease system
development, but introduce additional vulnerabilities and
points of entry beyond those that exist in self-contained,
static, or stove-piped systems.

To address the security risks found in SOA systems, we
have developed a new architectural construct called a
crumple zone [11][9], designed to improve the resilience
and survival of SOA services against cyber-attack. A
crumple zone is analogous to the crumple zone in an
automobile and forms a protective layer that absorbs the
effects of attacks by localizing or eliminating the damage
they cause and leaving critical components unaffected.

The crumple zone (CZ), shown in Figure 2, is a layer of
intelligent service proxies that work together to present a
high barrier of entry to the adversary, increase the chance of
detection of malicious activities, and contain and recover
from failures and undesired conditions caused by malicious
attacks. These proxies collectively implement the service’s
consumer-facing interface. A proxy works by applying
security checks and controls on intercepted data, including
partial execution of the intercepted data, and approves data
release only if those checks pass. Only data that has been
inspected and approved by the proxies is passed along to the
service. In the process, malicious content and malicious
behavior are contained within the CZ. Because the CZ
inspects and processes potentially malicious and untrusted
data, CZ components are expected to fail occasionally.
Therefore, CZ components are monitored by watchdog
processes that restart CZ components as necessary.

To be effective, all client interactions with the protected
service must be intercepted and routed through the CZ,
which establishes a constraint over network flows. For this
purpose, the CZ acts as the endpoint for inbound TLS
connections initiated by clients, performs the checking

Figure 1. Layered Approach to Verification

Figure 2. Crumple Zone as a motivating example of TLS
configuration analysis

functionality, and finally establishes outbound TLS
connections to pass the client requests on to the protected
service. In this context, it is important to establish the
following properties

 Consistency: All flows going in and out of the CZ
are protected via TLS

 Non-bypassability: No flows exist that are not
inspected by the CZ

 Security: The TLS configuration used provides
strong confidentiality and integrity guarantees

IV. TLS THREAT MODEL AND BEST PRACTICE

CONFIGURATION RECOMMENDATIONS

A. TLS Attack Surface

To ground safe configuration of TLS in reality, it is
important to first discuss the associated threat model. The
variety of available SSL/TLS versions and implementations
coupled with a complex set of configurable parameters leads
to an environment where setting up TLS is easy, but setting
up TLS correctly and securely is significantly more difficult.
This abundance of combinations in the tuple space of
<version, implementation, configuration> leads to an
expansive attack surface. In recent years numerous attacks
on even the latest versions of TLS have been successfully
demonstrated and observed in the wild.

Due to the slow and piecewise upgrades of browsers and
web applications, a diverse assortment of versions of TLS
and its predecessor SSL are in active use across the Internet
landscape. To accommodate this diversity, the TLS
handshake, which occurs at the start of all TLS connections,
enables two potentially disparate versions to agree on a
common protocol. This down-negotiation of protocol
version means that even an implementation of the latest TLS
protocol (1.2 at the time of this writing) may end up
communicating with an earlier and less secure protocol.
Without proper configuration to restrict this functionality
appropriately, a deployed TLS implementation may include
the vulnerabilities of all predecessor versions.

Take as an example, the Browser Exploit Against
SSL/TLS (BEAST) attack [12]. This attack, whose
theoretical feasibility was first discovered in 2002 [13] and
which was demonstrated as practical in 2011, exploits a
Cipher Block Chaining (CBC) vulnerability present in TLS

1.0 that can allow an attacker to perform a plaintext
recovery. In CBC mode, each new block of text to encrypt is
first XORed with a nonce. Encryption of the first block (as
shown on the left of Figure 3) uses a random initialization
vector as a nonce, but encryption of any subsequent block
uses the ciphertext of its preceding block as the nonce (as
shown on the right of the figure). An attacker can capture
the ciphertext for blocks c1 and c2, with c1 being used as
the nonce for c2. Next, the attacker proceeds to XOR c1
with a guess for the plaintext P of c2, resulting in Y. Finally,
the attacker manipulates the client to use Y as a plaintext. If
the attacker guesses correctly, the resulting ciphertext will
be identical to c2, enabling the attacker to know that he/she
guessed correctly. As of this writing 65.2% of the sites
surveyed by SSL-Pulse [14], a global monitoring service,
are susceptible to the BEAST attack.

The Compression Ratio Info-leak Made Easy (CRIME)
[15] attack discovered in 2012 relies on information leakage
from observations of compression behavior to allow
attackers to break SSL/TLS encryption. Unlike BEAST,
CRIME is not associated with a particular version of SSL or
TLS, but instead with a particular feature. Any TLS
implementation which is configured to use compression
[16] (streaming or block based), such as Deflate [17] based
compression, or the SPDY [18] protocol, are susceptible. In
this attack requests are made to a server by varying part of
the message in an attempt to match an unknown secret
within the message (a session ID for example). As seen in
Figure 4 when the guess is correct the compression
algorithm will be able to use the redundancy introduced by
the equality of the guess and the secret to shorten the
request. Thus when the message size is shortened (in
comparison to an incorrect guess), the attacker knows they
have made another correct step in determining the secret. As
of this writing 24.1% of all sites surveyed by SSL-Pulse are
susceptible to CRIME [14].

TLS allows connection parameters to be renegotiated
after the initial handshake is complete. These renegotiations
are performed under the protections offered by the existing
TLS-enabled connection (i.e. any secondary handshakes
occur over the encrypted channel). Despite this, in 2009 a
vulnerability [19] in the renegotiation phase of the protocol
was discovered that can allow an attacker to inject content
into the start of a victim's channel such that the receiving

Figure 3. Cipher-block Chaining Vulnerabilities

Figure 4. High Level Example of CRIME Attack

Block Cipher
Encryption

Initialization Vector

Ciphertext c1

Plaintext p1

Block Cipher
Encryption

Ciphertext c2

Plaintext p2

Key Key

…

GET /sessionID=a
Host: example.com
User-Agent: Chrome
Cookie: sessionID=secret

GET /sessionID=s
Host: example.com
User-Agent: Chrome
Cookie: sessionID=secret

No additional
compression as a
result of incorrect
guess “a”

Additional compression
as a result of correct
guess “s”

In
co

rr
e

ct
 G

u
e

ss
C

o
rr

e
ct

 G
u

e
ss

TLS implementation will accept that content as if it came
from the legitimate client. This attack does not impact the
confidentiality of the connection, but instead its integrity, as
the attacker is unable to decrypt communications. The fact
that confidentiality remains intact notwithstanding, the
ability to prepend data to victim communications leads to a
whole host of exploit possibilities.

In February of 2013, a cryptographic timing attack
referred to as Lucky Thirteen [20] was reported. Lucky
Thirteen is a form of a padding oracle attack [21], targeted
at breaking confidentiality, that introduces new components
into an attack described in 2002 by Serge Vaudenay [22].
The original attack has been mostly mitigated, however the
new variation has not. In its current form Lucky Thirteen
represents a mostly impractical vulnerability for most TLS
scenarios as each of the thousands or millions of steps of the
attack that are required to decrypt each byte result in
connection termination. This implies that a context is
required in which TLS connection failures are not reacted to
(from a security perspective), and that messages containing
the same content in the same location in part of the stream
are executed repeatedly. While this reduces the likelihood of
widespread general use of this attack, there are still
scenarios that meet these conditions (polling via the Simple
Mail Transfer Protocol (SMTP) for example), and
extensions to this attack are being actively researched.

B. TLS Configuration Best Practice

TLS incorporates a set of swappable lower level
technologies and protocols, meaning that not only is the
TLS protocol itself a potential source of vulnerability, but
the various implementations sitting below it are as well. For
a TLS flow to be secure the cipher suite, compression
protocol, certificates, key lengths, and certificate authorities
must all be secure, and the implementations must all be
patched and up to date. In addition to the core required
parameters, optional features, such as mutual authentication
mean that no out-of-the-box default configuration is likely
to be widely appropriate across deployments. Given this
complexity, it is not surprising to find that 70% of existing
TLS configurations present at least some form of insecure
configuration [23]. As of May 2006, the SSL-Pulse survey
finds that only 22.6% of the 171,507 web sites surveyed are
considered secure [14] by its definition.

Insecurity leading to the statistics described above is due
predominantly to inappropriate configuration settings. In
order to safely configure TLS connections, one should
consider the following list of TLS configuration best
practices that when employed offer protections against the
known TLS attacks, each of which are described in more
detail below:

1. Configuration restriction
2. Mutual authentication
3. Hostname verification

Undertaking these configuration practices when coupled
with the model-based validation described in Section V,
provides a level of assurance that any given deployment is

positioned in a strong security posture with respect to this
line of defense.

The configuration described here is targeted for
scenarios where security is critical (i.e. the cost of insecurity
is greater than the cost of lack of wider availability), or the
administrator is in control of both client and server
configuration. Requiring all clients to use TLS version 1.2,
for example, is a preferred choice for DoD enterprise
environments, but may not be an acceptable business
decision for services that need to accept the widest array of
client devices and software possible.

The configuration best practices are laid out into three
pillars: Configuration Restriction, Mutual Authentication,
and Hostname Verification.

1) Configuration Restriction

The plethora of configuration parameters available in
TLS, over 40 ciphers that ship with Java 7 and tens of
options in the providers, some of whose final values depend
on external runtime inputs, leave the door open to many of
the discussed vulnerabilities. Pluggable protocols and cipher
suites, as well as optional features fall into this camp. The
configuration restrictions described below serve to curtail
the unpredictability and known vulnerabilities in TLS.

Protocol Restriction: During the TLS handshake, the
client sends a message indicating the highest protocol
version that it is able to support. The server then responds
with a message indicating the chosen version to use. This
negotiation could be used by a malicious client to cause a
server to operate in a less protected mode than it is capable
of. An attacker in possession of an exploit for TLS v1.0
such as BEAST could, for example, configure their client to
report a maximum capable version of 1.0, triggering the
server to use that version (when it may in fact be a 1.2
capable implementation). To protect against this form of
attack, TLS allows restricting which versions it can make
use of. The best practice, when client capabilities allow, is
to restrict to only the highest version available: currently
TLS v1.2.

Cipher Restriction: As with negotiable protocol versioning,
the TLS handshake allows the client to specify the list of
cipher suites it is capable of employing. Certain ciphers
such as the RC4 stream cipher [24] and the CBC suites
when used with TLS 1.0 contain known weaknesses, e.g.,
easily observable initialization vectors. In addition, the level
of integrity provided by TLS may vary across cipher suites.
While most practical implementations do, the cipher
specification must employ a hash algorithm to provide
integrity assurances. The hash algorithm itself is another
potential source of vulnerability: use of MD5, for example,
is discouraged as known collision attacks exist [25]. Cipher
weaknesses could allow a malicious client to mount an
attack (such as BEAST) by limiting the list of available
cipher suites it provides to a server. To protect against this
type of attack, TLS can be configured to only allow a small
set of ciphers that are not known to be vulnerable to current

exploits. Using the AES256 cipher suite with CBC or Galois
Counter Mode (CGM) avoids the increasing list of RC4
weaknesses and is the currently recommended choice.

Options Restriction: The CRIME attack demonstrated a
weakness in any available compression technique used with
TLS. To protect against this form of attack, compression
must be disabled completely.

2) Mutual Authentication

TLS, in addition to providing confidentiality and
message integrity (when used with appropriate ciphers), is
often used to verify authenticity of endpoints participating
in the connection. On the open Internet authenticating
servers to clients is commonly the only choice possible, as
Certificate Authorities generally do not issue client
certificates and companies have mostly relied on company
specific password schemes for credentials.

This is quite different for DoD environments, where
smart cards such as the Common Access Card (CAC) [26]
allow personnel to authenticate themselves to servers via
signatures generated using PKI key material on the card.
Despite the broad availability and use of CACs, e.g., to log
into the Windows operating system, DoD web applications
frequently only support password authentication of clients.

For a truly secure conversation to occur, both parties
should establish crypto-strong trust in the identity of the
other. TLS supports this by a configuration option requiring
mutual authentication, forcing both the client and server to
authenticate as part of connection establishment. DoD web
applications should not only utilize this capability but also
follow proper certificate validation procedures to check that
certificates presented by clients are properly signed by
trusted CAs, have not been revoked, and have not expired.
For example, DISA is hosting an enterprise service called

Robust Certificate Validation Service (RCVS) that can be
accessed using the Online Certificate Status Protocol
(OCSP) [27] to validate presented certificates on
unclassified government networks.

3) Hostname Verification

While the HTTPS specification [28] requires constraints
checking on presented certificates through a process called
“endpoint identification”, TLS on its own does not. Given
certain configurations this could allow a client to open a
connection intended for server X, have this server present
the certificate for entity Y, and if the client accepts
certificate Y, then it will continue on in the connection
unaware. There is an implicit assumption in this scenario
that the certificate presented, if trusted, matches the one that
was expected. This implies that a trusted entity could
potentially masquerade as another trusted entity (see Figure
5). While this may sound relatively benign, as both
certificates are trusted, this means that compromise of any
certificate may make others vulnerable – greatly increasing
the attack surface for any service.

The following best practice recommendations can
mitigate this attack. For mutually-authenticated HTTPS
connections, enable server hostname verification on the
client (through configuration) and add explicit code on the
server to perform client endpoint identification. Explicit
code is needed for the latter case because the HTTPS spec
does not explicitly require client endpoint identification. For
configurations that run a custom protocol over TLS, we
recommend adding hostname verification code on top of the
TLS connection code for both clients and servers.

Configuration Example: Java

Another layer of complexity exists in configuring TLS due to
the fact that each language, and often each network library
on top of that language, will have its own interface (file
based, programmatic, or other) for performing this setup.
The following paragraphs briefly describe some of the
highlights of TLS configuration as it pertains to the Java
ecosystem – though similar facilities exist across most
modern languages such as Python, and C/C++.

Out of the box all recent Java versions provide the Java
Secure Socket Extension (JSSE), which delivers SSL and
TLS implementations via a pluggable API. Java 7 introduced
support for TLS version 1.2, allowing for protection against
vulnerabilities such as BEAST. Recent Java updates to
versions 4, 5, 6, and 7 include support for RFC 5746 [29]
which addresses the renegotiation vulnerability.

Two of Java’s core networking classes, Socket and
ServerSocket, have corresponding SSLSocket and
SSLServerSocket versions. These classes provide methods
for restricting the allowed cipher suites and protocol
versions. This should be used with the most recent, least
vulnerable, and most restricted options available, such as:

 setEnabledCipherSuites(new String[]
{"TLS_DHE_RSA_WITH_AES_256_CBC_SHA","

Figure 5. Trusted Certificate Hijack Scenario

TLS Client

TLS Server
Cn=serv1.af.mil

TLS Server
Cn=serv2.af.mil

DoD-CA 23

Server Hijack Scenario

TLS Client
Cn=client1.af.mil

TLS Server

TLS Client
Cn=client2.af.mil

DoD-CA 23

Client Hijack Scenario

Server Certs Valid

Client Certs Valid

In
te

nd
ed

 F
lo

w
In

te
nd

ed
 F

lo
w

Trust Relationship

Trust Relationship

TLS_DHE_DSS_WITH_AES_256_CBC_SHA","TL
S_RSA_WITH_AES_256_CBC_SHA")

 setEnabledProtocols(new String[] { “TLSv1.2”})

The NSA Suite B standard [30][31] , which recommends
publically available algorithms for use in classified national
security systems, suggests a specific collection based on
Elliptic Curve cryptography and AES for protection of
sensitive information within the DoD. An implementation of
this is expected to become available in 2014 as part of the
OpenJDK Java Runtime Environment (JRE) Version 8.
Suite B implementations are commercially available
through vendors such as IBM. To set the other important
properties pertaining to renegotiation, JSSE should be
configured in Strict mode by setting the following properties

 sun.security.ssl.allowUnsafeRenegotiation=false and

 sun.security.ssl.allowLegacyHelloMessages=false.

Since none of the standard JSSE TLS providers offer
compression functionality, no specific attention needs to be
paid to disable it. However, application level compression
might still be at play and needs to be carefully controlled.

Unfortunately, in many cases direct access to the socket level
code is not possible, such as when using wrapper libraries for
higher level protocols or when making use of application
servers. Each of these, as well as other core Java packages
such as the asynchronous IO (nio) libraries, provide their
own mechanism for specifying TLS properties – though
setting system properties will often work across libraries.

V. THE TLSANALYZER TOOL

While the TLS configurations listed in the previous
section provide a structured way to define network flow
policy, there is no guarantee that the configurations are
actually enforced as specified. For JSSE, it is quite common
for a one letter typo in a system wide property to cause the
TLS connection management to revert back to default mode,
without software developers noticing. Another common
mistake is to only protect some socket factories with TLS,
leaving others unintentionally unprotected.

To address these concerns, we created the TLSAnalyzer
tool for experimentally constructing network flow models
based on observed network traffic and analyzing the
resulting models. For constructing an observed model of
network flows, TLSAnalyzer uses the tshark [32] packet
sniffer plugged into the network at strategic locations. In the
CZ example, TLSAnalyzer runs on the CZ machine as
displayed in Figure 6 and is configured to report traffic on
the following networks:

 The external network between clients and the CZ

 The internal net between the CZ and the protected
service

 The management network used to control CZ
components

 The loopback network used for local-only
communication between intra-CZ components

When deploying TLSAnalzer in larger enterprise
environments, it is important to deploy monitoring probes in
strategic locations that maximize coverage over raw
observables, and there are interesting questions about the
recommended probe deployments that are currently beyond
the scope of this paper.

After starting the network sniffer, it is important to
exercise the system under test by running all available
automated tests, to ensure coverage over logic that creates
network connections on demand. The output of this first
step is a packet capture file (PCAP) containing raw packet
content together with timestamps.

In the second step, TLSAnalyzer invokes tshark to create
a connection table that captures all observed TCP flows.
Note that using the functionality directly provided by tshark
(-z conv,tcp) is not sufficient for this purpose, as source and
destination addresses are not correlated to establishment of
the TCP connection via SYN requests. To achieve the
correct semantics, the TLSAnalyzer calls tshark with a
custom set of parameters as follows:

tshark -r <pcapfile> -R "tcp.flags.syn == 1

&& tcp.flags.ack == 0" -T fields -e ip.src -

e tcp.srcport -e ip.dst -e tcp.dstport

In the third step, TLSAnalyzer iterates over the
connection table and uses the tcpflow [33] utility to
reassemble the application stream from multiple TCP
packets. Next, it classifies traffic into TLS vs. non-TLS by
running regular expression checks over the application
stream, i.e., looking for “Client Hello” and “Encrypted
Handshake Message” TLS messages. TLSAnalyzer also
identifies non-TLS traffic (step 4) based on regular
expression matches for RMI streams, serialized Java
objects, SOAP protocol messages, and HTTP protocol
messages, none of which would be detectable in an
encrypted stream.

As shown in Figure 6, the tcpflow-based processing

Figure 6. Model Extraction Setup for Network Flows

Client

clientIP svcIP

Protected

Service

Network flow

tshark

CZ Components

3. Classify into SSL vs. non-SSL
4. Determine application protocol

127.0.0.1: lo czIP_mgmt:ethX

czIP_ext: ethY czIP_int:ethZ

PCAP
File

Connection
Tabletshark

tcpflow

Observed Typed
Conversations

1. Capture traffic

2. Identify connections

Expected Typed
Conversations

NWAnalyzer

Test Results

5. Compare expected vs. observed
6. Check assertions

7. Produce report

produces a list of “observed” enforcement obligations. Step
5 then compares this list with a set of expected
communications, as manually specified for a domain expert.
The differencing algorithms implemented by the
NWAnalyzer component can spot a number of
misconfigurations, including

 Flows that are expected but not observed

 Flows that observed but not expected

 Flows that are expected to be TLS but are not

In the context of the CZ example, step 6 involves
running a customizable set of assertions against the
communication model, including the following:

 Non-bypassibility: No direct connections between
clientIP and svcIP.

 Protection consistency: All connections between
clientIP and czIP_ext must be TLS.

 Binding specificity: All connections related to
internal CZ communication identified by port (e.g.,
log analysis, key sharing and splitting control,
firewall actuation) have 127.0.0.1 as source and
target IP.

The final step of TLSAnalyzer involves generating
reports that can be used by subject matter experts to adjust
either (1) the implementation and rerun the tools until all
constraints are fulfilled or (2) the assertions or description of
expected conversations to line up expected constraints with
implementation reality.

VI. EXPERIMENTAL VALIDATION

The TLSAnalyzer tool described in this paper was
evaluated as part of a Red Team Exercise [34] performed by
an independent US Air Force Research Laboratory (AFRL)
Red Team to assess the efficacy of the Crumple Zone.

One of the experiments conducted during the exercise
was to find a bypass to the crumple zone, either by
communicating with services that do not perform crypto-
strong authentication (via TLS) or by virtue of directly
connecting to the protected service. The TLSAnalyzer tool
was used during both normal operations and attack
scenarios executed against the CZ, comparing expected with
observed connection patterns.

The following lines show example entries from the
connection table that TLSAnalyzer generated:

192.168.7.119,35861,192.168.7.170,3873->

 plain,Serializable,rmi

192.168.1.68,43813,192.168.6.119,2222 ->

 ssl,na

The first line shows that TLSAnalyzer determined a flow
to be a TCP connection (plain) on which Serializable Java
objects are seen. The second line shows an SSL connection
with an unknown application level protocols running over
the connection.

Performance and real-time execution was not an issue in
the current validation context, as the tool only had to deal
with less than 100 connection entries.

VII. FUTURE WORK

While a model-based differencing approach in general
and the TLSAnalyzer tool specifically were found to be
useful during development and red team evaluation, there
are a number of ways they can be extended to provide
enhanced configuration management.

TLS parameter checking: Currently, TLSAnalyzer only
performs a binary classification of TCP connections as
either plain text or protected via SSL/TLS. One clear
extension is to extend the tool to include checks for
specification attributes of the TLS connection as it gets
negotiated. This will involve inclusion of active probing
tools, such as SSLScan [35], to test whether servers can be
down-negotiated or not. The results can be cross checked
against specific constraints in the connection table on a per
flow basis or through global assertions, e.g., no connection
should be down-negotiable.

Dual-Layer TLS: The configuration practices described
above are focused on scenarios where both server and client
are free to select among any existing protocol version. Even
outside of the consumer browser market there are situations
where this is not the case. One approach to achieving strong
crypto protection is to combine multiple weak algorithms in
strategic ways. Figure 7 shows an example of combining a
RC4 stream cipher used in a reverse Secure Shell (SSH)
tunnel with a AES-GCM block chaining cipher used for
application-level connections that connect through the
tunnel. This makes attacks targeting confidentiality and
integrity very difficult to execute, as the attacks need to
work through two diverse algorithms to succeed. To
increase availability, a service can run two tunnels, e.g., one
using the RC4 stream cipher and another one using the
AES-GCM block cipher, as shown in Figure 8. Exploits
aimed at getting ciphers out of sync will likely only succeed
against one of the two tunnels.

These scenarios suggest new requirements for
TLSAnalyzer to support going forward. Two new analyses
would be required to provide confidence that a dual layer
TLS implementation was configured and operating as
desired. The first analysis checks constraints of a single

Figure 7. Combining Multiple Ciphers for Extended Protection

Figure 8. Increase Availability through Redundant Diversity

ServiceClient

Reverse SSH Tunnel
TLS RC4

Application Connection
TLS AES-GCM

ServiceClient

Reverse SSH Tunnel
TLS RC4

Reverse SSH Tunnel
TLS AES-GCM

tunnel, namely ensuring that certain properties are the same
(e.g., key length) and certain properties must be different
(e.g., cipher types as in stream vs. block). The second
analysis checks constraints across multiple tunnels.

The final aspect of future work involves a more
extended validation of the tool, including measurements of
scalability, latency, and ease of use.

VIII. CONCLUSION

As interactions in distributed systems are protected using
TLS, it is critical to validate that the security properties of
the resulting network flows are indeed as expected. This
paper describes a validated approach, embodied in the
TLSAnalyzer tool, enabling construction of assurance
arguments for network flow policies in distributed
composed systems. Furthermore, the paper outlines a
number of currently relevant threats against TLS and
describes configuration settings aimed at minimizing the
attack surface in tightly controlled DoD environments.
Going forward, there is opportunity to refine TLSAnalyzer
as it is adopted by a larger community and enhanced to
support more intricate dual-layer encryption scenarios.

ACKNOWLEDGMENT

The authors acknowledge Charles Payne from
Adventium Labs for his help in the writing of this paper.

REFERENCES

[1] T. Dierks, E. Rescorla, “The Transport Layer Security (TLS) Protocol
Version 1.2, IETF RFC 5246, August 2008

[2] M. Catherine, “Formal methods for cryptographic protocol analysis:
Emerging issues and trends.”, Selected Areas in Communications,
IEEE Journal, vol. 21, num. 1, pp. 44-54, 2003.

[3] P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, and B. Roscoe,
Modelling and Analysis of Security Protocols, Addison-Wesley, 2001

[4] K. Bhargavan, C. Fournet, R. Corin, and E. Zalinescu,
“Cryptographically verified implementations for TLS”, Proceedings
of the 15th ACM conference on Computer and communications
security, 2008

[5] L. Paulson, “Inductive analysis of the Internet protocol TLS”, ACM
Trans. Inf. Syst. Secur., vol. 2, num. 3, pp. 332-351, August 1999.

[6] NIST, (2012). Security Content Automation Protocol [Online] .
Available: http://scap.nist.gov/

[7] J. Hurd, et al, “Lobster: A domain specific language for selinux
policies”, Galois internal report, 2008.

[8] E. Al-Shaeret, et al, “Network Configuration in A Box: Towards End-
to-End Verification of Network Reachability and Security”, IEEE
International Conference in Network Protocols (ICNP’ 09), October
2009.

[9] Trustworthy Internet Movement. (May 2013). Trustworthy Internet
Movement - About [Online] . Available:
https://www.trustworthyinternet.org/

[10] I. Ristic. (2013) SSL/TLS Deployment Best Practices [Online].
Available
https://www.ssllabs.com/downloads/SSL_TLS_Deployment_Best_Pr
actices_1.1.pdf, April 2013

[11] M. Atighetchi, et al, "Crumple Zones: Absorbing Attack Effects
Before They Become a Problem," CrossTalk - The Journal Of
Defense Software Engineering, March/April 2011

[12] D. Goodin. (2011). Hackers break SSL encryption used by millions of
sites [Online]. Available:
http://www.theregister.co.uk/2011/09/19/beast_exploits_paypal_ssl/

[13] P. Rogaway. (2004) . Security of CBC Ciphersuites in SSL/TLS:
Problems and Countermeasures [Online]. Available:
http://www.openssl.org/~bodo/tls-cbc.txt

[14] Trustworthy Internet Movement (2013) SSL Pulse - Survey of the SSL
Implementation of the Most Popular Web Sites [Online]. Available:
https://www.trustworthyinternet.org/ssl-pulse/, May 2013,

[15] D. Goodin (2012). Crack in Internet’s foundation of trust allows
HTTPS session hijacking. [Online]. Available:
http://arstechnica.com/security/2012/09/crime-hijacks-https-sessions/

[16] S. Hollenbeck. (2004). Transport layer security protocol compression
methods [Online]. Available: http://tools.ietf.org/pdf/rfc3749.pdf

[17] L.P. Deutsch (1996). DEFLATE compressed data format
specification version 1.3. [Online]. Available:
http://tools.ietf.org/pdf/rfc1951.pdf

[18] M. Belshe, and R. Peon. (2012) SPDY Protocol. [Online]. Available:
http://tools.ietf.org/pdf/draft-mbelshe-httpbis-spdy-00.pdf

[19] T. Zoller. (2011) TLS/SSLv3 renegotiation vulnerability explained
[Online]. http://www.g-sec.lu/practicaltls.pdf

[20] N. AlFardanJ., and K. G. Paterson. Lucky Thirteen: Breaking the TLS
and DTLS Record Protocols. (2013).

[21] J. Rizzo, and T. Duong. Practical padding oracle attacks.
Proceedings of the 4th USENIX conference on Offensive
technologies, WOOT. Vol. 10. 2010.

[22] S. Vaudenay. "Security Flaws Induced by CBC Padding—
Applications to SSL, IPSEC, WTLS..." Advances in Cryptology—
EUROCRYPT 2002. Springer Berlin Heidelberg, 2002.

[23] I. Ristic (2011). State of SSL. Talk at InfoSec World.

[24] N. AlFardan, D. Bernstein, K. Paterson, B. Poettering, J. Schuldt.
(2013). On the Security of RC4 in TLS. Available:
http://www.isg.rhul.ac.uk/tls/

[25] Stevens, Marc. "On collisions for MD5." TU Eindhoven MSc thesis,
[Online]. Available: http://www. win. tue. nl/hashclash/On%
20Collisions% 20for% 20MD5 (2007).

[26] DoD Common Access Card. (2013). CAC Homepage [Online].
Available: http://www.cac.mil/

[27] M. Myers, R. Ankney, “X.509 Internet Public Key Infrastructure
Online Certificate Status Protocol (OCSP)”, IETF RFC 2560, June
1999, http://tools.ietf.org/html/rfc2560

[28] E. Rescorla, HTTP Over TLS, IETF RFC 2818. [Online]. Available:
https://tools.ietf.org/html/rfc2818, May 2000.

[29] E. Rescorla, S. Dispensa, N. Oscov, Transport Layer Security (TLS)
Renegotiation Indication Extension, IETF RFC 5746. [Online].
Available: http://tools.ietf.org/html/rfc5746, February 2010

[30] NSA. (2013). NSA Sutie B Cryptography – NSA/CSS. [Online]
http://www.nsa.gov/ia/programs/suiteb_cryptography/, May 2013

[31] M. Salter, R. Housley, Suite B Profile for Transport Layer Security
(TLS), IETC RFC 6460. [Online]. Available:
http://tools.ietf.org/html/rfc6460, January 2012.

[32] Wireshark. (2013). Wireshark homepage [Online]. Availble:
http://www.wireshark.org/

[33] TcpFlow. (2013) Tcpflow homepage [Online]. Available:
http://afflib.org/software/tcpflow

[34] P. Pal, M. Atighetchi, A. Gronosky, J. Loyall, C. Payne, A. Sinclair,
B. Froberg, and R. Grant, "Cooperative Red Teaming of a Prototype
Survivable Service-Oriented System," Military Communications
Conference (MILCOM), Orlando, Florida, October 29-November 1,
2012.

[35] SSLScan (2013). SSLScan – Fast SSL Scanner [Online]. Available:
http://sourceforge.net/p/sslscan.

http://scap.nist.gov/
https://www.trustworthyinternet.org/
https://www.ssllabs.com/downloads/SSL_TLS_Deployment_Best_Practices_1.1.pdf
https://www.ssllabs.com/downloads/SSL_TLS_Deployment_Best_Practices_1.1.pdf
http://www.theregister.co.uk/2011/09/19/beast_exploits_paypal_ssl/
http://www.openssl.org/~bodo/tls-cbc.txt
https://www.trustworthyinternet.org/ssl-pulse/
http://arstechnica.com/security/2012/09/crime-hijacks-https-sessions/
http://tools.ietf.org/pdf/rfc3749.pdf
http://tools.ietf.org/pdf/rfc1951.pdf
http://tools.ietf.org/pdf/draft-mbelshe-httpbis-spdy-00.pdf
http://www.g-sec.lu/practicaltls.pdf
http://www.isg.rhul.ac.uk/tls/
http://www.cac.mil/
http://tools.ietf.org/html/rfc2560
https://tools.ietf.org/html/rfc2818
http://www.nsa.gov/ia/programs/suiteb_cryptography/
http://tools.ietf.org/html/rfc6460
http://www.wireshark.org/
http://afflib.org/software/tcpflow
http://sourceforge.net/p/sslscan

