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Abstract—Transport Layer Security (TLS) and its precursor 

Secure Sockets Layer (SSL) are the most widely deployed 

protocol to establish secure communication over insecure 

Internet Protocol (IP) networks. Providing a secure session 

layer on top of TCP, TLS is frequently the first defense layer 

encountered by adversaries who try to cause loss of 

confidentiality by sniffing live traffic or loss of integrity using 

man-in-the-middle attacks. Despite its wide deployment and 

evolution over the last 18 years, TLS remains vulnerable to a 

number of threats at the protocol layer and therefore does not 

provide strong security out-of-the-box, requiring tweaks to its 

configuration in order to provide the expected security 

benefits. This paper provides a summary of the current TLS 

threat surface together with a validated approach for 

minimizing the risk of TLS-compromise. The main 

contributions of this paper include 1) identification of 

configuration options that together maximize security 

guarantees in the context of recent TLS exploits and 2) 

specification of expected flows and automated comparison with 

observed flows to flag inconsistencies. 
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I.  INTRODUCTION 

Ever since its first specification in 1995, Secure Sockets 
Layer (SSL) has been the predominant way of securing 
interactions between clients communicating with servers on 
the Internet. The latest version of this protocol, Transport 
Layer Security (TLS 1.2) [1], specifies two sub-protocols, a 
TLS Record Protocol and the TLS Handshake Protocol, 
aiming to provide confidentiality and integrity of data 
exchanges between two communicating applications. TLS 
protects data in transit between two endpoints, with 
authentication of at least one endpoint to the other. On the 
Internet, web browsers typically use TLS to validate 
identities of servers hosting web sites. In Department of 
Defense (DoD) environments, TLS is frequently used to 
perform mutual authentication, enabling servers to verify 
identities of clients and clients to verify identities of servers. 

SSL/TLS has evolved over 18 years from SSL 1.0 to 
TLS 1.2 and has been widely deployed and accepted across 
Internet servers. This has made it an appealing target for 
attackers, who continuously launch attacks that directly 
target the protocol’s design. Furthermore, complexities 
associated with compatibility across a wide range of 
potential browsers and platforms frequently leave servers 
with weak configurations that can be exploited by 
adversaries to cause loss of confidentiality and integrity. 
Finally, configuring a full set of server endpoints so that they 
have consistent strong settings is challenging. The difficulty 
is frequently underestimated and it is easy to miss 
communication flows, which leads to a lack of coverage. 
Furthermore, the resulting configurations embody 
information assurance tradeoffs that are often unclear to the 
system administrators and users. All of these points together 
lead to unprotected communications that are assumed to be 
protected. What makes this even worse is that not only is 
TLS generally the first layer of defense encountered by 
adversaries, but often the only one.  

The contributions of this paper are two-fold. First, this 
paper provides a comprehensive summary of the current TLS 
threat surface together with mitigation strategies and best 
practice configuration settings for maximizing security 
guarantees in DoD environments. Second, the paper presents 
the beginnings of our work on TLSAnalyzer, a model-based 
tool for specifying, observing, and cross checking TLS 
connections for security properties. 

The remainder of the paper is organized as follows. 
Section II describes related work, Section III introduces the 
Crumple Zone as an example motivating scenario, and 
Section IV provides a generic threat model for TLS together 
with best practice configuration guidance. Section V covers 
the TLSAnalyzer tool. Section VI describes results of using 
TLSAnalyzer during a Red Team exercise, while Section VII 
describes future work and Section VIII concludes the paper. 

II. RELATED WORK 

This paper relates to previous work across a variety of 
categories.  

Formal methods: There exists a vast collection of work 
on applying formal methods to build assurance in security 
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protocols, including TLS. This work operates in large part at 
the low level protocol layers as seen in the bottom boxes of 
Figure 1 and seeks to establish a trusted base on which 
higher levels of validation and verification can occur. The 
work presented in [2][3] provides a good overview of formal 
approaches for validating security protocols. Various work 
related specifically to formal analysis of TLS exists, two 
such examples include [4] which verifies an F# 
implementation of TLS 1.0 both symbolically and 
cryptographic-computationally, and the protocol analysis 
provided in [5] which evaluates TLS by using the Isabelle 
theorem-prover to generate proofs over abstract message 
exchanges. The work described in this paper builds upon and 
is complementary to formal methods by using empirical 
information about attacks and engineering techniques to 
minimize exposure. This paper focuses on securing TLS at 
the configuration and usage levels under the assumption that 
the underlying TLS protocol is itself largely secure, albeit 
with a set of known vulnerabilities. 

Automated Configuration Management: The Secure 
Content Automation Protocol (SCAP) [6] NIST standard 
specifies a multi-purpose framework for automated 
configuration, vulnerability and patch checking, technical 
control compliance, and security measurement. SCAP 
expresses security assertions in concrete terms and focuses 
on the configuration state of devices, while the constraints 
presented in this paper are more abstract and include 
interactions between multiple components. 

Domain Specific Languages (DSLs): Lobster [7] is a 
DSL for security policy configuration that allows modeling 
of network flows between security domains. While Lobster 
provides means for analyzing network models and refining 
them into enforceable SELinux and Xen policies, it does not 
provide capabilities to perform cross checking between 
modeled and observed flows. ConfigChecker [8] uses binary 
decision diagrams to model the network policy of a set of 
network devices and uses model checking to perform 
reachability analysis in order to check end-to-end security 
properties. Compared to our work, ConfigChecker focuses 
solely on security analysis and provides no direct means for 
constructing the models from observed flow information or 
generating enforceable target representations. 

Trustworthy Internet Movement (TIM): The TIM [9] is a 
non-profit, vendor-neutral organization with the goal of 
fostering actionable change in IT security practices. The 
global dashboard generated by SSL Pulse uses an empirical 
approach similar to the work presented in this paper and 
provides a large-scale view of TLS properties across Internet 

web sites. The guidance provided in [10] describes best 
practices for SSL/TLS with an intended deployment target 
on the openly available Internet. This paper continues in a 
similar vein, extended for and focused on controlled DoD 
environments that have limited backward compatibility and 
openness constraints. 

III. EXAMPLE SCENARIO: THE CRUMPLE ZONE 

Service Oriented Architecture (SOA) is a software 
engineering technology that is increasingly used in many 
important military and civilian systems. The features that 
make SOA appealing, like loose coupling, dynamism and 
composition-oriented system construction, make securing 
SOA systems complicated. These features ease system 
development, but introduce additional vulnerabilities and 
points of entry beyond those that exist in self-contained, 
static, or stove-piped systems.  

To address the security risks found in SOA systems, we 
have developed a new architectural construct called a 
crumple zone [11][9], designed to improve the resilience 
and survival of SOA services against cyber-attack. A 
crumple zone is analogous to the crumple zone in an 
automobile and forms a protective layer that absorbs the 
effects of attacks by localizing or eliminating the damage 
they cause and leaving critical components unaffected. 

The crumple zone (CZ), shown in Figure 2, is a layer of 
intelligent service proxies that work together to present a 
high barrier of entry to the adversary, increase the chance of 
detection of malicious activities, and contain and recover 
from failures and undesired conditions caused by malicious 
attacks. These proxies collectively implement the service’s 
consumer-facing interface. A proxy works by applying 
security checks and controls on intercepted data, including 
partial execution of the intercepted data, and approves data 
release only if those checks pass. Only data that has been 
inspected and approved by the proxies is passed along to the 
service. In the process, malicious content and malicious 
behavior are contained within the CZ.  Because the CZ 
inspects and processes potentially malicious and untrusted 
data, CZ components are expected to fail occasionally. 
Therefore, CZ components are monitored by watchdog 
processes that restart CZ components as necessary.  

To be effective, all client interactions with the protected 
service must be intercepted and routed through the CZ, 
which establishes a constraint over network flows. For this 
purpose, the CZ acts as the endpoint for inbound TLS 
connections initiated by clients, performs the checking 

 

Figure 1. Layered Approach to Verification 

 

Figure 2. Crumple Zone as a motivating example of TLS 
configuration analysis 



functionality, and finally establishes outbound TLS 
connections to pass the client requests on to the protected 
service. In this context, it is important to establish the 
following properties  

 Consistency: All flows going in and out of the CZ 
are protected via TLS 

 Non-bypassability: No flows exist that are not 
inspected by the CZ 

 Security: The TLS configuration used provides 
strong confidentiality and integrity guarantees 

IV. TLS THREAT MODEL AND BEST PRACTICE 

CONFIGURATION RECOMMENDATIONS 

A. TLS Attack Surface 

To ground safe configuration of TLS in reality, it is 
important to first discuss the associated threat model. The 
variety of available SSL/TLS versions and implementations 
coupled with a complex set of configurable parameters leads 
to an environment where setting up TLS is easy, but setting 
up TLS correctly and securely is significantly more difficult. 
This abundance of combinations in the tuple space of 
<version, implementation, configuration> leads to an 
expansive attack surface. In recent years numerous attacks 
on even the latest versions of TLS have been successfully 
demonstrated and observed in the wild.  

Due to the slow and piecewise upgrades of browsers and 
web applications, a diverse assortment of versions of TLS 
and its predecessor SSL are in active use across the Internet 
landscape. To accommodate this diversity, the TLS 
handshake, which occurs at the start of all TLS connections, 
enables two potentially disparate versions to agree on a 
common protocol. This down-negotiation of protocol 
version means that even an implementation of the latest TLS 
protocol (1.2 at the time of this writing) may end up 
communicating with an earlier and less secure protocol. 
Without proper configuration to restrict this functionality 
appropriately, a deployed TLS implementation may include 
the vulnerabilities of all predecessor versions. 

Take as an example, the Browser Exploit Against 
SSL/TLS (BEAST) attack [12]. This attack, whose 
theoretical feasibility was first discovered in 2002 [13] and 
which was demonstrated as practical in 2011, exploits a 
Cipher Block Chaining (CBC) vulnerability present in TLS 

1.0 that can allow an attacker to perform a plaintext 
recovery. In CBC mode, each new block of text to encrypt is 
first XORed with a nonce. Encryption of the first block (as 
shown on the left of Figure 3) uses a random initialization 
vector as a nonce, but encryption of any subsequent block 
uses the ciphertext of its preceding block as the nonce (as 
shown on the right of the figure). An attacker can capture 
the ciphertext for blocks c1 and c2, with c1 being used as 
the nonce for c2. Next, the attacker proceeds to XOR c1 
with a guess for the plaintext P of c2, resulting in Y. Finally, 
the attacker manipulates the client to use Y as a plaintext. If 
the attacker guesses correctly, the resulting ciphertext will 
be identical to c2, enabling the attacker to know that he/she 
guessed correctly. As of this writing 65.2% of the sites 
surveyed by SSL-Pulse [14], a global monitoring service, 
are susceptible to the BEAST attack. 

The Compression Ratio Info-leak Made Easy (CRIME) 
[15] attack discovered in 2012 relies on information leakage 
from observations of compression behavior to allow 
attackers to break SSL/TLS encryption. Unlike BEAST, 
CRIME is not associated with a particular version of SSL or 
TLS, but instead with a particular feature. Any TLS 
implementation which is configured to use compression 
[16] (streaming or block based), such as Deflate [17] based 
compression, or the SPDY [18] protocol, are susceptible. In 
this attack requests are made to a server by varying part of 
the message in an attempt to match an unknown secret 
within the message (a session ID for example). As seen in 
Figure 4 when the guess is correct the compression 
algorithm will be able to use the redundancy introduced by 
the equality of the guess and the secret to shorten the 
request. Thus when the message size is shortened (in 
comparison to an incorrect guess), the attacker knows they 
have made another correct step in determining the secret. As 
of this writing 24.1% of all sites surveyed by SSL-Pulse are 
susceptible to CRIME [14]. 

TLS allows connection parameters to be renegotiated 
after the initial handshake is complete. These renegotiations 
are performed under the protections offered by the existing 
TLS-enabled connection (i.e. any secondary handshakes 
occur over the encrypted channel). Despite this, in 2009 a 
vulnerability [19] in the renegotiation phase of the protocol 
was discovered that can allow an attacker to inject content 
into the start of a victim's channel such that the receiving 

  

 

Figure 3. Cipher-block Chaining Vulnerabilities 

  

Figure 4. High Level Example of CRIME Attack 
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TLS implementation will accept that content as if it came 
from the legitimate client. This attack does not impact the 
confidentiality of the connection, but instead its integrity, as 
the attacker is unable to decrypt communications. The fact 
that confidentiality remains intact notwithstanding, the 
ability to prepend data to victim communications leads to a 
whole host of exploit possibilities. 

In February of 2013, a cryptographic timing attack 
referred to as Lucky Thirteen [20] was reported. Lucky 
Thirteen is a form of a padding oracle attack [21], targeted 
at breaking confidentiality, that introduces new components 
into an attack described in 2002 by Serge Vaudenay [22]. 
The original attack has been mostly mitigated, however the 
new variation has not. In its current form Lucky Thirteen 
represents a mostly impractical vulnerability for most TLS 
scenarios as each of the thousands or millions of steps of the 
attack that are required to decrypt each byte result in 
connection termination. This implies that a context is 
required in which TLS connection failures are not reacted to 
(from a security perspective), and that messages containing 
the same content in the same location in part of the stream 
are executed repeatedly. While this reduces the likelihood of 
widespread general use of this attack, there are still 
scenarios that meet these conditions (polling via the Simple 
Mail Transfer Protocol (SMTP) for example), and 
extensions to this attack are being actively researched. 

B. TLS Configuration Best Practice 

TLS incorporates a set of swappable lower level 
technologies and protocols, meaning that not only is the 
TLS protocol itself a potential source of vulnerability, but 
the various implementations sitting below it are as well. For 
a TLS flow to be secure the cipher suite, compression 
protocol, certificates, key lengths, and certificate authorities 
must all be secure, and the implementations must all be 
patched and up to date. In addition to the core required 
parameters, optional features, such as mutual authentication 
mean that no out-of-the-box default configuration is likely 
to be widely appropriate across deployments. Given this 
complexity, it is not surprising to find that 70% of existing 
TLS configurations present at least some form of insecure 
configuration [23]. As of May 2006, the SSL-Pulse survey 
finds that only 22.6% of the 171,507 web sites surveyed are 
considered secure [14] by its definition. 

Insecurity leading to the statistics described above is due 
predominantly to inappropriate configuration settings. In 
order to safely configure TLS connections, one should 
consider the following list of TLS configuration best 
practices that when employed offer protections against the 
known TLS attacks, each of which are described in more 
detail below: 

1. Configuration restriction 
2. Mutual authentication 
3. Hostname verification 

Undertaking these configuration practices when coupled 
with the model-based validation described in Section V, 
provides a level of assurance that any given deployment is 

positioned in a strong security posture with respect to this 
line of defense. 

The configuration described here is targeted for 
scenarios where security is critical (i.e. the cost of insecurity 
is greater than the cost of lack of wider availability), or the 
administrator is in control of both client and server 
configuration. Requiring all clients to use TLS version 1.2, 
for example, is a preferred choice for DoD enterprise 
environments, but may not be an acceptable business 
decision for services that need to accept the widest array of 
client devices and software possible. 

The configuration best practices are laid out into three 
pillars: Configuration Restriction, Mutual Authentication, 
and Hostname Verification. 

1) Configuration Restriction 

The plethora of configuration parameters available in 
TLS, over 40 ciphers that ship with Java 7 and tens of 
options in the providers, some of whose final values depend 
on external runtime inputs, leave the door open to many of 
the discussed vulnerabilities. Pluggable protocols and cipher 
suites, as well as optional features fall into this camp. The 
configuration restrictions described below serve to curtail 
the unpredictability and known vulnerabilities in TLS. 

Protocol Restriction: During the TLS handshake, the 
client sends a message indicating the highest protocol 
version that it is able to support. The server then responds 
with a message indicating the chosen version to use. This 
negotiation could be used by a malicious client to cause a 
server to operate in a less protected mode than it is capable 
of. An attacker in possession of an exploit for TLS v1.0 
such as BEAST could, for example, configure their client to 
report a maximum capable version of 1.0, triggering the 
server to use that version (when it may in fact be a 1.2 
capable implementation). To protect against this form of 
attack, TLS allows restricting which versions it can make 
use of. The best practice, when client capabilities allow, is 
to restrict to only the highest version available: currently 
TLS v1.2. 

Cipher Restriction: As with negotiable protocol versioning, 
the TLS handshake allows the client to specify the list of 
cipher suites it is capable of employing. Certain ciphers 
such as the RC4 stream cipher [24] and the CBC suites 
when used with TLS 1.0 contain known weaknesses, e.g., 
easily observable initialization vectors. In addition, the level 
of integrity provided by TLS may vary across cipher suites. 
While most practical implementations do, the cipher 
specification must employ a hash algorithm to provide 
integrity assurances. The hash algorithm itself is another 
potential source of vulnerability: use of MD5, for example, 
is discouraged as known collision attacks exist [25]. Cipher 
weaknesses could allow a malicious client to mount an 
attack (such as BEAST) by limiting the list of available 
cipher suites it provides to a server. To protect against this 
type of attack, TLS can be configured to only allow a small 
set of ciphers that are not known to be vulnerable to current 



exploits. Using the AES256 cipher suite with CBC or Galois 
Counter Mode (CGM) avoids the increasing list of RC4 
weaknesses and is the currently recommended choice. 

Options Restriction: The CRIME attack demonstrated a 
weakness in any available compression technique used with 
TLS. To protect against this form of attack, compression 
must be disabled completely. 

2) Mutual Authentication 

TLS, in addition to providing confidentiality and 
message integrity (when used with appropriate ciphers), is 
often used to verify authenticity of endpoints participating 
in the connection. On the open Internet authenticating 
servers to clients is commonly the only choice possible, as 
Certificate Authorities generally do not issue client 
certificates and companies have mostly relied on company 
specific password schemes for credentials.  

This is quite different for DoD environments, where 
smart cards such as the Common Access Card (CAC) [26] 
allow personnel to authenticate themselves to servers via 
signatures generated using PKI key material on the card. 
Despite the broad availability and use of CACs, e.g., to log 
into the Windows operating system, DoD web applications 
frequently only support password authentication of clients.  

For a truly secure conversation to occur, both parties 
should establish crypto-strong trust in the identity of the 
other. TLS supports this by a configuration option requiring 
mutual authentication, forcing both the client and server to 
authenticate as part of connection establishment. DoD web 
applications should not only utilize this capability but also 
follow proper certificate validation procedures to check that 
certificates presented by clients are properly signed by 
trusted CAs, have not been revoked, and have not expired. 
For example, DISA is hosting an enterprise service called 

Robust Certificate Validation Service (RCVS) that can be 
accessed using the Online Certificate Status Protocol 
(OCSP) [27] to validate presented certificates on 
unclassified government networks. 

3) Hostname Verification 

While the HTTPS specification [28] requires constraints 
checking on presented certificates through a process called 
“endpoint identification”, TLS on its own does not. Given 
certain configurations this could allow a client to open a 
connection intended for server X, have this server present 
the certificate for entity Y, and if the client accepts 
certificate Y, then it will continue on in the connection 
unaware. There is an implicit assumption in this scenario 
that the certificate presented, if trusted, matches the one that 
was expected. This implies that a trusted entity could 
potentially masquerade as another trusted entity (see Figure 
5). While this may sound relatively benign, as both 
certificates are trusted, this means that compromise of any 
certificate may make others vulnerable – greatly increasing 
the attack surface for any service. 

The following best practice recommendations can 
mitigate this attack. For mutually-authenticated HTTPS 
connections, enable server hostname verification on the 
client (through configuration) and add explicit code on the 
server to perform client endpoint identification. Explicit 
code is needed for the latter case because the HTTPS spec 
does not explicitly require client endpoint identification. For 
configurations that run a custom protocol over TLS, we 
recommend adding hostname verification code on top of the 
TLS connection code for both clients and servers.  

Configuration Example: Java 

Another layer of complexity exists in configuring TLS due to 
the fact that each language, and often each network library 
on top of that language, will have its own interface (file 
based, programmatic, or other) for performing this setup. 
The following paragraphs briefly describe some of the 
highlights of TLS configuration as it pertains to the Java 
ecosystem – though similar facilities exist across most 
modern languages such as Python, and C/C++. 

Out of the box all recent Java versions provide the Java 
Secure Socket Extension (JSSE), which delivers SSL and 
TLS implementations via a pluggable API. Java 7 introduced 
support for TLS version 1.2, allowing for protection against 
vulnerabilities such as BEAST. Recent Java updates to 
versions 4, 5, 6, and 7 include support for RFC 5746 [29] 
which addresses the renegotiation vulnerability. 

Two of Java’s core networking classes, Socket and 
ServerSocket, have corresponding SSLSocket and 
SSLServerSocket versions. These classes provide methods 
for restricting the allowed cipher suites and protocol 
versions. This should be used with the most recent, least 
vulnerable, and most restricted options available, such as: 

 setEnabledCipherSuites(new String[] 
{"TLS_DHE_RSA_WITH_AES_256_CBC_SHA","
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TLS_DHE_DSS_WITH_AES_256_CBC_SHA","TL
S_RSA_WITH_AES_256_CBC_SHA") 

 setEnabledProtocols(new String[] { “TLSv1.2”}) 

The NSA Suite B standard [30][31] , which recommends 
publically available algorithms for use in classified national 
security systems, suggests a specific collection based on 
Elliptic Curve cryptography and AES for protection of 
sensitive information within the DoD. An implementation of 
this is expected to become available in 2014 as part of the 
OpenJDK Java Runtime Environment (JRE) Version 8. 
Suite B implementations are commercially available 
through vendors such as IBM. To set the other important 
properties pertaining to renegotiation, JSSE should be 
configured in Strict mode by setting the following properties 

 sun.security.ssl.allowUnsafeRenegotiation=false and 

 sun.security.ssl.allowLegacyHelloMessages=false. 

Since none of the standard JSSE TLS providers offer 
compression functionality, no specific attention needs to be 
paid to disable it. However, application level compression 
might still be at play and needs to be carefully controlled. 

Unfortunately, in many cases direct access to the socket level 
code is not possible, such as when using wrapper libraries for 
higher level protocols or when making use of application 
servers. Each of these, as well as other core Java packages 
such as the asynchronous IO (nio) libraries, provide their 
own mechanism for specifying TLS properties – though 
setting system properties will often work across libraries. 

V. THE TLSANALYZER TOOL 

While the TLS configurations listed in the previous 
section provide a structured way to define network flow 
policy, there is no guarantee that the configurations are 
actually enforced as specified. For JSSE, it is quite common 
for a one letter typo in a system wide property to cause the 
TLS connection management to revert back to default mode, 
without software developers noticing. Another common 
mistake is to only protect some socket factories with TLS, 
leaving others unintentionally unprotected. 

To address these concerns, we created the TLSAnalyzer 
tool for experimentally constructing network flow models 
based on observed network traffic and analyzing the 
resulting models. For constructing an observed model of 
network flows, TLSAnalyzer uses the tshark [32] packet 
sniffer plugged into the network at strategic locations. In the 
CZ example, TLSAnalyzer runs on the CZ machine as 
displayed in Figure 6 and is configured to report traffic on 
the following networks: 

 The external network between clients and the CZ 

 The internal net between the CZ and the protected 
service 

 The management network used to control CZ 
components 

 The loopback network used for local-only 
communication between intra-CZ components 

When deploying TLSAnalzer in larger enterprise 
environments, it is important to deploy monitoring probes in 
strategic locations that maximize coverage over raw 
observables, and there are interesting questions about the 
recommended probe deployments that are currently beyond 
the scope of this paper. 

After starting the network sniffer, it is important to 
exercise the system under test by running all available 
automated tests, to ensure coverage over logic that creates 
network connections on demand. The output of this first 
step is a packet capture file (PCAP) containing raw packet 
content together with timestamps. 

In the second step, TLSAnalyzer invokes tshark to create 
a connection table that captures all observed TCP flows. 
Note that using the functionality directly provided by tshark 
(-z conv,tcp) is not sufficient for this purpose, as source and 
destination addresses are not correlated to establishment of 
the TCP connection via SYN requests. To achieve the 
correct semantics, the TLSAnalyzer calls tshark with a 
custom set of parameters as follows: 

tshark -r <pcapfile> -R "tcp.flags.syn == 1 

&& tcp.flags.ack == 0" -T fields -e ip.src -

e tcp.srcport -e ip.dst -e tcp.dstport 

In the third step, TLSAnalyzer iterates over the 
connection table and uses the tcpflow [33] utility to 
reassemble the application stream from multiple TCP 
packets. Next, it classifies traffic into TLS vs. non-TLS by 
running regular expression checks over the application 
stream, i.e., looking for “Client Hello” and “Encrypted 
Handshake Message” TLS messages. TLSAnalyzer also 
identifies non-TLS traffic (step 4) based on regular 
expression matches for RMI streams, serialized Java 
objects, SOAP protocol messages, and HTTP protocol 
messages, none of which would be detectable in an 
encrypted stream. 

As shown in Figure 6, the tcpflow-based processing 
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produces a list of “observed” enforcement obligations. Step 
5 then compares this list with a set of expected 
communications, as manually specified for a domain expert. 
The differencing algorithms implemented by the 
NWAnalyzer component can spot a number of 
misconfigurations, including 

 Flows that are expected but not observed 

 Flows that observed but not expected 

 Flows that are expected to be TLS but are not 

In the context of the CZ example, step 6 involves 
running a customizable set of assertions against the 
communication model, including the following: 

 Non-bypassibility: No direct connections between 
clientIP and svcIP. 

 Protection consistency: All connections between 
clientIP and czIP_ext must be TLS. 

 Binding specificity: All connections related to 
internal CZ communication identified by port (e.g., 
log analysis, key sharing and splitting control, 
firewall actuation) have 127.0.0.1 as source and 
target IP. 

The final step of TLSAnalyzer involves generating 
reports that can be used by subject matter experts to adjust 
either (1) the implementation and rerun the tools until all 
constraints are fulfilled or (2) the assertions or description of 
expected conversations to line up expected constraints with 
implementation reality. 

VI. EXPERIMENTAL VALIDATION 

The TLSAnalyzer tool described in this paper was 
evaluated as part of a Red Team Exercise [34] performed by 
an independent US Air Force Research Laboratory (AFRL) 
Red Team to assess the efficacy of the Crumple Zone.  

One of the experiments conducted during the exercise 
was to find a bypass to the crumple zone, either by 
communicating with services that do not perform crypto-
strong authentication (via TLS) or by virtue of directly 
connecting to the protected service. The TLSAnalyzer tool 
was used during both normal operations and attack 
scenarios executed against the CZ, comparing expected with 
observed connection patterns.  

The following lines show example entries from the 
connection table that TLSAnalyzer generated: 

192.168.7.119,35861,192.168.7.170,3873-> 

     plain,Serializable,rmi 

 

192.168.1.68,43813,192.168.6.119,2222 ->  

     ssl,na 

The first line shows that TLSAnalyzer determined a flow 
to be a TCP connection (plain) on which Serializable Java 
objects are seen. The second line shows an SSL connection 
with an unknown application level protocols running over 
the connection. 

Performance and real-time execution was not an issue in 
the current validation context, as the tool only had to deal 
with less than 100 connection entries. 

VII. FUTURE WORK 

While a model-based differencing approach in general 
and the TLSAnalyzer tool specifically were found to be 
useful during development and red team evaluation, there 
are a number of ways they can be extended to provide 
enhanced configuration management. 

TLS parameter checking: Currently, TLSAnalyzer only 
performs a binary classification of TCP connections as 
either plain text or protected via SSL/TLS. One clear 
extension is to extend the tool to include checks for 
specification attributes of the TLS connection as it gets 
negotiated. This will involve inclusion of active probing 
tools, such as SSLScan [35], to test whether servers can be 
down-negotiated or not. The results can be cross checked 
against specific constraints in the connection table on a per 
flow basis or through global assertions, e.g., no connection 
should be down-negotiable. 

Dual-Layer TLS: The configuration practices described 
above are focused on scenarios where both server and client 
are free to select among any existing protocol version. Even 
outside of the consumer browser market there are situations 
where this is not the case. One approach to achieving strong 
crypto protection is to combine multiple weak algorithms in 
strategic ways. Figure 7 shows an example of combining a 
RC4 stream cipher used in a reverse Secure Shell (SSH) 
tunnel with a AES-GCM block chaining cipher used for 
application-level connections that connect through the 
tunnel. This makes attacks targeting confidentiality and 
integrity very difficult to execute, as the attacks need to 
work through two diverse algorithms to succeed. To 
increase availability, a service can run two tunnels, e.g., one 
using the RC4 stream cipher and another one using the 
AES-GCM block cipher, as shown in Figure 8. Exploits 
aimed at getting ciphers out of sync will likely only succeed 
against one of the two tunnels. 

These scenarios suggest new requirements for 
TLSAnalyzer to support going forward. Two new analyses 
would be required to provide confidence that a dual layer 
TLS implementation was configured and operating as 
desired. The first analysis checks constraints of a single 
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tunnel, namely ensuring that certain properties are the same 
(e.g., key length) and certain properties must be different 
(e.g., cipher types as in stream vs. block). The second 
analysis checks constraints across multiple tunnels. 

The final aspect of future work involves a more 
extended validation of the tool, including measurements of 
scalability, latency, and ease of use. 

VIII. CONCLUSION 

As interactions in distributed systems are protected using 
TLS, it is critical to validate that the security properties of 
the resulting network flows are indeed as expected. This 
paper describes a validated approach, embodied in the 
TLSAnalyzer tool, enabling construction of assurance 
arguments for network flow policies in distributed 
composed systems. Furthermore, the paper outlines a 
number of currently relevant threats against TLS and 
describes configuration settings aimed at minimizing the 
attack surface in tightly controlled DoD environments. 
Going forward, there is opportunity to refine TLSAnalyzer 
as it is adopted by a larger community and enhanced to 
support more intricate dual-layer encryption scenarios. 
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