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1. ABSTRACT 

Objective: The objective of the project was to develop an analysis framework and 

methodologies for evaluation of coastal military installation vulnerabilities and test them 

under prescribed scenarios of increased local mean sea level (0.5 meters, 1.0 meters, 1.5 

meters and 2.0 meters) over the next century. Methodologies were developed to assess the 

potential scope and magnitude of impacts from physical effects of flooding (wetting that 

occurs infrequently), inundation (wetting occurs regularly), erosion, seawater intrusion, and 

alteration of tidal flows. Assessment methodologies targeted potential vulnerabilities of 

buildings, civil infrastructure, training areas, and waterfront and coastal structures. The 

project focused on conditions in the southwestern United States (U.S.) and utilized the key 

coastal military installations at Naval Base Coronado (NBC) and Marine Corps Base Camp 

Pendleton (MCBCP) to test the approach. 

Technical Approach: The technical approach for the project was organized around five tasks. 

The first task focused on development of a generalized sea level rise (SLR) vulnerability 

assessment framework for application to coastal military installations. The second task 

encompassed developing methods to project future trends in sea level and sea level 

variability, and then combining these underlying sea level characteristics into realistic 

assessment scenarios for a range of regional sea level conditions. In the third task, methods 

were developed to compile, analyze, and integrate critical biogeophysical and infrastructure 

data for each installation within a three‐dimensional Geographic Information System (GIS) 

modeling environment. Using the range of scenarios developed under task two as test 

cases, task four focused on the development of methods to characterize the expected 

physical effects of SLR within the Southwest region. These results were then incorporated 

into the GIS modeling framework. Finally, the framework and tools developed under the 

first four tasks were then used in task five to explore the application of these methods to 

assess SLR vulnerability at the two installations. 

Results: The assessment framework adopted a source‐pathway‐receptor conceptual model 

in which a source is a sea‐level related hazard, a pathway is the process that links a sea‐level 

related hazard and a military installation element that is subject to harm from that hazard, 

and a receptor is a military installation element or class of elements that is subject to harm 

from a sea‐level related hazard. The framework reflects the evolution of the field from 

strategies to support broad‐scale, qualitative screening assessments, toward application at 

regional and local scales. This enables more quantitative assessment of specific vulnerability 

questions at Department of Defense installations, evaluation of a range of plausible future 
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scenarios, and identification of potential responses at the source, pathway, and receptor 

level. 

Sea level rise projection methods were successfully developed based on a superposition of 

mean sea level rise (MSLR) scenarios with increases of 0.5, 1.0, 1.5, and 2.0 m by 2100 

relative to 2000, astronomical tide heights, non‐tide residual (NTR) water level variability 

from general circulation models (GCMs), and wave‐driven runup on beaches. Using these 

time series, robust regional scenarios were developed for water level extremes at MCBCP 

and NBC using extreme value methods. Geospatial basemodels of the terrestrial and marine 

topography were constructed for both of the installations. This included the development 

of methods to accommodate future conditions by superimposing revised beach or 

beach/cliff elevation sub‐models into the changed domain of the basemodel using the 

results of the physical response models. An infrastructure model defining six key receptor 

categories of training areas, buildings, civil infrastructure, waterfront structures, and coastal 

structures was integrated with the terrain model such that accurate locations and 

elevations for the infrastructure could be extracted to evaluate interactions with erosion, 

inundation, and flooding.  

Physical response models were developed to describe exposure pathways including 

inundation, flooding, erosion, and seawater intrusion. Primary pathways for this study were 

classified by exposure under categories for exposed shorelines, protected shorelines, and 

groundwater. New modeling systems were developed that enabled the long‐term 

topographic response of these beach and cliff/beach systems to SLR to be integrated with 

short‐term storm wave response changes. Evaluation of inundation and flooding along 

exposed shorelines incorporated changes to the underlying elevation model due to erosion, 

spatially varying total water level exposures, and requirements for complete hydraulic 

connectivity. A density‐dependent groundwater‐flow and solute‐transport model was used 

to explore the influence of seawater intrusion in the Santa Margarita River Basin at MCBCP 

and the resulting potential impacts to water quality and future extraction capacity.   

Sea level rise vulnerability at NBC and MCBCP was assessed through application of these 

methodologies using two levels of analysis: receptor‐level and component‐level.  The 

receptor‐level methodology encompassed the breadth of the data compilation, modeling, 

and analysis methods and included installation‐ and exposure‐specific SLR source scenarios, 

pathway‐specific physical response of the coastal system, and characteristic sensitivities and 

operational thresholds for the installation receptors. The analysis illustrated the ability of 

these methods to resolve the increasing level of vulnerability of the installation to erosion 
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as a function of increasing sea level, as well as the sensitivity of some receptors to short‐

term wave driven erosion events. At NBC training areas this translated into frequent 

(weekly return period) conditions with remaining available area reduced to about 53% of 

baseline for 1.0 m SLR, and further reductions to a remaining area of about 23% of baseline 

for 2.0 m SLR. Training areas at MCBCP are generally backed by erodible cliffs, and the 

landward boundary of the beach training area was allowed to retreat inland (autonomous 

adjustment) at the rate of retreat of the cliff base. MCBCP also had a higher underlying sand 

imbalance, and together these factors resulted in frequent (weekly return period) 

conditions with remaining area reduced to about 41% of baseline for 1.0 m SLR and further 

reductions to a remaining area of 27% of baseline for 2.0 m SLR. Component‐level 

assessment examples also were illustrated for NBC training areas, building, waterfront 

structures, coastal structures, and civil infrastructure receptor classes. 

Benefits: Based on our objective to develop a robust analysis methodology that provides a 

reliable means to identify and plan for vulnerabilities under both currently projected sea 

level scenarios, and scenarios that may be considered in the future, a number of key 

accomplishments were successfully achieved. We successfully demonstrated new 

methodologies for the development of Southwest U.S.‐relevant SLR scenarios and cyclical 

events and a capability to project these at 100 m increments along the shoreline. These 

scenarios were successfully applied to the development and application of a range of 

“beyond the bathtub” pathway response models that link these sea level scenarios to 

potential vulnerabilities to coastal military installations. Based on the projection of these 

physical responses, we were able to illustrate their application to an assessment of the 

responses of two key Southwest U.S. military installations, with an emphasis on military‐

specific receptors including beach training areas and waterfront infrastructure, and to 

contrast the results. As part of this research and development effort, a number of products 

were developed that served to advance the research and provided a testing ground for our 

methodologies. In addition, these products may serve future uses, particularly for the 

installations where the analysis was conducted, but also potentially as models for 

application to other areas with similar requirements and conditions. 
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2. OBJECTIVE 

This project directly addresses the objective of the Strategic Environmental Research and 

Development (SERDP) Statement of Need (SON) to develop analysis methods to assess the 

impacts of local mean sea level rise (SLR) and associated phenomena on United States (U.S.) 

military infrastructure. Our vision was to develop a rigorous and robust analysis 

methodology that provides a reliable means to identify and plan for vulnerabilities under 

both currently projected sea level rise scenarios, and emerging scenarios in the future. We 

developed analysis methods that can be applied to military installations using available data 

to assess the potential impacts of sea level rise of a range of magnitudes. The methodology 

serves to address potential mission readiness impacts, support critical policy and 

implementation decisions for response actions, and to identify and leverage other essential 

research needs in this area.  Our project utilized a strong team of regional scientists and 

managers to provide a focused and rigorous regional vulnerability assessment methodology 

for representative southwestern U.S. coastal military installations. While responding directly 

to the SON, the application of our methodology focused uniquely on the potential 

ramifications of these changing conditions on military installations in the Southwestern U.S. 

including, Naval Base Coronado (NBC) and Marine Corps Base Camp Pendleton (MCBCP). 

This regional focus built on and enhanced general strategies that have been applied over 

larger scales in previous efforts. The motivations for this focus include recognition that: 

 To achieve meaningful and useful vulnerability assessments, a significant degree of 

installation‐specific detail is required, thus the scope of the effort was carefully 

focused.  The methodology and analysis tools are exportable to other regions and 

can be applied with regional forcing. 

 Regional sea level forcing scenarios were generally applicable across the two 

installations in the study. 

 While limited previous analysis and experience suggests a very high vulnerability to 

SLR, the southwest was a region that had received relatively little assessment 

compared, for example, to the southeastern and gulf coasts. 

 The region has a high concentration of critical coastal military installations poised 

across a range of coastal topographies. 

 A regional effort allowed more meaningful direct interaction with local scientists, 

facilities and resource managers, and policy makers, and allowed application of the 

enormous amount of scientific data, analysis and understanding, and visualization 
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technologies, that were available at Scripps Institution of Oceanography, University 

of California San Diego (UCSD), and SPAWAR Systems Center Pacific (SSC‐PAC).			

The objective of this effort was to develop an analysis framework and methodologies to 

support the evaluation of regional military installation vulnerabilities and test them under 

prescribed scenarios of four increases in mean sea level (0.5 m, 1.0 m, 1.5 m and 2.0 m) 

with coinciding water level variations associated with tide, wave, storm, El Niño‐Southern 

Oscillation (ENSO) and other regional‐specific climatic responses as projected over the next 

century. Methodologies were developed to assess the scope and magnitude of the 

following five physical effects of these joint SLR scenarios: flooding; inundation; erosion; 

seawater intrusion; and alteration of tidal flows.  Based on projected physical effects, 

strategies for assessing key installation vulnerabilities were evaluated for their ability to 

support future planning and recommendations for possible mitigation. Vulnerability 

assessment methodologies were structured around potential vulnerabilities for receptor 

categories that included buildings, civil infrastructure, training and testing lands, waterfront 

structures, and coastal structures. The project was organized around five specific technical 

objectives (TO) (Figure 2‐1): 

 TO1. Vulnerability Framework: Develop a generalized sea level rise vulnerability 

assessment framework for application to coastal military installations. 

 TO2. Delineation of Regional Sea Level Rise and Climate Change: Develop methods 

to project future trends in sea level and sea level variability. Further, develop 

methodologies to combine these underlying sea level characteristics into realistic 

assessment scenarios based on the probability of occurrence for a range of regional 

sea level conditions 

 TO3. Delineation of the Coastal System: Develop methods to compile analyze and 

integrate critical biogeophysical and infrastructure data for each installation within a 

three‐dimensional Geographic Information System (GIS) modeling environment. 

 TO4. Assessment of Physical Effects and Responses: Using the range of scenarios 

develop under T02 as test cases, develop methods to characterize the expected 

physical effects of SLR within the southwest region, and to compile these results into 

the GIS modeling framework. 

 TO5. Assessment of Vulnerability: Integrate the analytical methods developed under 

T02‐T04 within the vulnerability framework of T01 to explore the application of 

these methods to assess vulnerability at the two installations. 
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Figure 2‐1. Components of the project technical objectives. 
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3. BACKGROUND 

Climate change has potential ramifications for national security. This has been recently 

recognized in legislation that directs the Department of Defense (DoD) to provide guidance 

to military planners to assess the risks of potential climate change, and in a study directed 

by a board of senior retired military officers that recommended DoD conduct assessments 

of the impact on U.S. military installations of rising sea levels, extreme weather events, and 

other projected climate change impacts over the next 30 to 40 years (Center for Naval 

Analysis, 2010). 

Installation vulnerabilities include:  

 Loss or damage to mission‐essential infrastructure including coastal development 

and beaches;  

 Loss or degradation of mission capabilities; 

 Loss of training and testing lands, including beaches;  

 Loss of transportation means, facilities, and/or corridors; 

 Loss of habitat and associated natural resources;  

 Increased risk of storm damage; and, 

 Increased potential for loss of life. 

These concerns are reinforced by the recent projections from the fourth assessment of the 

IPCC (2007a) and other studies, especially those dealing with the potential for increased 

contributions to mean sea level rise (MSLR) from melting ice caps. Observations indicate 

that global mean sea level (MSL) rose at an average rate of 0.15‐0.20 meters per century 

(m/cy) over the 20th century, and that this rate has increased since about 1992 to over 0.30 

m/cy. The acceleration is confirmed in both tide gauge and satellite data (Merrifield et al., 

2009; US EPA, 2010) and appears distinct from decadal variability since it is uncorrelated 

with standard climate indexes. Most of the acceleration appears to be the result of tropical 

and southern ocean warming associated with upper‐ocean heat content and ice melt. MSLR 

scenarios specified and considered in this study ranged from global MSL end‐points of 0.5, 

1.0, 1.5, and 2.0 m by year 2100, which were assumed to apply to the study area. 

The focus of this effort was to develop and exercise analysis methods to assess the impacts 

of local mean SLR and associated phenomena on military infrastructure in the Southwest 

U.S. The application of our methodology focused uniquely on the potential ramifications of 

these changing conditions on military installations in the southwestern U.S. including, NBC 

and MCBCP. To achieve this, we developed an analysis framework and applied it to 
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determine regional military installation vulnerabilities under the four specified scenarios of 

increased mean sea level (0.5 m, 1.0 m, 1.5 m and 2.0 m) with coinciding water level 

variations associated with tide, wave, storm, ENSO and other regional‐specific climatic 

responses as projected over the next century. Methodologies were developed to assess the 

potential scope and magnitude of the following five physical effects of these joint SLR 

scenarios: flooding; inundation; erosion; seawater intrusion; and alteration of tidal flows.  

Based on projected physical effects, key installation vulnerabilities were evaluated to 

support future planning and recommendations for possible mitigation. Vulnerability 

assessment methodologies were structure around potential impacts to receptor categories 

that included: buildings; civil infrastructure; training and testing lands; waterfront 

structures; and coastal structures. The framework for the methodology, the coastal setting 

at the two coastal installations, and an overview of key coastal processes in the region are 

described below. 

3.1 Vulnerability Framework 

Climate change vulnerability is defined by Intergovernmental Panel on Climate Change 

(IPCC) as “the degree of inability to cope with the consequences of climate change and 

accelerated sea‐level rise” (IPCC, 1992). This concept of vulnerability assessment embraces 

the assessment of both anticipated impacts and available adaptation options (Smith et al,, 

1996; Tol et al., 1998; Klein and Nicholls, 1999), and encompasses biogeophysical, socio‐

economic and political factors (Bijlsma et al., 1996; Klein, 2002; Turner et al., 2003). In this 

context, adaptive capacity represents the “ability of a system to adjust to climate change 

(including climate variability and extremes) to moderate potential damages, to take 

advantage of opportunities, or to cope with the consequences” (McCarthy et al., 2001). 

Because research under the statement of need for this project did not focus significantly on 

adaptation, in the context of this project we also use vulnerability to describe the 

combination of exposure and sensitivity without full consideration of adaptive capacity. 

In general, climate change vulnerability in coastal areas is magnified by exposure to oceanic 

forces including increases in sea level, storm surge and wave heights, as well as limitations 

on adaptive capacity. Limitations on adaptive capacity in these areas may stem from 

physical, economic, and institutional constraints and may be particularly acute in highly 

developed coastal areas where natural buffers such as dunes and wetlands have already 

been lost, and there is a high density of costly, fixed infrastructure near the shoreline (Parry 

et al., 2007).  
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Vulnerability analysis of SLR for coastal areas has been conducted over varying scales 

including local area studies, country studies, and global studies (Figure 3‐1; Nichols and 

Mimura, 1998; Nicholls, 1995; Nicholls and de la Vega‐Leinert, 2008). Larger scale analyses 

are generally more qualitative and comparative (e.g. which areas of the world are most 

vulnerable), whereas regional studies are generally more quantitative and focus more on 

specific planning initiatives (Dolan and Walker, 2006). Various frameworks have been 

proposed and applied for SLR vulnerability assessment and adaptation over these spatial 

scales, including the IPCC Common Method (IPCC, 1992), the U.S. Country Studies 

Methodology (Benioff et al., 1996), the United Nations Environment Program (UNEP) 

Handbook Methodology (Burton et al., 1998), the United States Agency for International 

Development guidance manual for Adapting to Climate Variability and Change (USAID, 

2007), and the South Pacific Islands Methodology (Yamada et al., 1995). While these 

frameworks bear similarities, they all have recognized limitations and criticisms (Dolan and 

Walker, 2006). The Common Method has been most widely applied, particularly at larger 

scales (country and global), and incorporates the following objectives within its framework: 

(1) identify and assess physical, ecological, and socio‐economic vulnerabilities to 

accelerated SLR and other coastal impacts of global climate change; (2) understand how 

development and other socio‐economic factors affect vulnerability; (3) clarify how possible 

responses can mitigate vulnerability, and assess their residual effects; and (4) evaluate 

capacity for implementing a response within a broad coastal zone management framework. 

 

Figure 3‐1. Typical scales of vulnerability assessments (adapted from Nichols and Mimura, 1988).  

While these objectives are not specifically targeted to military installations, they do provide 

a point of departure for adaptation to a military installation specific framework. The 

Common Method is structured around a seven‐step framework that links research, 

monitoring, and policy making processes to assist policy‐makers to make informed decisions 
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(IPCC, 1992). While previous assessments have been carried out, there are still significant 

barriers including: limited understanding of relevant processes affected by sea‐level rise; 

insufficient data on existing conditions; difficulty in developing the local and regional 

scenarios of future change; and lack of appropriate analytical methodologies for some 

impacts (Nicholls and Klein, 2000). Within these frameworks, adaptation is generally 

considered in terms of retreat (minimize impacts by pulling back from the coast), 

accommodation (minimize impacts by adjusting human use of the coastal zone), and 

protection (impacts are controlled by soft or hard engineering) (IPCC, 1990; Bijlsma et al., 

1996). For coastal military bases, these responses must be also weighed in consideration of 

critical readiness, training and support missions of the installation (Center for Naval 

Analysis, 2010). 

More recently, climate change assessments have embraced risk assessment paradigms to 

evaluate sea level rise vulnerability (Patz and Balbus, 1996; NCDEM, 2009; Leggett et al., 

2003; Cartwright, 2008; Kasperson et al., 2001; Liverman, 2001; van Westen and 

Georgiadou 2001; Scheitlin et al., 2011; Kuleli, 2010). In these approaches, vulnerability is 

cast in the risk assessment nomenclature of exposure and effects, with changes in sea level 

and storminess representing sources or stressors which are manifested through pathways 

such as shoreline response, erosion, inundation and seawater intrusion, which in turn result 

in risk to receptors (or sometimes referred to as sectors such as buildings and structures, 

natural resources, transportation, etc.; Snover et al., 2007) These risk assessment strategies 

have generally been applied on regional or smaller scales (NCDEM, 2009; Cartwright, 2008; 

Kuleli, 2010; Scheitlin et al., 2011), and provide a framework for addressing specific 

vulnerability questions at a relatively quantitative level.  In these frameworks, risk 

conceptually incorporates both the likelihood of a given event and the consequence of the 

event (Kasperson, et al., 2001; Liverman, 2001; Westen and Georgiadou, 2001), reflecting 

the notion that the same sea‐level rise scenario may result in different risks in different 

places because some people and places are more sensitive and less able to adapt than 

others (Cartwright, 2008).  

A general review of existing frameworks was conducted to appraise the state of the science 

for vulnerability assessment, and to create a credible basis for a DoD‐relevant framework 

that builds on the strategies already developed and utilized in other applications. A cross‐

section of existing frameworks and strategies were identified and reviewed. These are 

summarized in Table 3‐1, and briefly described below. Assessment strategies were broadly 

classified as (1) impact assessments which integrated exposure and sensitivity but generally 
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did not incorporate adaptation, (2) vulnerability assessments which integrated exposure, 

sensitivity, and adaptive capacity, or (3) risk assessments which integrated exposure, 

sensitivity, and adaptive capacity within formalized exposure, pathway and receptor 

relationships and may have ascribed probabilities or likelihoods to potential outcomes. In 

some cases, the approaches appeared to represent blends of these strategies.  
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Table 3‐1. Summary of sea level rise assessment frameworks reviewed for this study. 

 

 

Framework or Methodology Description/Purpose Assessment Type Reference

IPCC Common Methodology
Assist countries in making first-order 
assessments of vulnerability to sea-
level rise.

Vulnerability 
Assessment

Klein and Nicholls, 1999

IPCC Technical Guidelines for 
Assessing Climate Change 
Impacts and Adaptations

Provide a consistent framework for the 
assessment of climate impacts and 
adaptations across a range of regions 
and geographical areas.

Vulnerability 
Assessment

Carter et al., 1994

UNEP Handbook Methodology

Provide a detailed application strategy 
for the IPCC Technical Guidelines for 
Assessing Climate Change Impacts 
and Adaptations.

Impact Assessment
Feenstra et al., 1998; 
Klein and Nicholls, 1998

US Country Studies 
Methodology

Tailored to meet the needs of 
developing countries in assessing their 
vulnerability to climate change and 
identifying opportunities for adaptation.

Vulnerability 
Assessment

USCSP, 1999; Benioff et 
al., 1996

The South Pacific Island 
Methodology

Developed in response to factors that 
restricted the direct application of the 
IPCC Common Methodology such as a 
lack of data, such as topographic 
maps with precise contours, historical 
records of climate and mean sea level, 
and land use patterns, a common 
constraint in developing countries.

Index-Based 
Vulnerability 
Assessment

Mimura, 1999

Understanding Vulnerability of 
Coastal Communities to Climate 
Change Related Risks

Describes a framework for assessing 
adaptive capacity which addresses the 
inherent susceptibilities of human 
environment systems exposed to 
climate variability and change in 
contrast to typical impact 
assessments that focus largely on 
reducing economic impacts.

Vulnerability 
Assessment

Dolan and Walker (2004)

Climate Change and Coastal 
Zones: An Overview of the State 
of the Art on Regional and Local 
Vulnerability Assessment

Provides an overview of methodologies 
for assessing the vulnerability of 
coastal zones, present a conceptual 
framework for vulnerability 
assessment, and outline the steps that 
are required for the actual assessment 
of coastal vulnerability

Vulnerability 
Assessment

Sterr et al., 1999

An Environmental Risk 
Assessment/Management 
Framework for Climate Change 
Impact Assessments

Presents a risk assessment and 
mangement framework for climate 
change impacts with a focus on 
individual exposure units. Incorporates 
stakeholder involvement and links key 
climate variables with impact 
thresholds.

Blend of 
Vulnerability and 
Risk Assessment

Jones, 2001

North Carolina Sea Level Rise 
Risk Management Study

Describes a risk assessment and 
mitigation strategy demonstration of 
the potential impacts of sea level rise 
in that state associated with long-term 
climate change.

Blend of 
Vulnerability and 
Risk Assessment

North Carolina Division of 
Emergency 
Management, 2009
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3.1.1 Review of Existing Frameworks 

IPCC Common Methodology 

The IPCC Common Methodology was developed primarily to assist countries in making first‐

order assessments of vulnerability to sea‐level rise (Klein and Nicholls, 1999). The 

framework was first proposed in 1991 and was designed to assist the user in estimating 

impacts from sea level rise, including the value of lost land and wetlands. The methodology 

incorporates expert judgment and data analysis of socioeconomic and physical 

characteristics, but does not explicitly instruct the user on how to perform the analyses. 

Information from this methodology, including the identification of priority regions and their 

possible adaptation measures, is generally used on a screening basis for the development of 

more detailed analysis and modeling for biophysical and socio‐economic impacts and 

adaptations. The user follows seven steps: (1) delineate the case study area; (2) inventory 

study area characteristics; (3) identify the relevant socioeconomic development factors; (4) 

assess the physical changes; (5) formulate response strategies; (6) assess the vulnerability 

profile; and (7) identify future needs (Figure 3‐2). Adaptation focuses around three generic 

options: retreat, accommodate or protect. 

The Common Methodology has been for assessments in at least 46 countries including 

quantitative results for 22 country case studies and eight sub‐national studies (Nicholls, 

1995). While the approach is most useful as an initial, baseline analysis for country level 

studies where little is known about coastal vulnerability, it can be applied at a range of 

scales including sub‐national, national, regional and global. The output of the assessment is 

generally a vulnerability profile indicating a range of impacts of sea level rise, such as land 

loss and associated value and uses and a list of future policy needs to adapt both physically 

and socio‐economically. Application requires delineation of physical and socioeconomic 

characteristics of the study area, and considerable knowledge on a range of techniques for 

estimating biophysical and socioeconomic impacts of sea level rise and adaptation 

(UNFCCC, 1999).  

IPCC Technical Guidelines for Assessing Climate Change Impacts and Adaptations 

IPCC published the Technical Guidelines for Assessing Climate Change Impacts and 

Adaptations in 1994 to provide a consistent framework for the assessment of climate 

impacts and adaptations across a range of regions and geographical areas (Carter et al., 

1994). The report reviews methods and outlines an analytical framework for assessing the 

impacts of climate change. The guidelines are structured around a seven step procedure 

that includes: (1) Definition of the problem; (2) Selection of the methodology; (3) Testing 
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the method; (4) Selection of scenarios; (5) Assessment of the biophysical and socio‐

economic impacts; (6) Assessment of autonomous adjustments; and (7) Evaluation of 

adaptation strategies (Figure 3‐3). Guidance is provided for a range of techniques that may 

be applied in each step of the process. The problem definition step identifies the goal of the 

assessment, the exposure unit, the spatial and temporal scope, and the data requirements. 

Selection of methods encompasses a range of possible techniques including 

experimentation, impact projections, empirical studies, and expert judgment. Method 

testing serves as a precursor to the main evaluation, and encompasses feasibility studies, 

data acquisition, and model testing. Scenarios development relies on the specification of a 

range of plausible future climate conditions. Assessment of impacts describes the 

differences between the environmental and socio economic baseline, and the projected 

conditions under the selected climate change scenarios. The guidance incorporates the 

assessment of both autonomous adjustments and adaptation strategies.  

UNEP Handbook Methodology  

The UNEP Handbook on Methods (Feenstra et al., 1998; Klein and Nicholls, 1998) was 

developed to provide a detailed application strategy for the IPCC Technical Guidelines for 

Assessing Climate Change Impacts and Adaptations (Carter et al., 1994). It provides a 

generic framework for conducting assessments of sea‐level rise and climate change. The 

general procedure includes seven guiding steps including: (1) define the problem, (2) select 

the method, (3) test the method, (4) select scenarios, (5) assess the biogeophysical and 

socioeconomic impacts, (6) assess the autonomous adjustments, and (7) evaluate 

adaptation strategies. A range of methods are suggested for each of the steps with selection 

of the best approach left up to the user (Figure 3‐4). The approach is applicable to situations 

ranging from regional to national level studies, and can be used at both screening and more 

detailed levels of analysis. General input requirements include physical and socioeconomic 

characteristics of the coastal zone, and the resulting outputs include potential impacts of 

sea‐level rise and corresponding adaptation strategies according to both socioeconomic and 

physical characteristics. The methodology has been applied in several countries, including 

the Cameroon, Antigua and Barbuda, Estonia, Pakistan, and Cuba (UNFCCC, 1999). 

US Country Studies Methodology  

The US Country Studies Methodology was tailored to meet the needs of developing 

countries in assessing their vulnerability to climate change and identifying opportunities for 

adaptation (USCSP, 1999; Benioff et al., 1996). The general approach centers on the 

evaluation of biophysical effects and involves six primary steps including: (1) define scope of 
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assessment process, (2) select scenarios, (3) conduct biophysical and economic impact 

assessments, (4) integrate impact results, (5) analyze adaptation policies and programs, and 

(6) document and present results to decision makers. The method is flexible in that 

relatively simple methods can be applied when data quality and availability are limited. It 

has generally been employed when an analysis of biophysical impacts of climate change is 

the central goal. It is broadly applicable to coastal resources, agriculture, 

grasslands/livestock, water resources, forestry, human health, fisheries, and wildlife. Inputs 

to the method include climate change and socioeconomic scenarios and outputs tend to 

focus on climate change impacts and, to limited extent, adaptation options (UNFCCC, 1999). 

The South Pacific Island Methodology  

The South Pacific Island Methodology was developed in response to factors that restricted 

the direct application of the IPCC Common Methodology such as a lack of data, such as 

topographic maps with precise contours, historical records of climate and mean sea level, 

and land use patterns, a common constraint in developing countries (Mimura, 1999). The 

South Pacific Island Methodology is an index‐based approach that applies relative scores to 

assess a variety of scenarios and take advantage of traditional knowledge and memories of 

the local people to overcome the shortage of empirical data (Kay and Hay, 1993). The 

method utilizes six classes of coastal subsystems including natural, human, infrastructural, 

economic, institutional, and cultural (Figure 3‐5). These are further divided into subsystems 

to which a vulnerability score and a resilience score is assigned based on expert judgment 

under a range of scenarios. The two values are then combined to produce a sustainable 

capacity index for each scenario. The method is particularly useful in coastal settings with 

limited quantitative data but considerable experience and qualitative knowledge. It is 

generally viewed as a screening level analysis that should be followed by a more 

quantitative analysis (UNFCCC, 1999). The method is generally applied at the island or 

regional scale and requires little quantitative data, but significant background knowledge of 

physical, social, and economic characteristics of the area. 

Understanding Vulnerability of Coastal Communities to Climate Change Related Risks 

This paper by Dolan and Walker (2006) presents a framework for assessing adaptive 

capacity which addresses the inherent susceptibilities of human environment systems 

exposed to climate variability and change in contrast to typical impact assessments that 

focus largely on reducing economic impacts. The framework incorporates differential 

exposures and vulnerabilities based on a range of determinants including access and 

distribution of resources, technology, information and wealth; risk perceptions; social 
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capital and community structure; and institutional frameworks that address climate change 

hazards (Figure 3‐6). This broader approach contrasts typical impact assessments that focus 

largely on reducing economic detriments of change. The framework is generally applicable 

on the local scale as a community‐based or bottom‐up approach and incorporates short‐

term exposure to variability as an important source of vulnerability superimposed on long‐

term change. Similar to the South Pacific Island Methodology, the framework utilizes 

community level perceptions and experiences to identify the characteristics that influence 

response, recovery and adaptation, focusing on locally relevant outcomes that promote 

more effective decision‐making, planning and management. The framework was applied to 

study sea‐level rise impacts on northeast Graham Island, Haida Gwaii (Queen Charlotte 

Islands). 

Climate Change and Coastal Zones: An Overview of the State of the Art on Regional and 

Local Vulnerability Assessment  

Sterr et al., 1999, provide an overview of methodologies for assessing the vulnerability of 

coastal zones, present a conceptual framework for vulnerability assessment, and outline the 

steps that are required for the actual assessment of coastal vulnerability. The conceptual 

framework distinguishes between natural‐system vulnerability and socio‐economic 

vulnerability to climate change and defines many of the concepts involved in vulnerability 

assessment (Figure 3‐7). They identify the most important biogeophysical effects of sea 

level rise as: increasing flood‐frequency probabilities and enhancement of extreme flood‐

level risks; erosion and sediment deficits; gradual inundation of low‐lying areas and 

wetlands; rising water tables; seawater intrusion; and biological effects. Socio‐economic 

vulnerability resulting from these biogeophysical effects is categorized in terms of: direct 

loss of economic, ecological, cultural and subsistence values through loss of land, 

infrastructure and coastal habitats; increased flood risk of people, land and infrastructure; 

and impacts related to water management, salinity and biological activity. Within the 

framework, analysis of coastal vulnerability starts with the natural system’s susceptibility to 

the biogeophysical effects of sea‐level rise, and of its natural capacity to cope with these 

effects. These effects are interpreted in the context of socio‐economic vulnerability as 

determined by society’s technical, institutional, economic and cultural ability to prevent or 

cope. The framework provides an acknowledgement of the concepts of exposure and risk in 

defining the relationship between biogeophysical effects and socio‐economic vulnerability 

and impact. Implementation is described as three levels of increasingly complex assessment 

including: screening assessment (SA); vulnerability assessment (VA); and planning 
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assessment (PA). The three‐level approach relates to the issue of scale as more specific 

planning‐level assessment results at smaller scales. Thus the approach can be viewed as a 

tiered approach, or a scaled approach, depending on the questions that are to be 

considered in the assessment.  

An Environmental Risk Assessment/Management Framework for Climate Change Impact 

Assessments  

Jones, 2001 presents a risk assessment and management framework for climate change 

impacts with a focus on individual exposure units that incorporates stakeholder 

involvement and links key climate variables with impact thresholds. The framework reflects 

modern risk assessment and management methodologies while maintaining consistency 

with the IPCC technical Guidelines for Assessing Climate Change Impacts and Adaptations. 

This framework introduces the important notion of critical response thresholds in the 

context of conditional probabilities of exceedance. Risks are managed during “windows of 

adaptation,” through a combination of mitigation and adaptation strategies.  The 

framework developed consists of seven steps with a central focus on stakeholder 

involvement. The steps include (1) identification of key climate variables affecting exposure 

units; (2) creation of scenarios or expected ranges of these variables; (3) a sensitivity 

analysis of the relationship between climate variables and impacts; (4) identification of 

impact thresholds through interaction with stakeholders; (5) implementation of the risk 

analysis; (6) Evaluation of risk, feedbacks, and autonomous adaptations; and (7) 

consultation with stakeholders, analysis of adaptations, and recommendations (Figure 3‐8). 

While the linkage of these steps is not prescriptive, the order presented here is a logical 

progression. 

North Carolina Sea Level Rise Risk Management Study  

The State of North Carolina has initiated risk assessment and mitigation strategy 

demonstration of the potential impacts of sea level rise in that state associated with long‐

term climate change. The assessment is structured around four principal questions 

including: (1) What changes to coastal flooding hazards will possibly occur between 2009 

and 2100 due to storminess and sea level rise? (2) What built and living systems will be 

exposed to coastal flooding from increased storminess and sea level rise? (3) What possible 

impacts / consequences (system‐wide, financial) will occur on the exposed built and living 

systems? and (4) What short‐term and long‐term strategies will result in efficient and 

effective prevention and/or alleviation of exposure and consequences from sea level rise 

and increased storminess? (NCDEM, 2009). The assessment is scenario‐based, utilizing 
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potential sea level rise and demographic conditions four “time slices” through 2100 

including near‐term (2025), medium‐term (2050), long‐term (2075), and end of the century 

(2100). The approach for assessment is based on the source‐pathway‐receptor (SPR) model 

in which “sources” are climate or weather conditions that drive flood hazards, “pathways” 

are the mechanisms by which sources influence receptors, and “receptors” are the people, 

industries, infrastructure and natural resources that may be affected by the hazard (Figure 

3‐9). Potential advantages of the SPR framework include the ability to break down the 

assessment process into constituent parts, and support for the targeted development of 

approaches that address vulnerability at the source, pathway and/or receptor level.    

3.1.2 Framework Review Summary 

Across these frameworks, there are commonalities and differences, as well as an evolution 

and refinement in approaches over time. All of the frameworks share common 

requirements to define the problem, its scale and boundaries and characterize the 

biogeophysical and resulting socioeconomic impacts. Many of the earlier applications of the 

general frameworks, such as the Common Method and the UNEP Handbook Method were 

applied at larger scales and in a more qualitative way, often as a result of limited data 

and/or resources to conduct the assessment. Evolving approaches such as the South Pacific 

Island Method and the US Country Studies Method have recognized the importance of local 

knowledge and experience to supplement data limitations in the assessment of sea level 

rise vulnerability. Frameworks are also evolving to incorporate both the concept of tiered 

assessment, such as that described by Sterr et al., 1999, as well as acknowledging the 

importance of scale to the level of quantitative analysis that can be achieved in the 

assessment. More recently, frameworks such as the one adopted for the North Carolina Sea 

Level Rise Study (NCDEM, 2009) have formalized the application of risk assessment 

methodologies within the vulnerability assessment, and in particular made use of risk‐based 

conceptual frameworks such as the source‐pathway‐receptor model. Overall, sea level rise 

vulnerability frameworks appear to be evolving from strategies to support large‐scale, 

qualitative screening assessments for specific future conditions, toward strategies that can 

be applied at regional and local scales to more quantitatively respond to specific 

vulnerability questions, evaluate a range of possible scenarios, take and identify potential 

responses to vulnerability at the source, pathway and/or receptor level. 
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Figure 3‐2. Vulnerability analysis framework of the Common Methodology (Adapted from IPCC, 1992).  
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Figure 3‐5. Example of the six coastal subsystem index‐based assessments in the South Pacific Island 

Methodology (Adapted from Center for Global Environmental Research, 1996). 

 

 

Figure 3‐6. Integrated vulnerability framework (Adapted from Dolan and Walker, 2006). 
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Figure 3‐9. The source, pathway, receptor framework for assessing sea level rise vulnerability (Adapted from 

NCDEM, 2009). 

3.1.3 Vulnerability Assessment Framework for DoD Installations  

Strategy for the Framework 

In a general sense, the approaches reviewed above can be viewed as complementary, with 

the traditional approaches such as the Common Methodology providing a flexible 

procedural strategy for a relatively qualitative assessment, and the emerging methodologies 

focusing more on defining and quantifying the conceptual linkages between stressors and 

receptors and the resulting consequences. For the purpose at hand, we adopt a hybrid 

approach which incorporates aspects and nomenclature of the risk‐based paradigm into the 

procedural strategies of the IPCC Common Method and the Technical Guidelines to provide 

a vulnerability framework that can be generalized to a broad range of potential climate 

impacts to coastal military installations, while providing sufficient conceptual, qualitative  

and quantitative strategies to develop meaningful assessments for specific questions at 

individual installations. This strategy is also consistent with frameworks developed for 

ecological risk assessment by US EPA (Figure 3‐10; US EPA, 1998).  In addition, as 

emphasized in the US Country Studies Method and the South Pacific Island Method, as well 

as Jones (2001), we recognize the critical importance of local knowledge and expertise in 

achieving meaningful vulnerability assessments for these installations. While a general 
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framework is necessary to provide a level of consistency and comparability among 

assessments, a top‐down, prescriptive strategy is likely to underutilize this local knowledge 

and expertise and result in a less satisfying assessment. Finally, we recognize and 

incorporate the key concept of sensitivity thresholds in the assessment as a means of 

focusing the effort on critical characteristics of the installation.  

 

 

 

Figure 3‐10. Ecological risk assessment framework (Adapted from US EPA 1998). 
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In the context of sea level rise vulnerability, military installations share many commonalities 

with other coastal communities. These include increased risk of loss or damage 

infrastructure, buildings, and natural resources, as well as potential increased risk for injury 

or loss of life. In contrast to typical coastal communities however, military installations 

serve critical national defense missions that are generally not considered in other previous 

sea level rise vulnerability assessments. Thus an important aspect of developing this 

framework was to identify the important military‐specific receptors that could be subject to 

increased vulnerabilities, and to develop strategies to quantify these vulnerabilities based 

on metrics that were meaningful to the military planning community. This will allow 

meaningful vulnerability assessments to be conducted more consistently at the regional 

level, while still supporting prioritization and planning at national and global scales.  

Overview of the Framework 

The proposed sea level rise vulnerability assessment framework for DoD installations is 

shown in Figure 3‐11. The framework is quite general, and is consistent with typical 

systematic planning strategies for risk assessment frameworks that have been applied to 

human health and ecological risk assessment (US EPA, 1998; US Navy, 2008; US EPA, 1991), 

while building on the key elements of traditional vulnerability assessment frameworks. The 

general nature of the framework means that it can be adapted for application to a broad 

range of climate related vulnerability assessment applications well beyond the specific goal 

here which focuses on sea level rise. The framework was structured around six primary 

components including (1) Problem formulation and scoping; (2) Conceptual model 

development; (3) Defining and validating data and modeling requirements; (4) Conducting 

the vulnerability assessment; (5) Communication of vulnerabilities; and (6) Management of 

vulnerability. These components were structured in a roughly sequential arrangement that 

anticipates the potential for successive iterations. These iterations can serve to refine the 

assessment, can represent a progression from screening level assessment to more 

quantitative vulnerability or planning level assessments, or can incorporate future updates 

or reassessments. The framework incorporates a continuing communication with 

stakeholders and experts to capture and address critical concerns as well as to leverage 

local knowledge and expertise. The framework culminates in a management component 

where needs and actions are identified, and recommended response and adaptation 

strategies are formulated. Components of the framework are described in more detail in 

the following section. 
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Figure 3‐11. A sea level rise vulnerability assessment framework for DoD Installations. 
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3.1.4 Components of the Framework 

In the sections below, we outline the common components of the vulnerability assessment 

framework described in Figure 3‐11. These components are described in both a general 

sense for the structure and elements that should be considered, and also in a detailed sense 

in following sections for the case study applications to MCBCP and NBC. 

Problem Formulation and Scoping 

Problem formulation and scoping encompasses a clear development of the installation and 

environmental setting, the questions to be addressed, identification of the desired end 

products, and definition of the environmental setting, assessment scale, spatial boundaries, 

time span and time resolution (US EPA, 1998, NCDEM, 2009; IPCC, 1992; Carter et al., 1994). 

Early definition of the problem and scope is critical to the success of the assessment, and 

provides the basis for development of the conceptual model (Figure 3‐11; Figure 3‐12; US 

EPA, 1998). Vulnerability assessment for sea level rise is a highly complex and potentially 

costly proposition, reinforcing the need to focus the study on the critical questions to be 

addressed, and limiting the analysis to the aspects required to address those questions. 

Identification of Stakeholders 

Because stakeholder input is an essential element of the problem formulation, identifying 

stakeholders early in the process is important. For DoD coastal installations, there may be a 

broad range of both installation and non‐installation personnel that should be included in 

the process. In general, the identification of stakeholders should be an installation led 

process starting with the base commander and leading from there to constituents that 

either have a key interest in the assessment, or are critical to developing the assessment 

itself. At the installation level, this may include public affairs, planning, operations, facilities, 

environmental, natural resources, and other key stakeholders. For non‐installation 

stakeholders, often the installation will already have relationships that can be drawn on 

with interested entities such as cities, counties, ports, other state and federal agencies, as 

well as industry and non‐governmental agencies, and the public, and it is important to work 

with the installation to utilize these existing relationships. In addition, the installation can 

help to determine the extent to which other local or regional DoD stakeholders should be 

involved in the process. The degree and mechanisms for involvement for this range of 

stakeholders should be mapped out early in the process in collaboration with the 

installation.  
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Describe the Installation and Environmental Setting 

A general understanding of the installation and its environmental setting is critical to the 

problem formulation for the assessment. The relationship of the installation to its 

environmental setting provides a context for defining the conditions that will control 

vulnerability for a given installation. In general, this will include both a historical 

perspective, a description of current day conditions, and a projection of future conditions.  

Identify Questions and the Desired End Products 

The development of questions should be structured in a manner consistent with the Source‐

Pathway‐Receptor model. In other words, the question should specify the source of the 

vulnerability, the receptor that is impacted, and the pathway of impact. Formulation of the 

questions in this way supports the clear communication of the connections between 

stressors and impacts, and provides a direct basis for the development of the conceptual 

model while allowing flexibility to address a broad range of climate change related 

questions. While the questions that drive the assessment will vary across applications, the 

assessments summarized in the previous section provide a general basis for common 

questions associated with sea level rise vulnerability. Typical general questions may include: 

 What will be the vulnerability of coastal habitat and infrastructure to permanent 

inundation associated with climate change related sea level rise? 

 How will increased flooding associated with accelerating sea level rise and increased 

storminess drive vulnerability to coastal built and living systems? 

 How will erosion driven by sea level rise and increased storminess drive vulnerability 

to coastal beaches, bluffs, and barrier islands?  

In the context of coastal military installations, these questions may remain general, or be 

refined and focused to specific receptors. For example, a general question could be 

formulated as: 

 What is the vulnerability of MCBCP to erosion caused by the combined effects of 

accelerating sea level and changing storm, precipitation and wave regimes? 

Or focused to a specific receptor as 

 What is the vulnerability of amphibious training at MCBCP to erosion caused by the 

combined effects of accelerating sea level and changing storm, precipitation and 

wave regimes? 

Clearly as the questions become refined, the applicability becomes narrower but the 

answers are likely to become more specific and quantitative. The important aspect at this 
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stage is to work closely with stakeholders to formulate the questions as clearly as possible 

so that the assessment can be carefully tailored to answer them directly and specifically to 

the extent possible.  

 

Figure 3‐12. Problem formulation components for ecological risk assessment (Adapted from US EPA, 1998). 
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Define the Temporal and Spatial Scales 

Defining the scale and boundaries of the spatial domain requires consideration of two 

conceptual aspects of the system. The first consideration is the domain that encompasses 

the land, shoreline, infrastructure and other resources that are the subject of the 

assessment (e.g. Heberger et al., 2009). The IPCC technical guidance (Carter et al., 1994) 

defines this as the exposure unit and its scale is linked to the receptors of the study. The 

second consideration is the scale of the processes that must be accounted for to conduct 

the assessment. These scales are linked to the sources and pathways of the assessment. 

Clearly these two scales may be considerably different, and the factors that will constrain 

them will be based on divergent requirements.   

For a military installation, the legal boundaries of the installation itself provide one context 

for defining the boundaries of the assessment. Certainly the bulk of the actual vulnerability 

assessment may focus within these boundaries. However to characterize the relevant 

biogeophysical processes the boundaries may need to encompass broader scales such as 

the scale of the coastal littoral cell, or the regional watershed, and the scales of erosion, 

flooding, inundation and seawater intrusion may be quite different for a given installation. 

Also, most military installations are highly interdependent with other regional infrastructure 

such as roads, power, communications, water, sewer, and many of the installations 

personnel may reside outside the boundaries of the base itself. Thus sea level rise impacts 

that affect the regional infrastructure and communities around the installation could result 

in vulnerabilities to the mission and personnel of the installation.  

For these reasons, selection of the spatial domain for the assessment should be considered 

carefully. In particular, consideration should be given to utilizing existing regional studies or 

collaborating with other regional programs that may be examining civilian issues in the 

same general area. In defining the boundaries of the area to be assessed, the coast‐wise 

extent of the installation should provide a starting point. This extent can be expanded to 

include bordering areas that may support critical external access, buffers, infrastructure or 

other interdependencies, or may be contracted to focus on particular aspects of the 

installation that are predetermined to be the focus of the assessment. In the early stages of 
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the assessment, when uncertainty remains high it is advisable to delineate the boundaries 

more broadly until further analysis allows for more refinement (Heberger et al., 2009; 

Carter et al., 1994). As a general rule, the inland extent of the assessment should be defined 

so that it extends somewhat beyond all areas that could be physically affected by the 

contemplated sea level rise scenarios. This inland scale should consider all of the 

contemplated pathways of impact including potentially flooding, erosion, inundation and 

seawater intrusion. The offshore boundary may extend to incorporate offshore 

infrastructure such as piers or jetties, as well as navigation channels, mooring areas, and 

training areas.  

For process‐based boundaries, the process scales will dictate the domain. However, in the 

case of sea level rise, many of the relevant processes such as waves, tides, surge, wind, etc. 

have very large scales relative for example to the scale of an individual military installation. 

Practical application may require either the use of nested models, or more localized process 

estimates or boundary conditions. In considering the location of study boundaries for 

process analysis, the availability of data or modeling results to define the conditions at 

those boundaries should also be considered. Clear physical barriers may also serve as 

boundary locations, for example the coastal canyons along the California coast which 

interrupt longshore sand transport and distinguish the various coastal littoral cells (Hapke et 

al., 2006). Watershed drainages and aquifer confining layers are other examples of process‐

based boundaries that may be useful in certain cases.  While the technical nature of these 

process boundaries means that their final definition will not be determined in the problem 

formulation stage, the general requirements should be considered to the extent that they 

will influence the overall scope of the assessment. 

Definition of the time span and resolution of the assessment is another central aspect of 

determining the scope of the study. The starting point of the assessment is generally 

grounded in the best possible delineation of the current or baseline condition, or may 

hindcast some historical period to provide a measure of validation for the methods to be 

applied. In contrast, selection of the end point of the time span for the assessment should 

be considered in the balance of the underlying climate drivers, the response, planning and 

management time scales of the target receptors, and the level of uncertainty associated 

with long‐term projections. For a military installation, the time span must encompass 

relevant planning projections for mission critical infrastructure and training requirements. 

In addition to the overall time span, the assessment may also require various levels of time 

resolution to establish scenarios that incorporate sea level variability at different 

frequencies, to support modeling analysis of time varying biophysical pathways, and to 
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evaluate receptors at certain time slices along the trajectory (NCDEM, 2009; Heberger et al., 

2009).  

The starting or baseline condition for the assessment is commonly selected as the beginning 

of the decade in which the assessment is conducted (e.g. Cayan et al., 2009). A primary 

consideration for the selection of the starting time is the availability of data to accurately 

delineate the baseline condition because, in most assessments, vulnerability is measured 

relative to this baseline. Thus the start of the assessment generally coincides with a time as 

close to the current condition as possible at which the best description of the sources, 

pathways and receptors is available. However, because of the strong reliance of 

vulnerability assessments on the development of future scenarios, consideration should 

also be given to selection of a historical starting time that will provide a significant overlap 

between the range of modeled conditions and the range of available measurements. This 

overlap can provide a critical validation of the modeling methods that will help to define the 

level of uncertainty as well as to support communication with stakeholders. For example, 

for validation of sea level conditions, tide gauge records may be available extending back as 

much as 100 years, a time scale comparable to many of the forecasting requirements 

(Cayan et al., 2009). Similarly, historical shoreline change rates have been cataloged for 

many areas over similar time frames (Hapke, et al., 2006). An assessment methodology that 

can show reasonable correspondence to these historical measurements over an extended 

period will provide more confidence in the development of future scenarios.  It may also be 

possible to incorporate this validation as a separate step in the assessment, as a precursor 

to the actual assessment.  

In considering the time span for the assessment, the underlying sources of the sea level rise 

and variability must also be considered. Most current projections suggest that sea level rise 

will accelerate with the strongest rate of increase later in the 21st century. Because these 

projected increases are not linear, the degree of sea level rise that is evaluated depends to 

a significant degree on the time span of the assessment. Time spans extending 50 years may 

reflect sea level rise scenarios that are largely linear projections of current day trends, while 

time spans extending 100 years or beyond will generally reflect a much stronger degree of 

non‐linearity and hence significantly higher sea level scenarios (Figure 3‐14). While 

uncertainties in the projections of the magnitude and frequency of storms are more 

variable, the same considerations should be included, as well as considering the time span 

required to capture meaningful statistical representations of storms as a function of return 

period (Cayan et al., 2009; Heberger et al., 2009).  
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Most vulnerability assessments consider a range of potential receptors (Van Westen and 

Georgiadou, 2001; NCDEM, 2009). These receptors may have different response 

characteristics that require consideration of different time scales. Also, since the magnitude 

of sea level rise is expected to accelerate over time, different receptors may come into play 

at different time spans. For example, impact of sea level rise for buildings is likely to be 

linked to the frequency and magnitude of extreme events. Buildings closest to the shoreline 

may be significantly exposed or impacted within only 10‐20 years, while infrastructure that 

is set back further from the coast may not be significantly exposed or impacted for 50‐100 

years. Given these potential differences, the life cycle of built infrastructure will also 

influence the time span of the assessment. From this standpoint, the time span should 

encompass long‐term planning cycles for construction, maintenance, upgrade and 

decommissioning of built infrastructure. This should be consistent with the projections and 

time scales of the base master plan, and other regional and national planning requirements. 

Training areas and natural resource receptors are likely to be controlled more by response 

times dictated by their associated biophysical systems. That is, while an increase in the 

frequency of storms may reduce the number of training days slightly, it may be the loss of 

the training area or capability that drives the major concern. For example, impacts to 

beachfront amphibious training areas will occur over time scales associated with the 

shoreline erosion rates of the beach, to the extent that this erosion would significantly 

preclude the use of the beach for training.   

A final consideration in adopting a time span for the assessment is the increasing level of 

uncertainty associated with increasing length of future projections of sources, pathways 

and receptors (Figure 3‐13; Cartwright, 2008). This uncertainty manifests in virtually every 

aspect of the assessment including the characteristics of the source climate change and 

variability drivers, the biophysical pathways of erosion, flooding, inundation and seawater 

intrusion, and the response of receptors including built and natural resources. For this 

reason, the time span of the assessment should be limited to the extent necessary to 

answer the questions to be addressed, and the formulation of these questions should be 

tempered by the knowledge of this uncertainty.   

Along with the overall time span, the assessment may also require various levels of time 

resolution to establish scenarios that incorporate sea level variability at different 

frequencies, to support modeling analysis of time varying biophysical pathways, and to 

evaluate receptors at certain time slices along the trajectory. In particular, the time 

resolution of the source terms for sea level must accommodate the range of variability of 

the underlying components. This may range from relatively high frequency terms such as 
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waves and tides, to inter‐annual events such as El Niño, as well as the long‐term average 

trend of the regional sea level. In some cases the mechanics of the assessment may dictate 

requirements for time resolution. For example, time domain modeling may require a 

minimum time resolution in order to accurately simulate the physics of a particular pathway 

such as erosion or flooding. While impacts to specific receptors are not likely to be assessed 

at this level of resolution, these considerations may play into the selection of appropriate 

assessment tools because time resolution must generally be balanced against the time span 

of the simulations.  

 

Figure 3‐13. Increasing levels of uncertainty associated with the complexity of the sea level rise vulnerability 

assessment process (Adapted from Hulme and New, 2001).  

A final and important consideration in time resolution is the selection of intermediate time 

horizons or “slices” along the trajectory of the assessment (Figure 3‐14; NCDEM, 2009). In 

general, these slices represent relatively discrete time windows (as opposed to periods of 

years or decades), and should be selected at times that are dictated by the potential 

vulnerability of selected receptors in the context of typical planning cycles and horizons for 

the installation.  Because the assessment is primarily a management tool for future planning 

and management decisions, these time slices can help to guide a progression of response 

over time, rather than planning for a single condition a century in the future. For this 

reason, along with consideration of the potential receptors, selection of the time slices 

should consider planning cycles and link closely to the master planning process for the base. 
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Figure 3‐14. Time span and time slices for the North Carolina study (Adapted from NCDEM, 2009). 

 

Conceptual Model 

The conceptual model serves as a roadmap for the assessment, defining the sources, 

pathways and receptors, outlining the scenarios to be evaluated, and specifying the level of 

the assessment to be performed. The conceptual model should follow logically from the 

problem formulation by characterizing the critical components and linkages required to 

answer the questions to be addressed.  

Define the sources, pathways and receptors 

Identification of the relevant sources, pathways and receptors for the assessment should 

follow directly from the problem formulation if the questions for the study are structured in 

a manner consistent with the Source‐Pathway‐Receptor model. The conceptual model is 

based on the Source‐Pathway‐Receptor (SPR) framework in which “sources” are climate or 

weather conditions that drive hazards, “pathways” are the mechanisms by which sources 

influence receptors, and “receptors” are the people, industries, infrastructure and natural 

resources that may be affected by the hazard. Definition of these components provides the 

ability to break down the assessment process into constituent parts. 

Sources  

Source terms that are relevant to the assessment of sea level rise vulnerability are 

reasonably consistent across studies, although the relative importance of individual terms 
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may vary considerably depending on regional conditions. The importance of a given source 

term is also dependent on the receptor of interest. For instance, increased seawater 

intrusion into coastal aquifers is expected to be driven primarily by long‐term changes in 

mean sea level, while increased rates of erosion on exposed coastlines are expected to be 

driven by the interaction of sea level rise with waves. Typical sources that should be 

considered include potential climate related changes and interactions of local mean sea 

level (including uplift and subsidence), atmospheric‐oceanic processes such as ENSO, storm 

surge, precipitation, tides, and waves. These sources are defined with respect to their 

potential contribution to sea level rise vulnerability below. While described separately, 

impacts are generally the result of interaction among several sources, and this must be 

accounted for in formulating sources and scenarios. 

Local Mean Sea Level. Local mean sea level represents the near field manifestation of global 

sea level change and is defined as the height of the sea with respect to a land benchmark, 

averaged over a long enough period of time to remove short‐term fluctuations caused by 

waves and tides. While it is thus driven primarily by the same factors that influence global 

sea level including thermal expansion and the release of water stored on land as glaciers 

and ice caps, it may also be influenced by atmospheric pressure, ocean currents, local ocean 

temperature changes, and vertical land movement. The magnitude of sea level response to 

these processes varies considerably from one location to the next, so that the global 

average is not always applicable on a local basis. Instead, local mean sea level is generally 

assumed to follow the same general trend as global mean sea level, but may be modified in 

accordance with local tide gauge measurements (Figure 3‐15; Cayan et al., 2006; USACE, 

2009). The character of these sea level rise curves generally include a linear trend, derived 

from the local historical trend, and an acceleration term that may be used to account for 

different future climate scenarios that result in different rates of thermal expansion and 

melting of glaciers and ice caps (US Army Corps of Engineers, 2009). Alternately, changes in 

local mean sea level may be linked to global mean sea level changes which in turn are 

estimated from relationships with global mean surface air temperature (Figure 3‐16; Cayan 

et al., 2008a). Significant increases in local mean sea level can lead to permanent inundation 

of coastal areas. The extent of inundation will depend on the degree of sea level rise and 

the elevation and slope of the local shoreline. In addition, while local mean sea level as such 

does not cause flooding, damage or erosion, secular increase in local mean sea level results 

in the exposure of higher coastal elevations to more frequent and progressively stronger 

hydrodynamic forces with the potential for increasingly severe impacts (Cayan et al., 2006).  
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some areas, the local rate of subsidence or uplift may be a source of comparable magnitude 

to the rate of change of local mean sea level (Burkett et al., 2003; Milliman and Haq, 1996). 

This may either compound or negate to some extent the potential effects of global sea level 

rise (Hammar‐Klose and Thieler, 2001). Rates of subsidence and uplift are generally derived 

from geodetic differential leveling, borehole extensometers, Global Positioning System 

(GPS), Light Detection and Ranging (LiDAR) and Interferometric Synthetic Aperture Radar 

(INSAR). Rates typically range from +/‐5 mm/year along the west coast of the U.S. with 

extreme cases ranging much higher, usually in response to specific localized effects of water 

or oil extraction (Gornitz, 1997). Thus the localized source effects of subsidence and uplift 

may be an important consideration in the long‐term changes in local mean sea level at 

some locations.    

Atmospheric‐Oceanic Processes. Coupled atmospheric‐oceanic processes including El Niño‐

Southern Oscillation (ENSO) or the North Atlantic Oscillation are a source of significant 

inter‐annual variability in sea level (Nerem, 1999; Hurrell, 1995).  For example, ENSO is 

characterized by a long‐period change in the atmosphere and ocean of the tropical Pacific 

region, occurring irregularly every three to eight years. ENSO is a source associated with 

effects to both weather and ocean conditions including floods, droughts, ocean warming, 

and elevated sea level. ENSO cycles drive fluctuations in local sea level due to both changes 

in large scale wind patterns, and surface water warming. For example, sea level increases 

along the west coast of the U.S during recent El Niño events ranged from 10‐30 cm, and 

significant damage occurs when El Niño events coincide with storm surge and spring tides 

(Figure 3‐17; Flick and Cayan, 1984; Andrews et al., 2004). Historical trends indicate an 

increase in the frequency of El Niño events since about 1976. However, the potential 

interaction of ENSO with climate change is still not well defined. It is hypothesized that a 

warmer earth would produce more and stronger El Niños, and there is evidence that El 

Niños have been more frequent during the recent period of warming. While recent 

modeling simulations do not indicate and increase in the frequency or the intensity of 

ENSO, they do exhibit continued ENSO activity within the twenty‐first century (Cubash and 

Meehl, 2001; Cayan et al., 2006). In any case, the interaction of El Niño effects on sea level, 

precipitation and storminess with increasing local mean sea level is an important source of 

vulnerability. Above average sea levels also occur in the southeastern U.S. during the 

positive phase of the North Atlantic Oscillation.  

Storm Surge. Storm surge is a source of increase in local sea level characterized as a long 

period wave and associated with the combined effects of storm driven wind and low 

atmospheric pressure weather. Sometimes the elevation of sea level due to waves and 
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wave‐ induced surges is also included in storm surge. Storm surge is generally strongest 

when storms move onto shallow coastal waters in areas such as the North Sea, the Gulf of 

Mexico, the Bay of Bengal, and the Adriatic Sea. Surge height and duration is influenced by a 

range of factors including the translational velocity and duration of the storm, the speed, 

intensity, radius of the wind field, track angle to the coastline, coastal topography, offshore 

bathymetry, as well as wave effects (NOAA, 2011; Lin et al., 2010; Fleming et al., 2008). 

Duration may range from hours to days, and magnitude from centimeters to several meters. 

Because they both derive from storms, the co‐occurrence of storm surge and high waves 

may be particularly damaging. For example, wave‐induced surge on a beach can reach 40% 

of the significant offshore wave height, which has been observed to reach 10 m on the 

Southwest U.S. coast in rare extreme storm events. The impact of storm surge is likely to be 

enhanced by increasing mean sea level; however climate change may also influence the 

frequency and magnitude of storminess and storm surge for a given location (IPCC, 2007b). 

Climate factors that potentially contribute to more intense storms include increases in 

ocean heat content and atmospheric water vapor which have both increased over the past 

several decades (NOAA, 2011).  

Precipitation. While direct influence of precipitation and evaporation cycles plays a role in 

the large scale water balance and level of the oceans, the localized effects of precipitation 

and its contribution to runoff, river flow, ground saturation and subsequent flooding and 

erosion are of principal concern. Because high levels of precipitation accompany storms 

that may also result in high waves and storm surge, the interaction of these events with 

increasing local means sea level is of particular concern. While this source is expected to be 

most critical in areas of rivers and estuaries, these events may also be significant in bluff 

erosion and in straining the abilities of stormwater conveyance infrastructure in a broad 

range of coastal military installations.   

Tides. In many areas, tides are the source of the largest variability in sea level on all time 

scales of practical interest, short of the millennial time scales associated with glaciations 

and de‐glaciations (Cayan et al., 2008a). Peak tides may be particularly important to 

flooding and beach erosion, since coastal problems tend to occur when large waves 

coincide with peak tides and enhanced sea levels due to storm surges and El Niño (Flick and 

Cayan, 1984; Flick, 1986; Flick, 1998; Flick, 2000; Flick and Badan‐Dangon, 1989). Where 

reliable data records exist, tidal fluctuations are highly predictable over extended periods of 

time. However, there is evidence that tidal characteristics in some areas may be changing 

over time (Flick et al., 2003) although the cause is not yet known. There is also the potential 

for changes in tidal conditions with changes in local mean sea level because the 
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setup can also induce enhanced flows through tidal inlets resulting in increased flooding in 

bays and harbors (Nguyen et al., 2007).  

Pathways 

Pathways represent the process or mechanism by which sea level rise sources act on 

receptors to cause impact. Pathways of action for sea level rise generally include 

inundation, flooding, erosion and seawater intrusion. Often, a given pathway may be 

governed by the combined action of multiple sources and may influence a range of 

potential receptors. A solid conceptual understanding of these pathways is critical to 

establishing a meaningful vulnerability assessment, as well as to formulating response and 

adaptation strategies. Primary pathways are defined with respect to their associated mode 

of action and relationship to exposure below. 

Inundation. In the context of this framework, inundation is considered as an exposure 

pathway resulting from a long‐term increase in local mean sea level, in contrast to the 

short‐term exposure that may occur in association with flooding. Thus inundation is 

primarily linked to the local mean sea level source, and its importance is strongly influenced 

by the elevation and topography of the coastline. If the increase in local mean sea level is 

severe enough, coastal areas that were previously dry will become permanently 

submerged, potentially resulting in significant loss of land, infrastructure and habitat.  

Flooding. Flooding is an exposure pathway that interacts with increases in local mean sea 

level to increase the frequency and magnitude of short‐term impacts to coastal areas. In 

addition, climate change may also lead directly to increases in storminess relative to current 

conditions, thus compounding the influence of sea level rise increase.  Flooding often 

results through the interaction of multiple sources including storm surge, waves, and 

precipitation. These impacts may be exacerbated if storms co‐occur with high tides or El 

Niño conditions. As with inundation, the sensitivity of coastal areas to increased impacts 

from storminess and the interaction of storms with sea level rise are highly dependent on 

the topography and geology of the shoreline. 

Erosion. Erosion is another significant pathway of exposure for sea level rise vulnerability. In 

the broadest sense, coastlines tend to recede as sea level increases, and this recession 

occurs partially through erosion. Erosion is often varies considerably over annual cycles with 

offshore transport during the winter and onshore transport in the summer. Local net 

erosion is generally controlled by transport and a balance of sources and sinks including 

seacliffs, rivers, gullies, dunes, nourishment and coastal canyons. Increases in erosion are 

fundamentally linked to the interaction of waves with local sea level rise. Sea level rise 
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combined with storm driven wave and storm surge may drive significant increases in wave 

induced erosion of coastal landforms. Along with higher local mean sea level, increases in 

erosion will also depend on potential changes in wave height, wave direction, and changes 

in the frequency and duration of storms, and the extent to which this erosion is balanced by 

other sources.  

Seawater Intrusion. Seawater intrusion in surface water and groundwater due to increases 

of local mean sea level is another exposure pathway for vulnerability. These impacts can be 

exacerbated by drought cycles, changes in storminess and precipitation, and increasing 

demands on water supplies due to population growth. Salinity intrusion into rivers and 

estuaries can also impact sensitive aquatic plants and animals that do not tolerate high 

salinity.  

Receptors 

Common receptors for sea level rise vulnerability have been identified in a range of 

previous assessments (US EPA, 1989; Titus et al., 1991; FEMA, 1991; Van Westen and 

Georgiadou, 2001; Nichols, 2002; NCDEM, 2009). Nichols (2002) summarized a range of 

potential receptors to include property, coastal habitats, human life, coastal protection 

works and other infrastructure, renewable and subsistence resources, tourism, recreation, 

transportation functions, cultural resources, agriculture and aquaculture. The North 

Carolina study defined similar receptors including ecological, agriculture and aquaculture, 

buildings/coastal structures, critical infrastructure, and societal. In the risk assessment of 

natural disasters, “High potential loss facilities” such as nuclear reactors, dams and military 

installations are generally not included unless supplemental studies specific to these 

facilities are carried out (Van Westen and Georgiadou, 2001). Thus there is a need to 

identify receptors that are applicable for the assessment of military installations. SERDP 

(2007) defined a range of military‐relevant receptors that may be vulnerable to sea level 

rise to varying degrees including mission essential infrastructure, mission capabilities, 

training and testing lands, transportation means, facilities and/or corridors, storm damage, 

increased potential for loss of life. For purposes of this framework, we have adapted these 

previous definitions to align with general categories more commonly used by planners, 

engineers and facilities personnel at military installations. These receptor categories 

include:  

 Training and Testing Lands  

 Buildings  

 Waterfront Structures  
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 Coastal Structures  

 Civil Infrastructure  

 Military and Civilian Personnel  

 Protective Buffers and Natural Resources 

These categories serve as fundamental generalized receptors that span a reasonable cross 

section of the potential endpoints of interest for coastal military installations. In general, 

receptors will be identified on a site specific basis and may encompass broad categories 

such as these, or may be specific subcomponents, depending on the requirements of the 

assessment, the questions to be addressed, and input from key stakeholders. In the course 

of the assessment and through stakeholder interaction, receptors may be added or 

screened out, or potentially weighted at different levels depending on their value and 

criticality to the installation. As a starting point, these generalized receptors are defined 

below, and more site specific examples are given in the case study sections for MCBCP and 

NBC that follow. Characterization of these receptors requires an understanding of both 

their potential sensitivity to sea level related exposure pathways, as well as their adaptive 

capacity through autonomous adjustment and planned adaptations. 

Training and Testing Lands. Training and testing lands are a category of receptors that 

encompass the coastal land areas that support training and testing missions. In many 

instances, testing and training require a broad range of coastal terrain and conditions and 

thus this category can span many different land forms such as beaches, bays, estuaries, 

rivers, barrier islands, wetlands, bluffs and lagoons. These areas support many types of 

training and testing missions including amphibious assault training, coastal components of 

maneuver corridors, amphibious landing beaches, airfields, and beach/ bay training areas. 

On exposed shorelines, these receptors are particularly susceptible to erosion, while 

broader areas of exposed and protected lands may be impacted by inundation and flooding.  

Buildings. This category includes a range of buildings that support operations and missions 

of the installation. This could include buildings for housing, logistics, training, testing, 

operations, and security. These receptors are susceptible to sea level rise sources through 

all major pathways including inundation, flooding, erosion and seawater intrusion. Of 

particular interest are building structures that are already close (e.g. within 200 ft 

horizontally) to the high tide line, and the relationship of building foundation and finish 

floor elevation to projected sea level elevations.  Autonomous adaptive capacity for 

buildings is generally limited, while planned adaptation can range from shoreline protection 

to retreat strategies. 
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Waterfront Structures. This category includes a range of structures that support waterfront 

operations and missions of the installation. This category encompasses structures such as 

piers, wharves, quay walls, floating docks and graving docks. These receptors are 

susceptible to sea level rise sources through all major pathways including inundation, 

flooding, erosion and seawater intrusion. Of particular interest for waterfront structures are 

vulnerabilities associated with overtopping, sea levels that obstruct mooring and berthing, 

loss of function for dockside utilities, and increased physical loading from water uplift or 

current forces in relation to the structural capacity. As with buildings, autonomous adaptive 

capacity for waterfront structures is limited, while planned adaptation can involve 

strategies ranging from structural modifications to extend operational life, to planned 

replacement with more resilient structures. 

Coastal Structures. This category includes a range of coastal structures whose primary 

purpose is to protect the shoreline from erosion and thus sustain operations and missions 

of the installation. This category encompasses structures such as jetties, groins and 

revetments which are used to protect the shoreline and dredged improvements. These 

receptors are susceptible to sea level rise sources particularly through inundation, flooding, 

and erosion. Of particular interest for coastal structures are vulnerabilities associated with 

changes in currents, wave climate and water levels that may influence the functionality and 

performance of coastal structures under various sea level rise scenarios. Autonomous 

adaptation is limited, and adaptation strategies for these structures are generally 

interlinked with the infrastructure that they are designed to protect.  

Civil Infrastructure. This receptor category describes a broad category of built infrastructure 

that is critical to the day‐to‐day operations and mission of the installation. The category 

includes receptors ranging from critical utility infrastructure such as buried utilities, fuel 

transfer/supply, transportation corridors, potable water systems and storm water 

conveyance systems. These receptors are susceptible to sea level rise sources through all 

major pathways including inundation, flooding, erosion and seawater intrusion. Of 

particular interest for infrastructure are vulnerabilities associated with overtopping, 

buoyancy effect on underground infrastructure, and seawater immersion and/or spray on 

low‐lying electrical and communication utilities. We include in this category groundwater 

aquifers that support potable water extraction for the installations. As with other built 

infrastructure, autonomous adaptation is limited.   

Military and Civilian Personnel. Increasing sea level poses the prospect for injury and loss of 

life at coastal military installations, both from the prospect of increased flood frequency 
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similar to civilian communities, but also from the tension between these increasing physical 

impacts and the requirements of the military to carry out its mission in spite of them. In 

both cases, increased vulnerability of military and supporting personnel is predominantly 

linked to the potential for more frequent and severe flood events that are likely to result 

from the co‐occurrence of storm surge, high waves, high tides and increasing local mean sea 

level. While this potential is not viewed as being severe, potential vulnerabilities do exist, 

particularly in association with severe storm impacts at the human interface on military 

bases, and due to more dangerous conditions in coastal training grounds such as 

swimmer/diver training areas and amphibious landing zones. Severe erosion along seaward 

bluffs pose a threat to military personnel in near shore facilities, as does severe flooding 

that may occur in association with combined effects of high sea level with strong 

stormwater runoff flows. Adaptation in this context could include strategies from 

heightened awareness and warning systems for storm conditions, to incorporation of sea 

level condition and safety analysis in operational planning.   

Protective Buffers and Natural Resources. Protective buffers are generally classified as non‐

engineered coastal areas that provide a natural means of protection for coastal installations 

from changes in sea level. These can include receptors such as beaches, dunes and wetlands 

that are generally in the first line of exposure to changing sea level. Along with protecting 

the coastal installation, often these buffer areas serve as critical habitat for natural 

resources that are under the management of the installation. Thus impacts to these 

protective buffers may go hand‐in‐hand with impacts to natural resources that are 

dependent on this habitat. These receptors are susceptible to sea level rise sources 

particularly with respect to inundation, flooding, and erosion. Autonomous adaptation 

capacity of these receptors is often a function of their ability to adjust landward at a rate 

that is sustainable in the face of sea level rise.   

Define the Scenarios to be Evaluated 

Future estimates of sea level rise vulnerability depend on a broad range of biophysical and 

socioeconomic variables. This, combined with the complexity of the interactions of these 

systems makes the prediction of future conditions highly uncertain. For this reason, sea 

level rise vulnerability assessments are generally developed based on a limited set of 

scenarios for both the driving source terms, as well as for the receptors. In establishing 

source scenarios, IPCC (1994) identifies three general strategies including synthetic, analog 

and general circulation model scenarios. Synthetic strategies generally utilize a range of 

adjustments to a baseline condition to establish assessment scenarios. This is exemplified 
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by the scenarios from SERDP (2007) where four specified increases in mean sea level (0.5 

meters, 1.0 meters, 1.5 meters and 2.0 meters) were identified for the assessment of sea 

level rise vulnerability at coastal military installations. The magnitude of these adjustments 

should be consistent with a range of modeled or published future scenarios. Analog 

strategies utilize identified historical climatic regimes to serve as models for future climate 

scenarios. Thus historical records of transitions from low to high stands of sea level could 

serve as analogs for future scenarios of increasing sea level. The third strategy utilizes 

climate models, combined with plausible future assumptions for emissions, to develop a 

range of potential scenarios for sea level rise assessment.  

For the purposes of this project, we utilized the synthetic SERDP scenarios as estimates of 

local mean sea level (assuming negligible vertical land movement), but incorporated climate 

modeling results primarily for the purpose of evaluating future sea level variability 

associated with changing wave and oceanographic conditions. The initial application of this 

method in this project focused on available results from a single climate model and a single 

emission scenario rather than ensemble results due to project limitations in generating 

multiple outcomes through the entire climate and wave modeling process. Where available, 

results from multiple models were evaluated to determine the consistency of the model 

used for the project. In addition, even under the relatively high emission scenario used for 

this study, future wave condition did not vary substantially from current day conditions. 

However, ongoing efforts are underway to expand the range of available modeling results 

and future analyses and assessments should consider this broader range of conditions to 

better bound the uncertainty of the methods.   

In addition, scenario development for assessment of sea level rise at coastal military 

installations must consider the projected future development in and around the installation 

itself. Although developmental changes in and around the installation are not likely to have 

a measureable global impact, they may be critical to the assessment to the degree that they 

influence exposure and vulnerability, as well as for the opportunities they present for 

implementation of adaptation measures. Clearly the location and characteristics of future 

development on the installation will influence its future vulnerability to sea level rise. Thus 

scenarios for future development at the installation should be a key element of the scenario 

development process.  

Define the Level of the Assessment to be Performed 

A final consideration prior to the development of the conceptual model is the level of the 

assessment to be performed. As described in the framework, vulnerability assessment is 
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often an iterative process, and the complexity of sea level rise vulnerability analysis dictates 

that different levels of assessment may be appropriate depending in the scope of the 

project and the resources and data available. In many cases, preliminary screening analysis 

may be important to even framing what the critical questions for a more detailed 

assessment will be, or which spatial areas may be most sensitive (e.g. Hammar‐Klose and 

Thieler, 2001). While the need for screening or subsequent iterations will be a site specific 

decision, a common construct is to consider at least two levels of analysis. The first level is 

often termed a screening level assessment, and the subsequent level a baseline or detailed 

assessment. For the purposes of this study, we adopt the “detailed assessment” 

terminology to avoid confusion with the use of the term baseline to describe the starting 

condition of the assessment. This strategy is commonly applied in ecological risk 

assessment, and has recently been adopted by the Australian Department of the 

Environment and Heritage (Commonwealth of Australia, 2006; Figure 3‐18) and others in 

climate change vulnerability assessment as well. 

Screening Assessment  

Both levels of assessment grow out of the conceptual model, but the screening level 

analysis will be more simplistic, and should generally be more conservative. Often the goal 

of the screening level assessment will be to determine if more detailed analyses or data are 

required, and if so, for what areas, sources, pathways and receptors. Historically, screening 

level assessments for sea level rise vulnerability have focused on inundation. These 

assessments generally assume a static coastline (no erosion), which is inundated to varying 

degrees under prescribed local mean sea level rise scenarios. Short‐term flooding events 

with lower probability but higher magnitude have also been assessed with these static 

inundation approaches. When attempted, screening level analysis of shoreline erosion has 

usually been limited to beaches, and generally assessed with simple analytical methods 

such as the Bruun rule (Bruun, 1962). In an alternative approach, Hammar‐Klose and Thieler 

(2001) applied a regional screening method to the coast of California using information on 

coastal geomorphology, rate of SLR, past shoreline evolution, and other factors to identify 

areas where physical changes were more likely to occur due to SLR. Similar screening 

strategies such as the Ghyben‐Herzberg principle (Herzberg, 1961) have been applied for 

analysis of seawater intrusion into groundwater, as well as estuaries. While these methods 

may be less than quantitative, or may carry a high degree of uncertainty, they are still often 

quite useful in guiding the effort to the critical questions, and focusing resources on the 

important areas, sources, pathways and receptors for more quantitative analysis and 
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also require the application of more sophisticated models, extending beyond simple 

inundation analysis to include, for example, more rigorous shoreline evolution modeling, 

dynamic flood modeling and mapping, and two or three dimensional groundwater 

modeling. The detailed assessment may also adopt more rigorous methods for projecting 

socioeconomic conditions. 

Develop the Conceptual Model 

The conceptual model should be viewed as an evolving tool that is updated as the 

assessment progresses, and in the end captures a simplified yet accurate representation of 

the vulnerability assessment. In risk assessment, the conceptual model generally combines 

a written description and visual representation of hypothesized relationships between 

sources, pathways and receptors (US EPA, 1998).  As we have seen, a conceptual model for 

sea level rise must also describe the spatial and temporal context of the assessment, and 

layout plausible future scenarios for both biophysical and socioeconomic systems. Visual 

representations of conceptual models may take on a range of different forms depending on 

which aspects of these relationships are being described. Typical representations include 

source‐pathway‐receptor diagrams that illustrate which sources potentially drive 

vulnerability for a given receptor and though which pathway or pathways. Spatial models 

are also useful for illustrating the juxtaposition of sources and receptors within the 

assessment domain.  

Temporal representations are also useful to illustrate the hypothesized or assumed 

evolution of the system through time. Clearly, the construction of the conceptual model will 

be site specific, and the level of detail will evolve over time as the model is updated to 

capture the results of the assessment. However, at least to some level, conceptual models 

for the assessment of sea level rise vulnerability should capture the relationships between 

sources, pathways and receptors, and illustrate the spatial and temporal dimensions of the 

assessment. 

Source‐Pathway‐Receptor Relationships 

Sea level rise sources terms are linked to receptors by process‐based pathways that 

describe the mechanism of impact. A conceptual model provides a means to map these 

relationships and provide a roadmap for assessing vulnerability to the selected receptors. 

For a specified receptor, a SPR linear flow chart can be used to illustrate the source or 

combination of sources that act through a given pathway to impact that receptor. Multiple 

combinations of sources, pathways and receptors can be mapped in this way to construct a 

conceptual model that addresses all of the identified questions to be addressed by the 
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assessment. Figure 3‐19 shows a generic example, mapping the combined source impacts of 

local mean sea level rise and subsidence via the inundation pathway to mission essential 

infrastructure receptors.    

 

 

Figure 3‐19. Generic conceptual model for vulnerability assessment of coastal military installations. Note 

that local mean sea level includes vertical land movements. 
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Spatial Relationships 

While conceptual models of SPR illustrate how sources act through pathways to impact 

receptors, they don’t provide a spatial context for these relationships. A spatially‐oriented 

conceptual model can help to establish the physical proximity and connectivity that enables 

these interactions in a way that is often more intuitive for stakeholder communication. Two 

dimensional illustrations of shoreline erosion hypothesized littoral transport pathways, sand 

mass balance, inundation and flood zones are all examples of processes that can be 

captured in spatial conceptual models. Spatially oriented conceptual models may also be 

useful in illustrating the potential study domain and boundaries for a given assessment. 

These spatial descriptions should still be consistent with the SPR framework, and may need 

to focus on a limited number of receptors at a time to avoid becoming overly complex. 

Temporal Relationships 

Finally, the temporal nature of the sea level rise vulnerability assessment dictates that 

conceptual models may also be useful in the time domain. A temporal conceptual model 

should illustrate hypothesized time slices or trajectories over the period of interest for the 

assessment. This could be as simple as a before vs. after cross section of the shoreline, a 

series of conceptual time slices, or the continuous trajectory of a particular parameter over 

time. This can be particularly useful for illustrating the overall time domain for the 

assessment, as well as representing the selected time slices that have been selected. 

Data Requirements and Development 

Data requirements and development for the vulnerability assessment focuses on defining 

what data is required, characterizing the quality of the data in the context of uncertainty, 

and developing these data into the products required to perform the assessment (Basher, 

1999; NOAA, 2009).   

Define the data/data quality requirements 

Data and data quality requirements can be defined in the context of the source‐pathway‐

receptor conceptual framework. In this context, sea level rise vulnerability assessments will 

share the same general data requirements for most coastal military installations. 

Installation‐specific requirements will vary to some degree as a function of geographical 

location, site‐specific coastal processes, and the type, character, and mission of the 

installation. Typical data requirements based on the installations studied in this project are 

summarized below, and described in additional detail in subsequent sections.   
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Sources 

Data requirements for sea level source terms are developed based on the key contributing 

sub‐components that govern short‐ and long‐term regional trends and fluctuations. For the 

southwest US where this project was focused, the primary sea level source terms are mean 

sea level, tides and waves, along with non‐tidal residuals which include effects of storm 

surge, El Niño, and other large scale oceanographic phenomenon. There are a range of 

methods for establishing mean sea level trends (e.g. Rahmstorf, 2007; USACE, 2009) that 

require different data. For this study, we utilized the SERDP prescribed scenarios and 

followed the USACE (2009) approach for which the data requirements to establish future 

mean sea level conditions include the historical regional trend, the mean sea level for the 

tidal epoch centered on the starting year, and the sea level at the end year condition. In 

some cases, data may be required to establish local subsidence or uplift rates as well. The 

majority of this data (regional trends, starting conditions) are determined from local tide 

gauge data. Future tides are generally predictable from harmonic analysis of historical data, 

and data sources for these predictions are broadly available. For non‐tide residuals, there 

are two approaches, one using historical tide data, and the other using general circulation 

models. The use of historical data requires an adequately long historical tide gage record, 

and presumes that future non‐tide residuals will be similar to historical conditions. Because 

many of these fluctuations are low frequency (decades), historical tide gage data must be 

adequately long to resolve and quantify the return period and magnitude. Alternatively, 

non‐tide residuals can be estimated using general circulation models, in which case an 

extensive range of data (not described here) is required to parameterize the model. Many 

of these model runs for a range of climate futures exist and can be mined for application to 

quantifying this source term. Similarly for wave simulations, these conditions can be 

developed from historical data or from climate model winds. Often wave records are not 

longer than a few decades, and so it may be difficult to accurately estimate the magnitude 

of episodic events (e.g. 100 year storm waves). Detailed examples of the compilation and 

analysis of these data sources are presented in Section 4.1. 

Pathways  

Data requirements for the assessment of physical exposure pathways can be extensive. 

Quantifying these responses often requires a range of historical data and model 

parameterization. For erosion on exposed shorelines, long‐term response models generally 

require information on the shore profile and substrate, as well as information on the sea 

level rise trajectory. Additional information for beaches such as sand budgets and transport 
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patterns may also be required. Because episodic events may influence the long‐term 

change, data that reveal the relationship between these events and shoreline response can 

also be important. For these short‐term episodic events, empirical or modeling approaches 

may be used to estimate the shore response. Empirical estimates generally rely on 

measured relationships between wave/storm conditions and beach profile change. 

Modeling approaches will generally require information for the starting condition of the 

shore along with time series conditions for the wave and water level forcing, along with 

historical shoreline and wave data for hindcast and validation.   

Flooding and inundation pathways require data to simulate the movement of water into 

upland areas as water levels rise. This generally requires high resolution elevation maps, 

benchmarks for vertical datum conversions, land cover and shore protection, uplift or 

subsidence rates, and water level scenarios. For the southwest US where storm surge is a 

minor component of total water level, static analysis may be sufficient, while in other areas 

where hurricane impacts are dominant, dynamic analysis of storm surge may be required 

with additional data requirements.  

For protected harbor and bay areas, assessment of changes in water levels and currents 

required data to support hydrodynamic modeling. These data generally include high 

resolution bathymetric and shoreline elevation data, water levels at the forcing boundaries 

(e.g. ocean and river), and water level and currents measured within the harbor for 

validation purposes.  

General data requirements for the seawater intrusion pathway will include land elevations, 

lithology of the aquifer, water levels at the ocean and upland boundary, other source and 

loss terms within the domain, and water levels and salinity data within the domain for 

model validation. Detailed descriptions of data requirements for the range of exposure 

pathways assessed in this study are provided in subsequent sections. 

Receptors 

The receptor categories described previously provide a framework for establishing data 

requirements. Building, civil infrastructure and waterfront structure data for a given 

installation are often available through the public works officer at the installation or region. 

In general, this data is represented in GIS layers that may or may not correspond to the 

categories defined here. Coastal structures and natural buffers may not be described in the 

GIS, but may be available through natural resource management plans or other regional 

sources. Often these items can be cataloged from imagery or national wetland inventory 

data if they are not present in the installation GIS. Although not specifically addressed in 
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this study, data to support evaluation of the adaptive capacity of receptors are also 

fundamental to the vulnerability assessment. A detailed description of the receptor data 

used in this study is provided in subsequent sections.  

Develop the sea level scenarios  

Sea level scenarios represent future conditions on the basis of the integration of source 

terms, spatial and time scales as defined in the conceptual model. The scenarios can be 

constructed in a variety of ways where the emphasis on different source terms may be a 

function of their importance to a particular installation. In the end, the goal is to produce a 

cross‐section of conditions that represent the expected range of future conditions. In 

addition, to the extent possible, the scenarios should incorporate estimates of the 

uncertainty associated with these conditions.  

In the general approach used for this study, water level sources are determined through a 

range of modeling and empirical methods, and then integrated to construct a range of 

scenarios which are exposure dependent. Thus different scenarios were developed for 

exposed shorelines, protected bays, and groundwater systems because these exposures are 

subject to different combinations of sea level sources. SERDP Prescribed mean sea level 

conditions at 2100 were translated to mean sea level curves for the next century through an 

empirical model. IPCC future climate scenarios were used to parameterize general 

circulation models, which in turn were used to generate atmospheric and oceanographic 

conditions. These conditions were applied directly to estimate local non‐tidal fluctuations in 

sea level (non‐tide residuals), as well as to drive wave models to simulate runup. Finally, 

empirical harmonic models were used to predict tides, and the various source terms are 

integrated (in a statistical sense) to create exposure‐dependent scenarios for exposed 

shorelines, protected bays, and groundwater.  Detailed examples of this procedure for the 

MCBCP and NBC installations are presented in subsequent sections. 

Develop the digital elevation and installation models 

A fundamental aspect of conducting the vulnerability assessment is developing an 

integrated model of the terrain elevation and installation infrastructure. This integrated 

model serves as the backbone for the analysis, starting with assessment of the physical 

response of the shoreline, and building toward the analysis of inundation and flooding. This 

model also provides the basis for understanding the basic sensitivity of the installation 

receptors to different magnitudes of sea level exposure. Just as in ecological risk 

assessment, we can define dose‐response curves for receptors to physical or chemical 

stressors, with an integrated terrain and installation model, we can define the dose‐
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response of our installation components to the physical impacts of water level, erosion, 

seawater intrusion and other exposures associated with sea level rise.  

In developing this integrated model, the terrain data is compiled, generally to the best 

degree possible from available sources. The data are integrated to provide a complete 

representation of the terrain at the installation for the baseline (current day) condition. For 

analysis purposes, the shoreline data must be classified with respect to erodability. In some 

cases, this may be a distinction between a hardened shoreline (coastal structure) and a 

natural buffer, while in other cases it could be the distinction between a rocky coast and a 

sandy beach. As a parallel effort, the data describing the built infrastructure of the 

installation must be compiled. Integration of these data sets then allows for an accurate 

representation of the vertical elevation of the infrastructure, as well as the lateral location 

with respect to the shoreline. This vertical and horizontal registration then allows for 

analysis of exposure with respect to water level, erosion and seawater intrusion pathways. 

Often is useful to filter the data at this point to limit the assessment to areas and 

infrastructure that is within a reasonable range of the expected exposure scenarios. 

Detailed examples for MCBCP and NBC are provided in subsequent sections. 

Develop the sensitivity thresholds 

Determining sensitivity thresholds for the range of receptors at an installation provides a 

means of streamlining the vulnerability assessment, and targeting limited resources for 

adaptation to the most critical vulnerabilities. Sensitivity thresholds are generally specific to 

a given installation and represent the exposure to a given stressor that will bring about a 

rapidly accelerating rate of response. Threshold elevations are a characteristic of most 

installations where, due for instance to a leveling of the terrain combined with a density of 

infrastructure, when sea level reaches that level the potential for damage to the installation 

can increase dramatically. Similarly for seawater intrusion, increasing sea level may increase 

salinity levels inland, but a threshold occurs when the allowable level of chloride is 

exceeded in potable water production wells. Sensitivity curves, developed as described 

above from the integrated terrain and installation model, provide the means to identify 

these thresholds and incorporate them into the assessment. 

Conducting the Assessment 

Conducting the vulnerability assessment requires a characterization of complete source‐

pathway‐receptor scenarios. With the conceptual model as a guide, and defined scenarios 

and baseline conditions, assessment consists of determining the pathway responses of the 
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system, and quantifying the associated vulnerabilities in the context of the installation 

sensitivity.  

Characterize Source‐Pathway‐Receptor Relationships 

To assess vulnerability, the response of the system to estimated future conditions must be 

determined. The specific methods for characterizing various response pathways may vary 

for different studies and locations, but in general will require the application of a range of 

biophysical response models that provide a simulation of the response of the coastal 

system. These can range from hydrodynamic and morphological models, to groundwater 

transport and flood routing models and may be theoretically or empirically based. To 

reduce uncertainty, the response models should be grounded in the context of historical 

data and be well proven at least under current day conditions. The goal of using these 

models is then to create plausible representations of future conditions at the installation 

with respect to water levels, currents, shoreline locations, and other sea level controlled 

conditions.    

In the strategy adopted here, exposure‐specific future sea level scenarios are used to drive 

a range of pathway‐specific models. For exposed shorelines, we examined both long‐term 

response to mean sea level, and short‐term response to episodic events. These response 

models are used to develop modified terrain models that account for erosion and accretion, 

and quantify the potential for inundation and flooding. Protected harbor areas are assessed 

under scenarios which exclude wave exposures, but account for sea level rise, tides and 

non‐tide residuals. Hydrodynamic models are applied to evaluate the expected changes in 

water levels, currents and bottom shear. For groundwater, a cross‐sectional transport 

model was constructed through a critical section of MCBCP to account for potential 

responses of the fresh water aquifer to elevated ocean boundary conditions. The scenarios 

for this exposure utilize monthly average to correspond to the typical time step of the 

model, and because the long‐term groundwater response is highly filtered by the low 

permeability of the soils. Response is measured in terms of changes in groundwater flow 

patterns, and landward migration distance of the saltwater front. Detailed analyses 

following this strategy are described in subsequent sections of the report. 

Evaluate relative to defined metrics and sensitivity thresholds 

The final characterization of vulnerability incorporates the three primary products of 

scenarios, pathway response assessment, and receptor sensitivity and adaptive capacity. 

Scenarios associated with a given exposure at the installation provide total water level 

conditions linked to a given mean sea level and statistical return period associated with the 
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sea level variability and associated high water level events. Using the pathway modeling for 

these scenarios, future conditions at the installation are estimated. These future conditions 

provide the basis for adjusting the underlying terrain model at the installation, and 

evaluating vulnerability based on the sensitivity and adaptive capacity of the exposed 

installation infrastructure. These vulnerabilities are quantified using various damage, 

operational, and cost functions that translate the infrastructure sensitivity into specific 

metrics such as dollars, training days lost, etc. Based on this procedure, an integrated suite 

of products are generated including installation response curves, sea level vulnerability 

matrices, and scenario visualizations that provide both quantitative and descriptive 

assessments of vulnerability.  

Communicate the Vulnerabilities 

An important component of the framework includes the development of actionable 

products and the communication of these results to vulnerability assessment results to key 

stakeholders. As described above, these products are defined early in the process and 

communication throughout the development of the assessment to allow adjustment and 

input is required. Although this project focused primarily on method development, and was 

not in itself a vulnerability assessment, we did rely on these communication strategies to 

shape the project direction and to provide feedback to the installations during the evolution 

of the project. For example, we conducted formal stakeholder input meetings with the 

installations at the inception, mid‐point and end stages of the project. We also 

communicated regularly with key installation personnel throughout the study to identify 

and refine important inputs and analysis methods for the project. These meetings and 

communications were invaluable in guiding the project development, focusing the 

development of methodologies, and populating the example cases that are presented later 

in this report 

Management Activities 

Although not explored in the methods developed in this study, active management 

decisions play a key role in the vulnerability assessment and response cycle. Based on the 

vulnerability assessment and subsequent communication to installation personnel, needs 

and actions can be developed by planning, facilities and operational personnel most familiar 

with the vulnerable receptors, providing a basis for the formulation and implementation of 

response strategies. Within the cycle of the vulnerability framework, these strategies can 

then be assessed to evaluate their potential effectiveness in reducing vulnerability and 

protecting the infrastructure and operational capabilities of the installation.    
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and Silver Strand, the barrier island complex fronting San Diego Bay. The sources of sand, 

both natural and anthropogenic at the two locations are considerably different, both as to 

the primary sources and in the quantity and rates of supply. Beaches at both installations 

rely on natural sand supply. However, NBC has benefitted from massive public works 

projects that have provided sand at rates far in excess of the natural supply over the past 

century. Furthermore, coastal structures serve to stabilize this fill. The Silver Strand‐

Coronado coast is one of the most heavily modified in southern California (Flick, 1993). 

The coastal processes that alter this basic geographical setting and measured changes to 

beaches and cliffs are presented in Section 3.3. 

Today’s coastal topography began to be established when the North American Plate 

overrode the Pacific Plate, forming the San Andreas Fault system and the beginnings of the 

Gulf of California in the last half of the Tertiary, starting about 25 million years ago. The 

result was a massive block tilting that uplifted the coastal margins of southern California, 

eventually forming the steep coastal mountains, sea cliffs and headlands. These cliffs were 

in turn composed of huge volumes of sediment eroded and transported seaward as early as 

the Cretaceous (135 million years ago) or as late as the various Tertiary epochs (60 million 

years old) and the Quaternary (the last 2 million years).  

The sea cliffs and beaches along the California coast on average have retreated landward 

together by at least several kilometers as sea level rose about 125 m since the end of the 

last glacial period about 18,000 years ago. However, there is an important difference 

between cliff and beach behavior. On any time scale shorter than millions of years, the sea 

cliffs can at best be stable or erode; there is no mechanism for them to accrete and build 

seaward. Beaches, on the other hand, can erode or accrete as sand is removed or added by 

wave action. In fact, beaches in southern California undergo sizeable seasonal cycles of 

erosion in winter and accretion in summer, as well as more subtle changes in long‐term 

width. There are no comparable seasonal cycles in cliff position, which can only remain fixed 

or retreat. 

Even so, sea cliffs provide a relatively stable and high‐relief shoreline anchor on most of the 

California coast. This relief and relative on‐offshore stability of shoreline position is a key 

difference between this coast and the low‐relief shorelines on much of the U.S. east coast 

and Gulf of Mexico. 

Wave cut marine terraces were formed during extended periods of relative sea level still‐

stand, such as the present one. The terraces are prominent features in the region and 

provide the flat, easily accessible mesa lands. The marine terraces near the shoreline 
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include the submerged, low tide terrace now being cut by wave action. Formation of this 

terrace began about 6,000 years ago, during the beginning of the latest relative still‐stand of 

sea level. It comprises the flat, rocky, shallow part of the foreshore common along southern 

California and often visible during low tide. This relatively stable bedrock platform erodes 

slowly and limits the seasonal vertical excursion of the beach profile in many places. Most 

of the region's sandy beaches, including at MCBCP, are thin veneers of sand only a few 

meters thick over the low tide terrace. 

Rivers and streams flowing toward the coast dissected the uplifted terrain during past lower 

stands of sea level, forming valleys, flood plains, and wetlands. In these areas, erosion has 

formed gaps in the cliffs and underlying terraces and beach sand depths are much greater 

than over the low tide terrace. River channels filled with sand were drowned as sea level 

rose during the latest inter‐glacial. This setting – narrow beaches with relatively thin 

veneers of sand, backed by steep cliffs that form the seaward edges of an uplifted terraces, 

incised with valleys and coastal wetlands – describes most of coastal San Diego County, 

including MCBCP.  

The Rose Canyon section of the Newport‐Inglewood Fault largely provides the setting of the 

southern San Diego coast (Figure 3‐21). The coastal area between La Jolla and the Mexican 

border, including Mission Bay, San Diego Bay, Point Loma, and Coronado and Silver Strand 

was shaped by tectonic motions along the Rose Canyon and other nearby fault zones 

(Abbott, 1999, Kennedy and Tan, 2008). Lateral motion along the faults has formed 

extension basins and uplifted collision features as a result of the right‐lateral movement 

along these alternating right‐ and left‐stepping, sinuous fault systems, both on‐ and 

offshore.  

Figure 3‐21 shows a fault map of the southern part of San Diego, including the Coronado, 

Silver Strand, and San Diego Bay locations of NBC. Movement along the Rose Canyon fault 

and numerous other sinuous, sub‐parallel faults dominate this area resulting in the distinct 

alternating up‐and‐down topography, which is one feature that makes the San Diego area 

so attractive. Coronado‐Silver Strand is the barrier island spit of land that fronts San Diego 

Bay, which is an extension basin associated with fault movement along the sinuous “S‐

shaped” Rose Canyon fault zone. In contrast, Point Loma, which forms the western 

boundary of San Diego Bay, is an uplift feature that resulted from the collision of fault 

blocks on the opposite side of the “S” curve. From south to north, Mission Bay, Point La 

Jolla, and the La Jolla submarine canyon system are similar, alternating high and low 

features. 



 

 

Fi

(L

D

D

A

fo

o

a

p

K

T

d

3

2

   
1 

igure 3‐21. Geo

L) tectonically‐

iego Bay (Ove

iego; Image da

As sections of

orming the lo

cean. North

ccretion fea

rodigious hi

ennedy, 197

he headland

ivide the coa

‐22 (Inman a

00 km long. 

                     
Point Concepti

ological fault m

 formed topog

rlay courtesy o

ata: Google, SI

f the faults p

ow‐lying are

 Island, Coro

tures that ac

storical sand

70). 

ds of Point La

ast into a se

and Frautsch

Sand contri

                     
ion, Point Dum

map of the sou

graphic feature

of D. Inman, Sc

IO, NOAA, U.S

pulled apart,

eas of Missio

onado, and S

ccumulated 

d supply pro

a Jolla and P

ries of coast

hy, 1965). Ea

butions from

          
me, Palos Verde

61

uthern San Die

es including Po

cripps Institut

. Navy, NGA, G

, the areas b

on and San D

Silver Strand

as a barrier 

ovided by the

Point Loma, a

tal compartm

ach littoral c

m rivers, cliff

es, and Dana P

ego region sho

oint La Jolla, M

ion of Oceano

GEBCO, LDEO‐C

between the

Diego bays th

d are essenti

island front

e Tijuana Riv

and others i

ments called

cell is from se

fs, and anthr

Point 

owing the alter

Mission Bay, Po

ography, Unive

Columbia, NSF

e steps open

hat were the

ially large, lo

ting San Dieg

ver (Abbott, 

n southern C

d littoral cell

everal tens o

ropogenic so

rnating high (H

ont Loma, and

ersity of Califor

F, Landsat). 

ed and drop

en flooded b

ow‐lying, san

go Bay from 

1999; Moor

California,1 n

s, as shown 

of km up to 

ources in va

 

H) and low 

d San 

rnia, San 

pped, 

by the 

nd spit 

the 

re and 

naturally 

in Figure 

almost 

rying 



 

 

p

a

Fi

re

O

St

3

C

sp

w

   
2 
to
lo

roportions p

longshore, t

igure 3‐22. Ma

egion. MCBCP 

Oceanside Harb

terrett, 1984; I

.2.1 M

amp Pendle

pectrum of t

well as nation

                     
Recent work b
opography alte
ocated at lagoo

provide each

hus sustaini

ap showing the

is located in th

bor. NBC is in t

Image data: Go

arine Corps

ton is one o

training facil

nal, state, an

                     
y O’Reilly (unp

ers wave patter
on mouths. 

h littoral cell 

ng the beac

e Oceanside, M

he northern pa

the Silver Stran

oogle, SIO, NO

 Base Camp

f the Depart

lities for man

nd local agen

          
published) at Sc
rns to create li

62

with sand. T

hes.2  

Mission Bay, an

art of the Ocea

nd cell at the s

OAA, U.S. Navy

 Pendleton

tment of Def

ny active an

ncies. The ba

cripps Instituti
ttoral sub‐cells

This sand is 

nd Silver Stran

anside Cell, be

southern end o

y, NGA, GEBCO

fense's busi

d reserve M

ase is home 

ion of Oceanog
s, only a few k

moved cros

nd littoral cells

etween San Ma

of San Diego (A

O, LDEO‐Colum

est installati

Marine, Army

to the I Mar

graphy suggest
ilometers long

s‐shore and

 

s of the San Die

ateo Point and

Adapted from 

mbia, NSF, Land

ions with a b

y, and Navy u

rine Expedit

ts that nearsho
g, with bounda

ego 

d 

Flick and 

dsat). 

broad 

units, as 

ionary 

ore 
ries often 



 

 63

Force, 1st Marine Division, 1st Marine Logistics Group and many tenant units, including 

Marine Corps Installation‐West, 1st Marine Special Operations Battalion, Wounded 

Warriors Battalion‐West, Marine Corps Air Station at Munn Field, Marine Aircraft Group 39, 

Marine Corps Tactical Systems Support Activity, Marine Corps Recruit Depot San Diego's 

Weapons & Field Training Battalion, Marine Corps and Army Reserve Forces, the Navy's 

Assault Craft Unit 5, a Naval Hospital and Dental Battalion.3  

The Camp Pendleton ecosystem includes beaches, bluffs, mesas, canyons, mountains, and 

southern California's least regulated river, the Santa Margarita. There are more than 1,000 

species of plants, fish, and animals, some of which are either threatened or endangered. 

Wildlife and habitat protection is a top concern at Camp Pendleton. The coastal and 

mountain terrain support a variety of military training. Fleet Marine Force units use Camp 

Pendleton's ranges and training areas to maintain combat readiness. MCBCP also provides 

specialized schools and training. These schools include Assault Amphibian School Battalion, 

School of Infantry, Field Medical Service School and Marine Corps University. 

Exposed and Protected Shorelines 

MCBCP occupies essentially the entire northern half of the Oceanside littoral cell, the 84‐km 

long coastal compartment lying between Dana Point in Orange County, CA and Point La Jolla 

in San Diego County (Figure 3‐22). MCBCP stretches from San Mateo Point on the coast in 

the north to the Del Mar Boat Basin in the Oceanside Harbor complex in the south. The base 

encompasses 125,547 acres (420 km2) with about 28 km of shoreline (Byrd and Berryman, 

2006) and contains the largest undeveloped portion of coastal land in southern California. 

The camp was purchased by the U.S. government in 1942 for development of the base. The 

ranch was originally a Mexican land grant deeded to Pio and Andres Pico in 1841 that, with 

some additional parcels, was named Rancho Santa Margarita y Las Flores. 

Camp Pendleton is divided into scores of special segments (U.S. Government, 2002) 

including training areas, harbor and airport facilities, housing areas, recreation facilities, and 

real estate on long‐term lease as state beach and for the San Onofre Nuclear Generating 

Station (SONGS). As shown schematically in Figure 3‐23, the coastline of MCBCP is divided 

into a number of beach areas designated as Sections A through F, not including the areas 

designated as State Beach or SONGS.  

                                                       
3 http://www.cpp.usmc.mil/information/basefacts/introduction.asp 
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Overall, the northern half of the Oceanside littoral cell seems to have a net surplus of beach 

sand supply of 230,000 m3/yr for the period beginning in 1983, according to the analysis of 

Inman and Masters (1991). This suggests that the beaches will be relatively stable for the 

foreseeable future, even if MSLR resumes or accelerates modestly. More discussion of the 

littoral cell sand budget and the shoreline changes observed along the MCBCP shoreline are 

reviewed in Section 3.3. 

Groundwater 

The Santa Margarita River Basin spans 744 square miles of drainage area in San Diego and 

Riverside counties, separated in to two watersheds referred to as the Upper Basin and 

Lower Basin (Figure 3‐35). The portion bordering on MCBCP is the Lower Basin, and the 

occurrence of ground water is found in the alluvial basin located below the confluence of 

the Santa Margarita River and De Luz Creek, where the basin is further divided into three 

separate sub‐basins: the Upper Ysidora, Chappo, and Lower Ysidora sub‐basins (Figure 

3‐36). The Upper Ysidora sub‐basin is the most up‐stream of the three basins and is 

characterized by coarse sediments, followed by the Chappo sub‐basin consisting of sands, 

gravels and clays, and then the Lower Ysidora sub‐basin, consisting predominately of sands 

and clays 

Through MCBCP, the Santa Margarita River Basin is typified by a relatively flat alluvial 

floodplain that drains the watershed from the northeast to the southwest bordered by 

terraces and gently to steeply sloping hillsides while the topography flattens as the river 

enters the Pacific Ocean (Figure 3‐37). Surface and ground water is largely restricted to the 

alluvial regions that are bounded by rock units that form the sloped borders to the north 

and to the south of the alluvium. Alluvial deposits, the principal source of ground water in 

the lower Santa Margarita River Basin, are made up of three distinct geologic units: the 

Upper Alluvium, Lower Alluvium, and Terrace Deposits. The Lower Alluvium is generally 

more coarse‐grained than the Upper and these two units are the main ground‐water 

bearing formations. The total thickness of the alluvium increases downstream from about 

120 feet at the De Luz Creek confluence to about 200 feet at the coast. 

MCBCP’s water supply is produced primarily from underground aquifers that are recharged 

by percolation from overlying rivers and streams. Santa Margarita River wells provide about 

65% of the total water consumed on the Base while Las Flores Creek, San Onofre Creek, and 

San Mateo Creek wells combine to supply the remaining requirement (MCBCP, 1993). 

Agricultural wells supply irrigation water for leased sites of about 700 ac in the Stuart Mesa 

area. Since records began in 1944, total annual water use has ranged from 5,850 ac‐feet 
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Beach and Coronado Shores, the area just south of the Hotel Del Coronado, are some of the 

widest beaches in southern California (Flick, 1993). 

Coronado Shores does not appear to be wide since the large Coronado Shores high‐rise 

condominium development was built directly on the accreted beach beginning in about 

1967 (see Figure 3‐41). This development was one “poster‐child” that galvanized public 

opinion and lead to passage of the California Coastal Act and creation of the California 

Coastal Commission. The towers are fronted by a large rip‐rap revetment, but are still 

subject to wave overtopping during large storm wave events. 

Naval Amphibious Base Coronado 

The Secretary of the Navy authorized the establishment of the Amphibious Training Base in 

the San Diego area in June 1943 to meet war‐time needs for trained landing craft crews. 

The Naval Amphibious Base (NAB), located within the City of Coronado was commissioned 

in 1944, providing a base for operations, training, and support of naval amphibious units on 

the west coast. It is one of only two amphibious training bases in the U.S (Figure 3‐43).  

The base has also provided training for Underwater Demolition Teams, U.S. Navy SEALs, 

brown‐water Navy personnel, and Naval Reserve Officer Training Corps midshipmen. The 

base conducts research and tests of newly developed amphibious equipment. NAB 

Coronado is also home to over 27 tenant commands with approximately 5,000 personnel. 

NAB occupies about 4 km² (400 ha) and encompasses a main base located on a peninsula in 

San Diego Bay, amphibious training beaches, a least tern preserve, a recreational marina at 

Fiddler’s Cove, housing, and Silver Strand State Beach (Figure 3‐38). The majority of training 

activity takes place on about 1 km² (100 ha) of beach‐front leased from the State of 

California (Figure 3‐38).10 

The NAB Coronado bayside and oceanfront facilities, which are separated by Hwy 75 that 

runs along an elevated berm (Figure 3‐43), were built on 70% of the available beach. The 

apparent beach width (about 65 m, seaward of the developments) is only about 30% of the 

actual width (220 m). While wider than the beach adjacent to the Coronado Shores high 

rises, which is only about 50 m, it is obviously much narrower than the accessible beach 

area to the south along Silver Strand State Beach. Comparison of the earliest available 

oblique photographs of NAB taken in 1972 (Figure 3‐44) and the latest from 2008 (Figure 

3‐44, CA Coastal Records Project) show that beach encroachment was already significant by 

1972, but has increased dramatically since then. 

                                                       
10 http://www.globalsecurity.org/military/facility/coronado.htm 
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3.3 Coastal Processes Identification 

Three basic physical processes that are important to shoreline evolution in southern 

California are discussed in this section: 

 Sea Level – Including MSL and sea level fluctuations on many time scales; 

 Ocean Waves – Including sources, shoaling, refraction, sheltering, and runup; 

 Beach Processes – Including the budget of sand. 

3.3.1 Sea Level 

Sea level changes on time scales ranging from days to a century that are relevant to coastal 

erosion, flooding, and inundation on these same time scales. Tides are particularly 

important because they are large – the local open‐coast extreme range is nearly 3 m, larger 

than any sea level changes since the last ice age. Sea level observations and analyses of data 

from local tide gauges as well as satellites are discussed. Future MSLR scenarios are 

considered in the Section 4.1.  

Wave‐driven runup can reach 40% of the offshore significant wave height, which can be as 

large as 10 m. Thus, vertical wave runup at the shore can reach up to 4 m in rare, extreme 

cases. Mean sea level rise, even for the most pessimistic future scenario considered herein, 

is not expected to exceed 2 m by 2100. In other words, sea level fluctuations from tides and 

wave runup will greatly exceed the contribution of MSLR for the foreseeable future. This 

means that while the long‐term trend in MSL is important, and will shift the frequency and 

return period of extreme events, these events will still be controlled by the co‐occurrence 

of high tides and high waves and the notion that MSLR in itself will cause flooding is 

misleading.   

The cumulative effects of MSLR will over time gradually worsen the effects of high waves 

occurring during peak tides. In effect, MSLR will gradually reduce the recurrence intervals of 

given elevations of sea level. What are now once‐in‐100‐yr events, for example, will become 

once‐in‐10‐yr occurrences, and so on. This will progressively increase the severity of coastal 

flooding and beach erosion. 

El Niño‐related sea level fluctuations and storm surges, also discussed below, are smaller 

than about 0.3 m. However, this modest enhancement of total sea level can be important 

when large storm waves coincide with extreme high tides. 
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Regional mean sea levels may for several decades change at rates far different than the 

average “global” rate as a result of inter‐decadal fluctuations that are described below. 

These are strongly influenced by broad‐scale ocean circulation patterns dynamically‐driven 

by surface winds associated with persistent climate regimes over the North Pacific Ocean. 

Changes in the spatial patterns of wind stress curl before and after the mid‐1970’s regime 

shift (Miller et al., 1994), together with wind stress curl correlations with tide gauge and 

satellite altimetry data, suggest that the persistent atmospheric regimes that produce the 

Pacific Decadal Oscillation (PDO, Mantua et al., 1997) and the North Pacific Gyre Oscillation 

(NPGO, Di Lorenzo et al., 2008) sea surface temperature (SST) and sea level height (SLH) 

spatial patterns may have also changed the North Pacific subtropical and sub‐arctic 

(Alaskan) gyre circulation. This affected upwelling along the eastern Pacific boundary and 

appears to have suppressed the rate of sea level rise to essentially zero along the west coast 

of the Americas for the last 30 years (Bromirski et al. ,2013).  

Mean Sea Level Rise 

Over the past 2 million years, earth’s climate has periodically warmed and cooled with 

periods of around 100,000, 40,000, and 20,000 yrs, set respectively by the ellipticity, tilt, 

and precession perturbations of the earth’s orbit around the sun caused by the other 

planets (Milankovitch, 1920). The orbital fluctuations produce small changes in high‐latitude 

solar power, which then pace the periodic warming and cooling that are amplified by 

feedbacks related to albedo and greenhouse gas concentrations. These temperature cycles 

of global warming and cooling range up to about 10° C and drive glacial retreat and advance 

(Hays et al., 1976). The temperature and related ice volume changes together cause rises 

and falls in global MSL of up to about 200 m.  

Over the past 20,000 yrs, there was a general, if erratic global warming of about 8° C and 

associated ocean water expansion and glacial and icecap melting that raised global MSL by 

about 130 m (Figure 3‐47). The relatively rapid MSLR of about 110 m from about 15,000 to 

7,000 yrs ago averaged 1.4 meters per century (m/cy), and occurred in brief episodes of 

rapid rise and longer periods of slower rise. For example, “Meltwater Pulse 1A,” 

approximately 14,000 yrs ago (Figure 3‐47), raised sea level by 20 m in only 500 yrs, an 

average MSLR rate of 4 m/cy. The rate of sea level rise slowed to an average of about 0.1 

m/cy for the past 5,000 yrs, and to an even slower rate of about 0.02 m/cy for the past 

2,000 yrs. Even during the past 2,000 yrs however, MSLR rates have varied, increasing 

during the medieval warming period (from about 800 to 1300 CE), and slowing during the 

Little Ice Age (from about 1500 to the mid‐1800s). 
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Figure 3‐49. Annual MSL at SIO pier, La Jolla, CA (1926‐2009) is representative of MCBCP and NBC. 

The downward trend at SIO since 1992 (green, Figure 3‐50) is consistent with the satellite 

altimetry data. Periods when global sea level rise is locally suppressed appear to follow 

strong El Niños including the 1940‐41, 1957‐58, and 1982‐83 events, consistent with such 

events possibly initiating or being associated with persistent changes in ocean circulation. 

The satellite data allow linkage of coastal MSL variability with broad‐scale SLH patterns 

across the North Pacific, as well as with other important oceanographic parameters such as 

SST and surface winds. 

Decadal‐scale MSLR variability is also evident (Figure 3‐50, cyan), with peaks coinciding with 

strong ENSO episodes. Perhaps surprisingly, the highest decadal peak is not associated with 

either the 1982‐83 or 1997‐98 great El Niños, but occurred during a series of moderate 

ENSO events in the early 1990’s (Trenberth and Hoar, 1996). While current MSLR 

projections indicate only moderate increases in global MSL over the next two to three 

decades, local MSL increases from potential changes in ocean circulation could be larger. 

Rates of sea level rise are highest in the western Pacific (warm, yellow and red colors in 

Figure 3‐51). Rates are much lower, and often zero, in the eastern Pacific (cool, blue and 

green colors) since at least 1992. Fletcher (2009) shows recent annual global and regional 

MSL values. Globally, an upward trend (blue) of 0.28 m/cy (0.28 cm/yr) and a western 

Pacific trend (red) of 0.47 m/cy are statistically significant at the 97.5% level (Figure 3‐52). 
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MSL and Climate Indexes 

MSL along the San Diego region is likely affected by gyre‐scale circulation patterns that have 

resulted in suppression of local MSLR below the global average value (Figure 3‐51 and 

Figure 3‐52). This suppression of MSLR is probably related to the dynamical steric response 

of the ocean to a combination of surface warming and changes in wind stress patterns, key 

factors that affect gyre circulation (Bromirski et al, 2011). The ocean’s response to wind 

forcing produces what is commonly referred to as the PDO pattern in SST and SLH across 

the basin. If and when the component of the ocean dynamics that is responsible for the rate 

of MSLR along the Pacific coast of North America ever relaxes or reverses, the San Diego 

region could see rates of sea level rise above the increasing global average rate.  

The wind stress patterns of variability across the Pacific that affect gyre circulation are 

related to climate variability. Climate indices commonly used to describe the modes of 

climate variability across the North Pacific Ocean include:  

 The Pacific Decadal Oscillation (PDO, Mantua et al. 1997) is the leading principal 

component of monthly SST anomalies in the North Pacific; 

 The Multivariate ENSO Index (MEI) is the first principal component of several 

atmosphere‐ocean parameters (sea and air temperatures along with wind, pressure, 

and cloud cover) across the tropical Pacific;  

 The Pacific North America (PNA) pattern (Wallace and Gutzler, 1981) is the 

difference in 500 hPa geopotential height “Z” over the North Pacific between 160‐

165W and over North America between 245‐275W as follows: 0.25*[ Z(20N,190W) ‐ 

Z(45N,195W) + Z(55N,245W) ‐ Z(30N,275W)]; 

 The North Pacific Index (NPI) pattern12 is the area‐weighted sea level pressure over 

the mid‐latitude region 30‐65N, 160‐220W (Trenberth and Hurrell, 1994). 

Monthly sea level anomalies from Archiving, Validation and Interpretation of Satellite 

Oceanographic Data (AVISO, 2010) satellite altimetry are correlated with these four Pacific 

climate indexes (Figure 3‐57, a‐d). Moderate to strong correlations exist between sea level 

along the west coast of the Americas and the major climate indexes. Correlation of the 

indices with altimetry SLH monthly anomalies gives similar PDO‐like patterns of variability 

across the basin (Figure 3‐57(b)), with the region south of the Aleutians anti‐correlated with 

coastal SLH. Note that this pattern is similar to that observed in the SLH trends across the 

                                                       
12 Lower pressure over a region gives a more negative NPI, which is associated with more storminess across 
the North Pacific basin, so the negative is used to be consistent with the sign conventions of the other indices. 
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The tide range is the elevation difference between consecutive high and low tides. On this 

coast, important tide range fluctuations occur at intervals of twice per month, twice per 

year, every 4.4 years, and every 18.6 years. The 18.6‐year variations are related to a cycle of 

the lunar node (where the orbit of the moon crosses the ecliptic) and represents the longest 

periodicity of practical interest when evaluating tidal highs and lows. 

In many locations, the tide provides the largest component of sea level variability on every 

time scale except those associated with ice ages at thousands of years. Furthermore, the 

tide is one of the few geophysical phenomena that can be accurately predicted. The relative 

astronomical motions between the earth and moon, and earth and sun are complex and the 

tidal forces upon the waters of the earth reflect this complexity. Although complicated, the 

tide generating forces at the surface of the earth are basically a function of time and 

latitude. However, the actual tidal response is affected by geography, especially along the 

coasts where water depth and the shape of the continental edges are very important. This 

means that the tide patterns and characteristics on the Pacific coast of San Diego, CA are 

expected to be quite different from those (for example) at the Atlantic coast of Charleston, 

SC, even though both places are at essentially the same latitude. For these reasons, the tide 

generating forces can be predicted, but the actual tidal amplitudes cannot be predicted 

without tide measurements at a given location.  

Waves 

Both the generation of waves by wind over the ocean and their propagation through the 

islands and across the continental shelf to the beach are complex physical processes. 

Nevertheless, these phenomena are now relatively well understood. For practical purposes, 

our limited ability to forecast future ocean winds is the sole limiting factor in simulating 

future wave conditions just outside the surfzone at these two military installations.  

Ocean surface gravity waves are generated by the transfer of energy from winds to the sea 

surface producing a wave field that is characterized by its height (or energy), length (or 

frequency, or period between crests), and direction of propagation. Since there is always a 

mixture of wave heights, lengths, and directions in any given wave field, wave 

characteristics must be specified as statistical quantities. This statistical description is 

commonly presented in terms of average quantities including wave parameters such as 

“significant wave height” denoted as Hs, which is defined as the average of the highest one‐

third of the waves in a given wave field, its peak frequency or period, and its mean wave 

direction at the peak period. However, to simulate the generation and evolution of waves 

using state‐of‐the‐art models, the wave field is defined more precisely as a two‐dimensional 
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wave spectrum, which represents the distribution of wave energy as a function of frequency 

and direction.  

Ocean wave characteristics depend on the strength of the generating wind field (wind 

speed), the size of the area the wind is blowing over (fetch), and how long the wind blows 

(duration). Big storms with strong winds that blow over large ocean areas for several days 

therefore generate high waves with long periods. Ocean surface gravity waves are 

dispersive. That is, waves with longer period (or length) propagate faster when they are in 

water that is deep relative to their wavelength. 

Ocean swell are defined as waves that are no longer in their source fetch, or “generation” 

area. Swell propagate along great circle paths until they reach the offshore waters of a 

(sometimes very distant) coastline, with longer wave periods arrive first, as demonstrated 

by Munk et al. (1963). Contrastingly, ocean “seas” are defined as waves that are still in their 

source fetch area and are actively increasing in energy or maintaining their fully developed 

state owing to the continuing transfer of energy from the local winds. The height of short 

period seas is limited by wave breaking or white‐capping, and they do not propagate great 

distances owing to the dissipation of their rapid orbital motions into the background 

turbulence of the upper ocean. 

The distinction between sea and swell is blurry, particularly when winter or tropical storms 

make landfall. However, these “seas versus swell” distinctions are primarily for descriptive 

purposes, and do not affect the accuracy of wave model simulations if the models include 

the appropriate wave generation and propagation physics.  

Offshore Wave Sources  

Incoming waves along the southern California coast fall into four main categories as 

illustrated in Figure 3‐58 (USACE, 1988a): 

 North Pacific (extra‐tropical) swell;  

 Southern hemisphere swell;  

 Tropical storm swell; and 

 Seas generated locally by coastal marine layer dynamics or arriving storms.  

In the winter (November‐March) and spring, the wave climate is dominated by North Pacific 

swell generated remotely by extra‐tropical storms that begin as low pressure systems off 

Asia, and then develop into Pacific Ocean storms of various sizes and intensities depending 

in part on the: 
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In summer and fall, the southern California wave climate is dominated by long period swell 

arriving from Southern Hemisphere storms (where it is winter and spring). The Southern 

Ocean extends in a continuous band around Antarctica and west‐to‐east propagating 

storms are not limited in their fetch or duration by continental land masses. As a result, the 

southern ocean continually generates pulses of long‐period waves that propagate 

northeastward across the ocean basins. Unlike North Pacific storms, Southern Ocean storms 

occur throughout the year and are a background component of the southern California 

wave climate in the winter and spring. 

While the southern California wave climate is dominated by swell arrivals from open‐ocean 

storms, steeper, shorter‐period waves generated more locally are also important 

components to the overall wave climate. Local waves fall broadly into three categories:  

 Wind swell, which are NW seas with 5‐12 s period generated primarily off Point 

Conception and in the Southern California Bight’s (SCB) outer waters; 

 Prefrontal seas from the south that occur when winter low pressure systems pass 

through southern California; and  

 Sea breeze waves, which are daily local waves of less than 8 s period that occur year‐

round near the coast owing to the sea breeze generated by differential heating and 

cooling of land relative to the coastal ocean. 

The presence and size of wind swells and sea breeze waves are primarily controlled by 

coastal marine layer dynamics in the SCB. When high pressure dominates over southern 

California, the coastal marine layer boundary between cool moist ocean air and warm dry 

land air is offshore of Catalina and San Clemente islands, and strong NW winds are present 

off the central California coast south past Point Conception, with a weak cyclonic 

recirculation eastward into the SCB and then northward into the Los Angeles basin area. 

This is known as the “Catalina Eddy” (Maas and Albright, 1989). 

These conditions result in weak local wind swell in the SCB, but daily sea breeze waves near 

the coast can be quite significant. Alternatively, when inland high pressure breaks down, the 

marine layer boundary moves inland with brisk NW winds in the outer waters of the SCB, 

and wind swell is more prevalent with little or no sea breeze activity. When very strong 

inland high pressure develops in the fall, it can force very strong offshore‐directed “Santa 

Ana” winds, particularly downward through coastal canyons. Santa Ana conditions typically 

lead to benign local waves at the mainland shoreline, but potentially dangerous and rapidly 
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developing short, steep, westward‐propagating waves in the outer waters, and on the 

eastern shores of the offshore islands. 

Finally, during the summer and fall, southern California can be impacted by waves from 

Pacific Ocean tropical storms and hurricanes that develop off Central America. Tropical 

hurricanes commonly develop at low latitudes off the west coast of Mexico during the 

months of July‐October. They first move west and then curve north and northeast before 

dissipating in the colder waters off Baja California. The swell waves generated by these 

events usually do not exceed 2 m in height by the time they reach southern California. 

However, on rare occasions the offshore waters are warm enough to sustain a hurricane 

much farther north than normal (Smith, 1986; Chenoweth and Landsea, 2004). This 

happened in September 1939, when a hurricane passed directly over southern California 

and the resulting waves caused widespread destruction, especially on south‐facing beaches.  

In summary, the SCB wave climate is a blend of remotely generated long period swell, more 

locally generated mid‐period wind swell and prefrontal seas, and even more local short 

period sea breeze‐generated waves. Extreme wave events are most commonly associated 

with large winter storms and high prefrontal seas from the south, followed by large swells 

from the west. 

In September and October, large hurricane or tropical storm waves from the south and 

perhaps followed by the actual landfall of the storm system in southern California, have 

historically been rare. However, such a scenario potentially poses the greatest marine 

weather exposure to south‐facing military base infrastructure, such as is found at NBC‐

North Island. Due to their rarity, it is not possible to calculate a return period, or a statistical 

probability associated with such an event. 

Wave Propagation, Shoaling, Refraction and Sheltering 

When ocean waves reach the continental shelf a new set of processes affect their 

propagation and determine their ultimate impact on the shoreline. In southern California 

the main effects involve the coastal orientation, blocking or shadowing by the offshore 

islands, and refraction by the complicated under‐water bathymetry (Arthur, 1951). 

The southern California coast make distinct breaks in direction at Points Arguello and 

Conception, where it changes from generally north‐south to generally east‐west. It then 

gently curves toward a more north‐south orientation approaching San Diego thus forming 

the SCB. This configuration greatly decreases the exposure of southern California to waves 

from the North Pacific Ocean. Island sheltering is also very important, and simply means 
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that where waves reach the outer coasts of the islands wave energy is dissipated creating a 

shadow zone of lower wave height in their lee.  

Waves that pass between the islands refract and shoal over the shallow depths around the 

islands and the mainland continental shelf (Pawka, 1983). Refraction is the change in wave 

propagation direction in water depths less than the deep water wavelength, leading to the 

convergence and/or divergence of wave energy at the coast. Shoaling is the increase in 

wave height owing only to changes in local water depth.  

An individual wave’s circular orbital motion extends surprisingly far down into the water 

column as it travels at a constant speed in water depths greater than or equal to its deep‐

water wavelength. As the wave propagates into progressively shallower water across the 

continental shelf, the ocean bottom boundary constrains the wave motion in the vertical, 

which is sometimes described as the wave “feeling” the bottom. This forces the wave 

orbital motion to become increasingly elongated in the horizontal, decreasing the wave 

speed and length, while the period between wave crests passing a fixed point remains 

constant. Variations in water depth along a wave crest results in variable wave speeds and 

the bending or refraction of the crest like light passing through a convex or concave lens 

(Munk and Traylor, 1947). In addition, as the wave slows in shallow water, its wave height 

increases or shoals in order to conserve the flux of energy (energy passing a point per unit 

time) towards the shoreline.  

Refraction can increase or decrease nearshore wave heights relative to deep water, 

depending on the nearshore location and surrounding bathymetry. Shoaling increases 

nearshore wave heights, relative to offshore, and depends only on depth. The two 

phenomena can be treated independently and refraction and shoaling coefficients can be 

combined to estimate the overall nearshore wave heights along the coast (Longuet‐Higgins, 

1957; O’Reilly and Guza, 1991; O’Reilly et al., 1993; O’Reilly, 1993).  

Wave sheltering, refraction, and shoaling contribute in varying degrees to the wave climate 

at southern California beaches. Nearshore wave conditions are highly sensitive to the 

direction and period of offshore waves, and the directional "windows" open to deep‐ocean 

waves vary alongshore. Consequently, on any given day, waves can vary strongly alongshore 

with regions of high and low waves separated by only a few km. This sensitivity can in turn 

lead to significant changes in alongshore location of the potential impact of future offshore 

wave climate change scenarios.  For example, a northward shift in wave directions could 

decrease energy at most beaches, while increasing it at most others. 
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3.3.2  Beach Processes 

Beaches form from whatever loose sedimentary material is deposited at the shoreline. 

Southern California beaches exist in a delicate balance controlled by the local sand budget, 

which encompasses sand supply, transport, and loss, the wave climate, and the rate of 

MSLR. On long time scales of decades and centuries the rate of MSLR determines the 

shoreline position. When MSLR is low and the sand supply large, the shoreline advances and 

the beach widens. As the rate of MSLR increases or the rate of sand supply decreases, the 

shoreline retreats until the sea cliff or other backshore environment is undermined and also 

retreats or becomes flooded (Masters and Aiello, 2007). On short time scales of days to 

years, and most noticeably on seasonal scales, the wave climate largely determines the 

shape and width of the beach. 

It must be emphasized that MSL changes themselves do not cause beach erosion or 

accretion – on this coast, only waves transporting sand do. However, MSL provides the 

background water level that enables waves and wave‐driven runup to reach farther up the 

beach and move sand offshore, or not. The balance between long‐term shoreline retreat 

and cliff or dune retreat determines whether or not a beach exists along almost all of 

southern California. 

Littoral Cells 

Section 3.2 of this report outlines how headlands along the California coast naturally divide 

it into a series of compartments called littoral cells, as shown in Figure 3‐23. Sand 

contributions from rivers, cliffs, and anthropogenic sources in varying proportions provide 

each littoral cell with sand. This sand is moved cross‐shore and alongshore, on average 

toward the east or south, by wave action. Recent work by O’Reilly at Scripps Institution of 

Oceanography suggests that nearshore topography alters wave patterns to create littoral 

sub‐cells, only a few kilometers long, with boundaries often located at lagoon mouths. 

Inman and Masters (1991) also used a sub‐cell approach, but based on physiographic 

barriers, in analyzing the sediment budget of the San Diego area littoral cells. These include 

the Oceanside cell, the northern half of which comprises the coast of MCBCP, and the Silver 

Strand cell, almost all of which is part of or used by NBC. 

Sand is funneled offshore through submarine canyons at the southern, down‐coast end of 

each major littoral cell, or by wave action, including wave‐induced rip currents, in each 

smaller sub‐cell. Sand is also lost offshore during large or unusually persistent wave events. 

Because of the structure of the southern California coast with its more‐or‐less short and 

isolated littoral cells and sub‐cells, the sand budget of a particular beach is largely localized. 
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In other words, if sand shortages, surpluses, or interruptions to transport occur from place‐

to‐place or time‐to‐time, the beach width effects are relatively isolated, spreading at most a 

few tens of kilometers. 

Most beaches in north San Diego County, including MCBCP, consist of a thin veneer of sand 

over a rocky, low‐tide terrace. Most beaches in the southern part of San Diego, including 

NBC, are low‐lying, with a relatively thick sand layer. In both regions, naturally supplied sand 

is derived either from upland erosion or from relic deposits offshore. Upland‐derived 

material arrives at the coast through the ephemeral rivers or from gullies and the cliff faces 

as result of terrace erosion. In southern California a substantial amount of beach sand has 

been supplied by human activity, particularly bay and wetland dredging, offshore 

borrowing, and as by‐products of coastal construction projects (Herron, 1980; Flick, 1993; 

Flick and Ewing, 2009; Flick et al., 2010). 

Wave‐Driven Sand Transport 

Normal wave action pushes the sand landward over the terrace and piles it up in a berm 

against the base of the sea cliff, sea wall, or other back beach structure. This sand layer 

varies in thickness from zero to several meters, depending on location, season and other 

factors. Figure 3‐59A shows an oblique conceptual view of a typical section of California 

coast, while Figure 3‐59B provides a typical cross section that illustrates these concepts. 

Waves provide nearly all of the energy input that drives beach processes in southern 

California. In particular, waves provide the energy that moves sand on beaches.  

Sand moves both on‐offshore and longshore. The magnitude and direction of sand 

transport changes with wave height, period, and incoming direction. Figure 3‐59B illustrates 

typical changes in the beach profile from summer (stippled) to winter (broken line) 

conditions. Essentially, the higher, more energetic waves of winter strip sand off the 

subaerial beach and move it lower down on the profile. This reduces the width of the beach 

berm, the flat section of the upper beach profile, while also often forming one or more 

offshore sand bar features. This beach profile, of lower overall slope, is more efficient at 

dissipating incoming wave energy. 

Gentler wave action in summer pushes the sand back up the slope, making it steeper. With 

sufficient sand supply, the berm may not completely disappear in winter thus shielding the 

cliff base from wave erosion at all but the highest tides and coinciding high wave conditions. 

On the other hand, in particularly active winters waves may strip all the sand off the wave‐

cut platform and expose the cliff base. 
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Figure 3‐60. Illustration (Adapted from Gutierrez et al., 2009) showing the basic parameters used in the 

Bruun Rule (see text). 

where “R” is the horizontal beach retreat of a sandy coast under a MSLR of “S,” and “L” is 

the cross‐shore width of the active profile, “h” is the depth below MSL of closure (where 

sediment transport due to wave action stops), and “B” is the berm height. This equation 

balances the amount of sand R (h + B) yielded by horizontal retreat with that needed for the 

vertical rise, SL. This formulation implies that the rate of shoreline retreat (dR/dt) is directly 

proportional to the rate of sea level rise (dS/dt). Another consequence is that: 

Equation 3‐2 

R = S / tan β  

where “β” is the foreshore slope, or for very long‐term coastal retreat, the slope of the 

shore platform. 

The response of the beach to sea level rise as proposed by Bruun (1962) is plausible on very 

long time scales of centuries to millennia during which MSLR rise dwarfs all other effects. 

However, the relationship of beach response to MSLR on shorter time scales of years to 

decades is much more difficult to convincingly demonstrate (Zhang et al. 2004), mainly 

owing to the large variations in beach width due to other variables, mainly beach sand 

supply, and wave variability. Observed shoreline variations at MCBCP and NBC will be 

related to waves and other factors at these locations, to the extent possible, during the first 

half of the second‐year effort in this study. During the latter half of the second year effort 

these relationships will be used to create possible shoreline change scenarios from the 
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future MSLR and wave scenarios, which were developed in the first study year and are 

presented in this report. 

Littoral Sand Budgets  

Sand budgets are always uncertain simply because the rates of sand movement over time 

cannot readily be measured – in other words, there is no “sand flux meter.” For example, 

there are no reliable measurements of cross‐shore sand movement to or from deep water, 

or of long‐term down‐canyon sand losses. The elements of a sand budget must therefore be 

pieced together from indirect evidence, such as river sand yield estimates, inferred sand 

accumulation rates at the ends of littoral cells or sub‐cells, or observed long‐term changes 

in beach width.14 These measurements are always intermittent and inaccurate when they 

even exist. The sand budgets based on them are therefore also inaccurate. 

Sand fluxes may also be calculated from the longshore and cross‐shore wave driving forces. 

In this approach, accurate sand movement estimates depend first upon the relationships 

between cross‐shore and alongshore sand transport rates and the wave characteristics, and 

second on having accurate long‐term information about the waves. However, the 

theoretical relationships quantifying sand transport rates and waves are highly uncertain, 

especially when it comes to on‐offshore transport. Systematic coastal wave measurements 

and modeling is at most 10 years old, so the input wave data to reconstruct reliable past 

sand budgets does not exist. The lack of data and unreliable cross‐shore wave‐driven sand 

transport relationships makes estimates of on‐ offshore sand transport undependable.  

Beach sand budgets for the northern‐half of the Oceanside littoral cell (MCBCP) and the 

Silver Strand cell (NBC) were developed by Inman and Masters (1991) as part of the U.S. 

Army Corps of Engineers Coast of California Storm and Tidal Waves Study. This work 

incorporated earlier work, including Everts (1987, 1990). The summaries relevant to the 

modern sediment budgets of MCBCP and NBC are included below. Together with the 

shoreline and cliff and gully erosion histories presented in following sections, these provide 

a rough guide concerning what kinds and magnitudes of future coastal change might be 

expected.  

                                                       
14 The construction of sand budgets involves balancing the long‐term “average” rates of input and output of 
sand in a “control volume.” Cross‐shore, this is usually the active part of the beach, from the berm down along 
the beach face to the depth of closure, usually defined as the deepest depth that wave‐driven sand movement 
normally takes place. Alongshore control volume limits can be chosen to coincide with physiographic 
boundaries, much like littoral cells or sub‐cells are defined, and for the same purposes. 
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Table 3‐2 provides a key for the variable names that are used in Figure 3‐61 and Figure 3‐62, 

which respectively present the sand budget summaries for the Oceanside and Silver Strand 

littoral cells. Each figure presents a summary sediment budget for each sub‐call (three in the 

Oceanside cell, Figure 3‐61; four in the Silver Strand littoral cell, Figure 3‐62), for three 

different past settings.  

Table 3‐2. Key to variables used in Figures 3‐23 and 3‐24. 

 

The first setting corresponds to the “natural” condition (from 1900‐1938 in the Oceanside 

cell; 1905‐1936 in the Silver Strand cell), before dams artificially reduced the rate of sand 

supply to the coast. The second setting corresponds to a period of “uniform” wave climate, 

which extended roughly from 1950 or 1960‐1978 (see Figure 3‐55 and related discussion 

above). There are strong indications of a “regime shift” in the late‐1970’s when the 

relatively benign storm and wave conditions that prevailed from the mid‐1940’s changed to 

a more variable climate with more big wave events, such as those of 1978‐1979, 1979‐1980, 

and 1982‐1983 that was mentioned above (Hare and Mantua, 2000). 

Variable  Description and (Units) 

q  Volume transport rate of sandy material (m
3
/m/yr) 

Z 
q’ = height of shoreline flux‐surface (m) and volume‐equivalent factor 
for shoreline change (m

3
/m) 

Q  q' * l = total sand transport rate into or out of a cell (m3
/yr) 

l  Length of control cell 

Subscripts  Description 

1  Flux into cell (+) 

2  Flux out of cell (‐) 

a  Artificial nourishment, bypassing, dredging, etc. (+/‐) 

b 
Blufflands erosion (+); includes sea cliff, gullies, coastal terrace, slumps, 
etc., as distinct from rivers

f 
Shoreline  flux‐volume  into cell  (+) by shoreline erosion, or deposition 
out of cell (‐) by shoreline accretion,  in accordance with movement of 
shoreline flux‐surface, δX/δt * Z * l = Qf 

I  Inlet material carried in or out by inlet flow (+/‐) 

l  Longshore transport of sand in and near the surfzone, versus n 

n  Nearshore transport along the coast, outside the surfzone 

o  On/offshore transport at the base of the shorerise (+/‐) 

ow  Overwash (‐) 

r  River yield to the coast (+) 

s  Lost to submarine canyons (‐) 

w  Windblown sand removed from the beach (‐) 
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Oceanside Littoral Cell ‐ MCBCP 

The coastline of MCBCP spans the “Central” portion of the Oceanside cell delineated on the 

map at the right edge of Figure 3‐61 (San Mateo Point to Oceanside Harbor). The sand 

budget analysis suggests that from 1960‐1978 this segment suffered a net deficit of sand 

supply of about 65,000 m3/yr, which lead to a loss of beach width of about 7 cm/yr. Note 

that this deficit would have been greater if not for the Qa = 50,000 m3/yr of artificial supply 

from the construction of SONGS described in Section 3.2.1. River supply amounted to an 

estimated Qr = 20,000 m3/yr, which was dwarfed by cliff and gully erosion contributions at 

an estimated rate of Qb = 280,000 m3/yr. However, wave‐driven offshore transport was 

estimated to be 350,000 m3/yr. Wave‐driven longshore transport from the northern sub‐

cell, which contains San Juan Creek, provided an estimated Ql = 145,000 m3/yr to the 

MCBCP coastline. However, longshore transport to the south was even greater amounting 

to 210,000 m3/yr. Taken together, this produced the sand budget deficit at MCBCP. 

After the regime shift of the late 1970’s the sediment budget of MCBCP improved, mainly 

because wave‐driven losses alongshore are estimated to have decreased by about 75%, 

while offshore losses disappeared altogether. Longshore sand supply rates and cliff erosion 

contributions both decreased by one‐half or more from 1983 to the time of the analysis in 

1990. But the net budget was in surplus by about 150,000 m3/yr over this time, and would 

have led to an increase in beach width of about 40 cm/yr. 

Silver Strand Littoral cell ‐ NBC 

The Silver Strand littoral cell sand budget shown in Figure 3‐62 was analyzed in four 

segments over three time periods. The northern‐most area is the “Zuniga” sub‐cell, which 

went into a severe 620,000 m3/yr sand deficit after Zuniga Jetty was completed in 1904. The 

jetty initially prevented sand from re‐circulating to the beach from Zuniga Shoals offshore, 

while at the same time allowing sand to aspirate into the entrance to San Diego Bay, from 

which it was transported offshore by tidal currents. This deficit accounts for the severe 

beach erosion in Coronado up until large amounts of artificial sand were provided by the 

dredging in San Diego Bay after World War II discussed in Section 3.2.2. This filled the sub‐

cell and prevented further losses. Since about 1950 the Zuniga sub‐cell has been in balance, 

and the shoreline stable. 

The next sub‐cell to the south is denoted “Strand” in Figure 3‐62, and extends from the 

Hotel Del Coronado to SSTC‐South (see Figure 3‐38). Its sand budget was essentially in 

balance under natural conditions, but went into a massive surplus from Qa = 630,000 m3/yr 
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in the 1950‐1978 time span owing to the sand produced by harbor dredging and discussed 

previously. This caused an average beach width increase of 3.75 m/yr. Currently Silver 

Strand is in a small, 30,000 m3/yr net sand deficit, presumably bringing with it the estimated 

21 cm/yr shoreline erosion rate. Aside from a sharp decrease in anthropogenic sand supply, 

the deficit seems mainly related to the 130,000 m3/yr of wave‐driven sand transport to the 

Zuniga sub‐cell in the north, while waves only bring about 50,000 m3/yr from the south. 

The southern‐most sub‐cell of concern to this discussion of NBC is the “Delta” reach, which 

extends from the SSTC‐South to the International border. In pre‐dam conditions, this sub‐

cell was in sand balance and stable as 75% of the sand produced by the Tijuana River was 

moved north, and 25% was moved south by the waves. Since about 1950 the Delta sub‐cell 

has been in a net deficit owing mainly to a decrease in river sand supply, which was reduced 

from Qr = 200,000 m3/yr to 50,000 m3/yr. Net shoreline erosion related to this sand budget 

deficit was estimated to be 47 cm/yr. 

As discussed in Section 3.2.2, unless additional sand nourishment is provided to the Silver 

Strand littoral cell, continued decreases in beach width are to be expected. An increase in 

future MSLR rate will only accelerate beach losses without additional sand supply. 
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3.3.3 Historical Shoreline Position 

The coastal sections of MCBCP and NBC have undergone significant natural and 

anthropogenic changes over the past century. While most of MCBCP, including the 

coastline, remains relatively natural, the construction and operation of SONGS have 

introduced major anthropogenic changes (Flick et al., 2010). The Coronado and Silver Strand 

coastline is one of the most heavily modified in all of southern California (Flick, 1993; Flick, 

2005 and references therein). Some details of these changes have been discussed in Section 

3.2 and above. Here we focus on the available beach profile measurements at MCBCP and 

NBC. Profile data were found from 1950‐1989 at MCBCP and 1950‐2009 at NBC. 

A total of 265 profiles are available on 13 range lines. The earliest measurements are sparse 

in time and space. Most unfortunately, some profile start‐locations changed over time on 

some ranges making it difficult to register profiles and reliably track shoreline position 

changes. Further attempts to register earlier with later data will continue in year‐two of the 

present effort. Profiles were recovered from the U.S. Corps of Engineers, which gathered 

data for many decades as part of their interest in shoreline‐change monitoring and beach 

nourishment and restoration. Since 2001 the San Diego Association of Governments 

(SANDAG) has been sponsoring twice‐yearly regional profile measurements, but these are 

confined to the area between Oceanside (south of MCBCP) to Imperial Beach (at the 

southern end of Silver Strand), and so do not contain any data from MCBCP, but do include 

NBC. Shoreline change information is also available from the Southern California Beach 

Processes Study (SCBPS),15 which collects LiDAR data twice per year and monthly or more 

frequent GPS‐based beach topography surveys.  

Range line start locations are usually primary survey benchmarks that consist of permanent 

monuments, usually brass plaques engraved with the designated name and/or number that 

are fixed either in the ground with long rods set in concrete, or to slabs or other horizontal 

surfaces with epoxy. Secondary starting points farther seaward are also sometimes used, 

especially in places where the primary benchmark is not conveniently accessible from the 

beach (e.g. high on a bluff), or when the back beach is unusually wide. Once set, the vertical 

and horizontal benchmark locations are determined using standard survey techniques, now 

usually GPS‐based. Profile surveys consisting of location and elevation measurements are 

then made using a benchmark as a starting point and oriented in fixed directions as 

perpendicular as possible to the local shoreline orientation. GPS and fathometer‐equipped 

boats or jet skis are now used to measure the under‐water portions of profiles. 
                                                       
15 http://cdip.ucsd.edu/SCBPS/ 
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Benchmark location information was re‐constructed for this study from various sources, 

including original benchmark and survey records available at Scripps Institution of 

Oceanography; reports presenting results of studies at SONGS (e.g., Elwany and Flick, 2000; 

Flick et al., 2010); U.S. Army Corps of Engineers information developed during the Coast of 

California Storm and Tidal Waves Study (e.g. USACE, 1986; Moffatt & Nichol, 1987); and 

data from SANDAG.16  

Benchmark names refer to the designations that were assigned in the 1980’s USACE studies 

using letters to indicate regions (“PN” for Pendleton, “SO” for San Onofre, “SS” for Silver 

Strand), and numbers giving approximate shoreline distances in 100’s of meters from the 

international border and measuring north. Thus, benchmark “SS0090” is located on Silver 

Strand approximately 90 * 100 = 9,000 m (9 km) north of the U.S.‐Mexico border, and so on. 

The SCBPS twice‐yearly LiDAR surveys describe the cliff and gully changes at MCBCP and 

may be suitable to derive “profile” cross sections that mimic beach profile data where these 

are not available due to access restrictions at MCBCP. This has not yet been undertaken, but 

will be included in next year’s effort in this project. The LiDAR data contain 15 twice‐yearly 

over‐flights between May 2002 and March 2009, potentially providing an important 

increase in profile data coverage at MCBCP. Full analysis of the LiDAR beach topography 

data at both MCBCP and NBC is also possible, but beyond the scope of this effort. 

The original units of measurement were feet relative to MLLW.17 However, all profile data 

was adjusted to metric units relative to North American Vertical Datum of 1988 (NAVD88). 

Shoreline position18 was calculated by determining the distance from the starting point of 

the profile to the elevation of the National Geodetic Vertical Datum (NGVD) contour using 

linear interpolation between the two adjacent survey points. NGVD was used since it is a 

fixed geodetic datum that is close to MSL at both MCBCP and NBC. This information was 

utilized to calibrate both process and physics‐based shoreline change models. 

  

                                                       
16 http://www.sandag.org/programs/environment/shoreline_management/pubs/beach_profile_data.zip 
17 Early profile data were tabulated relative to MLLW (1960‐1978), while later data were relative to MLLW 
(1983‐2001). 
18 Note: “Shoreline position” is used in this discussion rather than the more descriptive term “beach width.” 
Beach width is usually defined as the distance from a given contour elevation (such as MSL) to either the back 
of the beach berm or dune field, or the base of the cliff. If the survey start point is not located at these places, 
“beach width” is inconsistent, and “shoreline position” (relative to the benchmark) is more accurate. Either 
way, observed changes can be thought of as changes in beach width. 
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Table 3‐3. MCBCP beach profile range information. 

 

(Note Columns are (respectively) the range identification; the first and last dates profiles are 
available; the number of profiles between these dates; the starting‐point benchmark elevation in 
(the original) ft and m; orientation of the profile in magnetic and true directions looking seaward 
from the start point; the North and East Lambert Coordinates; and the latitude and longitude.) 

Figure 3‐64 to Figure 3‐79 show plots of all profile data at MCBCP that were found for this 

study and the shoreline position history derived from them.  

Figure 3‐64 and Figure 3‐65 show data from Range SO1530, which is located at San Onofre 

State Beach near the northern end of Camp Pendleton. This is north of SONGS. Data are 

available from 1983 to 1989. Note that the shoreline position steadily retreats from over 

100 m to about 50 m over this time interval. This decrease is attributable to completion of 

construction of the SONGS in early 1985. At that time, the second of two sheet pile 

structures called “laydown pads” were removed. These pads were used for construction 

equipment and staging areas between 1964 and 1984. Over this time period the beach at 

SONGS was artificially widened by the addition of sand and the presence of the laydown 

pads, especially in the state park north of the plant. When the pads were finally removed, 

this beach returned to its pre‐construction width (see Flick et al. , 2010). 

Range SO1470 is located about 3 km south of SO1530 as well as south of SONGS. The data 

from Range SO1470 is shown in Figure 3‐66. Figure 3‐67 suggests that the shoreline position 

remained unchanged from 1984‐1986, and advanced about 25 m from 1986‐1988, 

presumably as a result of previously trapped sand moving south past the Units 2 and 3 

Northing Easting Latitude Longitude

ft m mag true N ft ft degrees degrees

SO1530 1983 Nov 1989 Dec 10 19.92 6.07 225 239 442,900.00 1,597,300.00 33.376952 117.569122

SO1470 1983 Dec 1989 Dec 9 24.25 7.39 225 239 437,000.00 1,605,300.00 33.361014 117.542680

PN1340 1984 Jan 1989 Dec 10 18.54 5.65 225 239 420,009.93 1,622,398.95 33.314892 117.486025

PN1290 1984 Jan 1989 Dec 9 16.80 5.12 225 239 412,247.00 1,628,244.64 33.293747 117.466595

PN1280 1972 Jan 1989 Dec 11 14.61 4.45 225 239 410,350.07 1,629,568.87 33.288576 117.462190

PN1240 1950 Oct 1989 Dec 15 14.64 4.46 225 239 402,762.36 1,634,865.77 33.267891 117.444574

PN1180 1972 Jan 1989 Dec 13 14.25 4.34 225 239 392,545.46 1,641,624.23 33.240024 117.422089

PN1110 1950 Oct 1989 Dec 27 14.02 4.27 225 239 386,301.87 1,646,356.70 33.223010 117.406386

Range CA Zone 0406 (NAD27)

Orientation

No. of 

Profiles

Date 

Earliest 

Profile

Date   

Latest 

Profile

conversion                 

http:// noaa.nos.gov
degrees

Benchmark 

Elevation

NAVD88
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laydown pad area after it was removed. Range PN1340 (Figure 3‐68 and Figure 3‐69) shows 

a similar history, but with the shoreline position remaining unchanged until about 1988, and 

then advancing about 15‐20 m by 1989. A similar pattern is repeated at Range PN1290 

(Figure 3‐70 and Figure 3‐71), but with a smaller advance of only about 12 m observed from 

1988‐1989. 

The close‐by Range PN1280 (Figure 3‐72 and Figure 3‐73) indicates essentially the same 

behavior as PN1290 during the time of data coverage overlap, 1984‐1989. But, PN1280 has 

a longer history reaching back to 1972. The range shows a net decrease in beach width of 

about 20 m from 1972‐1981, followed by an increase of about 25 m by 1982. The shoreline 

position stayed relatively constant fluctuating only about 10 m until 1989.  

Range PN1240 (Figure 3‐74 and Figure 3‐75) is located just north of the MCBCP LCAC 

facility, and has one of the two longest profile histories at MCBCP, with data from 1950‐

1989. Unfortunately, only the data from 1984‐1989 can be confirmed to have the same 

origin, since the starting point elevations from earlier profiles are different – some are 0.4 m 

higher, and some are lower by as much as 0.55 m. Since no obvious way to reconcile the 

starting points of the earlier with the later data has yet been found, there is uncertainty in 

the shoreline position history derived at this location. Further research and analysis will be 

conducted in the second year of this study to try to reconcile the profile origins of this 

obviously valuable data set. Disregarding the pre‐1984 data for now, there was an 18 m 

widening of the beach at PN 1240 from 1984‐1989.  

Figure 3‐76 and Figure 3‐77 show the profile and shoreline position data from Range 

PN1180. Similar differences in starting elevations exist here as were found at PN1240. 

Therefore, shoreline position data from 1972‐1982 relative to post‐1984 is uncertain. 

Interestingly, this range shows much larger short‐term changes in beach width ranging up to 

35‐40 m from 1986‐1989. The proximity of Range PN1180 to the northern edge of the Santa 

Margarita River mouth suggests that it plays a role in the beach width at this location. 

The SCBPS carries out the aforementioned twice‐yearly LiDAR over‐flight surveys as well as 

a series of conventional GPS‐based ground surveys using beach buggies and jet skis. Figure 

3‐78 shows a map of the MCBCP study section located south of the LCAC facility and north 

of the Del Mar Boat basin. Figure 3‐79 shows shoreline position data from a range line 

about 0.5 km south of the LCAC facility and about 1 km north of Range PN1180 derived 

from the SCBPS surveys covering January 2007‐July 2010. The seasonal fluctuations are 

about 20‐40 m and comparable to those observed at Range PN1180 (Figure 3‐77). Actual 
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horizontal registration of the shoreline position data from the recent SCBPS surveys and the 

historical surveys should be possible. 

Figure 3‐80 shows profile data from Range PN 1110 located near the southern end of Camp 

Pendleton, just north of the Del mar Boat Basin and Oceanside Harbor. This range also has a 

long history, with data spanning from 1950‐1989, just like Range PN1240, but with nearly 

twice as many surveys. Four surveys exist from the 1950’s. Additional early surveys are from 

the 1960’s through 1982. Unfortunately, again, profiles taken prior to 1984 show a 

considerable range of starting elevations that make estimation of shoreline position 

uncertain. However, at this range there exist a sufficient number of profiles to attempt an 

adjustment that is described in the following. 

Note that the early surveys (1950‐1982) are plotted in black in Figure 3‐80, while the 

profiles taken starting in 1983 are plotted in green. Inspection of the profile plot suggests 

that the later (green) profiles had an origin farther landward, and so appear to show 

features like the berm crest and the shoreline position farther seaward than they actually 

are. Figure 3‐81 shows the raw shoreline position history derived from the profiles in Figure 

3‐80 before adjustment. Note the sudden upward (positive) jump in shoreline position (i.e. 

widening) between the July 1982 and June 1983 surveys. It is virtually certain that this 

apparent increase in beach width between these two dates is not correct, since the El Niño 

storms of winter 1982‐1983 caused massive erosion and loss of beach width almost 

everywhere. In an attempt to resolve this discrepancy, the later shoreline positions (1983‐

1989) were adjusted downward by 102.5 m, which make the mean shoreline positions of 

the early and later data equal. 

This adjustment results in the shoreline position time history shown in Figure 3‐82. This 

approach is supported by the fact that the earlier data from 1950‐1982 suggest that there 

was very little net change in shoreline position over these three decades (noting the 

uncertainty associated with the apparently moving survey origin).  

Likewise, the later data from 1983‐1989 also suggest little net change following recovery 

from winter 1982‐1983. The composite adjusted shoreline position plot suggests that there 

was a 40 m decrease in beach width during the winter of 1982‐1983 prior to the 50 m 

decrease in winter 1986‐1987. Additional corroborating evidence to support this 

adjustment will be sought and evaluated as this study proceeds. 
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Figure 3‐64. Beach profiles from MCBCP Range SO1530 (see text). 

 

Figure 3‐65. Shoreline position history for 1983‐1989 at MCBCP Range SO1530. 
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Figure 3‐66. Beach profiles from MCBCP Range SO1470. 

 

Figure 3‐67. Shoreline position history for 1983‐1989 at MCBCP Range SO1470. 
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Figure 3‐68. Beach profiles from MCBCP Range PN1340. 

 

Figure 3‐69. Shoreline position history for 1984‐1989 at MCBCP Range PN1340. 
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Figure 3‐72. Beach profiles from MCBCP Range PN1280. 

 

Figure 3‐73. Shoreline position history for 1972‐1989 at MCBCP Range PN1280. 
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Figure 3‐74. Beach profiles from MCBCP Range PN1240. 

 

Figure 3‐75. Shoreline position history for 1972‐1989 at MCBCP Range PN1240. 
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Figure 3‐76. Beach profiles from MCBCP Range PN1180. 

 

Figure 3‐77. Shoreline position history for 1972‐1989 at MCBCP Range PN1180. 
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Figure 3‐80. Beach profile data from MCBCP Range PN1110. 

 

Figure 3‐81. Unadjusted shoreline position history 1950‐1989 at MCBCP Range PN1110. 
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Figure 3‐82. Adjusted shoreline position history 1950‐1989 at MCBCP Range PN1110 (see text). 

Naval Base Coronado 

In all, 161 beach profiles spanning the years from 1962 to 2009 are available on five range 

lines whose range names and starting locations are shown in Figure 3‐83. Table 3‐4 gives 

the details of the available profile data at NBC. Figure 3‐84 to Figure 3‐95 show plots of all 

profile data at NBC that were found for this study and the shoreline position histories 

derived from them. 

Figure 3‐84 and Figure 3‐85 show data from Range SS0160 situated on the southwest‐facing 

portion of Coronado, near North Island. This is the closest range line to North Island where 

data were found20 and profiles are available from 1983‐2009. Range SS0160 also shows 

changes in profile start elevations of about 0.34 m between the earlier (1983‐1998) and 

later profiles (1999‐2009). Fortunately, the earlier and later profile sets are self‐consistent, 

that is, all the starting elevations are respectively equal in each group. Again, no clear way 

suggested itself to reconcile the earlier and later data, so the derived shoreline positions, 

shown in Figure 3‐85, should be considered separately until the matter can be considered 

further and perhaps resolved. Positions from 1983‐1998 are plotted in black and those from 

1999‐2009 in green. 

                                                       
20 Access to the beach at North Island is restricted and difficult to obtain. 
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indicated in later years (1999‐2009). This is most likely attributable to the fact that the 

early‐year profile date were taken earlier in each winter season, usually between January 

and April, while the later‐year “winter” surveys were not conducted until May. It is known 

that beaches in southern California recover very quickly after winter storm events narrow 

them, and that May is usually too late to reliably capture the minimum seasonal beach 

width. Seasonal beach width fluctuations (1983‐1998) range from 35‐50 m at Range SS0160. 

Shoreline position data from 1999‐2009 suggests that the shoreline is stable. 

Table 3‐4. NBC beach profile range information. 

 

Figure 3‐86 shows the limited profile data available from Range SS0125, which is located at 

Boat Lane 5 (U.S. Navy 2010) at the Naval Amphibious Base beach. An interesting feature is 

the large depression in the profile from 500‐900 m offshore that appears between the 

August 1985 and December 1985 surveys.21 This is almost certainly the borrow pit from 

which about 840,000 m3 sand was extracted and placed on Imperial Beach as part of a 

beach re‐nourishment project.22 Figure 3‐87 gives the shoreline positions derived from the 

profile data at Range SS0125. 

Range SS0090 is located at Silver Strand State Beach between Boat Lanes 10 and 11. Profile 

information is available from 1983‐2009 with a gap from 1989‐1996, but with no changes in 

the profile starting elevations. Profile and shoreline position data are shown in Figure 3‐88 

and Figure 3‐89. Figure 3‐89 suggests that this shoreline is stable as well, with little or no 

change in maximum beach width from 1983‐1998, and a modest 15 m increase from 1999‐

2009. 

                                                       
21 Earlier profiles are plotted in green (1984‐1985), while later ones are black (1985‐1989). 
22 http://www.surfrider.org/stateofthebeach/05‐sr/state.asp?zone=wc&state=ca&cat=bf 

Northing Easting Latitude Longitude

ft m mag true N ft ft deg.deg deg.deg

SS0160 1983 Oct 2009 Oct 38 18.22 5.55 195 209 1,829,962.0 6,274,127.1 32.684051 117.184539

SS0125 1984 Jan 1989 Nov 13 15.82 4.82 230 244 unknown unknown 32.660284 117.155543

SS0090 1983 Oct 2009 Oct 37 13.56 4.13 250 264 1,808,804.9 6,288,013.6 32.626238 117.138825

SS0077 1983 Oct 2009 Oct 35 14.34 4.37 245 259 1,802,713.2 6,289,788.6 32.609538 117.132892

SS0050 1954 Mar 2009 Oct 38 13.69 4.17 250 264 1,793,115.6 6,289,795.9 32.583161 117.132605

Range

Benchmark 

Elevation
Orientation

No. of 

Profiles

Date 

Earliest 

Profile

Date   

Latest 

Profile

NAVD88 degrees
conversion                 

http:// noaa.nos.gov
CA Zone 0406 (NAD83)



 

 136

Range SS0077 is also located on Silver Strand State Beach and just north of Boat Lane 11. 

The beach profile and shoreline position data are shown in Figure 3‐90 and Figure 3‐91. 

Profiles are also available from 1983‐2009 with a similar gap from 1989‐1997 and consistent 

starting elevations. The shoreline position history suggests a small decrease in maximum 

beach width of about 15 m between the period from 1983‐1987 and 1999 (with an 

anomalous width in 1989, green curve, Figure 3‐90). A slow recovery of about 10 m 

followed from 1997‐2009. 

Range SS0050 is located at the northern border of Imperial Beach adjacent to SSTC‐South 

and Boat Lane 14. It has the longest history of available beach profiles at NBC, with data 

spanning from March 1954 to October 2009 in three distinct sets. Unfortunately, the 

profiles in Set 1 taken from 1954‐1975 (Figure 3‐92, green curves) clearly have a different 

origin than those in Set 2 taken from 1978‐1987 (Figure 3‐92, black curves). The likely 

explanation is that the earlier profile measurements were started farther landward than the 

later ones, thus making it appear that the beach was wider. Set 3, the latest measurements, 

shown in Figure 3‐93 are from 2001‐2009 and are reasonably well registered with Set 2, 

albeit with different starting elevations again making interpretation of shoreline position 

uncertain. Figure 3‐94 shows the unadjusted shoreline positions derived from the profile 

data plotted in Figure 3‐92 and Figure 3‐93.  

Inspection of Figure 3‐92 suggests that the shift between profile Sets 1 and 2 can be 

reconciled by assuming that the dune crest, which appears in all the early (1954‐1975, 

green) profiles at an average position of 86 m from the origin, and in the 1978‐1979 profiles 

at 23 m, did not move. Shifting the earlier profiles landward by 63 m results in a much 

better registration of Sets 1 and 2. Note also that the deeper sections of the profiles 

become more convincingly aligned with this adjustment. 

Adjustment of the shoreline positions by this amount results in the time history shown in 

Figure 3‐95. The data suggest that there was a steady decrease in maximum beach width 

from about 25‐30 m from 1954‐1987, with a partial recovery of 10‐15 m from 2001‐2009. 

This is consistent with data from Range SS0090, the location with the second‐longest profile 

history. Corroboration of the assumption that the dune did not shift between 1975 and 

1978‐1979 is important, and may be possible from aerial photographs. This is being pursued 

because of the importance and value of this long‐term shoreline position history. 
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Figure 3‐84. Beach profile data from NBC Range SS0160. 

 

Figure 3‐85. Shoreline position history from 1983‐2009 at NBC Range SS0160. 
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Figure 3‐86. Beach profile data from NBC Range SS0125. Note the sand borrow pit from 500‐900 m offshore 

(see text). 

 

Figure 3‐87. Shoreline position history from 1984‐1989 at NBC Range SS0125. 
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Figure 3‐88. Beach profile data from NBC Range SS0090. 

 

Figure 3‐89. Shoreline position history from 1983‐2009 at NBC Range SS0090. 
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Figure 3‐90. Beach profile data from NBC Range SS0077. 

 

Figure 3‐91. Shoreline position history from 1983‐2009 at NBC Range SS0077. 
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Figure 3‐92. Early 1954‐1987 beach profile data from NBC Range SS0050 (see text). 

 

Figure 3‐93. Later 2001‐2009 beach profile data from NBC Range SS0050 (see text). 
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Figure 3‐94. Unadjusted shoreline position from 1954‐2009 at NBC Range SS0050 (see text).  

 

Figure 3‐95. Adjusted shoreline position from 1954‐2009 at NBC Range SS0050 (see text). 
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Cliff Composition 

The cliffs are generally composed of two geologic units: A lower unit of lithified Miocene or 

Pliocene mudstone, shale, sandstone, and siltstone; and an upper unit of unlithified 

Pleistocene terrace deposits. The contact between the upper and lower units is 

unconformable and decreases in elevation towards the south. Previous geologic maps and 

studies (Berggreen, 1979; Ehlig, 1977; Flick, 1994; Kennedy, 2001; Kennedy and Tan, 2008; 

Tan 2001) are inconsistent in their interpretation of the geology in the coastal region, where 

the lower unit has been mapped as both the San Mateo Formation and as sandy facies of 

the Monterey Formation.  

Here, the lower unit was delineated into regions based on the sample sand content (Young 

et al. , 2010a) and labeled as geologic Units A and B (Figure 3‐96), where Unit A contains 

significantly more sand compared to Unit B. However, this designation is based on relatively 

few samples because of limited access to Camp Pendleton, and additional data will be 

required to more accurately map the cliff composition. 

The lower‐unit Miocene‐age Monterey Formation contains various amounts of sandstone, 

siltstones, claystones, and shales. Geologic conditions of the Monterey Formation shale 

layers including a SW‐dip, impermeability, and low friction slide plane contribute to cliff 

instability and deep seated land sliding. Numerous relic coastal deep seated landslides are 

present in the region including one in MCBCP (Figure 3‐97). The age, dynamics, and stability 

of these slides are unknown. However, Kuhn and Shepard (1991) described a new slide 

initiated by the heavy rains in 1978 that extended 215 m alongshore and 100 m inland. 

Young et al. (2009) describe two slides exhibiting recent movement in the San Onofre cliffs.  

Anthropogenic Terrace Changes 

Although the MCBCP coastal region is relatively undeveloped compared with other 

southern California coastal areas, Hwy 101 and I5 have affected the local coastal processes. 

Hwy 101 and I5, constructed in the 1910’s, and 1960’s, respectively, radically altered the 

natural drainage patterns by culverts that concentrated runoff. According to Kuhn and 

Shepard (1991), these drainage changes caused erosion and collapse of Hwy 101 at Horno 

Canyon in 1978; the erosion of a massive new canyon, including 140 m of landward retreat 

between 1968 and 1980; and 230 m of retreat in Dead Dog Canyon from 1932 to 1980 

(Figure 3‐97).  Figure 3‐97 and Figure 3‐98  illustrate the problems related to MCBCP vehicle 

movement as gully erosion and landslides continue west of Hwy 101 and I5. 
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4. MATERIALS AND METHODS 

In this section, the methods developed and applied in this project are described. Because 

much of the project focused on methods development, these descriptions represent an 

important aspect of the work that we carried out. The methods development focused on 

four key areas in the context of sea level rise influences on military installations in the 

southwestern US. These included sea level rise projection methods, methods for delineation 

of the coastal system including both the terrain and the infrastructure, methods for 

evaluating the physical response of the system to sea level rise, and methods for the 

assessment of vulnerability.  

4.1 Sea Level Rise Projections 

Sea level rise projections developed for this study are presented in this section. These 

projections span the century from 2000‐2100. Water level scenarios used in this study are a 

superposition of four components (Figure 4‐1), which include: 

 MSLR scenarios with increases of 0.5, 1.0, 1.5, and 2.0 m by 2100 relative to 2000; 

 Hourly astronomical tide heights; 

 Non‐tide residual (NTR) water level variability from global circulation models 

enhanced with El Niño‐related sea level fluctuations specific to the  southwestern 

US; and 

 Wave‐driven runup on beaches. 

In the present study, the MSLR scenarios were specified by SERDP in order to provide a 

common background set of projections across a number of projects focused on different 

parts of the US. The non‐tide residual (NTR) water level fluctuations, largely comprised of 

storm surges and oceanographic changes, were derived from the A2 and B1 GHG emission 

scenarios outputs from National Center for Atmospheric Research (NCAR) Community 

Climate System Model Version 3 (CCSM3) model runs. Interannual fluctuation 

enhancements related to El Niño specifically for California followed Cayan et al. (2008a, 

2008b, 2009). Tide heights for 2000‐2100 were predicted using published constituents for 

La Jolla, CA and were deemed applicable to the study region. Finally, runup on beaches was 

projected from future local wave conditions derived from the A2 scenario and applying the 

method of Stockdon et al. (2006). The approximate amplitudes of these four components of 

the projected sea level are shown schematically as a function of time from “today” (taken as 

2000 in this study) to 2100 in Figure 4‐2. 
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We note that this method of constructing total future sea level projections is not entirely 

self‐consistent. For example, each GCM run was based on a specified GHG emissions 

scenario (along with other assumptions) and produces its own set of outputs, including 

projections of temperature and MSL. Imposing MSLR curves a priori and then adding only 

the fluctuating parts of sea level from the GCM output was therefore not self‐consistent. 

Nevertheless, because no other practical alternative exists to construct projections, this was 

the approach followed. 

 

Figure 4‐1. Flow chart of sea level rise projection components. 

It should also be noted that the existing GCM MSL outputs seem themselves to be 

inconsistent with their own temperature projections (i.e., too small) and therefore 

unreliable. This first lead Rahmstorf (2007) to fashion MSLR scenarios directly from the GCM 

temperature projections, a GCM output parameter considered to be reasonably robust. This 

approach, which is now widely applied (Cayan et al., 2008a, 2008b, 2009; OPC, 2010), 

supports the method used in the present study. 

4.1.1 Mean Sea Level 

Four global future MSL elevation‐endpoint scenarios of 0.5, 1.0, 1.5, and 2.0 m rise between 

2000 and 2100 were specified by SERDP for use in this study and several other associated 
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Assessment and Report (TAR) and the IPCC (2007a) Fourth Assessment Report (AR4), which 

range from 0.09‐0.88 m and 0.18‐0.59 m, respectively.26  

In addition, the present four scenarios span the 0.60‐1.46 m range in Cayan et al. (2008a, 

2009), as well as the 0.5‐1.4 m range in Rahmstorf (2007), the estimates of Vermeer and 

Rahmstorf (2010) of 0.81‐1.79 m, and coincide with the 0.5‐2.0 m of Nicholls et al. (2011). 

They also nearly cover the (5‐95 percentile) range of Grinsted et al. (2009), which is 0.3‐2.15 

m. In contrast, new work by Houston (2013) argues that confidence levels for 0.18, 0.48, 

and 0.82 m MSLR from 1990‐2100 respectively are 5, 50, and 95%, which is substantially 

lower than Grinsted et al. (2009), but with mid‐ and upper‐ranges within the span herein 

considered. 

The differences between published projections underscore the large uncertainties 

associated with MSLR projections. They also underscore the astuteness of simply choosing 

these four plausible and illustrative future scenarios without the distraction of attempting 

to overly motivate or justify their selection. 

The aforementioned NRC (1987)‐USACE (2009, 2011) approach leads to a set of MSL curves 

represented by the quadratic relationship: 

Equation 4‐1 

MSL‐MSL0 = a (Y‐Y0) + b (Y‐Y0)2  

where MSL and MSL0 respectively represent mean sea level at future year Y relative to a 

given “starting” mean sea level at year Y0, while “a” is the initial rate of sea level rise and “b” 

is (half) the rate of annual increase, i.e., the acceleration. The units of ”a” are L/T while the 

units of ”b” are L/T2 where L represents length and T is time in whatever units of measure 

are being used. Taking Y0 = 2000 as the initial reference year and considering sea level rise 

relative to it (in meters), then MSL0 = 0. In this way we can simplify Equation 4‐1 to: 

Equation 4‐2 

   MSLR = a ΔY + b (ΔY)2   

where ΔY = (Y – 2000), represents the number of years after 2000, and MSLR is the sea level 

rise relative to 2000. To completely define any given quadratic scenario curve, either both 

                                                       
26 Note that the AR4 model MSLR range “excludes future rapid dynamical changes in ice 
flow,” which therefore makes the upper limit almost certainly too low, likely substantially 
so. 
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the initial rate “a” and the constant acceleration term “b” must be specified, or one of these 

and the “endpoint” or MSLR value must be given.  

In this study, we selected the initial MSLR rate for base year 2000 as 0.0028 m/yr, which 

was the global value derived from satellite data as shown in Figure 3‐52. We then calculated 

the respective acceleration constants to give the specified endpoints. Table 4‐1 shows the 

coefficients “a” and “b” as a function of the specified year‐2100 endpoint values of MSLR.  

Table 4‐1. Quadratic sea level rise formula coefficients. 

 

4.1.2 Tides 

Methodologies adopted for the prediction and incorporation of tides into the sea level 

projections are described below. The analysis included specification of tidal datums, 

prediction of future tidal elevations, and a description of the important patterns of water 

level related to tidal variability. 

Tidal Datums 

A tidal datum is a vertical sea level reference elevation based on a long‐term average value 

of a particular phase of the tide. MLLW, Mean Sea Level (MSL), and Mean High Water 

(MHW) are examples of tidal datums. Fixed land‐based geodetic elevation datums are cross‐

referenced to tidal datum elevations using leveling data. Because the typical scale of coastal 

tide variation is hundreds of kilometers, the characteristics of the tide at MCBCP and the 

ocean‐side of NBC were assumed to be well represented by the tide at La Jolla, CA. 

Continuous tide measurements began there (Scripps Pier) in 1924. Tide conditions inside 

San Diego Bay, which are significantly different, must be considered for bayside 

developments at NBC, including those at the Amphibious Base and carrier berthing facilities. 

These are best characterized by the downtown San Diego tide station located on Navy Pier 

and in continuous operation since 1906. 

Scenario 

Designation 

2100 Sea Level (m) 
a 

(m/yr) 

b 

(m2/yr) 
NAVD88 

MSLR      

from 2000 

NRC I 1.27 0.5 2.80 x 10‐3 2.20 x 10‐5 

NRC II 1.77 1.0 2.80 x 10‐3 7.20 x 10‐5 

NRC III 2.27 1.5 2.80 x 10‐3 1.22 x 10‐4 

SERDP 2.0 2.77 2.0 2.80 x 10‐3 1.72 x 10‐4 
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Each tidal datum is an average over a specific 19‐year epoch, currently defined as the years 

1983‐2001, and called the National Tidal Datum Epoch (NTDE). Note that the center‐year of 

NTDE is 1992. The 19‐year value is the nearest whole number of years spanning the 18.6 

year lunar node cycle. It is also presumably a sufficiently long time to average out 

meteorological and oceanographic variability unrelated to the tides. For example, MLLW is 

defined as the average of the single lowest water level reading each day in the NTDE, while 

MHW is the corresponding average of both of the two high waters observed each day. 

Finally, MSL is the arithmetic average of all water level readings obtained during the epoch. 

The highest and lowest observed values are from the entire tide gauge records (1924‐

present at La Jolla and 1906‐present at San Diego). Note that all tidal datums, including 

MSL, are “floating” reference elevations subject to change as MSL rises or falls.  

For the purposes of the present study, the start‐year for sea level projections was 2000. For 

this reason, 19‐year tidal datum averages were calculated for the 1991‐2009 epoch, which 

has 2000 as its center‐year. This simplified calculations needed to relate past sea level 

observations and fixed, land‐based geodetic reference elevations (e.g. NAVD88) to the 

projected scenarios of future MSLR with 2000 as the start‐year that were used in the 

present study (Flick et al., 2013). Table 4‐2summarizes the tidal datum values and extreme 

observed water levels (and dates) for the 1983‐2001 NTDE at the La Jolla (No. 941‐0230) the 

San Diego (No. 941‐0170) tide gauges as calculated by the National Ocean Service (NOS, a 

part of NOAA) relative to NAVD88 (Columns 2 and 4) and MLLW (Columns 3 and 5), 

ordinarily the reference for tide tables and navigation charts. Table 4‐3 gives the equivalent 

information for the 1991‐2009 epoch.  Table 4‐2 and Table 4‐3 also contain entries for 

NAVD88 and NGVD, which are fixed, land‐based datum reference elevations. Note that the 

mean tide ranges (MHW‐MLW) at La Jolla and San Diego bay are respectively about 1.1 m 

and 1.2 m, a difference of about 10%. The diurnal ranges (MHHW‐MLLW) are approximately 

1.6 and 1.7 m, respectively. 

Tide Predictions 

Hourly tide predictions for La Jolla and San Diego Bay were prepared for 2000‐2100 using a 

FORTRAN computer program prepared by Professor Walter Munk and long used at Scripps 

Institution of oceanography. The latest available tidal constituent (non‐zero) amplitudes and 

phases from the National Ocean Service at NOAA were used. These are presented in Table 

4‐4. 
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Table 4‐2. Tidal datum relationships (1983‐2001). 

 

Table 4‐3. Tidal datum relationships (1991‐2009). 

 

Tide Patterns 

Tides along the California coast are “mixed,” with diurnal (once‐per‐day) constituents 

almost as large as the semidiurnal (twice‐per‐day) constituents. There are almost always 

two each (respectively unequal) high tides and low tides per tidal day. The diurnal 

components arise from the enhanced response of this part of the Pacific Ocean to the 

forcing associated with the declination of the moon and sun. The highest tide ranges occur 

in winter and summer when the declination of the sun is largest. Relatively smaller tide 

ranges occur in spring and autumn. Figure 4‐4 shows a typical set of seasonal tide curves 

that illustrate these characteristics.  

 

1983‐2001 

(NTDE) 

La Jolla 

941‐0230 

San Diego 

941‐0170 

m    NAVD88  MLLW    NAVD88  MLLW 

Highest 11 Jan 2005 2.28 2.34 27 Jan 1983 2.35 2.48 

MHHW  1.57 1.62  1.61 1.74 

MHW  1.34 1.40  1.39 1.52 

MSL  0.77 0.83  0.76 0.90 

NGVD  0.64 0.70  0.63 0.77 

MLW  0.22 0.28  0.15 0.29 

NAVD88  0.00 0.06  0.00 0.13 

MLLW  ‐0.06 0.00  0.13 0.00 

Lowest 17 Dec 1933 ‐0.93 ‐0.87 17 Dec 1937 ‐1.07 ‐0.94 

1991‐2009 

(This Study) 

La Jolla 

941‐0230 

San Diego 

941‐0170 

m    NAVD88  MLLW    NAVD88  MLLW 

Highest 11 Jan 2005 2.28 2.33 27 Jan 1983 2.35 2.48 

MHHW  1.57 1.62  1.62 1.75 

MHW  1.35 1.40  1.39 1.52 

MSL  0.78 0.83  0.77 0.90 

NGVD  0.64 0.69  0.63 0.76 

MLW  0.22 0.27  0.16 0.28 

NAVD88  0.00 0.05  0.00 0.13 

MLLW  ‐0.05 0.00  ‐0.13 0.00 

Lowest 17 Dec 1933 ‐0.93 ‐0.88 17 Dec 1937 ‐1.07 0.95 
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Table 4‐4. Tide prediction constituents. 

 

Flick (2000) demonstrated that in southern California, the higher‐high tide always occurs in 

the morning (loosely defined as midnight to noon) during the winter, and in the afternoon 

(noon to midnight) during the summer, as shown in Figure 4‐5. Winter peak highs tend to 

cluster in the morning around 08:00 with summer highs in the evening at about 20:00; 

summer lows tend to occur around 03:00, with winter lows at about 15:00. This pattern has 

consequences for winter storm preparedness. If the first warning of possibly damaging 

waves comes on the evening news, then damage avoidance, such as sand‐bagging or 

window‐covering must be carried out at night in anticipation of the early‐morning high tide. 

Constituent  La Jolla  San Diego Bay 

No.  Name 
Amplitude 

(m) 
Phase 
(⁰ local) 

Amplitude 
(m) 

Phase          
(⁰ local) 

1 M2 0.580 338.7 0.556 271.3 

2 S2 0.137 338.4 0.229 260.2 

3 N2 0.123 317.3 0.130 256.2 

4 K1 0.368 106.1 0.347 87.6 

5 M4 0.023 38.2   

6 O1 0.230 98.5 0.220 80.8 

7 M6   0.004 85.7 

8 MK3 0.019 136.7   

10 MN4 0.009 19.9   

11 NU2 0.026 320.1 0.025 260.6 

13 MU2 0.007 237.1 0.016 229.2 

14 2N2 0.014 295.2 0.016 234.3 

15 OO1 0.011 131.9 0.011 111.9 

16 LAM2 0.006 341.8 0.003 253.1 

17 S1 0.007 164.8 0.004 218.8 

18 M1 0.011 128.5 0.013 104.4 

19 J1 0.019 119.1 0.020 95.9 

21 SSA 0.039 286.2   

22 SA 0.038 221.0 0.069 178.9 

25 RHO 0.009 94.5 0.009 76.5 

26 Q1 0.040 96.0 0.041 77.5 

27 T2 0.009 316.9 0.014 247.6 

28 R2 0.001 338.3 0.002 259.7 

29 2Q1 0.004 105.1 0.004 79.2 

30 P1 0.116 103.6 0.109 85.8 

32 M3 0.005 38.9 0.003 358.2 

33 L2 0.016 349.5 0.015 267.7 

34 2MK3 0.014 113.2   

35 K2 0.040 329.2 0.067 253.6 

37 MS4 0.010 42.4   
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The 4.42‐year cycle has been attributed by Cartwright (1974) to the precession of the 

longitude of the lunar perigee relative to the node (both ascending and descending), a 

phenomenon that has an 8.85‐year period. This 8.85‐year cycle produces a noticeable tide 

range perturbation at half the period on the California coast. The second important pattern 

of extreme high tides is the 18.61‐year lunar node regression cycle. Together, the 4.42 and 

18.6‐year cycles produce clear variations in the peak high and low tide patterns, as well as 

the tide range. 

4.1.3 Sea Level Fluctuations 

Coastal non‐tide sea level fluctuations (non‐tide residuals) were obtained using the 

methodology of Cayan et al. (2008a), which incorporated time‐varying GCM‐generated 

parameters that included winds, sea level pressure (SLP), and Niño 3.4‐region27 SST. 

Although the amplitudes of non‐tide fluctuations were relatively small compared with tidal 

variability and wave runup from large storm waves (discussed below), the non‐tide 

contribution to sea level can become important when the sum of other factors contributing 

to total sea level approaches critical levels, particularly during concurrent high‐energy wave 

activity.  

Probability density functions (PDFs) of the non‐tide fluctuations over November‐March 

winter periods (Figure 4‐7) indicated that this model generated non‐tide levels that were 

similar to those observed historically. Only the Centre National de Recherches 

Météorologique (CNRM) model (green curves) gave projections whose distribution mean 

was significantly different form the observations, i.e. fell outside the 1‐ sigma bounds of the 

observations.  

The 98th percentile winter (November‐March) non‐tide projections for all A2 scenarios 

(Figure 4‐8) had slightly downward trends, consistent with a northward shift in storm track 

that is generally expected by the climate change community (e.g. Karl et al., 2008). Note 

that the B1 amplitudes were not significantly different, but there was a slight upward trend 

for the CCSM3 model. The difference in trends is consistent with a smaller impact on storm 

track under the lower B1 GHG emission scenario – that is, a smaller climate change effect. 

The range of variability in Figure 4‐8 was reasonably consistent for the NOAA Geophysical 

Fluid Dynamics Laboratory (GFDL) and NCAR climate models, but was somewhat larger than 

                                                       
27 The Niño 3.4 region lies between 120°W‐170°W and 5°S‐5°N in the equatorial central 
Pacific Ocean. Surface water warming in this region is a defining characteristic of El Niño 
events. 
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Assessment of the vulnerability associated with future wave climate on the southwest US 

coastline is challenging and must be viewed as qualitative. Shoreline changes resulting from 

the action of historic and present‐day waves are poorly understood, and quantitative, site‐

specific relationships between wave measurements and shoreline change have only 

recently been developed (Yates et al. 2009). This is primarily because wave and shoreline 

measurements suited to this task have been collected for only about 25 years, and mostly 

during a warm phase of the PDO. Additionally, high quality hindcast wave fields with 

sufficient spatial resolution to be useful in reconstructing historical extreme wave 

conditions, extend back to only about 1960. The likelihood of a repeat of the 1939 

Hurricane that made landfall in southern California is also unknown, even in a stable 

climate. Pacific Ocean wave hindcasting remains an active field of research. The variation of 

the southwest US wave climate includes interannual and decadal components, as well as 

strong seasonality. There is considerable uncertainty in estimating the probability of 

exceedance statistics for large wave heights at base locations for next winter, let alone for 

the next century. 

An important finding of this study of wave climate was that our ability to estimate long‐

term trends in nearshore wave parameters may significantly outpace our ability to quantify 

even short‐term wave impacts. For example, most GCM scenarios indicated a northward 

migration of the mean jet stream latitude over the North Pacific. This leads to a northward 

shift in the mean offshore wave direction and a decrease in mean winter wave heights at 

MCBCP and NBC owing to island sheltering and the resulting change in wave exposure. 

Wave climate assessment for this project used a three stage process:  

 Forecast offshore wave conditions (as frequency‐directional spectra) based on GCM‐

output wind fields over the Pacific Ocean; 

 Transform the offshore wave spectra to nearshore wave parameters at multiple 

locations at each military installation; and 

 Interpret any long‐term trends in the nearshore wave parameters in the context of 

both known natural variability in the waves, and sensitivity of the results to 

modeling errors. 

This assessment framework will ultimately allow for an ensemble of GCM wind‐driven wave 

scenarios to be considered. The current project methodology focused on demonstrating the 

use of a single GCM scenario that was currently available to develop the wave climate 
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analysis and make an initial assessment of what aspects of the changing Pacific Ocean wave 

climate were likely to be most critical to forecasting future installation wave vulnerability. 

A long‐term goal of the wave assessment framework would potentially be to bypass the 

need to run deterministic wave model scenarios every time there is new GCM scenario. 

Instead, the goal would be to use an initial ensemble of GCM scenarios and wave model 

runs to link changes in the modeled nearshore wave climate to commonly used metrics in 

assessing and comparing different GCM scenarios directly. For example, changes in the 

mean jet stream location, or the strength and frequency of PDO and ENSO cycles should be 

related to expected wave climate changes. This approach would maximize the utility of the 

framework in assessing both short‐term and long‐term wave impacts. Viewed in the context 

of climate change projections, wave assessment could conceptually be correlated with five 

climate variables that are found in or derived from GCM scenarios:  

 Mean jet stream location over the North Pacific; 

 Interdecadal oscillations in the PDO index; 

 Interannual oscillations in the ENSO index; 

 Persistence of high pressure over the southwestern U.S.; 

 Autumn surface water temperatures off northern Mexico. 

The first three variables impact winter storm waves, the fourth impacts local wind swell and 

sea breeze dynamics, and the last determines the potential for hurricane landfall in 

southern California. 

Wave Projections 

For the purposes of illustrating our methodology, nearshore wave projections were 

developed using a well‐documented 100‐yr (2000‐2099) GCM and offshore wave model 

data set created for the California 2008 Climate Change Impact Assessment report (Messner 

et al. 2008) and used in a California state‐funded assessment of sea level rise effects in 

northern California (Revell et al., 2009). The GCM is the CCSM3, run with the A2 

(moderately high) greenhouse gas emission scenario.28 The CCSM3 model is known to 

produce a reasonable representation of seasonal precipitation, the variability of annual 

                                                       
28 The A2 emissions scenario represents a differentiated world in which economic growth is 
uneven and the income gap remains large between now‐industrialized and developing parts 
of the world; people, ideas, and capital are less mobile so that technology diffuses more 
slowly (IPCC 2007). 
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precipitation, and El Niño/Southern Oscillation when run for historic periods and when 

compared to known conditions (Cayan et al. 2008b). 

Wavewatch III wind‐wave model simulations (Tolman, 2002) were performed using the 

CCSM3 output Pacific Ocean wind fields produced by Dr. N.E. Graham at Scripps Institution 

of Oceanography for the Messner et al. (2008) report. For 2000‐2099 only the five winter 

months (November‐March) were modeled and output provided at 3‐hour time steps. Since 

this work was completed for the present study, at least eight more WW III runs scenario 

have been completed for several different model runs base on the A2 and B1 scenarios. 

These runs can be used according to the methods developed in this study to improve and 

update the assessments in the future, especially to quantify the uncertainties. 

Systematic biases in the CCSM3 wind fields were removed by comparison of the wave 

model spectra output to offshore buoy measurements in California for the 2000‐2007 time 

period (Graham, personal communication). The resulting 100 years of projected two‐

dimensional (amplitude versus frequency and direction) wave spectra for a deep water 

location southwest of Point Conception (34° N, 121° W) were used as the initial conditions 

for estimating nearshore wave conditions at MCBCP and NBC.  

Prior to transforming the offshore wave spectra to nearshore locations in the vicinity of 

MCBCP and NBC, the 100‐yr projection was analyzed for long‐term trends in wave heights 

and directions (Figure 4‐14) as well as wave height exceedance statistics (Figure 4‐15). 

While the mean annual winter wave height of 2 m showed a very slight 10‐cm downward 

trend over the next century, the maximum annual winter wave height showed a marked 

drop of 1 m (upper panel, Figure 4‐14). At the same time, the offshore wave arrival 

direction band with the greatest total wave energy (summed over the winter months) 

shifted 5° northward. These trends are consistent with a northward migration of the jet 

stream owing to climate change. 

Similar downward trends were found when defining the severity of the winter wave climate 

by the hours different wave height thresholds are exceeded (Figure 4‐15). All of these 

results were consistent with the GCM results indicating a northward shift in the jet stream 

that leads to a northward shift in the mean winter storm tracks and fewer extreme storms 

reaching southern California. It is interesting to note that for a mid‐latitude region like 

southern California that has a relatively mild climate and only episodic storminess, the 

mean winter wave height (Figure 4‐14, upper panel, blue line) is a poor indicator of long‐

term changes in the more severe wave conditions associated with flooding and shoreline 

erosion. 
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This is important since infragravity swash usually represents the single largest component of 

runup excursion on medium and high energy dissipative beaches. It is straightforward to 

parameterize the incoming wave conditions. But, it is more difficult to pick a characteristic 

“beach slope” since it changes with location on concave beaches, which get steeper toward 

shore, as well as with season since winter profiles tend to be flatter than those in summer. 

Beaches in the study area, especially during large wave storms, tend to be dissipative. This 

potentially simplifies the application of Stockdon et al. (2006) to projecting the extreme 

runup conditions in the study area by neglecting the beach slope.  

Empirical Runup Estimates 

Runup calculations were made using the 100‐yr CCSM3 A2 scenario wave forecasts above 

using the beach slope‐independent formulation of Stockdon et al. (2006), which is their 

Equation 18: 

Equation 4‐3 

R2 = 0.043(H0xL0)½, 

where R2 is the 2% runup exceedance (same as 98th percentile), H0 and L0 respectively 

denote the local deep‐water wave height and length, in which L0 = gT2/(2π) and where the 

acceleration of gravity g = 9.81 m/sec2.  

The winter (November‐March) runup 98th percentile exceedance for MCBCP Range SO1470 

is shown in Figure 4‐24. Peak runup varied from about 1.4‐2.3 m, which was the same or 

larger than the 1.6 m diurnal tide range along the open coast. By way of comparison and for 

a measure of the uncertainty involved in the runup calculations, Figure 4‐25 shows the 98th 

percentile exceedance of runup from the same wave inputs, but using the full beach slope‐

dependent formulation in Stockdon et al. (2006, their Equation 19), and three slopes, 1:10, 

1:20, and 1:50. Higher beach slopes generally produced higher runup for equal incoming 

wave conditions. Extreme runup projections varied by a factor of about 50% with peak 

values of about 2 m at the flattest slope (1:50) and about 3.5 m at the steepest slope (1:10). 

Actual foreshore and beach face slopes vary over this range at MCBCP and NBC. 

Figure 4‐26 and Figure 4‐27 respectively show the same information for NBC Range SS0160 

located at Coronado City Beach. Runup from both formulations at these example ranges 

was higher at NBC than it was at MCBCP owing to greater sheltering of MCBCP from west 

and northwest approaching waves by Santa Catalina Island. Peak values neglecting beach 

slope varied from about 1.7‐2.7 m, with a variation of approximately 2.5‐4.5 m for the range 

of beach slopes shown. 
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Results for the JONSWAP‐based simulations are shown in Figure 4‐29 in comparison to 

Stockdon et al. (2006) estimates using both the slope dependent and slope independent 

formulas. In general, the XBeach results showed reasonable agreement with Stockdon. 

XBeach results were comparable to the slope independent Stockdon estimates over the 

range of test conditions, but generally indicated lower runup than the slope dependent 

estimates. The test results provided confidence that XBeach could provide comparable 

runup estimates to field‐based methods, while allowing for profile‐specific analysis and the 

ability to accommodate overtopping for the flooding analysis. 

 

Figure 4‐29. Comparison of constant‐slope runup testing results from XBeach and the slope dependent and 

independent estimates from Stockdon et al. (2006). 

To support the flooding analysis for this project, we focused on the application of XBeach to 

provide a more refined estimate of local wave runup that accounted for the localized beach 
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each profile, rather than over the whole domain simultaneously. The beach profiles were 

fixed and no morphological change was evaluated over the short durations of the runs used 

to generate the runup statistics. While wave forcing functions for XBeach can utilize a range 

of formats, including statistical wave spectra which can be either time invariant or time 

varying, for this study, we used the time‐invariant JONSWAP wave spectrum defined by 

wave amplitude and frequency.  Waves were imposed and prescribed as boundary 

conditions at the deep ocean model boundary, and propagate toward the beach (Figure 

4‐28).  

Simulations were carried out for the target mean sea level rise conditions combined with a 

range of five projected statistical wave and total water level rise conditions (week, month, 

year, decade, and  century return periods). The sea level rise scenarios included the baseline 

condition and projected sea level rises of 0.5m, 1m, 1.5m and 2m between 2000 and 2100. 

The run‐up simulations were performed using the MOP profile locations at 100 m intervals 

along the shoreline of both installations. The profiles were derived from the baseline 

elevation model described in Section 4.2.1. The profiles were assumed to retain the same 

shape relative to mean sea level for future sea level conditions, but be shifted vertically and 

inland in accordance with the long‐term response modeling described in Section 4.3.1 and 

Section 4.3.2. Wave forcing and total water levels for the simulations were derived from the 

scenarios described above in Section 4.1.  

Based on these forcing scenarios, the XBeach model was used to simulate wave run‐up at 

the 185 MOP profile locations for NBC and 267 MOP profiles at MCBCP.  Simulated wave 

run‐ups were then incorporated with other water level constituents to construct spatially‐

varying total water level scenarios for the two installations. These scenarios formed the 

basis for all subsequent inundation and flooding analysis. Because of the spatially varying 

nature of the profiles and wave forcing, individual XBeach simulations were performed for 

each of the 185 (NBC) and 267 (MCBCP) beach profiles, and to each of the 5 wave scenarios.  

A total of 2260 model simulations were conducted with each simulation lasting 4.33 hours 

to provide sufficient output to develop statistical estimates of run‐up.  

Figure 4‐30 shows an example beach profile at MOP station 970 at MCBCP for the yearly 

return‐period wave condition.  The baseline profile from the elevation model (solid pink 

line) was referenced to NAVD88. For XBeach modeling purposes, this was adjusted with 

reference to Mean Sea Level (MSL), tide, and NTR constituents to establish the underlying 

water level over which the wave run‐up was simulated. Figure 4‐31 shows time series of 

water surface elevation on the beach profile at MOP station 970 at MCBCP under the 
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The results (Figure 4‐34) showed that plausible values were obtained for the beach slope, 

and that these values do increase with increasing wave attack as hypothesized above. The 

differences in runup from the two methods could also be explained by the different basis 

for the two approaches, Stockdon et al. (2006) being based on field data, and the XBeach 

results being based on a theoretical model in which simplifying assumptions may have 

limited our ability to reproduce conditions that are equivalent to the field. For example, the 

XBeach simulations assumed normally incident waves (zero directional spread) while the 

Stockdon results are for natural waves (finite directional spread). Bowers (1992) showed 

that "even a relatively narrow RMS spread of 22.5° in short crested (e.g. finite directional 

spread) incoming waves will almost halve the long (infragravity) wave height associated 

with long crested unidirectional (e.g. zero spread) waves." In any case, there is still much to 

investigate in the application of these approaches to sea level rise impacts, but the 

reasonable agreement provides sufficient confidence to apply the results in the current 

study. 

 

Figure 4‐32. Comparison of runup from Stockdon et al. (2006) versus the XBeach results at NBC. The dashed 

line is a polynomial best fit. 
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Figure 4‐33. Comparison of runup from Stockdon et al. (2006) versus the XBeach results at MCBCP. The 

dashed line is a polynomial best fit. 

 

Figure 4‐34. Best‐fit beach slopes for concurrence between the XBeach simulated runup values and the 

Stockdon et al. (2006) slope dependent runup estimates. 
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4.2 Delineation of the Coastal System 

Coastal delineation is the process of acquiring, transforming and inter‐calibrating the 

diverse set of multi‐source raster and vector data needed to produce a self‐consistent, high‐

resolution coastal terrain, bathymetry and engineered‐infrastructure model (Zhang, 2010; 

Titus and Richman, 2001; Poulter and Halpin, 2008).  The development of a high‐quality 

terrain and bathymetry basemap is essential to all parts of this project.  In order to 

effectively assess the vulnerabilities to engineered infrastructure it is necessary to have 

high‐resolution data with sufficient horizontal and vertical control.  The projected changes 

in sea‐level are measured in meters so that vertical errors that are large fractions of a meter 

contribute significantly to uncertainties in any subsequent analyses.  To minimize these 

errors it is critical to have a sound vertical datum with the ability to locally correct it to 

engineering‐quality resolution (i.e., accuracy and precision).     

Our project convention was to reference all surveys to the same vertical datum, NAVD88, 

and horizontal datum, North American Datum 1983 (NAD83).   Because the integrated 

basemap has multi‐source component data with variable accuracy and precision in addition 

to differences in datums, the first step was to establish what the datum errors are in each 

source and then transform each one individually and synthesize a fused, self‐consistent 

dataset that can be progressively improved as better data are made available.  The 

challenge for this project was to produce the best‐possible basemap at the 2‐meter 

(horizontal) and sub‐meter (vertical) range in order to be meaningful in the context of 

projections of a few meters of sea‐level rise with additional water‐level forcing by weather 

and tides.  These scales of measurement are ultimately needed for engineering evaluation 

of impacts to structures and natural resources from rising sea‐level including contributions 

from tides and storms imposed on eustatic changes.  

The overall approach to delineating the coastal system was to construct geospatial models 

of the terrestrial and marine topography using the best‐available data sources into 

geospatial basemaps. They are basemaps in the sense that are the underlying data layer for 

all subsequent analyses; not because they describe military bases. On top of these 

basemaps we superimposed other datasets to produce new models of the location of 

interest, Naval Base Coronado (NBC) or Marine Corps Base Camp Pendleton (MCBCP) for a 

given sea‐level rise scenario as defined in Section 4.1. NBC and MCBCP were modeled 

individually to limit the spatial extents of each basemap. All spatial models were 

constructed using the NAVD88 vertical and NAD83 horizontal datums at 2‐meter resolution 

to maximize the utility of the approximately 1‐meter Coastal LiDAR data at a manageable 
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data volume. The models for NBC are approximately 250 megabytes (MB) and 

approximately 700 MB for MCBCP as stored in NetCDF format. 

To optimally delineate the coastal system, we decomposed each setting into terrestrial, 

littoral and bathymetric domains. The terrestrial domain was modeled using a combination 

of LiDAR from the US Army Corps of Engineers and Scripps Institution of Oceanography 

(SIO) with gaps filled in using USGS data (Barnard and Hoover, 2010). We refer to the SIO 

LiDAR as coastal LiDAR to differentiate it since it has been extensively field‐controlled 

during data acquisition and post‐processing by the SIO Coastal Studies Group (pers. comm, 

Prof. Robert Guza, SIO Coastal Studies Group). The littoral domain was modeled using a new 

method developed for this project based on beach profiles collected by various 

organizations since 1950. The bathymetric domain was modeled using a combination of 

data from the USGS (Barnard and Hoover, 2010) and the US Navy 29 . The general workflow 

for the construction of the elevation models is shown in Figure 4‐35. 

4.2.1 Terrain Data and Methods 

A wide range of data sources were reviewed in order to select those used in this study. The 

data sources were chosen with preference given to those of highest horizontal and vertical 

resolution but also to the degree of confidence with which their quality can be determined 

with respect to vertical and horizontal control. Software was written to convert the source 

data from their native format and reference frame to enable validation and quality control 

as well as to produce a standardized set of basemap products. The programming was done 

in Bash, Perl, Matlab, R, SAS, GMT, MB‐System, Qgis, GRASS and Fledermaus. Data products 

were produced using community‐standard, interoperable formats as shapefiles, NetCDF, 

and American Standard Code for Information Interchange (ASCII) text files. The data sources 

were blended using the MB‐system tool (Caress and Chayes, 1995). The data sources are 

listed in Table 4‐5 and Table 4‐6 respectively. Table 4‐7 and Table 4‐8 show the initial biases 

in the USGS and USACE LiDAR data that were used to calibrate these data sets to the 

previously ground‐truthed SIO coastal data. Figure 4‐36 shows an example of the fusing 

process for the USACE LiDAR with the SIO coastal LiDAR for MCBCP, and Figure 4‐37 shows 

the coverage from the USGS data. The primary data gap for the purposes of this work was 

the lack of good high‐resolution topographic data for the littoral zone.  

  

                                                       
29 Courtesy of M. Perdue and B. Chadwick 
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Figure 4‐35. Overall data processing workflow for prodducing calibrated, 
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interoperable dataa products from soource data. 
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Littoral‐zone modeling was accomplished using the approach illustrated in Figure 4‐38. We 

employed transect lines, referred to as MOP (Coastal Data Information Program (CDIP) 

MOnitoring and Prediction System) lines30 arranged orthogonally alongshore in the offshore 

direction. These were used to interpolate the fiducial transects as shown in Figure 4‐38B, C. 

The resulting interpolated transects were then applied to the original transects to replace 

the littoral zone extents as shown in Figure 4‐38B. Once this was done the new, improved 

profiles were used to construct a new littoral zone model using a near‐neighbor algorithm. 

This surface was then resampled, cleaned of NaNs and anomalous edge values and 

combined into the final geophysical model used in the subsequent segmented beach 

modeling and flood modeling. 

MOP transect end‐points were used to generate transects with 1000m (NBC) and 800m 

(MCBCP) seaward extents at each end and the resulting set of transects to sample the base 

model and recover the NAVD88 elevation at the (Easting, Northing) locations. These were 

used to compute distance along transect relative to horizontal zero defined by a selected 

elevation within that LiDAR data that maximized the back‐beach extent into the littoral 

zone. These were then combined into a set of files (one per MOP station) containing 

(Easting, Northing, Longitude, Latitude, Elevation, Distance) used to compute spline 

functions at observed locations for selected observational dates chosen to best reflect the 

seasonal erosion occurring during the winter. The spline functions were used to create a 

high‐density (3500 points) along‐transect and use these locations to interpolate elevations 

at these locations from the spline function. The back‐beach and off‐shore limits define a 

section of the basemodel to be replaced with an interpolated profile based on the high‐

density locations. The interpolated observational profiles were censored at the defined 

cutoff and attach its landward end to the back‐beach cutoff to avoid spurious values being 

blended with the truncated LiDAR. The substituted profile was scaled to meet the first 

landward point on the censored off‐shore profile and along‐track distances were offset to 

the point such that d=0 where z=0 where landward positions are negative and seaward 

positions are positive. 

A georeferenced version of these transects was used to write out a new set of files for 

(Easting, Northing, Elevation, Distance) with the name of the MOP transect as part of the 

filename but not in the file itself as a field so the data can be combined into a dataset for 

computing a surface. All data and software was converted to UTM11N in order to work with 

                                                       
30 Courtesy of W. O’Reilly, 
http://cdip.ucsd.edu/documents/index/product_docs/mops/mop_intro.html 
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4.2.2 Installation Data and Methods 

Installation data to support this project was provided by the Naval Facilities Engineering 

Command (NAVFAC) and Marine Corps Base Camp Pendleton. The receptor‐level 

(consistent with the “screening level” of the framework) and component‐level assessment 

(consistent with the “detailed level” of the framework) methodologies described here 

utilized facility information extracted from the existing GIS and Internet Facility Real Estate 

Data Store (INFADS) software currently used by NAVFAC and MCBCP.  The following is a 

brief discussion of the data types acquired.   

Geographic Information System Data 

Local and regional NAVFAC personnel provided ArcGIS data for NBC and MCBCP.  These 

data included shapefiles for facility information, maps, building data and infrastructure 

data.  The shapefiles consisted of vector data for many types of assets including: buildings, 

roads, parking areas, waterfront structures, natural resources, and other facilities.  Each 

shapefile had attribute data assigned to the individual feature by the installation personnel.  

Attribute data included aspects of the asset such as: facility name, date built, type, facility 

number, size, location, usage description and various other data pertinent to the structure 

as determined by facility planners.  The accuracy of the shapefiles and attribute data varied 

by installation and receptor type. The shapefiles received did not include elevation data, 

MDI, replacement cost, or condition index, because these values, except for elevation data, 

are maintained in an online database (see INFADS below).     

INFADS Data 

The Internet Facility Real Estate Data Store (INFADS) is used by facility planners to manage 

the real estate database.  Current facility information is added to the data base periodically 

by the facility planners and includes: estimated replacement cost, MDI and facility condition 

index (CI). For this study, the existing facility data (MDI and replacement value) from the 

INFADS system were used to provide a uniform method of determining the relative 

importance of each facility and the cost impact of SLR.  For this approach to be effective, it 

is important that the Navy continue to update the facility replacement values and MDIs to 

provide the best data set for future sea level rise assessments. 

Facility Replacement Value   

Three methods of determining facility replacement value were used including INFADS, DoD 

Facility Pricing Guide, and rough order of magnitude (ROM) values as summarized below.   
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INFADS System 

The INFADS system includes an estimated facility replacement value which is “present 

worth” value.  The INFADS facility replacement values have historically proven to be 

approximately 50% below actual, however for this study to be integrated with other 

planning documents used by the Navy it was beneficial to use the replacement values from 

INFADS.  For some assets in the database, a replacement value was not included.  For these 

assets, an alternative method was chosen based on the asset type, which included the 

average unit cost for similar assets, the DoD Facility Pricing Guide, or ROM cost estimate. 

UFC 3‐701‐09 DoD Facility Pricing Guide 

Unified Facilities Criteria (UFC) documents provide planning, design, construction, 

sustainment, restoration, and modernization criteria, and apply to the Military 

Departments, the Defense Agencies, and the DoD Field Activities.  The DoD Facilities Pricing 

Guide supports a spectrum of facility planning, investment, and analysis needs.  The basic 

method provided by the DoD Facility Pricing Guide was a facility quantity (square footage 

basis) multiplied by unit cost ($/ft2) that was adjusted for location, historical records, 

planning and design, supervision inspection and overhead, and contingency (NAVFAC, 2011) 

– reference the equation below: 

Plant Replacement Value = Facility Quantity  x  Replacement Unit Cost  x  Area Cost Factor  x  Historical 
Records Adjustment  x  Planning and Design Factor  x  Supervision Inspection and Overhead Factor  x  
Contingency factor 

ROM Construction Cost Estimate 

If the structure did not have a replacement cost included in the INFADS System, or fall 

within categories of the DoD Facility Pricing Guide, then a ROM value was assigned to the 

facility.  Rough order of magnitude cost estimates were based on experience relative to 

previous projects with a similar facility size and usage.   

Mission Dependency Index 

The MDI is an operational risk management measure that links facilities to mission.  This is 

accomplished by associating specific facilities and evaluating their relationship to the 

Command’s mission readiness in terms of interruptability, relocatability, and replaceability.  

When combined with other metrics, such as facility condition and performance, MDI 

provides the Commander Naval Installations Command (CNIC) with a powerful facilities 

management decision tool.  CNIC has adopted the MDI as a readiness metric for 

distinguishing mission critical facilities from non‐mission critical facilities. MDI can be used 

for multiple purposes including prioritization of shore facility sustainment; restoration and 

modernization; or identification and evaluation of physical security and vulnerability issues 
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Condition Index 

For waterfront structures, the Condition Index is determined from routine structural 

condition assessments.  A Condition Index is assigned to each structure to allow facility 

planners a tool to prioritize repairs between installations and facilities worldwide.  The 

condition assessment rating varies from “Good” to “Critical” as shown in Figure 4‐40.  The 

condition index is a useful metric for weighing the impact of SLR on a facility relative to age, 

replacement cost, and costs associated with adaption to accommodate SLR. 

The Condition Index is used for waterfront structures.  Research has not identified a similar 

US Navy metric for civil infrastructure, buildings, and coastal structures.  The degradation 

rate and potential impacts of deterioration typically identified with waterfront structures 

are more rapid than civil infrastructure, buildings, and coastal structures due to the harsh 

exposure of the marine atmosphere.   

 

Figure 4‐40.  Condition Index ratings used by NAVFAC ESC for waterfront structures. 

Record Drawings 

The local Public Works Officer may have access to Record Drawings (“as‐built”), or recent 

facility repair or upgrade drawings in electronic format.  Record drawings will contain the 

information necessary to conduct a component‐level assessment. 

Assessment 

Rating 

Equivalent 

CI Rating 
Description of Condition 

"Good"  90 

No problems or only minor problems noted.  Structural elements may show 

some very minor deterioration, but no significant reduction in structural 

capacity. 

"Satisfactory"  75 
Minor to moderate defects or deterioration observed, but no overstressing 

observed, but no significant reduction in structural capacity.   

"Fair"  60 

All primary structural elements are sound; but minor to moderate defects or 

deterioration observed.  Localized areas of moderate to advanced deterioration 

may be present, but do not significantly reduce the structural capacity. 

"Poor"  45 
Advanced deterioration or overstressing observed on widespread portions of 

the structure.  Some reducion in structural capacity. 

"Serious"  30 

Advanced deterioration, overstressing or breakage may have significantly 

affected the load bearing capacity of primary structural components.  Local 

failures are possible. 

"Critical"  15 

Very advanced deterioration, overstressing or breakage has resulted in localized 

failure(s) of primary structural components.  More widespread failures are 

possible or likely to occur. 
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4.2.3 Receptor Categories 

For purposes of our framework, we adapted previous coastal infrastructure category 

definitions to align with general categories more commonly used by planners, engineers 

and facilities personnel at military installations. These receptor categories included:  

 Training and Testing Lands  

 Buildings  

 Waterfront Structures  

 Coastal Structures  

 Civil Infrastructure  

 Military and Civilian Personnel  

 Protective Buffers and Natural Resources 

Within our study, we focused on the first five (italics) of these categories to align with both 

project directives and the expertise areas of our team. These categories served as 

fundamental generalized receptors that spanned a reasonable cross section of the potential 

endpoints of interest for coastal military installations. We evaluated the potential 

vulnerabilities of these receptors from sea level rise on a site‐specific basis, but taking a 

fairly broad, screening level approach to maintain sufficient breadth to gauge the overall 

impact to the installation.  

Receptor category characteristics were quantified based on the data described above in 

Section 4.2.2. In general, the geospatial description and associated metadata for each 

category were compiled into shapefiles for each category at each installation. These 

shapefiles were compiled in an Arcview GIS project for visual display and analysis. They 

were also linked to a series of MatLab analysis scripts that were developed to evaluate the 

assessment metrics for each receptor category. Site specific descriptions of the receptor 

categories compiled for NBC and MCBCP are provided in Section 4.4. 

Training and Testing Lands 

The training and testing lands category at NBC and MCBCP focused on sensitive, exposed 

shoreline training beaches. These areas support training for a wide range of military 

commands, using a variety of personnel, vessels, vehicles, equipment, and aircraft to meet 

their military readiness requirements. These areas are particularly sensitive to exposure 

pathways including erosion, inundation and flooding. Figure 4‐41 shows a cross‐section of a 

typical training beach at NBC. The beach area backs up onto the dunes and the highway and 

thus has limited ability to accommodate retreat. Figure 4‐42 shows typical training patterns 
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Coastal Structures 

This category includes a range of coastal structures at NBC and MCBCP whose primary 

purpose is to protect the shoreline and thus sustain operations and missions of the 

installation. This category encompasses structures such as jetties, groins and revetments 

which are used to protect the shoreline and dredged improvements. These receptors are 

susceptible to sea level rise sources particularly through inundation, flooding, and erosion. 

Of particular interest for coastal structures are vulnerabilities associated with changes in 

currents, wave climate and water levels that may influence the functionality and 

performance of coastal structures under various sea level rise scenarios. At NBC, coastal 

structure receptors are concentrated along the protected San Diego Bay shoreline (Figure 

4‐46), while at MCBCP the primary coastal structures are located at the Del Mar Basin. In 

general, existing GIS data for this receptor class was lacking, and these structures were 

digitized from high‐resolution photographic imagery, and then elevations were extracted 

from the digital elevation model. Coastal structure analysis results are presented in Section 

5.2.2.  

Civil Infrastructure  

This receptor category describes a broad category of built infrastructure at NBC and MCBCP 

that is critical to the day‐to‐day operations and mission of the installation. The category 

includes receptors ranging from critical utility infrastructure such as buried utilities, fuel 

transfer/supply, transportation corridors, and storm water conveyance systems. These 

receptors are susceptible to sea level rise sources through all major pathways including 

inundation, flooding, erosion and seawater intrusion. Because of the breadth and 

complexity of this category, we focused our analysis on a subset of elements that exemplify 

the potential impacts from sea level rise. These included transportation infrastructure, 

storm water conveyance systems, airfield surfaces, and recreational areas. These data were 

compiled into receptor‐specific shapefiles using the data sources described in Section 4.4.2.   

4.2.4 Integrated Terrain and Infrastructure Model 

Analysis of the receptor categories described above relied on the integration of the receptor 

data with the terrain data to create an integrated model. The integration consisted 

essentially of an overlay of the shapefiles onto the three dimensional terrain such that 

elevations for the infrastructure could be extracted to evaluate interactions with erosion, 

inundation and flooding areas. The procedure utilized three primary inputs including the 

receptor GIS layers described above, the baseline elevation model, and the modified coastal 
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response of the exposed shorelines primarily through pathways including erosion, 

inundation and flooding (Figure 4‐48). For the purposes of this project, we separate the 

exposed shoreline long‐term response into two categories including beach systems, and 

cliff/beach systems, which are generally representative of much of the southwest US, and 

specifically representative of NBC and MCBCP respectively. Development of methods for 

these two systems is described below. In addition, we have developed a methodology to 

estimate short‐term response for the beach portion of the exposed shorelines. This 

methodology allows seasonal and short term storm response changes in the shoreline 

position to be superimposed on the longer term response to changing sea level.  

 

Figure 4‐48. Pathway response modeling approach. 

Protected shorelines are represented by areas with minimal wave exposure. These areas 

tend to be subject to mean sea level rise, tides, storm surges and other non‐tide 

fluctuations, but not wave impact or runup. For the southwest US, tides are the dominant 

driver of sea level variability for protected shorelines, and it is generally the interaction of 

tides with increasing mean sea level that combines to induce impacts through key pathways 

including inundation and flooding (Figure 4‐48). Because protected shorelines are often 

represented by harbor areas, changes in sea level can also act directly (independent of 

inundation and flooding) on waterfront structures such as piers and wharfs since these 

structures are generally designed to function within a finite range of sea level’ Increasing 

mean sea level can also act within these protected areas to influence tidal currents and 

associated bottom shear stress and thus sediment deposition and transport patterns. For 
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this project, evaluation of protected shoreline areas focused on the San Diego Bay region 

adjacent to NBC which supports a broad range of critical infrastructure for the installation.  

Coastal aquifers can be sensitive to the effects of sea level rise on seawater intrusion. 

Because the flow rate of groundwater within these systems is strongly damped by the soil 

matrix, high‐frequency fluctuations in sea level are generally absent except very near the 

shoreline. For this effort, assessment of seawater intrusion focused on the Santa Margarita 

River Basin at MCBCP. MCBCP’s water supply is produced primarily from aquifers that are 

recharged by percolation from overlying rivers and streams, and Santa Margarita River wells 

provide about 65% of the total water consumed on the Base. We utilized a density‐

dependent groundwater‐flow and solute‐transport model, combined with a range of 

historical data to explore the influence of seawater intrusion under the target range of sea 

level rise scenarios. The simulation utilized monthly mean sea levels as a forcing function, 

combined with a range of potential future groundwater pumping conditions. The simulation 

time frame extended from water year (WY) 1950 to 2100 and the assessment of the effects 

of a sea level rise extended from WY 2000 to 2100.  

4.3.1 Exposed Beach Shoreline Erosion – Long Term Response  

Coastal recession caused by sea level rise is often estimated using the Bruun rule (Bruun 

1962) concepts of equilibrium profile and sediment conservation, originally designed for 

low lying sandy coasts. The original Bruun rule method assumes a fixed active beach profile 

during coastal recession, homogeneous coastal material, and no external sediment sources 

or sinks. Although commonly applied (i.e. Zhang et al, 2004), the Bruun rule assumptions 

are often ignored or not satisfied, prompting much criticism (i.e. Cooper and Pilkey, 2004; 

Pilkey and Cooper, 2004). Coastal settings rarely (if ever) satisfy the original Bruun rule 

assumptions, leading to the use of modifications including heterogeneous coastal material, 

external sediment sources and sinks, and variable inland topography (Dean and 

Maurmeyer, 1983; Hands, 1983; Dean, 1991; Bray and Hooke, 1997; Wolinsky and Murray, 

2009). Alternatively, Revell et al. (2011) developed a downscaled model that predicts 

shoreline retreat at 500‐m intervals based on total maximum water levels, which are 

assumed to be proportional to shoreline retreat, however, no sand budget balance was 

utilized. Here, we build upon the Bruun rule modifications, recent equilibrium modeling 

(Wolinsky and Murray, 2009; Ashton et al., 2011), and established coastal concepts to 

provide estimates of retreat based on coastal system sediment balance and process based 

relationships for coasts where sediment balance is important. 
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Methods development for exposed beach systems focused on a Cross‐Shore Profile 

Equilibrium Model (CSPEM) to simulate long‐term shoreline response related to sea level 

rise at NBC and the areas of MCBCP without cliffs. In addition, we evaluated short‐term 

response of the beaches to variability in wave climate, through the use of an equilibrium 

model (YGOR model, Yates et al. 2009) that was superimposed on the long‐term response. 

Thus the erosion pathway was evaluated as a function of the combined long‐ and short‐

term responses. Inundation and flooding for exposed beaches were evaluated by creating 

new elevation models that represented the simulated long‐term shoreline response at 

certain time snapshots corresponding to the specified sea level conditions. At these 

snapshots, spatially‐varying hydraulic connectivity analysis was performed to assess 

potential inundation and flood footprints. In this case, inundation was defined based on 

events with short return periods (days – months) while flooding was defined as events with 

longer return periods (year – century). 

The long‐term exposed beach response model relied on cross‐shore profile equilibrium 

theory and the highly correlated and seasonal nature of wave‐ and rain‐induced shoreline 

erosion and nearshore sand deposition events in a summer‐dry climate.  It was assumed 

(and supported by historical observations) that at the end of the mild summer‐dry season 

(September‐October) a nearshore portion of a sandy beach's cross‐shore profile always 

returns to the same fixed, fully‐accreted equilibrium shape, relative to the mean water level 

(MWL), but the cross‐shore location of this profile segment varies depending on the MWL 

elevation and local nearshore sand supply. The fixed shape of this fully‐accreted profile (PFA) 

is a function of the nearshore sand size distribution and the average summer‐dry season 

wave climate, both of which were assumed to vary more slowly on long time scales than 

changes in MWL and the local sand supply. On inter‐annual time scales, the PFA migrates in 

the vertical and cross‐shore  directions as a combined function of 1) changes in MWL and 2) 

winter‐wet season changes in the cross‐shore volume of sand available to build the PFA at 

the beginning of the next summer‐dry wave season. 

The Fully‐Accreted Equilibrium Profile  

The PFA (shown schematically in Figure 4‐49) is a fixed shape in the vertical (z) and cross‐

shore (x) directions, and its position within the overall cross‐shore profile, z(x), was defined 

relative to the intersection of PFA with the MWL shoreline location (xo,zo) at the end of the 

summer‐dry season. 
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Vertical and Horizontal Migration of the Annual, Fully‐Accreted Profile  

Two variables cause the PFA to form at a new location at the end of the summer‐dry season 

each year.   

 A change in the nearshore volume, V, owing to a change in the profile z(x) within the 

PFA reference frame (set at the end of the previous summer‐dry season).   This 

causes the local PFA reference frame (green square, Figure 4‐50)  to migrate 

horizontally during the subsequent summer‐dry season until V calculated with a new 

cross‐shore shoreline position, xo + Δxo , equals VFA.  

 A change in the summer‐dry season MWL (e.g. sea level rise). This results in a 

change in the MWL shoreline location, both horizontally and vertically, with an 

identical shift in the PFA reference frame. The two‐dimensional shift in the PFA 

reference frame with a changing MWL generally leads to a change in V, requiring an 

additional horizontal xo + Δxo, reference frame “correction”, as described above, 

until V once again equals VFA .  

In addition to PFA  reference frame volume changes owing to a rising or falling annual 

MWL , annual volume changes “within the green zone” in Figure 4‐50 can occur owing 

to sediment transport processes, e.g.  

 A net alongshore littoral transport gain or loss.  

 A net aeolian transport gain or loss through the shoreward PFA boundary.  

 A cliff or terrace erosion gain through the shoreward PFA boundary.  

 A net cross‐shore transport loss through the seaward PFA boundary. 

By definition, there can be no net loss through the shoreward PFA boundary, or net gain 
through the seaward PFA boundary, owing to shoreward wave transport. 

Cross‐Shore Profile Equilibrium Model 

Given a cross‐shore profile at the end of the summer‐dry season with a defined 

nearshore profile segment that is in its fully‐accreted equilibrium state, VFA can be 

calculated using Equation 4‐6 .   

The annual horizontal migration of the PFA shoreline location (xo,zo) owing to changes in the 

MWL (Δzo) , and/or observed or projected changes in z(x) that change the nearshore sand 

volume by ΔV, can then be estimated by iteratively solving to find the cross‐shore shoreline 

change, Δxo, that results in V = VFA. 
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any case, additional research on defining the most appropriate limits would be useful since 

the choice has implications for the estimation of future beach widths and erosion rates. 

 

Figure 4‐51. Schematic flow chart of the implementation of the Cross‐Shore Profile Equilibrium Model.  
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Beach, cliff, and cliff top portions of the profile were manually interpreted and digitized 

from the extracted profiles. The initial cliff base location was estimated by extending the 

average cliff slope to current mean sea level. Average cliff slope was calculated for each 

transect between the manually selected cliff top and beach‐cliff intersection. 

External Sand Deficit and Supply Scenarios 

In addition to a zero external sand deficit scenario, an additional sand deficit/supply 

scenario was established according to the historical sand budget analysis at NBC undertaken 

by Inman and Masters (1991) and described above. The external sand deficit was estimated 

as the beach change sand deficit minus the anthropogenic input. Normalized alongshore, 

the early (1950‐1978) and late (1983‐1990) period annual deficits were comparable, ranging 

from about 6.6 m3/m/yr at the south end of the cell, to 0 m3/m/yr at the north end (Zuniga 

Jetty). These two external deficit scenarios provide a possible range of future sand budgets 

and were run for each MSLR scenario. 

Testing the Summer‐Dry Fully‐Accreted Profile Hypothesis  

Sea level rise has been small over the ~30 years of measured beach profiles (Bromirski 

et al. 2011), so it is not possible to validate this aspect of shoreline change model. 

Nevertheless, if the FPA is a reasonable description of true summer‐dry season beach 

behavior, a nearshore section of a beach's September‐October profiles should exhibit 

a ~fixed fully‐accreted equilibrium shape relative to the MWL.  The profile should 

return to approximately the same shape and volume relative to the shoreline location 

at the end of each dry season, within the bounds of expected profile measurement 

uncertainties, regardless of changes in the absolute shoreline location or total cross 

shore sand volume. 

More specifically, fixed z limits should be able to be chosen where the resulting inverse 

mean slope,  Δx/Δz, remains ~constant in the end‐of‐dry‐season profiles over many 

years. Some historical survey locations (e.g. Del Mar) have exhibited significant 

changes in end‐of‐dry‐season shoreline location in recent decades, while others have 

not.   These observed differences should be consistent with, and explained by, the 

local sand volume term in Equation 4‐8. 

General Implications for Shoreline Evolution with Sea Level Rise and Sand Supply Loss  

The relationships derived from the CSPEM model provide insight into expected response of 

Southwest US exposed beach shorelines. For example, using typical cross shore beach 

profiles in San Diego County  (Equation 4‐10)  Δx/Δz ~ 1000m/10m ~ 100, a 100% sandy 
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shoreline profile would migrate ~10m landward for every 0.1m in mean sea level rise. For 

similar  (Equation 4‐9) 1/(h+d) ~ 1/10m ~ 0.1, a 100% sandy shoreline profile would migrate 

~10m landward for every 100m
3

/m of nearshore sand volume loss owing to reduced sand 

supply from streams or bluffs, or offshore transport beyond z=‐d during extreme storms. 

Shorelines with steeper equilibrium profiles (e.g. coarser sand sizes) have smaller Δx/Δz 

ratios and will migrate more slowly with sea level rise (Equation 4‐10). Shorelines with 

larger tide ranges (larger h), finer sediments (larger d), and/or more energetic summer 

beach building swells (larger d), have smaller values of 1/(h+d), and will migrate more 

slowly for a given change in nearshore sand volume (Equation 4‐9). 

Long‐Term Beach Retreat 

Using the CSPEM methodology and the constraints described above, we evaluated the long‐

term beach system response and developed erosion footprints for the beach system at NBC. 

The method was also used at the beach areas at MCBCP that were not backed by cliffs. The 

results spanned the target range of sea level rise as well as variations in the external sand 

deficit and supply. Sensitivity was evaluated for modeling assumptions, in particular 

assumptions regarding the extent of the active beach profile. Erosion footprints were 

developed for snapshots along the 2 m SLR curve that correspond to sea level increases of 

0.5, 1.0, 1.5 and 2.0 m, and timeframes of 2046, 2069, 2087 and 2100. These cases are 

referred to as the “first occurrence” conditions because they represent the earliest time 

that these sea level values would occur based on the assumed range of sea levels used in 

the study. Example runs are shown in Figure 4‐53 showing the comparison of beach retreat 

along the 2m sea level rise trajectory for conditions with and without sand budget deficits. 

The footprints were developed using the sand deficit estimates from Inman and Masters 

(1991) as the most conservative assumption. The footprint for each condition is represented 

by a polygon which spans alongshore the entire active shoreline of NBC, and spans cross 

shore between the baseline (year 2000) shoreline position and the shoreline position for 

the snapshot time of interest. Results for the beach system response, and the resulting 

erosion footprints are presented in Section 5.3.1. 

4.3.2 Exposed Cliff/Beach Shoreline Erosion – Long Term Response 

Methods development for exposed cliff/beach systems focused on a unique Conditionally 

Decoupled Profile Model (CDPM) to simulate long‐term shoreline response related to sea 

level rise at MCBCP. In addition, we evaluated short‐term response of the beaches to 

variability in wave climate, through the use of an equilibrium model (YGOR model) that was 

superimposed on the long‐term response. Thus the erosion pathway was evaluated as a 
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function of the combined long‐ and short‐term responses. Inundation and flooding were 

evaluated by creating new elevation models that represented the simulated long‐term 

shoreline response at certain time snapshots corresponding to the specified sea level 

conditions. At these snapshots, spatially‐varying hydraulic connectivity analysis was 

performed to assess potential inundation and flood footprints. In this case, inundation was 

defined based on events with short return periods (days – months) while flooding was 

defined as events with longer return periods (year – century).  

 

Figure 4‐53. Example of beach profile adjustments and (a and b), and beach retreat (c) for a 100‐yr 

simulation with 2 m MSLR. Profiles in (a) include the sand budget deficit, while profiles in (b) assume zero 

deficit and retreat driven only by sea level rise.  
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where R represents cliff retreat ; S is the amount of MSLR; L is the length of active profile, G 

denotes the external sand surplus or deficit volume per unit length of coast; P is the fraction 

of coarse sand in the eroding cliff; Hഥ	is the average cliff height over the retreat distance; and 

h represents the closure depth. 

For constant cliff‐top inland slope  (positive for increasing inland elevation):   

Equation 4‐13 

   

where Ho represents the initial cliff‐edge height. 

For constant non‐zero inland slopes, the average cliff height (ܪഥ) is dependent on the retreat 

distance. Combining Equation 4‐12 and Equation 4‐13 yields a quadratic solution for the cliff 

retreat (Equation 4‐14).  

Equation 4‐14 

 

If the inland slope is zero, then  is independent of retreat distance and combining 

Equation 4‐12 and Equation 4‐13 yields Equation 4‐15. 

Equation 4‐15 

  

Other simple methods for estimating cliff retreat include historical extrapolation (National 

Research Council, 1987; Leatherman, 1990), a simplified Sunamura (1988) shore platform 

geometric model for cliffs without a dissipative beach (Bray and Hooke, 1997), and a 

simplified numerical model (SCAPE) equation for low sand‐volume beaches (Walkden and 

Dickson, 2008). These models follow the general geometrical form of Equation 4‐16 (Ashton 

et al. 2011), where the exponent m = 0 for no response (i.e. retreat independent of MSLR); 

m = 1 for basic historical extrapolation, Bruun Rule or modified Bruun Rule models, and 

Sunamara’s simplified platform model (Bray and Hooke 1997); and 0 < m < 1 for simplified 
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SCAPE (m = 0.5, Walkden and Dickson, 2008), and Sunamura’s (1988) original platform 

model (Ashton et al. 2011).  

Equation 4‐16 

  

where R1, R2 represent past and future cliff retreat, and S1, S2 are past and future MSLR, 

respectively. Bray and Hooke (1997), Dickson et al. (2007), Dar and Dar (2009), and Brooks 

and Spencer (2012) provide applications and comparisons of these and other models. 

Here, we build upon the Bruun Rule modifications, recent equilibrium profile cliff modeling 

(Wolinsky and Murray 2009, Ashton et al. 2011), and established rock coast concepts to 

provide straightforward estimates of cliff retreat based on coastal system sand balance, 

process‐based relationships, and conditionally decoupled active beach and cliff profiles.  

This model is specifically adapted for cliffed coasts fronted by beaches, but applicable to 

other coasts where sand balance is important. 

Conditionally Decoupled Profile Model Framework 

This section describes a new approach to beach/cliff erosion modeling based on the idea 

that the beach and cliff retreat can be conditionally de‐coupled. The model is abbreviated 

as CDPM (Young et al. 2014). Previous modified Bruun Rule models used simplified profiles 

that neglected beach/platform depth, initial cliff base position, and variable upper beach 

and inland topography. Additionally, they generally assume the upper boundary of the 

active beach and cliff base is coincident with the profile beach‐cliff intersection (Figure 

4‐54). However, the actual upper active beach boundary can be shoreward of this 

intersection if the beach berm is wide and/or elevated. In this case, the beach berm 

protects the cliff from wave action and delays wave‐driven erosion during MSLR by 

providing a sand buffer. While the beach prevents marine action on the cliff toe, subaerial 

processes can continue to erode the terrace through surface wear and gullying, and the cliff 

face, thus providing additional sand to maintain the buffer.  

CDPM accounts for these processes using an iterative solution, actual complex cliff‐beach 

profiles, and an estimated beach depth of closure. New additions to previous Bruun Rule 

modifications include subaerial cliff erosion, an upper limit for the active beach profile (thus 

decoupling the beach and cliff retreat), beach/substrate depth, and variable inland 

topography. 
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The general model (Figure 4‐55) combines wave‐driven cliff retreat, process‐based subaerial 

erosion, MSLR‐driven shoreline position adjustment, and external sand supply/deficit to 

obtain beach sand balance for a cliff‐beach cross shore transect system. Sand balance is 

achieved through external (i.e. coastal gully) and local (derived from cliff retreat) sand 

supply, and available beach sands within the active beach profile (Figure 4‐56a).  

For each time step, the initial sand availability (VAvailable) is estimated as the total sand input 

from gully erosion (VGully), subaerial cliff erosion (VCliff‐SA), and any estimated external long‐

term sand supply/deficit of the region (VDeficit). Next, the active beach profile shifts vertically 

(Figure 4‐56b) equal to the amount of projected sea level rise over the interval, and the 

sand needed to accommodate the shift is calculated (VBeach). If more sand is needed to 

maintain the beach adjustment than available (VBeach > VAvailable), then the active beach 

profile is shifted landward (Figure 4‐56c) and VBeach is recalculated until sand balance is 

achieved. If the active profile shifts far enough landward to intersect the cliff profile, marine 

driven cliff retreat occurs (Figure 4‐56d).  The eroded cliff volume is reduced for the amount 

of coarse sand in the cliff material as this erosion provides additional sand to the beach 

(VAvailable). The model was run with 10‐yr time steps and 1m landward shift increments for 

100‐yr scenarios.  

Active Profile 

The upper and lower active beach profile boundaries were estimated as the 10‐yr return‐

period total water level and the closure depth associated with the 10‐yr return‐period 

significant wave height, respectively. The 10‐yr return‐period total water was estimated 

from a 100 year (2000‐2100) trajectory of future sea level constituents using extreme 

probability statistics for tide, non‐tide residual (NTR, i.e. storm surge and other sea level 

enhancements such as El Niño, but excluding wave runup) and wave runup, and monthly 

extreme value analysis (Chadwick et al. 2011). The closure depth was estimated from the 

method of Hallermeier (1978, 1981) using the 10‐yr return‐period significant wave height 

(Hs) and associated wave period (Tp) from the same 100‐year sea level trajectory. 
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onditionally deecoupled profile sand balancce model. 

 



 

 

Fi

bo

am

 

igure 4‐56. Mo

ounded by tot

mount of sea l

odel profile adj

tal water level 

level rise and (

justments con

and closure d

(c) landward to

227

nsidering sea le

epth. The activ

o obtain (d) sa

evel rise. (a) In

ve beach profi

and balance. 

nitial profile an

ile shifts (b) ve

 

nd active beac

ertically equal 

h 

to the 



 

 228

Conceptually, the 10‐yr return period was chosen to represent a moderately high total 

water level condition that occurred frequently enough to be influential over the modeled 

time period of interest (100 years). Conditions corresponding to other appropriate return 

periods can be modeled, or a number of randomly sequenced conditions could be 

constructed to more realistically mimic nature. The choice of the 10‐yr return period total 

water level scenario for the upper limit, and the 10‐yr return period Hs for the closure depth 

is sufficient to illustrate the methodology. In any case, additional research on defining the 

most appropriate limits would be useful since the choice has implications for the estimation 

of future beach widths and erosion rates. 

The upper and lower active beach profile boundaries were estimated as the 10‐yr total 

water level and closure depth, respectively. The 10‐yr total water was estimated using joint 

probability statistics for tide, non‐tide residual (NTR, i.e. storm surge and other sea level 

enhancements such as El Niño, but excluding wave runup) and wave runup, and monthly 

extreme value analysis. The closure depth was estimated using significant wave height (Hs) 

and peak period (Tp) projections and the method of Hallermeier (1978; 1981).  

Choosing the 10‐yr return period total water level scenario was somewhat arbitrary but 

does lay (logarithmically) half‐way between the annual and century return periods. It is also 

sufficient to illustrate the methodology, which was the primary purpose of the SERDP‐

funded project. Conditions corresponding to other appropriate return periods can be 

modeled, or a number of randomly sequenced conditions could be constructed to more 

realistically mimic nature.  

Beach and Cliff Profile Adjustments  

Partially decoupling the active beach and cliff profiles allows the beach and cliff to retreat at 

different initial rates. Typical profile adjustments (Figure 4‐57a) illustrate that the initial 

beach landward shifts can obtain beach profile sand balance without marine‐driven cliff 

erosion, which is qualitatively realistic. During this time, the back‐beach buffer width 

decreases and only subaerial processes cause cliff erosion (Figure 4‐57b), which occurs on 

the exposed cliff face, the terrace surface and from gullying (Figure 4‐57a). Only when the 

beach buffer width is reduced to zero do waves begin to erode the cliff base. For simplicity, 

all the overlying material is assumed to fail at once, thus generally maintaining the initial 

cliff face profile. In the CDPM, wave‐driven cliff retreat occurs at the same rate as the beach 

retreat, the two being re‐coupled during that time. Similar to other modified Bruun Rule 

models, the cliff base‐back beach intersection notch shifts vertically by the MSLR. 
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(Bromirski et al. 2011, 2012). Total water level runup analysis (Young et al., 2009) and a 

review of oblique photos from the California Coastal Records Project 

(http://www.californiacoastline.org/) show no evidence of wave‐induced cliff erosion, 

beach change at the cliff base, or indications of cliff‐wave impact for this time period.  

Some back‐beach topography changes did occur where talus was deposited on the beach at 

the cliff base, or where gullies intersected the cliff line and washed out onto the beach. 

However, these changes are not wave related, and it appears a relatively wide and elevated 

beach prevented waves from reaching the cliffs during that period. For these reasons, the 

only sediments contributed to the beach over this interval were derived from subaerial cliff 

face or terrace erosion, which was mainly in the form of gullying. A time series of seasonal 

LiDAR data available during this time permits change detection, estimation of subaerial 

eroded volumes, and derivation of a process‐based relationship driven by local 

precipitation. The amount of subaerial sediment supply to the beach was adjusted for 

coarse sand content of the source material (Young et al., 2010b). 

Topographic Change Detection 

Airborne LiDAR data collected each spring and fall from May 2002 through March 2009 

through the Southern California Beach Processes Study (http://cdip.ucsd.edu/SCBPS/) were 

utilized for topographic change detection. SCBPS used an Optech Inc. Airborne Laser Terrain 

Mapper 1225 that made approximately four passes at an altitude of 300‐1100 m during 

each survey. Typical survey swath extent varied from the nearshore and beach area to 250‐

500 m inland. 

LiDAR data were processed into 0.5‐m resolution digital elevation models using the second 

of two LiDAR returns (the last return is the most representative of the ground surface) and a 

modified “natural neighbors” technique, which removes over‐vertical features and 

maintains vertical cliff edges and complex topography (Young et al., 2011). The large 

majority of the cliffs lack the material strength required to maintain over‐vertical features. 

However, localized areas of sea caves and notches may temporarily exist. 

A time series of topographic change for 14 time intervals from May 2002‐September 2008 

were obtained by differencing successive digital elevation maps to create digital change 

grids, shows erosion (negative changes) and accretion (positive changes) at talus deposits 

(Figure 4‐58). The net change (sum of positive and negative changes) is the material volume 

removed. The digital change grids were filtered and edited to remove noise and erroneous 

data.  
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Long‐Term Cliff/Beach Retreat 

Using the CDPM methodology and the constraints described above, we evaluated the long‐

term cliff/beach system response and developed erosion footprints for the cliff/beach 

system at MCBCP. The results spanned the target range of sea level rise as well as variations 

in the external sand deficit and supply. Sensitivity was evaluated for modeling assumptions, 

in particular assumptions regarding the extent of the active beach profile. Erosion footprints 

were developed for snapshots along the 2 m SLR curve that correspond to sea level 

increases of 0.5, 1.0, 1.5 and 2.0 m, and timeframes of 2046, 2069, 2087 and 2100. These 

cases are referred to as the “first occurrence” conditions because they represent the 

earliest time that these sea level values would occur based on the assumed range of sea 

levels used in the study. The footprints were developed using the 15 m3/m/yr sand deficit as 

the most conservative assumption. The footprint for each condition is represented by a 

polygon which spans alongshore the entire active shoreline of MCBCP, and spans cross 

shore between the baseline (year 2000) shoreline position and the shoreline position for 

the snapshot time of interest. Results for the cliff/beach system response, and the resulting 

erosion footprints are presented in Section 5.3.1. 

4.3.3 Exposed Beach Erosion – Short Term Response 

Short term changes in shoreline position, or beach width, are those driven directly by wave 

forces that move sand mainly in the cross‐shore direction. These are most pronounced on 

the time scale of wave storms (i.e. a few days to several weeks), and with seasonal changes 

in wave energy. In the present study we adopted the equilibrium model published by Yates 

et al. (2009), which we refer to as “YGOR” after the authors. It was developed using data 

from Torrey Pines Beach in San Diego, CA and applied at MCBCP and San Onofre, among 

others. It is therefore deemed suitable for wave conditions at MCBCP and NBC.  

The model is based on the concept that any beach will reach an equilibrium configuration 

with respect to shoreline position and profile shape that depends on the wave conditions 

and other factors such as sand availability and grain size (Dean, 1977; Larson and Kraus, 

1989; Inman et al., 1993; Dean, 1991; Dubois, 1990; Kriebel and Dean, 1993; and Miller and 

Dean, 2004). This hypothesis has two parts: First, that a beach subject to steady wave 

conditions will evolve to and remain at a unique equilibrium configuration, and second, that 

the rate of change is proportional to both the wave energy and the wave energy dis‐

equilibrium. This implies that a beach wider than its equilibrium width will erode faster than 

the same beach narrower than equilibrium, even for the same wave energy. The sole 

condition addressed in the YGOR model is shoreline position (at MSL elevation) relative to 
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the equilibrium. In essence, the model exploits the observation‐based expectation that a 

beach will retreat (advance) faster as the wave energy increases (decreases) and also faster 

(slower) if it is initially wider (narrower) than its equilibrium width.  

Defining the wave energy as ܧ ൌ ሺ	ଵ
ସ
 is the significant wave height and	ௌܪ where	ௌሻଶܪ	

assuming that an equilibrium shoreline position S exists for any equilibrium energy ܧொ such 

that ܧொ ൌ ܽܵ  ܾ, where a and b are constants to be determined. If the departure of wave 

energy from equilibrium is defined as ∆ܧ ൌ ܧ െ  if the waves are larger 0 < ܧ∆ ொ, thenܧ

than equilibrium (erosion) and ∆0 > ܧ if they are smaller (accretion). YGOR further assumes 

that the rate of change in shoreline position ݀ܵ/݀ݐ ൌ ଵܧ	േܥ ଶ⁄  are ିܥ ା andܥ where ,ܧ∆

constants that apply if ∆0 > ܧ or ∆0 < ܧ, respectively. This assumption is based on the 

general ideas outlined above, and some trials using different wave energy formulations by 

Yates et al. (2009). It is important to realize that essentially no physics underlies the 

formulation. Nevertheless, with this formulation the shoreline position S at any time can 

then be computed iteratively from the position ܵ at an earlier time using ܵ ൌ ܵ  ∆ܵ, 

where ∆ܵ ൌ ଵܧ	േܥ ଶ⁄  is based only on the given function of wave energy integrated ݐ݀	ܧ∆

over the interval. 

Yates et al. (2009) utilized five‐years of hourly nearshore wave measurements and weekly 

or monthly shoreline position surveys at Torrey Pines Beach to develop and calibrate the 

model. They found that calibration could be successful with as little as two years of monthly 

observations or with five years of ideally‐timed semi‐annual observations. More critical 

were the continuity of wave observations (or reconstructions), which must resolve 

individual storms in their erosion phases and during the subsequent recovery. Yates et al. 

(2009) used the first two years of the Torrey Pines Beach observations to “train” the model 

by determining the four free parameter coefficients (a, b, ܥା, and ିܥ) using complicated 

“simulated annealing” (Barth and Wunsch 1990) and “surrogate management framework” 

(Booker et al, 1999; Marsden et al, 2004) methods. RMS fits were typically about 3 m. Yates 

et al. (2009) tabulated the range of values of the free parameters for various beaches. They 

then compared the model “predictions” to the observations for the remaining three years 

of their data set with surprisingly good results and RMS fits ranging up to about 5 m.  

Nevertheless, YGOR model shortcomings are numerous. The most serious is that it is purely 

empirical with no actual physical basis underlying either the assumed relationship between 

wave energy and shoreline change, or the apparent relationship between the four 

constants and beach slope and sand grain size.  
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In its present form, the model also seems to overestimate the erosion from large wave 

storms. Part of the problem here is that the formulation was developed without the benefit 

of beach change data documenting peak erosion conditions during truly severe storm 

events such as those of the 1982‐1983 El Niño winter. Furthermore, some crucial physical 

constraints and variables are neglected in the model, including: the presence of any 

underlying bedrock shore platform, which would limit the short‐term “beach” erosion once 

all the overlying sand is gone; long‐term erosion (accretion) of shoreline position due to 

sand shortages (surpluses), and; wave‐driven, topographic, or structure‐induced gradients 

in longshore sand transport rate where divergence (convergence) causes erosion 

(accretion). Research efforts are currently underway to address these shortcomings. 

In the present study, we did not implement the free parameter computation methods, but 

instead started with the Yates et al. (2009) parameter values and adjusted them ad hoc to 

fit our six‐hour interval wave hindcasts to the available beach width observations. A sample 

of results is shown in Figure 4‐61 for Coronado City Beach (Range SS0160) where the RMS 

difference between model and observations is about 8 m over the nearly 30‐year period 

from 1983‐2010. Much of the model‐data difference arises from the later (2003‐2010) 

downward trend in shoreline position likely as a result of sand supply shortages not 

modeled by YGOR. Errors also arise from the aforementioned tendency to overestimate 

erosion from large wave events, as illustrated during 1986‐1987 and 1997‐1998 in Figure 

4‐61. As indicated, no beach measurements are available from the 1982‐1983 winter during 

which visual observations and anecdotal evidence suggested that beach retreat was severe 

(NAS 1984). Even when data from severe winters exists, the timing of beach measurements 

rarely if ever coincides with the maximum erosion simply because of the difficulty of 

measuring beach condition during a storm. Both the model and anecdotal evidence 

suggests that beach width recovery is rapid once storm wave energy decreases. The post‐

storm measurements then occur while the beach is building rapidly, as suggested by the 

data shown in Figure 4‐61 from the 1986‐1987 and 1997‐1998 events. 

All in all, the results were deemed satisfactory, first of all because of the acceptable fit, and 

second perhaps more importantly, by the fact that the model remained stable over the 30‐

year calculation that comprised 43,832 six‐hour iterations. The YGOR model had never 

before been run for this long (although five years of one‐hour data produces the same 

number of iterations). 
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Figure 4‐63. Example profiles at NBC forming the basis for beach surfaces that were inserted into the 

baseline elevation model to create the future elevation models. 
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4.3.5 Exposed Shorelines – Inundation and Flooding 

New methods were developed for the evaluation of inundation and flooding along exposed 

shorelines that incorporated changes to the underlying elevation model due to erosion, 

spatially varying total water level exposures, and requirements for complete hydraulic 

connectivity. The shoreline change modeling described above for beach systems and 

cliff/beach systems was utilized to develop new shoreline profiles along the coast of both 

installations for the range of future sea level scenarios. These profiles were then 

interpolated and masked to create a new shoreline surface for each scenario that was 

inserted into the original elevation model to create a new elevation model for the future 

scenario as described above in Section 4.2.1. Total water levels at each coastal station 

associated with a range of different return periods were then applied to using a hydraulic 

connectivity algorithm to simulate inundation and flooding. A method was developed using 

a sliding window of adjustable longshore scale to allow for a reasonable degree of lateral 

flooding along the upland topography.  

Inundation and Flooding Scenarios 

Inundation and flooding were examined across a continuum of total water levels defined 

through combined variations in sea level rise and return period total water level events. 

These scenarios spanned five sea level rise conditions from 0‐2 m, and 5 return periods 

(week, month, year, decade, century) for a total of 25 scenarios at each MOP station for 

each installation. The development of these scenarios is detailed in Section 4.1, and the 

results are presented in Section 5.1. In the context of this project, we defined inundation as 

a process that leads to the frequent (week‐month return) exposure of coastal areas to 

wetting, while flooding was considered to represent infrequent to rare events with long 

return periods (year‐century). While the distinction is academic from the standpoint of how 

our methodology was applied, it had implications for interpreting the impacts to the 

installations since both the magnitude and frequency of the events can be important in 

terms of effects to infrastructure and operations. 

Shoreline Segmentation 

The shoreline change analysis and scenario development methods described above provide 

a relatively high‐resolution definition of future shoreline conditions and water levels. The 

results are aligned onto MOP stations with a long‐shore spacing of about 100 m. If the 

water levels associated with these scenarios are applied with hydraulic connectivity analysis 

to individual MOP‐bounded segments, the resulting flood maps take on an un‐natural 

segmented characteristic based on the MOP segment boundaries which limit lateral 
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movement of water. If this constraint is completely relaxed, then the entire study area takes 

on the water level of the highest segment. To provide a balance between maintaining a 

degree of spatial variation in the total water levels, and allowing for lateral connectivity 

between segments, we experimented with a range of folding scales for segment 

connectivity. The folding scale was increased until the choppiness between segments was 

no longer detectable visually, and the area of the wetted footprint approached a stable 

value. For NBC the final folding scale utilized 29 segments, while at MCBCP the final scale 

was 35 segments. While still somewhat qualitative, this method produced results that did 

appear to balance the factors described above, and seems to be an improvement over 

previous methods that either apply a single water level over the entire domain, or only 

within a localized segment.  

Hydraulic Connectivity Analysis 

Using the folding scale described above, inundation and flooding were simulated using 

standard hydraulic connectivity analysis with flood‐fill algorithms. The seed location for the 

analysis was defined within the bounding ocean area of the central segment. The fill was 

constrained laterally to within the central segment and segments within +/‐ the folding 

scale on each side. For NBC, the fill for the exposed shorelines was further constrained by a 

mask file that excluded connectivity within San Diego Bay. The purpose of this mask was to 

prevent the bay from “filling” to the water level of the exposed shorelines which would 

result in unexposed shorelines within the bay being subjected to exposed shoreline total 

water level scenarios. The two‐dimensional flood‐fill was carried out with an 8‐connected 

neighborhood connectivity for each grid cell in the elevation model. The resulting raster 

maps defined the water level in all hydraulically connected areas of the installation for each 

total water level scenario. Results for the application of this methodology are shown in 

Section 5.3.1. 

4.3.6 Protected Bays 

Methods were developed to assess the response to sea level rise of protected bay areas 

such as the San Diego Bay facing portions of NBC. The methods included approaches to 

define water levels in these areas that can influence the operability of waterfront 

structures, methods to evaluate inundation and flooding that could occur from high tides 

interacting with sea level rise, and methods to evaluate changes in currents and associated 

bottom shear that could influence the transport and deposition rates of sediment.  

  



 

 242

Water Levels 

Water levels in the protected areas of San Diego Bay were developed following the same 

methodologies described in Section 4.1 for exposed shorelines, but in the absence of wave 

runup. Thus sea level rise variability was limited to tidal variations, and the non‐tide 

residuals. The return period of water level extremes at NBC were computed from the water 

level time series using the extreme value method of order statistics (Makkonen 2011). The 

resulting scenarios are presented in Section 5.1.2, and the impacts related to the exposure 

along these protected shorelines are presented in Section 5.3.2. 

Inundation and Flooding 

Inundation and flooding analysis for the protected bay areas of NBC were evaluated using 

similar methods to those described above for the exposed shorelines. Total water level 

scenarios were developed for the same range of return periods (week – century), but 

excluding the wave runup contribution. These water levels are thus dominated by tidal 

variations. This simplifies the analysis for the protected shoreline areas because there is 

essentially no spatial variation in the exposure throughout San Diego Bay. So for the 

protected areas, the shoreline segmentation reduces to a single segment for application of 

the hydraulic connectivity. Similarly to the exposed shorelines, the fill for the protected 

shorelines was constrained by a mask file that excluded connectivity within the ocean side 

of NBC. The purpose of this mask was to prevent the ocean from “filling” to the water level 

of the protected shorelines which would result in ocean shorelines being subjected to bay 

total water level scenarios. The two‐dimensional flood‐fill was carried out with an 8‐

connected neighborhood connectivity for each grid cell in the elevation model. The 

resulting raster maps defined the water level in all hydraulically connected areas of the 

installation for each total water level scenario. Results for the application of this 

methodology are shown in Section 5.3.2. 

Changes in Currents and Bottom Shear 

Due to the dominant influence of tidal action from the Pacific Ocean, and the lack of 

significant freshwater inflows during most of the year, currents, mixing, and bottom shear in 

San Diego Bay is well represented in a two dimensional (2‐D) model construct. Over the last 

decade, in collaboration with the U.S. Geological Survey (USGS), we have developed, 

calibrated and validated a two‐dimensional hydrodynamic and transport model, TRIM (Tidal 

Residues Inter‐tidal Mudflat; Figure 4‐64), for San Diego Bay.  The model has been 

calibrated and validated for current day conditions using both measured and historical tide 

and current data (Wang et al., 1998), measured at multiple locations throughout the Bay.  
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Hydrodynamic Modeling 

TRIM model is a 2‐D dynamic model with the model grid covering the entire San Diego Bay 

and part of the Pacific Ocean with boundaries outside the mouth (Figure 4‐64). The TRIM 

model solves the depth‐averaged shallow‐water equations with several assumptions, 

including the hydrostatic (shallow water) approximation, the Boussinesq approximation, 

and incompressibility. It is also assumed that velocity and density are nearly constant over 

the water column.  However, horizontal density gradients are treated explicitly in the 

momentum equations.  Bottom shear stress is approximated using a Manning‐Chezy 

formulation with Manning’s n coefficient assigned as a function of water depth. The TRIM 

model has been previously applied to study hydrodynamics in estuaries on the west coast, 

including San Francisco Bay (Gartner, 1990; Cheng et al., 1993), and San Diego Bay (Wang 

et. al., 1998). 

The San Diego Bay model grid covers an area of 20 km (W‐E) by 15.4 km (S‐N).  The western 

and southern open ocean boundaries are located about 5 km west and 7 km south of Point 

Loma, respectively (Figure 4‐64).  The computational mesh has 30,800 grid nodes at equal 

spacing of 100 m in both x (east) and y (north) directions.  A six‐minute time step is chosen 

for time integration.  Water surface elevation and water velocity are set to zero as the initial 

conditions.  The model is allowed to spin up from quiescent initial condition for two days 

before any model results are saved for analysis. 

The model grid was developed using high‐resolution bathymetry from the same digital 

elevation model developed for the baseline condition for the NBC domain. A total of 5 

model scenarios were conducted: the baseline condition, and the four scenarios with the 

projected sea level rises of 0.5m, 1m, 1.5m and 2m. No other water level constituents 

(waves, storm surge, etc.) were considered in these simulations because they were run for 

extended periods with a focus on identifying general changes in currents and bottom shear 

stress associated with the deeper water depths related to sea level rise, not to evaluate 

extreme events. Simulated currents were compared at four selected locations that are 

important for operations at NBC including Bravo Pier (Station 1), Turning Basin (Station 2), 

Glorietta Bay (Station 3) and In‐Bay Silver Strand (Station 4) (Figure 4‐65).  Simulated 

currents and bottom shear stress were estimated and are presented in the results Section 

5.3.2. 
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Hydrogeology 

The primary source of data on lithology and bottom of alluvium for the hydrogeologic cross‐

section was a cross‐section along the Santa Margarita River developed by Worts and Boss 

(1954, plate 4). The cross‐section of Worts and Boss (1954) included approximately 30 well 

and test hole logs along the study reach. Additional driller’s logs were used to supplement 

the Worts and Boss (1954) cross‐section. Supplemental sources of driller’s logs included: 

additional logs published in appendix 2 of Worts and Boss (1954), archives of the USGS San 

Diego office, available drillers’ logs from the California Department of Water Resources, and 

logs of supply wells (or other well logs that penetrate the entire thickness of the alluvium) 

for Camp Pendleton in the Ysidora, Chappo, and Upper subbasins. The stratigraphic units in 

the SMR basin include Eocene to Miocene rocks and Quaternary alluvial deposits. Eocene to 

Miocene rocks of the San Onofre Breccia and La Jolla Formation make up the basement 

rocks underlying the basin. The Quaternary alluvial deposits overlie the basement. 

Worts and Boss (1954) reported that the Quaternary alluvial deposits are the primary 

water‐bearing formation in the SMR basin. It was assumed that the basement did not 

contribute water to the aquifer system. Worts and Boss (1954) defined two parts of the 

Quaternary alluvial deposits: the upper and lower members, which were termed the upper 

and lower aquifers in this report. The upper aquifer system ranges in thickness from about 

20 to 34 m and is fine‐grained made up of clays and silts (Worts and Boss, 1954). The lower 

aquifer system ranges in thickness from about 15 to 70 m and is coarse grained made up of 

gravels and sands (Worts and Boss, 1954). 

Seawater Intrusion Conceptual Model 

The conceptual model is presented in Figure 4‐67. The bathymetry was based on work by 

Osborne et al. (1983, plate XIV‐D). From the Pacific Ocean moving upstream, there are three 

subbasins of interest: the Ysidora, Chappo, and Upper subbasins. The length of the 

hydrogeologic cross‐section from the coastline to the inland Upper subbasin is 

approximately 14.25 km. The inland boundary of the hydrogeologic cross‐section is located 

upstream Camp Pendleton supply wells in the Upper subbasin. Extending the hydrogeologic 

cross‐section into the Chappo and Upper subbasins permitted consideration of the effects 

of hydraulic gradients and groundwater management in these subbasins on seawater 

intrusion further downgradient. The cross‐section extended from the coastline 

approximately 5.8 km offshore to the 80 m bathymetric contour. The seafloor geometry of 

the conceptual model is indicative of the approximate limits of the offshore ancestral Santa 

Margarita River (Figure 4‐67 and Figure 4‐68). 
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groundwater velocity. Dispersivity is an empirical factor that affects the spreading of a 

solute front, here seawater intrusion, during groundwater transport. Estimates of 

permeability, dispersivity, and porosity were based on published data and qualitative 

matching to historical records. Published data, including drillers’ logs and borehole 

resistivity logs, indicate that the upper alluvium has a lower permeability and dispersivity 

than the alluvium. Table 4‐10 lists the final properties that produced the best match to 

historical records. 

Table 4‐10: Soil properties used in the SMR SUTRA model. 

 

The given set of parameters in Table 4‐10 resulted in a good match to observed 

hydrographs and breakthrough curves. Figure 4‐77 through Figure 4‐81 are hydrographs 

that compare the simulated hydraulic head with the observed water levels at selected wells. 

The simulated hydraulic heads matched the observed seasonal trends and captured the 

recovery (increasing water level) that was present from WY 1960 to 1980 (Figure 4‐77 

through Figure 4‐81). The simulated results did not match the observed water levels in early 

time (WY 1950) and from WY 1979 to 1981. The observed water levels in WY 1950 were 

much lower than the simulated hydraulic heads at wells 9J1, 10B1, 2N4, and 35K5 (Figure 

4‐77 through Figure 4‐80) indicating that the assumed pumping (WY 1960) was probably 

lower than what occurred in reality. The simulated drawdown was greater than the 

observed in WY 1979 to 81 in all the simulated hydrographs (Figure 4‐77 through Figure 

4‐81). During this time there may have been an unknown or unreported water source that 

was not included in the model. This additional water may have come from heavier rainfall 

Property 

Upper 

Alluvium 

Lower 

Alluvium 
Units

Porosity 0.4 0.22   

Horizontal Permeability 3.596E‐12 8.990E‐11 m2 

Vertical Permeability 1.798E‐12 4.495E‐11 m2 

Calculated Horizontal Hydraulic 

Conductivity 
3 76 

m/d 

Calculated Vertical Hydraulic 

Conductivity 
1.5 38 

m/d 

Horizontal Longitudinal 

Dispersivity 
750 1500 

m 

Horizontal Transverse Dispersivity 50 500 m 

Vertical Longitudinal Dispersivity 250 50 m 

Vertical Transverse Dispersivity 50 50 m 
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4.4 Method for Assessment of Vulnerability  

Methods for the assessment of vulnerability were explored under both receptor category 

and receptor component levels of analysis. The methodologies differ primarily in breadth 

and depth, with the receptor‐level assessment retaining to the degree possible the full 

breadth of the installation, but at a relatively shallow level of detail and analysis, and the 

component‐level method focusing on more specific receptors but at a finer level of detail. 

4.4.1  Receptor‐Level Vulnerability Assessment Methods  

The receptor‐level assessment methodology integrates sea level rise scenarios with 

operational and damage impact metrics. For long term planning it is necessary to determine 

the critical sea level elevations which would: (1) impact the day‐to‐day operations of the 

infrastructure and/or (2) make the infrastructure vulnerable to a design storm event.  For 

the receptor‐level assessment, it is necessary to streamline the analysis to get an overall 

view of an installation to determine the breadth of vulnerable facilities and potential 

impacts to operations.   

Overview of the Receptor‐Level Assessment Methodology 

The methodology developed for the receptor‐level assessment of the impacts of SLR on the 

built infrastructure is outlined below. The methodology encompassed the breadth of the 

data compilation, modeling, and analysis methods described in previous sections. This 

included installation and exposure specific sea level rise source scenarios, pathway‐specific 

physical response of the coastal system, and the characteristics sensitivities and response 

functions for the installation receptors (Figure 4‐97). The receptor‐level assessment process 

depends on the quality of the elevation models and GIS database, and it may also be 

affected by the size and complexity of the DoD installation. Following is a discussion of each 

component of the screen level assessment method including the exposure scenarios, 

response pathways, receptors assessed, and the minimum asset information necessary to 

conduct the receptor‐level assessment using this methodology. 

Sea Level Rise Scenarios and Exposure Pathways 

For the receptor‐level assessment, total water levels were determined for NBC and MCBCP 

for a range of combined mean sea level conditions and return period events including: 

week, month, year, decade, and century as shown in Section 5.1.  The total water level 

statistics were developed for three conditions including:   



 

 

In

ex

a

d

Fi

T

T

th

b

fo

T

as

a

b

e

 NBC 

highe

each

 NBC 

insid

with 

in the

n the recepto

xposure pat

pplicable. Re

escribed bel

igure 4‐97. Ove

raining and 

raining and t

hat support 

road range o

orms such as

hese areas s

ssault trainin

irfields; and 

eaches on th

rosion, inun

and MCBCP 

er total wate

 return perio

Protected S

e of San Die

a non‐tide c

e total wate

or‐level asse

hways at ea

eceptor‐spe

low. 

erview of the 

Testing Lan

testing land

training and

of coastal te

s beaches, b

support man

ng; coastal c

beach and b

he wave‐exp

dation and f

Exposed Sh

er level that 

od event.   

horeline:  Lo

go Bay, do n

component. 

r levels for S

essment, the

ch installatio

cific method

Receptor‐leve

ds  

s are a categ

d testing mis

errain and co

bays, estuarie

ny types of tr

components

bay training 

posed shore

flooding asso

267

oreline:  Loc

includes a w

ocations that

not have a w

 Boat wakes

San Diego Ba

ese sea level

on including

dologies for t

l assessment m

gory of recep

sions.  In ma

onditions.  Th

es, rivers, ba

raining and t

 of maneuve

areas.  For t

lines, and th

ociated with

cations expo

wave runup c

t are protect

wave compon

s and wind d

ay.  

l scenarios w

g erosion, inu

the recepto

methodology.

ptors that en

any instance

his category

arrier islands

testing miss

er corridors;

this analysis,

he potential 

h sea level ri

osed to ocea

component 

ted from oc

nent and are

driven waves

were evaluat

undation, an

r‐level impa

ncompass th

es, testing an

y can span m

s, wetlands, 

ions includin

; amphibious

, we focused

impacts to t

se. 

an waves hav

that increas

ean waves, s

e governed b

s were not in

ted for three

nd flooding, 

ct assessme

he coastal la

nd training r

many differen

bluffs and la

ng amphibio

s landing be

d on the trai

these areas f

ve a 

ses for 

such as 

by tides 

ncluded 

e key 

as 

ent are 

 

and areas 

require a 

nt land 

agoons.  

ous 

aches; 

ning 

from 



 

 268

Required Asset Information 

For training and testing lands, the receptor‐level analysis requires an accurate description of 

the spatial extent and boundaries of the training area. While both installations provided 

general shapefiles describing the location of training areas, the spatial delineation in these 

products was generally insufficient to characterize the beach portion of the training area 

that was vulnerable to sea level rise. For example, at NBC, the training shapes generally 

included the offshore boat lanes that are already underwater and thus are not vulnerable, 

and the landward boundary of the training area also needed refinement to match the 

contour of the highway that backs the beach training areas. Knowledge of the training 

activities, frequency, duration, and spatial extent were also important in developing metrics 

of impact for this receptor class.  

Impact Metrics 

From this underlying information, we developed response metrics for the training areas 

that included the following: 

 Baseline training area (m2) and beach width (m) 

 Training area remaining (m2 or % of baseline) 

 Training beach width remaining (m or % of baseline) 

 Damage cost (replenishment $ to maintain baseline)  

Baseline Training Area and Width. The baseline training area was extracted from the 

individual training area shapefiles by loading the files into MatLab and evaluating with the 

“polyarea” function. The baseline training beach width was determined by measuring the 

length of each training area in the GIS, and dividing the length into the area.  

Training Area Remaining. For the erosion pathway, the training area remaining was 

determined by intersection of the original training area shapefile with the corresponding 

erosion footprint polygon using the MatLab “polybool” function, and then subtracting this 

area from the original area. For the inundation and flooding pathways, the training are 

remaining was determined by determining the number of flooded grid cells within the 

training footprint using the MatLab “inpolygon” function, multiplying by the square of the 

grid spacing for the flood model, and then subtracting this area from the original area.  

Training Beach Width Remaining. The training beach width remaining was calculated by 

dividing the training area remaining calculated above by the training area length from the 

GIS.  



 

 269

Damage Cost. Training areas and testing lands do not have a replacement cost that is 

tabulated like other infrastructure categories maintained in INFADS. Instead, the 

replacement cost of training areas and testing lands were estimated as the cost to maintain 

the baseline conditions via sand replenishment along the exposed shorelines of the 

installations. Because the beaches at both installations are generally already subject to sand 

budget deficits, replenishment costs were estimated for both the existing deficit 

component, and the replenishment required to accommodate sea level rise. This analysis 

was not meant to represent an adaptation measure, but rather to provide a rough estimate 

of the value of the training area using the same metric (cost) as was used for most other 

receptor categories. The volume of sand required to achieve a net‐zero retreat of the 

shoreline was determined using the CSPEM model by adjusting the sand budget until the no 

retreat condition was obtained.  

Functional Elevations. Functional elevations and depth‐damage relationships were not 

developed or utilized for the training and testing lands in favor of the more relevant metrics 

described above.   

Buildings 

This category includes a range of buildings that support the operations and missions of the 

installation. This includes buildings for housing, logistics, training, testing, operations, and 

security.  These receptors are susceptible to sea level rise sources through all major 

pathways including inundation, flooding, erosion and seawater intrusion.  Of particular 

interest are building structures that are already close to the high tide line and at a low 

elevation relative to mean sea level.  Buildings located adjacent to the shore may be 

exposed to ocean waves, boat wakes, erosion, flooding or inundation.  Buildings located 

away from the shoreline may be flooded from intrusion of water through the storm water 

conveyance system during high tide elevations or from inadequate drainage during a rain.   

Required Asset Information  

The receptor‐level analysis requires an accurate description of the spatial extent, area and 

boundaries of the buildings, and an estimate of the building floor elevation. Measures of 

the building value (replacement cost) and the operational value (MDI) for each structure 

were also used in the receptor‐level assessment.   

Impact Metrics 

From this underlying information, we developed response metrics for the buildings that 

included the following: 
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 Tiered functional elevations (m NAVD88) 

 Baseline building replacement value ($) 

 Baseline building area (m2) 

 Quantity of impacted buildings 

 Damage cost ($) 

 Mission Dependency Index of impacted buildings	

Functional Elevations. Due to the screening‐level nature of the assessment, the large 

number of buildings at each installation, and the non‐traditional nature of many of the 

buildings, depth‐damage curves for assessment of inundation and flooding impacts were 

not applied in the receptor‐level assessment. The floor elevation was used to determine if 

the building was subject to inundation or flooding, and in combination with the water level, 

to determine the magnitude of the damage. Based on analysis of INFADS and GIS data 

supplied by NAVFAC for NBC and MCBCP, the building floor elevations were not included in 

the database. Therefore, elevations around the perimeter of each building were extracted 

from the baseline elevation model by applying the MatLab “bufferm2” function to the 

building shapefile. The finish floor elevation was assumed to be 0.3 m (1 ft) above the 

lowest point on the perimeter. The operational impacts and damage from inundation and 

flooding were estimated based on the maximum exterior flood depth.  Three 

inundation/flood depth ranges were used to quantify impacts, see Table 4‐11.   

Table 4‐11.  Inundation/flood depth ranges, scenarios, and operational impacts to buildings.  Actual damage 

and impacts will depend on building structure type and usage. 

Critical 
Elevation 

Exterior Flood 
Depth (m) 

Flood Scenario  Operational Impacts 

Exterior 
Grade 

D < 0.3 
The areas surrounding the building are 
flooded.  No damage to the building is 
expected. 

Access to the building may be 
temporarily limited, but still 
remains operational. 

Minor 
Flooding 

0.3 < D < 1.0 

The flood water has reached the first 
(lowest) floor of the building and is less 
than 0.6 m deep.  Minor damage to the 
interior finishes, flooring and contents is 
expected.   

Temporary closure for cleaning 
and minor/moderate repairs are 
required.   

Major 
Flooding 

D > 1.0 

The flood level is greater than 0.6 m inside 
the building.  Damage to the interior 
finishes, flooring, structure, electrical 
system and interior contents is expected.   

The building is non‐operational 
for an extended period of time 
for cleaning and major repairs.   

For the erosion pathway, functional elevations were not used. Instead the conservative 

assumption was made that the building damage was assumed to be 100% if any portion of 

the building fell within the erosion footprint.  
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Baseline Building Replacement Value. The baseline building replacement values were 

compiled in accordance with the methodology described in Section 4.2.2. This approach 

combined information from INFADS, DoD Facility Pricing Guide and ROM analysis to provide 

estimated replacement costs for each building in the database. These data provided a basis 

for the assessment of sea level rise impacts for individual structures, as well as a sense of 

the aggregate value of the building receptor category for the installation. An average unit 

replacement cost ($/SF) was calculated for the buildings at each installation. This unit cost 

was multiplied by the building footprint area to calculate the replacement value of buildings 

in the database that were missing replacement values.   

Baseline Building Footprint Area. Building areas were derived from the database provided 

by NAVFAC. These areas were used to estimate replacement values for buildings that did 

not have a replacement value assigned in the database.  

Quantity of Impacted Buildings. For inundation and flooding, the quantity of impacted 

buildings was determined by summing all of the buildings with any portion of their 

perimeter areas within the inundation/flooding footprint. For the erosion pathway, the 

quantity of impacted buildings was determined by summing all of the buildings with any 

portion of the building within the erosion footprint. 

Damage Cost. The maximum perimeter depth was determined by applying the MatLab 

“bufferm2” function to the building shapefile and finding the maximum water depth from 

the flood model that fell within the building perimeter. The minimum and average water 

depths were also extracted.  

Three inundation/flood depth ranges were used to categorize operational and damage 

impacts to the buildings, see Table 4‐11.  For the receptor‐level assessment, the full 

replacement value of the buildings that are vulnerable to inundation or flooding was used 

to compare the total value of vulnerable buildings within each water depth range. A tiered 

damage percentage level was not used for the buildings because of the wide range of 

structure types within the installation, and insufficient attribute information was provided 

to assign damage levels for the receptor‐level assessment.  The operational impacts caused 

by the temporary relocation of equipment, personnel, and operations while flood repairs 

are executed is a significant portion of the inundation/flood impacts. 

For the erosion pathway, functional elevations were not used, but the building damage was 

assumed to be 100% of the replacement cost if any portion of the building fell within the 

erosion footprint. 
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Mission Dependency Index of Impacted Buildings. The Mission Dependency Index is 

defined in Section 4.2.2. For NBC, MDI values were pulled from the INFADS database.  The 

INFADS data for Marine Corps Base Camp Pendleton did not include MDI values. For 

purposes of this study, we assigned an approximate MDI value for the buildings at MCBCP.  

For example, with buildings it was necessary to distinguish between housing areas and 

infrastructure that is housed in buildings that provide electrical power supply, potable 

water, medical services, and security or training operations.  The buildings were assigned 

approximate MDI values based on their usage description provided in the INFADS database.  

These approximate MDI values were distinguished from the Navy generated values in the 

GIS database by adding the data under a separate heading. The attributes that were used to 

assign an approximate MDI value included Structure Type; Structure Name; Structure Use; 

and Narrative.  The objects were grouped into the MDI categories based on the relative 

importance for both day‐to‐day operations and necessity during a natural disaster.  The 

groupings are summarized in Table 4‐12 below. For inundation and flooding, impacted 

buildings were identified as all of the buildings with any portion of their perimeter areas 

within the inundation/flooding footprint, and the MDI values for these buildings were 

compiled. For the erosion pathway, impacted buildings were identified as all of the 

buildings with any portion of the building within the erosion footprint and the MDIs were 

similarly compiled. 

Table 4‐12. MDI groupings associated with building usage descriptions. 

MDI Category 
Approximate 

MDI 
Building Usage Description 

Critical  85 to 100 
Fire house, Hospital, Magazine, Power generating facility, San Onofre Nuclear 
Generating Station (SONGS), and Water plant. 

Significant  70 to 85 
Heat cool plant, Industrial waste plant, Medical center, Radio facility, Utility 
related, Waste water plant. 

Relevant  55 to 70 
Law enforcement, Jail or prison, Office, Security, Marine Corps Tactical Systems 
Support Activity (MCTSSA), Combat town, Warehouse. 

Moderate  40 to 55 Community Center, Mechanical Unit 

Low  1 to 40 
Canopy, Carport, Church, Dwelling, Residential Housing, Garage, Memorial, 
Commercial stores, post office, School, Storage Shed. 

 

Waterfront Structures  

This category includes a range of structures that support waterfront operations and 

missions of the installation. This category encompasses structures such as piers, wharves, 

and floating docks.  The facility type and function is important to understand for the 
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analysis of impact of sea level rise on operations.  Waterfront structures such as piers and 

wharves are either used in support of home port berths or as a port‐of‐call.  The homeport 

facility is one to which a ship is permanently assigned and offers all requisite services 

required by the vessel, including the full complement of utility services.  In contrast, a port‐

of‐call facility would be any port where a ship stops while under‐way, including calls at 

fueling facilities, ammunition piers, supply piers, or short‐term repair facilities.   

Required Asset Information 

Waterfront structures are susceptible to sea level rise sources through all major pathways 

including inundation, flooding, erosion and seawater intrusion. However, for the 

installations studied here, the primary exposure for waterfront structures is via inundation 

and flooding along protected shoreline areas. The receptor‐level analysis requires an 

accurate description of the spatial extent, area and boundaries of the waterfront structures 

and an estimate of the deck and infrastructure elevations. Measures of the structure value 

(replacement cost) and the operational value (MDI) for each structure were also used in the 

receptor‐level assessment.   

Impact Metrics 

From this underlying information, we developed response metrics for the waterfront 

structures that included the following: 

 Functional elevations (m NAVD88) 

 Baseline structure replacement value ($) 

 Quantity of impacted structures 

 Damage cost ($ or %) 

 Mission Dependency Index of impacted structures	

Functional Elevations. For the receptor‐level assessment, the specific vulnerabilities of each 

structure were simplified and approximated based on the deck elevation. Fixed waterfront 

structures were assumed to fail operationally when the water level rose to within 0.75 m of 

the deck elevation. This is consistent with findings of our more detailed analysis of these 

structures that indicates failure of subsystems such as fender systems and utility systems in 

this range. These facilities are designed to remain fully operational for the full tidal range 

and environmental conditions expected over the design life of the structure. The 

substructure (piles) and superstructure (beams and deck) are unlikely to fail if the water 

level reaches the deck elevation because the structure is designed for significant mooring, 

berthing, seismic, wind and current loads. However, the fender systems and utility services 
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may be impacted by SLR as the water level approaches this threshold. For the receptor‐

level, the overtopping elevation was the threshold used to quantify damage impacts. The 

full replacement cost of the structure was used for the assessment methodology because of 

the relationship between the design life of the structure, the remaining service life, and the 

costs of repair or replacement. At this point, the structure requires replacement because 

the cost of upgrades would exceed the cost of replacement. The facility replacement cost 

was used for waterfront structures because of the limited service life and increased rate of 

deterioration caused by higher water levels will likely warrant facility replacement for all 

waterfront structures that are overtopped. 

Baseline Structure Replacement Value. The baseline waterfront structure replacement 

values were compiled in accordance with the methodology described in Section 4.2.2. This 

approach combined information from INFADS, UFC and ROM analysis to provide estimated 

replacement costs for each waterfront structure in the database. These data provided a 

basis for the assessment of sea level rise impacts for individual structures, as well as a sense 

of the aggregate value of the waterfront structure receptor category for the installation.  

Quantity of Impacted Structures. For inundation and flooding, the quantity of operationally 

impacted assets was determined by summing all of the structures for which the functional 

elevation was exceeded under a given scenario. Similarly, the quantity of waterfront 

structures subject to damage was determined by summing up all of the structures for which 

the water level exceeded the deck elevation.  

Damage Cost. Damage costs were estimated assuming 100% of the replacement cost for 

any structure for which the water level exceeded the deck elevation.  

Mission Dependency Index of Impacted Structures. For Navy‐owned waterfront structures, 

the MDI value was obtained from the INFADS database.  At MCBCP, the waterfront 

structures did not include MDI values.  MDI values were estimated and added to a separate 

column of the GIS database to facilitate assessment of the waterfront infrastructure at 

MCBCP. For inundation and flooding, impacted items were identified as all of the structures 

for which the water level exceeded the functional operational elevation, and the MDI values 

for these structures were compiled.  

Coastal Structures  

Coastal structure receptors include engineered shoreline protective structures that support 

waterfront operations and missions of the installation. The category includes structures 
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such as: revetments, jetties and bulkheads/seawalls. These receptors are susceptible to sea 

level rise through means of inundation and/or wave overtopping.  

Required Asset Information 

Coastal structures are susceptible to sea level rise sources through all major pathways 

including inundation, flooding, erosion and seawater intrusion.  Of particular interest for 

coastal structures are vulnerabilities associated with overtopping and damage to structural 

components due to increased water levels.  The receptor‐level analysis requires an accurate 

description of the spatial extent, area and boundaries of the coastal structures and an 

estimate of the overtopping elevation. Measures of the structure value (replacement cost) 

for each structure was also used in the receptor‐level assessment.  

Impact Metrics 

From this underlying information, we developed response metrics for the coastal structures 

that included the following: 

 Functional elevations (m NAVD88) 

 Baseline structure replacement value ($) 

 Quantity of impacted structures 

 Length of impacted structure 

 Damage cost ($ or %) 

Functional Elevations. For the receptor‐level assessment, the specific vulnerabilities of each 

structure were simplified and approximated. Coastal structures were assumed to fail 

operationally when the water level rose to within 0.33 m of the top of structure elevation. 

This elevation provides operational buffer for boat wakes, wind waves and other 

fluctuations that might occur in the protected areas where most of these structures are 

found. For the receptor‐level, the overtopping elevation was the threshold used to quantify 

damage impacts. 

Baseline Structure Replacement Value. The baseline coastal structure replacement values 

were compiled using the ROM analysis to provide estimated replacement costs for each 

coastal structure in the database. These data provided a basis for the assessment of sea 

level rise impacts for individual structures, as well as a sense of the aggregate value of the 

coastal structure receptor category for the installation.  

Quantity of Impacted Structures. For inundation and flooding, the quantity of operationally 

impacted items was determined by summing all of the structures for which the functional 

elevation was exceeded under a given scenario. Similarly, the quantity of waterfront 
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structures subject to damage was determined by summing up all of the structures for which 

the water level exceeded the top of structure elevation.  

Damage Cost. Damage costs were estimated assuming 100% of the replacement cost for 

any structure for which the water level exceeded the top of structure elevation.  This is 

conservative for rock revetments because of their adaptive capacity. Rough estimates 

suggest that actual damage from overtopping would be on the order of 30‐50% of the 

replacement value, but these costs do not include assets that depend on the performance 

of the structure for protection. 

Mission Dependency Index. Coastal structures are not assigned MDI values in INFADS, 

however, by nature the structures serve to protect landward areas that are mission critical.  

Therefore, in order to assess the MDI of the coastal structure, the MDI of the landward 

facilities should be considered.  

Civil Infrastructure 

This receptor category describes a broad category of built infrastructure that is critical to 

the day‐to‐day operations and mission of the installation.  The category includes receptors 

ranging from critical utility infrastructure such as buried utilities, fuel transfer/supply, 

transportation corridors, and storm water conveyance systems. The breadth of this 

category was beyond the scope of the project to address fully, so we focused on a limited 

subset of receptors that represent the general characteristics of the category, and for which 

sufficient information was available from the installations to perform a meaningful analysis. 

These subcategories included stormwater conveyance systems, roadways, airfields, and 

recreation areas.  

Required Asset Information 

Civil infrastructure is susceptible to sea level rise sources through all major pathways 

including inundation, flooding, erosion and seawater intrusion. For the installations studied 

here, and the subcategories of receptors considered, we focused on the primary exposure 

pathways via erosion, inundation and flooding along both the exposed and protected 

shoreline areas. The receptor‐level analysis requires an accurate description of the spatial 

extent, area and boundaries of the infrastructure elements and the associated elevation 

data. Measures of the structure value (replacement cost) was also used in the receptor‐

level assessment. 
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Impact Metrics 

From this underlying information, we developed response metrics for the civil assets that 

included the following: 

 Functional elevations (m NAVD88) 

 Baseline infrastructure replacement value ($) 

 Baseline infrastructure area (m2) or length (m) 

 Quantity of impacted infrastructure elements 

 Area (m2 or %) or length (m or %) of infrastructure impacted 

 Damage cost ($)	

Functional Elevations. For civil infrastructure, functional elevations were developed to 

assess inundation and flooding based on the subcategory of the receptor class. For each 

subcategory, the element was assumed to be operationally impacted if the invert (lowest) 

elevation within the element area was below water level. 

For the erosion pathway, functional elevations were not used. Instead the conservative 

assumption was made that the element damage was assumed to be 100% if any portion of 

the asset fell within the erosion footprint. 

Baseline Structure Replacement Value. The baseline infrastructure replacement values 

were compiled using the ROM analysis to provide estimated replacement costs for each civil 

asset in the database. For roadways and airfields, the area was multiplied by the estimated 

ROM replacement value to calculate a total replacement value for each asset.  For 

stormwater conveyance systems, the length and quantity of storm drain inlets was used to 

estimate replacement value of each asset. The recreation areas were not assigned a 

replacement value, instead, the area was used as the metric to quantify impacts. These data 

provided a basis for the assessment of sea level rise impacts for individual elements, as well 

as a sense of the aggregate value of the civil infrastructure receptor category for the 

installation.  

Quantity of Impacted Infrastructure Elements. For inundation and flooding, the quantity of 

operationally impacted items was determined by summing all of the elements for which the 

functional elevation was exceeded under a given scenario. Similarly the quantity of 

elements subject to damage was determined by summing up all of the structures for which 

the water level exceeded the invert elevation. These determinations were generally made 

using the MatLab “inpolygon” function to determine the overlap between the flood model 

and the infrastructure, and the associated water depths of the flooded elements.  For 
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erosion, the quantity of impacted elements was determined by summing up all of the 

elements for which any portion fell within the erosion footprint as determined using the 

MatLab “polybool” function. 

Area/Length of Infrastructure Impacted. For inundation and flooding, the area or length of 

impacted items was determined using the MatLab “inpolygon” function to determine the 

overlap between the flood model and the infrastructure, and the associated water depths 

of the flooded elements.  For erosion, the area or length of impacted elements was 

determined using the MatLab “polybool” function to evaluate the overlap between the 

infrastructure element and the erosion footprint. 

Damage Cost. Damage costs for erosion, inundation and flooding were estimated assuming 

unit areas replacement cost for the portion (area or length) of each element that was 

impacted.  

4.4.2 Component‐Level Vulnerability Assessment Methods 

The component‐level assessment generally focused on refinement of the assumptions, 

methods, and data used during the receptor‐level assessment to provide a more 

quantitative analysis and reduce uncertainties. In the context of sea level rise, component‐

level assessment may require moving from the use of limited available data to extensive 

data collection. It may also require the application of more sophisticated models, extending 

beyond simple inundation analysis to include, for example, more rigorous shoreline 

evolution modeling, dynamic flood modeling and mapping, and two or three dimensional 

groundwater intrusion modeling. The component‐level assessment may also adopt more 

rigorous methods for projecting socioeconomic conditions. Here we focus on 

methodological considerations for the component‐level assessment in the context of the 

evaluation of vulnerability for the designated receptors. Key considerations are summarized 

below by receptor class with an emphasis on operational impacts. The general approach is 

shown in Figure 4‐98 which incorporates refinement of the existing receptor condition, 

classification of common sub‐categories of receptors, development of operational limits for 

those categories, and a refined assessment of vulnerability at this higher level of detail 

based on specified exposure scenarios. While a facility‐wide component‐level assessment 

was beyond the scope of this effort, example applications from the two installations are 

described in Section 5.4.3.   
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Figure 4‐98. General process approach for the component‐level vulnerability assessment approach. 

 

Training Areas and Testing Lands 

Training and testing lands at naval installations typically include a range of onshore and 

offshore zones that are designated to support the requirements of the resident command. 

The methodology for the component‐level assessment of Training and Testing Lands 

focuses on beach training areas, and builds on the receptor‐level assessment methodology 

but incorporates additional detail with respect to both the physical characteristics of the 

training areas as well as the operational requirements for the training. The methods provide 

a basis to determine the future physical characteristics of the training areas and how 

changes in beach area and width may affect specific training activities. 

Existing Training Area Conditions 

While naval training areas include areas on both land and in the water, this analysis focuses 

on the landside training areas and in particular the beach training areas which are generally 

the most sensitive areas to sea level rise.  The receptor‐level assessment analyzed the 

change in physical characteristics of the training areas such as beach width remaining and 

beach training area.  For the component‐level assessment, the future shoreline position 

analysis considers the interaction of sea level rise with operational requirements, physical 

configurations and constraints, existing shoreline protective structures, and habitat 

protection requirements. The goal is to provide sufficient information to allow planning 

Baseline Vulnerability Assessment Process

Refine characterization of existing receptor condition

Classify similar receptor elements into common categories

Determine sea level related operational limits for receptor 
sub‐categories

Perform detailed analysis of vulnerabilities using specified exposure 
scenarios and pathways

Component‐Level Vulnerability  Assessment Process
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of SLR on the beach training areas, the following information is necessary to determine the 

operational impacts: 

 Are beach training operations scheduled with consideration of: high and low tide, 

surf and swell conditions, wind or weather? 

 Would a reduction in beach width from the existing width impact training 

operations? 

 Are training activities located at the installation based on beach width? 

 Are there any training activities that require a minimum beach width? 

o What is the minimum overall beach width? 

o Minimum width within tidal zone? 

o Minimum width above high water line? 

o What frequency of return period event would make the training area non‐

operational (daily, weekly, monthly, or yearly)? 

 How many personnel are involved in each training activity? 

 What other factors may be used to determine if SLR will have an impact on beach 

training activities? 

Assessment of Vulnerability 

The criteria used to determine when a training area is considered non‐operational is 

subjective because of the wide variety of training areas and training activities. Each training 

area category may have different operational requirements. One aspect of the assessment 

of training areas, is the need for the military to be prepared for a variety of physical settings 

and conditions. A change in the physical characteristics may not cause a loss of the training 

area. The following criteria were used to define the vulnerability of beach training areas. 

Beach is non‐operational for training 

 Beach width is reduced to zero or to a width insufficient for training on a regular 

basis.   

 The regularly recurring high water level reaches or approaches a hardened structure, 

seawall, property line, cliff or other defined boundary to such a degree that it 

prevents training.   

Beach training area is partially operational 

 Beach width is reduced to zero or to a width insufficient for training on an occasional 

basis.   
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 Occasional high water levels reaches or approaches a hardened structure, seawall, 

property line, cliff or other defined boundary to such a degree that it prevents 

training.   

 Or, regular or occasional high water levels are such that certain aspects of training 

can no longer be conducted. 

Beach training area is fully operational 

 Sufficient beach width remains that training is not restricted beyond the baseline 

condition.   

In addition, training activities conducted at coastal naval installations often include 

mitigation measures to protect marine mammals, sea turtles, birds, eelgrass, and overall 

water quality. At NBC, the protection of these areas is described in the Silver Strand Training 

Complex (SSTC) Consistency Determination (Department of the Navy). For example, due to 

the seasonal variability in the location and quantity of least tern and snowy plover nests at 

NBC, there may be at least portions of the year (nesting seasons) when it is not practical to 

include these protected areas in the analysis of usable beach training width. Thus 

operational limits should also consider the classification of beach zones with respect to  

potential bird nesting areas or other habitat restrictions which may interact with increasing 

sea level to further impact the operational use of beach training areas. 

Buildings 

Below is a summary of the additional information necessary to conduct a component‐level 

assessment of buildings; a discussion of vulnerabilities specific to buildings; and an outline 

process for conducting a component‐level assessment. The component‐level assessment for 

the building receptor category focuses on the vulnerability of specific buildings to sea level 

rise related damage and operational impacts. Buildings identified during the receptor‐level 

assessment as being vulnerable to sea level rise, particularly those with a high replacement 

value and/or mission dependency index would be good candidates for further analysis in 

the component‐level assessment.  

Facility Existing Conditions 

The information necessary to perform a detailed assessment of the impact of SLR on 

building infrastructure is listed below.  It is anticipated that this information will be 

collected from field investigations and review of Record Drawings.  The local Public Works 

Officer may have access to record Drawings, or more recent facility repair or upgrade 

drawings.  Base facility operations personnel may maintain additional databases that have 
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useful information relating to buildings and contents.  If not available, field investigations 

may be required. To formalize the compilation of this information, we developed an Existing 

Conditions Checklist (see Figure 4‐101) that defines key building features that are important 

to the evaluation of impacts from sea level rise. 

Common Element Classification 

Based on the characteristics developed above for the existing conditions, sub‐categories of 

buildings for a given installation are developed that reflect similarities with respect to 

expected operational response to sea level rise. For example, operation and training 

buildings that support similar mission areas, have similar structures, contents and utility 

infrastructure would be assigned to a common sub‐category. The purpose of this is so that 

operational limits can be developed that are applicable to a reasonable range of similar 

structures rather than developing response characteristics for every aspect of every 

structure. 

Operational Limits 

The extent of vulnerability to SLR is a function of the building type, floor elevation and 

proximity to the shoreline.  Buildings located adjacent to the shore may be exposed to 

ocean waves or boat wakes once the water level has exceeded the elevation of the 

protective structure, i.e. beach, revetment, sand dunes, etc.  Buildings located farther away 

from the shoreline may be flooded from intrusion of water through the stormwater 

drainage systems or because of inadequate drainage during a rain event.   

The operational limits of a building are determined from evaluation of the location, building 

type, usage, and appurtenances.  The factors to be considered in association with a typical 

building structure include: functional floor elevations; foundations; accessibility; interior 

finishes; and building contents. A brief description of each of the building systems and the 

associated vulnerabilities follows. 
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be damaged.  The degree of damage depends on the water depth and exposure to waves or 

floating debris.   

Building Foundations. Two types of foundations are common for buildings in coastal areas: 

deep foundations and shallow foundations.  Deep foundations are used for structures 

resisting lateral loads or when the soil near the surface has inadequate load bearing 

capacity.  Deep foundations typically include pile caps and/or grade beams supported by 

piling or drilled caissons.  For buildings sites located on competent soils, shallow 

foundations are the most common foundation type and include spread footings, strip 

footings (grade beams), or mat foundations.  Sea level rise could impact the shallow 

foundations of buildings because of the increased elevation of the water table causing a 

reduction in allowable bearing capacity and an increased potential for settlement.    

The bottom of a building shallow foundation is typically located between 0.6‐m and 1.2‐m 

(2‐ft and 4‐ft) below lowest adjacent grade.  A shallow foundation is designed to transfer 

the loads to the soil without overstress.  Overstressing the soil typically results in excessive 

settlement which can cause damage to the structure. 

The bearing capacity of a shallow foundation is reduced if the groundwater table is within 

1.5 times the footing width below the bottom of the footing. Figure 4‐102 shows three 

water table scenarios for calculating load bearing capacity and settlement for shallow 

foundations.  For the three scenarios shown, (a) would have the lowest bearing capacity; (c) 

would have the highest bearing capacity.   

At Naval Base Coronado, two scenarios exist for groundwater elevation as a function of sea 

level and proximity to the ocean or bay.  For soils close to the ocean or bay, the 

groundwater level will rise and fall with the tidal cycle.  The groundwater will lag behind the 

open water level as the two levels “communicate” through the soil or retaining structure 

(seawall, bulkhead, revetment, etc.).  For locations farther (0.25‐miles) from the ocean or 

bay, the ground water elevation attenuates to mean sea level (MSL).  After a rain event, 

water infiltrates into the ground and a mound effect occurs as the water attenuates to 

mean sea level.  The difference in elevation between the bay or ocean, the groundwater 

mound elevation, and the permeability of the soil determines the rate of infiltration and 

attenuation (Todd, 1959)  For design purposes, geotechnical engineers typically assume a 

mound effect of one meter above mean sea level for the design of building foundations, 

buried utility pipes, and buried tanks. 
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The increase in water table and ocean water levels will reduce the efficiency of storm water 

drainage systems.  For the San Diego region which averages approximately 10‐in. of rainfall 

per year, this may not be of great concern.  However, for areas with more rainfall, the 

efficiency of storm water drainage systems should be assessed for a higher ground water 

table and ocean water level.   

Interior Finishes of Buildings. A variety of structural systems and building interior finishes 

are used at Installations.  Each structural system and interior finish has a different 

susceptibility to damage from flooding.  Sometimes the structure is used for the interior 

finish, for example concrete or concrete block walls.  A list of typical building interior 

finishes and susceptibility to flood damage is shown below. 

Table 4‐13.  Building interior finishes and susceptibility to SLR damage. 

 

Buildings typically have alternating current (AC) electrical outlets within 18‐in. (0.5‐m) of the 

floor.  If a building is flooded, the building interior finishes and electrical system would 

require repair or replacement.   

Interior Contents of Buildings. Building contents will most likely be damaged when 

inundation occurs.  For non‐military installation flood assessments, the estimated value of 

the contents of buildings may be approximated as a percentage of the total replacement 

cost of the building.  A variety of depth‐damage functions are used for estimating flood 

losses to buildings and their contents by the Federal Emergency Management Agency 

(FEMA) and USACE Institute for Water Resources.   

Department of Defense Installations contain a variety of building types with specialized 

military uses.  For military buildings which contain specialized equipment, tools, and 

machinery the FEMA approach is not recommended.  At MCBCP, there is a housing area 

adjacent to Del Mar Boat Basin that may be vulnerable to inundation.  For these residential 

Interior Finish  Vulnerability 

Concrete Low 

Concrete Masonry Units Low 

Brick Masonry Units Low 

Metal studs and corrugated sheathing Low 

Drywall (Gypsum board) High 

Plywood or Oriented Strand Board (OSB) High 

Susceptibility
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structures, it is appropriate to apply the associated depth‐damage functions provided by 

FEMA. 

Assessment of Vulnerability 

Assessment of the impact of SLR includes both short and long return period scenarios. 

These impacts include both damage to the facility and potential loss of operational 

functionality. In general, damage to buildings will relate to the flood depth and duration, as 

well as the type of building, its construction methods, finish type and interior contents. 

Operational impacts may begin to occur at lower flood depths in relation to loss of access, 

or impacts to building subsystems such as electrical vaults and communications systems, 

and then increase at higher water depths if the building is significantly damaged and its 

operational function is lost for a significant period of time. If the building is of non‐standard 

construction, or if knowledge of these lower water depth operations is important, then 

development of component‐level operational limits may be warranted. From a duration 

standpoint, if a facility can remain operational for short return period events, but is not 

operational for the 10‐yr or 100‐yr storm event, then a more detailed analysis of the facility 

type and usage is necessary to determine the operational impacts.  The facility type  and 

mission dependency (MDI rating) will determine if a facility can have operations limited by 

tides and storm events, or must remain fully operational at all times. 

Damage and Operational Impacts. Assessment of operational impacts and damage to 

buildings at the component‐level requires the development of response curves that 

delineate the impacts to the building as a function of water elevation. For standard 

buildings with low MDI values, standard damage response curves from FEMA or other 

sources may be used, and damage can be estimated based on comparison of estimated 

total water levels for a given scenario to the response function for the building. For non‐

standard buildings or for high MDI buildings where knowledge of potential impact to 

operations is critical, the development of more detailed response functions is required to 

better resolve the potential impact of different water elevations. These response functions 

can then incorporate in increasing spectrum of impacts relating to access, intrusion through 

storm drains, impacts to foundation components, impacts to related subsystems, and 

impacts to specialized contents, as well as significant damage to the building structure itself. 

Response functions developed at this level can then be related to both the magnitude and 

frequency of the SLR scenario of interest.   

High MDI Value Facilities. Based on a review of the MDI criteria, we subjectively established 

an MDI rating of 55 as the cutoff above which designates facilities that must remain fully 
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operational at all times and tidal cycles with maximum interruption of service of a day or 

less.  For these facilities, each incremental SLR high water scenario is evaluated in 

comparison to the maximum operational water levels for the component.  When the 

monthly return‐period total water level exceeds the operational limits, the structures are 

considered non‐operational.  In this case, it is assumed that the structures will require 

replacement or upgrades to accommodate the higher water levels and the costs associated 

with these requirements are derived from the checklist information described above. 

Low MDI Value Facilities. High MDI ratings are reserved for facilities that must remain 

operational at all times.  Buildings with an MDI rating of 55 or lower is indicative of facilities 

with operations that may be occasionally interrupted in the future by tidal or other high‐

water related fluctuations.  The monthly return‐period total water level may cause 

conditions leading to operational losses for short intervals during the peak tide.  The 

number of days or months per year that the structure is non‐operational can be estimated.  

This assumes that the structure can be operational at lower water levels and can still 

support operations.  Facility Managers and Operations personnel will need to use tide and 

other predictions to determine the specific days in the month that are likely to have a high 

water level exceeding the operational limits of the building and will coordinate operations 

around these high water events. 

Tidal Cycle and Return Period. If a facility can remain partially operational, then variations in  

tidal cycles or total water level return period can be used to estimate the time periods and 

durations that the facility is non‐operational.  For example, the maximum monthly tides for 

the next 100‐years without sea level rise vary from 1.94‐m to 2.45‐m inside of San Diego 

Bay. If water level dependent operations are allowable, then the prediction of water levels 

used to estimate operational loss is critical for an accurate assessment. There are various 

approaches to predict these water levels for protected harbor areas including the use of 

monthly or daily maximum tidal conditions. Here, to be consistent with the approach used 

for the exposed shorelines, we focused on the use of total water level scenarios with sea 

level rise for the week, month, year, decade and century return periods.  These were then 

compared to the maximum operational water level for the sub‐category to determine the 

return period and sea level rise combinations for which the facility is non‐operational. 

Component‐level assessment vulnerability assessment examples for buildings are presented 

in Section 5.4.3. 
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Waterfront Structures 

Waterfront structures at naval bases typically include piers, wharves, quaywalls, floating 

docks, boat ramps and other specialized facilities.  This methodology was developed 

primarily for the assessment of the impact of SLR on piers and wharves, but is conceptually 

applicable to the full range of waterfront structures.  Key background information regarding 

the general configuration of naval waterfront structures was developed based on the 

Unified Facility Criteria (UFC) design manual UFC 4‐152‐01 Design: Piers and Wharves 

(NAVFAC, 2005).   

Facility Existing Conditions 

The information necessary to perform a detailed assessment of the impact of SLR on a 

waterfront structure is listed below.  Much of the necessary information can be obtained 

from the previously described NAVFAC documents.  Information for virtually every Navy 

waterfront facility in the U.S. and abroad exists in the form of a WFI Report which is 

typically updated on a six‐year basis.  The WFI report typically contains structural and utility 

plans and sections; photographs; facility description; asset inventory; and a condition 

assessment for each part of the waterfront structure.  The local Public Works Officer may 

have access to As‐Built (Record) Drawings, or more recent facility repair or upgrade 

drawings in electronic format. To formalize the compilation of this information, we 

developed an Existing Conditions Checklist (see Figure 4‐103) that defines key infrastructure 

features that are important to the evaluation of impacts from sea level rise.  

Common Element Classification 

Based on the characteristics developed above for the existing conditions, sub‐categories of 

waterfront structures for a given installation are developed that reflect similarities with 

respect to expected operational response to sea level rise. For example, pier structures that 

support similar ship classes, have similar structures, fender systems and utility 

infrastructure would be assigned to a common sub‐category. The purpose of this is so that 

operational limits can be developed that are applicable to a reasonable range of similar 

structures rather than developing response characteristics for every aspect of every 

structure. 

Operational Limits 

For long term planning, it is necessary to determine the critical sea level elevations at which 

sea level rise would limit operations.  The maximum operational water level of a structure 

or sub‐category of structures is determined from evaluation of the checklist elements 
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El ission Dependent Index ( Dl) 

Replacemen value (I FADS, UFC, or Engineer's es ima e) 

Dec Eleva ions 

8 inimum and ma ·mum op-o -dec eleva ions 

So tt (bottom o deck) eleva ion 

Operational Function 

T pe 1- Fueling. Ammun· ion, and Suppl 

T pe 11 - General Purpose (Berthing) 

T pe 111 - Repair (Repair, f" ing-ou or Refl , Flea ing Drydock) 

T pe IV - Speciali zed (Degaussing and Elec romagne ic Roll aci r ies, Training, Small 

Cra and Specialized Vessels) 

Vessel Type and Use 

Ship ma ·mum draft 

Ship hull configura ion 
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Average dura ion o s ay 

S rue ure 

Age o structure 

21 Cond" ion o structure 

El S rue ural s stem and ma erials 

Repair, restor a ion or moderniza ion his cry 

Fender & coring S stems 

Fender sys em ype 

Fender pile pe and size (concre e, s eel, fiberglass, or imber) 

Floa ing ender ype ( cam· illed, h dro-pneumatic, carrier separa ors, or camels) 

Type and size of mooring hard vare, i.e. bollards, bitts, clea s 

U ilities 

Types o u il" i es provided a he s ructure ( va er. se 111er, oily vas e. je fuel, electrical 
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Deck Elevation (Overtopping). Waterfront structures used for the mooring of vessels are 

designed based on guidance from the Unified Facilities Criteria (UFC) 4‐152‐01, Design: Piers 

& Wharves (NAVFAC, 2005).  The document recommends locating the deck elevation as 

close as possible to the grade of the adjacent land for smooth access of mobile cranes, 

service vehicles, personnel vehicles, and railroad.  Other considerations for establishing the 

deck elevation include:  

 Overtopping – The tendency for the facility to become inundated from a body of 

water as a result of tide waves, wake, seiche, river‐rise, or any other significant 

change of water level (sea level rise). 

 Vessel type – Marine structures are designed to service a specific range of vessels.  

The deck elevation is located to support embarkation and disembarkation.  The deck 

elevation is also located to facilitate the loading of cargo, ordnance and other 

supplies.  The deck is typically lower for smaller vessels, and higher for large vessels. 

 Utilities – Most facilities provide utility services for both general use and/or vessel 

support.  These services have varying sensitivity to water level depending on the 

type of service, material composition, location (above/below deck) on the facility, 

and the method of attachment. 

 Tidal cycle –Tidal ranges vary based on geographical location.  The deck elevation is 

located to accommodate the tidal variations of the particular site. 

 Wave height – This forcing function can vary substantially.  Factors influencing 

potential wave height include: location (in‐bay or open‐ocean facility); fetch; 

bathymetry; and boat wake. 

When a waterfront structure is vulnerable to overtopping, it may also be subjected to uplift 

pressures on the underside of the deck.  Once the potential water elevation nears the deck 

elevation, the structure may be further jeopardized by wave or wake‐generated forces.   

Vessel Mooring and Berthing. The primary purpose of many Naval waterfront structures is 

for the mooring of vessels.  The fender system is the interface between the ship and the 

shore facility.  During the berthing of a ship, the fender system is meant to act as a buffer in 

absorbing or dissipating the impact energy of the ship without causing permanent damage 

to the ship or the shore facility.  Once the ship is successfully berthed and moored to the 

shore facility, the fender system continues to provide the interface between ship and shore 

and transmits energy from the environmental loads (wind, waves, and current) to the 

structure.  For submarine and other low‐profile vessels, the fender system also provides a 

physical barrier to prevent the vessel from going underneath the pier at low tide.  There are 
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Utility Services. Utilities common to waterfront structures include electrical power, 

communications, water, sewer, oily waste, steam and compressed air.  Less common 

utilities include fuels and pure water.  If sea level rise causes piping located below deck 

(originally above water) to be submerged, then the pipes and hangers would have 

additional wave and current loading.  If the pipes were not designed for submerged 

conditions and the hangers were not designed for wave and current loading, then damage 

will result.  Utility lines that are submerged in the tidal cycle may also catch kelp and other 

floating debris that cause additional loading on the support brackets – See Figure 4‐109 and 

Figure 4‐110.   

Some facilities have utility trenches that are integral to the deck structure and are accessed 

from the top of the deck.  Utility trenches protect the pipes from wave and current loading 

and are common for modern piers and wharves. 

Service Life. This study evaluates the effects of 0.5m, 1.0m, 1.5m and 2.0m sea level rise on 

military infrastructure as extrapolated over a 100‐year period.  Aside from the direct effects 

of SLR on infrastructure, a secondary effect is the reduction of the service life of structures 

constructed on or adjacent to harbor or ocean waterfronts.  "Service life" is defined as 

“That period of time over which only minimal routine maintenance is performed on a 

structure.  Service life is exceeded when major repairs, rehabilitation or modernization 

become necessary for the structure to remain functional.  The return‐on‐investment for 

repairs of this magnitude usually exceeds the capital improvement cost for demolition and 

replacement of the facility.”   

Under normal conditions, the service‐life of a reinforced concrete structure in a marine 

environment operating in the Southern California Region is considered to be on‐the‐order 

of 50 years.  The overwhelming majority of the facilities in the Navy’s inventory are 

constructed of reinforced concrete.  The structures located at Naval Base Coronado and 

Marine Corps Base Camp Pendleton were constructed between the early 1940s and 2003, 

with the average age of the facilities being approximately 40 years old.  It is highly probable 

that most of the structures will be replaced sometime within the 100‐year‐span considered 

in this document.  Sea level rise will certainly be considered as a factor in establishing the 

functional deck elevation of the replacement structures, which will be required to remain 

operational for both the short and long‐term. 
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Assessment of Vulnerability 

Assessment of the impact of SLR includes both short and long return period scenarios.  If a 

facility can remain operational for short return period events, but is not operational for the 

10‐yr or 100‐yr storm event, then a more detailed analysis of the facility type and usage is 

necessary to determine the operational impacts.  The facility type (fueling, ammunition, 

cargo/supply or repair) and mission dependency (MDI rating) will determine if a facility can 

have operations limited by tides and storm events, or must remain fully operational at all 

times. 

High MDI Value Facilities. Based upon a review of the MDI criteria, we subjectively 

established an MDI rating of 55 as the cutoff above which designates facilities that must 

remain fully operational at all times and tidal cycles with maximum interruption of service 

of a day or less.  For these facilities, each incremental SLR high water scenario is evaluated 

in comparison to the maximum operational water levels for the receptor sub‐category.  

When the monthly return‐period total water level exceeds the operational limits, the 

structures are considered non‐operational.  In this case, it is assumed that the structures 

will require replacement or upgrades to accommodate the higher total water levels and the 

costs associated with these requirements are derived from the checklist information 

described above. 

Low MDI Value Facilities. High MDI ratings are reserved for facilities that must remain 

operational at all times.  Waterfront facilities with an MDI rating of 55 or lower is indicative 

of facilities with operations that may be occasionally interrupted in the future by tidal or 

other high‐water related fluctuations.  The monthly return‐period total water level may 

cause conditions leading to operational losses for short intervals during the peak tide.  The 

number of days or months per year that the structure is non‐operational can be estimated.  

This assumes that the structure can be operational at lower water levels and can still 

support operations.  Facility Managers and Port Operations personnel will need to use tide 

and other predictions to determine the specific days in the month that are likely to have a 

high water level exceeding the operational limits of the waterfront structure and will 

coordinate operations around these high water events. 

Tidal Cycle and Return Period Discussion. If a facility can remain partially operational, then 

variations in  tidal cycles or total water level return period can be used to estimate the time 

periods and durations that the facility is non‐operational.  For example, the maximum 

monthly tides for the next 100‐years without sea level rise vary from 1.94‐m to 2.45‐m 

inside of San Diego Bay.     
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This requires evaluation of the facility type and corresponding usage with respect to the 

frequency of the high water level scenario.  A fuel or ammunition pier may need as few as 

three to five consecutive days for operations; accordingly, it could be possible to work 

around periods of highest tide.  However, a pier used for homeporting or repair may require 

one month to six months of consecutive time without a high tide exceeding the operational 

limits of the structure.   

If water level dependent operations are allowable, then the prediction of water levels used 

to estimate operational loss is critical for an accurate assessment. There are various 

approaches to predict these water levels for protected harbor areas including the use of 

monthly or daily maximum tidal conditions. Here, to be consistent with the approach used 

for the exposed shorelines, we focused on the use of total water level scenarios with sea 

level rise for the week, month, year, decade and century return periods.  These were then 

compare to the maximum operational water level for the sub‐category to determine the 

return period and sea level rise combinations for which the facility is non‐operational. 

Component‐level assessment vulnerability assessment examples for waterfront structures 

are presented in Section 5.4.3. 

Coastal Structures 

Coastal structures at naval bases typically include a range of structures whose primary 

purpose is to protect the shoreline from erosion and thus sustain operations and missions 

of the installation. This category encompasses structures such as jetties, groins and 

revetments which are used to protect the shoreline and dredged improvements. The 

methodologies presented below identify common types of additional information and steps 

that are necessary to conduct a component‐level assessment and characterize 

vulnerabilities specific to coastal structures. 

Facility Existing Conditions 

The existing conditions for coastal structures are typically documented in construction 

Record Drawings.  The detailed analysis of coastal infrastructure requires the expertise of a 

coastal engineer with experience in the design of such structures.  The information 

contained in the Record Drawings is necessary to analyze any of the systems described 

below.  The local Public Works Officer or the USACE may have access to Record Drawings, or 

more recent facility repair or upgrade drawings.  Defining the existing conditions may 

include determination of: rock sizes, slope, wall tiebacks, sub‐grade type, geotextile fabrics, 

etc. If Record Drawings are not available, then field surveys and investigations may be 

necessary to determine the existing conditions. To formalize the compilation of this 
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Applicable Information from the Screening level Assessment 

Facility name 

S ructure location and ype 

Replacement value {I FADS, UFC. or Engineer's estimate) 

Coastal Structure Shapefi e 

Opera ional Characteristics 

Opera ional function 

Infrastructure and/or assetsprotec ed by the structure 

ission Dependency Index { Dl) o protected infrastruc ure 

Structure Charac eris ics and Condi ion • Reve ments 

Crest detail (i.e. e eva ion and vid h) 

~ Stone detail {size, layers, core, approximate veigh , placement t pe) 

Seaward and land vard structure slope 

Porosi 

Toe e eva ion 

E3 Structure condi ion 

Structure Characteristics and Condition· Sea valls/Bu heads 

Tip of wall elevation 

Tieback presence 

all pe {reinforced concrete, sheetpile) 

Rip-rap toe protection 

Hin erland pe (i.e. earthen, aspha ) 

~ Structure condi ion {i.e. signs offailure or damage, erosion of hinterland) 

Structure Characteris ics and Condi ion - Jett"es 

Crest detail {i .e. elevation and vidth) 

~ Structure head detail (i.e. rock size} 

Stone detail {size, layers, core, approx·ma e eight, placemen t pe) 

S ructure porosi y 

Rock slope {head and trunk) 

Toe eleva ion 

~ Structure condi ion (i.e. percent damage) 
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Common Element Classification 

Based on the characteristics developed above for the existing conditions, sub‐categories of 

coastal structures for a given installation are developed that reflect similarities with respect 

to expected operational response to sea level rise. For example, revetment structures 

installed on similar shoreline exposures and protect similar infrastructure would be assigned 

to a common sub‐category. The purpose of this is so that operational limits can be 

developed that are applicable to a reasonable range of similar structures rather than 

developing response characteristics for every aspect of every structure. 

Operational Limits 

The coastal structures provide coastal storm damage and flooding protection to buildings, 

waterfront structures, and training areas.  Accordingly, coastal structures can be critical to 

the operations of an installation.  The coastal infrastructure has vulnerabilities to SLR based 

on the type, elevation and location of the structure.  Coastal infrastructure located within a 

bay or harbor is generally less vulnerable since it is generally exposed to much lesser waves 

as compared to structures exposed to ocean waves (Figure 4‐115).  However, this logic 

assumes that the coastal structures have been adequately designed for existing conditions.  

Coastal structures are designed to protect critical landward infrastructure.  For example, a 

coastal structure that protects a training facility may allow episodic flooding while a 

structure that protects critical buildings could not.  Therefore, the vulnerability of the 

landward protected structure should be considered in combination with the vulnerability of 

the coastal structure itself.  The operational limits of coastal infrastructure are determined 

from evaluation of the location, type, function, and elevation.  Brief descriptions of each 

type of coastal infrastructure are as follows.   

Revetment. Revetments are onshore, engineered structures designed for the principal 

function of protecting the shoreline from erosion. Revetments are rubble‐mound structures 

and slope seaward at varying degrees contingent on function, which act to dissipate wave 

energy. Revetments are generally not designed to be overtopped as wave overtopping will 

damage structures in the lee of a revetment. Revetment stone size and placement types 

vary dependent on the wave environment they are being designed for. Hand placed, large 

stones are typical along ocean wave exposed shorelines. Smaller stone such as rubble rip‐

rap is commonly used on low‐wave energy, bay shorelines. An example of a typical rubble‐

mound revetment structure is shown in Figure 4‐116.  

Seawall. Seawalls have the principal function of preventing or alleviating overtopping or 

flooding of the land. Seawalls include rubble‐mound sloping structures (sometimes armored 

with concrete armor units),vertical face structures such as massive gravity concrete walls, 
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tied walls using steel or concrete piling, and stone‐filled cribwork to sloping structures with 

typical surfaces being reinforced concrete slabs  (U.S. Army Corps of Engineers, 2006) 

Bulkhead. Bulkheads are primarily intended to retain  land along a waterway.  While 

bulkheads can protect against relatively small wave attack and they can be used in 

combination with a rubble mound seawall, they seldom used as solely as shore protection.  

Bulkheads are generally designed to withstand waves less than three feet. This design 

consideration limits these structures to areas of relatively mild wave conditions, such as 

bays and harbors. A typical bulkhead design is shown is Figure 4‐117. 

Jetty. Jetties are engineered structures designed to stabilize and provide protection to 

vessels transiting a navigation entrance channel to a harbor and/or bay. Jetty designs vary, 

but are generally rubble‐mound structures. A typical jetty configuration is shown in Figure 

4‐118. 

Vulnerabilities on these coastal structures due to SLR vary; however, can be generalized into 

the following categories: 

Increased Loading. Increased water levels fronting the structure result in greater wave 

forces on the structure, which may result in damage or failure. This is a product of an 

increase in the depth‐limited breaking wave height. Simplistically, the height of a wave is 

limited in shallow waters by wave breaking.  For a given water depth, there is a limit to the 

largest wave that can break in that depth.  If the water level increases with SLR then the 

limiting breaking wave height will be larger.  This potentially increases the exposure for the 

existing coastal structures.  The depth‐limited maximum wave height (Hmax) can be 

expressed as: 

Equation 4‐17 

Hmax  (0.8 to 1.0) x d 

Where d is the water depth. A larger wave may cause damage to a coastal structure leading 

to failure or reduced design life. 

Increased Overtopping. SLR results in increases in the baseline from which storm events 

will be added.  Thus, the probability and frequency of overtopping of coastal structures 

could be expected to increase as water levels increase.  Overtopping can lead to scour or 

erosion of areas landward of the structure, which could lead to the instability of coastal 

structures. 

Decreased function.  For structures such as jetties, the intended function could be 

compromised as water levels increase.  Jetties serve to provide safe navigation to harbors.  

Increases in water levels could cause damage to the structure or allow larger waves to 

impact navigating vessels in an entrance channel. 



 

 

Fi

Re

Re

Fi

Fi

igure 4‐115.  W

ecords Project

ecords Project

igure 4‐116.  T

igure 4‐117.  T

Wave breaking 

t Image 892104

t, www.Califor

ypical rubble‐m

ypical Seawall

on the rubble

42; Copyright 

rniacoastline.o

mound revetm

l or Bulkhead S

306

e‐mound struct

(C) 2002‐2014

org). 

ment section (A

Section (Adapt

ture at Oceans

4 Kenneth & Ga

Adapted from 

ted from USAC

side Harbor (C

abrielle Adelm

USACE 2006).

CE 2006).  

California Coas

man, California

  

stal 

 Coastal 

 

 



 

 

Fi

A

A

th

o

th

d

ra

d

fa

in

C

h

sp

w

b

to

re

su

fa

b

Se

R

th

h

T

igure 4‐118.  T

Assessment o

Assessment o

he coastal st

perational (

hen a more d

etermine th

ating) of the

uring these 

acilities will b

nadequate, t

oastal struct

owever, this

pecific facilit

water levels u

e consistent

otal water le

eturn period

ub‐category 

acility is non

elow, and co

ection 5.4.3

Revetment V

he depth‐lim

interland if: 

hese two pr

ypical rubble‐m

of Vulnerabi

of the impac

tructure can 

i.e. fails/ove

detailed ana

e operation

 facilities it p

storm event

be damaged

then upgrad

tures protec

s is continge

ties. If water

used to estim

t with the ap

evel scenario

ds.  These we

to determin

‐operationa

omponent‐le

. 

Vulnerabilitie

mited breakin

1) this area 

ocesses cou

mound jetty se

lity 

ct of SLR incl

remain ope

ertopped or 

alysis of the s

al impacts. T

protects will

ts, or if it mu

d by inundat

es to the co

cting these fa

ent on the ac

r level depen

mate operat

pproach used

os with sea le

ere then com

ne the return

l. Coastal inf

evel assessm

es.  A revetm

ng wave heig

is erodible a

ld result in i

307

ection (Adapte

udes both sh

erational for 

is damaged)

structure an

The structur

l determine 

ust remain fu

ion or floodi

astal structu

acilities may

cceptable no

ndent opera

tional loss is 

d for the exp

evel rise for 

mpared to th

n period and

frastructure

ment exampl

ment is susce

ght approac

and 2) overt

ncreased da

ed from USAC

hort and lon

short return

) during the 

nd its specific

re type and m

if the struct

ully operatio

ing because 

ure will be re

y not need to

on‐operation

tions are all

critical for a

posed shore

the week, m

he maximum

d sea level ri

e vulnerabilit

les for coast

eptible to se

hing the stru

topping of th

amage or fai

E 2006).  

ng return pe

n period eve

10‐yr or 100

c function is

mission depe

ure can be n

onal at all tim

 the coastal 

equired.  

o be replace

nal duration 

owable, the

an accurate a

elines, we foc

month, year,

m operationa

ise combinat

ty is discusse

tal structure

ea level rise f

ucture as we

he structure 

lure of the s

riod scenario

ents, but is n

0‐yr storm ev

s necessary t

endency (M

non‐operatio

mes. If the p

structure is 

ed or upgrad

of each of t

en the predic

assessment.

cused on the

, decade and

al water leve

tions for wh

ed per struct

s are presen

from increas

ell as scour o

occurs freq

structure.  

 

os.  If 

on‐

vent, 

to 

DI 

onal 

rotected 

ded; 

hese 

ction of 

. Here, to 

e use of 

d century 

el for the 

ich the 

ture type 

nted in 

ses in 

of the 

uently.  



 

 308

Seawall Vulnerabilities. Seawalls are vulnerable to SLR from increased wave overtopping.  

More frequent overtopping can result in scour of the hinterland, which can ultimately lead 

to structure damage.   

Bulkhead Vulnerabilities. Bulkheads are vulnerable to wave impact and overtopping 

damage that will be exacerbated by SLR.    

Jetty Vulnerabilities. Jetties are particularly vulnerable at the head (seaward most end) of 

the structure where the largest waves impact the structure and because of way that 

incident wave strike the head.  Changes in SLR could have an impact on the depth‐limited 

breaking wave height approaching the structure.  Increased water levels could result in 

changes in wave interactions within these structures and/or increases in the shoaling of 

navigation channels. 

Civil Infrastructure 

Civil Infrastructure includes transportation corridors, and utility infrastructure such as 

buried utilities, fuel transfer/supply, and storm water conveyance systems.  Outlined below 

is a summary of the additional information necessary to conduct a component‐level 

assessment of a civil infrastructure; a discussion of vulnerabilities specific to civil 

infrastructure; and an outline process for conducting a component‐level assessment.   

Facility Existing Conditions 

The original construction for civil infrastructure is documented in construction Record 

Drawings.  The detailed analysis of civil infrastructure requires the expertise of a civil 

engineer with experience in the design of roadways, storm water systems and utility 

systems.  The information contained in the Record Drawings is necessary to analyze any of 

the systems described above.  The local Public Works Officer may have access to Record 

Drawings, or more recent facility repair or upgrade drawings.   

The details of existing conditions may include: pipe invert elevations, lengths, and 

diameters; grading plan of the area; and vault details.  If Record Drawings are not available, 

then field surveys and investigations may be necessary to determine the details of existing 

conditions.  A checklist of existing condition information is listed below.  In order to perform 

a component‐level assessment of the impact of SLR on civil infrastructure, the user should 

obtain as much of the listed information as possible. 
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Common Element Classification 

Based on the characteristics developed above for the existing conditions, sub‐categories of 

civil infrastructure for a given installation are developed that reflect similarities with respect 

to expected operational response to sea level rise. For example, transportation systems 

constructed of similar materials, supporting similar access requirements, and subject to 

similar exposure conditions would be assigned to a common sub‐category. The purpose of 

this is so that operational limits can be developed that are applicable to a reasonable range 

of similar structures rather than developing response characteristics for every aspect of 

every structure. 

Operational Limits 

The civil infrastructure at an installation provides access (transportation corridors) and 

utility service to buildings, waterfront structures, training areas, and is critical to the 

operations of the installation.  The civil infrastructure of an installation is vulnerable to SLR 

based on the type, elevation and proximity to the shoreline.  Civil infrastructure located 

adjacent to the shore may be exposed to ocean waves or boat wakes once the 

existing/original design water level has been exceeded.  Such structures include revetments, 

seawalls, or natural barriers like cliffs or sand dunes.  Civil infrastructure located away from 

the shoreline may be flooded from intrusion of water through the storm water drainage 

system during high tides because increased sea levels will reduce the ability of the storm 

water system to drain.     

Infrastructure  assets are often interrelated and failure of one may cause impacts to others.  

For example, as sea level rise impedes the storm water drainage system, the impeded 

system will cause flooding on the roadways and building parking areas during a significant 

rain.  If standing water accumulates over a sewer or electrical vault lid, then water will leak 

in and flood the vault.  Vault covers that are closed may use joint seal; however, water will 

still likely penetrate.  For a component‐level assessment, it is necessary to analyze each SLR 

scenario with and without a range of rainfall events including the corresponding return 

period rain event. 

The operational limits of civil infrastructure are determined from evaluation of the overall 

system, location, type, usage, and appurtenances.  A brief description of some of the more 

common types of civil infrastructure and the associated vulnerabilities follows. 
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or the componnent‐level asseessment of civvil infrastructu

 

re. 

Existing Conditions - Check list 

Applicable lnforma ion from he Screening level Assessment 

Facility name 

Sys em pe, eleva ion, proximi to shoreline, shapefile 

e:l Replacement value (I FADS, UFC, or Engineer's estimate} 

Opera ional Characteristics 

Operational function and relevance 

Infrastructure and/or assets supported/pro ected by he s stem 

ission Dependency Index { Dl} of suppor ed/protected infras ructure 

lnfrastruc ure Charac eristics and Condition- Stormwater S stem 

Component eleva ions 

Pipe sizes, ma erials, slopes and design capaci 

Drainage area and volumes 

e:l S stem co ndi ion 

lnfrastruc ure Characteristics and Condition- Sewer System 

e:l Gravi or pressurized 

Pump locations and type 

Pipe sizes and ma erials 

e:l Component eleva ions 

S s em condi ion (i.e. seals, pipe condi ion} 

Infrastructure Characteristics and Condition- Power and Communica ions 

Cable pes and voltage levels 

e:l Above or belo 11 ground 

Vault conten s, ma erials, seals and 11a erproofing 

Component eleva ions 

e:l S stem condition (i.e. vau seals, underground cables and splices} 

lnfrastruc ure Characteristics and Condition- Transportation and A'rfield 

e:l Surface and subsurface ma erials 

Drainage and slope 

e:l Surface and subsurface cond ition {i.e. vear, po holes, erosion) 

Infrastructure Characteristics and Condition- Potable ater S stems 

Component eleva ions 

Pipe sizes and rna erials 

e:l loca ion and types of above/bela v ground components 

e:l S s em condition {i.e. pipe corrosion, leaks} 

e:l Surface and subsurface condi ion {i.e. r-~ear, po holes, erosion) 
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Storm Water Conveyance Systems. Storm water management systems typically include 

storm drains and a variety of other construction features to manage the volume, flow and 

quality of runoff during rain events.  Storm water runoff from impervious surfaces, such as 

roadways and parking areas, is routed to detention ponds or swales and ultimately routed 

through underground piping to discharge into the bay or the ocean.  Storm water pipes are 

typically gravity fed and have minimal slope to accommodate the low lying elevations and 

the long distances the pipes have to run.  Modern storm water pipes are typically comprised 

of reinforced concrete pipe with compression joints between pipe sections.  A storm water 

pipe is vulnerable to SLR from intrusion of water from the bay or ocean, as well as reduced 

flow rates when the differential head between the system entrance and exit is reduced.  

The reduction in capacity owing to SLR will likely cause flooding depending on drainage 

system design/resiliency.  Flooding from impaired storm water drainage can impact 

transportation corridors; gravity sewer systems; electrical vaults; building access; and 

flooding in low‐lying areas located away from the shoreline. 

Transportation Corridors. A roadway is typically designed with a transverse slope of 

approximately 2% from the high point at the centerline to the edges to eliminate ponding.  

If a roadway has poor drainage and standing water after a rain event, then the water could 

cause damage to the subgrade and deterioration of the road surface.  Many areas of NBC 

are comprised of loosely‐consolidated dredge material placed by hydraulic methods as part 

of bay dredging.  This is typical of many Naval installations.  If accelerated sea level occurs, 

an investigation of the potential for additional settlement should be undertaken. 

A roadway structural section is comprised of a compacted gravel and soil subgrade with 

either asphaltic concrete or cementations concrete surface.  The damage mechanism for 

water on or adjacent to a roadway starts with erosion and deterioration at the roadway 

edges or cracked areas.  As the surface or edges erode, the foundation subgrade materials 

will be exposed and further erode.   

An asphaltic concrete roadway will break apart and crack causing potholes and settlement.  

A cementations concrete roadway will settle and break in larger sections when the 

subgrade becomes saturated and erodes.  If a roadway is inundated or flooded and exposed 

to small waves and over wash, the rate of erosion and deterioration will be faster than 

standing water because of the erosive forces of the moving water. 

Airfields. Airfields are typically comprised of an approximately 12‐in. thick reinforced 

concrete slab to support the high wheel loads from aircraft.  Airfields will have will have 

vulnerabilities similar to Transportation Corridors, including settling and drainage concerns.   
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Sewer Systems. Sewer systems infrastructure includes gravity mains, force mains, pump 

stations, holding tanks, and metering stations.  Sewer systems can be divided into two 

types: gravity flow system or pressurized pump system.  For gravity sewer systems the pipe 

is less than half full and acts as an open channel.  The pipe is typically comprised of large 

diameter reinforced concrete pipe (RCP) or vitrified clay pipe (VCP).  The joints between RCP 

or VCP sections are sealed with a compression joint; however, minor leaking is common.  If 

the water table rises above the bottom of the pipe, then groundwater will leak through the 

joints and decrease the capacity of the pipe for sewer waste water.  If the pipe continues to 

fill with ground water, and becomes greater than 90% full, the velocity will decrease and 

may back‐up and overflow at manholes.  The increased conveyance volume, which includes 

groundwater, may exceed the capacity of the water treatment facility. 

Pressure sewer systems use sealed pipes, such as cast iron, and the waste is pumped 

between lift stations.  The wet well at a lift station could fail if groundwater or storm water 

runoff enters the wet well.  The additional water could cause a failure because the pump 

cannot keep up with the increased demand of groundwater, storm water and sewage.   

Potable Water Systems. Potable water infrastructure includes pressurized water mains, 

pressure‐reducing valves, and meter vaults.  Below ground potable water systems typically 

use sealed pipes such as cast iron or high‐density polyethylene.  Cast iron fresh water pipes 

are typically not sensitive to SLR related damage because the pipes have sealed joints and 

the self‐weight balances the buoyant forces.  However, HDPE pipes are lighter weight and 

could shift when the water table rises above the pipe and a buoyancy force is added, 

coupled with the reduced strength of soil upon saturation.  Above ground components of 

the system including hydrants, valves, service access, and meters could be exposed to 

inundation.   

Electrical Systems. Electrical systems can be categorized into power and communication 

systems.  Power systems are further categorized as high voltage, medium voltage, and low 

voltage distribution systems.  Communication systems consist of telephone and 

data/communication systems.  Electrical distribution systems may be located above ground, 

as in overhead distribution or transmission lines, or be routed below ground using cables in 

conduits, in duct banks, or directly buried in ground.  Below ground cable installations in 

conduits or duct banks normally includes a series of manholes and vaults that are placed 

along duct bank runs to aid in pulling long cable. 

Cables in these manholes are typically rated for continuous submersion and wet 

application, and use splices and equipment connections that are also rated for continuous 
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submersion.  Sealed/Insulated electrical lines are not vulnerable to SLR related damage 

except at switch panels, vaults or other below ground connection points.  Continuous 

submersion of below ground connection points causes additional stress on the connections 

and may require increased maintenance. 

Electrical Vaults. Electrical vaults are used to house switching equipment, connection 

panels, transformers, capacitors, and other electrical equipment.  The type of equipment 

and susceptibility to flooding varies at each vault.  Some vaults can remain operational 

when full of water (see Figure 4‐120) and other vaults cannot.  Older vaults have equipment 

that may have exposed wire connections – (see Figure 4‐121) and could be susceptible to 

damage from inundation and flooding.  

Below grade electrical vaults are designed to prevent groundwater intrusion and storm 

water runoff from entering the vault.  The vault covers are precast concrete or steel and 

typically have joint seal to prevent rain water from entering.  These joint seals require 

maintenance and covers can leak over time allowing water to enter the vault.  If the street 

or sidewalk that contains the vault cover is inundated as a result of failure of the storm 

water drainage system, then the quantity of water leaking through the vault cover would 

increase.   

Buried vaults typically include a french drain through the floor or have a sump and pump to 

remove water from the vault.  A vault with a french drain would be susceptible to 

inundation if the water table rises above the floor of the vault with sea level rise.  Constant 

flooding inside the vault introduces potential failure in the electrical system if not regularly 

maintained.  If the vault has a sealed floor, a rise in the ground water elevation would 

impose a buoyancy force on the floor of the vault.  An increase in the elevation of the water 

table could cause flooding of vaults that were designed for a lower water table and lower 

buoyancy force. 

Natural Gas Systems. Natural gas systems use steel pipe with sealed joints or HDPE sealed 

pipe.  Natural gas pipe lines are typically not vulnerable to SLR related damage.   

Oily Waste. Oily waste systems are used to dispose of ship bilge water and typically use 

steel pipe with sealed joints.  The pipes are typically located in a concrete tunnel or are 

double walled to prevent a leak from contaminating the soil and groundwater.  Oily waste 

pipe lines are not vulnerable to SLR related damage, however the double containment 

systems or tunnels could become inundated.  Under this scenario, pipe leaks could transmit 

contaminants to the flooded containment.   
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Steam. Steam pipes are typically steel with exterior insulation.  The pipes are typically 

located in a concrete tunnel or have a fiberglass protective pipe over the insulation for 

protection from damage.  At the aircraft carrier wharves at Naval Base Coronado (Berths 

Juliet, Kilo and Lima), a steam pipe is located on the outboard edge of the wharf.  If the 

steam pipeline is inundated from SLR, it will cool the outside of the pipe causing increased 

condensation on the inside of the pipe and reduced efficiency.  The outside of the pipe will 

also have an increased rate of corrosion and a reduced service life.   

Buoyancy Effects on Buried Pipes. Buried pipes that are located below the water table have 

a buoyant force equal to the weight of water displaced by the pipe.  The buoyant force is 

resisted by the weight of the pipe, its contents and the soil or concrete above the pipe.  The 

buoyancy effect increases with an increase in pipe diameter.  Larger pipes are more 

vulnerable to buoyancy because of a smaller weight to volume ratio.  Buoyancy effects can 

be problematic if the pipe is empty, has minimum soil above, or the pipe is made of a 

lightweight material.  Pipe materials may include: reinforced concrete, vitrified clay, 

corrugated metal, plastic and steel, see Table 4‐14.   

Table 4‐14.  Comparison of the uplift force on a 36‐in. diameter pipe in various materials: reinforced 

concrete (RCP), corrugated metal (CMP), high‐density polyethylene (HDPE), and polyvinyl chloride (PVC). 

Pipe Material 
Pipe Weight 
(lbs/ft) 

Water Weight
(lbs/ft) 

Net Uplift Force 
(lbs/ft) 

RCP 524 658 134 

CMP 36 441 405 

HDPE 18 554 536 

PVC 54 486 432 

 

For storm drain pipes that have an open end at the bay, buoyancy is not problematic 

because as the water table rises with the tide, the inside of the pipe is also filled with water.  

The net effect is zero additional force on the pipe.  The only upward force would be the 

material lighter than water, such as plastic, that even full of water has minimal buoyancy.  

However, if a storm drain pipe does not have an open end at the bay or ocean, the 

buoyancy force can be substantial.  See Table 4‐15. 
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Table 4‐15.  Buoyancy force on reinforced concrete pipes per linear foot. 

Pipe OD 
(in) 

Pipe ID 
(in) 

Area 
(in2) 

Volume
(in3/ft) 

RCP Weight
(lbs/ft) 

Buoyant Force 
(lbs/ft) 

Net Uplift Force 
of Empty Pipe 

(lbs/ft) 

16 12 113.1 1,357.2 93 ‐87.1 5.9 

19.5 15 176.7 2,120.6 127 ‐129.4 ‐2.4 

23 18 254.5 3,053.6 168 ‐180.0 ‐12.0 

26.5 21 346.4 4,156.3 214 ‐239.0 ‐25.0 

30 24 452.4 5,428.7 264 ‐306.3 ‐42.3 

33.5 27 572.6 6,870.7 322 ‐381.9 ‐59.9 

37 30 706.9 8,482.3 384 ‐465.9 ‐81.9 

44  36  1,017.9  12,214.5  524  ‐658.9  ‐134.9 

51 42 1,385.4 16,625.3 686 ‐885.2 ‐199.2 

58 48 1,809.6 21,714.7 867 ‐1,144.9 ‐277.9 

65 54 2,290.2 27,482.6 1068 ‐1,437.9 ‐369.9 

72 60 2,827.4 33,929.2 1295 ‐1,764.3 ‐469.3 

86 72 4,071.5 48,858.0 1811 ‐2,517.1 ‐706.1 

 

Assessment of Vulnerability 

The civil infrastructure of an installation provides access (transportation corridors) and 

utility service to buildings, waterfront structures, training areas, and is critical to the 

operations of the installation.  The assets and associated vulnerabilities are interrelated and 

failure of one may cause impacts to others.  Failure of the storm water drainage system will 

cause flooding on the roadways and building parking areas.  Therefore, it is necessary to 

analyze each SLR scenario with and without the corresponding return period rain event and 

combinations of the SLR scenario with a range of rainfall return period events.  Before 

inundation or intrusion occurs, flooding will occur because of failure of the storm water 

drainage system.   

Assessment of the impact of SLR includes both short and long return period scenarios.  If a 

facility can remain operational for short return period events, but is not operational for the 

10‐yr or 100‐yr storm event, then a more detailed analysis of the facility type and usage is 

necessary to determine the operational impacts.   

Storm Water System Vulnerability. Storm water systems are designed to drain rain water 

from impervious surfaces and restrict standing water to a maximum of 1‐in. to allow 



 

 317

pedestrian access.  The operational limits of a storm water system depend on the slopes of 

the pipes and the elevation head difference between the ocean, bay, or water table and the 

ground surface.  The following are suggested definitions for various levels of operational 

readiness. 

 Fully operational – Storm water runoff drains through the system as designed.  The 

elevation of the ocean, bay or water table does not reduce the efficiency of the 

system.   

 Partially operational – Storm water runoff drains through the system with reduced 

efficiency causing localized flooding at the trench drains and catch basins (low 

points) during heavy rain events.  The elevation of the ocean, bay or water table has 

reduced the efficiency of the system.   

 Non‐Operational – Storm water runoff does not drain through the system.  The 

elevation of the ocean, bay or water table has caused the system to fail.  Storm 

water accumulates at low areas causing flooding of roads, parking lots and low 

areas. 

Transportation Corridor Vulnerability. Failure of the storm water drainage system may 

cause ponding and standing water on the roadways.  The depth of water determines the 

impacts on the accessibility of the roadway and the rate of degradation.  Suggested 

categories for operational readiness for a defense base, with civilian vehicles include: 

 Fully operational – Water on the roadway is less than 3‐in. deep.  The roadway 

remains open for moderate speed traffic.   

 Partially operational – Water on the roadway is between 3‐in. and 6‐in. deep.  

Vehicles may traverse the water at low speed.  Excessive traffic congestion is caused 

by ponded water and poor drainage.  The roadways have increased rate degradation 

causing potholes, and failure at the roadway edges.   

 Non‐Operational – Water on the roadway is greater than 6‐in. deep.  The roadway 

may not allow vehicles with low clearance to traverse flooded areas.  The roadways 

have an increased rate of degradation causing potholes, subgrade and surface 

failure at the roadway edges.  
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5. RESULTS AND DISCUSSION 

Results for the key elements of the project are described below including sea level rise 

projections, delineation of the coastal system, physical responses to sea level rise, and the 

assessment of vulnerabilities related to these responses at the two installations. While the 

installations lie within the same region, they offer key contrasts in virtually every aspect of 

the research and analysis. Projected total water level scenarios at the two installations 

differ primarily as a function of differing wave exposures, the topography of the two 

installations is markedly different. The installation infrastructure, while having common 

elements is significantly different with respect to proximity to the coast, and the density of 

the development between the two installations. These differences are all reflected in the 

vulnerabilities that results from sea level rise at the two installations as described below.     

5.1 Sea Level Rise Projections 

Results for the development of sea level rise projections are presented below. Time series 

of total water level results are illustrated and used as the basis to specify specific future sea 

level scenarios for the installations at NBC and MCBCP.   

5.1.1 Total Water Levels 

As detailed in Section 4.1, total water levels used in this study comprise the superposition of 

four components (Figure 4‐2) including: four 2000‐2100 MSLR scenarios; hourly tide 

heights; non‐tide residual (NTR) water level variability including El Niño‐related fluctuations, 

and; wave‐driven runup on beaches. Figure 5‐1 shows projections of future 98th‐percentile 

extreme total water levels that are combinations of MSL for each MSLR curve (Figure 4‐3), 

predicted tides, and the atmospherically‐driven non‐tide residual (NTR) sea level derived 

from the high‐GHG CCSM3 A2 scenario, and El Niño fluctuations. Note that the endpoint 

elevations by year‐2100 respectively reach about 1 m higher than MSLR alone owing mainly 

to the influence of the tide. These curves apply regionally, including throughout the 

Coronado and Camp Pendleton study areas. They do not include the runup contribution, 

which differs from place to place. The MSLR curves are assumed to incorporate local vertical 

land motions, although for the areas of interest these rates are negligibly small (~0.1‐0.2 

mm/year) relative to projected changes in sea level (Lajoie, 1986; Gornitz, 1997; Kern et al., 

1996; Shlemon, 1994). The high‐GHG CCSM3 A2 scenario was selected for illustrative 

purposes of the methodology, and that other future scenarios could result in different NTR 

results. 
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5.1.2 Future Sea Level Scenarios  

The return period of water level extremes at MCBCP and NBC were computed using the 

extreme value method of order statistics (Makkonen, 2011) based on the pioneering work 

of Gumbel (1958). Return periods were also computed using joint‐probability convolution 

methods available in MATLAB, but these calculations were not completed until after the 

order statistic results were applied for the assessment portions of this project. Comparisons 

of results from the two methods are both encouraging and useful, in that they essentially 

agree and also provide a measure of the uncertainty in the return period estimates. 

Time series of projected total water levels for 2000‐2100 at each of the 13 ranges were 

constructed as described above. Monthly maximum values were extracted from these time 

series, and the results ordered from smallest to largest. This resulted in ݊ ൌ 1,200 monthly 

extreme values. The cumulative probability is ܲ ൌ ݉/ሺ݊  1ሻ		where m is the rank of the 

mth ordered value, its return period (in months) is ܴ ൌ 1/ሺ1 െ ܲሻ, and  ݉ ൌ 1, ݊. 

Examples of the results are shown in Figure 5‐2 for MCBCP Range PN1180, and in Figure 5‐3 

for NBC Range SS0160 at Coronado City Beach. Each graph gives the return period of 

maximum total sea level relative to MSL. In order to derive the change in return period for 

given MSLR, the respective MSLR value is added to this maximum total water level. As an 

example, the 10‐yr return value for total maximum water level at SS0160 under baseline 

conditions and relative to MSL is 2.92 m, which is equivalent to elevation 3.69 m relative to 

NAVD88. If MSLR = 0.5 m, then the 10‐yr return total water level will be 3.69 + 0.5 = 4.19 m 

(NAVD88). This illustrates the phenomenon often called “return‐period creep” as specified 

return period elevations become progressively higher, or equivalently, as given maximum 

water levels become increasingly more frequent.  

Return periods calculated using the joint probability method based on Tawn (1988), Tawn 

and Vassie (1989), and Tawn (1992) are also given in Figure 5‐2 and Figure 5‐3. In this 

approach, the probability distribution of the projected regional water level fluctuations 

(tide, NTR, and El Niño) of elevation ܽ is ௐሺܽሻ, and that of the runup at each of the 13 

ranges at elevation ܾ is ோሺܾሻ. The probability ்ை்ሺݏሻ of a total water level (tide, NTR, El 

Niño, and runup) ݏ is then given by the convolution ்ை்ሺݏሻ ൌ ௐሺ ݏ െ  ,ݔሻ݀ݔோሺሻݔ

which expresses the fact that a given total water level can be reached by any combination 

of water level and runup that adds up to the given amount, and that the probability of that 

total elevation is the sum of the products of the probabilities of its constituents. 
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Table 5‐2.  Parameters for five wave scenarios (week, month, year, decade and century) at the 6 range 

stations of NBC. 

 

 

  

NBC Average Return Tide NTR Hs Tp

Yrs m m m s

Week 0.019 0.83 0.00 0.82 13.02

Month 0.08 0.98 0.00 1.03 13.99

Year 1 1.06 0.01 2.13 14.84

Decade 10 1.06 0.05 3.67 15.56

Century 100 1.14 0.02 3.74 16.63

SS0182 Synthetic Return Tide NTR Hs Tp

Yrs m m m s

Week 0.019 0.83 0.00 1.95 13.02

Month 0.08 0.98 0.00 2.13 13.99

Year 1 1.06 0.01 3.31 14.84

Decade 10 1.06 0.05 4.97 15.56

Century 100 1.14 0.02 4.83 16.63

SS0160 Synthetic Return Tide NTR Hs Tp

Yrs m m m s

Week 0.019 0.83 0.00 0.80 13.02

Month 0.08 0.98 0.00 1.17 13.99

Year 1 1.06 0.01 2.68 14.84

Decade 10 1.06 0.05 4.65 15.56

Century 100 1.14 0.02 5.17 16.63

SS0125 Synthetic Return Tide NTR Hs Tp

Yrs m m m s

Week 0.019 0.83 0.00 0.62 13.02

Month 0.08 0.98 0.00 0.86 13.99

Year 1 1.06 0.01 1.98 14.84

Decade 10 1.06 0.05 3.46 15.56

Century 100 1.14 0.02 3.76 16.63
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Table 5‐2. (cont.) 

 

 

  

SS0090 Synthetic Return Tide NTR Hs Tp

Yrs m m m s

Week 0.019 0.83 0.00 0.86 13.02

Month 0.08 0.98 0.00 1.03 13.99

Year 1 1.06 0.01 2.01 14.84

Decade 10 1.06 0.05 3.28 15.56

Century 100 1.14 0.02 3.55 16.63

SS0077 Synthetic Return Tide NTR Hs Tp

Yrs m m m s

Week 0.019 0.83 0.00 0.98 13.02

Month 0.08 0.98 0.00 1.21 13.99

Year 1 1.06 0.01 2.38 14.84

Decade 10 1.06 0.05 3.87 15.56

Century 100 1.14 0.02 4.33 16.63

SS0050 Synthetic Return Tide NTR Hs Tp

Yrs m * m s

Week 0.019 0.83 0.00 0.95 13.02

Month 0.08 0.98 0.00 1.12 13.99

Year 1 1.06 0.01 2.14 14.84

Decade 10 1.06 0.05 3.43 15.56

Century 100 1.14 0.02 3.87 16.63
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Table 5‐3.  Parameters for five wave scenarios (week, month, year, decade and century) at the 8 range 

stations of MCBCP 

 

 

 

MCB Average Return Tide NTR Hs Tp

Yrs m m m s

Week 0.019 0.93 0.001 0.92 14.57

Month 0.08 1.02 0.00 1.04 15.32

Year 1 1.10 0.01 1.47 16.54

Decade 10 1.09 0.02 2.32 16.61

Century 100 1.11 0.04 3.27 15.87

SO1530 Synthetic Return Tide NTR Hs Tp

Yrs m m m s

Week 0.019 0.93 0.001 0.92 14.57

Month 0.08 1.02 0.00 1.11 15.32

Year 1 1.10 0.01 1.54 16.54

Decade 10 1.09 0.02 2.45 16.61

Century 100 1.11 0.04 3.30 15.87

SO1470 Synthetic Return Tide NTR Hs Tp

Yrs m m m s

Week 0.019 0.93 0.001 0.92 14.57

Month 0.08 1.02 0.00 0.70 15.32

Year 1 1.10 0.01 1.25 16.54

Decade 10 1.09 0.02 2.29 16.61

Century 100 1.11 0.04 3.70 15.87

PN1340 Synthetic Return Tide NTR Hs Tp

Yrs m m m s

Week 0.019 0.93 0.001 0.92 14.57

Month 0.08 1.02 0.00 1.18 15.32

Year 1 1.10 0.01 1.48 16.54

Decade 10 1.09 0.02 2.21 16.61

Century 100 1.11 0.04 3.10 15.87

PN1290 Synthetic Return Tide NTR Hs Tp

Yrs m m m s

Week 0.019 0.93 0.001 0.92 14.57

Month 0.08 1.02 0.00 1.15 15.32

Year 1 1.10 0.01 1.60 16.54

Decade 10 1.09 0.02 2.55 16.61

Century 100 1.11 0.04 3.73 15.87
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Table 5‐3. (cont.) 

 

 

  

PN1280 Synthetic Return Tide NTR Hs Tp

Yrs m m m s

Week 0.019 0.93 0.001 0.92 14.57

Month 0.08 1.02 0.00 1.21 15.32

Year 1 1.10 0.01 1.56 16.54

Decade 10 1.09 0.02 2.37 16.61

Century 100 1.11 0.04 3.29 15.87

PN1240 Synthetic Return Tide NTR Hs Tp

Yrs m m m s

Week 0.019 0.93 0.001 0.92 14.57

Month 0.08 1.02 0.00 1.19 15.32

Year 1 1.10 0.01 1.61 16.54

Decade 10 1.09 0.02 2.43 16.61

Century 100 1.11 0.04 3.15 15.87

PN1180 Synthetic Return Tide NTR Hs Tp

Yrs m m m s

Week 0.019 0.93 0.001 0.92 14.57

Month 0.08 1.02 0.00 1.22 15.32

Year 1 1.10 0.01 1.68 16.54

Decade 10 1.09 0.02 2.63 16.61

Century 100 1.11 0.04 3.46 15.87

PN1110 Synthetic Return Tide NTR Hs Tp

Yrs m m m s

Week 0.019 0.93 0.001 0.92 14.57

Month 0.08 1.02 0.00 1.35 15.32

Year 1 1.10 0.01 1.73 16.54

Decade 10 1.09 0.02 2.59 16.61

Century 100 1.11 0.04 3.78 15.87
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Figure 5‐4. Total water level scenarios for NBC using the XBeach runup results. Line colors are return periods 

as follows: black = week; green = month; blue = year; magenta = decade; red = century. 
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Figure 5‐5. Total water level scenarios for MCBCP using the XBeach runup results. Line colors are return 

periods as follows: black = week; green = month; blue = year; magenta = decade; red = century. 
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5.2 Delineation of the Coastal System 

Results of the coastal system delineation process for NBC and MCBCP are describe below. 

The results illustrate the application of methods for the development of baseline terrain 

models, installation infrastructure models, and the integration of these into a full digital 

description of the coastal system. 

5.2.1 Baseline Terrain Models 

Baseline terrain models were compiled from the data sets described in Section 4.2.1. These 

terrain models are unique in that they are the first, regional, high‐resolution Digital 

Elevation Models (DEMs) that incorporate available data for the nearshore littoral zone. 

Although the current models are based on interpolations of a limited amount of data in this 

zone, the incorporation of reasonable beach profiles through this process was fundamental 

to our ability to model the shoreline response.  

The resulting baseline terrain models for NBC and MCBCP are shown in Figure 5‐6 and 

Figure 5‐7, respectively. The elevation models themselves are useful in visualizing the 

coastal terrain and quickly understanding the low relief areas that are likely to be sensitive 

to sea level rise. From this perspective, the contrast between the terrain at the two coastal 

installations is immediately apparent, with NBC poised almost entirely on low elevation 

areas surrounded on both sides by water, and MCBCP set in an area where the terrain rises 

rapidly near the coast, with lower lying areas concentrated near the lagoons and in the 

southern portions of the region. 

The terrain model for NBC is characterized by relatively flat topography over much of the 

area. Low elevations are visible in the eastern portion of North Island, much of NAB and 

SSTC North, and the southern portion of SSTC South. Somewhat higher elevation regions 

are limited to the central portion of North Island, and the northern portion of SSTC South. 

On the ocean side of NBC, the beaches slope fairly uniformly offshore with the exception of 

the westernmost beaches off of North Island where the offshore topography is flatter as the 

sand accumulates along the Zuniga Jetty. On the San Diego Bay side, the areas along North 

Island are characterized by deep, dredged channels while much of the area along NAB and 

the Silver Strand are shallower flats with localized small boat channels. 

The terrain model for MCBCP is characterized by steeper topography with cliffs along the 

ocean interspersed with lagoons and deep gullies. The terrain is generally lower and flatter 

to the south, and steeper and higher toward the north. The beaches are also wider to the 
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The terrain at NBC is largely restricted to elevations less than 10 m, and the majority of the 

installation is below 5 m. Over 60% of the installation is below the 5.7 m maximum 

elevation of our average scenarios in Table 5‐1. In contrast, the vast majority (~98%) of the 

installation at MCBCP is well above the reach of the maximum scenario value of 5.5 m. 

While this contrast is skewed by the much larger inland extent of MCBCP compared to NBC, 

it does have ramifications for the relative ability of the two installations to adapt to sea level 

rise through managed retreat. 

 

 

Figure 5‐8. Cumulative histogram of the terrain model elevations at NBC and MCBCP. 

 

Table 5‐4. Cumulative histogram percentile bands for terrain model elevations at NBC and MCBCP. All 

values are in meters NAVD88. 
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5.2.2 Installation Infrastructure Models 

Installation infrastructure GIS models were developed for key receptor categories at each 

installation as described in Section 4.2.2. The infrastructure models were limited to the 

areas within the property lines of each installation. While the installations are likely to have 

vulnerabilities that are related to infrastructure that lies outside the property lines, the 

scope of this project, and limitations on access to non‐military stakeholders precluded a 

broader analysis. From a methodological perspective, we do highly recommend that the 

broader regional issues be included in any future operational analysis. Characteristics of the 

five key receptor category models compiled for the two installations are summarized below, 

and detailed shapefiles and receptor characteristics are included in Appendix A3. 

Training and Testing Lands 

The training and testing lands category at NBC and MCBCP focused on sensitive exposed 

shoreline training beaches. These areas support training for a wide range of military 

commands, using a variety of personnel, vessels, vehicles, equipment, and aircraft to meet 

their military readiness requirements. These areas are particularly sensitive to exposure 

pathways including erosion, inundation and flooding.  Figure 5‐9 shows the training area 

receptor category for NBC. These beach training areas are essentially fixed with respect to 

retreat because they already back up against the highway. The beach training areas at NBC 

are separated between the Silver Strand Training Complex components in the north and 

south (Figure 5‐10). SSTC North consists of 10 zones and STTC South consists of 4 zones, all 

of which lie at the head of the corresponding ocean training lanes. Current day beach areas 

and beach widths for these training areas are summarized in Table 5‐5. Areas ranged from a 

maximum of 84630 m2 at Lane 3 to a minimum of 26444 m2 at Lane 1, with a total area of 

931330 m2. Widths ranged from a maximum of 179 m at Lane 3 to a minimum of 51 m at 

Lane 1, with an average overall width of 142 m. 

At MCBCP, amphibious training also requires accessible beach widths. The majority of 

amphibious assault training activity at MCBCP occurs at Section C Las Pulgas Beach (Red), 

with additional training at Section E Aliso Beach (White), Section G Margarita Beach (Blue), 

Amphibious Vehicle Training Area, Assault Amphibious Vehicle (AAV) Training Area, and 

Section A San Onofre Beach (Green). Figure 5‐11 – Figure 5‐13 show the training area 

receptor category for MCBCP, and Table 5‐6 summarizes the current‐day beach areas and 

beach widths for these training areas. Areas ranged from a maximum of 656723 m2 at Blue 

Beach to a minimum of 281506 m2 at Green Beach, with a total area of 2202696 m2. Widths 

ranged from a maximum of 246 m at Blue Beach to a minimum of 63 m at San Onofre 



 

 335

Beach, with an average overall width of 115 m. In contrast to NBC where the beach training 

areas are restricted from retreat by existing infrastructure, the beaches at MCBCP will 

naturally retreat (autonomously adapt) as the cliffs that back them erode. Thus the analysis 

of impacts to the beaches at MCBCP incorporated this retreat, redefining the beach areas 

and widths during each scenario to incorporate the new position of the back beach based 

on the cliff erosion condition for a given sea level rise scenario. 

Table 5‐5. Beach training area characteristics at NBC. 

 

Table 5‐6. Beach training area characteristics at MCBCP. 

 

Buildings 

The building receptor category at NBC and MCBCP included a range of buildings that 

support operations and missions of the installations. This spanned buildings for housing, 

logistics, training, testing, operations, storage and security. These receptors are susceptible 

to sea level rise sources through all major pathways including inundation, flooding, erosion 

and seawater intrusion.  

The building receptor category for NBC is shown in Figure 5‐14 through Figure 5‐16 

including a total of 1637 structures. The majority of these buildings were at elevations 

below 10 meter (Figure 5‐17).  Key metrics for these buildings included footprint areas, 

replacement values and MDIs. Building footprints ranged in size from as small as 1.4 m2 to 

25839 m2 with a total inventory area of 1205935 m2. The replacement values ranged from a 

low off $4.6K to a high of $94.2M with a total across the installation of $2511M. MDIs 

ranged from a low of 0 to a high of 100 with an average MDI of 27. The majority of the 

building receptors were located at North Island Naval Air Station and the Naval Amphibious 

Base. Figure 5‐18 illustrates the building category characteristics for NBC.  

Lane 1 Lane 2 Lane 3 Lane 4 Lane 5 Lane 6 Lane 7 Average

Width (m) 51 143 179 172 162 163 144 142

Area (m
2
) 26444 68451 84630 79243 76247 74992 67961 66524

Lane 8 Lane 9 Lane 10 Lane 11 Lane 12 Lane 13 Lane 14 Total

Width (m) 162 175 158 132 113 112 121 NA

Area (m
2
) 73912 83809 71596 59929 55275 51388 57455 931330

Beach Training Area

Blue White Red Green SO Total Average

Width (m) 246 130 75 64 63 NA 115

Area (m
2
) 656723 436124 388641 281506 439702 67961 2202696

Beach Training Area
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for NBC.  

 

Legend 

~ Training Beaches 

Bay Trainin Lanes 



 

 

 

FFigure 5‐10. Detail view of the traininng areas at SSTC NNorth (left) and Sou
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FFigure 5‐12. Detailed view of the traiining areas for Blue Beach (bottom l
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eft), White Beach (upper left), and RRed Beach (right). 
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FFigure 5‐13. Detailed view of the traiining areas for Golld Beach (left), and
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The building receptor category for MCBCP is shown in Figure 5‐19 through Figure 5‐21 

including a total of 6779 structures. Building elevations generally fell within the range of 10‐

100 m although a number of buildings were below 10 m in the range that could be sensitive 

to sea level rise (Figure 5‐17). Key metrics for these buildings included footprint areas, 

replacement values and MDIs. Building footprints ranged in size from 2.0 m2 to 242306 m2 

with a total inventory area of 22819235 m2. The replacement values ranged from a low off 

$124 to a high of $257M with a total across the installation of $7240M. MDIs ranged from a 

low of 0 to a high of 90 with an average MDI of 24. In contrast to NBC, the majority of the 

building inventory at MCBCP is located away from the water with the exception of the 

buildings in the Del Mar and San Onofre areas. Building characteristics for MCBCP are 

illustrated in Figure 5‐22. 

Waterfront Structures 

This category included a range of structures at NBC and MCBCP that support waterfront 

operations and missions. This category encompassed structures such as piers, wharves, 

quay walls, floating docks and graving docks. The waterfront structures receptor category 

for NBC is shown in Figure 5‐23 through Figure 5‐25. Waterfront structures at NBC are 

concentrated along the protected shorelines of San Diego Bay and include a number of pier 

and wharf areas. There are over 40 structures located on NBC, and 80% are piers while the 

remaining 20% include landing craft ramps, fueling piers and one seaplane ramp. Structures 

in this category were characterized with respect to deck area, replacement value, and MDI.  

Structure deck footprints ranged in size from 20 m2 to 22775 m2 with a total inventory area 

of 85168 m2. The replacement values ranged from a low off $109K to a high of $184M with 

a total across the installation of $659M. MDIs ranged from a low of 0 to a high of 93 with an 

average MDI of 40.  

Waterfront structures at MCBCP are shown in Figure 5‐26 and are limited to small boat 

facilities in the Del Mar Basin including a total of roughly 8 structures. Structures in this 

category were characterized with respect to deck area, replacement value, and MDI.  

Structure deck footprints ranged in size from 584 m2 to 6271 m2 with a total inventory area 

of 50165 m2. The replacement values ranged from a low of $64K to a high of $10.7M with a 

total across the installation of $36.6M. MDIs ranged from a low of 0 to a high of 75 with an 

average MDI of 56.  
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Figure 5‐18. NBC building category characteristics including non‐zero MDI, replacement cost and building 

area. 
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Figure 5‐20. Detailed view of the buiildings for southern (left) and centra
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l (right) MCBCP. 
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Figure 5‐22. MCBCP building category characteristics including non‐zero MDI, replacement cost and building 

area. 
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FFigure 5‐24. Detail views of the wateerfront structures aat North Island. 
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Coastal Structures 

This category includes a range of coastal structures at NBC and MCBCP whose primary 

purpose is to protect the shoreline and thus sustain operations and missions of the 

installation. This category encompasses structures such as jetties, groins and revetments 

which are used to protect the shoreline and dredged improvements.  

Coastal structures at NBC are shown in Figure 5‐27 through Figure 5‐29. There are a total of 

10 structures including rip rap, revetments and bulkheads, primarily lining the protected 

shoreline of NBC within San Diego Bay, but also including the large Zuniga Jetty that 

protects the entrance of San Diego Bay as well as portions of the ocean shoreline at NBC. 

The individual average elevations of these structures ranged from 3.5 – 5.0 m, they ranged 

in length from about 188 – 2264 m, and had replacement costs ranging from about $2.2M 

to $25M with a total inventory value of about $107M. 

Coastal structures at MCBCP are shown in Figure 5‐30 through Figure 5‐31. There are a total 

of 8 structures, primarily around the Del Mar basin. The individual average elevations of 

these structures ranged from 3.7 – 6.1 m they ranged in length from about 150 – 1560 m, 

and had replacement costs ranging from about $2.9M to $42M with a total inventory value 

of about $92M. The SONGS facility is protected by a seawall with an approximate elevation 

of 19.2 m, with a length of 770 m, and an approximate replacement cost of $23M. 

Civil Infrastructure 

This receptor category describes a broad category of built infrastructure at NBC and MCBCP 

that is critical to the day‐to‐day operations and mission of the installation. The category 

includes receptors ranging from critical utility infrastructure such as buried utilities, fuel 

transfer/supply, transportation corridors, and storm water conveyance systems. These 

receptors are susceptible to sea level rise sources through all major pathways including 

inundation, flooding, erosion and seawater intrusion. Because of the breadth and 

complexity of this category, we focused our analysis on a subset of elements that exemplify 

the potential impacts from sea level rise. These included transportation infrastructure, 

storm water conveyance system, airfield surfaces, and recreational areas (Figure 5‐32 ‐ 

Figure 5‐48). Components within this category at NBC included 1166 storm drain inlets and 

94525 m of storm drain piping, 1996921 m2 of airfields, 154189 m of roadways, and 529935 

m2 of recreational areas. Components within this category at MCBCP included 1756 storm 

drain inlets and 132785 m of storm drain piping, 131934 m2 of airfields, 140456085 m of 

roadways, and 571760 m2 of recreational areas. 
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359

 

t) and SONGS (righht) areas of MCBCPP. 

 



 

 

 

 

Fi

 

igure 5‐32. Civil infrastructurre ‐ airfields re

 

360

eceptor categoory for NBC. 

 



 

 

 

Fi
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5.2.3 Integrated Terrain and Infrastructure Models 

The baseline terrain and infrastructure models were combined in Arcview to produce a 

complete, integrated model of the two installation study areas. These models represent the 

current day conditions at the installation, and form the basis for all subsequent analysis and 

products for evaluation of physical responses and vulnerabilities to sea level rise. The 

datasets underlying these integrated models are based on community standard, open‐

specification NCAR Network Common Data Form (NetCDF) files for the terrain models, and 

ESRI Shapefiles for the infrastructure data and are thus easily transportable to various 

platforms and applications.  

Results for the NBC model are shown in Figure 5‐49 – Figure 5‐52. Figure 5‐49 provides an 

overview of the extent of the terrain model and the installation infrastructure that spans 

much of the coast of southern San Diego County from Coronado to Imperial Beach. 

Components of the five infrastructure receptor categories were clustered in three areas 

including North Island Naval Air Station to the northwest, Naval Amphibious Base and Silver 

Strand Training Complex North at the north end of the Silver Strand, and Silver Strand 

Training Complex South near Imperial Beach. Much of the built infrastructure was 

concentrated in the northern areas, while the southern area was primarily used for training. 

Figure 5‐50 – Figure 5‐52 show more detailed views of these three areas.  

Results for the MCBCP model are shown in Figure 5‐53 – Figure 5‐56. Figure 5‐53 provides 

an overview of the extent of the terrain model and the installation infrastructure that spans 

the entire coastal area of northern San Diego County from Oceanside in the south to San 

Onofre in the north. The contrast between MCBCP and NBC is immediately striking in both 

the significantly large scale of the MCBCP installation, and the general lack of built coastal 

infrastructure near the immediate shoreline areas. Coastal built infrastructure at MCBCP 

was concentrated in the Del Mar area at the southern end of the base near Oceanside. 

Scattered structures and airfields were found along the cliffs further to the north, and there 

was a concentration of built infrastructure at the northern end of the base including the 

power plant at San Onofre, and the recreational area at Crescent Beach. Key training 

beaches lined much of the southern shoreline of the base. Figure 5‐54 – Figure 5‐56 show 

detailed views of the integrated terrain and infrastructure in some of these key areas. 
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5.3 Physical Response to Sea Level Rise 

Pathways of physical response to sea level rise were quantified for exposed and protected 

shorelines at NBC, and for exposed shorelines and groundwater at MCBCP. Groundwater is 

not used for potable water at NBC, so we did not focus on this pathway, however it may still 

have important ramifications for impacts to underground infrastructure. Similarly, we did 

not focus on protected shorelines at MCBCP, however there are areas of the base such as 

the Del Mar basin and the Santa Margarita Lagoon where these conditions prevail.  

The majority of our effort focused on the response along the exposed shorelines of the two 

installations. These results are presented based on pathway specific responses via erosion 

and inundation/flooding. The erosion results incorporate long‐term response to sea level 

rise and sand budget deficits, as well as short‐term response to variations in wave climate. 

5.3.1 Exposed Shoreline Response 

Exposed shoreline response was evaluated at the two installations using the models 

described in Section 4.3. Shoreline response is characterized in terms of key vulnerability 

pathways including erosion, inundation and flooding.  

Erosion at NBC 

Long‐term erosion response at NBC was evaluated using the CSPEM model described in 

Section 4.3.1. This model incorporates the response of the beach system to sea level rise 

and sand budget deficits. Results for a two sand budget conditions were evaluated and 

presented below, with the final analysis focusing on the higher level deficit as a more 

conservative scenario. 

Zero Deficit Scenario 

Long‐term beach retreat for the zero sand deficit condition increased linearly as a function 

of sea level rise (Figure 5‐57). Scenario‐mean beach retreat ranged from 21.3 m for 0.5 m of 

sea level rise, to 85.7 m for 2.0 m of sea level rise (Table 5‐7). Maximum retreats ranged 

from 39.6 m to 156 m for the same scenarios. The effective average beach slope based on 

the linear relationship between retreat and sea level rise was about 42 m/m with a range 

from about 28 – 75 m/m based on the minimum and maximum retreat respectively.   

Deficit Scenario 

For NBC beach retreat, we focused on a sand deficit scenario that ranged from a high of 

about 6.5 m3/m/y for the southern portion of the study area to a low of 0 m3/m/y at the 

north end based on the estimates of Inman and Master, 1991. Including the existing sand 
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deficit generally increased the retreat rate of the beach relative to the zero deficit scenario. 

Beach retreat for these conditions are shown in Figure 5‐57. Including the effects of sea 

level rise and the sand budget deficit, scenario‐mean beach retreat ranged from 53.5 m for 

0.5 m of sea level rise, to 121.2 m for 2.0 m of sea level rise, and maximum retreats ranged 

from 109.5 m to 226.1 m for the same scenarios. This represents an increase of 41‐151% for 

the mean and 45‐177% for the maximum relative to the zero deficit condition. Larger 

percent increases were associated with lower sea level rise scenarios as the sand budget 

deficit becomes the more dominant retreat driver under these conditions.  

Table 5‐7. Beach retreat comparison for different sand deficit assumptions. 

 

Alongshore distribution of beach retreat 

The CSPEM model and other sand balance based models assume that the sand required to 

maintain the active profile in relation to sea level rise must be eroded from the back beach. 

Thus variations in the offshore shape of the profile result in different demand levels from 

the back beach, and variations in the back beach profile result in different source availability 

for the sand balance. These conditions vary alongshore in a way that causes variations in 

the retreat rate. In areas where the offshore profile is longer and flatter, more sand is 

required to maintain the profile. In areas where the back beach elevations are low, less 

sand is available to maintain the profile.  

Figure 5‐57 shows the alongshore variations in beach retreat at NBC for the zero deficit and 

Inman and Masters deficit conditions. For the zero deficit condition, retreat was generally 

higher in the northern and southern portions of the study area, and lower through the 

central region. This trend became more marked for the higher sea level rise scenarios. This 

large scale trend in the south was generally related to the lack of source material in the 

back beach once the coastal dunes have been eroded. In the north, the higher retreat was 

related more to the flatter and shallower offshore topography that requires more sand to 

maintain in the face of sea level rise. Through the central region, the offshore profiles are 

steeper and fairly uniform, and the back beach areas are generally higher at least up to the 

point where the erosion starts to exceed the width up to the highway. Finer scale variations 

Average Min Max Average Min Max

0.5 21.3 15.9 39.6 53.5 24.4 109.5

1.0 41.3 29.3 73.8 74.9 47.1 148.0

1.5 62.7 43.0 109.6 97.6 69.1 184.8

2.0 85.7 55.1 156.0 121.2 89.1 226.1

Zero Deficit Inman and Master 1991 Deficit

Beach Retreat (m)

SLR
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were partly an artifact of the modeling approach, which did not include local beach‐width 

smoothing from alongshore sand transport.  

For the Inman and Masters deficit condition, the retreat in the south and central portions of 

the study area were accentuated by the sand deficit, while the northern end was similar to 

the zero deficit case because the Inman and Masters values transition to zero in this area. 

The overall result was that, under moderate to high sea level rise conditions, retreat rates 

were highest in the south, and then fairly uniform over much of the rest of the study area. 

At lower sea level rise conditions, the retreat rates in the north were actually lower than in 

the central area because of the dominance of the sand budget term under low sea level rise 

scenarios. 

 

Figure 5‐57. Alongshore variation in beach retreat at NBC for the zero sand deficit (above) and Inman and 

Masters 1991 sand deficit scenarios. 
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Model assumptions 

The primary assumptions underlying the CSPEM model were that the active profile shape 

was maintained from its current day configuration, the upper and lower limits of the active 

profile were governed by long‐term processes on the time scale of a decade, and that the 

back beach material was 100% erodible sand that was available to replenish the offshore 

portions of the profile. The consistency of the profile shape was supported by the historical 

monitoring data at the fiducial transects (see Section 3.3.3). The assumptions regarding the 

extent of the active beach profile were subjective. Conceptually, the 10‐yr return period 

was chosen to represent a moderately high total water level condition that occurred 

frequently enough to be influential over the modeled time period of interest (100 years). 

Additional research on defining the most appropriate limits would be useful since the 

choice has implications for the estimation of future beach widths and erosion rates. For 

NBC, the entire study area was primarily composed of sand, including the inland areas that 

would be subject to erosion, so the composition assumption is reasonable. The erosion does 

move into some areas that are paved or protected, so in these instances the erodability 

assumption would be invalid. However we were primarily interested in identifying areas 

that were vulnerable to erosion and from this perspective our assumption provided a 

conservative view of those vulnerabilities. 

Model Sensitivity 

Sensitivity analysis of the active profile boundaries was conducted at selected profiles using 

boundaries associated with week, month, year, decade and century return period 

conditions. The results showed relatively small differences in model outcomes over the 

range of conditions from week to year, with progressive increases in retreat associated with 

boundaries associated with decade and century return period conditions (Figure 5‐58). 

Retreat for the decade condition generally exceeded the shorter return period conditions by 

about 15‐20%. For the century condition, retreat increased over the shorter return period 

conditions by about 45‐50%. These increases resulted from two factors including a deeper 

extension of the offshore extent of the profile that encompasses flatter areas that require 

more sand for maintenance, and a higher back beach elevation that must also be 

maintained during retreat. Overall the model was not highly sensitive for assumed active 

profile ranges associated with 1‐10 year return period conditions, and our choice of the 10 

year return falls between the extremes of the outcomes from 1 week to 1 century. 
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Figure 5‐58. Comparison of retreat profiles for the year 2100 with no sand deficit at MOP station 155 for 

active profile boundaries defined by a range of return period conditions (above), and retreat curves for the 

corresponding conditions from 2000 – 2100. 
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Short‐Term Beach Response 

Short term beach response at MCBCP was examined using the YGOR model described in 

Section 4.3.3 at each of the fiducial transects. The return period statistics of shoreline 

position extremes were computed using the extreme value method of order statistics 

(Makkonen 2011), and interpolated along the entire shoreline of the installation using a 

piecewise polynomial interpolation method. The resulting shoreline fluctuations for each 

return period were then superimposed on the long term response results to construct 

shoreline positions for a range of sea level rise and return period conditions. 

Erosion Footprints 

Using the CSPEM methodology, we evaluated the long‐term beach system response and 

developed erosion footprints for the beach system at NBC. Erosion footprints were 

developed for snapshots along the 2 m SLR curve that correspond to sea level increases of 

0.5, 1.0, 1.5 and 2.0 m, and timeframes of 2046, 2069, 2087 and 2100. These cases are 

referred to as the “first occurrence” conditions because they represent the earliest time 

that these sea level values would occur based on the assumed range of sea levels used in 

the study. The footprints were developed using the sand deficit estimates from Inman and 

Masters (1991) as the most conservative assumption. The footprint for each condition was 

represented by a polygon which spans alongshore the entire active shoreline of NBC, and 

spans cross shore between the baseline (year 2000) shoreline position and the shoreline 

position for the snapshot time of interest. For each mean sea level condition, five 

overlapping polygons are shown that correspond to the overlay of the short‐term beach 

response from the YGOR model simulations on the long‐term mean shoreline retreat 

estimated from the CSPEM model. Results for the beach system response, and the resulting 

erosion footprints are presented in Figure 5‐59 through Figure 5‐70 for the baseline (SLR=0 

m), 1.0 m, and 2.0 m sea level rise scenarios (note that the 0.5 m and 1.5 m cases were also 

compiled in the GIS but are not shown here). 

The erosion footprint areas reflect both the long‐ and short‐term response of the shoreline 

to the combined effects of sea level rise, sand budget deficits and a range of wave 

conditions. In general, the erosion zones grew in response to higher sea levels, longer 

durations of sand budget deficits, and stronger wave climates. The baseline condition 

shown in Figure 5‐59 through Figure 5‐62 essentially represent only the effects of short‐

term wave response because the sea level rise is zero, as is the time duration associated 

with the sand budget deficit term. The spatial patterns of these eroded shorelines indicated 

higher erosion in the northern portions of the study area off of North Island where the wave 
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energy is generally higher than the areas to the south. Under the baseline condition for the 

higher wave energy events, elements of the installation infrastructure that appeared to be 

vulnerable to erosion under current day conditions included roads and recreation areas in 

the North Island area, buildings and training areas in the NAB/SSTC North area, and the 

beach training areas at SSTC South.   

For the 1.0 m SLR case (Figure 5‐63 – Figure 5‐66), the effects of sea level rise and the sand 

budget deficit were more apparent in the erosion patterns. The shoreline retreat was more 

uniform across the study area, though still somewhat more pronounced in the northern 

area in association with the higher wave energy. This case corresponded to a first 

occurrence year of 2069, so the influence of the sand budget deficit had sufficient time to 

contribute substantially to the long‐term shoreline retreat. Close inspection of the detailed 

views in Figure 5‐64 – Figure 5‐66 shows that for the smaller wave conditions (grey lines 

closest to the original shoreline), the shoreline retreat was comparable across the three 

installation areas, but grew wider in the north for the higher energy wave conditions in 

comparison to the areas in the south. Under the 1.0 m SLR condition, receptors that 

appeared to be vulnerable to erosion included buildings, roads, recreation areas and 

stormwater systems at North Island, buildings, training areas, and stormwater systems at 

NAB/SSTC North, and training areas and roads at SSTC South. 

For the 2.0 m SLR case (Figure 5‐67 – Figure 5‐70), the spatial pattern of retreat was similar 

to the 1.0 m case but more significant in magnitude. This case corresponded to a first 

occurrence year of 2100, so the influence of the sand budget deficit had the entire 100 year 

study period to contribute substantially to the long‐term shoreline retreat. This was also the 

highest sea level rise condition studied, so it represented the worst case over the range of 

our scenarios. Under the combination of short‐ and long‐term erosion patterns receptors 

that appeared to be vulnerable included buildings, roads, recreation areas, airfields and 

stormwater systems at North Island, buildings, training areas, and stormwater systems at 

NAB/SSTC North, and training areas and roads at SSTC South.  
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Erosion at MCBCP 

Long‐term erosion response at MCBCP was evaluated using the CDPM model described in 

Section 4.3.2. This model incorporated the coupled and decoupled response of the beach 

and cliff system to sea level rise and sand budget deficits. Results for a range of sand 

budgets were evaluated and presented below, with the final analysis focusing on the higher 

level deficit as a more conservative scenario. 

Zero Deficit Scenario 

The rate, alongshore mean distance, and range of cliff retreat increased with time and MSLR 

(Figure 5‐71). By year 2100, alongshore scenario‐mean cliff retreat ranged from 4 to 16 m. 

The maximum cliff retreat by 2100, and 10‐yr return interval, was 21, 22, 35, 54 m, and 0.3, 

0.3, 0.7, 1.3 m/yr for the 0.5, 1.0, 1.5, and 2.0 m MSLR by‐2100 scenarios, respectively. The 

initial back beach buffer ranged from 1‐183 m (mean 40 m) with larger values toward the 

south and far north (Figure 5‐71a). For all MSLR scenarios, the beach buffer prevented 

wave‐driven erosion through 2100 at some locations and only subaerial processes caused 

erosion resulting in similar minimum 2100 retreat values of 2 m (Figure 5‐71c). Although 

scattered, the sections with minimal back beach buffer (approximately 18‐22 km north of 

Oceanside Harbor Figure 5‐71a), experienced larger cliff retreat compared to other sections 

(Figure 5‐71c). Retreat was highly variable over short distances from abrupt changes in 

beach buffer width and/or cliff height. This result is also partly an artifact of the modeling 

approach, which does not include local beach‐width smoothing from alongshore sand 

transport. 

The binned distribution of year‐2100 retreat for all MSLR scenarios was right skewed with a 

single peak between 5‐15 m (Figure 5‐72, solid lines). Increasing sea level reduced the 

binned distribution peak height, spreading the distribution more evenly, especially for the 

2.0 m by‐2100 MSLR scenario. 

Deficit and Surplus Scenarios 

External sand deficit or surplus increased or decreased overall cliff retreat, respectively 

(Table 5‐8). The surplus scenario (0.37 m3/m/yr) generally caused little change compared to 

the zero deficit scenario and reduced mean and maximum 2100 yr retreat by 0‐11%. 

Retreat distributions were also marginally different compared to the zero deficit scenario. In 

contrast, the deficit scenario (15 m3/m/yr) caused significant change in year 2100 retreat 

magnitude, increasing the mean 40‐130%, and maximum two‐six fold. Binned distributions 

(Figure 5‐72) peaked around 50‐80 m and were less skewed compared to the other 
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Model assumptions 

A primary assumption of sand balance models is that sand balance is attainable. For cliffs 

resistant to erosion, these models predict cliff retreat rates potentially exceeding the 

maximum possible. This is a significant problem where cliffs contain little or no coarse sand 

and models predict unrealistically large or infinite coastal retreat. Sand based models also 

fail when equilibrium is sand independent, for example at a rock coast devoid of sand. In 

this case, the models unrealistically predict no coastal retreat because no sand is needed to 

maintain equilibrium.  

Most sand balance cliff retreat models assume an instant cliff response to sea level rise (if 

external sand supply is constant), ignoring the potential time lag caused by cliff erosion 

resistance. This assumption may hold for soft sandy cliffs and millennial time scales, but 

probably not for resistant cliffs and shorter time scales. CDPM modifications remove this 

assumption. By decoupling the beach and cliff profiles, the CDPM also decouples the instant 

response. An adequate beach buffer delays marine‐driven cliff erosion and limits the instant 

response to the beach profile. While the buffer prevents marine cliff erosion, subaerial 

processes dominate and the cliff erosion is insensitive to sea level, temporarily resulting in a 

no‐feedback system (Ashton et al. 2011). After complete buffer erosion, the beach and cliff 

profile become coupled again and the cliff‐beach profile become an instant response 

system similar to previous models. 

Previous sand balance models assume sufficient sand availability below the active beach 

profile to maintain sand balance. For cliffed coasts with thin beach cover, the active beach 

profile can potentially shift into the underlying shore platform when all overburden sand is 

removed; such as by a large wave storm event. This makes the assumption invalid if the 

substrate is erosion resistant or the underlying substrate is not 100% sand. The CDPM 

method permits active profile shifts to the shore platform and can accommodate substrates 

with partial sand content. If the active profile intersects an erodible platform, then the 

profile can maintain its overall equilibrium shape. However, if the platform is resistant, the 

profile shape must adjust according to the platform shape. In both cases CDPM, can still 

maintain sand balance, but indicates beach loss and platform exposure along at least part of 

the profile. Unfortunately, detailed subsurface platform profiles are not available for 

MCBCP or nearly all other sections of southern California coast. This represents an 

important deficiency that hinders better modeling of future shoreline and cliff changes from 

MSLR. 
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In all scenarios, beach widths were reduced more rapidly with increasing MSLR scenarios. 

However, the rate of reduction was more apparent in the zero deficit scenario compared to 

the negative 15 m^3/m‐yr scenario, where beach widths were reduced relatively rapidly to 

their constant equilibrium width.  The rapid reduction and relatively similar time series of 

scenario beach changes highlights the importance and potential influence of external 

sediment deficit/supply. 

Short‐Term Beach Response 

Short term beach response at MCBCP was examined using the YGOR model described in 

Section 4.3.3 at each of the fiducial transects. The return period statistics of shoreline 

position extremes were computed using the extreme value method of order statistics 

(Makkonen 2011), and interpolated along the entire shoreline of the installation using a 

piecewise polynomial interpolation method. The resulting shoreline fluctuations for each 

return period were then superimposed on the long term response results to construct 

shoreline positions for a range of sea level rise and return period conditions. 

Erosion Footprints 

Using the CDPM methodology, we evaluated the long‐term beach/cliff system response and 

developed erosion footprints for the beach system at NBC. Erosion footprints were 

developed for snapshots along the 2 m SLR curve that correspond to sea level increases of 

0.5, 1.0, 1.5 and 2.0 m, and timeframes of 2046, 2069, 2087 and 2100. These cases are 

referred to as the “first occurrence” conditions because they represent the earliest time 

that these sea level values would occur based on the assumed range of sea levels used in 

the study. The footprints were developed using the sand deficit estimates from Inman and 

Masters (1991) as the most conservative assumption. The footprint for each condition was 

represented by polygons for beach and cliff segments which spanned alongshore the entire 

active shoreline of MCBCP, and spanned cross shore between the baseline (year 2000) 

shoreline position and the shoreline position for the snapshot time of interest. For each 

mean sea level condition, five overlapping polygons of beach erosion are shown that 

correspond to the overlay of the short‐term beach response from the YGOR model 

simulations on the long‐term mean shoreline retreat estimates from the CSPEM model. 

Results for the beach/cliff system response, and the resulting erosion footprints are 

presented in Figure 5‐75 through Figure 5‐86 for the baseline (SLR=0 m), 1.0 m, and 2.0 m 

sea level rise scenarios (note that the 0.5 m and 1.5 m cases were also compiled in the GIS 

but are not shown here). 
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The erosion footprints for the beach areas reflected both the long‐ and short‐term response 

of the shoreline to the combined effects of sea level rise, sand budget deficits and a range 

of wave conditions. The erosion footprints for the cliffs reflected only the long‐term 

response from the combination of subaerial processes and, in cases where the back beach 

buffer was sufficiently narrow, wave driven erosion.  In general, the beach erosion zones 

grew in response to higher sea levels, longer durations of sand budget deficits, and stronger 

wave climates. The cliff erosion zones grew at the lower subaerial rate until sea level rise 

was sufficient to narrow the back beach, and then the rates accelerated in association with 

wave erosion.  

The baseline condition shown in Figure 5‐75 through Figure 5‐78 essentially represent only 

the effects of short‐term wave response on the beaches because the sea level rise is zero, 

as is the time duration associated with the sand budget deficit term and the subaerial cliff 

erosion term. The spatial patterns of these eroded shorelines were quite uniform 

throughout the study area, consistent with the fairly uniform wave energy climate. Under 

the baseline condition for the higher wave energy events, the primary receptor category 

that appeared to be vulnerable to erosion under current day conditions were the beach 

training areas particularly along the northern portions of the base where the beaches are 

already quite narrow.   

For the 1.0 m SLR case (Figure 5‐79 – Figure 5‐82), the effects of sea level rise and the sand 

budget deficit were more apparent in the beach erosion patterns. The shoreline retreat was 

still fairly uniform across the study area, though still somewhat more pronounced in the 

southern area at Del Mar where there are no cliffs and limited sand supply from the back 

beach. This case corresponded to a first occurrence year of 2069, so the influence of the 

sand budget deficit had sufficient time to contribute substantially to the long‐term 

shoreline retreat. Cliff erosion was apparent, and cliff erosion patterns were also fairly 

uniform across the study area though somewhat higher in the northern areas where wave 

erosion contributed more due to the narrow beaches. Under the 1.0 m SLR condition, 

receptors that appeared to be vulnerable included beach training areas, buildings, roads, 

and recreation areas.  

For the 2.0 m SLR case (Figure 5‐83 – Figure 5‐86), the spatial pattern of retreat was similar 

to the 1.0 m case but more significant in magnitude. This case corresponded to a first 

occurrence year of 2100, so the influence of the sand budget deficit had the entire 100 year 

study period to contribute substantially to the long‐term shoreline retreat. This was also the 

highest sea level rise condition studied, so it represented the worst case over the range of 
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our scenarios. Beach erosion was more pronounced to the south. Cliff erosion was 

substantial, and fairly uniform across the study area. Under the combination of beach and 

cliff erosion patterns receptors that appeared to be vulnerable included buildings, roads, 

recreation areas, stormwater systems, and beach training areas. Cliff erosion in this 

scenario reached the major interstate (I5) in the northern portion of the study area, and 

approached some of the airfields along the central portion of the installation. 
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Inundation and Flooding at NBC 

Inundation and flooding along the exposed shorelines at NBC were assessed following the 

methodologies described in Section 4.3.5. Elevation models for future sea level scenarios 

were developed based on results from the long‐term shoreline response models described 

above. A new model was constructed for each target sea level condition (0.5, 1.0, 1.5 and 

2.0 m). To illustrate the methodology we utilized the “first occurrence” of these conditions 

along the 2.0 m sea level rise curve which corresponded to time snapshots for the years 

2046, 2069, 2087 and 2100, respectively. Inundation and flooding were examined for these 

elevation models across a continuum of total water levels defined through combined 

variations in sea level rise and return period total water level events. These scenarios 

spanned five sea level rise conditions from 0‐2 m, and 5 return periods (week, month, year, 

decade, century) for a total of 25 scenarios at each MOP station for each installation. In the 

context of this project, we defined inundation as a process that leads to the frequent (week‐

month return) exposure of coastal areas to wetting, while flooding was considered to 

represent infrequent to rare events with long return periods (year‐century). Due to the 

limitations of the flood mapping methodologies, the maps shown in the section should be 

interpreted as areas that are sensitive to inundation and flooding under these conditions, 

rather than strict predictions of inundation and flooding footprints.  

Results of the inundation and flooding analysis for the baseline (SLR=0m), 1.0 m sea level 

rise, and 2.0 m sea level rise scenarios are shown in Figure 5‐87 – Figure 5‐99. The overall 

inundated/flooded area increased fairly linearly with increasing mean sea level. More rapid 

increases were projected for the yearly and decadal return periods in the transition from 

the baseline condition to 0.5 m SLR (Figure 5‐87).  As a function of time, the 

inundated/flooded area showed some acceleration in the latter half of the century in 

conjunction with accelerating SLR. Estimated area sensitive to inundation (weekly return 

period) ranged from about 2 million m2 for 0.5 m SLR, to 8 million m2 for 2.0 m SLR, while 

estimated area sensitive to the 100 year return period flood event ranged from about 10 

million m2 to about 16 million m2.   

For the baseline condition (SLR=0m), inundation as represented by the weekly return event 

was limited to the shoreline beach areas of the installation. There was no apparent 

vulnerability of any receptor category to inundation under current day conditions. For the 1 

year return period condition, flooding was also limited to the beach areas with the 

exception of the installation areas at North Island where flood exposure extended inland up 

to about 500 m in some areas. Under the 100 year return period condition, more extensive 
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flooding was projected including portions of all three regions of the installation. This 

exposure, even under current day conditions, reflects the low lying nature of the 

topography across much of NBC. Receptor categories that are potentially vulnerable to 

flooding under present day conditions include buildings, training areas, roads, airfields, 

recreation areas, and stormwater systems.  

For the 1.0 m sea level rise scenario (2069), inundation as represented by the weekly return 

event was more extensive particularly in the northern and southern areas of the 

installation. Inundation at North Island extended inland up to about 500 m in some areas, 

and as much as 100 m in the area of SSTC South. Receptor categories that are potentially 

vulnerable to inundation under the 1.0 m scenario included buildings, training areas, roads, 

airfields, recreation areas, and stormwater systems. For the 1 year return period condition, 

flooding was more extensive at all areas of the installation, extending inland 1500‐2000 m 

at North Island and influencing built areas of NAB, and the Silver Strand Housing area. 

Under the 100 year return period condition, flooding was extensive, including significant 

areas of all three regions of the installation. Receptor categories that are potentially 

vulnerable to flooding under present day conditions include buildings, training areas, roads, 

airfields, recreation areas, and stormwater systems. 

For the 2.0 m sea level rise scenario (2100), inundation as represented by the weekly return 

event was significant in all three areas of the installation. Inundation at North Island 

extended inland up 1500‐2000 m in some areas, and as much as 2000 m in the area of SSTC 

South. Receptor that are potentially vulnerable to inundation under the 2.0 m scenario 

included all categories. For the 1 year return period condition, flooding was more extensive 

at all areas of the installation, spanning virtually all of NAB/SSTC North and major portions 

of North Island and SSTC South. Under the 100 year return period condition, flooding was 

dominant across the installation with only limited central regions of North Island and SSTC 

South directly unaffected. Receptors that are potentially vulnerable to flooding under the 

2.0 m scenario include all categories. 
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Figure 5‐87. Estimated area vulnerable to inundation and flooding (cropped to NAVD88=0m) for the 25 

scenarios at NBC as a function of mean sea level rise (above) and time (below). 
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Inundation and Flooding at MCBCP 

Inundation and flooding along the exposed shorelines at MCBCP were assessed following 

the methodologies described in Section 4.3.5. Elevation models for future sea level 

scenarios were developed based on results from the long‐term shoreline response models 

described above. A new model was constructed for each target sea level condition (0.5, 1.0, 

1.5 and 2.0 m). To illustrate the methodology we utilized the “first occurrence” of the target 

conditions along the 2.0 m sea level rise curve which corresponded to time snapshots for 

the years 2046, 2069, 2087 and 2100, respectively. Inundation and flooding were examined 

for these elevation models across a continuum of total water levels defined through 

combined variations in sea level rise and return period total water level events. These 

scenarios spanned five sea level rise conditions from 0‐2 m, and 5 return periods (week, 

month, year, decade, century) for a total of 25 scenarios at each MOP station for each 

installation. In the context of this project, we defined inundation as a process that leads to 

the frequent (week‐month return) exposure of coastal areas to wetting, while flooding was 

considered to represent infrequent to rare events with long return periods (year‐century). 

Due to the limitations of the flood mapping methodologies, the maps shown in the section 

should be interpreted as areas that are sensitive to inundation and flooding under these 

conditions, rather than strict predictions of inundation and flooding footprints. 

Results of the inundation and flooding analysis for the baseline (SLR=0m), 1.0 m sea level 

rise, and 2.0 m sea level rise scenarios are shown in Figure 5‐100 – Figure 5‐112. The overall 

inundated/flooded area increased more rapidly up to 0.5 m SLR, then fairly linearly with 

increasing mean sea level up to 2.0 m (Figure 5‐100). As a function of time, the 

inundated/flooded area showed some acceleration in the latter half of the century. 

Estimated area sensitive to inundation (weekly return period) ranged from about 4 million 

m2 for 0.5 m SLR, to 7 million m2 for 2.0 m SLR, while estimated area sensitive to the 100 

year return period flood event ranged from about 6 million m2 to about 9 million m2. 

For the baseline condition (SLR=0m), inundation as represented by the weekly return event 

was limited to the shoreline beach areas of the installation. There was no apparent 

vulnerability of any receptor category to inundation under current day conditions. For the 1 

year return period condition, flooding was also limited to the beach areas with the 

exception of the inlet to Aliso Creek and some expanded wetting in the Santa Margarita 

Lagoon. Under the 100 year return period condition, more extensive flooding was projected 

in the largely undeveloped areas of Santa Margarita Lagoon, Aliso Creek, and Las Flores. 

Impact to receptors appeared to be limited to minor flooding around the small boat harbor 
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at Del Mar, and substantial flooding of beach training areas. This limited exposure under 

current day conditions reflects the steeper topography of the installation, and the lack of 

significant development along the shoreline. Receptor categories that are potentially 

vulnerable to flooding (100 year) under present day conditions include buildings, training 

areas, roads, recreation areas, and stormwater systems.  

For the 1.0 m sea level rise scenario (2069), inundation as represented by the weekly return 

event was more extensive particularly in the Santa Margarita Lagoon and Del Mar Beach 

areas in the southern portion of the installation, and in the San Onofre Beach area to the 

north. The area of inundation was approximately equivalent to the area of flooding for the 

100 year total water level with no sea level rise (Baseline 100 year). Inundation along the 

southern beaches extended inland up to about 200 m in some areas, and as much as 150 m 

in the north. Receptor categories that are potentially vulnerable to inundation under the 1.0 

m scenario included buildings, roads, recreation areas, stormwater systems, and particularly 

the beach training areas. For the 1 year return period condition, flooding was projected to 

be marginally more extensive in all areas of the installation, with the largest expansion of 

area in the south near Del Mar Beach and in the Santa Margarita Lagoon. Under the 100 

year return period condition, flooding was extensive, extending farther upland along the 

Santa Margarita River and associated side basins, and including more significant areas of the 

Del Mar area. Receptor categories that are potentially vulnerable to flooding under present 

day conditions include buildings, training areas, roads, recreation areas, and stormwater 

systems. 

For the 2.0 m sea level rise scenario (2100), inundation as represented by the weekly return 

event was more significant especially in the southern areas of the installation. Inundation 

was also expected upland into all of the coastal lagoons and inlets including Santa Margarita 

Lagoon, Aliso Creek, Las Flores, and San Mateo. The area of inundation for the 2.0 m sea 

level rise scenario was similar to the flooded area for the 1.0 m sea level rise scenario for 

the 100 year return period event. Receptors that are potentially vulnerable to inundation 

under the 2.0 m scenario included buildings, training areas, roads, recreation areas, and 

stormwater systems. For the 1 year return period condition, flooding was more marginally 

more extensive at all areas of the installation compared to inundation, with an increase of 

about 10% in flooded area. Under the 100 year return period condition, flooding was fairly 

extensive in the developed areas in the south at Del Mar and in the north at San Onofre. 

Receptors that are potentially vulnerable to flooding under the 2.0 m scenario include all 

categories except airfields. 
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Figure 5‐100. Estimated area vulnerable to inundation and flooding (cropped to NAVD88=0m) for the 25 

scenarios at MCBCP as a function of mean sea level rise (above) and time (below). 
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5.3.2 Protected Bay Response 

Water Levels 

Water levels in the protected areas of San Diego Bay were developed as described in 

Section 4.3.6 with sea level rise variability limited to tidal variations, and the non‐tide 

residuals. The return period of water level extremes at NBC were computed from the water 

level time series, and the resulting scenarios are shown in Table 5‐1. The impacts related to 

the exposure along these protected shorelines are presented in Section 5.4. 

Inundation and Flooding 

Inundation and flooding along the protected shorelines at NBC were assessed following the 

methodologies described in Section 4.3.6. To illustrate the methodology we utilized the 

“first occurrence” of the target conditions along the 2.0 m sea level rise curve which 

corresponded to time snapshots for the years 2046, 2069, 2087 and 2100, respectively. 

Inundation and flooding were examined across a continuum of total water levels defined 

through combined variations in sea level rise and return period total water level events. 

These scenarios spanned five sea level rise conditions from 0‐2 m, and 5 return periods 

(week, month, year, decade, century) for a total of 25 scenarios at each MOP station. For 

the protected shoreline areas of NBC, there is no wave exposure and the variation among 

return period total water levels is limited (see Table 5‐1). In the context of this project, we 

defined inundation as a process that leads to the frequent (week‐month return) exposure of 

coastal areas to wetting, while flooding was considered to represent infrequent to rare 

events with long return periods (year‐century). Results of the inundation and flooding 

analysis for the baseline (SLR=0m), 1.0 m sea level rise, and 2.0 m sea level rise scenarios 

are shown in Figure 5‐113 – Figure 5‐124.  

For the baseline condition (SLR=0m), inundation as represented by the weekly return event 

was limited to the normally wetted bay shoreline areas of the installation (Figure 5‐113 to 

Figure 5‐116). There was no apparent vulnerability of any receptor category to inundation 

under current day conditions. The area of inundation on the bay side east of SSTC South is a 

wetland and saltworks area that is normally wet at high tide. Similarly for the 1 year and 

100 year return period conditions, flooding was also limited to the bay shoreline areas and 

no significant incursion into the installation areas was present  

For the 1.0 m sea level rise scenario (2069), inundation as represented by the weekly return 

event remained limited to the bay shoreline with the exception of some low lying areas at 

NAB and on the bay sides of SSTC North and SSTC South (Figure 5‐117 to Figure 5‐120). 
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Receptor categories that are potentially vulnerable to inundation under the 1.0 m scenario 

included buildings, roads, and stormwater systems. For the 1 year and 100 year return 

period conditions, flooding was marginally more extensive at NAB/SSTC North and SSTC 

South, but still essentially limited to the shoreline areas of North Island. Receptor categories 

that are potentially vulnerable to flooding under these bay‐exposure flooding conditions 

include buildings, roads, and stormwater systems. 

For the 2.0 m sea level rise scenario (2100), inundation as represented by the weekly return 

event was more significant in all three areas of the installation (Figure 5‐121 to Figure 

5‐124). Inundation at North Island influenced areas extending inland up 1000‐2000 m in 

some areas. Significant areas of NAB/SSTC North and SSTC South were also subject to 

inundation under this scenario.  Receptors that are potentially vulnerable to inundation 

under the 2.0 m scenario included all categories. For the 1 year and 100 year return period 

conditions, flooding patterns were similar to the inundation pattern but somewhat more 

extensive particularly at NAB and North Island. Receptors that are potentially vulnerable to 

flooding under the 2.0 m scenario include all categories. 
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Changes in Currents and Bottom Shear 

The potential influence of changing sea level on the hydrodynamic response of San Diego 

Bay to tidal forcing was evaluated using the existing TRIM model. The analysis included 

simulations of complete spring‐neap tidal cycles for five scenarios: existing condition, and 

the four scenarios with the projected sea level rises of 0.5m, 1m, 1.5m and 2m. The model 

was used to simulate water surface elevations, water velocities and bottom shear stress 

under these conditions.  

Simulated conditions were compared at four selected locations that are important for 

operations at NBC including Bravo Pier (Station 1), Turning Basin (Station 2), Glorietta Bay 

(Station 3) and In‐Bay Silver Strand (Station 4). Figure 5‐126 through Figure 5‐130 show that 

current amplitudes fluctuate in both semi‐diurnal (~12 hours) and spring/neap tidal cycles 

(~15 days).  Overall, the currents are strongest at Bravo Pier (#1) with magnitude up to ~60 

cm/sec during the spring tide. Currents at Glorietta Bay (#3) are the weakest with 

magnitude as low as 1‐2 cm/sec during the spring tide.  Currents can reach about 10 cm/sec 

during the spring tide at both the turning basin and Silver Strand.  

Current amplitudes decreased with the sea level rise for all the stations, except for the 

turning basin (Station 2), where current amplitudes tended to increase in association with 

sea level rise during strong ebb flows, but otherwise be similar or lower during other phases 

of the tide. This general decrease in current speed is consistent with the increasing cross 

section area of the bay with sea level rise, but without a significant increase in the surface 

area of the bay that would increase the tidal prism. This is largely a function of the 

constructed shorelines that minimize the growth of the bay surface area with sea level rise. 

Localized departures from this general trend, as observed in the turning basin, may be 

expected due to changes in the local hydrodynamic balances and shifts in phases of the bay 

response to water elevations. 

The decrease in current amplitude with sea level rise suggests that the effects of bottom 

shear will also be weaker compared to current day conditions. The corresponding bottom 

shear stresses simulated by the model at these stations are similar to the patterns of 

current amplitudes (Figure 5‐131 ‐ Figure 5‐134).  With increasing sea level rise, bottom 

shear stress generally decreased as a result of the reduced current speeds, except at Station 

2 where bottom shear stress does not uniformly change with increasing water depth.   

Broader mapping of changes in currents and bottom stress was carried out for the entire 

bay. This allowed a clearer visualization of the patterns of change related to sea level rise. 
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Mapped results for differences between present day currents and bottom shear stress 

throughout the bay are shown in Figure 5‐136 through Figure 5‐139 for sea level rise 

conditions of 1.0 m and 2.0 m. For the 1.0 m SLR condition, currents were generally lower in 

the main channel areas and back‐bay portions of the bay, comparable to present day in side 

embayments and near the shoreline, and higher in isolated areas to the east and west of 

the entrance channel. The maximum reduction in RMS current difference over the spring‐

neap cycle was about 5.1 cm/s (lower than present day) in the main entrance channel south 

of Bravo Pier, and the maximum increase was about 4 cm/s off the south end of Point Loma. 

For the 2.0 m SLR condition, currents differences followed a similar pattern as for the 1.0 m 

SLR case, but with larger differences and more extensive reductions in current speed 

throughout the bay. The maximum current difference over the spring‐neap cycle was about 

6.3 cm/s (lower than present day) in the main entrance channel south of Bravo Pier, and the 

maximum increase was about 5.7 cm/s off the south end of Point Loma.  

Currents in the vicinity of key installation areas at NBC generally either decreased or stayed 

relatively unchanged compared to present day conditions. Along Bravo Pier and the 

northern shore of North Island, currents generally decreased slightly compared to present 

day conditions. Currents near the turning basin and the Carrier Piers were relatively 

unchanged, as was also the case for conditions in Glorietta Bay and in the bay training areas 

in the south bay. 

Patterns of change for bottom shear stress from present day conditions followed similar 

patterns to the changes in currents with decreased shear stress in the main channel and 

some back‐bay areas, and increased shear stress to the east and west of the main channel 

entrance. For the 1.0 m SLR condition, changes in shear stress over the spring‐neap cycle 

ranged from a maximum decrease of 0.6 dyne/cm2 in the entrance channel, to a maximum 

increase of about 0.9 dyne/cm2 off the south end of Point Loma. For the 2.0 m SLR 

condition, bottom shear stress differences followed a similar pattern as for the 1.0 m SLR 

case, but with larger differences and more extensive reductions in shear along the main 

channel of the bay. The maximum decrease in shear over the spring‐neap cycle was about 

1.1 cm/s (lower than present day) in the main entrance channel south of Bravo Pier, and the 

maximum increase was about 1.5 cm/s off the south end of Point Loma. 

Estimated changes in currents and bottom shear may have some implications for operations 

and sustainability at NBC. For example, lower current speeds may influence the processes 

for docking and undocking of vessels and the loadings on piers and other waterfront 

infrastructure. Lower currents may also reduce the flushing of areas of the bay, leading to 
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Figure 5‐128.  Simulated current amplitudes at Turning Basin (#2) for the five sea level rise scenarios: 

baseline, 0.5m, 1m, 1.5m and 2m for a 48‐hour period. 

 

Figure 5‐129.  Simulated current amplitudes at Glorietta Bay (#3) for the five sea level rise scenarios: 

baseline, 0.5m, 1m, 1.5m and 2m for a 48‐hour period. 
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5.3.3 Groundwater Response 

Sea‐Level Rise Scenarios 

Groundwater response of the SMR basin at MCBCP for the time period of water years 2000 

to 2100 five SLR scenarios were evaluated using three different inland boundary conditions. 

The five SLR scenarios assume no SLR (base case) and four potential SLRs as shown in Figure 

4‐96. The ocean boundary was held constant at 0.78 m (the average elevation of the 

coastline) from water years 1950 to 2000 then the SLR scenarios were imposed from 2000 

to 2100. The inland boundary followed the water years 1950 to 2000 historical water levels 

and from water years 2000 to 2100 it was set to a constant value equal to the average 

historical water level, lower 5%, and upper 95%, for well 7J1 which are 27.3 m, 26.26 m, and 

28.06 m, respectively. Only hydrographs and breakthrough curves using the average 

boundary condition are presented in this section. Appendix A8 contains all images using the 

lower 5% and upper 95% boundary conditions. 

Base Case: No Sea Level Rise  

Figure 5‐140 through Figure 5‐147 are the results from water years 2000 to 2100 with no 

sea level rise for the average inland boundary condition. They were used as the base case to 

assess the impact of SLR on the SMR basin. With no SLR, a constant inland boundary 

condition, and the same annual pumping schedule the simulated model begins to approach 

a new quasi‐steady state condition. This quasi‐steady state was reached quickly, about 

water year 2050, for the hydrographs, but was not reached for the breakthrough curves. 

The water levels were more responsive because of their dependence on the inland 

boundary condition, which was not impeded by the lower permeability upper alluvium. The 

water levels in the hydrographs fluctuated seasonally as a result of the changes in the 

repeated annual pumping schedule with the lowest levels during the summer months when 

pumping was highest. The breakthrough curves had a slow response because the inflow 

from the ocean boundary condition was retarded by upper alluvium. Another factor that 

slowed the concentration was the positive slope of the basement of the alluvium layer 

(Figure 4‐67), which caused the seawater to travel upgradient into the SMR basin. The zone 

of diffusion decreased from water years 2000 to 2100 and became more of a sharp 

interface as shown by the increase in chloride concentrations at wells 9J1 and 10B1 near the 

coast (Figure 5‐144 and Figure 5‐145) and a decrease in chloride concentrations at well 

35K5 (Figure 5‐147) from water years 2050 to 2100. Note that simulated chloride 

concentrations stayed above the SMCL at wells 9J1, 10B1, and 2N4 (Figure 5‐144 to Figure 
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Pumpage Analysis 

The volume of water extracted from a groundwater system can directly influence the level 

of seawater intrusion. As greater volumes of freshwater are extracted the more seawater 

intrudes upstream towards the wells. To evaluate the impact of pumping a comparison was 

made between different scaled increases of pumping with no SLR, Base Case Scenario, from 

water year 2000 to 2100 with the results of Scenario 4. The rates were scaled by 110%, 

130%, and 150% of the WY 2000 pumping rates (i.e. a 10%, 30%, and 50% increase). 

Figure 5‐163 through Figure 5‐166 through present the simulated hydrographs for selected 

wells that result from different increases pumping. The notation for these figures is such 

that P110% refers to an increase of10% in the pumping rate applied from water year 2000 

to 2100. For all the hydrographs, the water level was the same from water year 1950 to 

2000 because they follow the exact historical record. The water level from water year 1950 

to 1980 is not presented in the figures to focus on the actual differences in the water levels, 

which occurred from water year 2000 to 2100. At water year 2000, when the increased 

pumping occurred, there was a decrease in the water level in response to the larger 

pumping rates. During the increased pumping from water year 2000 to 2100 there was a 

repeated sharp, cyclic change in the water levels that was the result of the monthly changes 

in pumping (see Figure 4‐74 for non‐scaled total pumping volumes). Other than the annual 

cyclic change in the water from water year 2000 to 2100 there was no overall shift in the 

water levels for each of the scaled pumping conditions. This was in contrast to Scenario 4, 

which had an increasing water level from the SLR at the closest observation wells. 

The lower water levels from the increase in pumping caused higher chloride concentrations 

in the breakthrough curves. Figure 5‐167 through Figure 5‐170 show the break through 

curves for the closest four observation wells from 1980 to 2100. There was an immediate 

increase in the chloride levels in response to the increase in pumping. With the exception of 

the closest observation well, 9J1, a 10% increase in pumping produced a similar 

breakthrough curve to Scenario 4. Observation well 9J1 was the most sensitive to SLR 

because it is the closest (~1 km) to the coastline.  

Figure 5‐171 presents the location of the 250 mg/L chloride concentration contours for 

different pumping rates at the end of the simulation time. A 10% increase in pumping did 

not bring the contour significantly farther inland compared to Scenario 4. Increasing 

pumping by 25% caused well 2F1 to start extracting groundwater with chloride 

concentrations above the US EPA SMCL. A 30% increase caused well 2D3 to exceed the 

SMCL and a 50% caused chloride concentrations in wells 2A1 and 35K1 to increase above 
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Scenario 4 Pumpage Analysis 

To evaluate a worst‐case situation that can occur the SLR of Scenario 4 (Figure 4‐96) was 

combined with the lower 5% inland boundary condition, 26.26 m, and scaled increases of 

pumping from water year 2000 to 2100. The pumping rates during this time frame were 

scaled by 110%, 125%, and 150% of the reported rates from water year 2000. Figure 5‐172 

through Figure 5‐175 present the simulated hydrographs that result from increasing 

pumping for selected wells located near the coast. The notation for these figures is such 

that P110% refers to an increase of 10% in the pumping rate applied from water year 2000 

to 2100. 

The simulated hydrograph for well 9J1 (Figure 5‐172) indicated a large water level decline 

because of the increased pumping, but begins to recover as the sea level rises. The 

increasing sea level became a larger source of water into the system. The further away from 

the ocean, the less impact the SLR had on the hydrographs. For example, simulated water 

levels for well 35K5 (Figure 5‐175) declined due to the increase in pumping, but had a 

smaller recovery from SLR compared to well 9J1 (Figure 5‐172). 

The simulated chloride concentrations increased rapidly with the combination of increased 

pumping and SLR. The closer the well was located to the ocean the more dramatic the 

effect. Figure 5‐176 through Figure 5‐179 show how the breakthrough curves for Scenario 4 

changed with different pumping rates. Increasing pumping had an exponential effect on the 

chloride concentration at the observation wells. For example at well 7J1 (Figure 5‐176) a 

10% increase in pumping resulted in a small change in the breakthrough curve compared to 

Scenario 4 while a 50% increase dramatically changed the chloride concentrations. 

Increased pumping also resulted in widening the zone of diffusion. For example, Figure 

5‐180 shows how the chloride concentration changed with distance from the coastline. A 

50% increase in pumping produced a near linear reduction in chloride relative to the 

distance from the ocean compared to Scenario 4, which had an exponential reduction. 
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5.4 Application to the Assessment of Vulnerability 

Sea level rise vulnerability at NBC and MCBCP was assessed through application of the 

methodologies described in the previous sections. The purpose of this analysis was not to 

perform an overall assessment of sea level rise vulnerability at these installations, but 

rather to test the physical response methodologies, illustrate their application, and evaluate 

approaches to adopt them within a generalized vulnerability framework such as the one 

described in Section 3.1.  In the context of the framework, the methodologies were 

illustrated using two levels of analysis, Receptor Level and Component Level.  The “Receptor 

Level” is an installation‐level view in which general receptor category vulnerabilities to sea 

level rise were characterized in terms of key response metrics.  The “Component Level” is a 

critical‐component level view in which specific high‐value or mission critical infrastructure 

elements are evaluated at a level of detail sufficient to characterize their response as a 

function of water level.  

The results of the receptor‐level assessment at each installation provided insight into the 

significant differences in sea level rise response and vulnerability that can be present at 

coastal installations that are in close geographic proximity.  These differences were a 

function of multiple factors, including the topography, the degree of development at or 

near the coast, and the ability to accommodate coastal retreat. In the case of NBC, a higher 

degree of vulnerability stemmed from the low lying elevations, the concentration of built 

infrastructure near the shore, and the limited ability to allow for retreat in the face of sea 

level rise. In contrast, MCBCP has relatively steep topography, limited development along 

the coast, and cliffs to provide a natural buffering capacity through their erosion that will 

help to maintain the beach training areas. 

The assessment results are described below, and organized at the analysis level (receptor‐

level or component‐level), the installation level (NBC or MCBCP), the receptor level 

(buildings, training areas, etc.), and the exposure pathway level (erosion, inundation, 

flooding).  The range of SLR scenarios analyzed provided upper and lower bound estimates 

of the types and ranges of responses and vulnerabilities that could be anticipated at 

installations in the southwest US. 

5.4.1 Receptor‐Level Assessment – Naval Base Coronado 

At NBC, methods for the assessment of sea level rise vulnerability at NBC were evaluated 

under both receptor and component levels of analysis. The methodologies differ primarily 

in breadth and depth, with the receptor‐level assessment retaining to the degree possible 
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the full breadth of the installation, but at a relatively shallow level of detail and analysis, 

and the component‐level method focusing on more specific receptors but at a finer level of 

detail. This section includes a brief overview of the metrics and vulnerability thresholds 

used to quantify the impacts of SLR for each receptor category. The analysis included the 

baseline conditions, four SLR scenarios, and five return period events. The analysis results 

quantified impacts to SLR in terms of replacement cost, quantity, area, and MDI value, as 

applicable. Following is a summary of the metrics and vulnerability thresholds for each 

receptor category. 

Training Areas 

The training areas at NBC include areas on both the exposed shoreline of Coronado and 

Silver Strand; and the protected shoreline inside of San Diego Bay.  This analysis focused on 

the erosion and flooding pathway impacts on the beach training areas at Silver Strand.  The 

beach training areas at SSTC‐North and SSTC‐South are defined by the adjacent boat 

training lanes (Figure 5‐9).   

The beach width remaining relative to Mean Sea Level was used to quantify the impacts of 

SLR to the beach training areas.  The cost impact of SLR was estimated based on the volume 

of sand required (beach nourishment) to maintain the year 2000 beach widths.  The beach 

training areas are vulnerable to erosion and flooding for all SLR scenarios.  The vulnerability 

threshold for the beach training areas was exceeded for the 1.0 m SLR scenario when the 

average beach width of all training lanes was reduced by 50% from the baseline condition.  

For this scenario, routine flooding during high tides reduced the beach width to zero in 

some areas.   

Exposed Shoreline Erosion Pathway 

The erosion pathway assessment determined the eroded and remaining beach width, and 

area above MSL for each SLR scenario.  The beach width was defined as a metric that could 

be used by command personnel to determine impacts to beach training operations.  The 

existing beach widths at NBC vary from 34 m to 167 m wide for the baseline condition.  The 

results of the analysis indicated that the average width of the beach training area decreased 

by approximately 30 m for each 0.5 m increment of SLR (Figure 5‐182), although this rate 

also incorporated the effects of the sand budget imbalance. 
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Figure 5‐184. Inundation and flooding pathway assessment of beach area impacts to training areas at NBC.  

Buildings 

The receptor‐level assessment methodology was tested for buildings at NBC on an 

installation‐wide basis for erosion and inundation/flooding for each SLR scenario.  A 

sampling of the erosion and flood assessment results for NBC are discussed below.   

The impacts of SLR to the buildings were quantified using replacement cost, area, MDI 

value, and exterior water depth.  Buildings located near the exposed shoreline were 

vulnerable to erosion and flooding for all SLR scenarios.  The buildings near the protected 

shorelines were vulnerable to flooding for the 1.5 m and 2.0 m SLR scenarios.  The exterior 

flood depths at buildings were used to assess the vulnerability to flood damage.  For the 

exposed shoreline, a majority of the flooded buildings were vulnerable to damage with 

water depths greater than 1.0 m. The buildings that were near to the exposed shoreline 

were more vulnerable to erosion and flooding than buildings near the protected shoreline.   

The building asset information used to make the assessment included: elevation data, 

footprint area, replacement cost, and mission dependency index.  Some buildings in the 

database did not include replacement costs.  These buildings were assigned an estimated 

replacement cost based on the average unit replacement cost of the buildings within the 

erosion footprint for the 100 year return period event of the 2.0 m SLR scenario.  The 
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average unit replacement cost used was $2,727 per sq. meter.  The MDI value of a building 

may be used to determine if minor flooding can be tolerated on an infrequent basis.   

Exposed Shoreline Erosion Pathway 

Naval Base Coronado has buildings that are near the exposed shoreline and currently 

require a sand dike for protection from wave run up during large wave events coupled with 

high tides (Figure 5‐185). The erosion pathway analysis determined the quantity (Figure 

5‐186) and replacement cost (Figure 5‐187) of the buildings within the erosion footprint for 

each SLR scenario.  If a building was located within the erosion footprint, then the full 

replacement cost of the building was used to quantify the impacts of that scenario.  The 

erosion damage to buildings was sensitive to the return period event analyzed for each SLR 

scenario.  For the 0.5 m scenario, the year, decade and century return period events had a 

similar total damage cost impact, with minimal impact for the month or week events.  For 

the 1.0 m scenario, the month and year return periods were approximately $35 million, 

whereas the decade and century events were approximately $150 million.  

Exposed Shoreline Inundation and Flooding Pathway   

The inundation and flooding pathway assessment determined the maximum exterior flood 

depth at each building.  Three flood depth ranges described in Section 4.4.1 were used for 

assessing the vulnerability of the buildings to different flood depths under the receptor‐

level methodology.  The three flood depth ranges corresponded to increasing levels of 

damage and operational impacts.  For example, the total number and replacement value of 

buildings in the highest depth range (>1 m) are shown in Figure 5‐188 and Figure 5‐189, 

respectively.  Inundation as represented by the weekly return period condition impacted a 

relatively small number of buildings with water depths of this magnitude, even under the 

2.0 m SLR scenario where about 100 buildings were impacted with an estimated 

replacement value of about $200 million. In contrast, less frequent flooding events 

impacted increasingly large number of buildings with the 2.0 m SLR 100 year return period 

event estimated to impact over 1000 buildings with an estimated replacement cost of about 

$2500 million.   

Protected Shoreline Inundation and Flooding Pathway   

Model results indicated that inundation and flooding from the protected shoreline pathway 

at NBC was significantly more limited than for the exposed shorelines.  Inundation impacts 

(based on the weekly return period condition) indicated the total number of buildings in the 

highest depth range (>1 m) ranged from zero for the baseline condition, to 53 for the 2.0 m 
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Figure 5‐187.  Total replacement cost of buildings within the beach erosion footprint at NBC. 

 

 

Figure 5‐188. Inundation and flooding pathway analysis for buildings via the exposed shoreline of NBC 

showing the quantity of buildings within the inundation and flooding footprint with water depth exceeding 

1 m for each SLR scenario and return period event. 
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Figure 5‐189. Total replacement cost of buildings within the exposed shoreline inundation/flooding 

footprint at NBC with water depth exceeding 1 m. 

 

Figure 5‐190. Inundation and flooding pathway analysis for buildings exposed via the protected shoreline of 

NBC showing the quantity of buildings within the inundation and flooding footprint with water depth 

exceeding 1 m for each SLR scenario and return period event. 
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Waterfront Structures   

One of the missions of NBC is to support a variety of aircraft carriers, large and small craft 

and amphibious craft.  This mission requires a large quantity of waterfront infrastructure at 

both NAB and NASNI. The receptor‐level assessment included analysis of 43 waterfront 

structures including piers, wharves, floating docks, and boat ramps.  The vulnerability of 

fixed elevation piers and wharves to SLR depends on the deck elevation, utility and fender 

systems.  The impacts of SLR were quantified using replacement cost, area, and MDI values.  

Based on the range of conditions examined here, these structures were found to be 

vulnerable to operational impacts for SLR at or above the 0.5 m to 1.0 m scenarios; and 

overtopping for SLR at or above the 1.5 m scenario via exposure primarily through the 

protected shorelines of San Diego Bay.  The service life of waterfront structures is limited 

because of the aggressive marine environment, therefore, it may be important to consider 

the age of the structure in the vulnerability assessment.   

The deck elevation of the piers and wharves vary from +3.22 m to +4.14 m.  For the 

receptor‐level assessment, the typical method used to determine the deck elevation of a 

waterfront structure was to review construction record drawings and WFI Reports.  These 

drawings and reports provided deck elevations for a majority of the structures.  The DEM 

was used to confirm these elevations, where these data were available.  The piers 

(perpendicular to shore) were typically not visible on the DEM.  However, the CVN wharves 

(parallel to shore) at NASNI were included in the model.  Elevations from the DEM were 

compared to the record drawings and found to be in good agreement (Table 5‐9). 

Table 5‐9.  Comparison of DEM and Construction Record Drawing Elevations at NBC 

 

The receptor‐level assessment of the waterfront structures determined the quantity and 

replacement cost of the facilities that would be overtopped, or have operational impacts for 

each SLR scenario and return period event.  The fixed elevation piers and wharves were 

more vulnerable to SLR‐related operational impacts, damage, and reduced service life than 

Facility 
Construction Drawing 
Elevation (NAVD m) 

DEM Elevation 
(NAVD m) 

Delta (m) 

Berth Juliet 4.0 3.97 0.03 

Berth Kilo 3.96 3.98 0.02 

Berth Lima 3.51 3.50 0.01 

Carrier Quaywall 3.51 3.56 0.05 
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were floating docks and boat ramps.  Therefore, the receptor‐level assessment focused on 

these assets.   

Protected Shoreline Inundation and Flooding Pathway 

For the overtopping assessment, the deck elevation of the fixed‐elevation piers and 

wharves was compared to the synthetic return period event total water level for each SLR 

scenario.  When a structure was overtopped, it was assumed that it would require 

replacement.  The results are presented in Figure 5‐191 and Figure 5‐192, in terms of 

quantity and replacement cost.  For the 0.5 m SLR scenario, none of the structures were 

overtopped.  For the 10 year and 100 year return period events of the 1.0 m SLR scenario, 

approximately half of the piers were overtopped, with a total ROM replacement cost impact 

of $345 million.  For the 1.5 m and 2.0 m SLR scenarios, almost all of the fixed elevation 

piers and wharves were overtopped at NBC, with a total ROM replacement cost impact of 

$650 million.   

For the operational impact assessment, the operational limit of the structure was compared 

to the synthetic return period event total water level (Figure 5‐193).  Refer to Section 4.4.1 

for discussion of the functional elevations of waterfront structures.  For the 0.5 m SLR 

scenario, approximately half of the structures had operational impacts.  For the 1.0, 1.5, and 

2.0 m scenarios, almost all of the fixed elevation piers and wharves had operational impacts 

on a frequent basis.  In practice, the piers with operational limits below the overtopping 

elevation will require a more detailed assessment to determine if the investment required 

to upgrade the facility is warranted.  The detailed assessment should consider the 

replacement cost, overtopping elevation, upgrade cost, year built, condition index, and 

remaining service life.   

The floating docks at NBC are attached to a fixed‐elevation pier, or anchored near the shore 

with access by a brow that transitions from the shore to the docks.  Floating docks are 

designed to accommodate the current tidal range inside the bay; thus are generally able to 

accommodate some amount of SLR.  The vulnerable items of a floating dock system are 

generally the guide piles that secure the dock in position and the brow.  The maximum 

operational water level for a floating dock is a function of the bending capacity of the pile, 

the strength of the soil, and the elevation of the top of guide pile.  At NBC, the top of guide 

piles are approximately +4.0m.  In the future, floating docks may require higher capacity 

guide piles or adjustments to the brow connection details to accommodate SLR.   
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The boat ramps at NBC are typically configured with the top of slope elevation equal to the 

adjacent roadway elevation.  The ramp is designed to accommodate the tidal range, and 

will generally have the ability to accommodate SLR.  Boat ramps will not be damaged by 

flooding, however, may have short‐term operational impacts during high tides. 

 

Figure 5‐191.  Receptor‐level estimate of the quantity of piers and wharves overtopped at NBC.  No impacts 

were projected for the baseline or 0.5 m SLR scenario. 

 

Figure 5‐192.  Receptor‐level estimate of the ROM replacement costs of Piers and wharves overtopped at 

NBC.  No impacts were projected for the baseline or 0.5 m SLR scenario. 
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at low‐lying storm drain inlets from intrusion of seawater back through the system and onto 

the installation. A summary of the analysis for each sub‐category is provided below. 

Roads 

At NBC the roads were defined in the GIS database provided by NAVFAC as a polyline along 

the centerline of the roadway.  A typical two‐lane road‐width of 10 m was used to estimate 

the total roadway area and calculate the total replacement value of the impacted roadways.  

The estimated unit replacement cost of a typical two‐lane roadway was $67.27 per square 

meter, which includes replacement of the roadway base and asphalt paving.  The cost 

assessment did not include the replacement of adjacent land area, the soil material beneath 

the roadway subgrade, environmental‐related costs (permitting, mitigation, etc.).  The 

volume of fill material lost below the roadway was determined as part of the beach erosion 

analysis.   

Exposed Shoreline Erosion Pathway. The erosion assessment for the roadways at NBC 

calculated the total area and corresponding rough order of magnitude replacement cost of 

roadways within the erosion footprint for each SLR scenario (see Figure 5‐196). For strong 

erosion events (100 year return period), coastal roadways along the exposed shorelines 

were subject to loss due to erosion, and the level of impact increased significantly with 

increasing SLR with the replacement cost for the baseline condition at about $37K, 

increasing to a replacement cost of about $3.6M for the 2.0 m SLR scenario.    

 

Figure 5‐196.  Roadway erosion at NBC showing the estimated roadway replacement cost for each SLR 

scenario for the erosion pathway. 
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Exposed Shoreline Erosion Pathway. The erosion pathway assessment determined that the 

airfields at NBC were not located within the erosion footprint.  However, under the 

simulated erosion scenarios, the shoreline position moves closer to the airfields, offering 

less protection from wave runup and flooding.   

Exposed Shoreline Inundation and Flooding Pathway. The inundation and flooding 

pathway at NBC could cause operational impacts and damage to the runways because of 

the percentage of the airfields flooded and the estimated water depths on the airfields. The 

exposed shoreline flood pathway assessment determined the total area flooded (Figure 

5‐199), the percentage of the airfields flooded, and maximum water depth for each SLR 

scenario. Airfield inundation was estimated to occur for SLR scenarios of 1.0 m and higher, 

while airfield flooding (100 year return) was projected under all SLR scenarios including the 

baseline scenario. The percentage of airfield subject to inundation (weekly return) ranged 

from about 0.2% for the 1.0 m SLR scenario, to a high of about 6.2% for the 2.0 m SLR 

scenario. This corresponds to areas of inundation ranging from about 4500 m2 to 132000 

m2, respectively. Airfield flooding percentages ranged from about 7.2% for the baseline 

scenario, to about 54.3% for the 2.0 m SLR scenario, with corresponding flooded areas for 

about 152000 m2 to 1148000 m2, respectively. The maximum water depth estimated for the 

airfields for the 100 year return period event ranged from 1.74 m for the 0.5 m scenario to 

3.24 m for the 2.0 m scenario. 

Protected Shoreline Inundation and Flooding Pathway. The protected shoreline inundation 

and flooding pathway assessment for airfields indicated that impacts was less severe 

relative to the exposed shoreline impacts, and that inundation and flooding occurred only 

under the 1.5 m and 2.0 m SLR scenarios (Figure 5‐200).  The percentage of airfield area 

subject to inundation (weekly return period condition) ranged from 0.3% for the 1.5 m SLR 

scenario, to about 3.9% for the 2.0 m SLR scenario. The percentage of the airfield area 

subject to flooding (100 year return period condition) ranged from about 3% for the 1.5 m 

SLR scenario to about 6.1% for the 2.0 m SLR, corresponding to a range of about 64000 m2 

to 129000 m2, respectively. 
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scenario, to a high of 160 for the 2.0 m SLR scenario, representing a maximum of 14% of the 

total number of inlets in the worst case. 

Recreational Areas 

The recreational areas included a number low‐lying elements near the beach such as the 

golf course and ballfields.  The assessment included the erosion pathway for the exposed 

shoreline, and the flooding pathway for both the exposed and protected shorelines.  The 

recreational areas would likely be closed while flooded and may cause damage to grass 

covered areas from exposure to saltwater.  The analysis determined the area impacted from 

erosion and flooding for each SLR scenario.  A replacement value was not estimated for 

recreational areas. 

Exposed Shoreline Erosion Pathway. The erosion pathway assessment determined the area 

of recreational spaces within the erosion footprint for each SLR scenario, as well as the 

fraction of the total recreational area that this represented. The results showed limited 

impacts to recreation areas with a maximum of about 11% of recreational areas impacted 

by 2.0 m of SLR combined with a 100 year return period erosion event (Figure 5‐203).     

Exposed Shoreline Inundation and Flooding Pathway. The exposed shoreline inundation 

and flooding pathway assessment of recreational areas also determined the area and 

percent of area impacted.  For inundation (represented by the weekly return period), the 

impacted area was limited for the baseline and 0.5 SLR scenarios, but increased 

substantially to over 40% for the 2.0 SLR scenario (Figure 5‐204). Flooding impacts for the 

100 year return period exceeded 50% even for the baseline condition, and increased to over 

90% for the 2.0 m SLR scenario. These percentages were driven largely by the golf course on 

North Island which accounted for a significant portion of the overall recreational area.  

Protected Shoreline Inundation and Flooding Pathway. The protected shoreline inundation 

and flooding pathway assessment showed much more limited impact (Figure 5‐205). No 

significant impacts were projected for SLR scenarios of 1.0 m or less, and more widespread 

impacts were only shown for the 2.0 m SLR scenario where the impacted area ranged as 

high as about 32% for the 100 year return period event. 
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Figure 5‐205.  Protected shoreline inundation and flooding pathway assessment for recreational areas of 

NBC determined the percentage of recreational area flooded.   

 

Receptor‐Level Assessment Summary – Naval Base Coronado  

As described above, sea level rise vulnerability of a range of NBC installation receptors was 

evaluated as a means of illustrating the application of the methodologies developed in this 

study. Vulnerability was evaluated as a function of receptor class for different exposure 

pathways and a range of potential future sea level rise scenarios.  While the receptors 

evaluated here represent only a subset of those present at the installation, they do provide 

a representative cross‐section of the infrastructure that could be vulnerable to sea level 

rise. Thus a cumulative summary of the vulnerability provides a sense of which receptor 

classes tend to be more vulnerable, as well as the overall magnitude of the vulnerability 

across receptor classes.  

Erosion Pathway 

The overall vulnerability of NBC receptors to sea level rise for the erosion pathway is 

summarized in Table 5‐10 under the prescribed sea level rise conditions and the assumed 

sand budget deficit. The summary incorporated key receptors including training areas, 

buildings and civil infrastructure, and multiple metrics of response across the full range of 

both long‐term sea level rise scenarios and short‐term erosion events of various return 

periods. In general, the summary illustrates the increasing level of vulnerability to erosion 

as a function of increasing sea level, as well as the sensitivity of some receptors to short‐
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term wave driven erosion events. For training areas, this translates into frequent (weekly 

return period) conditions with average beach widths reduced to about 82 m and a 

remaining area of about 53% of baseline for 1.0 m SLR (first occurrence by 2069), and 

further reductions to an average beach width of about 36 m and a remaining area of 23% of 

baseline for 2.0 m SLR (first occurrence by 2100). To preserve year 2000 beach widths, 

significant beach replenishment would be required with estimated costs in the range of 

$250M to $551M for the 1.0 m and 2.0 m SLR scenarios, respectively, potentially the largest 

contribution to the overall erosion pathway vulnerability of the installation if retreat is not 

considered a viable option.  

For buildings, weekly return period conditions resulted in erosion pathway vulnerability to 

about 13 structures for 1.0 m SLR 3 of which have an MDI>55 (“Relevant” classification or 

higher), and with an estimated replacement cost of about $2M. This increased to about 23 

structures and 6 with MDI>55 with an estimated replacement cost of $50M for 2.0 m SLR. 

The building receptor class also contributed substantially to the overall erosion pathway 

vulnerability of the installation. For civil infrastructure, evaluation of roadways indicated 

limited vulnerability with replacement costs in the range of $0M to $1M for the 1.0 m and 

2.0 m SLR scenario, respectively. Overall vulnerability estimates for the receptors included 

in the erosion pathway analysis ranged from negligible for the baseline SLR scenario, to as 

high as ~$745M for the 2.0 m SLR scenario. This estimate is largely driven by “replacement 

cost” associated with beach replenishment, and it should be noted that if this 

replenishment were to take place then the other erosion impacts would be largely 

mitigated, so the total number should be viewed as a measure of summed vulnerability 

rather than a measure of the actual costs that might occur for a given scenario.  

Exposed Shoreline Inundation and Flooding Pathway 

Vulnerability of NBC receptors to sea level rise for the exposed shoreline inundation and 

flooding pathway is summarized in Table 5‐11. The summary incorporated key receptors 

including training areas, buildings and civil infrastructure, and multiple metrics of response 

across the full range of both long‐term sea level rise scenarios and short‐term flooding 

events of various return periods. In general, the summary illustrates the increasing level of 

vulnerability to inundation and flooding as a function of increasing sea level and increasingly 

extreme short‐term events flooding. The results reflect the relatively high sensitivity of NBC 

to inundation and flooding as a function of the generally low‐lying nature of the installation, 

and the significant exposure along the open shoreline of the Pacific. For training areas, this 

translated into inundation impacts with average beach widths reduced to about 42 m and a 
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remaining area of about 29% for 1.0 m SLR (first occurrence by 2069), and further 

reductions to an average beach width of only about 7 m and a remaining area of 5% for 2.0 

m SLR (first occurrence by 2100). While infrequent flooding events can potentially be 

accommodated through scheduling, flooding impacts (100 year return period condition) are 

more significant with the entirety of the beach training areas being subject to flooding for 

SLR scenarios of about 1.0 m and above (first occurrence by 2069). Replacement costs for 

inundation and flooding of training areas were assumed to be equivalent to those estimated 

for the erosion pathway, because flooding events simply occur over top of the eroded 

shoreline, and the shoreline is generally expected to recover from storm driven wave events 

naturally. The replacement costs simply provide a metric of the value of the asset value that 

is subject to operational limitations due to inundation and flooding. 

For buildings, inundation (weekly return) resulted in vulnerability to about 31 structures for 

1.0 m SLR 9 of which had an MDI>55 (“Relevant” classification or higher), and with an 

estimated replacement cost of about $216M. This increased substantially to about 360 

structures and 62 with MDI>55 with an estimated replacement cost of $2010M for 2.0 m 

SLR. The building receptor class was especially vulnerable to flooding impacts (100 year 

return period) with about 881 potentially flooded structures for 1.0 m SLR 130 of which had 

an estimated MDI>55 (“Relevant” classification or higher), and with an estimated 

replacement cost of about $2783M. This increased to about 1143 structures and 150 with 

MDI>55, with an estimated replacement cost of $3013M for 2.0 m SLR. The building 

receptor class contributed substantially to the overall exposed shoreline inundation and 

flooding pathway vulnerability of the installation. For civil infrastructure, evaluation of 

roadways indicated vulnerability to inundation with about 9 km operationally impacted for 

the 1.0 m SLR scenario, increasing to about 53 km for the 2.0 m SLR scenario. This range 

increased substantially for flooding vulnerability (100 year event) with 92 km and 115 km 

impacted for the 1.0 m and 2.0 m SLR scenarios, respectively. Airfields at NBC also were 

shown to contribute significantly to installation SLR vulnerability with flooded (100 year 

event) operationally impacted surface areas ranging from about 343000 m2 for the 1.0 m 

SLR scenario to about 1148000 m2 for the 2.0 m SLR scenario. 

Overall vulnerability estimates for the summed replacement value metric of receptors 

included in the inundation and flooding pathway analysis ranged from negligible for the 

baseline SLR inundation scenario, to as high as ~$3752M for the 2.0 m SLR flooding 

scenario. This estimate was largely driven by vulnerability associated with building flooding, 

but with significant contributions from all other categories as well. 
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Protected Shoreline Inundation and Flooding Pathway 

Overall vulnerability of NBC receptors to sea level rise for the protected shoreline 

inundation and flooding pathway is summarized in Table 5‐12. The summary incorporated 

key receptors including buildings and civil infrastructure, and multiple metrics of response 

across the full range of both long‐term sea level rise scenarios and short‐term flooding 

events of various return periods. Training areas at NBC on the bayside are primarily in‐water 

and do not have a significant shore or beach component so were not included in the 

analysis. In general, the summary illustrates the increasing level of vulnerability to 

inundation and flooding as a function of increasing sea level, with the variations in return 

period events being relatively small due to the lack of wave exposure on these protected 

shorelines. The results reflect the relatively high sensitivity of NBC to inundation and 

flooding as a function of the generally low‐lying nature of the installation, and while the 

impacts along these protected shorelines are muted compared to the open shorelines of 

the Pacific, there are critical receptor categories including waterfront and shoreline 

structures that are unique to this environment.  

For buildings, inundation (weekly return) resulted in vulnerability to about 22 structures for 

1.0 m SLR none of which had an MDI>55 (“Relevant” classification or higher), and with an 

estimated replacement cost of about $72M. This increased substantially to about 273 

structures and 57 with MDI>55, with an estimated replacement cost of $488M for 2.0 m 

SLR. Flooding impacts  (100 year return period) were somewhat higher with about 26 

potentially flooded structures for 1.0 m SLR only 1 of which had an estimated MDI>55 

(“Relevant” classification or higher), and with an estimated replacement cost of about 

$75M. This increased to about 584 structures and 81 with MDI>55, with an estimated 

replacement cost of $1322M for 2.0 m SLR. The building receptor class contributed 

substantially to the overall protected shoreline inundation and flooding pathway 

vulnerability of the installation. For civil infrastructure, evaluation of roadways indicated no 

significant vulnerability to inundation for the 1.0 m SLR scenario, increasing to about 43 km 

for the 2.0 m SLR scenario. This range increased somewhat for flooding vulnerability (100 

year event) with 1 km and 70 km impacted for the 1.0 m and 2.0 m SLR scenarios, 

respectively. Airfield vulnerability from protected shoreline inundation and flooding was 

projected to be limited to SLR scenarios of 1.5 m or higher. Airfield and storm drain 

vulnerabilities were estimated to be in the range of $0M‐$10M based on the replacement 

cost of operationally impacted elements. Waterfront and coastal structures showed 

vulnerabilities in the range of 1.0 m to 2.0 m of SLR, with the replacement costs of 
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operationally impacted structures ranging as high as $648M for waterfront structures and 

$78M for coastal structures under the 2.0 m SLR scenario. 

Overall vulnerability estimates for the summed replacement value metric of receptors 

included in the inundation and flooding pathway analysis ranged from negligible for the 

baseline SLR inundation scenario, to as high as ~$2113M for the 2.0 m SLR flooding 

scenario. This estimate was largely driven by vulnerability associated with buildings and 

water front structures, but with significant contributions from other categories as well.        
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Table 5‐10. Receptor‐level vulnerability assessment summary for Naval Base Coronado based on the exposed shoreline erosion pathway. 
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Table 5‐11. Receptor‐level vulnerability assessment summary for Naval Base Coronado based on the exposed shoreline inundation and flooding pathway. 
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Table 5‐12. Receptor‐level vulnerability assessment summary for Naval Base Coronado based on the protected shoreline inundation and flooding pathway. 
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5.4.2 Receptor‐Level Assessment ‐ Marine Corps Base Camp Pendleton 

Methods for the assessment of sea level rise vulnerability at MCBCP were evaluated 

primarily for the receptor‐level of analysis. The analysis included the baseline conditions, 

four SLR scenarios, and five return period events. The analysis results quantified potential 

impacts from SLR in terms of replacement cost, quantity, area, and MDI value, as applicable. 

Following is a summary of the metrics and vulnerability thresholds for each receptor 

category. 

Training Areas 

The beach training areas at MCBCP evaluated here included areas on the exposed shoreline 

of the installation between the Del Mar area at the south and San Onofre at the north. The 

analysis focused on the erosion and inundation/flooding pathway impacts on the selected 

beach training areas including Gold Beach, Red Beach, White Beach, Blue Beach, and the 

San Onofre Beach. The beach width remaining relative to Mean Sea Level was used to 

quantify the impacts of SLR to the beach training areas. The analysis for MCBCP differs from 

NBC in that the training areas are generally backed by erodible cliffs, rather than by fixed 

infrastructure as is the case at NBC. Because the cliff erosion was also modeled, the 

landward boundary of the beach training area was allowed to retreat inland at the rate of 

retreat of the cliff base. Thus the width of the training areas generally increased with time, 

and the beach width remaining was a function of the difference between retreat of the 

shoreline and the retreat of the cliff base. The exception to this was for the area of Blue 

Beach where the training beach is not backed by cliffs, and the back of the training beach 

was assumed to be fixed relative to existing infrastructure in the Del Mar area. Similarly to 

NBC, the erosion modeling included the existing sand budget deficit for the littoral cell. At 

MCBCP this sand deficit is significant and contributes substantially to the erosion 

independent of whether or not there is erosion due to sea level rise.   

Exposed Shoreline Erosion Pathway 

Results for the analysis are shown in Figure 5‐206 as the average beach width remaining for 

all training areas. The relatively large reduction in beach width between the baseline 

condition and the 0.5 m SLR condition reflected the 46 years of sand budget deficit 

combined with SLR impact, and the expected slow erosion of the cliffs (subaerial only) that 

occurred until the beach becomes narrow enough for wave attack on the cliff. As the 

beaches narrowed and the waves attacked the cliff on a regular basis (in accordance with 

the CDPM model), the cliff retreat accelerated, and the change in beach width decelerated, 
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thus stabilizing to some degree the remaining width of the training beach. Using a 

comparable response threshold to the 50% reduction that was applied at NBC, Figure 5‐206 

indicates that, on average, impacts to training beaches would be expected for all SLR 

conditions at return periods of yearly or greater, for SLR of 1.0 m and greater for the 

monthly return period condition, and for SLR of 1.5 m and greater for the weekly return 

period condition. 

However, the continued reduction in average beach width after 2046 was largely driven by 

the narrowing of the training area at Blue Beach under the assumption of a fixed back 

boundary for this training beach. The other training beaches all stabilized and variations 

after 2046 were generally small decreases that were regulated by spatial variations in the 

balance of the beach erosion and the cliff erosion (Figure 5‐207). This also reflected the fact 

that these more northern training areas already had relatively narrow beaches.  

The cost impacts of SLR‐driven erosion on the beach training areas were estimated by 

determining the quantity of sand (beach nourishment) that would be required to maintain 

the baseline beach width.  Historically, beach nourishment projects were not executed at a 

fixed frequency, and tended to be conducted on an as‐needed basis.  Based on the analysis 

conducted for this project, beach nourishment projects could be executed for the MCBCP 

portion of the Oceanside Littoral Cell at a 10‐year interval with the sand volume required to 

maintain the existing beach width. The estimate included both the portion associated with 

sea level rise, and the portion associated with the estimated sand budget deficit. The sand 

replenishment volume needed to keep pace with SLR and the sand deficit increased from 

4.4 million cubic meters in 2010, to 58 million cubic meters in 2100. Note that these 

volumes neglected the contribution of sand from cliff erosion since this input was assumed 

to be relatively small if the beach widths were maintained such that the cliffs were 

protected from wave attack.  The unit cost for a beach nourishment project depends on the 

total sand volume and dredge equipment mobilization costs.  A unit cost of $23.50 per cubic 

meter was used to estimate the cost of maintaining the existing beach width.  The unit cost 

was based on a recent beach nourishment project in San Diego.  See Figure 5‐208 for a plot 

of a sand volume and replacement cost versus time for the MABCP portion of the Oceanside 

Littoral Cell. 
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Figure 5‐208.  The sand replenishment volume required for both SLR and the sand deficit at MCBCP beaches.  

The associated costs are to maintain the existing baseline beach width.   

Exposed Shoreline Inundation and Flooding Pathway 

The beach training areas at MCBCP were analyzed for inundation and flooding impacts 

based on a spectrum (week – century) of return period total water level exposures over the 

eroded shoreline position for each SLR scenario.  The water depths and flooded areas were 

calculated for all areas landward of the baseline shoreline position.  The assessment results 

indicated the percentage inundate/flooded, water depth, beach width and beach area for 

each SLR scenario and return period event.  The data provide a basis for understanding both 

the potential magnitude and frequency of inundation and flooding conditions that could 

inform command personnel on the future ability to sustain beach training activities. The 

average beach width subject to inundation (weekly return) increased from about 43 m 

under the baseline scenario, to a maximum of about 180 m under the 2.0 m SLR scenario 

(Figure 5‐209). Note that these widths were measured from a common reference location 

of NAVD88 = 0 m. The beach width remaining narrowed substantially under inundation, 

especially between the baseline and 0.5 m SLR scenario, reducing from about 70 m on 

average, to about 24 m under the 0.5 m SLR scenario, then further to a width of only 16 m 

under the 2.0 m SLR scenario (Figure 5‐210). The majority of this reduction occurred in the 

first half of the century as the back beach was eroded (up to about 0.5 m SLR), and then the 

cliff erosion rate accelerated under wave attack and the beach widths stabilized. This 

stability was also a function of the assumption that the back boundary of the training areas 
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were allowed to retreat in concert with the location of the cliff base. Under flooding (100 

year return period condition), the average beach width flooded increased from about 92 m 

for the baseline condition, to a high of about 190 m for the 2.0 m SLR scenario. The beach 

width remaining under flooding was low in all cases, ranging from a high of about 21 m in 

the baseline scenario, to a low of only 6 m in the 2.0 m SLR scenario.  

 

Figure 5‐209.  Assessment of inundated/flooded beach width for beach training areas at MCBCP.  

 

Figure 5‐210.  Inundation and flooding pathway assessment of beach width remaining for beach training 

areas at MCBCP.  
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buildings was sensitive to both the return period event analyzed and the SLR scenario.  For 

the 0.5 m SLR scenario, the number of buildings within the erosion footprint ranged from 47 

under the weekly return period erosion event, to a high of 71 for the 100 year return period 

event. For 2.0 m of SLR, the number of buildings increased to 90 for the weekly return and 

124 for the 100 year return, with corresponding replacement values ranging from about 

$131M to $162M.  

 

Figure 5‐212.  Erosion pathway analysis of buildings at the exposed shoreline of MCBCP.  The quantity of 

buildings within the beach erosion footprint for each SLR scenario and return period event. 

 

Figure 5‐213.  Total replacement cost of buildings within the beach erosion footprint at MCBCP. 
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Exposed Shoreline Inundation and Flooding Pathway   

The inundation and flooding pathway assessment was based on the maximum exterior 

water depth at each building.  The three flood depth ranges described in Section 4.4.1 were 

used for assessing the vulnerability of the buildings to different flood depths under the 

receptor‐level methodology.  The three flood depth ranges corresponded to increasing 

levels of damage and operational impacts.  For example, the total number and replacement 

value of buildings in the highest depth range (>1 m) are shown in Figure 5‐214 and Figure 

5‐215, respectively. Inundation as represented by the weekly return period condition 

impacted a very small number of buildings with water depths of this magnitude for the 

baseline condition, increasing to about 117 buildings with a replacement value of about 

$158M under the 2.0 m SLR scenario. The buildings included in the baseline inundation 

footprint were generally anomalous and result as a function of the buffer zone used to 

calculate inundation and flood depths spanning into the small boat harbor area for buildings 

that were directly adjacent to the harbor. Less frequent flooding events impacted 

increasingly large number of buildings with the 2.0 m SLR 100 year return period event 

estimated to impact 191 buildings with an estimated replacement cost of about $246M.   

 

Figure 5‐214. Inundation and flooding pathway analysis for buildings via the exposed shoreline of MCBCP 

showing the quantity of buildings within the inundation and flooding footprint with water depth exceeding 

1 m for each SLR scenario and return period event. 
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Figure 5‐215. Total replacement cost of buildings within the exposed shoreline inundation/flooding 

footprint at MCBCP with water depth exceeding 1 m. 

Waterfront Structures   

Waterfront structures at MCBCP are limited to small craft support facilities in the Del Mar 

Boat Basin. The Del Mar Boat Basin provides a small craft harbor for barge landings, small 

craft moorings, recreational boats, and boat ramps. These facilities are protected from 

wave exposure by the harbor jetty, and the facilities are less vulnerable to sea level rise 

related impacts because they do not have a fixed fender system or significant utility services 

which are typically vulnerable to sea level rise related impacts at an elevation below the 

deck elevation.  

Protected Shoreline Inundation and Flooding Pathway 

Overall, the inundation and flood impacts for these structures is a function of the 

overtopping elevation.  The boat ramps and barge landing platform at MCBCP are typically 

configured with the top of slope elevation equal to the adjacent roadway elevation.  The 

ramp is designed to accommodate the tidal range, and will generally have the ability to 

accommodate SLR.  Boat ramps will not be damaged by flooding, however, may have short‐

term operational impacts during high tides. 
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The recreational floating dock at MCBCP is attached to a fixed‐elevation quaywall with 

access by a brow that transitions from shore to the docks.  Floating docks are designed to 

accommodate the current tidal range inside the harbor; thus are generally able to 

accommodate SLR.  The vulnerable items of a floating dock system are the guide piles that 

secure the dock in position and the brow.  The maximum operational water level for a 

floating dock is a function of the bending capacity of the pile, the strength of the soil, and 

the elevation of the top of guide pile.  At MCBCP, the top of guide piles are approximately 

+4.0m.  In the future, floating docks may require higher capacity guide piles or adjustments 

to the brow connection details to accommodate SLR. 

Coastal Structures  

The coastal structures at MCBCP are primarily rock revetments and jetties at the Del Mar 

Boat Basin and a large seawall that protects SONGS.  These structures are primarily subject 

to inundation and flooding exposure along the protected shorelines of the harbor.  The 

DEM and record drawings were used to acquire critical functional and operational 

elevations for the screening level assessment of these coastal structures. When the DEM 

was used to obtain a structure’s elevation, several cross sections would be evaluated and an 

average value was applied. 

For the purposes the receptor‐level assessment, if a coastal structure was overtopped for 

any SLR scenario during any return period event it was considered as requiring replacement. 

A replacement value of each affected structure per unit length was derived based on design 

details of similar structures in the region. High resolution aerial imagery was used to acquire 

the length of these structures when record drawings were unavailable. Applying full 

replacement value for revetments and jetties in this analysis is a conservative approach, as 

rock could be added to these structures at a lesser cost to increase protection.   

Exposed Shoreline Inundation and Flooding Pathway 

The exposed shorelines with engineered coastal structures included the seawall at SONGS 

and the north and south jetties at Del Mar. The analysis indicated minimal impacts for the 

baseline and 0.5 m SLR scenarios, and increasing levels of impact for SLR scenarios of 1.0 m 

and above (Figure 5‐216). These structures included only the south jetty and the south jetty 

head at Del Mar, while the north jetty at Del Mar and the seawall at SONGS were not 

projected to be overtopped under any of the SLR scenarios. Replacement costs associated 

with these impacts ranged from about $14M to $20M. 
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Protected Shoreline Inundation and Flooding Pathway 

Within the harbor at Del Mar, there are a series of revetments that protect the shoreline. In 

general, these revetments are protected from wave exposure by the jetty, and so they were 

evaluated as protected shoreline structures, although in some areas near the harbor 

entrance they may receive some wave exposure. No overtopping of these structures was 

expected for SLR scenarios of 1.0 m or less. For the 1.5 m SLR scenario, overtopping was 

projected but only for the 100 year return period condition, while for the 2.0 m SLR 

scenario, overtopping was expected for all return period conditions (Figure 5‐217). This 

overtopping was projected to be limited to the revetment inside the Del Mar Boat Basin 

with a replacement cost of about $11M. Note that the relatively flat impact response as a 

function of return period is explained by the uniformity of the total water levels for 

exposure along protected shorelines where the variability in sea level is primarily related to 

tides. 

 

Figure 5‐216.  Receptor‐level estimate of the number of coastal structures impacted by inundation and 

flooding along the exposed shorelines at MCBCP. 
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Figure 5‐217.  Receptor‐level estimate of the number of coastal structures impacted by SLR along the 

protected shorelines at MCBCP. 

Civil Infrastructure   

Selected receptor sub‐categories of the civil infrastructure at MCBCP were analyzed to 

illustrate potential erosion, inundation and flood impacts including roads, airfields, storm 

water infrastructure, and recreation areas.  For the erosion analysis, the area (or length) of 

the asset inside of the erosion footprint was tabulated for each scenario.  For the 

inundation and flooding analysis, the wetted areas and water depths were determined for 

each asset.  The metrics used to quantify the impacts of SLR to the civil infrastructure were 

the area eroded or flooded, replacement cost, and average water depth.  Under the range 

of SLR conditions examined in the study, the roadways near exposed shorelines were shown 

to be vulnerable to erosion at or above the 0.5 m SLR scenario, and flooding for at or above 

the 1.5 m SLR scenario.  The airfields were not within the erosion footprint, however, were 

found to be vulnerable to flooding for all scenarios but progressively increasing with higher 

SLR scenarios. Minimal low‐lying portions of the storm water infrastructure were found to 

be vulnerable to reduced efficiency under SLR scenarios of 0.5 m and higher, which could 

lead to localized increased flooding during rain events (although precipitation impacts were 

not examined in this study). A summary of the analysis for each sub‐category is provided 

below. 
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Roads 

At MCBCP the roads were defined in the GIS database provided by the installation as a 

polygon shapes from which eroded or inundated/flooded areas were calculated directly 

from the relevant footprints.  The estimated unit replacement cost of a typical two‐lane 

roadway was estimated at $67.27 per square meter, which includes replacement of the 

roadway base and asphalt paving.  The cost assessment did not include the replacement of 

adjacent land area, the soil material beneath the roadway subgrade, environmental‐related 

costs (permitting, mitigation, etc.).  The volume of fill material lost below the roadway was 

determined as part of the beach erosion analysis. For MCBCP, many of the roadways that 

fell within the impacted areas were graded dirt roads rather than paved, so the 

replacement cost estimate may be overly conservative. Also, because the proportion of 

roadways in the areas of protected shorelines was very small, no separate analysis for the 

protected shoreline areas was conducted.   

Exposed Shoreline Erosion Pathway. The erosion assessment for the roadways at MCBCP 

calculated the total area and corresponding rough order of magnitude replacement cost of 

roadways within the erosion footprint for each SLR scenario. Roadway erosion was primarily 

a function of the SLR scenario, with very limited impacts expected for the baseline 

condition, but progressively higher impacts for higher sea levels (Figure 5‐218). For the 100 

year return period wave erosion event, the estimated area of roadway erosion ranged from 

a low of about 5000 m2 for the baseline scenario, to a high of about 213000 m2 for the 2.0 

m SLR scenario. Corresponding replacement costs ranged from about $333K to $14.3M.  

Exposed Shoreline Inundation and Flooding Pathway.  For the exposed shoreline 

inundation and flooding pathway, roadways with average water depths greater than 0.15 m 

were assumed to result in operational impacts to the installation.  These scenarios and 

water depths did not consider the additional impacts of a rain event. For inundation (weekly 

return period), the estimated length of impacted roadway ranged from about 0.7 km for the 

baseline scenario, to a high of about 17.2 km for the 2.0 m SLR scenario. For flooding under 

the 100 year return period condition, the estimated length of flooded roadway increased 

from 5.8 km for the baseline scenario to about 28.7 km for the 2.0 m SLR scenario, with a 

corresponding range of replacement values ranging from about $3.9M to $19.3M.  
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Figure 5‐218.  Roadway erosion at MCBCP showing the estimated roadway eroded area for each SLR 

scenario. 

 

Figure 5‐219.  Roadway inundation and flooding at exposed shorelines of MCBCP.   
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Airfields 

The receptor‐level assessment of the airfields at MCBCP included runways, helicopter pads, 

and miscellaneous airfield pavement areas near the coast.  The assessment included the 

erosion pathway for the exposed shoreline, and the inundation and flooding pathway for 

the exposed shorelines only.  At MCBCP, the vulnerability of airfields to operational and 

damage impacts from flooding are distinct from roadways because most of the airfield 

areas are situated above the bluffs and thus are not readily exposed to sea level rise.   

Exposed Shoreline Erosion Pathway. The erosion pathway assessment determined that the 

airfields at MCBCP were not located within the erosion footprint.  However, under the 

expected erosion scenarios, the shoreline position moves closer to the airfields, offering less 

protection from future erosion and flooding events.   

Exposed Shoreline Inundation and Flooding Pathway. The exposed shoreline inundation 

and flooding analysis for MCBCP indicated that there would be no inundation or flooding of 

airfields under any of the SLR scenarios evaluated 

Storm Water Infrastructure 

The storm water conveyance system at MCBCP controls storm water runoff during and after 

a rain event.  The storm water system uses gravity flow with outlets to the Del Mar Basin 

and the Pacific Ocean. Storm water infrastructure along the coast of MCBCP is limited to 

relatively small systems in the Del Mar area and in the north near SONGS.   

Exposed Shoreline Erosion Pathway. The erosion pathway assessment of the storm water 

drainage system determined the length of underground drain pipe within the erosion 

footprint for each SLR scenario.  The rough order of magnitude replacement cost of the 

storm drainage system was calculated for each SLR scenario.  A unit replacement cost used 

for the system was estimated at $922.74 per linear meter for a 0.6 m diameter reinforced 

concrete pipe with inlets at 61 m on center.  The erosion impacts to the storm water 

drainage system were very limited, ranging from no impacts under the baseline scenario, to 

a maximum of about 77 m of drain pipe within the erosion footprint for the 100 year return 

period wave erosion combined with 2.0 m of SLR. The estimated replacement cost for this 

worst case scenario was about $71K  
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Figure 5‐220.  Exposed shoreline erosion pathway assessment of storm water conveyance system at MCBCP. 

Exposed Shoreline Inundation and Flooding Pathway. The inundation and flooding 

pathway assessment of the storm water drainage system estimated the water depth at 

each storm water drainage inlet. In general, the storm drain inlets are located at the low 

points of paved areas to collect water and thus may be subject to intrusion from elevated 

water levels, or to flooding from overtopping waves.  A water depth of 0.3 m at the inlet 

was used as a threshold limit for operational impacts to the associated roads, buildings and 

parking areas that the storm water system drains. The total number of inlets identified 

within the GIS was 1765. Of these, the number subject to inundation (weekly return 

condition) was negligible, ranging from one for the baseline scenario, to two for the 2.0 m 

SLR scenario. For flooding (100 year return period condition), the number of inlets with 

water depths of 0.3 m or higher ranged from two for the baseline scenario, to a high of 19 

for the 2.0 m SLR scenario, representing about 0.1% to 1.1% of the total number of inlets at 

MCBCP, respectively (Figure 5‐202).  
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Figure 5‐221.  Inundation and flooding pathway assessment of stormwater drainage system at exposed 

shoreline of MCBCP. The quantity of stormwater inlets with flood depths greater than 0.3 m is shown. 

Recreational Areas 

The recreational areas included a number low‐lying elements near the beach such as 

camping areas and ballfields.  The assessment included the erosion pathway for the 

exposed shoreline, and the inundation and flooding pathway for the exposed shorelines.  

The recreational areas would likely be closed while flooded and may cause damage to grass 

covered areas from exposure to saltwater.  The analysis determined the area impacted from 

erosion and flooding for each SLR scenario.  A replacement value was not estimated for 

recreational areas. 

Exposed Shoreline Erosion Pathway. The erosion pathway assessment determined the area 

of recreational spaces within the erosion footprint for each SLR scenario, as well as the 

fraction of the total recreational area that this represented. The results showed very limited 

impacts to recreation areas with a maximum of about 3400 m2 (<0.3%) of recreational areas 

impacted by 2.0 m of SLR combined with a 100 year return period erosion event (Figure 

5‐222).     

Exposed Shoreline Inundation and Flooding Pathway. The exposed shoreline inundation 

and flooding pathway assessment of recreational areas also determined the area and 

percent of area impacted.  For inundation (represented by the weekly return period), the 
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impacted area was negligible for the baseline scenario, and increased to a maximum of 

about 3200 m2 (~0.2%) for the 2.0 SLR scenario (). Flooding impacts for the 100 year return 

period were somewhat higher ranging from 2200 m2 for the baseline scenario, to a high of 

about 4000 m2 (~0.3%) for the 2.0 m SLR scenario.  

 

Figure 5‐222.  Erosion pathway assessment for recreational areas at MCBCP determined the percentage of 

recreational area within the erosion footprint. 

 

Figure 5‐223.  Exposed shoreline inundation and flooding pathway assessment for recreational areas of 

MCBCP determined the percentage of recreational area flooded.   

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

Week Month Year Decade Century

R
e

cr
e

at
io

na
l A

re
a 

Er
o

d
ed

 (m
2)

Return Period Event

Baseline (2000)

0.5-m (2046)

1.0-m (2069)

1.5-m (2087)

2.0-m (2100)

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

Week Month Year Decade Century

R
e

cr
e

at
io

na
l A

re
as

 F
lo

o
d

ed
 (m

2)

Return Period Event

Baseline (2000)

0.5‐m (2046)

1.0‐m (2069)

1.5‐m (2087)

2.0‐m (2100)



 

 

 

560

Receptor‐Level Vulnerability Assessment Summary ‐ Marine Corps Base Camp Pendleton  

As described above, sea level rise vulnerability of a range of MCBCP installation receptors 

was evaluated as a means of illustrating the application of the methodologies developed in 

this study. Vulnerability was evaluated as a function of receptor class for different exposure 

pathways and a range of potential future sea level rise scenarios.  While the receptors 

evaluated here represent only a subset of those present at the installation, they do provide 

a representative cross‐section of the infrastructure that could be vulnerable to sea level 

rise. Thus a cumulative summary of the vulnerability provides a sense of which receptor 

classes tend to be more vulnerable, as well as the overall magnitude of the vulnerability 

across receptor classes.  

Erosion Pathway 

The overall vulnerability of MCBCP to sea level rise for the erosion pathway is summarized 

in Table 5‐13 under the prescribed sea level rise conditions and the assumed sand budget 

deficit of 15 m3/m. The summary incorporated key receptors including training areas, 

buildings and civil infrastructure, and multiple metrics of response across the full range of 

both long‐term sea level rise scenarios and short‐term erosion events of various return 

periods. In general, the summary illustrates the increasing level of vulnerability to erosion 

as a function of increasing sea level, as well as the sensitivity of some receptors to short‐

term wave driven erosion events. For training areas, this translated into frequent (weekly 

return period) conditions with average beach widths reduced to about 66 m and a 

remaining area of about 41% of baseline for 1.0 m SLR (first occurrence by 2069), and 

further reductions to an average beach width of about 49 m and a remaining area of 27% of 

baseline for 2.0 m SLR (first occurrence by 2100). To preserve year 2000 beach widths, 

significant beach replenishment would be required with estimated costs in the range of 

$732M to $1366M for the 1.0 m and 2.0 m SLR scenarios, respectively, potentially the 

largest contribution to the overall erosion pathway vulnerability of the installation if retreat 

is not considered a viable option.  

For buildings, weekly return period conditions resulted in erosion pathway vulnerability to 

about 66 structures for 1.0 m SLR 12 of which had an estimated MDI>55 (“Relevant” 

classification or higher), and with an estimated replacement cost of about $112M. This 

increased to about 90 structures and 14 with MDI>55, with an estimated replacement cost 

of $132M for 2.0 m SLR. The building receptor class also contributed substantially to the 

overall erosion pathway vulnerability of the installation. For civil infrastructure, roadways 

were the primary class of receptors evaluated here that indicated significant vulnerability 
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with replacement costs in the range of $56M to $130M for the 1.0 m and 2.0 m SLR 

scenario, respectively. Overall vulnerability estimates for the receptors included in the 

erosion pathway analysis ranged from less than $1M for the baseline SLR scenario, to as 

high as ~$1600M for the 2.0 m SLR scenario. This estimate was largely driven by 

“replacement cost” associated with beach replenishment, and it should be noted that if this 

replenishment were to take place then the other erosion impacts would be largely 

mitigated, so the total number should be viewed as a measure of summed vulnerability 

rather than a measure of the actual costs that might occur for a given scenario.  

Exposed Shoreline Inundation and Flooding Pathway 

Vulnerability of MCBCP receptors to sea level rise for the exposed shoreline inundation and 

flooding pathway is summarized in Table 5‐14. The summary incorporated key receptors 

including training areas, buildings and civil infrastructure, coastal structures, and multiple 

metrics of response across the full range of both long‐term sea level rise scenarios and 

short‐term flooding events of various return periods. In general, the summary illustrates the 

increasing level of vulnerability to inundation and flooding as a function of increasing sea 

level and increasingly extreme short‐term events flooding, but the results also reflect the 

relative resilience of MCBCP to inundation and flooding as a function of the generally steep 

nature of the installation topography, and the buffering effect of the coastal cliffs. Beach 

training areas were one of the most sensitive receptors to inundation and flooding, with 

inundation impacts reflected in reductions in average beach widths to about 24 m and a 

remaining area of about 17% for only 0.5 m SLR (first occurrence by 2046), and further 

reductions to an average beach width of only about 16 m and a remaining area of 10% for 

2.0 m SLR (first occurrence by 2100). While infrequent flooding events can potentially be 

accommodated through scheduling, flooding impacts (100 year return period condition) 

were more significant with the nearly the entirety of the beach training areas (5% 

remaining) being subject to flooding for SLR scenarios of about 0.5 m and above (first 

occurrence by 2046). Replacement costs for inundation and flooding of training areas were 

assumed to be equivalent to those estimated for the erosion pathway, because flooding 

events simply occur over top of the eroded shoreline, and the shoreline is generally 

expected to recover from storm driven wave events naturally. The replacement costs simply 

provide a metric of the value of the asset value that is subject to operational limitations due 

to inundation and flooding. 

For buildings, inundation (weekly return) resulted in vulnerability to about 77 structures for 

1.0 m SLR 11 of which had an estimated MDI>55 (“Relevant” classification or higher), and 
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with an estimated replacement cost of about $122M. This roughly doubled to about 148 

structures and 28 with an estimated MDI>55, with an estimated replacement cost of $183M 

for 2.0 m SLR. The building receptor class was more vulnerable to flooding impacts (100 

year return period) with about 158 potentially flooded structures for 1.0 m SLR 30 of which 

had an estimated MDI>55 (“Relevant” classification or higher), and with an estimated 

replacement cost of about $193M. This increased to about 200 structures and 35 with an 

estimated MDI>55, with an estimated replacement cost of $250M for 2.0 m SLR. For civil 

infrastructure, evaluation of roadways indicated vulnerability to inundation with about 9 km 

operationally impacted for the 1.0 m SLR scenario, increasing to about 17 km for the 2.0 m 

SLR scenario. This range roughly doubled for flooding vulnerability (100 year event) with 17 

km and 29 km impacted for the 1.0 m and 2.0 m SLR scenarios, respectively. Airfields at 

MCBCP were not projected to contribute significantly to installation SLR vulnerability for 

inundation or flooding. 

Overall vulnerability estimates for the summed replacement value metric of receptors 

included in the inundation and flooding pathway analysis ranged from about $4M for the 

baseline SLR inundation scenario, to as high as ~$1656M for the 2.0 m SLR flooding 

scenario. This estimate is largely driven by vulnerability associated with training areas, but 

with significant contributions from other categories as well. 

Protected Shoreline Inundation and Flooding Pathway 

The only receptor categories that were assessed for this pathway at MCBCP were the 

waterfront and coastal structures. The limited vulnerabilities for these receptors were 

described previously and were not included in the overall summaries. Also note that the 

seawater intrusion analysis was not incorporated in the summary, although some level of 

vulnerability was projected for extraction wells closer to the coast and particularly under 

the highest SLR scenario (2.0 m) and in combination with future increases in pumping rates. 
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Table 5‐13. Receptor‐level vulnerability assessment summary for MCBCP based on the exposed shoreline erosion pathway. 
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Table 5‐14. Receptor‐level vulnerability assessment summary for MCBCP based on the exposed shoreline inundation and flooding pathway. 
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5.4.3 Component‐Level Assessment Examples 

The component‐level assessment methodologies described in Section 4.4.2 focus on 

refinement of the assumptions, methods, and data used during the receptor‐level 

assessment to provide a more quantitative analysis and reduce uncertainties. Here we 

focused on methodological considerations for the component‐level assessment in the 

context of the evaluation of vulnerability for the designated receptors, and especially for 

those receptors that have characteristics that are relatively unique to military installations. 

While a facility‐wide component‐level assessment was beyond the scope of this effort, 

example applications from the two installations are described below.  The detailed 

assessment examples are provided to show how operational limits and impacts are 

determined for specific components of infrastructure within each receptor category.  A 

majority of the examples are from NBC because detailed asset information was available 

from past construction projects. 

Training Area Example 

Beach training activities are a fundamental aspect of the mission at both NBC and MCBCP. 

Following the methodology described in Section 4.4.2, we combined the available data from 

the receptor‐level analysis with more detailed data on specific beach training operations to 

illustrate the application of the component‐level assessment methodology for training 

areas. Detailed information on the training activities conducted at NBC were derived from 

the Silver Strand Training Complex (SSTC) Consistency Determination (Department of the 

Navy, 2011).  This document was used to assess the impacts of increased training adjacent 

to sensitive habitats located at the beach and bay training areas at NBC.  Included in the 

report are figures and tables that describe the location and type of training activities 

conducted at SSTC north and south. Below we illustrate the approach for the “Causeway 

Pier Insertion and Retraction” training activity at NBC. 

Causeway Pier Insertion and Retraction 

This training activity requires heavy equipment both landside and waterside.  Causeway 

Section Powered/Warping Tug and Barge Ferrys make up the main building blocks for the 

modular causeway section and Elevated Causeway System (ELCAS) activities.  The causeway 

sections are 24‐ft by 80‐ft platforms configured from compatible floating pontoons.  

Causeway sections are assembled to configure three subsystems: Floating Causeway, Roll 

On/Roll Off Discharge Facility (RRDF), and Causeway Ferry.  The OUB (Offshore Petroleum 

Discharge System [OPDES] Utility Boat) to support ship to shore transfer of fluids.   
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Figure 5‐226. Average beach width remaining for all training areas at SSTC as a function of SLR and return 

period inundation and flooding events.  

 

Figure 5‐227. Beach width remaining by training lane at SSTC for the monthly return period flood event.
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Building Examples  

Buildings support a wide range of operations and missions of the installation including 

housing, logistics, training, testing, operations, and security.  Buildings located adjacent to 

the shore may be exposed to ocean waves, boat wakes, erosion, flooding or inundation.  

Buildings located away from the shoreline may be flooded from intrusion of water through 

the storm water conveyance system during high tide elevations or from inadequate 

drainage during a rain. A general overview of the critical elevations and the corresponding 

impacts to operational capability of a building can be represented by a graph of water 

elevation versus operational capability.  Buildings with common construction and function 

may have similar operational limits curves. Examples of the development of operational 

limits for two buildings at Naval Base Coronado are presented below. Comparison of these 

operational curves to estimated total water levels for a range of SLR scenarios then provides 

a basis for the more detailed component‐level assessment.   

CVN Warehouse at Berth Juliet at NAS Coronado 

The CVN Warehouse located adjacent to Berth Juliet at NBC provides storage space to 

support CVN aircraft carriers moored at the facility (Figure 5‐228 through Figure 5‐230). The 

warehouse has roll‐up doors and a loading dock ramp.  The finish floor elevation of the 

warehouse is +3.92 m NAVD.  The low end of the loading dock ramp is at +2.7 m.  The 

exterior grade slopes away from the warehouse to a minimum grade elevation of +3.12 m 

at the storm water inlets. The inboard edge of the Berth Juliet wharf is +3.7 m.   

The building is comprised of a concrete slab‐on‐grade with concrete masonry unit walls to a 

height of 1.5 m above finish grade, and a steel frame above.  The building is supported by 

shallow foundations that consist of spread footings for the columns and grade beams for 

the walls.  The wall system and floor have a low vulnerability to flood damage. The building 

contains a small office and lounge area that has interior partitions that may be comprised of 

metal studs with drywall and insulation.  The drywall and insulation is vulnerable to flood 

damage. The building electrical system typically includes Alternating Current (AC) power, 

lighting, and telephone.  The electrical outlets and points of connection are vulnerable to 

SLR damage. Other building utilities may include water and sewer, which are less vulnerable 

to SLR damage. 

Based on the building characteristics described above, operational limits were developed 

for comparison to SLR scenarios. A component‐level assessment of the building indicated 

that the building was vulnerable to SLR damage, limited access, intrusion and flooding 
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Helicopter Training Facility at NAS Coronado 

The helicopter training facility is located adjacent to Moffett Road on the north side of NAS 

Coronado (Figure 5‐235).  The building is used as a flight training complex with flight 

simulators and other antisubmarine weapons systems.  The building also contains offices 

and classrooms to support the training activities. 

The building is a braced‐frame steel structure with building columns supported by 

conventional spread footings.  The flight simulator equipment create powerful dynamic 

forces on the foundation as they imitate real aircraft movements.  The poor‐soil bearing 

capacity and high dynamic loads required the simulator equipment to have a pile 

foundation that is isolated from the building.   

The grade elevation, floor elevation and vault floor elevations were estimated using the 

DEM and tools developed by the SERDP Project Team.  Based on this analysis, the average 

grade elevation was +4.5 m.  An architectural feature of this building was that some exterior 

areas berm up towards the building to lessen the height of the walls – see Figure 5‐236.  So, 

the typical assumptions for first floor elevation compared to grade elevation were not 

accurate.  The first floor elevation was approximately 0.76 m below exterior grade for some 

areas, and equivalent to grade for other portions.  The exterior grade elevation varied from 

+3.75 m to +4.5 m. 

The building is located close to San Diego Bay.  The existing seawall may be overtopped for 

future SLR scenarios (Figure 5‐237 and Figure 5‐238).  If the seawall is overtopped, the 

building will be vulnerable to boat wakes and wind driven waves or overtopping waters 

which have an approximate height of 0.5 m. Adjacent to the building is a below grade 

electrical vault that contains a 69‐kilovolt substation.  The electrical vault is vulnerable to 

flooding.  The vault was designed for buoyant forces because of the close proximity to the 

bay and high water table.  The floor of the electrical vault is approximately 2.3 m below 

grade, at an elevation of +2.2 m. 

Based on the building characteristics described above, operational limits were developed 

for comparison to SLR scenarios. A component‐level assessment of the building indicated 

that the building was vulnerable to SLR damage, limited access, intrusion and flooding.  For 

the 0.5 m SLR scenario, the below grade electrical vault had increased buoyant forces, 

although damage was not expected (Figure 5‐239).  With 1.0 m of SLR, the electrical vault  

had further increased buoyant forces, and damage may occur (Figure 5‐240).  The storm 

water drainage system was projected to have reduced efficiency and localized flooding 
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Waterfront Structures Examples 

These structures support waterfront operations and missions of the installation and 

encompasses sub elements such as piers, wharves, and floating docks.  Operationally, 

waterfront structures such as piers and wharves are either used in support of home port in 

which a ship is permanently assigned and offers all requisite services required by the vessel, 

or as a port‐of‐call facility that supports ship stops while under‐way, including calls at 

fueling facilities, ammunition piers, supply piers, or short‐term repair facilities. For the 

installations studied here, the primary exposure for waterfront structures is via inundation 

and flooding along protected shoreline areas. A general overview of the critical elevations 

and the corresponding impacts to operational capability of a waterfront structure can be 

represented by a graph of water elevation versus operational capability.  Waterfront 

structures with common construction and function may have similar operational limits 

curves.  Examples of the development of operational limits for three waterfront structures 

at Naval Base Coronado are presented below. Comparison of these operational curves to 

estimated total water levels for a range of SLR scenarios then provides a basis for the more 

detailed component‐level assessment. 

Pier Bravo – Ammunition Pier at NAS Coronado 

Pier Bravo was built in 1976 and is a port‐of‐call facility used for transfer of ordnance on or 

off vessels.  The facility is located on the north side of Naval Air Station (NAS) at Naval Base 

Coronado – see Figure 5‐243.  The deck elevation of Pier Bravo is at a higher elevation 

relative to other piers in San Diego Bay.  A typical section through the pier with the major 

components indicated is shown in Figure 5‐244.   

Based on an analysis of the facility existing conditions, the vulnerabilities included the 

fender system and below deck utilities.  The critical elevations of the pier are shown on the 

vulnerability assessment graphs for each SLR scenario.  The floating foam‐filled fenders 

were vulnerable to “roll‐over” when the high tide water level was greater than the critical 

elevation of the fender system (2.7 m) – see Figure 5‐245.  The fender system had limited 

operations and would require modifications to remain fully operational with 0.5 m of SLR 

(Figure 5‐247).   

The pier has fire suppression piping and electrical conduits that are supported below deck 

by hangers.  The original design loads did not account for wave and current forces from 

being submerged.  The additional wave and current loads could cause a failure of the fire 

suppression piping and electrical conduit systems (Figure 5‐246).  The electrical and 
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Berths Juliet & Kilo – CVN Aircraft Carrier Wharves at NAS Coronado 

Berths Juliet and Kilo were built in 2002 and 1998, respectively, and are used as homeport 

for aircraft carriers.  The facilities are located on the northeast corner of NAS Coronado – 

see Figure 5‐251.  A typical section through the wharf with the major components that are 

vulnerable to SLR are indicated (Figure 5‐252). 

Steam and deionized water are required to support nuclear aircraft carriers.  The deionized 

water system and the steam line are located on the face of the wharf and are sensitive to 

saltwater splash and submersion (Figure 5‐253).  Other utilities at the wharf include water, 

jet fuel, oily waste, fresh water, compressed air and waste water, which are all located 

inside of a utility tunnel.  For future SLR scenarios, when the water level exceeds the 

elevation of the tunnel floor, water will enter the tunnel at the expansion joints.  No sealant 

was used at the joints.  If this occurs, it will reduce the service life of the utility pipes, but 

will not limit the operations of the wharf.   

The service life of the structure will also be reduced more rapidly as the height of the soffit 

above the water decreases.  The increased exposure to chloride ion contamination in the 

concrete will hasten the concrete degradation process discussed in Section 4.4.2.   

The fender system is comprised of concrete fender piles and two floating CVN separators.  

The separator provides the required standoff distance between the hull of the vessel, the 

elevator platforms and the wharf – see Figure 5‐254.  Future operations of the fender 

system will be limited by the elevation of the top of the fender piles.   

Based on an analysis of the structure, fender system, and utilities, sea level rise first 

impacted the pier utility systems when the high tide water level combined with wind waves 

or boat wakes causes saltwater splash onto the steam and deionized water pipe systems 

with 0.5 m of SLR (Figure 5‐255).  For the 1.0 m SLR scenario, the fender system would 

require modifications to remain operational (Figure 5‐256). 

The deck elevation of Berths Juliet and Kilo is at a lower elevation than Pier Bravo.  

Overtopping of the deck would occur for the 1.5 m SLR scenario with a 100‐yr return period 

event (Figure 5‐257), and under weekly return period events for the 2.0 m SLR scenario  

(Figure 5‐258).  However, the elevation and exposed location of the steam and pure water 

utility systems would govern the operational limits of the facility at lower SLR scenarios. 
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Small Craft Piers No. 1 – 14 at NAB Coronado 

The small craft piers at the Naval Amphibious Base (NAB) were built circa 1954.  Originally 

designed for Patrol Torpedo boats, the facilities currently provide small craft berths to 

support various amphibious training and support activities – see Figure 5‐259.  The facilities 

are used for the following activities:   

 Pier 1 is used by the Office of the Commander Naval Surface Fleet, Pacific and 

provides access to the Admirals barge.	

 Pier 2 was configured to host the Shallow Water Mine Countermeasures Unit and 

will support mammal (dolphins) pens for special training (Figure	5‐260).	

 Piers 3 – 6 are used by the Expeditionary Warfare Training Group, Pacific and the 

Naval Special Warfare Center for small craft training.	

 Piers 7 – 12 are used by Assault Craft Unit‐1 for assault craft training.	

 Pier 13 is used by the Commander Special Boat Squadron to support an oily waste 

pumping system and mooring of MK V, 85‐ft SEAL delivery vessels.	

 Pier 14 is used by the Commander Special Boat Squadron to moor MK V vessels and 

11 meter rubber inflatable boats.	

The Small Craft Piers are 3.9 m wide and have minimal utility services, that may include 

compressed air, potable water, and low voltage electrical power.  The utility lines are 

housed in an above deck tunnel that is integral with the curb.  The fender system is 

designed for small craft and consists of floating camels backed by fender piles.  A floating 

camel distributes berthing loads to multiple fender piles.  The pier deck elevation is set 

lower than Pier Bravo and Berths Juliet and Kilo to accommodate small craft (Figure 5‐261).   

Piers 1 – 14 are approximately 58 years old.  The structures have exceeded their 50‐year 

service life.  When the pile caps and deck soffit begin to be submerged during high tides the 

increased exposure to chloride ion contamination in the concrete will hasten the concrete 

degradation process discussed in Section 4.4.2.   

Based on an analysis of the structure, fender system, and utilities, 0.5 m of SLR would 

impact operations when the high tide water level causes the fender system to become non‐

functional.  Inundation of the deck would also occur for the 0.5 m SLR scenario.  Inundation 

of the deck is partially protected by a utility tunnel around the perimeter of the pier.  The 

critical elevations of the wharf are shown on the vulnerability assessment graphs (Figure 

5‐262). The Small Craft Piers at NAB would be overtopped at a weekly return period for the 

1.0 m SLR scenario (Figure 5‐263). 
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Naval Amphibious Base Bulkhead   

Bulkhead No. 2 is located on the east side of NAB Coronado (Figure 5‐271). Based on the 

analysis of the structures design, the bulkhead’s functionality would be compromised by 

future water levels that overtop the crest of the structure or that would increase the 

degradation of the walls tieback system through inundation or wetting / drying. It should be 

noted that inundation or wetting / drying may or may not affect the function of the tieback 

system contingent on the design. The most vulnerable designs would be those comprised of 

unprotected steel or a system located in aerated soil. These factors should be considered in 

the detailed assessment.  

Critical elevations of these vulnerable components of the Bulkhead No.2 were extracted 

from available record drawings. The structure is approximately 1,600 meters in length with 

a crest elevation of 3.66 m and a tieback elevation of 2.35 m.  A typical section of the 

bulkhead with vulnerable components specified is shown in Figure 5‐272.   

Critical elevation exceedances at various return intervals for the bulkhead example are 

shown for each SLR scenario in (Figure 5‐273 through Figure 5‐276).  No overtopping of the 

crest of this structure was projected for the baseline or 0.5 m SLR scenarios. Wave induced 

overtopping from high water events occurred at a 3.3 year return interval under the 1.0 m 

scenario. Static water levels were projected to overtop the crest at a 10 month return 

period under the 1.5 m SLR scenario. Higher water levels associated with wind waves or 

boat wakes (and less extreme waves with time) would also episodically overtop the 

structure under the 1.5 and 2.0 m SLR scenarios at the weekly return interval. Static water 

level overtopping was projected for the weekly return interval for the 2.0 m SLR scenario. 
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Civil Infrastructure Examples 

Civil infrastructure describes a broad category of built infrastructure that is critical to the 

day‐to‐day operations and mission of the installation and includes sub elements ranging 

from critical utility infrastructure such as buried utilities, fuel transfer/supply, 

transportation corridors, and storm water conveyance systems. The breadth of this 

category was beyond the scope of the project to address fully, so our receptor‐level 

assessment focused on a limited subset of receptors including stormwater conveyance 

systems, roadways, airfields, and recreation areas. Here we examine these systems in 

greater detail for a specific example within the Carrier Pier area at NBC with particular 

emphasis on the stormwater conveyance system.  

Berth Lima and Quay Road at NBC 

Quay Road is a major roadway for access along the waterfront of NBC.  Berth Lima is an 

aircraft carrier wharf located adjacent to Quay Road.  Storm water drains are provided 

along Quay Road and on the deck of Berth Lima to route storm water runoff to San Diego 

Bay – see Figure 5‐277. A section through the storm drain pipe illustrates the roadway, 

wharf deck, and invert elevations with the baseline Mean Higher High Water (MHHW) level 

shown (Figure 5‐278).  It is common for storm drain profiles to show the vertical scale at ten 

times the horizontal scale.   

Based on analysis of the existing topography and storm drain system functional elevations, 

SLR would impact operations by reducing the efficiency of the storm water drainage system, 

and later intrusion and flooding of the wharf deck and roadway (Figure 5‐279).  The invert 

elevation at the low end of the pipe at the bay was at 0.95 m NAVD88.  It is common for 

storm drain pipes to have the low end invert elevation near mean sea level.   

For storm drain systems, two scenarios should be analyzed, with and without a rain event.  

For the 0.5 m of SLR scenario, the efficiency of the storm water system would be reduced 

during rain events which would increase the likelihood of flooding of Quay Road and Berth 

Lima (Figure 5‐280).  Without a rain event, when the Bay total water level was greater than 

the top‐of‐grate elevation at the catch basin of 2.93 m NAVD, water would flow from the 

bay and overflow onto the deck and onto Quay Road, i.e. intrusion.  For the 1.0 m of SLR 

scenario with a 10‐year return period event, the wharf deck and road would be flooded 

from intrusion (Figure 5‐281).  The critical flood level was assumed to be 12‐in (0.3 m) of 

water on the deck or roadway. 
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6. CONCLUSIONS AND IMPLICATIONS FOR FUTURE RESEARCH  

The objective of the project was thus to develop an analysis framework and methodologies 

to support the evaluation of regional military installation vulnerabilities and test them 

under prescribed scenarios of four SERDP‐specified increases in local mean sea level (0.5 

meters, 1.0 meters, 1.5 meters and 2.0 meters) over the next century. Methodologies were 

developed to assess the potential scope and magnitude of impacts from physical effects of 

these sea level rise (SLR) scenarios including: flooding (wetting that occurs infrequently); 

inundation (wetting occurs regularly); erosion; seawater intrusion; and alteration of tidal 

flows.  

Based on projected physical effects, strategies for assessing key installation vulnerabilities 

were evaluated for their ability to support future planning and recommendations for 

possible mitigation. Vulnerability assessment methodologies were structured around 

potential impacts to receptor categories that included: buildings; civil infrastructure; 

training areas; and waterfront and coastal structures. The receptor‐level assessment for the 

civil infrastructure category focused on a limited subset of receptors including stormwater 

conveyance systems, roadways, airfields, and recreation areas. The limited component‐level 

analysis performed was meant to illustrate the important relationship between water level 

and operational response and damage for a range of key sub‐elements of the receptor 

classes considered in this study. The project focused on conditions in the Southwestern 

United States (U.S.) and utilized the key coastal military installations at Naval Base 

Coronado and Marine Corps Base Camp Pendleton to test the approach. 

6.1 Vulnerability Framework 

A general review of existing frameworks was conducted to appraise the state of the science 

for vulnerability assessment, and to create a credible basis for a DoD‐relevant framework 

that builds on the strategies already developed and utilized in other applications. Overall, 

we found that sea level rise vulnerability frameworks appear to be evolving from strategies 

to support large‐scale, qualitative screening assessments for specific future conditions, 

toward strategies that can be applied at regional and local scales to more quantitatively 

respond to specific vulnerability questions, evaluate a range of possible scenarios, and 

identify potential responses to vulnerability at the source, pathway and receptor level.  

The framework we developed reflects these trends and much of the project focused on 

methods development to support this framework. The description of these methods, along 

with examples of their application, thus represents an important aspect of the work that we 
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carried out. The methods development focused on four key areas relevant to sea level rise 

influences on military installations in the southwestern US. These included sea level rise and 

sea level variability projection methods, methods for delineation of the coastal system 

including both the terrain and the infrastructure, methods for evaluating the physical 

response of the system to sea level rise, and methods for the assessment of vulnerability.  

6.2 Sea Level Rise Projections 

Sea level rise projection methods were successfully developed and applied for this study 

based on a superposition of four components including: MSLR scenarios with increases of 

0.5, 1.0, 1.5, and 2.0 m by 2100 relative to 2000; Hourly astronomical tide heights; Non‐tide 

residual water level variability from general circulation models enhanced with El Niño‐

related sea level fluctuations specific to the southwestern US; and wave‐driven runup on 

beaches. The projections that are the product of this work represent state‐of‐the‐science, 

complete 100 year time series for the period 2000‐2100 that capture all of the key drivers of 

sea level variability in the Southwest U.S., and they underpinned the formulation of specific 

exposure scenarios for this research effort.  A key aspect of the work is that the wave‐driven 

runup component of the projections was based on linkages between the GCM outputs and 

coastal wave models that incorporated spatial dependence along the entire shore of both of 

the installations.  

Using these time series, we developed the desired robust regional scenarios based on water 

level extremes at MCBCP and NBC using extreme value methods. The results clearly 

illustrated the phenomenon often called “return‐period creep” as specified return period 

elevations become progressively higher, or equivalently, as given maximum water levels 

become increasingly more frequent. These scenarios provided a matrix of future conditions 

that span both variations in potential future sea levels, as well as the frequency of their 

occurrence, and established a rigorous basis for the subsequent development and 

application of the physical response models used to assess pathways of impacts in sea level 

rise vulnerability assessment. As a limitation, we note that this method of superposition is 

not entirely self‐consistent because it decouples the mean and fluctuating components of 

sea level in ways that may not be consistent with specific greenhouse gas emission 

scenarios.  

6.3 Coastal System Delineation 

Geospatial models of the terrestrial and marine topography were successfully constructed 

using the best‐available data sources. We developed methods to optimally delineate the 
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coastal system by decomposing each setting into terrestrial, littoral and bathymetric 

domains, constructing these sub‐models from targeted data sets, and them integrating 

them using a hierarchical re‐gridding strategy. As part of this approach, the littoral domain 

was modeled using a new method developed for this project based on sparse beach 

profiles. The resulting elevation models showed the contrast between the terrain at the two 

coastal installations. NBC is poised almost entirely on low elevation terrain areas 

surrounded on both sides by water, while MCBCP is set in an area where the terrain rises 

rapidly near the coast, with lower lying areas concentrated near the lagoons and in the 

southern portions of the installation. Another unique aspect of the work was the 

development of methods to then accommodate future conditions by superimposing revised 

beach or beach/cliff elevation sub‐models into the changed domain of the basemodel using 

the results of the physical response models. These baseline and future conditions elevation 

models are a key product of our effort and formed the basis for detailed assessment of 

erosion and flooding footprints for a broad range of future sea level rise scenarios. 

Limitations of this approach are related to the fact that multiple data sets, collected at 

different times by different agencies, with varying methods and levels of resolution and 

accuracy must be integrated to provide the desired coverage for the installation. 

The infrastructure component of the system model was successfully compiled from 

installation data provided by the NAVFAC and MCBCP. Available data were cataloged to 

produce GIS layers and shapefiles for specific receptor categories defined within the source‐

pathway‐receptor vulnerability framework including: Testing and training areas; Buildings; 

Civil infrastructure; Waterfront structures; and Coastal structures. Metadata for 

components within these receptor categories including characteristics such as area, length, 

MDI, and replacement cost were cross‐indexed from the INFADS database to provide 

quantitative metrics of impact. Analysis of these receptor categories relied on the 

integration of the receptor data with the terrain data to create an integrated model that 

consisted of an overlay of the shapefiles onto the three dimensional terrain such that 

elevations for the infrastructure could be extracted to evaluate interactions with erosion, 

inundation and flooding areas. To meet our research objective for a three‐dimensional GIS 

analysis capability, the new terrain models and the infrastructure layers were integrated 

through both Arcview for general display purposes, and through specialized MatLab tools 

that were developed for the three‐dimensional analytical aspects of the project. The 

integration of high resolution elevation models with infrastructure overlays and three 

dimensional analysis tools represents a significant product of our effort. Primary limitations 

of this approach were related to the reliance on available data, gaps within these data sets, 
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and changes to the infrastructure over time that may or may not be integrated into the data 

sets.  

6.4 Physical Response of the System 

A key aspect of our research was the development of methods to account for physical 

response pathways that represent the process or mechanism by which sea level rise sources 

act on receptors to cause impact. To meet this objective, we developed methods based on 

available data, empirical and theoretical models to describe pathways of action including 

inundation, flooding, erosion and seawater intrusion. Primary pathways for this study were 

classified by exposure under categories for exposed shorelines, protected shorelines and 

groundwater. Methods were successfully developed and applied for each of these exposure 

pathways. To accomplish this for the exposed shoreline areas, we separated the exposed 

shoreline long‐term response into two categories including beach systems, and cliff/beach 

systems, which are generally representative of much of the Southwest US, and specifically 

representative of NBC and MCBCP, respectively. In a novel aspect of the research, new 

modeling systems were developed that allowed the long‐term topographic response of 

these beach and cliff/beach systems to sea level rise to be integrated with short‐term storm 

wave response changes in the shoreline position.  

New methods were developed for the evaluation of inundation and flooding along exposed 

shorelines that incorporated changes to the underlying elevation model due to erosion, 

spatially varying total water level exposures, and requirements for complete hydraulic 

connectivity. The shoreline change modeling described above for beach systems and 

cliff/beach systems was utilized to develop new shoreline elevation models along the coast 

of both installations for the range of future sea level scenarios. Total water levels associated 

with a range of different return periods at each coastal station were then applied using a 

hydraulic connectivity algorithm to simulate inundation and flooding. A method was 

developed using a sliding window of adjustable longshore scale to allow for a reasonable 

balance between the degree of lateral flooding along the upland topography and the 

maintenance of resolution for alongshore variations in total water level. Significant products 

from this analysis included raster inundation and flooding overlay maps for the complete 

matrix of sea level rise scenarios at each installation, which also served as a basis for further 

analysis of vulnerability to the specified receptor categories.  

Similar methods and products were also developed to assess the response to sea level rise 

of protected bay areas such as the San Diego Bay facing portions of NBC. The methods 

included approaches to define water levels in these areas that can influence the operability 
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of waterfront structures, methods to evaluate inundation and flooding that could occur 

from high tides interacting with sea level rise, and methods to evaluate changes in currents 

and associated bottom shear that could influence the transport and deposition rates of 

sediment.  

Coastal aquifers can also be sensitive to the effects of sea level rise via the pathway of 

seawater intrusion. For this effort, method development focused on the assessment of 

groundwater in the Santa Margarita River Basin at MCBCP. MCBCP’s water supply is 

produced primarily from underground aquifers that are recharged by percolation from 

overlying rivers and streams, and Santa Margarita River wells provide about 65% of the total 

water consumed on the Base. We successful applied a density‐dependent groundwater‐

flow and solute‐transport model, combined with a range of historical data to explore the 

influence of seawater intrusion under the target range of sea level rise scenarios. The 

simulation utilized monthly mean sea levels as a forcing function, combined with a range of 

potential future groundwater pumping conditions over the period from 1950 to 2100. 

Significant products of this research included evaluations of the relative sensitivity of the 

system to changes in future sea level, pumping rates, and combinations of these, and the 

resulting potential impacts to water quality and future extraction capacity.   

6.5 Assessment of vulnerability 

Sea level rise vulnerability at NBC and MCBCP was assessed through application of the 

methodologies described in the previous sections.  The purpose of this analysis was not to 

perform an overall assessment of sea level rise vulnerability at these installations, but 

rather to test the physical response methodologies, illustrate their application, and evaluate 

approaches to adopt them within a generalized vulnerability framework such as the one 

described in this report.  In the context of the framework, the methodologies were 

illustrated using two levels of analysis, Receptor‐Level and Component‐Level.  The 

“Receptor‐Level” is an installation‐level view in which general receptor category 

vulnerabilities to sea level rise were characterized in terms of key response metrics.  The 

“Component‐Level” is a critical‐component level view in which specific high‐value or 

mission critical infrastructure elements are evaluated at a level of detail sufficient to 

characterize their response as a function of water level. 

The receptor‐level methodology encompassed the breadth of the data compilation, 

modeling, and analysis methods and included installation‐ and exposure‐specific sea level 

rise source scenarios, pathway‐specific physical response of the coastal system, and the 

characteristics sensitivities and operational thresholds for the installation receptors.  
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Example products were developed for two primary coastal conditions including (1) NBC and 

MCBCP exposed shorelines, and (2) NBC protected shorelines (with limited application for 

MCBCP). Based on the conceptual model from the framework, receptors were then 

evaluated for three key exposure pathways at each installation including erosion, 

inundation, and flooding, as applicable.  

6.5.1 Naval Base Coronado 

For NBC, the analysis illustrates the ability of these methods to resolve the increasing level 

of vulnerability of the installation to erosion as a function of increasing sea level, as well as 

the sensitivity of some receptors to short‐term wave driven erosion events. For training 

areas, this translates into frequent (weekly return period) conditions with remaining area 

reduced to about 53% of baseline for 1.0 m SLR, and further reductions to a remaining area 

of about 23% of baseline for 2.0 m SLR. For buildings, these conditions result in erosion 

pathway vulnerability to about 13 structures for 1.0 m SLR 3 of which have an MDI>55, and 

this increases to about 23 structures and 6 with MDI>55 for the 2.0 m SLR scenario. 

Roadways, storm drain systems and recreational areas were also found to be vulnerable to 

the erosion pathway along the exposed shoreline of NBC. Overall replacement value for 

vulnerable receptors included in the erosion pathway analysis ranged from negligible for 

the baseline SLR scenario, to as high as ~$745M for the 2.0 m SLR scenario combined with a 

100 year wave‐driven erosion event. This estimate is largely driven by “replacement cost” 

associated with beach replenishment, and it should be noted that if this replenishment 

were to take place then the other erosion impacts would be largely mitigated, so the total 

number should be viewed as a measure of summed vulnerability rather than a measure of 

the actual costs that might occur for a given scenario.  

Vulnerability of NBC receptors to sea level rise for the exposed shoreline inundation and 

flooding pathway also illustrates the increasing level of vulnerability to inundation and 

flooding as a function of increasing sea level and increasingly extreme short‐term flooding 

events. The results reflect the relatively high sensitivity of NBC to inundation and flooding as 

a function of the generally low‐lying nature of the installation, and the significant exposure 

along the open shoreline of the Pacific. For training areas, this translates into inundation 

impacts with average beach widths reduced to about 29% for 1.0 m SLR, and further 

reductions to a remaining area of 5% for 2.0 m SLR. While infrequent flooding events can 

potentially be accommodated through scheduling, flooding impacts are more significant 

with the entirety of the beach training areas being subject to flooding for SLR scenarios of 

about 1.0 m and above. The building receptor class at NBC is especially vulnerable to 
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flooding impacts (100 year return period) with about 881 potentially flooded structures for 

1.0 m SLR 130 of which have an estimated MDI>55. This increases to about 1143 structures 

and 150 with MDI>55 for 2.0 m SLR. Roadways, airfields, storm drain systems and 

recreational areas all had significant levels of vulnerability to inundation and flooding as 

well. Overall replacement value for vulnerable receptors included in the inundation and 

flooding pathway analysis ranged from negligible for the baseline SLR inundation scenario, 

to as high as ~$3752M for the 2.0 m SLR flooding scenario. This estimate is largely driven by 

vulnerability associated with building flooding, but with significant contributions from all 

other categories as well. 

The analysis methods also show that, while the exposure to sea level rise along the 

protected shorelines of NBC is limited by the lack of wave runup, there is still relatively high 

vulnerability to inundation and flooding as a function of the generally low‐lying nature of 

the installation, and while the impacts along these protected shorelines are muted 

compared to the open shorelines of the Pacific, there are critical receptor categories 

including waterfront and shoreline structures that are unique to this environment. For 

example, waterfront and coastal structures showed vulnerabilities in the range of 1.0 m to 

2.0 m of SLR, with the replacement value of operationally impacted structures ranging as 

high as $648M for waterfront structures and $78M for coastal structures under the 2.0 m 

SLR scenario. 

For NBC, we also developed examples of the application of these methods at the 

component‐level of assessment for elements of the training area, building, waterfront 

structures, coastal structures and civil infrastructure receptor classes. For example, to 

illustrate the component‐level assessment of training areas, we combined the available 

data from the receptor‐level analysis with more detailed data on specific beach training 

operations for the “Causeway Pier Insertion and Retraction” training activity at NBC. The 

operational requirements for the training were estimated to include a duration of 

approximately 5‐days that occurs approximately 10 times per year, requiring a minimum 

beach width of about 80 m. Based on the physical response and exposure modeling we 

conducted, this operational threshold is maintained under weekly and monthly return 

period events for SLR up to about 0.5 m. For SLR >0.5 m, the operational beach width 

threshold would be exceeded, and this operation would be considered to be vulnerable to 

sea level rise impacts under these conditions. The analysis was also carried to the level of 

individual training lanes for which it was illustrated that, while most of the training lanes at 

SSTC North remain operational up to and somewhat beyond 0.5 m of SLR, the training lanes 
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at SSTC South are generally narrower to begin with and thus become narrower than the 

operational limit at SLR even below 0.5 m. While these numbers are approximations, they 

illustrate the manner in which the command personnel that plan these training activities 

could utilize this approach to assess sustainability of specific beach training operations. 

Similar examples were developed for sub‐elements of the building, waterfront structures, 

coastal structures and civil infrastructure receptor classes. These examples provided insight 

into the complexity of the systems involved in understanding sea level rise vulnerability at a 

coastal DoD installation. In general, the limited component‐level analysis was meant to 

illustrate the important relationship between water level and operational response and 

damage for a range of key sub‐elements of the receptor classes considered in this study. For 

receptors ranging from training areas, to buildings, waterfront structures and civil 

infrastructure, the operational impacts to these systems was often more gradual than 

catastrophic, and clearly developing an understanding of these response functions at the 

individual component level would require a significant level of effort. The purpose of these 

illustrated examples was not to provide that analysis, but rather to demonstrate that the 

combination of tools and methods developed under this project are capable of supporting 

that level of analysis. 

6.5.2 Marine Corps Base Camp Pendleton 

For MCBCP, the analysis also incorporated key receptors including training areas, buildings 

and civil infrastructure, and multiple metrics of response across the full range of both long‐

term sea level rise scenarios and short‐term erosion events of various return periods. The 

analysis for MCBCP differed from NBC in that the training areas are generally backed by 

erodible cliffs, and the landward boundary of the beach training area was allowed to retreat 

inland (autonomous adjustment) at the rate of retreat of the cliff base. Thus the width of 

the training areas generally increased with time, and the beach width remaining was a 

function of the difference between retreat of the shoreline and the retreat of the cliff base. 

For training areas, this translated into frequent (weekly return period) conditions with 

remaining area reduced to about 41% of baseline for 1.0 m SLR, and further reductions to a 

remaining area of 27% of baseline for 2.0 m SLR. For buildings, the erosion pathway resulted 

in vulnerability to about 66 structures for 1.0 m SLR 12 of which have an estimated MDI>55, 

increasing to about 90 structures and 14 with MDI>55 for 2.0 m SLR. Roadways were also 

found to be vulnerable to the erosion pathway along the exposed shoreline of MCBCP.  

Overall vulnerability estimates for the receptors included in the erosion pathway analysis 

ranged from less than $1M for the baseline SLR scenario, to as high as ~$1600M for the 2.0 
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m SLR scenario. As with NBC, this estimate is largely driven by “replacement cost” 

associated with beach replenishment.  

Application of the methods to analysis of vulnerability of MCBCP receptors to sea level rise 

for the exposed shoreline inundation and flooding pathway included the full range of both 

long‐term sea level rise scenarios and short‐term flooding events of various return periods. 

While the analysis indicated an increasing level of vulnerability to inundation and flooding 

as a function of increasing sea level and increasingly extreme short‐term events flooding, it 

also reflected the relative resilience of MCBCP to inundation and flooding as a function of 

the generally steep nature of the installation topography, and the buffering effect of the 

coastal cliffs. Beach training areas are one of the most sensitive receptors to inundation and 

flooding, with inundation impacts reflected in reductions in average beach widths to a 

remaining area of about 17% for only 0.5 m SLR, and further reductions to a remaining area 

of 10% for 2.0 m SLR. Flooding impacts (100 year return period condition) are more 

significant with nearly the entirety of the beach training areas (5% remaining) being subject 

to flooding for SLR scenarios of about 0.5 m and above. Because of the limited development 

along the shoreline, the building receptor class is far less vulnerable to flooding impacts at 

MCBCP compared to NBC (100 year return period), with about 158 potentially flooded 

structures for 1.0 m SLR 30 of which have an estimated MDI>55, increasing to about 200 

structures and 35 with an estimated MDI>55 for 2.0 m SLR. Roadways, storm drain systems 

and recreational areas all had projected vulnerability to inundation and flooding as well. 

Overall replacement value for vulnerable receptors included in the inundation and flooding 

pathway analysis ranged from about $4M for the baseline SLR inundation scenario, to as 

high as ~$1656M for the 2.0 m SLR flooding scenario. This estimate is largely driven by 

vulnerability associated with training areas, but with significant contributions from other 

categories as well. 

6.6 Summary of Key Accomplishments 

To summarize, based on our objective to develop a robust analysis methodology that 

provides a reliable means to identify and plan for vulnerabilities under both currently 

projected sea level scenarios, and emerging scenarios in the future, our key 

accomplishments include:  

 Demonstration of new methodologies for the development of Southwest US 

relevant sea level scenarios and return‐period events and a capability to project 

these at 100 m increments along the shoreline 
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 Development and application of a range of “beyond the bathtub” pathway response 

models that link these sea level scenarios to potential impacts to coastal military 

installations 

 Assessment and contrast of the response of two key Southwest installations with an 

emphasis on military‐specific receptors including beach training areas and 

waterfront infrastructure 

6.7 Remaining Gaps 

The assessment of climate change vulnerability at DoD installations is highly challenging and 

complex, and much work remains to continue to improve our understanding of how these 

systems will respond, as well as how we can best prepare for and manage this response. 

Some key remaining gaps that we identified during the course of our effort included: 

 Limitations related to the fact that multiple topographic data sets, collected at 

different times by different agencies, with varying methods and levels of resolution 

and accuracy must be integrated to provide the desired coverage for the installation. 

 Limitations related to the reliance on available installation infrastructure data, gaps 

within these data sets, and changes to the infrastructure over time that may or may 

not be integrated into the data sets. 

 Needed improvement of the methods that link projections of sea level variability 

with projections of mean sea level rise so that the resulting scenarios are self‐

consistent with respect to the underlying climate change conditions.  

 Better quantification of uncertainty through Improvements to allow for an ensemble 

of GCM wind‐driven wave scenarios to be considered in driving wave model 

scenarios.  

 Implementation of a wave assessment framework that would bypass the need to 

run deterministic wave model scenarios every time there is new GCM scenario by 

linking changes in the modeled nearshore wave climate to commonly used metrics 

such as mean jet stream location, the PDO index, the ENSO index, high pressure over 

the southwestern U.S., and autumn surface water temperatures off northern 

Mexico. 

 A continued need for better data to more consistently define the topography and 

variability of topography of the coastal area in concert with wave data, and 

particularly the beach and surf zone, especially during and after storm events. 

Existing wave and shoreline measurements suited to this task have been collected 

for only about 25 years, and mostly during a warm phase of the PDO when SLR was 
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limited on the west coast. Regular and consistent monitoring are clearly critical to 

understanding the nature and trends of shoreline change, and these data were 

important to our ability to develop and calibrate models. Ideally these monitoring 

programs would be continued and expanded, especially as these assessments reveal 

the sensitive nature of our beach training areas. The timing of these monitoring 

events should be carefully considered to fully capture the range of the winter and 

summer excursions of shoreline position. 

 A need to extend high quality hindcast wave fields with sufficient spatial resolution 

to be useful in reconstructing historical extreme wave conditions, which currently 

extend back to only about 1960. 

 Better understanding and parameterization of long‐term shoreline response models 

with respect to the upland and seaward extents of the active profile definition. 

 A need for better and more comprehensive monitoring of current day storm‐driven 

flooding and damage along with better validation data sets for shoreline response 

models. 

 A need for more rigorous analysis of flooding events that integrate detailed 

hydraulics and interaction of sea level rise with precipitation driven runoff. 

 A need for improved groundwater‐related record keeping, e.g., water‐level, water‐

quality, and pumpage data. 

 Installation specific issues that were raised at NBC included potential vulnerabilities 

at the Outlying Landing Facility south of the study area for the current project and 

the interaction of sea level rise with the Tijuana Estuary system, as well as potential 

erosional impacts at the south end of the airfield at the Naval Air Station were large 

erosion events have been observed historically. 

 Installation specific issues that were raised at MCBCP included potential vulnerability 

of natural resources particularly in the lagoon and estuarine portions of the 

installation. 

6.8 Summary of Key Products 

As part of this research and development effort, a number of products were developed that 

served to advance the research, and provided a testing ground for our methodologies. In 

addition, these products may serve future uses, particularly for the installations where the 

analysis was conducted, but also potentially as models for application to other areas with 

similar requirements and conditions. Some of these key products are summarized below. 
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 Regional sea level rise scenarios including mean and variability, and total water level 

estimates for a range of return periods (from week to century) at 100 m increments 

along the shoreline 

 Seamless bathymetric/topographic digital elevation model for the current‐day 

condition of the shoreline and the base areas  

 A set of compete, seamless bathymetric/topographic digital elevation models for 

future sea level conditions of 0.5, 1.0, 1.5 and 2.0 m that reflect the expected 

changes to the shoreline 

 A set of GIS map overlays that show the erosion footprints associated with 25 

combinations of long‐term sea level rise and short‐term wave events 

 A set of GIS map overlays that show the flooding footprints associated with 25 

combinations of long‐term sea level rise and short‐term wave events for both 

exposed and protected shorelines 

 GIS maps of changes in currents and bottom shear stress for future sea level 

conditions of 0.5, 1.0, 1.5 and 2.0 m 

 Clean GIS layers for 5 categories of critical infrastructure including Buildings, Training 

Areas, Waterfront Structures (e.g. piers), Coastal Structures (e.g. jetties), and Civil 

Infrastructure (roads, airfields, storm drains, rec areas)  

 Vulnerability analysis for assets within these 5 categories of infrastructure to higher 

water levels, erosion, inundation and flooding based on category specific metrics 
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Appendix A: Supporting Data 

The supporting data appendices are entirely composed of digital files that represent the key 

data products that were derived from our models and methodologies, and on which the 

analysis of the report is based. The following appendices are included on the digital media 

associated with the report which are available upon request and subject to approval of the 

report sponsor, the report authors and the installations. 

Appendix A1. Sea Level Scenarios 

Appendix A2. Baseline Terrain Models 

Appendix A3. Installation Infrastructure Models 

Appendix A4. Exposed Shoreline Response – Erosion Footprints 

Appendix A5. Exposed Shoreline Response – Elevation Models 

Appendix A6. Exposed Shoreline Response – Inundation and Flooding Footprints 

Appendix A7. Protected Shoreline Response – Inundation and Flooding Footprints 

Appendix A8. Groundwater Response – Varying Boundary Condition Results 
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Appendix A10. Receptor Level Response – Marine Corps Base Camp Pendleton

 

 

  



 

 

 

642

Appendix B: List of Scientific/Technical Publications 

Publications – Published or Submitted 

Bromirski, P.D., A.J. Miller, R.E. Flick, and G. Auad, 2011. Dynamical Suppression of Sea Level 

Rise Along the Pacific Coast of North America: Indications for Imminent Acceleration, 

J. Geophys. Res. C., 116, C07005. 

Chadwick, D.B, R. Flick, J. Helly, T. Nishikawa, P.F. Wang, W. O'Reilly, R. Guza, P. Bromirski, 

A. Young, W. Crampton, B. Wild, and I. Canner, 2011. A Framework for Sea Level Rise 

Vulnerability Assessment for Southwest U.S. Military Installations, Proc. Oceans 11, 

Mar. Tech. Soc., Inst. Electrical and Electronic Eng., 110426‐001.  

Crampton, W.F. and R.E. Flick, 2012. Wave Runup Study, South Beach Restroom Project, 

Avenida Del Sol, Coronado, California, TerraCosta Consulting Group, Report, 

Prepared for City of Coronado, Coronado, CA, 39 pp. 

Flick, R.E. 2013. City of Los Angeles, Coastal Issues Related to Future Mean Sea Level Rise, 

TerraCosta Consulting Group, Report, Prepared for Mayor’s Office – City of Los 

Angeles, Los Angeles, CA, 28 pp. 

Flick, R.E., D.B. Chadwick, J. Briscoe, and K.C. Harper, 2012. “Flooding” versus “Inundation,” 

Eos Trans. AGU, 93(38), 365‐366 

Flick, R.E., K. Knuuti, and S.K. Gill, 2013, Matching Mean Sea Level Rise Projections to Local 

Elevation Datums, J. Waterway, Port, Coastal and Ocean Eng., Amer. Soc. Civil Eng.  

http://dx.doi.org/10.1061/(ASCE)WW.1943‐5460.0000145, 139(2), 142‐146. 

Flick, R.E., W.C. O’Reilly, P.D. Bromirski, A.P. Young, and R.T. Guza, 2010. A Framework for 

the Assessment of Sea Level Rise Vulnerability at Coastal Military Installations, 

Marine Corps Base Camp Pendleton and Naval Station Coronado, TerraCosta 

Consulting Group, Report, Prepared for Computer Sciences Corporation, San Diego, 

CA, 147 pp. 

Guza, R.T. and F. Feddersen, 2012. Effect of wave frequency and directional spread on 

shoreline runup, Geophys. Res. Lett., 39(L11607), 5 pp. 

Young, A.P, P.N. Adams, W.C. O’Reilly, R.E. Flick, and R.T. Guza, 2011, Coastal cliff ground 

motions from local ocean swell and infragravity waves in southern California, J. 

Geophys. Res. C., 116, C09007, 11 pp.  



 

 

 

643

Young, A.P., R.T. Guza, W.C. O’Reilly, R.E. Flick, and R. Gutierrez, 2011, Short‐term coastal 

cliff retreat statistics at Sunset Cliffs ‐ Point Loma, California, USA, Natural Hazards & 

Earth Sys. Sci., 11, 1‐13. 

Young, A.P., R.E. Flick, W.C. O’Reilly, D.B. Chadwick, R.T. Guza, W.C. Crampton, and J.J. Helly, 

2014. Estimating cliff retreat in southern California considering sea level rise using a 

sand balance approach, Mar. Geology, 348, 15‐26. 

In Preparation 

Chadwick, D.B., R.E. Flick, J. Helly, T. Nishikawa, I. Canner, W.C. O’Reilly, A.P. Young, P.F. 

Wang, and M. Brand, in prep. A Methodology for Assessing the Impact  

of Sea Level Rise on Representative Military Installations in the Southwestern US, 

SSC Pacific Technical Report. 

Chadwick, D.B., R.E. Flick, A.P. Young, J.J. Helly, W.C. O’Reilly, and R.T. Guza, in prep. Long‐ 

and Short‐Term Low‐Lying Southern California Shoreline Response to Future Sea 

Level Rise and Waves Using a Sand Balance Approach, Coastal Engineering. 

Wang, P.F., D.B. Chadwick, R.E. Flick, J.J. Helly, J. McDonald, and W.H. Choi, in prep. 

Modeling Wave Runup from Climate Change and Sea Level Rise for Two Southern 

California Beaches (Naval Base Coronado and Camp Pendleton) Using XBeach Model. 

Planned 

Flick, R.E., D.B. Chadwick, W.C. O’Reilly, A.P. Young, R.T. Guza, and J.J. Helly, in prep. 

Application of a cross‐shore equilibrium beach width model to historical data – 

Coronado, CA. 

Flick, R.E., W.C. O’Reilly, and W.F. Crampton, J. Strampe, and J. Steinbeck, in prep. A decade 

of beach width change at Avila Beach. 

Young, A.P., R.E. Flick, W.C. O'Reilly, and W.P. Crampton, in prep. Recent deep‐seated 

landsliding at San Onofre State Beach. 

 

  



 

 

 

644

Appendix C: Glossary 

 

Adaptation: Adaptation is actions that can be implemented or that occur autonomously as 

a response to changes in the climate that harness and leverage its beneficial opportunities 

or ameliorate its negative effects  (NRC 2010). 

 

Adaptive Capacity:  Represents the “ability of a system to adjust to climate change 

(including climate variability and extremes) to moderate potential damages, to take 

advantage of opportunities, or to cope with the consequences” (McCarthy et al., 2001; US 

EPA, 2013b; Smit and Pilifosova, 2001).  

 

Autonomous Adaptation: Autonomous adaptation is “adaptation that does not constitute a 

conscious response to climatic stimuli but is triggered by ecological changes in natural 

systems and by market or welfare changes in human systems”. (Jones, 2001; Adaptation 

Fund, 2013) 

 

Climate Change: Climate change refers to “any significant change in the measures of 

climate lasting for an extended period of time. In other words, climate change includes 

major changes in temperature, precipitation, or wind patterns, among others, that occur 

over several decades or longer”. (US EPA, 2013b) 

 

Exposure: Exposure is  the degree of climate stress upon a particular unit analysis; it may be 

represented as either long‐term change in climate conditions, or by changes in climate 

variability, including the magnitude and frequency of extreme events (IPCC, 2001). 

 

Flooding and Inundation: Although “flooding” and “inundation” often have been used 

interchangeably, some authors (Flick et al. 2012) suggest that “flooding” better describes 

normally dry areas that become wet, but then eventually dry again. For the purposes of this 

study, we distinguished these terms based on the frequency of the wetting, using 

inundation to refer to conditions under which the wetting becomes regular (at least weekly 

to monthly), and flooding to refer to more rare and irregular events (yearly or longer). 

 

Impact: The positive or negative effect on the natural or built environment caused by 

climate variability or change. Climate variability and change can have multiple impacts on 
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people and communities, infrastructure and the services it provides, and ecosystems and 

natural resources. 

 

Pathway: In the context of Source‐Pathway‐Receptor model used in this project, a pathway 

is the process that forms the connection between a sea‐level related hazard (source), and a 

military installation element that is subject to harm from that hazard (receptor). 

 

Receptor: In the context of Source‐Pathway‐Receptor model used in this project, a receptor 

is a military installation element or class of elements that is subject to harm from a sea‐level 

related hazard (source). 

 

Resilience: Resilience represents “a capability to anticipate, prepare for, respond to, and 

recover from significant multi‐hazard threats with minimum damage to social well‐being, 

the economy, and the environment”. (US EPA, 2013b; UNFCCC, 1999) 

 

Risk: A qualitative or quantitative measure of the combination of the magnitude of the 

potential consequence(s) of climate change impact(s) and the likelihood that the 

consequence(s) will occur (NRC 2010). 

 

Scenario: A plausible and often simplified description of how the future may develop based 

on a coherent and internally consistent set of assumptions about driving forces and key 

relationships. (US EPA, 2013b) 

 

Sensitivity: The degree to which a system is affected, either adversely or beneficially, by 

climate variability or change. (IPCC, 2007b; Smith et al., 2001).  

 

Source: In the context of Source‐Pathway‐Receptor model used in this project, a source is a  

sea‐level related hazard (source). 

 

Validation: The process of determining the degree to which a model is an accurate 

representation of the real world from the perspective of the intended uses of the model. 

 

Vulnerability: In general, the degree to which a system is susceptible to, or unable to cope 

with, the adverse effects of climate change, including climate variability and extremes. 

Vulnerability is a function of exposure, sensitivity, and adaptive capacity. (NRC 2010; IPCC, 
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1992). Research under this statement of need did not focus significantly on adaptation, so 

in the context of this project we also use vulnerability to describe the combination of 

exposure and sensitivity without full consideration of adaptive capacity. 


