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ABSTRACT

One of the challenges of fault detection in the domain of
autonomous physical agents (or Robots) is the handling of
unclassified data, meaning, most data sets are not recognized as
normal or faulty. This fact makes it very challenging to use
collected data as a training set such that learning algorithms
would produce a successful fault detection model. Traditionally
unsupervised algorithms try to address this challenge. In this
paper we present a hybrid approach that combines unsupervised
and supervised methods. An unsupervised approach is utilized for
classifying a training set, and then by a standard supervised
algorithm we build a fault detection model that is much more
accurate than the original unsupervised approach. We show
promising results on simulated and real world domains.

Categories and Subject Descriptors
1.2.9 [Artificial Intelligence]: Robotics — Autonomous vehicles,
Sensors.

General Terms
Reliability, Experimentation

Keywords
Fault detection, Model-Based Diagnosis, Robotics, UAV.

1. INTRODUCTION

Autonomous physical agents such as Unmanned Vehicles
(UVs) or robots are susceptible to a variety of hardware and
software faults. These faults might lead to mission failure or even
endanger the safety of the expensive agent or its environment. For
example, a pitot-static system failure in an Unmanned Aerial
Vehicle (UAV) might lead to a stall and then a crash. To continue
operate autonomously, the agent must have an accurate fault
detection mechanism. Upon fault detection a diagnosis process
can be triggered and a decision on how to continue can be made.

Given the nature of autonomous physical agents, i.e. physical
systems which operate autonomously and interact with a physical
environment, an accurate fault detection mechanism faces several
challenges: (1) since the agent is autonomous i.e., there is an
absence of human operators, there is no other perception which
can be compared to the agent's own perception. (2) The physical
environment is both dynamic and nondeterministic and therefore
the environment and the agent's effects are both very hard to
model. (3) Physical faults have many expressions, such as a stuck
value, a drifting value or abrupt intermittent offsets. Furthermore,
some faults might have unknown expressions. (4) A fault
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expression can span over time. (5) Since the agent does not stop
its operation, a fault must be detected as quickly as possible,
online, and with high accuracy. (6) Since the agent is already
engaged in heavy computations, e.g. vision processing, a fault
detection mechanism should be kept computationally light. (7)
Due to the environmental and behavioral contexts, this domain is
also characterized for having unclassified data, which means the
data is not recognized by the user as healthy or faulty.

In a recent work [1], we presented an unsupervised approach
(hereinafter SFDD) for fault detection in the domain of
autonomous systems. This approach shows a high rate of fault
detection and a low rate of false positives (false alarms). In this
paper we aim to extend the state of the art by describing a hybrid
approach which is based on the SFDD approach and is
significantly more accurate. In addition, the presented approach is
more suitable to meet the challenges for a fault detection
mechanism in the domain of autonomous physical agents.

The SFDD approach is used offline to classify a training set.
Then, even though the SFDD has a certain degree of false
positives, a standard supervised learning algorithm is applied and
a fault detection model is created. The created model is used
online to detect faults.

We empirically evaluate the presented approach on simulated
and real world domains: a high fidelity flight simulator, a
commercial UAV and a laboratory robot. We show that the learnt
fault detection model is more accurate than the original
unsupervised SFDD approach.

The significances of this paper are by (1) introducing a hybrid
approach to fault detection of autonomous physical agents. We
show that this approach is general and can be applied with other
unsupervised algorithms too. (2) In addition, we theoretically
analyze our approach and provide an explanation why it is only
slightly affected by the unsupervised SFDD false positives. (3)
Finally, we empirically evaluate the hybrid approach and show its
accuracy.

The paper is structured as follows. In the next section we
discuss the related work. In Section 3 we describe the hybrid
approach: the problem description, the outline of the approach,
and how we use the SFDD for offline classification of a training
set. Also, we describe the learning process and why it is only
slightly affected by the false positives of the SFDD. In Section 4
we describe the experimental setup and in Section 5 we show the
results. Finally, Section 6 discusses the different aspects of the
hybrid approach.

2. RELATED WORK

Steinbauer conducted a survey on the nature of faults of
autonomous robots [2]. The survey participants are developers
competing in different leagues of the RoboCup competition [3].
The reported faults were categorized as hardware, software,
algorithmic and interaction related faults. The survey concludes
that hardware faults have a high negative impact on mission
success. In this paper we focus on detecting such faults.
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Three general approaches are usually used for fault detection:
Knowledge-Based systems, Model-Based, and Data Driven
approaches. Knowledge based systems [4] typically associates
recognized behaviors with predefined known faults and hence, are
less likely to detect an unknown fault.

Model-based approaches [5] on the other hand, are very
equipped to detect unknown faults. The expected behavior of each
component is modeled analytically. The system output is
compared to the modeled output and a high residual indicates a
fault. However, in the domain of autonomous physical agents, the
task of modeling the behavior of components is very challenging
due to the context of the physical environment.

Steinbauer et al. [6] use a model based approach for detecting
failures in the control software of a robot. The software
architecture was utilized for the model creation. Faults are
detected with observers that observe different aspects of software
components. They do not use any model of the environment. In
recent work Steinbauer et al. [7] emphasize the importance of the
robot's belief management and fault detection with respect to the
real-world dynamic environment.

Struss and Dobi [8] use a model based approach for automating
the functional safety analysis of vehicles. They use a qualitative
model of the vehicle and a model of the environment. The
environment model includes a spatial representation of positions
of the vehicle and other objects relative to the road and their
interference under different scenarios. Yet, the environment
model is simplistic and cannot account for every possible
scenario.

Data driven approaches, supervised or unsupervised, are model
free and have a natural appeal for detecting unknown faults.
Unsupervised data driven approaches are usually slower than
model-based or knowledge-based approaches. Online outlier
detection is applied and a decision is made whether or not an
outlier is the expression of a fault [9]. This usually involves heavy
statistical computations and thus challenging to be done quickly
as the domain of autonomous physical agents requires.

For example, in previous work [10] we created an online
unsupervised data driven approach for the domain of unmanned
vehicles. The approach utilizes the Mahalanobis distance
calculation [11] to return a residual between normal and current
observations. A residual above a dynamic threshold is considered
to be the result of a fault. In order to keep the approach
computationally light and feasible to be executed online they
reduce the dimensions of the sampled data by observing only
correlated attributes.

Correlated or redundant data is very useful for fault detection in
the domain of autonomous agents. Since no external perception is
available for comparison with the agent's own perception,
correlation breaks within the agent's perception may suggest an
unexpected behavior or a fault. In later work [1], we used this
notion as a heuristic that detects sensor faults upon correlation
break — the SFDD. In our proposed approach we utilize the
SFDD.

Supervised methods are model-free, able to detect unknown
faults, and potentially very quick as well. These methods produce
offline static fault detection models which are very accurate and
also computationally light when applied online. However,
supervised methods rely on classified training data and in the
domain of physical agents classified training data is usually not
available.

For example, Leeke et al. [12] present a methodology for
generating efficient error detection mechanisms. Their approach
relies on injecting faults into data that is used as a training set for
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a learning algorithm. The learnt error detection model is of high
accuracy and efficiency. A similar approach is presented in [13].
Our proposed approach is similar in concept but instead of relying
on a supervised fault injection we suggest the use of an
unsupervised method to classify faults that already exist in the
unclassified training data. We suggest the use of an unsupervised
approach even though it might have some false positives.

For this aim, we suggest the use of the SFDD. The SFDD is an
unsupervised approach that very accurately detects faults
expressions such as "drift" and "stuck". These types of generic
faults expressions appear in a variety of related physical domains.
For example, the Advanced Diagnostics and Prognostics Testbed
[14] depicts these faults expressions to sensors on an electrical
circuit. This testbed is used for the DX competition [15]. Another
example is the work of Hashimoto et al. [16] that uses Kalman
filters along with kinematical models to detect sensor faults
expressions such as "stuck", "abrupt" and "scale" on a mobile
robot. In our proposed approach continuous sampled data is
transformed into categorical data. The categories are such fault
expressions i.e. abrupt, drift, stuck, etc. or a non-fault expression
i.e. "ok".

The hybrid approach, proposed in this paper, aims to benefit
from all the advantages of the different approaches. Due to the
properties of the SFDD the hybrid approach is unsupervised, able
to detect unknown faults and does not rely on models that are
difficult to construct. Due to the supervised learning process the
produced fault detection model is very accurate and
computationally light when applied online. Furthermore, the
produced model is lighter and more accurate than the original
SFDD as we show in the results section.

3. THE HYBRID APPROACH

In this section we describe the problem of fault detection in the
domain of autonomous physical agents. Then, we describe the
outline of the proposed hybrid approach. We continue with
demonstrating how the unsupervised classification of a training
set is done. Finally, we describe the learning process.

3.1 Problem Description

Let A = {a, ...a,} be a set of attributes that are monitored in
real time e.g. air-speed, heading, pitch, altimeter, etc. and let
Vi = {vy ... v, } be the set of values for attributes {a, ... a,,} at time
t where v; € R is the value assigned to a; at time t. Past data of m
time units of these values
Hy(8) =

(Vt—m' Vt—m+1' Vt—m+2' s Vt)
7 is also available. H,,,(t) is a
sliding window (see Figure
1) containing at time t the

Operation data - H

ay, ay, ...,y

latest mvalues of the

t-m monitored  attributes. In
Hp, () addition, unclassified past

online recordings of the

time Thessliding | ! physical agent's operations
window are also available. These

recordings can be used as a
training set for a machine

t "

learning algorithm if
classified. We denote this
training set as H =

{H,, (e, Hy, (e2), ) Hy, (ex)}
where [; is the length of
operation i and e; is the end
time of operationi, thus

Figure 1: Operation data H &
a sliding window



Hy(e;) denotes all the values recorded for the monitored
attributes in A during operation i.

Given A,V Hpand H, the goal is to online recognize
whether a fault has occurred to any of the attributes in A. This
decision should be made as quickly as possible after a fault has
occurred, and should be as accurate as possible. By 'accurate' we
mean that a fault detector should have a high detection rate and a
low false positive rate.

3.2 The outline of the approach

We introduce a hybrid approach which consists of an offline
preprocess and an online fault detection process. The offline
preprocess conducts an unsupervised algorithm to classify an
unclassified training set. Then, a supervised learning algorithm is
used to construct a fault detection model (FDM). This process is
described in Section 3.2.1. The FDM is used online to detect
faults with greater accuracy. The online process is described in
Section 3.2.2. Figure 2 depicts the outline of our approach.

[

Unclassified time-

Online Data
A, Ve, Hin ()

series Data - H

Unsupervised Fault . .
! Categorical Data
Detection =

Classified &
categorical Data - H'

N
o > Comi

Decision-Tree Based

Learning Algorithm

A Fault Detection
Model - FDM

Offline preprocess Online process

Figure 2: The outline of the hybrid approach

3.2.1 The Offline Preprocess

The unclassified past operations recordings Hare delivered as
an input to an unsupervised fault detection algorithm. For this
matter we use the SFDD algorithm which is summarized in
section 3.3. The SFDD goes throw each operation in a sliding
window fashion. For every instance of the sliding window, for
each attribute, the SFDD associates the behavior of an attribute
(expressed in its time-series data) with a descriptive categorical
value. The categories can be "ok" for an unsuspected behavior or
one of pre-defined suspicious behaviors e.g. "stuck", "drift".

In addition, each instance of the sliding window is classified
according to the SFDD's decision i.e. "Normal", or "Fault".
However, a small portion of normal instances may be
misclassified as faults; these are the false positives of the SFDD.

The resulted categorical and classified data is fed into a
decision-tree based learning algorithm. For this matter we use the
random tree algorithm. The result of this learning process is a
fault detection model — FDM. The FDM can be used online, and
is more accurate than the original unsupervised fault detection
approach as shown in the results section.
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3.2.2 The Online Fault Detection

The online input is consumed in a sliding window fashion -
Hpe)- With each time step ¢ the time-series data in Hp is
transformed into a categorical data which can be fed into the fault
detection model — FDM (resulted by the offline preprocess). The
fault detection model classifies the data presented in Hy, () as
"Normal" or "Fault". In section 3.5 we describe the fault detection
online process in detail.

3.3 Using the SFDD for offline classification

Each past operation of the autonomous system H; (e;) € ¥ is
fed into an unsupervised fault detection engine — the SFDD. The
SFDD uses a heuristic decision which is based on a prior
knowledge of a structural model as well as the online consumed
data Hy, () (sliding window) to determine an occurrence of a fault.
We chose this approach due to its very low rate of false positives
and the high fault detection rate which usually is 1 or very close
to 1. Note that any successful unsupervised fault detection
approach can be used to classify the unclassified training set.

Since an autonomous agent has no external perception but its
own, the SFDD approach relies on correlated attributes to provide
the necessary comparison between expected and unexpected
behavior of attributes. The approach assumes that strongly
correlated attributes behave as redundant to one another and thus
can testify of fault occurrence upon correlation break. The domain
of autonomous physical agents is characterized by having a rich
array of components with interdependencies and redundancy.
Therefore, the occurrence of correlated attributes is very likely.

Each attribute is subjected to tests by generic suspicious pattern
recognizers. The latest m values of an attribute extracted from
Hpp) are tested. For example, we use a drift test and a stuck test.
However, when an attribute shows a suspicious pattern it does not
necessarily suggest a fault; it could be a reaction to a normal
action of the agent. For example, maintaining altitude may appear
as stuck, and altitude climbing may appear as a drift.

To differentiate between a normal reaction and a fault, the
approach uses a heuristic decision (see Figure 4) based on a
structural model (see Figure 3). A structural model depicts
components dependency e.g. the altimeter is dependent on the
static system and the GPS is dependent on the electrical system.
Note that a structural model is much easier to construct than an
analytical behavioral model.

pitot static electrical
system system system
Speed R Heading } \
_indicator | (| Atmeter indicator GPS
oo | N S
V‘""‘:' ! Attitude
\eSpeedu ‘_ indicator DME
Turn |
indicator

Figure 3: a pratial structural model of a UAV

The heuristic decision compares an attribute that shows a
suspicious pattern with an attribute that used to be correlated to it
in the previous sliding window. If they do not share component
dependency and show different patterns then this is due to a fault.
Otherwise, it might be a reaction to a normal action of the agent.

For example, assume the altimeter is suspected for a drift, and
the GPS indicated altitude was found to be correlated to the



altimeter in the previous instance of the sliding window. These
two attributes are dependent on different subsystems i.e. static
system and the electrical system respectively (see Figure 3). This
fact makes these attributes less likely to be affected by the same
fault. If the GPS indicated altitude is also drifting then this is
probably due to the altitude climbing action of the UAV and less
probable due to a fault that hit both systems. However, if the GPS
indicated altitude is not drifting, then this contradiction is
probably due to a fault.

Suspected Attribute

q \ Yes!
Corr(felalg%Attnbute Sane Reaction'to the
of a different State P robot's behavior
subsystem ? J

Suspected fault J

Figure 4: The huristic decision making of the SFDD

The data of each sliding window, Vt € (m...e;), Hp) S
Hy(e;) € H, is transformed into a single output comprised of
categorical values that describe the behavior of each attribute i.e.
"ok", "drift", "stuck". Each of these outputs is classified according
to decision made by the SFDD algorithm i.e. "Normal" or "Fault".

For example, assume a sliding window of size m =
4 containing the values of 3 attributes at a time step ¢:

Time step a,; a, as
t-4 0.9 1 3
t-3 0.1 25 3
t-2 0.05 3 3
t-1 0.15 3.1 3
t 0.05 3.9 3

Assume that the SFDD reported a fault for this time step. The
data of the sliding window derives an output of one training
sample, where a, is categorized as "ok", a, is categorized as
"drift", and a5 is categorized as "stuck". In addition, this sample is
classified as a fault. Thus, the training sample output for this time
step is: ok, drift, stuck, Fault. Note that the fact that this sample
contains drift and stuck does not necessarily entail a fault. In some
cases it may indicate a normal behavior.

The “Fault” classification may be correct or not; it depends on
the accuracy level of the unsupervised approach. The next section
discusses how this inaccuracy affects the constructed decision
tree.

3.4 Learning a fault detection model

We use the SFDD offline to classify a training set. Then, a
supervised decision-tree based learning algorithm is applied and a
fault detection model is produced— FDM. The FDM is later used
online to detect faults. We simply could have used the SFDD
online as originally intended, but the learnt FDM has two
important advantages. (1) The FDM is computationally lighter
than the SFDD since this static model, opposed to the SFDD, has
no correlations to calculate, heuristics to apply, or structural
models to inquire. Therefore, the FDM is more suitable for the
domain of autonomous physical agents. (2) More importantly, the
resulted FDM is significantly more accurate than the original
SFDD.

The SFDD, though highly accurate, is not perfect. A small
degree of false positives (usually less than 3% on tested domains)
yields misclassified normal instances in the training data.
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However, decision trees, as other supervised learning algorithms,
have some tolerance towards misclassified instances in the
training set.

During the model construction the algorithm grows a decision
tree. In each step, the algorithm chooses an attribute that best
classifies the remaining data by selecting the attribute with the
highest information gain (IG(a;)). The information gain is
determined by the entropy of the attribute which is affected by the
ratio between the normal and faulty instances. The lower the
faulty instances are, the higher the information gain is. If a portion
of instances are misclassified as "Fault" then this might reduce
the information gain of an attribute. However, if the degree of
reduction is small enough then the construction of the tree may be
less affected.

The degree of information gain reduction due to falsely
classified training instances is dependent on several factors.

Let

e S be the training set.

e a; be |Sai=v}.AaaSS:fauu| the number of instances in
which attribute a; has the value v; and the classification is
"Fault" when all instances are classified correctly by an
oracle.

e [ be |Sai:Vj A Class=normai| the number of instances in
which attribute a; has the value v; and the classification is
"Normal" when all instances are classified correctly by an
oracle.

that were

e x;; be the number of instances from |Sai=vj R
falsely classified as "Fault" due to false positives of the

= a;; + Bij).

The effect of the misclassified x;; instances on the information

gain of attribute a; is the new (affected) information gain
1Gy, (a;) minus the original information gain /G (a;):

f(xi) = IGxU-(ai) —1G(a;)

fxiy) = HS) = Z H(5)+Z
Where H is the entropy function and H

unsupervised approach (note that

al v,

S|

al v

ISl

H (Sarmw)

’ is the entropy

x” al—v

affected by falsely classified instances. For glven x;j falsely
classified instances in Sa,:v]- the affected entropy is:
H. (S _ ) __ aytxy aijtxi;  Bij—Xij ﬁi}'_xii.
X \"H=T aij+Bi; D atBi  aitBiy O agitBij
that x;; instances that are falsely added to a;; are in the expense
of B;j. After some algebra f(x;;) can be presented for given x;;
falsely classified instances in Sai:vj as:
Xij log—aij * xij)

@;; + X;j Bij — %y
o) = gy a4y o B =

We can see that when x;; =0 then f(xij) = 0. When x;;
grows, f(x;;) decreases. This affect is depicted in Figure 5.
Figure 5 illustrates an example for this effect on the information
gain where |S| = 300, a;; = 20, 8;; = 100.

As xj; grows, the information gain decreases. When we reach
an equal number of "fault" and "normal" instances (x; = 40) the
effect is at its deepest point. As x;; continues to grow a mirror
effect occurs as the instances are heading back to the original
partition - only with the opposite classification (ay; + xj =
100, Bl] - Xij = 20)

Note

+
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Figure 5: the negative effect on the information gain

In the case of the SFDD classification of the training set, the
false positive rate is usually less than 3%. A low rate of false
positives in the training data has very little effect on the decision
tree construction. As a result the supervised learnt FDM improves
the accuracy of the SFDD when compared to the intended online
unsupervised original use of the SFDD. The 3% of false positives
affect differently attributes with high information gain and
attributes with low information gain.

Case 1: the effect on attributes with high information gain
In the particular example above, a; has a high information gain to
begin with (0.74), and when x;; = 3 (i.e. 3% of B;; = 100) then
f(x,-]-) = —0.021. If IG(a;) is originally greater than the
information gain of another attribute IG (aj) it is still possible
thatIGxij(ai) =16(a;) + f(xl-j) > IG(aj). In this case a; is still
going to be selected and the tree construction is unaffected by the
amount of falsely classified instances. In other cases, where
attributes with close information gain exist the following can be
true: IG(a;) > IG(a]-) NGy (a;) < 1G(ay). In this case the tree
construction is changed and attribute a; is selected before a;.
However, this only affects the order of which the data is sliced,
and not the decision of the tree.

When no other attributes can be selected the decision tree
decides on a classification according to the majority of instances.
In this particular example the 3 falsely classified instances did not
change the majority class of "Normal". Therefore, the decision
tree makes the same decision as a tree that is constructed from a
correctly classified training data. This explains the greater
accuracy of the supervised approach.

Case 2: the effect on attributes with low information gain
Since attributes with high information gain are selected first (to
the top of the tree), it is quite possible that attributes with low
information gain are selected last and thus influence the decision
tree. Consider a case where a;; = 59, ;; = 61 and x;; = 2. The
two falsely classified instances affect the majority and the tree
decision is going to be "Fault" rather than "Normal" as the tree
that is constructed from a correct training set would have decided.
This explains why there are still some false positives to the
supervised FDM.

To summarize, the FDM is only slightly affected by the false
positives of the unsupervised approach that is used to classify the
training data. In rare cases a small number of misclassified
instances change the majority class of an attribute with low
information gain that determines the decision of the tree. In other
cases the tree decision in unaffected. Therefore, the resulted FDM
is more accurate than the SFDD. Moreover, the learnt FDM can
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potentially have a false positive rate that tends to 0 when a highly
accurate unsupervised approach is used to classify the training set.

3.5 Using the FDM online

When given a new online input, we consume it in a sliding
window fashion H,,(t). We transform the time-series data in
H,,,(t) to an output of categorical data in the same manner of the
SFDD. Only when the new output is different than the previous
one i.e. some attribute changed its state, it is fed as an input into
the offline-learnt fault detection model - FDM. The FDM decides
(online) whether or not it is a fault.

For example, consider a static-system failure. One of the
expressions of this failure is the frozen value of the altimeter. In
H,, (t) the values of the altimeter attribute are all equal, while the
values of the GPS indicated altitude attribute diverse. The equal
values of the altimeter are recognized as a suspicious pattern by
the stuck-pattern detector. Therefore, the corresponding
categorical output to H,, (t) has the value "stuck" for the altimeter
attribute and the value "ok" for the GPS indicated altitude
attribute (other attributes also get their own categorical values) .
This output is fed into the FDM that decides whether or not these
values express a fault. It is possible that the next categorical
output that corresponds to H, (t + 1) will not be different than its
predecessor. In this case, the FDM is not triggered again; only if
at least one of the attributes changed its state e.g. from "ok" to
"stuck" as the altimeter, then the FDM is triggered.

To summarize our hybrid approach: in the first stage we use
unsupervised fault detection (SFDD) to classify unclassified
training set. The suspicious pattern detectors of the SFDD
approach are used to transform the time-series data in each sliding
window into categorical data. Each sample is classified according
to the unsupervised decision i.e. "Normal" or "Fault". Then, we
apply a decision tree based learning algorithm on the training data
and produce a fault detection model - FDM that can be applied
online. The online process uses the same suspicious pattern
detectors to produce categorical data for each sliding window.
The categorical data is fed into the FDM which was learnt offline.
The FDM makes a choice whether or not the online input is an
expression of a fault.

4. EXPERIMENTAL SETUP

To examine our approach we present tests which examine the
accuracy of our hybrid fault detection approach. We use three
domains to test the fault detection accuracy. The first (see Figure
6) is a high fidelity flight simulator [17] the second is a
commercial UAV, and the third is a laboratory robot Robticanl
[18] (see Figure 8). We expect our proposed hybrid approach to
be more accurate in fault detection than the original unsupervised
SFDD approach.

[roe v Coamen Acmgat [t Epment AT et Coboy oy Covene C11

Figure 6: FlightGear screenshot
FlightGear domain: FlightGear (see Figure 6) is an open
source flight simulator designed for research purpose and is used

for a wvariety of research topics. FlightGear has built-in
realistically simulated instrumental and system faults. For
example, if the vacuum system fails, the HSI gyros spin down



slowly with a corresponding degradation in response as well as a
slowly increasing bias/error.

We recorded 32 flights. Each flight had duration of 5 minutes,
and included a take-off and left and right turns. 23 attributes were
sampled in 4Hz. Each flight was injected with a different type of
fault. Each fault had duration of 35 seconds and was injected
twice to the same flight at random times. In total, we tested 11
different types of instrumental and system failures. In total, the
test set contains 25,977 instances out of which 5,880 are
expressions of faults.
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Figure 7: pitot system failure

Figure 7 illustrates a flight with an injected pitot system failure.
A pitot system failure is expressed by the drift of the dependent
airspeed indicator as shown in the black curve. However, this
could only be considered as an outlier with respect to something
else. The gray line illustrates the ground speed measured by the
GPS. If these two attributes were deemed to be correlated then the
fault would be detected by the SFDD approach since they are
dependent on different subsystems and show different behaviors.
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Figure 9: static system failure

Another example of an injected system fault is the static system
failure. This fault causes the airspeed indicator to drift down to 0
while the GPS ground speed remains "ok". In addition, this fault
causes the altimeter to be stuck on the same value while the GPS
indicated altitude is "drift" (increasing) as illustrated in Figure 9.
The altimeter and the GPS indicated altitude are redundant to each
other and hence are usually correlated. Since these two attributes
are dependent on different subsystems then the SFDD can detect
such a fault.

The SFDD applied on the training set achieved a detection rate
of 1 (all faults were detected). The resulted categorical and
classified data was used as a training set.

Commercial UAV domain: The real UAV domain consists of
6 recorded real flights of a commercial UAV. 53 attributes were

946

sampled in 10Hz. The attributes consists of telemetry, inertial,
engine and servos data. Flights duration varies from 37 to 71
minutes. The UAV manufacture injected a synthetic fault to two
of the flights. The first scenario is a value that drifts down to zero.
The second scenario is a value that remains frozen (stuck). The
detection of these two faults were challenging for the manufacture
since in both scenarios the values are in normal range. These two
flights were used as a test set. The remaining four flights were
used as a training set where into two flights we injected similar
synthetic faults. In total, the test set contains 65,741 instances out
of which 1,593 are expression of faults.

Laboratory robot domain: Roboticanl is a laboratory robot
that has 2 wheels, 3 sonar range detectors in the front, and 3
infrared range detectors which are located right above the sonars,
making the sonars and infrareds redundant systems to one
another. This redundancy reflects real world domains such as
unmanned vehicles. In addition, the Robotican has 5 degrees of
freedom arm. Each joint is held by two electrical engines. These
engines provide a sensed reading of the voltage applied by their
action.

We devised 10 different scenarios that included different
injected faults while the robot performed different tasks. Faults
were injected to each type of sensor (motor voltage, infrared and
sonar). The injected faults to the sensors were of type stuck or
drift. These faults were injected to one or more sensors in
different time intervals. 15
attributes were sampled in 8Hz.
Scenarios duration lasted 10
seconds where the last 5 seconds
expressed a fault. 4 scenarios
were used as an unclassified
training set and the other 6 were
used as a test set. Note that in this
domain, the training set did not
cover all the faults included in
the test set. In total, the test set
contains 480 instances out of
which 240 are expression of
faults.

For the supervised learning we
have experimented with several decision tree algorithms: ID3,
J48, and a Random Tree [19]. As expected the Random Tree
performed better and its results on the three domains are shown in
the next section.

5. RESULTS

Figure 10 illustrates the average false positive rate of the hybrid
vs. the unsupervised approach (SFDD), taken over the 21 test
flights of the FlightGear domain, using a sliding window size of
250 time steps. The hybrid approach significantly improved the
false positive of the unsupervised algorithm.

To demonstrate the degree of reduction of the false positive rate
by the suggested hybrid approach we used different sizes of
sliding windows during the offline training phase. Smaller sizes
create more opportunities for reports and thus more opportunities
for false positives.

Figure 8: Robotican 1
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Figure 11 illustrates the degree of reduction in the average false
positive rate over the 21 test flights in the FlightGear domain.
Note that the false positive rate is in logarithmic scale. We can see
that with each size of sliding window the false positive rate of the

hybrid approach is significantly lower than the SFDD
unsupervised approach.
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Figure 11: FP rate vs. sliding window size

The different parameters used by the unsupervised approach
during the offline phase can be viewed as different unsupervised
approaches; each with its own rate of false positives. The hybrid
approach contributes to the reduction of false positive rate for
cach of these unsupervised approaches. Moreover, as the false
positive rate of the unsupervised approach is getting lower, thus
the false positive rate of the hybrid approach tends to 0.

Satisfied by the very low rate of false positives, we decreased
the sliding window size used online. It is suggestible to use a
smaller m for H,,(t) when classifying an online input than the m
used during the offline training. This increases the number of
reports, and since the false alarm rate is very low, we can tolerate
an increase of false positives in return for a higher true positives
rate.

Figure 12 illustrates the ROC of false alarm rates and the
detection rates of the unsupervised approach verses the hybrid
approach under the influence of a changing size of the online
sliding window (62sec — 47sec). Note that scale of Figure 12
zooms in on high detection rate (close to 1) and low false alarm
rate (close to 0). The added of false positives to the hybrid
approach is of little significance while the effect on the
unsupervised approach is apparent.
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Figure 12: ROC - hybrid vs. unsupervised

In addition, the detection rate of the hybrid approach is getting
higher as the size of the sliding window decreases. This is
explained by the fact that a smaller size of a sliding window
increases the frequency of state changes and hence the total
amount of reports. Therefore, there is a greater chance for
detection as well as some false positives. The hybrid approach
gets a lower rate of false alarms and a higher rate of fault
detection than the original unsupervised approach.
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Figure 13: UAV, unsupervised vs. hybrid
In the UAV domain the hybrid approach keeps a similar trend.
In the two examined scenarios, both the hybrid and unsupervised
approaches had a detection rate of 1. However, the hybrid
approach had a significantly lower false positive rate than the
unsupervised approach as Figure 13 shows.

In the Roboticanl domain, even though the training set did not
include all possible faults that were included in the test set, the
detection rate of the learnt fault detection model was 1. Being
online and unsupervised, it is not surprising that the unsupervised
approach also scored a detection rate of 1 on the test set.
However, it is interesting to note that the offline learnt FDM of
the hybrid was able to generalize the heuristic decision of the
unsupervised approach such that unseen faults were detected.

The average false alarm rate of the unsupervised approach on
the 6 tested scenarios was 0.067 while the hybrid approach scored
0.041. Again, the hybrid approach reduced the false positive rate.




6. CONCLUSIONS and DISCUSSION

In this paper we described a hybrid approach for fault detection
in the domain of autonomous physical agents that is unsupervised,
able to detect unknown faults, use an easy to construct model, and
also computationally very light and thus can detect faults very
quickly online.

The approach uses an accurate unsupervised method to offline
classify an unclassified training set, applies a supervised learning
algorithm, and produces a fault detection model that is
computationally lighter and is more accurate than the original
unsupervised method when applied online. We have explained the
causes for the improvement in accuracy and showed satisfying
results in three different domains — both real-world and simulated.

The offline step classifies the data with an unsupervised
approach. An alternative approach for classifying the data is a
general clustering algorithm e.g. K-means where k=2. However,
an unsupervised fault detection approach is more specific to the
fault detection problem and thus expected to be more accurate
than the general clustering algorithm. We showed that the higher
the accuracy of the unsupervised approach, the closer the false
positive rate of the hybrid approach tends to 0.

We chose to demonstrate how a hybrid approach extends the
state of the art with the use of, and a comparison to the SFDD
approach since it showed a high detection rate and a very low
false positive rate. Any other highly accurate unsupervised
approach could have been used for classifying the unclassified
training set. The high detection rate is very important since all
faults should be classified as such.

The proposed approach is unsupervised since the starting point
is with unclassified training set. The SFDD uses a structural
model (dependency associations) and thus is model based.
However, constructing such a model is easier than the typically
suggested analytical behavioral models. Both the SFDD and the
online phase of the hybrid approach use suspicious pattern
recognizers to categorize the behavior of attributes. These pattern
recognizers are very generic and are suitable for a large variety of
physical systems; the same pattern recognizers were used in all
the tested domains.

The learnt FDM generalized the original heuristic decision of
the unsupervised approach. The model is independent of heavy
online computations such as correlation calculations and thus is
computationally lighter. In addition, the FDM is less susceptible
to false positives than the original unsupervised approach.

We showed that the use of a static model i.e. learnt offline, is
very accurate. It is quite possible that models that are learnt online
in a supervised manner would be even more accurate when
supplied with enough training instances. However, these online
computations might be heavy for the agent and not feasible to
detect faults quickly enough.

For future work we plan to extend the hybrid approach to
multiclass supervised learning. The classification options will be
the different diagnoses for the fault. We hope that the learnt fault
detection and diagnosis model will provide an accurate and
minimal diagnosis as well.
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