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UNDERSTANDING THE IMPACT OF TRAINING ON PERFORMANCE 

EXECUTIVE SUMMARY         
 
Research Requirement 

 
This research sought to understand how training methods could be effectively employed to 

improve performance on Army-relevant tasks. We focused on training cognitive skills (e.g., 
problem solving, quantitative, spatial reasoning, decision making), as these skills are particularly 
important for developing an adaptable fighting force. The overarching goal of this 4-year program 
of research was to develop evidence-based guidelines for the effectiveness of six different training 
methods for acquiring and transferring cognitive skills in complex task domains. We also focused 
heavily on identifying moderators of a given training method’s effectiveness. That is, we were not 
only interested in identifying whether a method had an overall benefit (or lack thereof), but in 
identifying for whom specifically that benefit existed and if this benefit varied according to the 
training performance outcome(s) of interest and type of cognitive task/skill trained.   
 
Procedure 
 

To accomplish this overall goal, we used a combination of literature review, meta-
analyses, and experimentation. We conducted a broad literature search to gather evidence on the 
effectiveness of various training methods. From the literature review, we narrowed the possible 
training method options to those identified as most suitable for cognitive skills.  Based on this 
literature review, we conducted six comprehensive meta-analyses in order to generate estimates of 
the effectiveness of the following training methods: (1) training wheels, (2) scaffolding, (3) part-
task training, (4) increasing difficulty, (5) exploratory learning, and (6) learner control. The first 
four methods focused on facilitating cognitive load reduction during learning, while the final two 
methods focused on increasing active learning and learner engagement during learning. Increasing 
active learning and learning engagement have both been demonstrated to positively impact 
training effectiveness. 
 

Second, we conducted five research experiments to help fill several identified research 
gaps from the meta-analyses. These experiments included several common design elements, such 
as using complex Army-relevant tasks, examining the impact of trainee characteristics, and 
assessing various types of transfer performance. The results contribute to a more complete body 
of knowledge concerning training complex cognitive tasks. The experiments examined research 
issues related to the effectiveness of different levels of guidance in exploratory learning; the 
benefit of part-task training for tasks that have sequential and concurrent subtasks; the 
effectiveness of worked examples for a complex planning task; the relative benefit of constant 
difficulty, fixed/increasing difficulty, and adaptive difficulty in training; and the usefulness of 
adaptive practice. These experimental results were used to update the meta-analytic results, which 
were then used to implement the two additional objectives. Specifically, we developed algorithms 
to quantify the relationships between the six training methods, performance, and various 
moderating factors, and then implemented these algorithms into a user-friendly graphical user 
interface tool, called TARGET (which stands for Training Aide: Research and Guidance for 
Effective Training). 
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Findings 
 
The utilized combination of literature review, meta-analysis, and experimentation enabled 

us to amass qualitative and quantitative evidence on the effectiveness of six different methods for 
training complex cognitive skills. This evidence was then used to develop algorithms that 
quantify the relationships between the training methods, performance, and various moderating 
factors (e.g., trainee characteristics, the type of task/skill to be trained). These algorithms can be 
used to perform tradeoff analyses for different combinations of training methods.  The algorithms 
make the research findings from this project available to the Army training, development, and 
research communities, allowing users to systematically explore training methods that would be 
effective for acquiring various cognitive skills.  

 
The research findings and algorithms were used to develop a user-friendly graphical user 

interface tool, called TARGET. This tool summarizes the cognitive skill training research and 
identifies the conditions under which a particular training method is more or less effective. 
TARGET contains several visualization tools, such that in-depth statistical knowledge is not 
required to benefit from this tool. TARGET is a web-based tool, which is publicly accessible at 
http://bldr-webtest.alionscience.com/Target/. 

 
Utilization and Dissemination of Findings: 

 
TARGET, as well as its underlying research database and algorithms, are expected to have 

utility for a variety of different users. Training developers (with varying levels of expertise) can 
use TARGET’s evidence-based recommendations to identify the most effective training method 
given a set of desired factors. Ultimately, it can help training developers examine the research 
evidence related to their particular training situation (i.e., the type of trainees, the type of task/skill 
to be trained) and inform the selection of training methods to satisfy these particular training 
needs. Training researchers may benefit from TARGET and the underlying research database by 
better understanding the state of the training literature, including any possible gaps in the field’s 
understanding of effective methods. Military service program managers can also use this 
information to direct future research to fill identified gaps or investigate currently inconclusive 
findings. The capabilities represented in TARGET can serve a number of potential future 
applications as well, such as expanding the research database to include new training methods 
(e.g., behavior modeling) or task/skill types (e.g., interpersonal skills) and/or adapting the tool’s 
architecture to a different literature domain beyond training. Finally, the developed algorithms can 
be applied in a variety of applications beyond TARGET, such as serving as input for human 
performance models to analyze the impact of different training or technological approaches. 
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UNDERSTANDING THE IMPACT OF TRAINING ON PERFORMANCE 
 

 Project Overview 
 

Background / Research Need  
 
The overall goal of this four-year program of research was to understand how training 

methods could be effectively employed to improve performance on Army-relevant tasks. Many 
factors interact to influence the effectiveness of training.  Recent theory and research has resulted 
in training models that consider the large space of variables that influence training effectiveness 
(e.g., Alvarez, Salas, & Garofano, 2004; Colquitt, LePine, & Noe, 2000; Tannenbaum, Mathieu, 
Salas, & Cannon-Bowers, 1991). These influences typically include individual, training, and 
contextual factors. Individual factors include examples such as trainee experience level, abilities, 
and motivation; training factors include examples such as instructional methods, delivery mode, 
and feedback strategies; and contextual factors include examples such as climate for training 
(Quiñones, 1997) and climate for training transfer (Blume, Ford, Baldwin, & Huang, 2009; see 
also Alvarez et al., 2004; Tannenbaum et al., 1991).  Although each is a burgeoning area of 
research, significant efforts have been focused on understanding the effects of training factors. 
This is not surprising, given that training factors are often more malleable than their individual 
and contextual counterparts, which provides increased control over the training development 
process (e.g., Baldwin & Ford, 1988).  

  
Extant syntheses of the training literature typically distinguish between two primary 

training factors that influence training effectiveness: instructional principles and delivery methods 
(Alvarez et al., 2004). Instructional principles research examines the effectiveness of different 
techniques for conveying knowledge or developing skills, such as part-task training (Fontana, 
Mazzardo, Furtado, & Gallagher, 2009), learner control (Kraiger & Jerden, 2007), behavior 
modeling (Taylor, Russ-Eft, & Chan, 2005), and error management training (Keith & Frese, 
2008). Delivery methods research examines the mode of instruction and information presentation, 
often comparing traditional face-to-face instructional modes (e.g., lecture) with technology-based 
modes (e.g., computer-based training; see Arthur, Bennett, Edens, & Bell, 2003; Bayraktar, 2002; 
Landers, 2009; Means, Toyama, Murphy, Bakia, & Jones, 2009). This distinction is important 
given that both theory and meta-analytic evidence suggests that learning is impacted more by the 
instructional principle than delivery method (Clark, 1984, 1994; Sitzmann, Kraiger, Stewart, & 
Wisher, 2006). 

 
In practice, however, modern training efforts seldom employ a single instructional 

principle or delivery method. Instead, organizations seek the most effective combinations of 
instructional principles and delivery methods that satisfy the desired training outcomes. For 
example, Kozlowski et al.’s (2001) Adaptive Learning System details the process of integrating 
multiple instructional principles and delivery methods into a single training intervention method 
targeted at improving learners’ adaptation to new or uncertain situations. The strength of such a 
system relies on first identifying the relevant skills to be trained and then subsequently designing 
an appropriate training method to develop these skills. These ideas are espoused in the Army 
Learning Concept 2015 (ALC 2015; U.S. Department of the Army, 2011), the focus of which is 
to visualize integrated instructional principles and delivery methods suited to develop learner 
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adaptability. In line with the ALC 2015, our focus moved beyond the instructional principle 
versus delivery method categorization to instead identify specific training methods1 targeted at 
improving Army-relevant skills (for details on identifying the relevant methods, see Carolan, 
McDermott, Hutchins, Wickens, & Belanich, 2011).  In particular, we chose to focus on cognitive 
skills (e.g., problem solving, quantitative, spatial reasoning, decision making), as these skills are 
particularly important for developing an adaptable fighting force (U.S. Department of the Army, 
2010).  However, the research on training cognitive skills to date lacks the systematic 
organization needed to provide research-based recommendations for practice.  

 
Accordingly, a central focus of the current research program was to meta-analytically 

summarize the extant training literature with regards to the effectiveness of different methods for 
training cognitive skills in complex task domains (e.g., Kalyuga, 2009, 2011; Paas & van Gog, 
2009; Sweller, 1988; van Merrienboer, Kester & Paas, 2006). We also focused heavily on 
identifying moderators of a given training method’s effectiveness. That is, we were not only 
interested in identifying whether a method had an overall benefit (or lack thereof), but in 
identifying for whom specifically that benefit existed and if this benefit varied according to the 
training performance outcome(s) of interest and type of cognitive task/skill trained.  Further, we 
examined the benefits of cognitive skill training methods for two important outcomes: (1) 
acquired knowledge and skills as demonstrated during the training (i.e., learning) and (2) training 
transfer –that is, the degree to which trainees are able to apply and use what they learned once 
they are in the field or on the job (see Kraiger, Ford, & Salas, 1993). Training transfer is typically 
defined as the extent to which skills learned in one task context generalize to performance in 
another task or situation (e.g., Ford & Weissbein, 1997; Wickens, Hollands, Banbury, & 
Parasuraman, 2013). Transfer can be broken down into near transfer and far transfer, based on the 
similarity between training tasks and transfer tasks/performance environment.  Near transfer tasks 
represent different, yet similar tasks to trained tasks (e.g., Barnett & Ceci, 2002); in contrast, far 
transfer tasks represent tasks much less similar to the training task in terms of difficulty or 
structure, such that learners must adapt learned skills to these new situations (Ivancic & Hesketh, 
2000). Transfer may also be assessed with respect to time, contrasting immediate with delayed 
transfer. The present research investigated such factors when examining a training method’s 
effect on transfer.  
 
 In summary, this research sought to answer the following question: “Given a certain 
cognitive task/skill to be trained, a set of trainees, and training outcome(s) of interest – what 
training methods will be more likely to produce effective learning and transfer?” The specific 
objectives used to address this question are explained in further detail below.  
 
Key Research Objectives 

 
As aforementioned, the overarching goal of this research effort was to develop evidence-

based guidelines for the relative effectiveness of different training methods for acquiring and 
transferring cognitive skills in complex task domains. The overall approach for this research 
effort is shown in Figure 1, and can be broken down into four main research objectives.  

 
 

1 From this point, we refer to training method as the combination of instructional principles and delivery methods.  
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Figure 1. Overall research approach 

 
First, we sought to summarize the current state of the empirical training literature and 

identify research gaps. As such, we conducted a broad literature search to gather evidence on the 
effectiveness of various training methods. From the literature review, we narrowed the possible 
training method options to those identified as most suitable for cognitive skills. Based on this 
literature review, we conducted six comprehensive meta-analyses. Each meta-analysis 
summarized the effectiveness of a specific training method and identified key moderators of this 
effectiveness. The six training methods examined were: 

  
• Training Wheels. A training method geared towards reducing the difficulty of the target 

task during initial learning by reducing training task errors, as well as helping trainees 
acquire the appropriate schema to assimilate the target task.  
 

• Scaffolding. A training method where assistive supports are provided to trainees to ease 
the demands of task performance. These scaffold supports are incrementally faded out 
over time until the trainee is executing the whole task independently.  
 

• Part-Task Training. A training method that decomposes complex tasks into a series of 
smaller tasks, each of which is demonstrated and practiced separately before being 
practiced as a whole task.  
 

• Increasing Difficulty. A training method in which parameters of the task are initially set to 
lower difficulty levels, to reduce the intrinsic load early in training, and then increased as 
training progresses, until the difficulty reaches the level of the target task. The difficulty 

3 



 

levels can increase in either a fixed, pre-determined schedule or adaptively based on the 
trainee’s performance.  
 

• Exploratory Learning. A training method in which the trainee explores a task environment 
on his or her own. The level or type of guidance given to the trainee can vary within this 
method (e.g., only providing a user manual to reference versus the provision of input by 
trainers in response to trainee questions).  
 

• Learner Control. A training method that provides trainees with decision making control 
over specific dimensions or activities within a structured learning environment.  

 
Thus, our project provided a broad review of the training effectiveness research, drawing 

from the training, learning, and military-specific literatures. This review also helped identify 
inconsistencies and gaps in the literature. Accordingly, our second research objective was to 
conduct a series of research experiments in order to collect additional research to help fill several 
identified research gaps from the meta-analyses. A total of five experiments were conducted that 
included several common design elements. For example, all the experiments involved training 
complex Army-relevant tasks, such as operating digital systems or planning. Furthermore, 
learners were required to transfer the training by applying learned material to a new problem, or 
to a similar problem but using a different technology/ system. The experiments also examined the 
impact of trainee characteristics (i.e., trainee experience, trainee ability) on the training 
performance outcomes. By doing so, these focused experiments provided a more complete body 
of knowledge not only on the overall effects of complex cognitive skill training methods, but also 
knowledge concerning when, where, how, and for whom are these methods effective. 
 

The third key objective of this research effort was to develop algorithms for identifying 
the ideal training method given a specific combination of factors. These factors included: 
performance outcomes (e.g., learning, near transfer, far transfer), task/skill type moderators (e.g., 
perceptual, psychomotor, cognitive-declarative), and trainee characteristics (e.g., experience, 
aptitude), among others. These algorithms can be applied in a variety of applications from 
decision support tools for training developers to input for human performance models to analyze 
the impact of different training or technological approaches.  

 
Finally, to easily communicate these findings to training developers and researchers, our 

fourth research objective was to develop a user-friendly graphical user interface tool, called 
TARGET (which stands for Training Aide: Research and Guidance for Effective Training). This 
tool summarizes the cognitive skill training research and identifies the conditions under which a 
particular method is more or less effective. Training designers can use TARGET’s evidence-
based recommendations to identify the most effective training method given a set of desired 
factors. In turn, this match between training needs and empirically-supported training methods 
may improve learning and training transfer. Researchers may also benefit from TARGET by 
better understanding the state of the training literature, including any possible gaps in the field’s 
understanding of effective methods. Military service program managers can use this information 
to direct future research to fill identified gaps or investigate currently inconclusive findings.  
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The remainder of this report discusses in greater detail the purpose, methodology, and 
results of each of these four research objectives (i.e., literature review and meta-analyses, 
experiments, algorithms, TARGET tool).  We begin by discussing the first stage of this research 
program – the initial literature review used to gather evidence on the effectiveness of various 
training methods.  

Literature Review 
 

As part of the literature review, we developed a training framework to organize the results 
gathered (see Carolan et al., 2011). This framework was essential for developing guidelines for 
training developers by providing the skeleton on which to hang the literature findings. The 
framework also increased the interpretability of our findings by proving a common language that 
eliminated much of the jargon associated with different approaches to studying training. The 
literature review revealed three key consideration/factors which are influential on the 
effectiveness of training: (1) What needs to be trained (task factors)?, (2) Who needs to be trained 
(trainee characteristics)?, and (3) What are the performance outcomes of interest (outcome 
criteria)? The literature review suggested that the relative effectiveness of many training methods 
are moderated to a greater or lesser degree by interactions among task factors, trainee 
characteristics, and outcome criteria. In addition to these three factors, practical factors such as 
cost and availability may limit the training methods available for consideration. Below we briefly 
summarize some of the key evidence gathered during the literature review stage of this program 
of research. 

 
Task Factors 

 
Task factors include characteristics such as task/skill type and task difficulty. Task/skill 

type characterizes tasks by the types of knowledge and skills (e.g., psychomotor skills) required 
for effective performance. For complex cognitive tasks, the importance of cognitive task analysis 
as part of the training needs analysis has been advocated by numerous researchers (e.g., 
Frederiksen & White, 1989; Goettl & Shute, 1996), suggesting that different cognitive skills 
respond better to different training methods (e.g., Seamster, Redding, & Kaempf, 1997). 
However, our review of the training literature found few studies that explicitly compared the 
effectiveness of training methods for different types of cognitive skills. Although there is some 
evidence that different delivery methods (e.g., face-to-face instructional modes, technology-based 
modes) are more or less effective for psychomotor, knowledge-based, and interpersonal skills 
(Arthur et al., 2003), prior research has not examined training methods as currently 
conceptualized and has not examined cognitive skills. As such, the key objective of the current 
research effort was investigating training methods targeted to train complex cognitive tasks in 
order to identify if different methods were more or less effective for different types of cognitive 
skills (e.g., problem solving, quantitative, spatial reasoning, decision making). 

 
Regarding task difficulty, a growing body of research suggests that task difficulty 

influences the effectiveness of various training methods. Task characteristics such as the number 
of elements/components or information sources, the interactivity of those task components, the 
degree of task structure, the potential number of solution paths and possible solutions (e.g., Paas 
& van Gog, 2009) and dynamic changes in component interactivity over time (Wood, 1986) 
contribute to task difficulty. From the perspective of cognitive load theory (e.g., Paas & van Gog, 
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2009; Sweller, 1988; van Merrienboer et al., 2006), these intrinsic task characteristics require 
more cognitive effort on the part of the learner. Two findings related to task difficulty that have 
been consistently demonstrated in the extant literature are as follows: (1) the organization of the 
component skills and their interactions have implications for training effectiveness (e.g., Goettl & 
Shute, 1996), and (2) training methods that are effective for promoting retention and transfer for 
simple tasks are not always effective for complex tasks (e.g., van Merrienboer et al., 2006; Wood, 
1986).   

 
Trainee Characteristics 

 
Trainee characteristics such as aptitude, specific abilities, and experience moderate the 

effectiveness of various training methods and can be important factors in selecting the optimal 
training approach (e.g., Gully & Chen, 2010; Snow, 1989). Consistent with cognitive load theory, 
training methods that reduce difficulty may negatively impact experienced trainees (Paas & van 
Gog, 2009; van Merrienboer et al., 2006), and may possibly have a negative impact on trainees 
with high cognitive ability. There is also a body of research on aptitude by treatment interactions 
that indicate the effectiveness of training interventions can differ depending on trainee aptitude 
for self-regulation during learning. For example, lower ability trainees tend to benefit from 
structured lessons and higher ability trainees benefit from less structured training (Bell & 
Kozlowski, 2008; Snow, 1989).  

 
Outcome Criteria  

 
Desired training effectiveness outcomes typically involve knowledge acquisition and 

retention (commonly referred to as learning), and transfer of knowledge/skills learned during 
training to performance in an operational environment. Accordingly, the effectiveness of a 
training method can be assessed according to a variety of training evaluation criteria (see Alliger, 
Tannenbaum, Bennett, Traver, & Shotland, 1997; Arthur et al., 2003). Two considerations are 
particularly relevant to understanding training effectiveness. The first is that a given training 
method may have different consequences depending on whether the performance outcome of 
interest is learning or transfer. Some highly structured training methods that aid skill acquisition 
(i.e., a learning criterion) have been found to be less effective or even have a negative effect on 
transfer (Healy & Bourne, 2011; Schmidt & Bjork, 1992). In addition, there is evidence that some 
less structured training methods that require more learner effort can yield higher performance 
during transfer despite lower in-training learning performance, especially when skills are 
transferred to new problem situations (e.g., Schmidt & Bjork, 1992; van Merrienboer et al., 2006). 
This has been referred to as the transfer crossover effect (Bell & Kozlowski, 2008) or transfer 
paradox (van Merrienboer et al., 2006).  

 
A second consideration is that differences in the definition and measurement of transfer 

may have implications for evaluating training effectiveness. Transfer is defined in terms of the 
extent to which knowledge and skills learned in one context influence performance in another 
context (Wickens, Hollands, Banbury & Parasuraman, 2013). Researchers have characterized the 
similarity between the training task and transfer task as the ‘near-far transfer distinction’ (e.g., 
Barnett & Ceci, 2002). Near transfer involves application of skills to a task or situation very 
similar to the training task. In contrast, far transfer involves application of skills to a task or 
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situation different than the training task. The transfer task can be ‘far’ along a number of 
dimensions, including transfer to a different performance environment, a more complex task, or 
an entirely new situation or problem (e.g., Barnett & Ceci, 2002; Keith & Frese, 2005). 
Correspondingly, transfer distance can be defined in terms of the time between when the training 
task is learned and transfer performance is assessed (i.e., immediate transfer versus delayed 
transfer); delayed transfer requires a deeper understanding of the learning content. Transfer of 
training is therefore a broadly defined concept that requires understanding which type(s) of 
transfer are of interest to inform training design.  

 
Summary of Six Meta-Analyses 

 
The meta-analyses were a key tool in synthesizing research findings and identifying 

research gaps in the extant training literature. The benefit of a meta-analysis is that it can 
empirically summarize the collective wisdom on a topic. It also provides a way to systematically 
evaluate the impact of specific moderators on given relationships of interest, such as the impact of 
trainee experience on the relationship between the part-task training and transfer. In other words, 
meta-analysis does not just provide an overall rating of whether part-task training “benefits” or 
“costs/hinders” transfer, but rather provides insight into the specific conditions (e.g., trainee 
experience, trainee ability, transfer distance, task/skill type) under which this training method may 
amplify or diminish its influence on transfer performance. Accordingly, by conducting moderator 
analyses within the meta-analyses, we had the capability to quantify the relationships between 
training methods and performance outcomes under various conditions. Note that these moderator 
findings became the basis for the algorithms and weightings that underlie the TARGET tool.  

 
Methodology 
 

In terms of the methodology, both a transfer ratio (TR) and Hedges’ g were used in the 
meta-analyses. The TR is a ratio of the treatment group’s performance to the control group’s 
performance.  Treatment refers to the experimental group who receives the training method, while 
control refers to the group in the research study who receives no training or a lesser degree of the 
given training method.  Ratios similar to the TR have been employed in other meta-analyses to 
express degree of benefit, such as a ratio of the advantages for multi-modal over single mode 
displays (Lu, Wickens, Hutchins, Sarter, & Sebok, 2013). Similar to the more commonly used 
odds ratio, TRs less than 1 indicate a ‘cost’ for the training treatment, numbers greater than 1 
indicate a ‘benefit,’ and a value of 1 indicates ‘no difference’ between treatment and control. The 
usefulness of the TR method is that it expresses a benefit (or cost) in a way that is directly 
interpretable to the user (Lu et al., 2013; Wickens, Hutchins, Carolan, & Cumming, 2013). For 
example, a ratio of 1.3 means “30% more effective.”  

 
The TR was complemented with the Hedges’ g, an effect size metric for comparing 

treatment and control group standardized mean differences (Rosenthal, 1991). The effect size is a 
statistical concept that measures the strength of the relationship between two variables (Preacher 
& Kelly, 2012). Interpreting Hedges’ g focuses on the deviation from 0 with negative values 
indicating a cost for the training treatment, positive values indicating a benefit and a value of 0 
indicating no difference. The value of Hedges’ g is that it is a more conventional metric with a 
structured way to characterize statistical power. A key methodological contribution of the current 
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research project is that across our meta-analyses in which both were deployed, the TR and 
Hedges’ g provided convergent information. This provides justification for the use of the easily-
interpretable TR metric, especially in cases where the data required to calculate Hedges’ g is not 
available for many of the primary studies, which would decrease the statistical power of 
Hedges’g.  All the findings (TR and Hedges’ g) refer specifically to transfer performance. 

 
In terms of study inclusion criteria for the six meta-analyses, for an identified study to be 

included, the participants could not be school-aged children or the elderly to ensure 
generalizability to typical Army trainees. We also required that the study included a control 
group, and that performance measures gathered from the control group mirrored those received 
from the treatment group. 
 

The choice of moderator variables was largely driven by cognitive load theory (Paas, 
Renkl, & Sweller, 2003); however, we also examined variables known to be important for Army 
training, as well as others not directly covered by cognitive load theory. Cognitive load theory 
posits three different types of resources demands: intrinsic load, germane load, and extraneous 
load. Demands associated with task difficulty are called intrinsic load. Demands associated with 
learning and skill acquisition are called germane load. Demands that are neither intrinsic nor 
germane are called extraneous load. Examples of extraneous load include distractions in the 
environment or a poorly designed learner interface. Cognitive load theory predicts that lessening 
the intrinsic and extraneous loads will free more resources for germane load and thus increase 
learning and transfer. Therefore, reducing task difficulty, at least in the early stages of a training 
program, should increase learning and transfer performance. In the same manner, for the less 
experienced learner, the task will be more complex and hence that learner will benefit more from 
a load reducing training method (Rey & Buchwald, 2011).  As such, we coded for moderator 
variables such as task difficulty and trainee experience.  

 
In addition to the cognitive load theory-relevant moderators, our review identified a 

number of other moderators commonly examined in the literature, such as instructor presence, as 
well as training method-specific moderators. By training method-specific moderators, we mean 
training design features that varied within a given training method.  For example, for the training 
method part-task training, a training method-specific moderator was whether the different 
component tasks were trained concurrently or sequentially. As another example, for the 
scaffolding training method, one important moderator was whether the scaffolds were removed 
according to the trainee’s progress/performance during the training (i.e., adaptive scaffolding) or 
on a set schedule regardless of trainee performance (i.e., fixed scaffolding).   

 
Finally, although our focus was on training methods facilitating cognitive load reduction, 

we note that two of the training methods examined in this research, exploratory learning and 
learner control, are not designed to reduce cognitive load. Rather, their effectiveness is derived 
from the different theoretical perspective, suggesting certain advantages induced by active 
learning and learner engagement (e.g., Bell & Kozlowski, 2003; Dunloski, Rawson, Marsh, 
Nathan, & Willingham, 2013; Roediger & Karpicke, 2006). However, it is important to note that 
some research has found such engagement may also undesirably increase cognitive load 
(discussed further below). Key meta-analytic findings from the six examined training methods are 
described next. 
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Error Prevention: Training Wheels and Scaffolding 
 

The training methods of training wheels and scaffolding both seek to prevent errors, 
especially in the early phases of training.  Training wheels are typically operationalized in one of 
two ways: lockouts and worked examples. In lockouts, certain features of a computer system are 
unavailable and then are incrementally made available as trainee progresses through the training. 
In worked examples, trainees are given complete or partial worked-out solutions in order to learn 
correct and efficient strategies. For the scaffolding training method, assistance is provided to 
trainees in the early phases of instruction. This assistance can help focus the trainees’ attention or 
simplify the task. While prior literature reviews have been conducted for both training wheels 
(Carroll, 1990; Shen & Tsai, 2009; van Gog, Paas, & Sweller, 2010; van Gog & Rummel, 2010) 
and scaffolding (Pea, 2004), to the authors’ knowledge, no meta-analyses have been conducted on 
these two training methods. Accordingly, we conducted meta-analyses on these methods to 
examine their training effectiveness under different conditions. Some key hypotheses and findings 
from these meta-analyses are highlighted below.  For complete details, please see Hutchins, 
Wickens, Carolan, and Cumming (2013). 

 
Hypotheses. From the perspective of cognitive load theory (van Gog et al., 2010), error 

prevention training methods were hypothesized to reduce intrinsic load and extraneous load early 
in skill acquisition and thus support learning by availing more resources for germane load. We 
predicted that inexperienced trainees (i.e., being unfamiliar with the task) would experience high 
intrinsic load and thus would benefit from error prevention strategies more than experienced 
trainees (e.g., Rey & Buchwald, 2011). Finally, we were uncertain of the overall benefit of the 
two training methods given the following inherent tradeoff. On the one hand, reducing intrinsic 
load should favor these two training methods; however, on the other hand, partially preventing 
full choice of learner options may inhibit full engagement in, or “active learning” of, the task, 
which could itself inhibit learning and transfer (Keith & Frese, 2008; Kraiger & Jerden, 2007; 
Roediger & Karpicke, 2006). As such, we did not predict in advance the relative weighting of 
these two counteracting influences on skill acquisition and transfer. 

 
Findings. Thirty-one studies identified in the extant training literature met our inclusion 

criteria for the training wheels meta-analysis, yielding 74 Hedges’ g estimates and 79 TR 
estimates. In this, and subsequent meta-analyses, we treated multiple effects within a study and 
across studies as equally independent effects.  Overall, the results showed a 30% transfer benefit 
for training wheels compared to unsupported or less supported training (TR = 1.3, g = +0.21). 
This benefit was moderated by trainee experience, instructor presence, and transfer type.  As 
predicted, non-experienced trainees benefited more from training wheels (not enough studies to 
calculate TR, g = +0.44) than experienced trainees (not enough studies to calculate TR, g = 
+0.28). Interestingly, the presence of an instructor mitigated any benefits of training wheels (TR = 
1.18, g = +0.14); trainees performed better when the instructor was absent (TR = 1.51, g = +0.37). 
Finally, the further the transfer, the less the benefit of training wheels; that is, training wheels 
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benefited near transfer (TR = 1.56, g = +0.34), but did not benefit far transfer to a more complex 
task (TR = 0.91, g = -0.08). In terms of the training method-specific moderators, a benefit was 
observed when the training wheels were implemented as worked examples, a training strategy 
that provides learners with a worked out solution or partially completed steps towards the solution 
in order to prevent the use of weak, inappropriate, or inefficient strategies (van Gog & Rummel, 
2010; TR = 1.29, g = +0.31). A benefit of lockouts was observed (TR = 1.1, g = +0.30).  

 
Only eight scaffolding studies identified in the extant training literature met our inclusion 

criteria, yielding 21 Hedges’ g estimates and 23 TR estimates. Overall, the meta-analytic results 
suggested a large, 60% benefit for scaffolding (TR = 1.58, g = +0.46). This effect was moderated 
by trainee experience, instructor presence, transfer distance, and the schedule for removing 
scaffolds. Contrary to cognitive load theory predictions and the results of the training wheels 
analysis, trainees with experience showed a larger benefit of scaffolding (TR = 1.70, g = +1.34) 
than those without experience (TR = 1.30, g = +0.26). Transfer was better when the instructor was 
absent (TR = 1.81, g = +1.09) than when the instructor was present during training (TR = 1.52, g 
= +0.27). In terms of a training method-specific moderator for scaffolding, the scaffolding aids 
could be removed using a fixed schedule or could be removed adaptively in response to trainee 
performance. We found there was a larger benefit to removing the aids adaptively (TR = 1.63, g = 
+0.72) than on a fixed schedule (TR = 1.56, g = +0.29). The benefit of scaffolding to near transfer 
tasks (TR = 2.03, g = 0.66) was stronger than the benefit to identical transfer tasks (TR = 1.55, g 
= 0.44). There were no studies examining scaffolding and far transfer.   

 
In summary, the meta-analytic findings support the use of both these error prevention 

methods as a way to reduce intrinsic and extraneous loads during training. Consistent with 
cognitive load theory, training developers should consider creating an adaptive strategy for 
removing error prevention mechanisms in response to trainee performance. This adaptive removal 
has the potential to benefit transfer performance. Lastly, training developers should also take into 
account the trainee experience when designing a training program, reducing the stringency or 
aggressiveness of error prevention for experienced trainees. 

 
Part-Task Training and Increasing Difficulty 

 
Hypotheses. Both part-task training and increasing difficulty training methods manage 

difficulty in the early phases of training. Part-task training divides tasks into more manageable 
subtasks, and increasing difficulty simplifies early tasks gradually shifting to more difficult tasks. 
Cognitive load theory predicts that this reduction of intrinsic load should free more resources for 
learning and thus benefit performance outcomes. Yet, such early-in-training decomposition or 
simplification of the task may trigger unintended negative consequences that offset any training 
benefits. Indeed, the extant literature shows mixed success for these two methods. In a review of 
psychomotor tasks, Wightman and Lintern (1985) found that part-task training was successful, 
but only if the sub-tasks were performed sequentially (not concurrently) in the full task. A 
potential drawback is that part-task training does not offer an opportunity to practice timesharing 
skills; for example, the ability to scan for targets while operating a vehicle (Damos & Wickens, 
1980; Lintern & Wickens, 1991). Note that one prior meta-analysis was located for part-task 
training (Fontana et al., 2009). This prior meta-analysis focused solely on psychomotor skills; 
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whereas our meta-analysis emphasized cognitive skills and therefore included primarily studies 
not included in the Fontana et al meta-analysis.  

 
For the increasing difficulty training method, task parameters may initially be set to low 

difficulty and then increase throughout training. This increase can occur on a fixed/increasing 
schedule (i.e., difficulty level increases across training on a set schedule) or it can be adaptive 
(i.e., changes in difficulty level across training based on trainee performance). Wightman and 
Lintern (1985) did not find a benefit of increasing difficulty training, but they did not 
systematically contrast adaptive and fixed/increasing schedules (Mane, Adams, & Donchin, 1989; 
Metzler-Baddeley & Baddeley, 2009). The drawback for increasing difficulty method is that by 
presenting a simplified task, the trainee may learn an inappropriate version of the task that is 
dissimilar to the full-difficulty transfer task. 

 
We conducted meta-analyses on part-task training and increasing difficulty to better 

understand under which conditions these methods should be used and in which conditions they 
should be avoided in order to better clarify the mixed results in the literature. As with error 
prevention methods, we were unsure how much the drawbacks might offset the cognitive load 
theory-based benefits. Nevertheless, consistent with cognitive load theory, we did hypothesize 
greater benefits for non-experienced trainees and fewer benefits for simpler tasks. For part-task 
training, we predicted greater benefits for sequential rather than concurrent tasks.  Some key 
findings from these meta-analyses are highlighted below.  For complete details, please see 
Wickens et al. (2013). 

 
Findings. Twenty-two studies identified in the extant training literature met our inclusion 

criteria for part-task training yielding 65 contrasts or effects between a part-task and whole task 
condition (65 TR estimates and 35 Hedges’ g estimates). Overall, there was a 13% cost for part-
task training (TR = 0.87, g = -0.06). A key finding was related to the timing of subtasks. There 
was neither a cost nor benefit of part-task training if the subtasks were performed sequentially in 
transfer; in contrast, there was a strong cost to part-task training if the subtasks were concurrent in 
the transfer tests (TR = 0.71, g = -0.35). This supports the assertion that part-task training does not 
provide the necessary opportunity to practice timesharing skills. The importance of practicing 
timesharing skills is indirectly supported by the substantial benefit found for ‘variable priority 
training’ in comparison to fixed difficulty studies (TR = 1.27, g = +0.74). Such variable priority 
training, in which the whole task is maintained but different aspects of the task are emphasized or 
de-emphasized, combines the best of both worlds because the whole task remains intact.  

 
The impact of part-task training was also found to be influenced by several moderator 

variables. The part-task training costs were moderated by task difficulty, with more difficulty 
tasks showing smaller costs (TR = 0.83, g = -0.10) compared to less difficult tasks (TR = 0.60, g 
= -0.49).  Correspondingly, there was some (although modest) evidence that experienced trainees 
suffered more from part-task training (and benefitted more from whole-task training). 
(Experienced: TR = 0.84, g = -0.93; Novice: TR = 0.84, g = -0.25) Both of these effects are 
consistent with predictions of cognitive load theory. When an instructor was present in the 
delivery environment there was a cost to part-task training (TR = 0.85, g = -0.43), but not when 
the instructor was absent (TR = 1.11, g = +0.40).   
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A search of the increasing difficulty training literature identified yielded 15 Hedges’ g 
estimates and 30 TR estimates that used fixed/increasing difficulty training as the 
control/comparison condition). The increasing difficulty meta-analysis combined simplification 
part-task training studies and the adaptive training literature under the larger umbrella of 
increasing difficulty. Overall, there was neither a significant cost nor a benefit to the increased 
difficulty training method (TR = 1.22, g = +0.03). Transfer effects were moderated by trainee 
experience, instructor presence, transfer distance, and type of transfer test. Consistent with 
cognitive load theory and the meta-analyses reported above, non- experienced trainees benefitted 
from the increasing difficulty training method (TR = 1.10, g = +0.75); there were no data for 
experienced trainees. As above, the load-reducing increasing difficulty training method benefitted 
performance when the instructor was absent (TR = 1.38, g = + 0.42), but not when present (TR = 
0.89, g = -0.48). Benefits were also observed when transfer was immediate (TR = 1.39, g = +0.46) 
versus delayed (TR = 0.95, g = -0.36), and when transfer difficulty was similar to training 
difficulty (TR = 1.32, g = +0.21) versus near transfer (TR = 0.70, g = -0.56). The results regarding 
the impact of the task difficulty moderator were inconclusive due to few primary study data 
points. 
 

The adaptive nature of increasing difficulty also had a significant effect. When such an 
increase was adaptive and based on the trainee’s performance, the relative benefit compared to 
fixed/increasing difficulty was substantial (36%). However, increasing difficulty on a 
fixed/increasing schedule without considering trainee performance produced a significant (23%) 
transfer cost. Thus, adaptive difficulty schedules produce the benefits expected by cognitive load 
theory (Sweller, 2010). 
 

One implication of these findings is that training developers should adopt methods that 
concurrently embed timesharing tasks within whole task environment. An example of one such 
task environment is a Soldier who must consult a navigational device while on the move. A clear 
alternative to part-task training methods that also enables practice of timesharing skills is the 
variable priority method described above. Another implication is that fixed/increasing difficulty 
schedule may not be the most effective approach for all trainees. Instead, adapting the difficulty to 
trainee performance has a higher potential to increase transfer performance. Furthermore, our 
moderator results suggest that trainers should consider trainee characteristics when choosing a 
specific method given that both part-task training and increasing difficulty were more beneficial 
for non-experienced trainees.  

  
Learner Control and Exploratory Learning  
 

Hypotheses. Active learning methods such as learner control and exploratory learning are 
designed to promote trainee engagement in the learning content and process (Bell & Kozlowski, 
2008; Means et al., 2009). Learner control does this by giving trainees control over at least one 
aspect of training such as instructional pace (Orvis, Fisher, & Wasserman, 2009), content 
sequencing (Tang, 2004), how much of the lesson to review (Taylor, 2005), the amount of 
practice to engage in (Schnackenberg & Sullivan, 2000), the amount of feedback given 
(Pridemore & Klein, 1991), or whether to receive system-generated advice for the next task 
(Shyu, 1993).  Learner control has been found to impact positively learning (e.g., Orvis, Fisher, & 
Wasserman, 2009). 
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Exploratory learning promotes engagement by letting trainees explore learning content to 

discover key relationships and interactions on their own. Exploratory learning can vary in the 
amount and type of guidance provided (Bell & Kozlowski, 2008). Proponents of exploratory 
learning argue that this method encourages metacognitive activity and self-regulation of learning; 
which, in turn, can aid the development of adaptable and complex skills (e.g., Bell & Kozlowski, 
2008; Heimbeck, Frese, Sonnentag, & Keith, 2003; Keith & Frese, 2005). 

 
Despite the promise of both learner control and exploratory learning, the literature has 

shown mixed evidence for their effectiveness (e.g., Clark, 2009; Corbalan et al., 2011; Doolittle, 
2010; Smith, Ford, & Kozlowski, 1997; Kirschner, Sweller, & Clark, 2006; Mayer 2004). For 
example, learner control has been found to benefit skill-based transfer tests (Mayer & Chandler, 
2001; Doolittle, 2010), yet mixed effectiveness for knowledge acquisition (e.g., Doolittle, 2010; 
Orvis et al., 2009). Exploratory learning has been found to benefit tasks that are primarily 
procedural (e.g., Carroll, 1990), but not problem-solving tasks (e.g., McDaniel & Schlager, 1990).  

 
Accordingly, we conducted meta-analyses of learner control and exploratory learning to 

identify moderating factors that may account for the mixed effectiveness observed for these 
training methods (Carolan, Wickens, Hutchins, & Cumming, in press). Our meta-analysis argued 
that learner control and exploratory learning enable more “freedom” to control and explore, 
respectively. We were interested in both the costs and benefits of such freedom during training. 
Hence, as described below, we considered program control (i.e., low learner control) and 
restriction of exploration to be manifestations of reduced cognitive load. We highlight some key 
findings from these meta-analyses below; for full details, please see Carolan et al. (in press). 

 
As above, we hypothesized that the reduced cognitive load of less freedom might offset 

the costs of less active learning; and as such, the net effect of these two influences would be 
difficult to predict a priori. But also as above, we hypothesized greater benefits (or reduced costs) 
of greater freedom for experienced trainees. We also predicted greater benefits (or reduced costs) 
for far transfer and delayed transfer tasks versus near and immediate transfer tasks; thereby 
producing the transfer crossover effect. In these two meta-analyses, only Hedge’s g was 
calculated due to contractual time constraints. 

 
Findings. Forty studies from the extant training literature that met our inclusion criteria 

for learner control training yielded 144 Hedges’ g estimates between a more and a less controlled 
learning environment. The overall analysis indicated no overall average cost or benefit from using 
learner control as a training method (g = +0.02). This null effect, however, was moderated by 
task/skill type, trainee experience, and type of learner control provided to the trainee. In terms of 
the moderator of task/skill type, learner control produced a small cost for factual knowledge (g = -
0.06), but benefitted both procedural and problem solving tasks (g = +0.09). The effects were also 
moderated by trainee characteristics in that learner control benefited trainees with prior 
experience (g = +0.43), but not novices (g = -0.004). In terms of the ‘type of learner control’ 
moderator, there was a significant benefit when trainees could control their pace (g = +0.15), but a 
significant cost to transfer performance when trainees could control the amount of feedback or 
practice (g = -0.19). We observed no effect of transfer distance as a moderator for the learner 
control-performance relationships.  
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Studies of exploratory learning training from the extant training literature yielded 135 

effects. The overall analysis indicated a small but significant overall benefit for more guided 
exploration (g = +0.15), that is, when learners are encouraged to explore certain screens of a 
computerized instruction program. This was moderated by task/skill type, transfer test type, 
transfer distance, and trainee experience. In terms of the task/skill type moderator, whereas more 
exploration produced a cost for factual knowledge (g = -0.57) and problem solving tasks (g = -
0.28), this method benefitted procedural tasks (g = +0.11). Exploratory learning resulted in a cost 
for near transfer (g = -0.13) but benefited far transfer (g = +0.16), and the benefit of exploratory 
learning increased as transfer distance increased. Similar to the learner control meta-analysis, the 
exploratory learning meta-analysis showed a benefit to trainees with prior experience (g = +0.34) 
but not novices (g = -1.06). 

 
In summary, learner control and exploratory learning are both effective under certain 

conditions that overlap considerably. Both training methods are more effective for learning to 
perform a cognitive skill than for recalling factual knowledge. Both training methods benefitted 
trainees with prior experience but not novices. In contrast, learner control had the most benefit to 
very near transfer, while exploratory learning had the most benefit to far transfer, suggesting that 
learner control and exploratory learning may operate by different mechanisms for influencing 
transfer performance.  For exploratory learning, the emphasis on finding procedures and strategies 
for generating rules and solutions may benefit far, adaptive transfer (e.g., McDaniel and Schlager, 
1990).  For learner control, on the other hand, having greater control freedom may allow the 
learner to manage cognitive load during training; thereby, increasing the opportunity for learning, 
which is realized in very near transfer.  

 
Insights from Across the Six Meta-Analyses 
 

Across six meta-analyses, we examined three ways in which training methods were 
reflected within the context of cognitive load theory. 

• In Wickens et al. (2013),  we examined two training methods designed to explicitly 
reduce intrinsic load by either subdividing the task into parts (part-task training) and then 
later reassembling them, or by adjusting parameters of a whole task to lesser workload 
levels early in training and then increasing difficulty as training progressed (increasing 
difficulty). 
 

• In Hutchins et al. (2013), we examined two methods designed to implicitly reduce 
cognitive load by discouraging or preventing errors. These methods had two different 
effects on workload: (1) by locking out certain error-likely options, or guiding correct 
option selection, the intrinsic task load on learner choice was reduced, and (2) by 
preventing certain “catastrophic” errors in the learning progress (e.g., deleting a file while 
learning text editing, or crashing a flight simulator) this could eliminate the extraneous 
load of error recovery. 
 

• In Carolan et al. (in press), the primary focus was not on reducing cognitive load, but on 
providing greater learner freedom to control the learning process and explore. Hence, the 
primary focus was on the presumed benefits of active learning. In contrast, where such 
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freedoms were restricted (i.e., low learner control and limited exploratory learning), there 
may also be a benefit from a possible reduced load effect resulting from choice 
constraints. This reduced load corresponds to the effect predicted in the implicit 
manipulation of load via error prevention as described above. In other words, it is possible 
that restricting learner control/exploratory learning has effects similar to preventing errors.  

 
Table 1 provides a summary of the major results of the six meta-analyses. We grouped 

these results according to the three methods described above for managing cognitive load –
Explicitly, Implicitly, and Restricting Freedom. For each column, the control group represents the 
condition associated with an increase in cognitive load and the treatment group represents a 
decrease in cognitive load. For example, “No Learner Control” and “No Exploratory Learning” 
are the two treatments associated with a cognitive load reduction for the Restricting Freedom 
meta-analyses. A positive g or TR greater than 1.0 indicates that reducing cognitive load 
improved training effectiveness; a negative g or TR less than 1.0 indicates that reducing cognitive 
load decreased training effectiveness (i.e., was a cost). 

 
Table 1. 
Summary of Major Results from the Meta-Analyses 

 
Cognitive 
Load 

Explicitly   
Manipulated 

Implicitly  
Manipulated 

Implications of 
Restricting Freedom 

Effects Part-task 
Training 

Increasing 
Difficulty 

Training 
Wheels 

Scaffolding No 
Learner 
Control 

No Exp. 
Learning 

1. TR 0.87* 1.22* 1.30* 1.58* -- -- 
2. Hedges’ g -0.06 +0.03 +0.21* +0.46 0 +0.15* 
3. Trainee 

Experience 
Effect? 

Yes Yes Yes No Yes Yes 

4. Task 
Difficulty 
Effect? 

Yes No Effect -- -- -- -- 

5. Transfer 
Distance 
Effect? 

No effect Yes Yes No Yes Yes 

6. Cost of 
Instructor 
Presence? 

Yes Yes Yes Yes -- -- 

7. Adaptive 
Schedule? 

-- Helps  Helps -- -- 

Note. * indicates p< .05, -- indicates insufficient data for a comparison to be made. 
 

Overall training effectiveness. The first and second rows describe the overall training 
effectiveness as assessed by the TR or Hedges’ g. There was a great degree of consistency across 
the two measures. In all cases, the effect signs were consistent even if statistical significance was 
not. Note that TRs were not computed for the Restricting Freedom meta-analyses (i.e., for learner 
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control and exploratory learning). Comparing columns, we note a range of effects. Reducing 
cognitive load through part-task training is clearly not effective overall as indicated by a negative 
Hedge’s g and a TR less than 1.0.  Reducing load implicitly through error reduction strategies 
(i.e., via both training wheels and scaffolding) was rather effective. Reducing load by increasing 
difficulty and restricting exploratory learning (i.e., no exploratory learning) produced a modest 
benefit to transfer. However, it is important to stress that the effectiveness of all of training 
methods was significantly dependent on several moderator variables, which are listed in Rows 3-
7. Note that these rows indicate only that a moderator effect was present, but do not distinguish 
whether this effect was identified by TR, Hedges g, or both. The overall trends concerning these 
moderators are summarized below.  

 
Trainee experience and task difficulty. Both the trainee experience effect and the task 

difficulty effect are closely related within cognitive load theory (see Rows 3 and 4 in Table 1). 
Greater trainee experience and less complex tasks are both assumed to reduce the need for 
resources allocated to germane load, and hence reduce the benefit of these training methods. In 
some cases, this reduced benefit (resulting from the reduced need for resource reduction by the 
experts) may be augmented by an increased drawback of the cognitive load theory-based method 
(e.g., such as the increased dependency or lack of active learning that training wheels fosters). 
Thus, either a reduced benefit or an actual increased cost is still consistent with predictions of 
cognitive load theory, when it is coupled with these effects, such as reducing active learning. Of   
the eight meta-analytic comparisons conducted for these two moderator variables, six showed 
significant effects consistent with this cognitive load theory prediction. That is, these methods for 
reducing cognitive load had a smaller benefit, or possibly even a cost, on effectiveness as trainees 
become more experienced or the task becomes less complex. One method showed neither a cost 
nor a benefit, and one showed the opposite effect. We note that the scaffolding meta-analysis was 
populated by the smallest number of comparisons (k = 8, 23 effects), which may explain why this 
method showed the opposite effect. 

 
Transfer distance. The fifth row presents the commonality of findings across the transfer 

distance moderator, collapsing results from both temporal distance (i.e., immediate versus 
delayed transfer) and similarity distance (i.e., near versus far transfer). A distance transfer 
moderator effect indicates that performance improved as distance increased. We assumed that 
training methods reducing cognitive load might lead to shallower learning as they inhibit deeper 
engagement/processing. This may be direct, as in the case of removing the freedoms to control 
and explore (the restricting freedom methods), or indirect by preventing errors (the implicitly 
manipulated methods). In other words, cognitive load-reducing methods that may improve 
immediate learning may also hinder transfer of the learned material. The data provide some 
support for this hypothesis. Four of the meta-analyses provided evidence that reductions of 
cognitive load had the hypothesized effects across transfer distance. As with the experience effect, 
the scaffolding method appears to show a trend that contradicted those of the other methods. 
 

Presence of an instructor. The sixth row presents one unexpected effect. That is, the 
presence of an instructor during training produced a cost to training effectiveness in four of the 
meta-analyses. The origins of this effect are unclear. To the extent that the instructor might be an 
added source of extraneous load, this influence should be more pronounced in the control 
conditions (with higher cognitive load) and hence work in the opposite direction. We might 
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speculate that the effect instead is due to interference or inconsistent feedback between the 
instructor and the computer-based training system. Input and feedback from the instructor and the 
computer technology or pedagogical tool underlying the strategy needs to be consistent. 
Otherwise, the instructor may inadvertently mitigate the effectiveness of the training method. 

 
Fixed versus adaptive schedule. The final row describes the two methods in which 

fixed/increasing versus adaptive schedules were implemented. The fixed/increasing schedule was 
the same for all trainees and independent of trainee performance, whereas the adaptive schedule 
was modified across the training based on trainee performance. Here again, the findings were 
consistent. Transfer effectiveness was improved through adaptive strategies whereby difficulty is 
increased (or scaffolding is removed) contingent upon the individual trainee’s performance/degree 
of skill mastery. Such a finding, while not surprising, does have other training implications, as 
adaptable schedules become somewhat more complex/costly to implement than the simple “one 
size fits all” approach. 
 

Overview of Experiments and Additional Literature Review 
 
We conducted five experiments in order to help address key research gaps identified in the 

meta-analyses. We also conducted a focused literature review on interpersonal skills to examine 
its viability as a future research direction beyond the present effort’s focus on complex cognitive 
skills.  In the following sections, the rationale behind each experiment, as well as its general 
methods, key findings and implications are described. When an effect is described as “less” or 
“more” this indicates significantly less or more. Following the discussion of the experiments, the 
interpersonal skills literature review is briefly summarized. 

 
Before discussing the experimental results, it is important to keep a few points in mind. 

First, the purpose of conducting these experiments was to add their findings to the body of 
research included in the meta-analyses; as such, these findings have already been incorporated 
into the meta-analytic results presented in the prior section.  Secondly, one should not be 
particularly focused on whether or not these findings align with meta-analytic results.  As 
aforementioned, the key advantage of meta-analysis (vs. primary experiments) is that meta-
analysis can empirically summarize the collective wisdom on a topic. As such, while we argue 
that these five experiments add meaningfully to the training literature (particularly given their 
emphasis on Army tasks), they reflect only a relatively small number of data points compared to 
the more comprehensive meta-analytic results. 

 
Exploratory Learning Experiment 

 
There were several motivating factors for performing additional research on Exploratory 

Learning. First, the literature review and meta-analysis showed that exploratory learning has a 
history of benefiting both near transfer (e.g., Kamouri, Kamouri & Smith, 1986) and far transfer 
(e.g., Barnett & Ceci, 2002; Keith & Frese, 2005). The active learning aspect of exploratory 
learning provides opportunities for reflection and deep processing required for learning from 
errors (Frese, Bodbeck, Heinbokel, Mooser, Schleiffenbaum, & Thiemann, 1991; Keith & Frese, 
2008). Second, consideration of cognitive load theory highlighted the fact that the increased effort 
in searching the problem space for the right rule or strategy to apply, especially in a complex 
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domain, could cause frustration. This frustration is a source of extraneous load and can inhibit 
learning. Cognitive load theory then predicts that experienced trainees would benefit more from 
exploratory learning because their experience mitigates the difficulty (intrinsic load) and 
frustration (extraneous load). Third, our exploratory learning meta-analysis (Carolan et al., in 
press) found a benefit of exploratory learning to transfer performance when external guidance was 
limited and when tasks were primarily procedural. However, the meta-analytic findings were 
inconclusive regarding which levels and type of guidance (during exploration) were effective. In 
summary, the extant literature suggests that exploratory learning is useful for transfer. 
Nevertheless, questions remain regarding how to operationalize this training method and which 
type of trainees will most benefit. 

 
Experimental methodology. Trainees learned to use a digital interface to interact with 

simulated unmanned vehicles. Sanders (1999) described basic digital system operator skills as 
primarily cognitive skills with simple perceptual and motor components involved in performing 
discrete, multi-step procedures in a digital environment. Trainees used the digital system to 
specify routes for unmanned air and ground vehicles, edit routes, interact with the digital map, 
view and classify images, and send reports. This experiment (for additional details, see Carolan, 
McDermott, Wickens, Fisher, & Gronowski, under review) was designed to compare the 
effectiveness of learning the task through an exploratory learning process versus a directed 
training approach without the opportunity for exploration. The experiment looked at the impact of 
different types of training guidance and trainee characteristics on the relative effectiveness of 
exploration-based learning. 

 
Trainees experienced one of four training conditions: directed training, guided 

exploration, minimally-guided exploration, and learner-guided exploration. In directed training, 
the experimenter explicitly described and demonstrated the steps involved in each task. During 
practice, the trainer provided directive guidance and immediate corrective feedback on all errors. 
In contrast to directed training, there were three levels of exploratory training: guided 
exploration, minimally-guided exploration, and learner-guided exploration. Instead of receiving 
directions and demonstrations, trainees in all exploratory learning conditions were encouraged to 
freely explore the digital system and to consider errors as opportunities for learning. The three 
exploration conditions increased in the degree of learner freedom as follows. In guided 
exploration, the trainer provided unsolicited coaching as needed throughout practice scenarios 
when the trainee erred or struggled. Coaching was conceptual to help the trainee think about the 
problem, but became progressively more explicit if trainees continued to struggle. In minimally-
guided exploration, the trainee determined the training practice scenario order. The experimenter 
only provided coaching guidance in response to trainee questions and the conceptual coaching 
never reached the most explicit level (i.e., suggesting general steps to take).  Finally, in learner-
guided exploration, the trainee determined the training scenario order and there was no trainer to 
provide coaching or answer questions.  

 
The exploratory learning experiment challenged trainees with a range of transfer tests. 

Immediately following training, the trainees completed near and far transfer tests in which they 
had to complete tasks, some new, in the context of an integrated Army mission. Additionally, 
three weeks after training, the trainees returned to complete far transfer scenarios on a different 
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digital system. Finally, six weeks after training they returned to complete near and far transfer 
scenarios on the original digital system. 

  
Findings. Results confirmed the benefit of exploration-based training under certain 

conditions in a military-relevant task environment with procedural tasks. Consistent with the 
transfer crossover effect, trainees in the exploratory training conditions (collapsed over three 
levels of exploratory learning) performed significantly better than those with directed training 
with regard to far transfer. This was true regardless of trainee experience. The performance on the 
last session (six weeks after initial training) showed that exploratory training offered a significant 
retention advantage. The downside for exploratory learning was that the retention and transfer 
benefit came at a cost of initial training time because it took those trainees longer to complete the 
actual training.     

 
When the three levels of exploratory learning were examined, the three levels of did not 

produce any differences in the training performance outcomes. Surprisingly, the learner-guided 
condition performed as well the other exploratory training conditions. This suggests that learner-
guided training without an instructor can be an effective option for learning procedural tasks and 
offers to reduce training costs associated with fully instructor-guided courseware in the training 
delivery environment. It may be beneficial to have trainees learn and practice basic procedures on 
their own (e.g., menu navigation) before starting a training program on the more complex aspects. 
In terms of trainee characteristics, there was evidence that exploration provided more benefit to 
higher (vs. lower) ability trainees and those with greater (vs. lesser) prior experience.  

 
Part-Task Training Experiment 

 
Part-task training reduces the full difficulty of a target task during training with the 

objective of improving the effectiveness and/or efficiency of learning and transfer to the whole 
target task. Part-task training methods are widely accepted and used in training programs when 
the full target task is considered too complex or impractical to start training on initially (Lintern, 
1991). Part-task training is also used when operational equipment or full mission simulators are 
not available or deemed too expensive for initial training. By reducing cognitive load, part-task 
training has the potential to save whole-task learning time, speeding up the learning process and 
increasing training efficiency relative to whole-task training (Wightman & Lintern, 1985). Yet, 
Wightman and Lintern’s (1985) review concluded that part-task training had limited empirical 
support overall. The lack of effectiveness of part-task training for concurrent part-tasks (i.e., tasks 
that need to be performed simultaneously) is thought to be due to the need to also train the 
timesharing skills between the concurrent tasks, which can only be trained/practiced in the whole 
task (Goettl & Shute, 1996; Lintern & Wickens, 1991). The results of our part-task training meta-
analysis (Wickens et al., 2013) were consistent with Wightman and Lintern’s overall findings.  
However, we found that ‘varied emphasis’ part-task methods that provided an opportunity to 
develop timesharing skills are more effective compared to whole-task training.  In short, how 
part-task training is implemented influences its effectiveness as a training method.  

 
Results from the literature review and meta-analyses also suggested a number of areas 

where additional evidence was needed to support training recommendations related to the 
effectiveness of part-task training. Most of the part-task training research focused on part-tasks 
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that were segments of a serial task or fractions of an integrated concurrent task, where 
“integrated” implies a physical interaction or coordination between the two concurrent subtasks 
(e.g., in flight control or shifting gears). There has been a relatively limited research focused on 
part-tasks that are concurrent, but separate in the whole task; that is, the subtasks interact only 
through their concurrent demands on operator attention.  This domain includes a variety of 
task/skill types that involve vehicle control and navigation while monitoring the environment to 
detect and identify potential threats. We addressed this research gap with a part-task training 
experiment that consisted of tasks that were concurrent but separate. 

 
Experimental methodology. Our experiment used both a simulation environment and a 

live environment to train and test reconnaissance using an unmanned ground vehicle (for 
additional details, see McDermott, Carolan, Fisher, Gronowski, & Gacy, 2013; McDermott, 
Carolan, Gacy, Fisher, & Gronowski, 2012; McDermott, Carolan, & Wickens, 2012; McDermott, 
Fisher, Carolan, Gronowski, Gacy, & Overstreet, 2012).  Trainees learned to remotely drive a 
small unmanned ground vehicle along a predetermined route while looking for vehicles and 
identifying those vehicles as friendly, enemy, or neutral. Once a vehicle was spotted, the trainee 
hit a button to provide an alert of a potential threat. The trainee then classified the vehicle as 
friendly, enemy, or neutral once he or she was confident of the identification. This usually 
involved driving closer to the vehicle or manipulating the unmanned ground vehicle position to 
better situate the target vehicle in the camera’s field of view. In sum, the task consisted of three 
component parts: mobility, target detection, and target identification. In the whole task, mobility 
was done simultaneously with detection (and was sometimes simultaneous with identification), 
but detection and identification were sequential.  

 
Trainees were trained using a simulated vehicle and environment.  They were later 

transitioned (far transfer) to the live unmanned ground vehicle in a live environment. Three 
different experimental training conditions varied whether training was part-task, whole-task, or 
both (i.e., part-task training of the three parts followed by whole-task practice scenarios) in the 
simulation environment. A fourth experimental condition involved part-task training in the 
simulation training environment, as well as part-task training in the live environment prior to 
starting transfer scenarios in the live environment. This fourth condition was the only condition to 
receive additional training in the live environment; the other conditions started directly on the 
whole task tests of transfer. In sum, the four experimental conditions were: (1) part in simulation, 
(2) part and whole in simulation, (3) whole in simulation, and (4) part in simulation and live. 
These conditions were chosen in order to make specific pairwise comparisons: the traditional 
comparison of part-task training to whole-task training, a comparison to examine the impact of 
part-task training prior to whole task training in simulation (as opposed to only whole task 
training in simulation), and a comparison to examine the potential advantage of additional part-
task training in the live environment following part-task training in simulation (as opposed to no 
part-task training in the live environment, only in simulation). 
 

In terms of the performance criteria, all conditions completed transfer scenarios in the live 
environment. Transfer to the live environment (and part-task training in the live environment for 
the condition that had additional training in the live environment) took place one week after initial 
training. Transfer was measured using two types of scenarios: (1) far transfer to a whole task in 
the live environment, which was repeated until the trainee achieved set performance criteria, and 
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(2) far transfer to a modified task in the live environment.  In the modified task, there was no 
route and the trainee only had to detect enemy vehicles. Transfer performance criteria included: 
100% detection and identification accuracy, with no collisions or wrong turns, and completing the 
transfer scenario within a specified time limit. 

 
Findings. Two research questions addressed the relative advantages of part-task versus 

whole-task training in the simulation environment when both options are available and transfer is 
directly to the whole task in the live environment. The four experimental conditions were equally 
effective at getting 70-80% of the trainees to criterion-level transfer performance. There were no 
differences in transfer performance between the part in simulation group and the whole in 
simulation group. There was one marginally significant (p = .065) difference between the whole 
in simulation group and the part and whole in simulation group. On average, the whole in 
simulation group took fewer transfer scenarios to reach criteria than the part and whole in 
simulation group. Thus, there is some evidence that conducting only whole-task training in the 
training simulation was beneficial.   

 
The most noteworthy findings concentrate on the usefulness of having additional part-task 

training in the live environment. Those with additional part-task training had significantly better 
mobility (i.e., fewer collisions) in the transfer scenarios. Trainees in this condition also reached 
transfer performance criteria in significantly fewer scenarios. Further, evidence suggests that this 
benefit was not due solely to the extra training time but also to the part-task method. Consistent 
with the benefits to training predicted by cognitive load theory, the additional part-task training in 
the live environment appears to have allowed trainees to focus on learning to timeshare the 
detection and mobility tasks during the transfer scenarios, while the other experimental conditions 
had to learn detection, mobility, and timesharing skills at the same time in the live environment. 
In addition, the additional live part-task training was more efficient than other conditions in terms 
of training time on the live robotic system. In the live part-task training, trainees used a part-task 
training application to practice detection and identification and then completed three mobility 
practice scenarios in which they teleoperated the unmanned vehicle. The three practice scenarios 
using the unmanned ground vehicle took an average of only 97 seconds but had a large payoff in 
terms of overall time saved. Those with additional part-task training spent an average of 46% less 
time on the live robotic system during the transfer scenarios than trainees in the other three 
conditions who started directly with a whole-task transfer scenarios. Thus, additional part-task 
training in the live environment rather than in the synthetic, training environment has the potential 
to save costs by reducing the amount of training time on the actual unmanned vehicle.  

 
Worked Examples Experiment 
 

In general, the research literature supports the effectiveness of the worked example 
training method for novice learning, as well as for structured problem-solving versus traditional 
problem-solving approaches (Sweller, van Merriënboer, & Paas, 1998; Van Gog & Rummel, 
2010). However, the findings regarding the usefulness of worked examples are less understood 
for far transfer and for complex and unstructured problems such as those typically found in Army 
environments. Some research suggests that for novel problems requiring creative problem-
solving, the reported benefit of the worked examples method tends to disappear (Sweller et al., 
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1998). In contrast, other research found that worked examples can be effective for far transfer 
tasks (Atkinson, Derry, Renkl, & Wortham, 2000). 

 
Our worked examples meta-analysis (Hutchins et al., 2013) investigated the benefit of 

worked examples for transfer. Overall, there was a significant transfer benefit for worked 
examples when compared to a control condition that did not use worked examples. As previously 
described, moderator analyses were conducted on a number of variables including the effect of 
task/skill type, transfer type, and trainee differences in ability and experience. Worked examples 
were effective for structured quantitative problems. Contrary to some previous studies (e.g., 
Sweller et al., 1998), the meta analysis also revealed a benefit of worked examples for non-
quantitative and low structure problems. Worked examples were found to benefit identical and 
near transfer, but not far transfer. There were insufficient data to determine the moderating effects 
of trainee ability or experience on the usefulness of worked examples. 

  
Accordingly, we designed an experiment to fill these gaps by investigating the usefulness 

of worked examples in a complex ill-structured task (for additional details, see McDermott, 
Carolan, & Gronowski, 2012). We extended the worked examples method to training complex 
decision making skills in real world problems in the form of unmanned vehicle route planning 
problems. The route planning task can vary in terms of how structured the problem is. Using such 
a planning problem task that can vary in task structure and in task difficulty was expected to 
provide more evidence for or against the effectiveness of worked examples in low structure task 
domains.   

 
Experimental methodology. In the unmanned vehicle planning scenarios, trainees had to 

decide which unmanned vehicles to use in different geographic areas to satisfy multiple mission 
goals. This required an understanding of the tradeoffs of different assets in terms of mission 
suitability. The trainees did not have subject matter expertise on unmanned vehicles so we 
supplied a user-friendly manual that described the suitability of vehicles for different conditions. 
The scenarios did not have one right answer but required the trainee to consider multiple factors 
in making a decision. We manipulated whether or not a given trainee had access to a worked 
example. A second research question, not directly related to worked examples, addressed the use 
of media used in the training (i.e., training was conducted using a pencil–and-paper scenario or on 
a digital system).  

 
In terms of performance criteria, performance was tested on a near transfer scenario 

immediately following training and far transfer scenarios a week later. No trainees had access to 
worked examples during the transfer scenarios. The near transfer scenario was more complex than 
the practice scenarios within the training; however, all trainees still performed on the media on 
which they were trained (the pencil–and-paper group used paper and the digital group performed 
on the digital system). The far transfer scenarios tested transfer to the digital system (for the group 
that learned on pencil-and-paper) and transfer to a more difficult problem that required adaptive 
problem solving (for both groups). 

 
Findings. Contrary to the meta-analysis, worked examples did not provide a benefit over 

those without worked examples. Moreover, those without worked examples made significantly 
better planning choices both during the training and in the transfer scenarios. Those without 
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worked examples also considered a significantly higher number of factors (i.e., pieces of 
information) when choosing between unmanned vehicles in the transfer scenarios. The 
implication is that if consideration of a wide variety of factors is a critical part of the transfer task, 
then it may be detrimental to use worked examples during training; the rationale for this is that the 
worked examples may direct attention to certain factors and trainees may not learn to consider 
other factors not present in those examples.  Thus, for complex problem solving and planning 
tasks, it may not be worth the development effort required to develop worked examples.  

 
The transfer scenarios also tested how well the pencil-and-paper trained individuals 

transferred to the digital system. This group (vs. the digital group) took longer to complete the 
first transfer scenario on digital system, but their plan quality did not suffer. By the second 
transfer scenario, the pencil-and-paper trained group was just as quick as those who trained on the 
digital system, but their plan quality suffered. Therefore, trainees who learned on the digital 
system were successfully able to learn two tasks at once: the cognitive skills of making suitable 
plans and the procedural skill of implementing them in the digital system. Although it is a 
complex multi-faceted task with both cognitive and procedural aspects, trainees were able to 
master both in the whole task. One implication is that trainees do not need to learn general 
planning skills separate from learning to operate a digital system. They can successfully be 
learned in tandem.     

 
Increasing Difficulty Experiment 
 

This experiment sought to fill research gaps related to task difficulty sequencing identified 
in the increasing difficulty meta-analysis (see Wickens et al., 2013). In the meta-analysis, we 
examined constant difficulty (same level of difficulty across training), fixed/increasing difficulty 
(difficulty level increased across training on a set schedule) and adaptive difficulty (changes in 
difficulty level across training based on trainee performance). The meta-analysis found that 
adaptive increases in difficulty were more beneficial than fixed increases in difficulty. However, 
the pattern of results was less clear for constant difficulty versus adaptive difficulty.  As such, this 
experiment was conducted to directly compare the usefulness of constant, fixed/increasing, and 
adaptive difficulty in the context of a complex cognitive task (for additional details, see 
McDermott, Gronowski, & Carolan, 2013).  

 
Experimental methodology. The task used in this experiment was similar to the one used 

in the worked examples experiment described above. Trainees created plans on pencil-and-paper 
for unmanned vehicle allocation to multiple geographic areas, each with specific goals and 
anticipated enemy activity. Note that this task was more cognitively complex than previous 
published research studies investigating increasing difficulty. 

 
There were four experimental training conditions that manipulated how trainees 

sequenced through training scenarios of different difficulty. Constant difficulty provided training 
scenarios at a consistently high difficulty level. Fixed/increasing difficulty started with a simple 
scenario and gradually increased difficulty up to a high level on a fixed schedule. Two adaptive 
difficulty conditions progressed through training scenarios according to an individual trainee’s 
performance and decision process (i.e., information considered). Trainee performance determined 
the direction of the adaptation (poor performance decreased the difficulty, while proficient 
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performance increased difficulty) and the trainee’s decision process determined the magnitude of 
the adaptation. In essence, by considering a high number of factors, the trainee moved up two 
difficulty levels instead of one. Likewise, if the trainee considered too few factors (in comparison 
to number of factors in the scenario), he/she moved down two levels of difficulty.  Adaptive Up 
began with the lowest difficulty and Adaptive Down began with the highest difficulty. Trainees 
were matched to condition using a problem solving pretest. Training and transfer scenarios were 
examined to determine if training condition had an effect on performance. 

 
Findings. We found that for a complex cognitive task, a constant (high) difficulty was 

superior to fixed/increasing difficulty on the far transfer tasks. The constant difficulty group had 
significantly higher plan quality in the second far transfer scenario than did the fixed/increasing 
group. The constant difficulty group also took the least amount of time to train; specifically, they 
took 14%, 57%, and 66% less time to train than the fixed/increasing group, adaptive up group, 
and adaptive down group, respectively. In comparing adaptive training to fixed/increasing 
difficulty, the fixed/increasing group considered significantly more factors in their decision 
making than the adaptive conditions for the first transfer scenario. The implication for military 
training is that complex cognitive tasks such as planning may not benefit from adaptive difficulty 
sequencing. Not having to create adaptive training modules also has the potential for cost savings 
in both training time and development time.  
 
Adaptive Remediation Experiment 
 

The increasing difficulty experiment had not shown a benefit of adapting difficulty when 
the task being trained was a complex planning task. However, we reflected that the increasing 
difficulty experiment did not specifically address the type of error made, which served as a trigger 
for adaptive changes. Therefore, we questioned whether adaptive remediation in response to the 
type of error made would aid transfer performance in a complex cognitive task. Accordingly, a 
follow-on experiment was conducted to study the impact of error prevention and adaptive 
remediation on transfer performance (for additional details, see McDermott, Gronowski, Carolan, 
& Fisher, 2013).  

 
Experimental methodology. This experiment used the same general planning task used 

in the increasing difficulty experiment. The task involved creating plans for the allocation of 
unmanned vehicles to different geographic areas. However, while the prior experiment was 
conducted with pencil-and-paper, this experiment was conducted on a digital system. Note that all 
the trainees also previously completed the increasing difficulty experiment. This ensured that all 
trainees were experienced learners, allowing us to leverage the unmanned asset planning training 
they had already received.   

 
Three experimental training conditions were developed to examine the impact of error 

prevention and adaptive remediation on performance. Error management training served as a 
basis of comparison to these two manipulations of error training and adaptive remediation. The 
three experimental conditions were as follows: 

1. Error Prevention consisted of procedural training highlighting common errors associated 
with operating the digital system paired with procedural feedback during training. The 
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procedural feedback explained the particular steps (i.e., menu navigation, button clicks, 
factors to consider when choosing an asset) that needed to be taken to accomplish a task.  
 

2. Error Management consisted of exploratory training in which the trainees were 
encouraged to explore the system and to use errors as an opportunity for learning. Trainees 
received feedback during the training which was conceptual; instead of telling trainees 
how to fix an error (as in the procedural feedback in the Error Prevention condition), 
trainees were given feedback on how the interfaces were organized to help the trainee find 
the solution (e.g., instead of telling them to click the RSTA button, conceptual feedback 
would state that viewing and classifying pictures was a different mode associated with 
Reconnaissance, Surveillance, and Target Acquisition).  
 

3. Adaptive Remediation was identical to Error Management with the addition of remediation 
scenarios tailored to the particular errors made. The remediation scenarios offered 
additional practice opportunities on subtasks in which a trainee had made errors or could 
not complete. The remediation or practice opportunity was adaptive based on trainee 
performance.  
 
In terms of performance criteria, transfer scenarios tested trainees’ ability to adapt what 

was learned in the training to: (1) an error-prone transfer scenario that was designed with similar 
asset and location names and distractor assets, making it easy to make an error if the operator was 
not careful, (2) a transfer scenario that required the accomplishment of tasks that had not been 
specifically trained, and (3) a transfer scenario with a high tempo and conflicting goals.  

 
Findings. There were no significant differences in transfer performance between the error 

prevention group with either the error management group or the adaptive remediation group. 
However, performance was better when trainees did not complete adaptive remediation. The error 
management group performed significantly more untrained tasks in the second transfer scenario 
than the adaptive remediation group, and also was more successful than the adaptive remediation 
group in rerouting unmanned assets in the third transfer scenario. Further, although the 
differences were not statistically significant, emerging trends suggested that the adaptive 
remediation group had more vehicle idle time, made worse asset choices, and were more likely to 
leave an unmanned asset in a vulnerable spot within line of sight of the enemy, as compared to the 
error management group. These differences are quite remarkable given that the only 
methodological difference between the error management and adaptive remediation conditions 
was that one group completed tailored remediation scenarios during training while the other did 
not. The poorer performance with adaptive remediation may be due to the fact that adaptive 
remediation encouraged trainees to focus on single tasks and therefore they spent less time 
exploring and learning the entire system. Also, the fact that the trainees were experienced learners 
may explain why the cognitive load reducing adaptive remediation training method was not 
effective. In sum, the use of error management (non-remediation) training has the potential to 
increase transfer performance, as well as cost savings due to reduced training time and less 
development time for training developers in comparison to adaptive remediation training.  
 
Interpersonal Skills Literature Review 
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Although the present research effort focused on complex cognitive skills, we also 
conducted a focused literature review and synthesis on interpersonal skills to examine its viability 
as a future research direction (for the full review, see Hutchins, McDermott, Carolan, Gronowski, 
Fisher, & DeMay, 2013). One of the particular goals of this literature review was to identify 
topics that may warrant a closer examination via meta-analysis. In other words, how large is the 
existing body of research evidence and have any prior meta-analyses and/or literature reviews 
been conducted on the topic? Two literature searches were conducted: (1) a systematic search of 
“interpersonal skills” training research literature and (2) a survey of the literature on six particular 
interpersonal skills. These particular interpersonal skills were identified as being potentially 
relevant to current and future Army operations and included: relationship building skill, nonverbal 
communication skill, negotiation skill, assertive communication skill, active listening skill, and 
conflict resolution skill. Note that a subset of the papers identified in these literature reviews were 
summarized and included within the TARGET database.    

 
During our review of the broad interpersonal skills literature, we sought to organize the 

types of interpersonal skills being researched and the key training interventions used. We 
identified and defined 28 individual interpersonal skills and numerous taxonomies of 
interpersonal skills (for examples, see Carpenter & Wisecarver, 2004; Doo, 2006).  Note, that 
Carpenter and Wisecarver (2004) was the only validated taxonomy we identified. In terms of key 
training interventions used, results from two meta-analyses suggested that overall, interpersonal 
skills training is relatively effective at improving interpersonal skills (Arthur et al., 2003; Klein, 
2009).  Further, a literature review by Klein, DeRouin, and Salas (2006) found evidence that it is 
more beneficial for interpersonal skills training to focus on specific, optimal social skills as 
opposed to focusing on general skills such as sensitivity or insight.  Moreover, our review of 
training, assessment, and measurement methods suggested that while most training programs 
targeting the development of interpersonal skills are multi-method programs, the core training 
technique used is behavioral modeling training (e.g., instruction, demonstration, role-
play/practice, and feedback). Indeed, behavior modeling has been shown to be beneficial in two 
meta-analyses (Klein, 2009; Taylor et al., 2005), across a variety of task/skill types and for 
several training outcomes including cognitive outcomes, skill-based outcomes, and job behavior.  

 
Surprisingly, our broad literature review revealed that little is known about the impact of 

virtual (vs. in-person) practice as a training technique, and more generally, how well interpersonal 
skill training (regardless of training method) transfers to real life situations. More research is 
needed to determine when and where other training strategies, besides behavioral modeling, will 
be effective for improving specific interpersonal skills. Additional research is also needed to 
examine the transfer effectiveness beyond the training environment and into workplace and real 
life situations.      

 
With respect to the six skill-specific surveys of experimental literature, our review 

provided insight into the current state of interpersonal skills research, identified research needs, 
and identified several topic areas that may warrant a meta-analysis. The review looked for 
differences in training method effectiveness and the outcome of far transfer in particular. Note 
that we found an increase in experimental publications over the past decade for all six 
interpersonal skills examined, yet a general lack of research examining interpersonal skill transfer. 
The current state of the literature and a sample of key findings are described below:     
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• For the skill of ‘relationship building,’ no prior literature reviews or meta-analyses were 

found; however, we concluded that this skill category is potentially too broad of a 
construct. The two reports that focused on relationship building used behavioral modeling 
as the training method and showed improvement in relationship building skills at the end 
of the training (Durlach, Wansbury & Wilkinson, 2008; Schlundt, Quesenberry, Pichert & 
Lorenz, 1994).  
 

• The skill of ‘nonverbal communication’ generated a handful of literature reviews (see 
Gladstein, 1974; Klinzing & Gerada-Aloisio, 2004; Rosenthal, Wadsworth, Russell, 
Mathew, Elfenbein, Sanchez-Burks & Ruark, 2009) and meta-analyses (see Klinzing & 
Tisher, 1986). There has been a surge of both encoding and decoding experimental 
training research in nonverbal communication in the past two decades that could be 
synthesized. The most successful form of nonverbal communication skill training utilized 
skill practice.  
 

• There were two more recent reviews of ‘negotiation skills’ (see Logan, 2001; Tsay, & 
Bazerman, 2009) and two meta-analyses (see Stuhlmacher & Citera, 2005; Zetik & 
Stuhlmacher, 2002), but very little synthesis has been performed with a focus on training 
effectiveness. There has been a lack of variety in the training methods used to train 
negotiation skills. Studies found that performance was moderated by individual 
differences of personality and cultural background (see Elfenbein, Curhan, Eisenkraft, 
Shirako, & Brown, 2009) 
 

• There is a fairly large body of experimental research on training ‘assertive 
communication,’ but the one existing meta-analysis (Shatz, 1984) is dated and at least 40 
studies have been published since 1984. Recent research suggests that training programs 
for assertive communication that included role-play practice and feedback were superior 
to training with (1) lecture and demonstration and (2) training with lecture only. 
 

• The experimental research on ‘active listening’ has steadily increased over the last five 
decades; however, no literature reviews or meta-analyses were found, making it a prime 
candidate for qualitative and quantitative synthesis of the literature. The training 
effectiveness of active listening programs with role-play was superior to those without 
role-play.    
 

• There has been a surge in experimental attention on ‘conflict resolution,’ but no meta-
analyses and only one review has been conducted (see Boulter, Von Bergan, Miller, & 
Wells, 1995). This makes conflict resolution another prime candidate for meta-analyses in 
the future. The most effective training programs for conflict resolution skill involved 
modeling, practice and feedback, and the research suggests that training effectiveness is 
moderated by individual differences and prior experiences. 
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Development of Algorithms 
 

Algorithms were developed to quantify the relationships between the training methods, 
performance, and the various moderating factors. These algorithms can be used to perform 
tradeoff analyses for different combinations of training methods. The algorithms make the 
research findings from this project available to the Army training, development, and research 
communities. Specifically, the algorithms allows trainers and researchers to: (1) systematically 
explore the meta-analytic evidence base to identify training methods that would be effective for a 
particular set of circumstances for acquiring cognitive skills and (2) add new research studies to 
this evidence base along with providing real time computational updates (discussed further in the 
next section).  Steps involved in the algorithm development are briefly summarized below (for 
full details, see Hutchins, Carolan, Plott, McDermott, & Orvis, 2014).  
 

The methods of Borenstein et al. (2009) were used within a single study to calculate effect 
sizes from raw study-level information (e.g., means, correlations). The Bornstein et al. methods 
were also used to compile effect sizes across multiple research studies. As aforementioned, the 
effect size is a statistical concept that measures the strength of the relationship between two 
variables (Preacher & Kelly, 2012). We focused on Hedges’ g (Hedges & Olkin, 1985) as a 
standardized measure of effect size between the treatment group (i.e., experimental group 
receiving the training method) and the control group (i.e., experimental group receiving no 
training or a lesser degree of the given training method).  Implementation of the computational 
effect size algorithms in TARGET included procedural steps for transforming a number of 
different types of raw study-level data (e.g., descriptive statistics, t-test statistics, and F-test 
statistics) to standardized individual effect size statistics, which were then used to summarize the 
overall effect size across a set of research studies. 
 

The algorithms allow for each research study to contribute multiple comparisons (or 
effects) between treatment and control groups, each requiring computation of an effect size 
estimate for the magnitude of the difference in performance between the two groups. As an 
example, a study could contribute a comparison between the treatment and control for near 
transfer performance and for far transfer performance.  An attribute coding scheme, based on the 
meta-analyses, was implemented to support the process of examining key moderators of training 
effectiveness for each training method.  This included, for example, the trainee characteristics, 
task/skill types, outcome measures (e.g., knowledge acquisition, near transfer), and the training 
method-specific moderators (e.g., concurrent vs. sequential tasks in part-task training). This 
coding scheme also supports the capability for a user to filter, analyze, and display subsets of 
effect size data. For example, a user could choose to only view data related to trainee experience. 
In this example, the data would be displayed for two categories: low experience and high 
experience trainees.  

   
Note that there were several combinations of moderating variables for which there is no 

extant research available (e.g., the impact of trainee experience on the effectiveness of part-task 
training of perceptual skills) and thus the aforementioned algorithms could not be directly 
employed to generate effect sizes.  Accordingly, we also defined and implemented an innovative 
extrapolation process for estimating such effect size statistics. Such effect size estimates are based 
on extrapolating from a subset of moderator variables that does include the target variables – that 
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is, from the nearest “parent” (e.g., the impact of trainee experience on the effectiveness of part-
task training over all task/skill types, with ‘all task/skill types’ being the parent of ‘perceptual 
skills’).  The extrapolation strategy was designed to maintain effect size relationships between 
moderator variables while minimizing algorithm complexity.   

 
The algorithms offer several potential benefits to the Army. As implemented in TARGET 

(described below), they can be used to estimate the expected costs or benefits of the six training 
methods on performance, for various combinations of task/skill type, trainee characteristics, and 
performance outcomes. For example, the algorithms help answer questions such as: How do 
worked examples impact performance on a psychomotor task? Does this effect depend on the 
experience or skill of the trainee?  
 

The algorithms could also be adapted for use in other human performance models, such as 
Improved Performance Research Integration Tool (IMPRINT). IMPRINT was developed by the 
U.S. Army Research Laboratory, Human Research and Engineering Directorate (ARL-HRED) to 
support Manpower and Personnel Integration (MANPRINT) and HSI analyses.  IMPRINT is a 
modeling tool designed to help assess the interaction of Soldier and system performance. With 
IMPRINT, users can gain useful information about processes that might be too expensive or time-
consuming to test in the real world.  Adding the training effects algorithms from this research into 
IMPRINT would allow users to determine how different training methods might impact 
performance and predict which training methods (or combination of methods) will result in the 
most effective performance.  Either of these uses can assist program managers with training 
design. The algorithms can provide the basis for cost benefit analyses of different training 
methods and may enable program managers to make decisions concerning the amount of training 
that system operators and maintainers should receive, as well as what basic types of training 
methods should be developed to support this training. 

 
TARGET Tool 

 
A key goal of the current research effort was to assist training developers and researchers 

in better understanding the relative effectiveness of different training methods for acquiring 
cognitive skills. As such, a comprehensive research database was generated that included our 
meta-analytic findings of the six training methods, the qualitative summaries of these six 
methods, as well as the interpersonal skills literature reviewed. To ensure the valuable findings 
from this research database would be easily consumable by training developers and researchers, a 
training effectiveness tool was developed, called TARGET (which stands for Training Aide: 
Research and Guidance for Effective Training).   

 
TARGET was designed to assist users in making evidence-based decisions concerning the 

most suitable training method(s) to use depending various moderators of interest: in particular, 
depending on the task/skill type(s) being trained, types of trainees that would participate in the 
intended training, and/or the performance outcomes sought. TARGET provides query-based 
searches of the database, as well as outputs textual summaries, numerical summaries, and 
graphical representations of the relationships between different training methods and performance 
outcomes; this is completed using a user-friendly graphical user interface (GUI) and the 
underlying algorithms described in the prior section.  TARGET is also updateable as additional 
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training research is generated so that the database/tool stays current with state-of-the-art research 
developments. 
 

TARGET is a web-based tool; the website is publicly accessible at http://bldr-
webtest.alionscience.com/Target/. Anyone can access TARGET, after completing a brief, free 
registration.  Below, we briefly describe the four main components of TARGET: Explore Tasks, 
Explore Methods, Explore Documents, and Add a New Document. The tool is designed to allow 
easy navigation among the four components. For additional details on TARGET’s capabilities, 
please visit the TARGET website and/or review the TARGET User Guide (Plott & Hutchins, 
2013). 

 
Explore Tasks 
 

Explore Tasks is a visualization that allows users to quickly explore accumulated research 
evidence relating to different task/skill types. The assumption is that a training developer or 
researcher will have information about the type of task/skill that needs to be trained. This 
component serves as a starting point for those users to visualize which training method(s) have 
been successfully used to train the task/skill type of interest, and which ones should be avoided as 
they represent a ‘cost’ to training performance outcomes. The visualization displays the task at the 
center of the screen surrounded by the six training methods. The closer a given training method is 
to the task at the center of the screen, the more evidence there is that this training method benefits 
performance for the task of interest (see Appendix as an example). The Explore Tasks component 
of TARGET provides users with a range of interactive features for viewing accumulated evidence 
by task/skill type in order to identify which training method(s) are likely to be useful in training a 
particular task/skill type(s).  

 
Explore Methods 
 

The Explore Methods component graphically displays results of the meta-analyses for a 
single training method at a time. The visualization allows users to explore various effect size 
information on the effectiveness of a given training method (e.g., Learner Control) and allows the 
user to drill down to examine the impact of different moderators on the relationship between this 
method and training performance.  These moderators include task/skill type, task difficulty, 
trainee characteristics, outcome criteria, and training method-specific moderators, among others. 
As aforementioned in the meta-analysis section of this report, the training method-specific 
moderators are unique to the implementation of each training method. For example, one part-task 
training specific moderator is the degree of task concurrence; that is, the degree to which the 
subtasks are completed concurrently and require timesharing.  

 
Figure 2 shows an example of the Explore Methods visualization using data from the 

Learner Control training method. The visualization conveys the findings graphically so that in-
depth statistical knowledge is not required. For example, the vertical dotted line down the middle 
of the table indicates neutral or no effect and either side is labeled as “cost” and “benefit” 
allowing the user to interpret if there was a cost or benefit to training performance. The skinny 
diamond in the top row represents the overall effect size information for Learner Control 
(compiled across all research studies examining this training method). In this example, there is 
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neither a benefit nor cost to training performance when using the Learner Control training 
method. In this screen shot, the user has also chosen to examine how the trainee characteristic of 
‘ability’ moderates the effects of this training method on performance. The effect size data for low 
and high ability are summarized in the diamonds next to the respective category of low or high. 
The visualization suggests there is a small overall benefit in using this training method for lower 
ability trainees, while there is a small overall cost for trainees higher in ability.  Finally, under 
each ability category is a list of the individual effects (i.e., from the individual research studies) 
that contribute to the category. The relative weight bars on the right of the display show how 
much each research study influences the diamond for that category. Users interested in further 
details about the evidence can follow the hyperlinked title of the study effect (e.g., LC vs PC: low 
aptitude) to access more specific information about the particular research study.  
 
Explore Documents 

 
The Explore Documents component links users to the searchable TARGET database of 

over 500 research studies housed in the tool. Using a custom-built advanced search capability, 
users are able to search the training literature in the tool by traditional paper features (author, 
publication source, publication year), as well as training study attributes (e.g., training method, 
task/skill type, outcome criterion). For each research study, users can view reference information, 
a qualitative summary of the study’s methods and findings, the relevant attributes (i.e., training 
method used, training task information, trainee characteristics examined, performance outcomes 
examined), and effect size statistics if applicable.  

 
Add New Document 
 

The Add New Document component links users to a wizard that provides step-by-step 
instructions on how to enter information/statistics from a new research study into the TARGET 
database. This functionality was developed so that the TARGET research database can be kept 
up-to-date as new research evidence becomes available, as well as so the user can compare the 
findings of this new study with findings derived from the research literature already housed in the 
tool. Users can enter reference information, qualitatively summarize methods and findings, 
choose study attributes, and enter statistical data. The new study information is visible to other 
users. 
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Figure 2. Example of Explore Methods forest plot 
 

Summary 
 

In summary, the overarching goal of this 4-year research effort was to develop evidence-
based guidelines for the relative effectiveness of six different training methods for acquiring and 
transferring cognitive skills in complex task domains. To accomplish this overall goal, we focused 
on four main research objectives. 

 
First, we sought to summarize the current state of the training effectiveness literature and 

identify research gaps. Accordingly, we conducted a broad literature search to gather evidence on 
the effectiveness of various training methods. From the literature review, we narrowed the 
possible training method options to those identified as most suitable for cognitive skills. Based on 
this literature review, we conducted six comprehensive meta-analyses in order to generate 
estimates of the effectiveness of the following training methods: training wheels, scaffolding, 
part-task training, increasing difficulty, exploratory learning, and learner control. We also focused 
heavily on identifying the impact of moderators on a given training method’s effectiveness. That 
is, we were not only interested in identifying whether a method had an overall benefit (or lack 
thereof), but in identifying for whom specifically that benefit existed and if this benefit varied 
according to the training performance outcome(s) of interest and type of cognitive task/skill 
trained.   

 
Our second research objective was to conduct a series of research experiments to help fill 

several identified research gaps from the meta-analyses. A total of five experiments were 
conducted that included several common design elements. For example, the experiments involved 
training complex Army-relevant tasks, examined the impact of trainee characteristics, and 
assessed various types of transfer performance. The results contribute to a more complete body of 
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knowledge concerning training complex cognitive tasks. These experimental results were used to 
update the meta-analytic results, which were then used to implement the final two research 
objectives. 

 
Our third research objective was to develop algorithms to quantify the relationships 

between the six training methods, performance, and various moderating factors. These algorithms 
can be used to perform tradeoff analyses for different combinations of training methods.  The 
algorithms make the research findings from this project available to the Army training, 
development, and research communities, allowing users to systematically explore training 
methods and design components that would be effective for a particular set of circumstances for 
acquiring cognitive skills. These algorithms can be applied in a variety of applications from 
decision support tools for training developers to input for human performance models to analyze 
the impact of different training or technological approaches. For example, the algorithms could 
also be adapted for use in IMPRINT to determine how different training methods might impact 
performance.   

 
Finally, to ensure these research findings and algorithms would be easily consumable by 

various users, our fourth research objective was to develop a user-friendly graphical user interface 
tool, called TARGET. This tool contains key elements from the literature review, meta-analyses, 
and experimentation. TARGET summarizes the cognitive skill training research and identifies the 
conditions under which a particular method is more or less effective. TARGET contains several 
visualization tools, such that in-depth statistical knowledge is not required to benefit from this 
tool. Accordingly, training developers (with varying levels of expertise) can easily use 
TARGET’s evidence-based recommendations to identify the most effective training method given 
a set of desired factors/conditions. These capabilities within TARGET are facilitated by the 
underlying algorithms. 

 
In addition to training developers, researchers may benefit from TARGET by better 

understanding the state of the training literature, including any possible gaps in the field’s 
understanding of effective methods. Military service program managers can also use this 
information to direct future research to fill identified gaps or investigate currently inconclusive 
findings. The capabilities represented in the training tool can serve a number of potential future 
applications as well, such as expanding the database to include new training methods (e.g., 
behavior modeling) or task/skill types (e.g., interpersonal skills) and/or adapting the tool’s 
architecture to a different literature domain beyond training. 
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Appendix. Example of an Explore Tasks graphical visualization in TARGET
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