

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUN 2014 2. REPORT TYPE

3. DATES COVERED
 00-05-2014 to 00-06-2014

4. TITLE AND SUBTITLE
CrossTalk, The Journal of Defense Software Engineering. Volume 27,
Number 3. May/June 2014

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
517 SMXS/MXDED,6022 Fir Ave,Hill AFB,UT,84056-5820

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

40

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2 CrossTalk—May/June 2014

TABLE OF CONTENTS CrossTalk
NAVAIR Jeff Schwalb
DHS Joe Jarzombek
309 SMXG Karl Rogers

Publisher Justin T. Hill
Article Coordinator Heather Giacalone
Managing Director David Erickson
Technical Program Lead Thayne M. Hill
Managing Editor Brandon Ellis
Associate Editor Colin Kelly
Art Director Kevin Kiernan

Phone 801-777-9828
E-mail Crosstalk.Articles@hill.af.mil
CrossTalk Online www.crosstalkonline.org

CrossTalk, The Journal of Defense Software Engineering
is co-sponsored by the U.S. Navy (USN); U.S. Air Force (USAF); and
the U.S. Department of Homeland Security (DHS). USN co-sponsor:
Naval Air Systems Command. USAF co-sponsor: Ogden-ALC 309
SMXG. DHS co-sponsor: Office of Cybersecurity and Communica-
tions in the National Protection and Programs Directorate.

The USAF Software Technology Support Center (STSC) is the
publisher of CrossTalk providing both editorial oversight and
technical review of the journal. CrossTalk’s mission is to encour-
age the engineering development of software to improve the reliabil-
ity, sustainability, and responsiveness of our warfighting capability.

Subscriptions: Visit <www.crosstalkonline.org/subscribe> to
receive an e-mail notification when each new issue is published
online or to subscribe to an RSS notification feed.

Article Submissions: We welcome articles of interest to the defense
software community. Articles must be approved by the CrossTalk
editorial board prior to publication. Please follow the Author Guide-
lines, available at <www.crosstalkonline.org/submission-guidelines>.
CrossTalk does not pay for submissions. Published articles
remain the property of the authors and may be submitted to other
publications. Security agency releases, clearances, and public af-
fairs office approvals are the sole responsibility of the authors and
their organizations.

Reprints: Permission to reprint or post articles must be requested
from the author or the copyright holder and coordinated with
CrossTalk.

Trademarks and Endorsements: CrossTalk is an authorized
publication for members of the DoD. Contents of CrossTalk are
not necessarily the official views of, or endorsed by, the U.S. govern-
ment, the DoD, the co-sponsors, or the STSC. All product names
referenced in this issue are trademarks of their companies.

CrossTalk Online Services:
For questions or concerns about crosstalkonline.org web content
or functionality contact the CrossTalk webmaster at
801-417-3000 or webmaster@luminpublishing.com.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

CrossTalk is published six times a year by the U.S. Air Force
STSC in concert with Lumin Publishing <luminpublishing.com>.
ISSN 2160-1577 (print); ISSN 2160-1593 (online)

Collecting Large Biometric Datasets
The lessons and best practices that have become required operating procedure
in software development groups can often be applied outside the immediate
field of software engineering.
by Delores M. Etter, Jennifer Webb, and John Howard

The Problem of Prolific Process
What is the optimal amount and level of detail for predefined and documented
(and enforced) process for systems development?
by Phillip Glen Armour

Acquisition Archetypes: The Hidden Laws of Software-Intensive
Development Programs
Many of the behaviors and adverse outcomes that we see in software-intensive
programs are the result of misaligned incentives.
by William E. Novak and Andrew P. Moore

Combating the Inevitable Aging of Software Developers
One of the immutable laws of software evolution is that the developers, along
with the software, require sustainment.
by Robert Ball, David Cook, and Michael Pickard

Programming Will Never Be Obsolete
The creativity of software developers will always be needed to solve problems
of the future and to then translate those solutions into executable form.
by Andrew Mellinger

Identifying Good Independent Variables for Program Control
How to pick a good control variable from a set of variables derivable
from a model.
by Bob McCann

“If it passes test, it must be OK”
Common misconceptions and the Immutable Laws of Software.
by Girish Seshagiri

9

4

12

19

25

31

28

The Immutable Laws of Software Development

Departments

Cover Design by
Kent Bingham

 3 From the Sponsor

 37 Upcoming Events

 39 BackTalk

http://www.crosstalkonline.org
http://www.crosstalkonline.org/subscribe
http://www.crosstalkonline.org/submission-guidelines
mailto:webmaster@luminpublishing.com
http://www.luminpublishing.com
mailto:Crosstalk.Articles@hill.af.mil
http://www.crosstalkonline.org/subscribe
http://www.crosstalkonline.org/submission-guidelines

CrossTalk—May/June 2014 3

FROM THE SPONSOR

CrossTalk would like to thank NAVAIR for sponsoring this issue.

So where does one start when writing about the Immutable Laws of
Software Development? As I often do, I went right to my friends at Wikipedia
to understand “law” itself and came up with these initial thoughts. First, is it
possible, or even desirable, to define law? After all, law is a term that does not
have a universally accepted definition. In the broad legal world of international,
constitutional, and criminal law, to name a few, it is generally a system of rules
and guidelines enforced through social institutions to govern behavior.

When I think about how this definition extends to software, I see the need to
transition from philosophically based laws of history (including great thinkers
like Plato and Aristotle), to laws where data and observation are combined with
documented processes and project roles. A good illustration of this is a phrase
usually credited to W. Edwards Deming: “In God we trust; all others must bring
data.” Capers Jones, just this year, put together a short paper describing many
of the laws of software development captured over the last 60 years. In almost
all of them there is a reference to large quantities of empirical data from many
projects. It is the lasting nature of these laws, in the very fluid world of software
development, that lead us to the idea that software laws must be empirical.

As a Team Software Process (TSP) coach I have applied the teachings of
Watts Humphrey for nearly 20 years. Much of what Humphrey brought togeth-
er in the TSP was not revolutionary but rather a gathering of many laws of soft-
ware engineering from other experts over previous decades. Starting with his
experiences and data, I have applied laws such as: the larger a component, the
longer it will take to build; project schedules are based on the total estimated
hours combined with team members’ availability; early defect detection will help
schedules remain true and ensure the project will deliver low defect products to
the end user. Sources of these software laws come from famous work such as
“Quality is Free” by Phil Crosby, “Software Engineering Economics” by Dr. Barry
Boehm, and “The Mythical Man-Month” by Fred Brooks.

For these laws to be considered immutable means they are not susceptible
to change. While we will continue to go forward with the application of this
proven body of work, we must always remain open to change through analysis
of data. So keep collecting data, doing postmortem analysis, and evolving these
laws as we continue to close this loop.

I welcome you to this issue of CrossTalk and invite you to enjoy and ben-
efit from these great articles.

Jeff Schwalb
NAVAIR Process Resource Team

4 CrossTalk—May/June 2014

THE IMMUTABLE LAWS OF SOFTWARE DEVELOPMENT

Delores M. Etter, Southern Methodist University
Jennifer Webb, Southern Methodist University
John Howard, Southern Methodist University

Abstract. The lessons and best practices that have become required operating
procedure in software development groups can often be applied outside the
immediate field of software engineering. This article details a groundbreaking new,
multi-year, large-scale biometric dataset that is designed to improve the accuracy
and robustness of iris recognition algorithms. We identify several challenges
associated with this collection effort and demonstrate how the application of
software best practices was able to overcome these obstacles. We believe this list
of recommendations represents the current best practices for large scale, long-term
biometric collections.

Collecting Large
Biometric Datasets
A Case Study in
Applying Software
Best Practices

percentage of trials where a single person appears to not match
their own biometric sample, usually requiring the individual to re-
submit their test sample. High-quality commercial iris systems can
maintain a FMR of one in one million matches while sustaining an
FNMR of one in every one thousand attempts [2].

These extremely accurate metrics make iris biometrics one
of the few that are appropriate for fully automated population-
scale identification programs. Table 1 details some of the large
national programs initiated in the last decade. In 2007, the
United States military also began utilizing mobile iris biometric
technologies. These aptly named devices, known as the Handheld
Interagency Identity Detection Equipment (HIIDE) and Secure
Electronic Enrollment Kit (SEEK) were deployed to battlefields
in both Iraq and Afghanistan to assist with base access, detainee
management, local population screening, and special operations
missions. By 2009, the Biometrics Identity Management Agency,
which executes biometrics initiatives for the DoD, had collected
more than 7.5 million iris images in the field [3].

Why Biometrics?
With more than seven billion people now inhabiting our

planet, determining an individual’s identity has never been more
important or more challenging. Biometric algorithms are a form
of computer-aided identification that extract and compare vari-
ous inherent or learned human features. They offer the ability
to decipher who someone is, not by what they have, such as
an ID card or what they know, such as a password, but by their
fundamental intrinsic and behavioral characteristics. Not only
are these harder to steal or fake but they also can offer a much
lower chance of erroneous identification. For the DoD in particu-
lar, which is engaged in international conflicts that can challenge
traditional friend-or-foe identification methods, these capabilities
are truly transformative.

Iris Biometrics
Iris recognition is a recent technological development that has

only become widely utilized in the last decade. First described by
Cambridge researchers in the early 1990s, this particular biometric
quantizes the intrinsic texture of the human iris in order to automati-
cally determine if two occular images are from the same physical
eye [1]. Because individuals with dark or brown irises reflect very
little light in the visible spectrum, iris biometric samples are normally
collected by sensors that are sensitive to light in the near infrared
(NIR) range, which spans from 700 to 900 nm.

Iris recognition algorithms have shown the ability to achieve
incredibly low error rates. False match rate (FMR) is the number
of times that two different individuals are incorrectly declared
to be the same person. False non-match rate (FNMR) is the

Country Program
Name

Inception Program
Purpose

Estimated
Number of
Images

India UID 2009 National ID 1.2 Billion
Indonesia e-KTP 2012 National ID 170 Million
Mexico MNID 2010 National ID 100 Million
Middle East
(Multiple
Countries)

ETS 2004 Immigration
Control

50 Million

Best Practices for Software Development
While software development languages and tools change

constantly there are some fundamental principles that have
become widely recognized as best practices. At its core, software
development encompasses every aspect of product creation.
Consequently, best practices in software development can often
be seamlessly applied to other technical areas where the goal is
the creation of a finished product. This article will demonstrate
how four of these concepts, automation, configuration
management, documentation and quality control were utilized to
address some of the complex problems associated with biometric
database construction.

1. A Next Generation Multispectral Iris Biometric Dataset

Motivations
The ability to achieve a FMR of one in every one million

matches is truly an impressive statistic. However, the portion
of the human population that is enrolled in an iris database is
increasing rapidly. Biometric processes must continue to mature
so that they can meet this growing demand. This requires
development in two key areas:

1. Accuracy – Iris recognition algorithms must continue to
demonstrate the ability to reduce false match and non-match
error rates in order to support fully automated matching in
populations of several million individuals.

2. Robustness – Iris recognition algorithms must continue to
sustain performance across increasingly diverse population sets
and in increasingly uncontrolled collection conditions.

Table 1 - Population Scale Iris Biometric Programs

CrossTalk—May/June 2014 5

THE IMMUTABLE LAWS OF SOFTWARE DEVELOPMENT

Figure 1 - Unwrapped Iris Texture Illuminated at Different Wavelengths

Recent research has suggested that iris texture changes
when illuminated with different wavelengths of light [4], meaning
it is possible that several different unique biometric signals can
be captured from a single eye (see Figure 1). This discovery
has the potential to drive the error rates associated with iris
recognition even lower. For example, consider the rare case of
two different individuals having matching iris texture in an image
captured near 700 nm. By illuminating the two irises with light
at some other frequency, it may be feasible to algorithmically
determine that the two samples are different, thus avoiding a
false-match error.

5. Collection of Metadata – In addition
to biometric samples, the CMID also captures
information about the subjects enrolled in the
study such as their gender, eye color, race/eth-
nicity, and eye health conditions.

6. Manual Segmentation – The first
step in all iris recognition algorithms is to use
computer vision techniques to separate iris
texture from the pupil and sclera. However,
these processes may fail on images captured
outside the normal 700 to 900 nm spectrum.
Consequently, points on the inner and outer iris
boundaries are manually identified for each iris
image in the CMID.

7. Manual Quality Control – Images in
the CMID are also manually categorized into
one or more bins based on their quality. These
bins denote incidents such as blinks, image
blur, and off-axis eye gaze.

2. Software Best Practices For Iris Data-

Approach
In order to stimulate the development of more accurate and

robust iris recognition algorithms, a unique data collection was
sponsored by the United States government. This collection,
known as the Consolidated Multispectral Iris Dataset (CMID),
has several notable characteristics that have never been
explored in a single biometric collection.

1. Nontraditional Spectrum – Using a custom designed
camera assembly (see Figure 2), the CMID captures six images
each of the right and left eye across a spectrum that ranges
from 400 to 1600 nm. The LEDs used in this experiment have
been certified as eye safe by multiple radiation safety experts as
well as Institutional Review Boards at both Southern Methodist
University (SMU) and the government sponsor. High-resolution
visible light images of the ocular region are also taken using
a professional photographic camera. Lastly, an image of the
left and right iris is acquired using a commercial iris collection
device.

2. Duration and Repetition – The CMID collection is in its
final (fourth) year with a goal of collecting each subject 16 times
over that period.

3. Geographic Separation – The CMID enrolled more than
400 subjects across two geographically separated collection
sites in order to increase the diversity of the collected subject
pool. Roughly two-thirds of subjects are collected at the SMU
research site.

4. Scale – The CMID collects more than 160 iris images per
session. The final CMID dataset is expected to contain more
than 1 million laboratory quality iris images.

base Collection

Executing a first-of-its-kind data collection of this size and
with these unique characteristics presented several novel
challenges. Without exception these challenges were addressed
by applying software development best practices to the
biometric data collection methodology. We believe the following
represents a list of the current best practices for large-scale
multi-year biometric database formulation.

What Can Your Computer Do For You Today?
Automation has long been an enabling technology when

developing software. For well-understood tasks, it allows
engineers to reduce the possibility of human error throughout
the project lifecycle. For example, nightly builds and automated
regression testing ensures that this week’s code modifications
did not break the features added in last week’s build. However
automation is not synonymous with efficiency. Knowing which
tasks to automate and which ones require manual engagement
can make the difference between a successful project and one
that is underperforming yet over budget.

In a data collection the size of the CMID, automation is a
requirement, not simply a desirable feature. Software programs
are responsible for nearly everything in the collection process.
This includes adjusting the ocular illumination, capturing
biometric samples (from all three cameras) and saving the
resulting files to the correct location. In order to determine the
correct image name, the software must track every variable
controlled by the CMID collection (see Table 2). While a small
number are entered into a graphical interface by the operator,
the majority are ascertained automatically through software
processes. Our goal is to prevent a human from ever having
to manually save, move, or modify a biometric sample because
these operations are prone to error.

Figure 2 - Consolidated
Multispectral Iris Dataset
Collection Device

6 CrossTalk—May/June 2014

THE IMMUTABLE LAWS OF SOFTWARE DEVELOPMENT

One crucial aspect of this effort is the ability to automatically
recall the anonymous subject identifier when individuals
return for repeat collections. To accomplish this, the iris
images captured by the commercial camera are run through
a recognition algorithm. The result is used to determine the
subject’s unique identification number. While it may seem
limiting to use an iris recognition system as the identification
mechanism when conducting an iris data collection, this function
is one of the most crucial steps in any academic biometric
capture sequence. Associating the wrong number with a set of
biometric images can produce a flurry of inaccurate false match
and false non-match errors and call into question the validity of
the entire collection.

When performing any biometric collection, system designers
should rely heavily on software automation. Especially when
tasks are highly repetitive and tedious, every available effort
should be made to remove this burden from the human
operator. Automated file operations and subject identification
is guaranteed to reduce labeling errors across the lifetime of a
collection project.

Control The System Configuration
Or It Will Control You

Version control and configuration management have long
been staples of healthy software development organizations.
Software such as Subversion or Git can be used to track chang-
es to a codebase as it matures. When bugs are discovered or
misguided development paths realized, these applications allow
programmers to revert back to previous stable states.

However, these concepts have rarely been applied to the
collection of biometric datasets. Given the longevity of the
CMID collection, the geographic separation of the two collection
sites, and the deep reliance on automation during the collection
process, it was highly likely that software modifications would
be required as the project progressed. However, different
collection software can inadvertently bias a test, making results
appear to degrade or improve when in reality only the capture
process has been modified. This presents a classic paradox in
test methodology; if on day three of a yearlong test, a process
improvement is discovered, do you implement the change at the
risk of corrupting the data?

To fully document configuration control within the CMID
dataset, a tracking number was integrated into the collection
software. This identifier holds the date of the last system
modification for a particular site that is then tagged into the

name of every image collected over the four-year time span.
This allows us to account for any changes in image quality or
error rate that might arise from modifications to the collection
system configuration.

Monitoring the configuration of the capture setup is crucial for
ensuring that inevitable system changes do not bias test results.
Each individual biometric sample should be tagged with the
configuration tracking mechanism and related documentation
provided to end users that details what these numbers mean.

The Most Important Part of the Code, Is Not Code
Documentation can often be viewed as a leading indicator

of success in a software project. If the developers cannot use
technical documentation to clearly communicate what a group
of functions is designed to accomplish, what are the odds it will
actually achieve its unuttered objectives? If a project manager
cannot concisely communicate, through an end user manual,
how to operate a program, can we really assume it works at all?

Meaningful documentation takes on new interpretation when
conducting a long-term biometric collection. Previous iris datasets
have usually produced academic papers that include voluminous
specifications on what was collected but leave out the intricate
details of how and why. This is possible when the collection
period is relatively short and these details can be maintained
in the gray matter of a select few individuals who persist with
the project throughout its lifecycle. However, when seeking to
maintain high-quality capture standards across thousands of
individual collections, conducted by dozens of test operators, at
test sites across the country, over an extended time period, the
documentation will be the single-most crucial point of failure.

For our collection project, the end-user manual has been
the single most modified document in our source tree. It was
the first file added to our version control system and is the last
file edited before a new software release. It contains detailed,
click-by-click instructions on how to use the collection system. It
not only tells operators how to setup the hardware and run the
software, but why each step is important. It is by far the most
accessed and crucial file across the entire project. It is also
the hardest to find bugs in, requiring the authors and system
designers to continually review the assumptions that each tester
will make after reading a given step.

When conducting a long-term biometric test do not discount,
save for later, or delegate to the intern, the system documenta-
tion. Starting this crucial step early and keeping this document
up to date can make the difference between success and failure
of the database collection.

If You Don’t Care About Quality, You Can
Meet Any Requirement

When conducting any long-term, highly involved process it
is often easy to forget that all results, especially those arrived
at with the help of human involvement, are subject to errors.
Quality control is a discipline within software engineering that
recognizes this inescapable fact and seeks to identify and
mitigate errors in a finished software product.

In what may be a first of its kind effort, the CMID attempted
to actively incorporate software quality control principles
throughout the collection period. However, instead of only

Image Specific Subject Specific
· Collection Site · Subject Gender
· Source Camera (MS,

commercial,
photographic)

· Subject Ethnicity
 · Subject Eye Color

· System Version Session Specific
· Subject Identifier · Contacts Worn
· Left Right or Both Eyes · Glasses Worn
· Active Wavelength · Recent Eye Trauma
· Pupil Control State · Recent Lasik Surgery
· Capture Date · Recent Other Eye

Surgery · Capture Time

Table 2 - Consolidated Multispectral Iris Dataset Controlled Variables

CrossTalk—May/June 2014 7

THE IMMUTABLE LAWS OF SOFTWARE DEVELOPMENT

applying these concepts to the finished software product, they
were also applied to the deliverables of the CMID; namely the
biometric images and the associated metadata.

Three specific quality control measures were taken actively
throughout the four-year collection period. The first was to validate
that the images being collected by the multispectral capture
system would serve their end purpose, namely that they would
be appropriate for conducting biometric matches. To satisfy this
aim, we actively compared the NIR images collected by the
multispectral camera against intra-client samples captured from
the commercial iris device. The result of the majority of these
operations should be a match. By tracking the rate of non-matches
in this subset of images we continually validated that the camera
was collecting biometric samples of an appropriate quality.

The second quality control step was also applied to the
iris images produced by the collection system. This activity
involved identifying the samples that exhibited problematic
characteristics, such as blinking, off-axis gaze or motion
blur. Tracking these metrics allowed us to actively coach
human behaviors on a per-subject basis, which hopefully
increases the usability of the dataset. We can also include the
categorizations of each image to researchers, allowing them
to filter in or out certain classes of imagery, depending on the
focus of their analysis.

The final quality control
step was designed to validate
that the manually chosen
points on the inner and
outer iris boundaries are
accurate representations of
these perimeters. As briefly
mentioned, every image
in the CMID collection is
presented to an operator who,
with the help of computer
software, selects a number
of points on the inner and

The Software Maintenance Group at Hill Air Force Base is recruiting civilians (U.S. Citizenship Required).
Benefits include paid vacation, health care plans, matching retirement fund, tuition assistance, and

time paid for fitness activities. Become part of the best and brightest!
Hill Air Force Base is located close to the Wasatch and Uinta
mountains with many recreational opportunities available.

Send resumes to:
309SMXG.SODO@hill.af.mil

or call (801) 775-5555www.facebook.com/309SoftwareMaintenanceGroup

Electrical Engineers and Computer Scientists
Be on the Cutting Edge of Software Development

outer iris boundary (see Figure 3). This work is performed by a
small team of dedicated staff but is nevertheless very tedious
in nature. Consequently, we actively monitor the quality of the
segmentations by allowing 1% of the total multispectral imagery
to be manually segmented by two or more of the operators. The
two different segmentations are compared using an area of
overlap metric. By tracking this metric we can not only identify
segmentation operators who may need additional training but
can also use it to make intelligent estimations as to the overall
accuracy of the segmentations across all types of illumination.

Figure 3 –Manual Segmentation Program.

mailto:309SMXG.SODO@hill.af.mil
http://www.facebook.com/309SoftwareMaintenanceGroup

8 CrossTalk—May/June 2014

THE IMMUTABLE LAWS OF SOFTWARE DEVELOPMENT

Actively monitoring the quality of a long-term, large-scale
biometric collection is crucial to its eventual success or failure.
Simply monitoring raw numbers or gigabytes of data collected,
without validating that the samples are well suited for their
purpose nearly guarantees disaster. The capture system should
be designed around quality control tests (not the other way
around) and these tests should produce automated, well-
understood metrics that can be tracked by the administrative
team. This allows for an understanding of how the test is
progressing from a quality standpoint, not simply from a sheer
numbers point of view.

3. Conclusions
Software development has a long history of both success

and failure. From either case, we learn valuable lessons about
the correct way to approach problems, implement solutions and
react to the unexpected. It is important to remember that these
lessons can often be applied outside the field of software devel-
opment to assist in other engineering and technical challenges.
We have demonstrated how several of these well-established
principles have helped resolve some of the complex issues that
face research teams when conducting long-term, large-scale
biometric collections.

ABOUT THE AUTHORS
Dr. Delores Etter has been the Texas
Instruments Distinguished Professor in
Engineering Education and the Executive
Director of the Caruth Institute for
Engineering Education in the Bobby B. Lyle
School of Engineering at SMU since 2008.
She previously held academic positions at
the U.S Naval Academy, the University of
Colorado at Boulder, and the University of
New Mexico. She also was the Assistant
Secretary of the Navy for Research,
Development and Acquisition from 2005 to
2007, and was the Deputy Under Secretary
of Defense for Science and Technology
from 1998 to 2001. She is also a member
of the National Academy of Engineering.

E-mail: DEtter@smu.edu

Dr. Jennifer Webb is a senior researcher
in Southern Methodist University’s Bio-
metrics Lab, where she has been involved
with collection and processing of SMU’s
Multispectral Iris Image data set for the
past four years. Prior to SMU, she worked
at Texas Instruments with error-resilient
video compression and radar systems
analysis. She holds a Ph.D. in Digital Signal
Processing from the University of Illinois at
Urbana-Champaign and a Master’s degree
in Computing Science from Texas A&M
University.

E-mail: WebbJ@smu.edu

John Howard is currently a Ph.D. candidate
in the computer science department at
Southern Methodist University. His areas of
interest are biometrics, pattern recognition
and big data analytics. He also works full
time as a research scientist, contracting
for various groups in the United States
Government. He has extensive knowledge
in the areas of computer vision, software
development, statistical analysis, and
distributed computing.

E-mail: JJHoward@smu.edu

REFERENCES
1. Daugman, John. “Biometric personal identification system based on iris analysis.”
 Patent 5,291,562. 01 March 1994.
2. Daugman, John. “Probing the uniqueness and randomness of iriscodes: Results
 from 200 billion iris pair comparisons.” Proceedings of the IEEE 94.11 (2006):
 1927-1935.
3. Quinn, George et al. “IREX IV: Evaluation of Iris Identification Algorithms”.
 NIST Interagency Report 7949 (2013).
4. Boyce, Christopher, et al. “Multispectral iris analysis: A preliminary study51.”
 Computer Vision and Pattern Recognition Workshop, 2006. CVPRW’06.
 Conference on. IEEE, 2006.

mailto:DEtter@smu.edu
mailto:WebbJ@smu.edu
mailto:JJHoward@smu.edu

CrossTalk—May/June 2014 9

THE IMMUTABLE LAWS OF SOFTWARE DEVELOPMENT

Phillip Glen Armour, Corvus International Inc., QSM Inc.

Abstract. What is the optimal amount and level of detail for predefined and
documented (and enforced) process for systems development? This question has
been debated for decades by software practitioners, computer theorists, and those
responsible for resourcing the business.

The Problem of
Prolific Process

and each developer to make it up how they work each and every
time they build something is a recipe for anarchy. We did that
30 years ago and it did not work very well; in fact the move to
big process was fueled in part by the erratic results laissez-faire
development gave us. And then the move to Agile was driven by
the reaction to the stifling overhead of big process.

It seems that developing process documentation at just the
right level is hard. I described this difficulty in the Second Law of
Software Process: We can only define software process at two
levels: too vague and too confining [1].

The irony is intentional and it reflects the dilemma we have
when writing process:

• Too Confining: if the written process attempts to define
all activities under all conditions for all projects building any
kind of system, or even a reasonable subset of the same, it
becomes very large. Simply because it is very large people will
be reluctant to read it. It also becomes difficult to dig through
the mountain of documents to find the relevant bit of process
just when it is needed. Even more problematic is the constraint
that overly large process may enforce. While detailed process is
helpful in defining what has occurred before, it cannot explicitly
define how to build or test something that is new. In fact,
defined process tends to force solutions similar to those that
have been built before—specifically the solution scenarios that
were used to build the process. It is this inhibiting of the creative
process that most lightweight process advocates dislike.

• Too Vague: if the written process consists of high-level
guidelines, a loose meta-process framework within which
developers operate freely, ignoring it, modifying it and adjusting it
as they wish, the process does not add much value. That is, working
with the process and without the process is pretty much the same
thing. In this case people complain that the process does not
provide useful guidance and direction—the process has no “meat.”

Balancing Act
Caught between the hard place of too much documented

process and the rock of not enough, how can we find the sweet
spot? It is a balancing act. But we also need to take a look at
what process is, how we get it, what we expect it to do for us,
and how we make sure it works. For an example of how balanced
process might be built let us go back to October of 1935.

Failing Fortress
On its second evaluation flight Boeing’s Model 299 (the

prototype of what would become the B-17 Flying Fortress heavy
bomber) crashed. It was flown by Major Ployer Peter Hill who, as
one of the Army Air Corp’s most experienced test pilots, had flown
and evaluated nearly 60 of the Air Corp’s newest aircraft. The crash
was caused by the pilot’s failure to disengage the B-17’s gust locks
(devices designed to lock control surfaces while the plane was
parked). In dealing with the novel and complex demands of prepar-
ing and flying an experimental four-engine bomber, Hill forgot a
very important step. He just forgot and it cost him his life.

The solution to this kind of problem was not more experience
or more training; Major Hill and his co-pilot had plenty of both.
The solution was simple process. It was from this beginning
that the pilot checklist was born: a simple list of things to do to
ensure the plane was set up correctly to fly safely.

Balancing the Quantity and
Quality of Documented Process

Introduction
Should we have more process quantity, more process detail,

more process options (and more rigorous enforcement of
process)? Or should we just leave developers to figure out what
they need to do as and when they do it? On one side we have
the view that if process is good, then more process must be
better—such philosophies can generate enormous volumes of
paper-based process documents or their electronic equivalent.
On the other hand there are advocates of process so lightweight
it hardly exists; with this approach developers are pretty much
left to their own devices to work out what to do.

“Big process” assumes that developers will (a) read the
immense amount of process documents before or during
development (b) understand what is written (c) figure out
how to apply it to their situation and (d) make any necessary
process adjustments while staying true to the original intent if
not the letter of the documented process. This approach also
assumes that all this adherence to pre-defined process will
make for higher quality systems or make the process faster and
less costly or provide a better basis for system compatibility,
extension or maintenance. The advocates and authors of such
process rarely seem to concern themselves with any negative
effects on the morale, creativity, or sense of achievement the
developers might experience when they work this way.

On the other hand, those who espouse very lightweight (if any)
process assume that developers will (a) actually remember all the
activities needed to build a system (b) consistently apply all these
steps (c) apply their innate creativity (now liberated by freedom
from oppressive process) to more than compensate for anything
they miss. These advocates also assume that the developers will
have the requisite experience and skill to do all this.

The Second Law
It is clear that the answer lies somewhere in the middle.

Predefining everything we should do to build a system is just
not possible. If it were, we could automate the process and we
would not need people at all. However, allowing each project

10 CrossTalk—May/June 2014

THE IMMUTABLE LAWS OF SOFTWARE DEVELOPMENT

Floating Flight 1549
At 3:27 p.m. on January 15, 2009, US Airways flight 1549

struck a flock of Canada Geese at 2,800 feet on its climb
out from La Guardia airport in New York City. Immediately
after impact, Captain Chesley Sullenberger took the controls
while First Officer Jeffery Skiles began working the three-
page emergency checklist on how to restart the engines. Four
minutes later, Captain Sullenberger landed the unpowered 42-
ton aircraft in the Hudson River to the west of 50th Street.

The incredible feat of safely landing a huge airplane on water
at around 150 mph received widespread publicity and the pilots
and crew were accorded well-deserved accolades. The use of
the emergency checklist was not so well known.

Essential Process
The story of flight 1549 gives us clues to what constitutes

good process and where process has its limits.
• Value Added: given the criticality of the situation, the pilots

did not have the latitude to make a mistake in attempting the
engine restart. Simply forgetting one step, or working steps in
the incorrect order, might have had catastrophic consequences.
When stress is high the human brain may not function flawlessly
and a simple reminder can help avoid a lot of problems. With
their passengers and their own lives at stake, the pilots would
not have used any process that did not add immediate value.

• Routine, Well-defined: the restarting of a jet engine is
mostly done the same way each time. There is no value to be
added by experimenting with novel ways of powering up a jet
turbine and, in this situation, there could have been a lot to lose
by using an ineffective process. Process works best for things
which are precise, repeatable, well-defined and for which there
is no point in doing things differently.

• Not for “New”: Captain Sullenberger did not use a checklist
to actually land the plane in the water; no such checklist exists.
Even if a set of rules for landing a large commercial jetliner in a
river next to a major metropolis did exist, the crew would not have
had time to reference it and land the plane. When something is
“new” there are intrinsic limits to what process can achieve.

• Not if Too Many Specific Conditions: the pilots had to
deal with an enormous amount of information on the wind, the
behavior of the plane, communicating with the cabin crew, the
passengers and the Air Traffic Control. The combination of
these conditions was quite specific to this particular situation.
Any “process” would necessarily have to abstract the situation
to a set of generalized conditions and the pilots, with only
four minutes available to them, would have had to decode
these generalizations. Even when there is previous experience
available and the situation is not entirely “new,” if there are
specific conditions that apply to a particular situation, attempting
to apply a pre-defined process will take more time and will be
considerably less valuable.

• Succinct: there are many valuable books on flying airplanes
in difficult situations. These pilots did not have time to reference
and process them. The engine restart checklist contains only
and exactly what is needed to restart an airplane engine under
emergency situations.

Process works best when it contains only what is essential.

Novel Projects
To some extent, software projects are always “new.” We are

always building something we have not built before—otherwise
we should simply use what we built last time. That said, much
of what we do in the business of software is repetitive. There
are many aspects of our work that can and should be done
the same way over and over. But there are also things for
which previously defined process does not quite apply at the
prescriptive level. Perhaps this is where we can define the
boundary of process and extemporization.

What We Know, What We Do Not Know
Building systems consists of two kinds of work: the

application of what we already know and the discovery of what
we do not know (followed, of course, by its application). By
“application” I mean the translation of that knowledge into the
executable form we call “software.” What we already know, we
can call “Zero Order Ignorance”—provably correct knowledge (or
its inverse, lack of ignorance).

What we do not (yet) know can be divided into several
categories: those things we know we do not know or “First
Order Ignorance” (where we have a well-formed question, but do
not have the answer) and what we do not know we do not know
or “Second Order Ignorance” (where we do not know enough to
form even a good contextual question) [2].

Well-defined prescriptive process can work well for Zero
Order Ignorance (0OI) and some of First Order Ignorance
(1OI), but it cannot work well for the more complex 1OI and for
Second Order Ignorance (2OI). Since software projects contain
all of these, the process must flex.

Well-defined
Prescriptive process can be developed and should be used

for those aspects of systems development which are boring
and repetitive and for which there is no value in experimenting
or learning a new way of working. A good example of this
might be the check-out/check-in of code from a configuration
management system. Once a good process has been defined,
there is little point in doing it in any other way. Indeed, a lot
of bad things might happen if people tried to circumvent the
process. These processes always deal with 0OI or the simpler
1OI (for which the well-defined questions typically have a menu-
driven answer selection). Here there is value in process.

Innovative
For those aspects of system development that are novel, the

process must be intentionally sparse. Developers must be allowed
to explore options free from restrictions that might constrain the
solution. The developers are dealing with the remainder of their
1OI and also what they might be quite unaware of—their 2OI.
Here there is value in explicit lack of process.

Process Transition
As systems development progresses, there can be a natural

transition between processes. For example: when we start

CrossTalk—May/June 2014 11

THE IMMUTABLE LAWS OF SOFTWARE DEVELOPMENT

testing a system, we do not (and cannot) know exactly what
to test since to some extent we are looking for things we do
not know are not there [3]. Much of the time we are seeking
to expose those things we do not know about the system
(like what it does do that it should not do). To design tests
and test processes, we cannot be highly prescriptive since we
do not know what we are looking for. We might have general
indications: that tests should focus on predicate boundaries
or cover representatives of all (known) input classes, but we
cannot say exactly where we will find defects. This process
requires opening up the process to the innovative creativity of
the testers.

However, once tests have been created, run, and proved,
testing can be transitioned to the usually highly prescriptive
process we call “regression testing.” Setting up an automated
regression process before the knowledge is obtained is
ineffective and it might force early testing into a high restrictive
process mold that constrains testing to the point where it
doesn’t find what it needs to find.

Write, Test, Measure, Reduce
Good process focuses on the value it delivers. This depends

on what has to be done: old or new? Repetitive or innovative?
Restart the engines or land in the Hudson? Good process does
not over-prescribe where that is not valuable. But there are
other aspects of process definition that are often missed:

• Test the Process: in many decades of working in software
I have rarely seen documented (i.e., on paper) actually tested to
see if it works. Paper documented process is often written by
people who do not actually use the process they are defining.
Even more often these process writers themselves do not use
a well-defined, tested and measured process—which is a little
ironic. Commercial pilot checklists are written by a team of pilots,
aircraft primes, engine manufacturers, and the FAA. They are
written by people who use the process. Once the checklists are
created they are tested in simulators and in the field to ensure
they provide the value that is essential to keeping people safe.

• Measure the Process: software process is rarely
measured to find out if it does, indeed, reduce defects, speed
up the process, improve the lot of maintenance staff or any
of the other attributes used as rationale for writing, using, and
enforcing the process.

• Reduce: a further step is necessary and that is to reduce
the process. As pilot checklists are tested and the effectiveness
measured, much effort goes into making them more concise,
more pertinent, more valuable, and smaller.

Prolific Process
This intentional and careful reduction of process does not occur

in software development—quite the opposite. Once documented
process is created, it tends to grow and grow as it attempts to
deal with more and more different conditions, to identify more and
more different situations, and to cover wider ranges of application.
The documented process gets bigger and bigger, more and more
complex, requiring more and more effort to read, to understand, and
to apply. In doing so it becomes more and more unwieldy and less
and less valuable and so less likely to be used at all.

Projects do not crash as spectacularly as the B-17 prototype.
But they do crash. To bring them in to a safe landing, we need
process that truly supports the business we are in; both the
boring repetitive parts and the interesting innovative aspects
of what we have to do. The process for each of these aspects
should be designed for and support the true nature of the work;
such process needs to be more focused and more concise, we
should test it and measure it in operation to ensure it is really
delivering value.

And we should make it smaller.

ABOUT THE AUTHORS
Phillip Armour is a Senior Consultant at Corvus International
and a Principal Consultant at QSM Inc. He has over
four decades of experience in software and systems
development, was Master Instructor at Motorola University
and on the external faculty of two graduate schools. He is
the author of The Laws of Software Process (Auerbach
2003) and has penned the column “The Business of
Software” at Communications of the ACM since 2000.

Phone: 847-438-1609
E-mail: armour@corvusintl.com

REFERENCES
1. Armour, P.G. The Laws of Software Process CRC Press LLC 2004. p.13
2. Ibid p.8
3. Armour. P.G. “The Unconscious Art of Software Testing” Communications of the ACM. Vol.48 No.1 January 2005

mailto:armour@corvusintl.com
http://www.dhs.gov/cybercareers
http://www.usajobs.gov

12 CrossTalk—May/June 2014

THE IMMUTABLE LAWS OF SOFTWARE DEVELOPMENT

William E. Novak, SEI
Andrew P. Moore, SEI

Abstract. Many of the behaviors and adverse outcomes that we see in software-
intensive programs are the result of “misaligned incentives” between the goals of the
individuals involved and those of the larger organization. These interact and play out
in recurring dynamics that are familiar to both software developers and managers, but
which are still poorly understood. By characterizing the forces within these dynamics
explicitly in the form of the “acquisition archetypes” described in this paper we can
come to understand the underlying mechanisms that cause these problems, and
identify mitigations to help mitigate and prevent them.

Acquisition
Archetypes
The Hidden Laws of Software-
Intensive Development Programs

of omnipresent, and yet frequently ignored, “laws” of software
development. Although ubiquitous, there are ways to get around
these laws—and approaches to both mitigating and preventing
these behaviors, based on the understanding of the underlying
structure, are discussed.

Complex, Dynamic Systems and
Acquisition Programs

Our focus in large-scale software development is commonly
on the complexity and challenges offered by the system that is
being developed. However, one of the reasons that successfully
completing a software-intensive acquisition effort can be so
hard is that these programs themselves are complex, dynamic
systems. They feature complex interactions between the PMO,
contractors, subcontractors, test organizations, sustainment
organizations, sponsors, and users—all of whom act largely
autonomously, and in their own interests. There is limited
visibility into actual program progress and status. There are
often significant delays between making changes to the system,
and seeing their results, making the link between cause and
effect within the system unclear. There is feedback that occurs
between the decisions and actions of the different stakeholder
entities, causing seemingly unpredictable results. The feedback
can then produce situations that can escalate despite
management’s best efforts to control them.

These types of systems can trap people into certain behaviors
that are ultimately driven by the system. As a simple example, we
can think of the stock market, where people tend to buy when the
market is bullish, and sell when it is falling. There is no intention
on the part of individuals to cause or contribute to the creation
of a market “bubble” or a market crash—and yet that is precisely
what our collective behaviors do, even though we are only acting
in our own self-interest. Our actions in the context of a complex,
dynamic system often have unintended consequences which
can make things worse. We are trapped by the ways our rational
decisions (as they may appear to us to be) interact with the
dynamics of the larger system to which they belong.

Misaligned Incentives and Social Dilemmas
There are incentives within most organizations that work at

cross purposes with one another—which are “misaligned”—in
that they do not combine to cause actions that produce the
desired result. This misalignment can result in ineffective
decision-making in which short-term interests take precedent
over more strategic longer-term interests, or the objectives
of the larger organization can take a back seat to individual
or team goals. We may be inclined to think that the recurring
behaviors we see in organizations are simply the result of
individual personalities and their different styles. While these
differences may have significant effects, they cannot explain
the recurring nature of these behaviors—and so they are not as
important as the contextual structure of laws, regulations, rules,
guidelines, and preferences in which people operate. As Peter
Senge observed, “When placed in the same system, people,
however different, tend to produce similar results.” Economists
believe that people respond to incentives, and this is correct.
We should not expect to rely upon the integrity of people to
achieve an organization’s goals if the organization’s policies
and incentives oppose them. While people want to do “the

Introduction
Software development, especially in the context of defense

acquisition programs, displays a set of all-too-familiar outcomes
that seem to point to a set of common causes. We see these
repeatedly in programs: making up schedule delays by cutting
corners on quality activities, postponing risky development tasks
until later development spirals, failing to identify critical risks
to senior management, underestimating cost by large margins,
and many others. We know these patterns and outcomes occur;
what we have difficulty understanding is the mechanism which
causes them.

The SEI regularly engages with acquisition programs by
conducting in-depth Independent Technical Assessments to
assess program status, understand the reasons behind specific
challenges, and make recommendations for corrective actions
and future prevention. These assessments examine different
aspects of programs, combining document review and code
analysis with face-to-face interviews of program, contractor, and
other stakeholder staff. The analyses that have been conducted
expose many of the forces that drive these programs, and have
provided a detailed portrait of some of the most common pitfalls
that programs face.

If we wonder why some of these problems continue to occur,
we must realize that it can be difficult to recognize the patterns
of the problems that surround us simply because we are
standing too close to them. If we do not see the larger patterns
that they belong to, we will likely fail to recognize even familiar
problems when we encounter them in new circumstances.

This paper explains an approach to thinking about recurring
acquisition problems, and presents several examples of
“acquisition archetypes” that characterize the structure of the
forces that drive various counter-productive software-intensive
acquisition program behaviors. These archetypes represent a set

CrossTalk—May/June 2014 13

THE IMMUTABLE LAWS OF SOFTWARE DEVELOPMENT

right thing,” when they are forced to choose between personal
self-interest and organizational goals, the temptation toward
self-interest can be too great.

Some examples of misaligned incentives that occur in
software-intensive acquisition include:

• The preference for using the most advanced technology,
even if it may be immature. The government wishes to
provide the most powerful capability to the warfighter, and the
contractor prefers to enhance their experience base with the
latest technologies—even if the risk of using them is higher.

• The preference for longer duration programs, which allow
the government to build greater capability systems, and offer
contractors greater staff and revenue stability. However, they
increase the risk of scope creep from advancing technology
during development.

Many misaligned incentives can be classified as what
sociologists and others call “social dilemmas.” Social dilemmas
describe situations in which the most likely solution to
spontaneously emerge is one that may be optimal for the
individuals involved, but will likely be suboptimal overall.

One of the most common types of social dilemmas is the
social trap. A social trap is a situation where an individual
desires a benefit (often by exploiting a shared resource) that
will cost everyone else—but if all in the group succumb to that
same temptation, then everyone will be worse off, because the
common resource will eventually be depleted.

A social trap is often referred to as a “Tragedy of the
Commons1.” The interesting thing about a social trap is that the
people involved do not intend to harm themselves or others
by their decisions—they are all simply acting in their own self
interest—but the “tragic” collective result of depleting the
resource is still almost inevitable.

Social traps are not rare—we see examples of them every day:
overfishing, traffic congestion, and air and water pollution are all
the results of large-scale social traps. These are the unintended
consequences (i.e., what economists call “externalities”) of our
intended activities: catching fish to eat, travelling to other places
for work and pleasure, and producing goods and services that
we need. In these social dilemma situations, to paraphrase
economist Adam Smith, “Individually optimal decisions lead to
collectively inferior solutions.” Furthermore, because they can
appear in so many different forms, they are difficult both to
recognize and to fix.

We see an instance of a social trap in joint acquisition
programs that attempt to build a single capability that will be
used by multiple stakeholders. As more stakeholders agree
to participate, they each bring new, unique needs to the joint
program office (JPO). If the JPO rejects these additional
requirements, they risk driving the stakeholders away, as the
stakeholders would generally prefer to build a custom system.
However, if the JPO accepts the requirements to satisfy
the stakeholders, then doing so will likely drive up the cost,
schedule, risk, and complexity of the joint program—and drive
the stakeholders away for different reasons.

Systems Thinking
One tool for analyzing complex, dynamic systems is systems

thinking—a method that uses the identification of feedback

loops to analyze common system structures that either regulate
themselves, or may escalate or decline. Systems thinking has its
roots in system dynamics work pioneered by Jay W. Forrester
at MIT in the 1960s, and views systems as sets of components
with complex interrelations occurring between them. A widely
used tool for systems thinking is the causal loop diagram, which
explicitly represents the feedback loops in the system, showing
the driving forces, or causes, of the overall system behavior.

The value of systems thinking is that such diagrams can
help to identify the underlying structure of a system, which is
what drives the behavior that we see. This is important because
without an understanding of that structure, applying solutions
to address problems in complex, dynamic systems may have
unexpected side-effects that can make things worse. Lasting
improvement for such systems may only come from changing
the underlying system structure.

One tenet of systems thinking is that the behavior of a
system is greater than the aggregate of its individual component
behaviors. This “new” system behavior that results, which is
generally not an intended result of the system, is called an
emergent behavior. Emergent behaviors come about as the result
of the interactions among the various rules (physical, legal, social,
etc.) that govern the system. Examples of emergent behaviors
include the ebb and flow of traffic, the flocking of birds, the
meandering courses of rivers, the evolving patterns of cities and
suburbs, the synchronized applause of enthusiastic audiences,
market “crashes” or sell-offs, and many others. For our purposes
here, the unintended consequences seen in systems thinking,
both from interacting physical laws, and from the interactions of
laws, regulations, policies, guidelines, preferences, and our own
decisions and actions, are emergent behaviors.

Software Project Management
Clearly large software development programs are themselves

complex, dynamic systems—which may be as complex, or
more complex, than the software systems they are developing.
Because of their increasing size and complexity, as evidenced by
their inconsistent performance and outcomes, our projects may
already be growing past the ability of our present management
techniques to effectively manage them. While we focus much
of our attention on the technical software systems that are our
primary goal, we may ignore the fact that software development
projects and programs feature autonomous, adaptive elements
called “software developers” and “software managers” whose
complexity is still poorly understood. The claim has been made
by many experts that technical and software engineering
issues may not be the primary reasons that many development
programs fail. The main culprit in poor program outcomes
may be the interactions of the people in the development
organizations. Realizing this, as engineers we may look to the
technology we understand best as a way to correct and prevent
these problems—but as Edward’s Law states, “Sociological
problems do not always have technological solutions.” We may
need to look elsewhere to resolve these issues.

In trying to understand how such problems with software
development can occur, we need only consider that people who
develop systems have incentives to “sell” them with optimistic
claims of both substantial benefits and low cost. The prospective
customer, who is looking for—and in most cases demanding—a

14 CrossTalk—May/June 2014

THE IMMUTABLE LAWS OF SOFTWARE DEVELOPMENT

system with significant capabilities at low cost, is often all too
willing to believe that this is possible. The combination of incentives
amounts to a “conspiracy of hope” among the stakeholders that all
will turn out well, when in fact the opposite is more likely.

Program managers will generally focus on maximizing
objectives where their performance is measured, and for
which they will be rewarded (or penalized if they fail). Ancillary
goals that are only desirable for the organization, and do not
carry a personal incentive for being met, are unlikely to be
achieved. Trying to ensure that a task will be performed by
mandating PMs to do it just adds one more thing to an already
overloaded plate—it provides only one incentive to do it, leaves
in place both competing incentives as well as disincentives for
ignoring it, and may not guarantee the quality with which it will
be done (especially if the task is viewed as a “check the box”
requirement). As an example, planning for software sustainment,
while important, rarely has any bonus or penalty attached to
it, is not a key performance metric for oversight like earned
value management, and the quality of the planning work cannot
easily be verified. Thus, the reduction of lifecycle costs through
mandated sustainment planning is unlikely to be achieved.

When project managers are rewarded specifically for
achieving certain goals, they will likely work hard to make those
happen, even if that achievement must occur at the expense of
other goals of the organization. There is rarely an incentive for
an individual to make sacrifices for the common organizational
good—which is, in part, why advancing it is so difficult to achieve.

Acquisition Archetypes
Acquisition archetypes are an adaptation and extension of

Peter Senge’s system archetypes work. The system archetypes
each describe a recurring pattern of dynamic behavior that
occurs in complex systems:

An action appears to be logical and promising—but in practice
it has unintended counter-productive consequences to what
was desired, or makes other things worse.

The acquisition archetypes adapt the systems thinking
approach to describe the recurring patterns of counter-
productive behavior in software-intensive acquisition programs.
Each of the acquisition archetypes relates the story of a
real-world acquisition program that experienced the dynamic,
describes how that dynamic occurs on programs more generally,
provides a causal loop diagram that can be used to analyze
it, and recommends some of the ways the behavior can be
mitigated and prevented.

In the following sections three different acquisition archetypes
are discussed: Underbidding the Contract, Firefighting, and
the Bow Wave Effect. Each one is presented with a summary
description of the archetypes, accompanied by a causal loop
diagram that depicts the dynamic behavior. A fourth section gives
an example of how these archetypes can interact on a program.

Underbidding the Contract
In the “Underbidding the Contract” archetype shown in Figure

1, the use of the underbidding strategy to win contract awards is
successful, and a reinforcing behavior sets in that increases the
likelihood of future underbidding. While this approach may have

some negative outcomes such as a damaged corporate reputation
when the reality of the underbid becomes apparent, thus reducing
any remaining intention to produce accurate bids—the advantage
of having won the business may be enough to compensate for that.
This seeming success is likely to then encourage other contractors
to use the strategy themselves to stay competitive, because
accurate bids may not be as successful at winning business.

Figure 1: Overview of the “Underbidding the Contract” Dynamic2, 3

Figure 2: Overview of the “Firefighting” Dynamic4

CrossTalk—May/June 2014 15

THE IMMUTABLE LAWS OF SOFTWARE DEVELOPMENT

Firefighting
In the “Firefighting” archetype that is shown in Figure 2, when

a program has a target for the number of allowable defects in
the delivered system, and finds itself exceeding that threshold,
developers may be shifted from doing early design work on the
next release of the system to fixing defects in the current release—
which solves that problem. However, unless the total development
staff is increased, the lack of designers working on the next release
will unavoidably introduce problems into that release. When the
next release becomes the current release, it will have even more
defects, and the cycle will continue and worsen.

The Bow Wave Effect
The “Bow Wave Effect” archetype shown in Figure 3 shows a

pattern of decisions in spiral development which are intended to
improve visible progress by postponing riskier tasks in favor of
more straightforward tasks that have a higher likelihood of being
completed successfully in the near-term. While this approach
does improve apparent progress, a backlog of complex tasks
that have been deferred to a later spiral is building up like the
bow wave in front of a large ship. These tasks will eventually
have to be implemented at a time when more of the system has
been built, there is less flexibility to accommodate changes, the
program may be short on time and budget, and is less able to
mitigate the risks those complex tasks may pose.

Interactions Among Archetypes
Many of the acquisition archetypes are related to one another,

and may interact in predictable ways. In most actual programs,
multiple interconnected archetypes are seen playing out
simultaneously. The diagram in Figure 4 shows one possible set
of these interactions.

Initial schedule pressure is created from underestimating
effort (underbidding the contract) in order to win the contract.
As the schedule pressure increases, a decision is made to
delay some of the riskier tasks to be able to show better
initial progress to management (the bow wave effect), but in
actuality planting a time bomb that the program will trigger late
in the development lifecycle when there is no time available to
absorb the risk of those tasks. As the schedule starts to slip,
certain quality shortcuts begin to occur (missed code reviews,
etc.) as a way of reducing the workload and making up time.
The increased defects resulting from the weakened quality
processes inject new defects into the software—which add to
the workload and divert developers from development to bug-
fixing (firefighting). With diverted developers, productivity slows,
further increasing schedule pressure, and continuing the cycle.

Solving Problems
The primary value of the acquisition archetypes is that they

provide a model of the mechanism by which dynamic behaviors
occur in systems. Without a model, or with an incorrect model,
any proposed solutions to avoid or mitigate the behavior will not
address the true root causes, and will be ineffective at best—and
disastrous at worst. Lasting improvement will only come from
changing the underlying system structure. The causal loop
diagrams of the archetypes can be used to make explicit the
points at which the dynamic can be influenced so as to improve

Figure 3: Overview of the “Bow Wave Effect” Dynamic5

Figure 4: Diagram of Underbidding/Firefighting/Bow Wave Effect Archetypes

the typical outcome. With the aid of a causal loop diagram of
the situation there are various techniques that can be used to
mitigate adverse dynamics. Some of these described by the
authors and Daniel Kim are outlined below:

• Reverse the direction of the archetype: It may be possible
to turn negative (i.e., adverse) dynamics into positive ones by
“running them backwards” and making them beneficial.

• Slow unwanted reinforcing loops: This approach follows
the adage, “When you are in a hole, stop digging.” While this
approach will not eliminate the problem, it will help to minimize
the damage, and buy time.

• Accelerate desirable reinforcing loops: The idea here is
to make an already beneficial dynamic into one that has even
more positive impact.

• Change the value around which a balancing loop stabilizes:
In some cases what makes a balancing loop problematic is not

16 CrossTalk—May/June 2014

THE IMMUTABLE LAWS OF SOFTWARE DEVELOPMENT

its behavior per se, but rather the specific value around which it
stabilizes. In such cases we can change the equilibrium value to
be something more acceptable.

• Shorten the duration of a time delay: Make it easier to
manage the dynamic by bringing the cause and effect closer
together in time, to make the linkage between them more evident.

• Find points where a small input change can produce a large
effect: Because of a complex system dynamic known as the
“Butterfly Effect6,” small changes to the inputs of a complex,
dynamic system can drive large changes in the outputs. Look
for places in the diagram where small interventions can be
leveraged by the feedback.

• Identify instances of social dilemmas and apply
appropriate candidate solutions: Leverage prior solutions
that have been identified.

Applying these techniques to the example archetypes
described here provide some practical approaches to breaking
out of, or preventing the “Underbidding the Contract” archetype,
which include:

• Requiring full technical detail in the Request For Proposal,
 and thoroughly evaluating proposals

• Investing in, and trusting, a credible government cost estimate
• Establishing a new, realistic cost baseline and replan
• Restructuring the contract
• Looking for tip-offs that underbidding is occurring, such as

 staff productivity levels that are unrealistic
• Weighting the total technical value of the offer far above bid

 price in the proposal

Some possibilities for correcting and precluding the
firefighting dynamic include:

• Realizing that diverting resources to fix defects only
 alleviates the symptoms—not the underlying problem—and
 committing to fix the real problem, with good estimates and
 more staff

• Revising the plan and/or schedule
• Avoiding investments in new approaches (i.e., improving

 staff productivity) if the organization is already
 resource-constrained.

• Doing resource planning with a view across the entire
 project, rather than locally

Potential ways of mitigating or avoiding the “Bow Wave
Effect” archetype include:

• Stopping the use of expedient solutions, but doing so
 gradually, rather than all at once

• Identifying the root cause for choosing the expedient
 solution, and changing those incentives

• Considering only options that the organization can
 realistically handle

Beyond these approaches, the benefit of identifying a problem
as an instance of a social dilemma, such as the case of the
joint program described previously, is that there is a large set of
mitigations and solutions that has been developed to address them.

There are three categories of solutions to social dilemmas:
• Motivational: Encourage people to want to change their

behavior, because they are concerned about the possible
impacts of their actions on others

• Strategic: Give people a reason to change their behavior
that benefits themselves as well as the larger group

• Structural: The most difficult type to implement, the goal
is to change the rules of the situation so that people must
change their behavior—but this requires some level of authority
to implement it, can engender resistance, and may require more
expensive compliance enforcement

The motivational and strategic classes of solutions do not
require changing the fundamental structure of the situation, and
are thus simpler to implement, although potentially less effective
than a structural solution.

Motivational solutions, while generally having a lower cost,
work best when the participants have little self-interest, which is
rarely the case in larger-scale software acquisition programs.

A strategic approach would be to make small changes to the
incentive and reward structure of the program, such as improving
communications, and making negative behaviors more apparent.
While no single such change may significantly mitigate the problem,
the aggregate effect of many small changes taken together could
have a substantial positive impact. Strategic solutions, however, rely
on reputations in longer-term relationships, which are problematic
for shorter-tenure active duty servicemen.

The use of a central authority to manage the shared resource
(i.e., “commons”) at the heart of a social trap is a widespread
structural approach, especially in government and military
systems where such approaches are already frequently used.
However, this approach has unintended side effects such as the
incentive it provides to find creative “loopholes” in the mandate
(such as a broad interpretation of the definition of “compliance”
with the mandate).

There are many other solutions to addressing social dilemmas,
such as building trust, exclusion mechanisms, rewarding group
achievement (rather than just individuals), and assurance
contracts. The choice of the best solution will depend on the
specific circumstances surrounding the specific social dilemma.

Conclusions and Future Work
This paper has described a set of example acquisition

archetypes that underlie the problems faced by the acquirers
and developers of complex software-intensive systems, along
with a set of recommended approaches for resolving them.
The hope is that this set of acquisition archetypes will be
used to help improve acquisition program performance, and
that additional research work can be done to produce more
acquisition archetypes in the future.

In the future, as the relationships and dynamic effects within
programs grow more complex and interact, people will be less
able to model the feedback mechanisms of the organizations
in their heads to see what the larger emergent effects might
be. Fortunately, there are other ways to analyze counter-
productive patterns of behavior in programs. The SEI is

CrossTalk—May/June 2014 17

THE IMMUTABLE LAWS OF SOFTWARE DEVELOPMENT

exploring the development of system dynamics models
of software acquisition programs that can simulate the
behaviors of such programs. One potential application
for decision-making in acquisition programs is the
development of interactive educational tools such as
management flight simulators to help train acquisition
program staff to understand these types of situations
better, and thus be better equipped to manage them
more effectively.

Another possible application of such a computer
model is to answer a question frequently raised
by acquisition program leaders: “How will a given
change impact the program in terms of cost, schedule,
scope, and quality?” It is not feasible to conduct
experiments on larger-scale development efforts to
answer these kinds of questions. However, a general-
purpose, tailorable system dynamics model could
help answer such hypothetical “what if?” scenario
questions by providing a qualitative analysis of specific
program contexts. Such a decision-support tool
could improve the quality of key decisions made in
acquisition programs—where even small, incremental
improvements could provide better program outcomes
and substantially improved value and cost savings for
the Department of Defense (DoD).

While much more remains to be done to produce
better acquisition outcomes, it is hoped that the
approaches outlined here can be further developed and
applied more broadly to achieve that goal.

Disclaimers:
Copyright 2013 Carnegie Mellon University
This material is based upon work funded and

supported by the Department of Defense under Contract
No. FA8721-05-C-0003 with Carnegie Mellon University
for the operation of the Software Engineering Institute, a
federally funded research and development center.

NO WARRANTY. THIS CARNEGIE MELLON
UNIVERSITY AND SOFTWARE ENGINEERING
INSTITUTE MATERIAL IS FURNISHED ON AN “AS-IS”
BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO
WARRANTIES OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT
NOT LIMITED TO, WARRANTY OF FITNESS FOR
PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE
ANY WARRANTY OF ANY KIND WITH RESPECT
TO FREEDOM FROM PATENT, TRADEMARK, OR
COPYRIGHT INFRINGEMENT.

This material has been approved for public release
and unlimited distribution.

DM-0000226

NOTES
1. The original story of the “Tragedy of the Commons” envisions a group of 19th century herders sharing
 an area of grazing land called a commons. If one herder decides to graze an extra animal, then that herder
 receives more benefit from the commons than the others, and at no additional cost to himself. However,
 if all of the herders follow suit, and add more animals according to the same reasoning, they eventually
 reach the point where the grass is eaten faster than it can grow, the cattle begin to starve, and ultimately
 all of the herders lose their livelihood.
2. Causal loop diagrams show how system variables (nodes) influence one another (arrows). The effects
 of the arrows are labeled “S” for “Same” when both variables change in the same direction, or “O” for
 “Opposite” when the variables change in opposite directions. Loops formed by the arrows are labeled
 either “B” for “Balancing” when they converge toward a value, or “R” for “Reinforcing” when they
 continually increase or decrease. The term “Delay” on an arrow indicates an actual time delay.
3. This diagram is based on the “Shifting the Burden” systems archetype described in (Senge, 1990).
4. This diagram is the “Firefighting” dynamic described in (Repenning, Goncalves, & Black, 2001).
5. This diagram is based on the “Shifting the Burden” systems archetype described in (Senge, 1990).
6. The “Butterfly Effect” refers to the sensitivity of the outputs of a deterministic, nonlinear system to very
 small changes in the inputs. It was named by the mathematicion and meteorologist Edward Lorenz, and
 refers to the theoretical possibility of a hurricane forming as the result of a butterfly flapping its wings.

http://www.navair.navy.mil

18 CrossTalk—May/June 2014

THE IMMUTABLE LAWS OF SOFTWARE DEVELOPMENT

ABOUT THE AUTHORS
William E. Novak is a Senior Member of the Technical Staff
at the Carnegie Mellon University Software Engineering
Institute, with over thirty years of experience with
government software systems acquisition and real-time
embedded software. Mr. Novak held positions with GE
Corporate Research and Development, GE Aerospace, Texas
Instruments, and Tartan Laboratories. Mr. Novak received his
M.S. in Computer Engineering from Rensselaer Polytechnic
Institute, and B.S. in Computer Science from the University
of Illinois at Urbana-Champaign.

E-mail: wen@sei.cmu.edu
Phone: 412-268-7700

Andrew P. Moore is a Senior Member of the Technical
Staff at Carnegie Mellon University’s Software Engineering
Institute with more than 25 years of experience in mission-
critical systems modeling and analysis. He has worked for
the Naval Research Laboratory and has published widely,
including a book on insider cybersecurity threats. Andy
received a MA in Computer Science (Duke University), a
BA in Mathematics (College of Wooster), and a Graduate
Certificate in System Dynamics (Worcester Polytechnic
Institute).

E-mail: apm@sei.cmu.edu
Phone: 412-268-7700

Software Engineering Institute
4500 Fifth Avenue
Pittsburgh, PA 15213
(412) 268-7700

REFERENCES
1. Cross, John G. and Melvin J. Guyer. Social Traps. Ann Arbor: University of
 Michigan Press, 1980.
2. Firefighting. Dir. William E. Novak. Software Engineering Institute. 2012. Animated
 Short. <http://www.sei.cmu.edu/acquisition/research/archetypes.cfm>.
3. Forrester, Jay W. Principles of Systems. Pegasus Communications, 1971.
4. Hardin, Garrett. “Tragedy of the Commons.” Science 162 (1968): 1243-1248.
5. Kadish, Ronald. “Defense Acquisition Performance Assessment Report - Assessment
 Panel of the Defense Acquisition Performance Assesment Project.” 2006.
6. Kim, Daniel H. System Archetypes: Diagnosing Systemic Issues and Designing High-
 Leverage Interventions. Vols. I, II, & III. Pegasus Communications, Inc., 1993. 3 vols.
7. Kollock, Peter. “Social Dilemmas: The Anatomy of Cooperation.” Annual Review of
 Sociology 24 (1998): 183-214.
8. Madachy, Raymond J. Software Process Dynamics. Wiley-IEEE Press, 2008.
9. Meadows, Donella. Thinking in Systems: A Primer. White River Junction, VT: Chelsea
 Green Publishing, 2008.
10. Moore, Andrew P. and William E. Novak. “Modeling the Evolution of a Science
 Project in Software-Reliant System Acquisition Programs.” Conference of the
 Systems Dynamics Society. Boston, MA, 2013. <http://www.systemdynamics.org/
 conferences/2013/proceed/papers/P1029.pdf>.
11. Moore, Andrew P. and William E. Novak. “The Joint Program Dilemma; Analyzing
 the Pervasive Role that Social Dilemmas Play in Undermining Acquisition Success.”
 Proceedings of the 10th Annual Naval Postgraduate School Acquisition Research
 Symposium. Monterey, CA, 2013. <o http://www.acquisitionresearch.net/files/
 FY2013/NPS-AM-13-C10P01R07-036.pdf>.
12. Novak, William E. and Harry L. Levinson. “The Effects of Incentives in Acquisition
 Competition on Program Outcomes.” Proceedings of the Defense Acquisition
 University Acquisition Research Symposium. Ft. Belvoir, VA, 2012.
 <http://www.sei.cmu.edu/library/abstracts/reports/12tr001.cfm>.
13. Novak, William E. and Linda Levine. Success in Acquisition: Using Archetypes to
 Beat the Odds. Technical Report. Software Engineering Institute. Pittsburgh, PA,
 2010. <http://www.sei.cmu.edu/library/abstracts/reports/10tr016.cfm>.
14. Novak, William E., Andrew P. Moore and Christopher Alberts. The Evolution of a
 Science Project: A Preliminary System Dynamics Model of a Recurring Software-
 Reliant Acquisition Behavior. SEI Technical Report . Carnegie Mellon University.
 Pittsburgh: Software Engineering Institute, 2012.
15. Repenning, Nelson P., Paulo Goncalves and Laura J. Black. “Past the Tipping Point:
 The Persistence of Firefighting in Product Development.” Californial Management
 Review (2001).
16. Senge, Peter M. The Fifth Discipline. Doubleday/Currency, 1990.
The Bow Wave Effect. Dir. William E. Novak. Software Engineering Institute. 2013.
Animated Short. <http://www.sei.cmu.edu/acquisition/research/archetypes.cfm>.

mailto:wen@sei.cmu.edu
mailto:apm@sei.cmu.edu
http://www.sei.cmu.edu/acquisition/research/archetypes.cfm
http://www.systemdynamics.org/conferences/2013/proceed/papers/P1029.pdf
http://www.systemdynamics.org/conferences/2013/proceed/papers/P1029.pdf
http://www.acquisitionresearch.net/files/
http://www.sei.cmu.edu/library/abstracts/reports/12tr001.cfm
http://www.sei.cmu.edu/library/abstracts/reports/10tr016.cfm
http://www.sei.cmu.edu/acquisition/research/archetypes.cfm

CrossTalk—May/June 2014 19

THE IMMUTABLE LAWS OF SOFTWARE DEVELOPMENT

Robert Ball, Stephen F. Austin State University
David Cook, Stephen F. Austin State University
Michael Pickard, Stephen F. Austin State University

Abstract. One of the immutable laws of software evolution is that the developers,
along with the software, require sustainment. New college grads are typically drawn
to newer technologies and innovative mobile applications. The DoD has software
applications that have lifecycles measured in decades, rather than months. The DoD
has skilled developers and program managers who have years of valuable experience
in the development and sustainment of these long-lived software programs—and
these developers and managers are a valuable commodity that cannot easily be
replaced. With age comes wisdom, but also, with age comes inevitable decreases
in some skills. This article will summarize the effects of aging on computer use, and
discuss the proactive steps that can be taken to combat these negatives effects and
prevent a decrease in the effectiveness of computer usage skills due to age.

Combating the
Inevitable Aging
of Software
Developers

to create the impression that she was an old woman. Besides
extensive makeup she went to such lengths to act old that she
taped her fingers to better imitate arthritis and added restraining
devices to her back, hips, and legs to better imitate an old woman.

In the end she found that simply looking older makes a
dramatic difference in how people treat you. She visited 116
cities in 14 states and two Canadian provinces. She found
that with a few, subtle, subcultural exceptions, older people are
universally more ignored, thought more incompetent, and less
able to perform2.

There are additional reasons for not wanting to appear older.
While there are laws in place to prevent discrimination on the
basis of age, there are subtle actions that can result in older
workers being forced out of the workplace. For example, older
workers generally will command higher salaries as a result of
their greater experience; as a result, many hiring managers are
inclined to bypass these candidates because of budget consid-
erations. Additionally, there is a growing perception that older
workers represent a bigger risk to companies in lost productivity
due to medical problems and associated sick days.

Another phenomenon we are currently experiencing is a
growing divide in the demographics of the workplace. We now
have four generations in the workplace; the Millennials, born
between 1980 and 2000; the Gen X’ers, born between 1960
and 1980; the Boomers, born between 1943 and 1960; and the
Traditionalists, born between 1922 and 1943. The Millennials
have grown up with electronic devices and expect instant
gratification - they are very focused on technology. The X’ers are
technologically literate, but are very jaded, having grown up with
Watergate, the energy crisis, and Desert Storm. The Boomers are
very team oriented, but are also driven by a high need for personal
gratification. Finally, the Traditionalists are marked by dedication,
sacrifice, and a “duty before pleasure” attitude.

These differences may create situations in which generational
interactions and acceptance of new technologies in the
workplace could be difficult, possibly resulting in confrontations.
For example, Traditionalists and Boomers tend not to question
authority, but the X’ers and Millennials have been taught to
speak up and question authority. Indeed, the two younger
generations tend to value recent contributions (what have you
done for me lately?) and expect instant feedback, while the
older generations value historical contributions, and accept
annual (or no) feedback as the norm (no news is good news).
These differences can also show up when workers interact
with technology, as the Boomers and Traditionalists can be
highly resistant toward accepting changes in the form of new
technology3. While the Millennials and X’ers have different life
experiences and communicate with people differently than the
Boomers and Traditionalists, there is potential for synergism if
they can find ways to exploit those differences.

There are also certain physical and psychological things
that happen to us as we age. As we age, there is progressive
denaturation of the lens proteins, and the lens becomes thicker
and less elastic over time that produces a medical condition
called “presbyopia.” The result of those changes in the lens
is the loss of the ability to change its refractive power, so we
cannot change our focus from near to long distance. The

The Inevitable Aging Process
Since the dawn of human civilization man has been seeking

the fountain of youth. This insatiable desire to avoid aging has
not lessened in modern times. A quick look at plastic surgery
trends discussed in three sources gives us a general idea of the
desire to look better and younger. Note that the trends are for
2010, the most recent year of released statistics and refer only
to the United States1:

• Approximately $10.1 billion was spent on plastic surgery in
the year.

• There was a 77% increase in procedures from 2000 to 2010.
• Plastic surgery procedure demands increased almost 9%

from 2009.
• Approximately 13.1 million cosmetic procedures were

performed in 2010.
• Of those procedures, 48% were performed on individuals

between 40-54 years old and 25% on individuals 55 and older.

Clearly, people do not want to look older and for good
reason. Looking older makes people treat you differently. Pat
Moore, a renowned industrial designer and gerontologist spent
approximately three years disguised as an 85-year-old woman.
When she started her experiment she was only 26 years old.

Pat Moore learned from a professional makeup designer how

20 CrossTalk—May/June 2014

THE IMMUTABLE LAWS OF SOFTWARE DEVELOPMENT

refractive power of the lens gradually decreases from about
14 diopters in children to less than two diopters by the time we
are 50, and essentially zero diopters by age 70 where the eye
becomes fixed focus. This denaturation also affects the optical
clarity of the lens, reducing the amount of light transmitted to
the retina and distorting color perception as well4.

The Benefits of Mature Developers
Since our physical eyesight degrades as we age, we

would expect that younger adults would be able to read and
comprehend what they read faster. However, luckily this is
NOT the case. While it is true that older adults do not read at
the same speed as younger adults, what is also true is that
older adults usually read (and comprehend) faster5! Based on
crystallized intelligence, people read faster the older they get, as
long as they continue to read throughout their lifetime.

Crystallized intelligence is the ability to use skills, knowledge,
and experience and is related to verbal ability and the ability to
come up with strategies to complete tasks6. As long as a person
continues reading throughout his life (so that reading skills
do not degrade simply due to lack of practice), their reading
comprehension and speed also improves. Because of this, older
adults read faster in general than younger adults.

Fluid intelligence is the ability to deal with new situations
independent of acquired knowledge. Although both types of
intelligence increase during childhood and the teenage years,
fluid intelligence begins to decline between the ages of 30
and 40 (for most people). However, crystallized intelligence
continues to grow throughout adulthood and begins to decline
only very late in life.

In other words, an older person may not be able to learn how
to do something new as quickly as younger people because of
the youth-related advantage in fluid intelligence, but an older
person generally can perform a familiar task better and faster
than younger adults because of crystallized intelligence.

Do older adults read faster than younger adults on a computer?
It turns out that if the font size of the computer is sufficient for
the older person’s eyesight, then, yes, older adults do read faster
than younger adults from computers. In addition, what most
people do not realize is that reading from computers is not slower
than reading from paper these days. With today’s crisp displays,
reading from paper and from computers no longer provides a
statistical difference in performance. While reading speed may not
be statistically different, there is often a preference among older
workers to read from paper instead of computer screens. The
degree of preference is related to the amount of experience with
reading from computers versus paper7.

There are also a number of other benefits from using larger
displays. Using larger displays allows you to see more of the
data you are analyzing. Larger displays that show more data at
once have been shown to allow people to understand the data
faster and to a greater degree of comprehension8.

Coupling that research with the greater experience and
wisdom—crystallized intelligence—that comes with years of
working in industry produces a synergistic effect when you can
see more data at once. Being able to see more data at once
enhances the older person’s advantage over youth.

In addition, having a greater view of the data allows one to

see and comprehend the data in new and innovative ways. A
research study was performed in which expert video gamers
were asked to play the same strategic game on different sized
displays. They found that the larger the display, the better the
strategy the gamers were able to employ and the more they
won9. Is not “winning” at business often no more than simply
understanding the business data and coming up with better
strategies than other businesses?

Combating Age-related Skill Deterioration
There are always technological innovations to help productivity.

The problem is often that there are too many new technologies
to evaluate. A key point to remember about new technologies is
that there is a company behind every product. In addition, there is
usually a marketing team that works for that company that wants
to sell you the technology. The company wants you to think that
you have to buy the technology; they want you to think that you
cannot solve your problems without it.

There are several extremes that people tend to follow in
regard to technology. The first type we call The Hammer.
The Hammer is the person who is content to use a familiar
technology rather than learn another which might be better.

A famous quote often called the law of the instruments
is “If all you have is a hammer, everything looks like a nail.”10
Obviously one technology will not fit all needs, but this type of
person tries to accomplish all business tasks with the one piece
of technology he already knows.

A variant of the type of person that does not want to accept
new technology is The Self-Fulfilled Prophesier. The Self-
Fulfilled Prophesier believes that before they have seen or used
the new technology—regardless of what it might be—that they
will not be able to learn to use it. This person subconsciously
and consciously acts in ways that cause him to fail. They fail in
learning to use the technology and it reinforces their negative
view that they cannot learn new technologies. According to
psychology experts, this self-fulfilling failure often actually
makes the person happy that he failed11.

The other extreme is The Marketer. The Marketers embrace
all new technology simply because it is new. In our experience
they tend to follow one technology company more than others.
They absolutely must have any new technology that the
particular company introduces.

The Marketer always has the newest, fastest technology, and
will tell anyone that will listen why it is the best and why they
should buy it, too. In effect, they become an unpaid part of the
marketing team of that technology company.

The key to using technologies (both old and new) is to view
them as tools for accomplishing a particular task. New technolo-
gies come out constantly. If the technology is not useful in help-
ing one accomplish a task, then it is simply a toy to be played
with—but not useful technology. On the other hand, if a new
technology can be used to help you accomplish a particular task,
then the new technology becomes a useful tool.

It is not necessary for a person to learn to use every idea that
comes from technology companies. Some of these “new tech-
nologies” turn out to be nothing but a toy. On the other hand, it
is not wise to fear or ignore new technology. Some “new tech-
nologies”, when examined, become useful tools. It is also worth

CrossTalk—May/June 2014 21

THE IMMUTABLE LAWS OF SOFTWARE DEVELOPMENT

noting that these experiences are different for different people.
Some individuals will examine a new technology, and discard it
as worthless—it is only a vaguely interesting toy. Others, how-
ever, will find the new technology interesting and useful—a tool
that will multiple their productivity.

For these reasons, neither the Hammer, the Prophesier nor
the Extremist viewpoint is correct. Learn the tools that you
find useful to help fulfill your tasks and ignore all the toys that
accumulate around you. Of course, also be flexible, so that if one
of those toys turns out to have potential value, then you would
be willing to learn how to use them. The following are “tried and
true” technologies that can increase productivity and combat
any age-related decreases in certain skill areas.

Physical Adaptations: Monitors
As explained above, our eyes change as we age. Vision

declines with age in five dimensions: visual processing speed,
light sensitivity, dynamic vision, near vision and visual search12.

Increasing the size and quality of the monitor can alleviate
many of these declines. An aging 17-inch CRT monitor is no
match for a crisp, clear, bright 40-inch LCD monitor. Why stop at
40 inches? Why not move up to a 90-inch LCD monitor?

There are several reasons that bigger is not always better.
First, the cost of a 90-inch monitor approaches $5,000 or more.
A 40-inch monitor can easily be bought for less than $500.

Also, the size of the work area necessary for a 90-inch monitor
is not usually feasible due to the second reason—optimal viewing
distance. The recommended minimal viewing distance for a 90-
inch monitor is more than 8 feet! Indeed, a 40-inch monitor has a
minimal distance of 3 to 4 feet, depending upon the light source.
A reasonable 30-inch monitor, however, costs less than $250,
has a minimum viewing distance of 2—3 feet, and requires little
more room than the bulky 17-inch CRT.

Pixel density determines optimal viewing distance. Most
contemporary 90-inch monitors have approximately the same
number of pixels as a much smaller monitor, thus the larger
monitor shows the same amount of data, but the data is just
shown physically larger.

Another advantage of feature-rich newer LCD monitors includes
increased clarity and brightness of the display. Increased brightness
translates into small pupil size, providing increased “depth of
field” for aging viewers. This is why older persons typically need
a brighter reading environment than younger people—it gives
them increased clarity. In addition, the non-interlaced LCD display
provides a higher resolution (discussed below), helpful for watching
videos or browsing the Internet without the “flickering” that was part
of the CRT-era viewing experience.

Often, a more economical solution is to use multiple, smaller
monitors. Numerous studies have shown that use of more than
one monitor can drastically increase the productivity of people of
all ages. Studies confirm a clear pattern of improved information
processing. Using multiple monitors allows users to significantly
increase the amount of information they can process. Results
show that multiple monitors increase comprehension, and
that this increased comprehension leads to increased task
performance. Recent studies support the increased utilization of
multiple monitors13.

A suggestion on how to leverage the effectiveness of
multiple monitors is to use dedicated monitors for increased
productivity14. For example, email could always be on one
monitor, and word processing would be accomplished on
another. A popular approach is to use a monitor that rotates
for a document view (e.g. a traditional-sized monitor rotated 90
degrees, to resemble the size of a typical page of a document)
and another monitor, aligned the normal way, for email and
other tasks. It is worth noting that a rotating 27-inch monitor is
currently less than $200 and has an optimum viewing distance
of less than three feet. For less than $500 a dual monitor setup
of very high quality can be obtained.

The above studies suggest that the next time you upgrade
your computer system you may want to pay more on upgrading
your monitor(s) than your computer speed. When it comes down
to total task performance time, larger monitors can help you
accomplish your goals faster than a faster computer15.

Physical Adaptations: Increasing Readability
If you have a hard time reading from computer monitors,

there are a number of changes that you can make to your
environment to improve the situation. One option is to increase
the size of the text and icons on the display. The three most
popular operating systems (Windows, Macintosh, and Linux) all
permit the user to increase text and icon size.

In addition, you can also lower the screen resolution, which also
increases the size of what is shown. Lowering the resolution limits
the amount of data that can be displayed at a time, but it always
increases the size of all the data for easier viewing.

The aging user should also experiment with display brightness
and contrast to find the optimum setting that makes viewing
comfortable and effective. Note that on computers with multiple
monitors, each monitor can be set to a different brightness and
contrast, permitting one screen to be used for videos (lower
contrast) and one for document and email (higher contrast).
Some users might find that reducing color saturation (moving to
black-and-white or grey-scale) might be the optimum setting for
long-term textual viewing and editing.

One additional tactic that can be used to fight the effects
of aging on vision is increasing the size and “trail” of the
mouse and pointer icon. All operating systems allow for easily
increasing the size of the mouse, and changing the color to
make it more visible. Also, you can adjust the computer setting
so that the mouse leaves a “trail” as it moves, making it easy to
follow visually. On Windows systems one can set the mouse/
pointer icon to flash when the Control Key is pressed, making it
easy to find on a cluttered screen.

Often, aging computer users are faced with reading websites
or documents designed by those who have little understanding
of font legibility. Faced with a website in Comics Sans or one
written in PLAYBILL, decreasing visual acuity can hinder
understanding. Aging computer users need to be aware that
many, if not most, applications allow substitution of a more
legible font for one that is not readable. Research performed
on message legibility has not come to a clear conclusion as to
which factors make a font legible16.

Our advice to the aging computer user is to find a set of fonts
that allow for easy readability. Other features, such as font size

22 CrossTalk—May/June 2014

THE IMMUTABLE LAWS OF SOFTWARE DEVELOPMENT

and color, background, bold vs. non-bold, italicized fonts, etc.,
also affect readability. Different documents and types of com-
puter use might require different fonts and color settings. Do not
be afraid to experiment.

Physical Adaptations: Reduce Eyestrain
James Sheedy, director of optometric research at the Vision

Performance Institute at Pacific University Oregon, put computer
vision syndrome on the map two decades ago when he began to
publish scores of studies on computers and vision17. It has been
called a modern epidemic. Symptoms include eyestrain and
fatigue, double or blurred vision, dry or irritated eyes, and aches
in the head, neck and/or back (from improper head positioning).
What distinguishes this from more generic eye complaints is
that when the sufferer stops using a computer, the symptoms
tend to disappear or greatly subside.

One reason that many users have “computer vision syndrome”
is a simple one—many computer users either lack or have
incorrect glasses for continuous, close-in computer viewing.
A common mistake is to believe that bifocals will suffice. In
fact, bifocals will often not only cause eyestrain, but due to the
user constantly holding their head at a less-than-optimal angle,
neck strain will also result18. A simple visit to an eye doctor can
provide the computer user with glasses designed for computer
use. It has been shown by an University of Alabama study that
it is cost-effective for the employer to provide computer users
with eye care and specific glasses to prevent eye fatigue, with a
cost/benefit ratio of over 2:119.

Other possible adaptations to reduce eyestrain include20:
• Upgrade to glare-free lighting. Overhead fluorescent lights

should be indirect, or have louvers to diminish the brightness of
the light source. Avoid a high contrast between your computer
screen and room lighting by lowering bright light sources and
adding blinds to windows or adjusting the brightness of the
screen. Task lighting can help illuminate text if necessary. The
University of Alabama studies, above, have also shown that
florescent lighting is far superior to incandescent bulbs.

• Place your monitor straight ahead, an arm’s length away when
you are sitting in front of it, where you can view the middle of the
screen without tilting your head up or down. Position the monitor
perpendicular to windows, and keep your screen clean to reduce
blurred vision.

• Use corrective lenses that allow clear viewing of the screen.
That might mean a special pair of glasses that you use just for the
computer. (Bifocals and progressive lenses might cause you to tilt
your head back to see, which can lead to poor neck posture.)

• Take regular breaks. Follow “the rule of 20s”: Every 20 minutes,
stand up, walk to a window if you have one, and look 20 feet away
from your screen for at least 20 seconds. Note that such breaks
can be productive: they are an ideal time to make phone calls, catch
up on face-to-face meetings or review printed material.

• Blink often - it moistens the eyes. In one study, Sheedy21
found that computer users’ blink rate dropped 50 percent when
they were staring at a monitor (from 15 per minute to seven and
a half). This definitely contributes to dry eyes.

• Avoid squinting. This happens far more often than you may
realize because you cannot see the screen clearly (or the screen
is too bright) or because of glare. Another cause could be
improper vision correction. All of these can lead to eyestrain.

• One way to reduce eyestrain is to occasionally “sooth your
eyes.” Rub your hands together briskly to create heat, then palm
your eyes by placing the heel of your hands on your cheekbones
and fingertips in your hairline. Without pressing on the eyeball,
block out all light and allow the warmth to soothe the eyes. A
good eye exercise — for everyone — is to imagine a large clock
in front of you. Without moving your head or straining in any
way, let your eyes trace a slow clockwise circle, then a counter-
clockwise one. Close your eyes and rest them22.

Physical Adaptations: Ergonomics and
Physical Environment

Poor usage of the keyboard and mouse can lead to significant
medical problems (e.g., carpal tunnel syndrome). Many computer
users believe that switching to an ergonomic keyboard and an
alternative pointing device such as a trackball or a trackpad
will alleviate this problem. However, this is not universally the
case23. In fact, many ergonomic keyboards simply change the
musculoskeletal region exposed to risk, instead of eliminating
hazardous postures. Regardless, it is generally accepted that an
ergonomic keyboard minimizes the potential for carpal tunnel
syndrome, even though there are not any universally accepted
benefits. Proper posture and correct typing skills are most
likely equally effective. It boils down to which type of keyboard
enables the user to type faster and more accurately.

Alternative pointing devices likewise do not have clear advan-
tages in terms of preventing strain or injury. Nevertheless, they
have their place. Many computer users feel often that a trackball
or trackpad is not as tiring as using a mouse, especially after a
long period of use. However, there is a learning curve associated
with these alternative pointing devices; do not expect computer
users to become accustomed to them without a “break-in”
period. Another common solution is to switch the hand that you
use for the mouse. For example, it is not uncommon for some
people to alternate from one hand to the other every month to
alleviate any problems in that hand. Note, however, that there is
a steep learning curve for a person who has used their mouse
with their right hands for many years when they attempt to user
the mouse with their left hand. Personal experience on the part
of one of the authors (due to carpal tunnel syndrome) sug-
gests that it takes several months for “wrong-handed mousing”
to feel natural or be accurate. The author eventually learned to
use one hand for the mouse, and another for the trackpad—and
both now feel natural. It is possible that the brain is better able
to adapt to separate hands for separate pointing devices, but a
search of the literature has revealed no published evidence for
this.

Along with optimum viewing distance for monitors, one also
needs adequate space for keyboards and the mouse. The user
should not be cramped in terms of elbow room or room to use
the mouse. There should also be enough space for the user to
use the keyboard correctly24.

CrossTalk—May/June 2014 23

THE IMMUTABLE LAWS OF SOFTWARE DEVELOPMENT

Although most people are well aware of the more common
problems with keyboard ergonomics, there are many other areas
to consider as well. For example, one should sit on an adjustable
chair and raise or lower it until thighs are parallel to the ground.
This helps alleviate potential knee problems with chairs that are
too high or low. In addition, one of the easier solutions to neck
pain, besides good posture, is to have the top of your monitors
level or slightly lower than your eyes.

Last, as we age, our hearing tends to deteriorate, a condition
aptly termed “age-related hearing loss25” occurs. The small, tiny
speakers included in many laptops and desktop computers
no longer generate the desired volume (or acoustic clarity)
when such hearing loss occurs. Typically, a set of reasonably
inexpensive speakers (approximately $25) is all that is
necessary for the aging computer user to regain the ability to
hear computer-generated audio clearly. If working conditions
would make using speakers infeasible, a moderately inexpensive
set of headphones ranging from in-the-ear headphones at $10
to over-the-ear higher-quality headphones at $40 will make
listening to audio clearer, easier, and comfortable.

Summary
No matter how hard we try, developers grow older. There

is no miracle fountain of youth that will stop you from aging.
Fortunately, there is a silver lining to aging. Being older also
means having more experiences and usually greater wisdom.
Equipped with larger, crisper monitors and the greater
experience and wisdom that you have can be used to make
you even more valuable to your business as time goes on. The
increased value of crystallized intelligence can easily offset the
slight deterioration of fluid intelligence.

As a manager, do not expect your workforce to stay young.
Increase the productivity of your existing workforce by adapting
their environments to their needs. Do not expect the workers
to adapt to physical changes—instead provide an environment
that adapts to their individual needs. The important point is
that computer technologies are tools to help your developers
perform their job. Personalize your environment by adjusting
settings, using different devices, and other adjustments to
improve their performance, instead of letting the environment
restrict performance.

You should choose new technologies that will increase your
efficiency (such as larger monitors). Finally, do not overlook the
value of crystallized intelligence that will allow increased
performance from computer users in spite of advancing age.

ABOUT THE AUTHORS
Robert Ball, Ph.D. is an assistant professor of computer
science at Stephen F. Austin State University in
Nacogdoches, Texas. Dr. Ball obtained his doctorate at
Virginia Polytechnic Institute and State University. Previously,
he worked at Pennzoil and NuSkin as a software developer.
His current work has focused mainly on understanding how
to increase older adult productivity with computers.

E-mail: ballrg@sfasu.edu
Phone: 936-468-2508
Department of Computer Science
Stephen F. Austin State University
Nacogdoches, TX 75962

David Cook is Associate Professor of Computer Science
at Stephen F. Austin State University. He served 23 years
in the Air Force, teaching computer science and software
engineering at both the USAF Academy and AFIT. He
also worked as a consultant to the STSC for 16 years. His
fields of interest are software engineering, software quality,
and verification and validation of large-scale modeling and
simulations. His Ph.D. in computer science is from Texas A&M.

E-mail: cookda@sfasu.edu
Phone: 936-468-2508
Department of Computer Science
Stephen F. Austin State University
Nacogdoches, TX 75962

Professor Michael M Pickard is the current Chair of the
Department of Computer Science at Stephen F. Austin State
University. He holds a M.S. and a Ph.D. in computer science
and a B.A. in mathematics from Mississippi State University.
Before entering academia he had a 20 year career in the
computer industry, including nearly eight years as a USAF
officer. Software engineering is his principal area of interest.

E-mail: mpickard@sfasu.edu
Phone: 936-468-2508
Department of Computer Science
Stephen F. Austin State University
Nacogdoches, TX 75962

mailto:cookda@sfasu.edu
mailto:ballrg@sfasu.edu
mailto:mpickard@sfasu.edu

24 CrossTalk—May/June 2014

THE IMMUTABLE LAWS OF SOFTWARE DEVELOPMENT

1. There are various statistics on cosmetic surgery. The three primary sources that we
 used are from The American Society of Plastic Surgery, www.plasticsurgery.org,
 Plastic Surgery Resaerch.Info, <www.cosmeticplasticsurgerystatistics.com>, and
 general trends from The Guardian, <www.guardian.co.uk/news/datablog/2011/
 jul/22/plastic-surgery-medicine>.
2. P. Moore and C. Conn “Disguised: A True Story” (Word Books, 1985).
3. See for example, R. Zemke, C. Raines, and B. Flipczak. “Generations at Work:
 Managing the clash of Veterans, Boomers, Xers, and Nexters in Your Workplace,”
 (AMACOM Books, 2000); L. Lancaster and D. Stillman, “When Generations Collide,”
 (Harper Collins, 2002).
4. See for example, A. Guyton, and J. Hall, “Textbook of Medical Physiology.
 10th ed.,” (Saunders, 2000): 566-77; R. Watanabe, “The Ability of the Geriatric
 Population to Read Labels on Over-the-Counter Medication Containers,” Journal of
 the American Optometric Association, Volume 65 (1994): 32-37.
5. R. Ball and J. Hourcade, “Rethinking Reading for Age from Paper and Computers,”
 (International Journal of Human-Computer Interaction. Volume 27, issue 11, 2011),
 pp. 1066-1082.
6. R. Cattell “Intelligence: Its structure, growth, and action” (Elsevier, 1987).
7. R. Ball and J. Hourcade, “Rethinking Reading for Age from Paper and Computers,”
 (International Journal of Human-Computer Interaction. Volume 27, issue 11, 2011),
 pp. 1066-1082.
8. R. Ball and C. North, “Realizing Embodied Interaction for Visual Analytics through
 Large Displays,” (Computers & Graphics (C&G) Special Issue on Visual Analytics,
 Volume 31, issue 3, 2007): 380-400.
9. A. Sabri, R. Ball, S. Bhatia, A. Fabian and C. North, “High-Resolution Gamin
 Interfaces, Notifications and the User Experience,” (Interacting with Computers
 Journal. Volume 19, issue 2, March 2007): 151-166.
10. A. Maslow “The Psychology of Science” (Gateway Editions, 1966): 5.
11. D. Burns “The Feeling Good Handbook” (Plume, 1999).
12. A study by (Klein, et al. 1992) D. Klein, et al.., “Vision, Aging and Driving: The
 Problems of Older Drivers,” (Journal of Aging and Gerontology, Volume 47,
 Issue 1, 1992): 27 - 34.

13. For example, see R. Ball and C. North, “An Analysis of User Behavior on High-
 Resolution Tiled Displays.” in Tenth IFIP International Conference on Human-
 Computer Interaction (INTERACT 2005), pp. 350-364; D. Tan, M. Czerwinski,
 and G. Robertson, “Large Displays Enhance Optical Flow Cues and Narrow the
 Gender Gap in 3D Virtual Navigation,” Human Factors: The Journal of the Human
 Factors and Ergonomics Society (2006).
14. R. Ball and C. North, “An Analysis of User Behavior on High-Resolution Tiled
 Displays.” in Tenth IFIP International Conference on Human-Computer Interaction
 (INTERACT 2005), pp. 350-364.
15. R. Ball, “Upgrading Human Performance, Not Computer Performance”, Graziadio
 Business Report. Volume 13, issue 1 (January 2010).
16. Bix, L. (2002). The Elements of Text and Message Design and Their Impact on
 Message Legibility: A Literature Review. Journal of Design Communication, No. 4.
17. J. Sheedy. Focus on computer-generated eye problems. Occupational Health &
 Safety 64(6), 46-50, (1995)
18. E. Pascarelli M.D. and D. Quilter Repetitive Strain Injury: A Computer User’s Guide.
 Wiley (1994)
19. K. Daum, et. al., Productivity associated with visual status of computer users.
 Optometry. 2004 Jan;75(1):33-47.
20. E. Pascarelli M.D. and D. Quilter (1994). There are many similar checklists available,
 but this checklist, from Quilter, can be found at <http://www.nextavenue.org/
 article/2012-01/your-computer-killing-your-eyes>
21. J. Sheedy, et. al., Blink rate decreases with eyelid squint. Optom Vis Sci. 2005
 Oct;82(10):905-11.
22. There are multiple sources for advice on how to prevent eyestrain. The Occupational
 Safety and Health Administration has compiled one such list, available at <http://
 www.nextavenue.org/article/2012-01/see-light-prevent-eyestrain-while-computer>
23. M. Fagarasanu and K. Shrawan, “Carpal tunnel syndrome due to keyboarding and
 mouse tasks: a review,” International Journal of Industrial Ergonomics (2003)
24. There are a number of resources available for the reader to check keyboard
 ergonomics. For example, <www.healthycomputing.com/office/setup/keyboard>
25. R. Patterson et al., “The deterioration of hearing with age: Frequency selectivity, the
 critical ration, the audiogram, and speech threshold,” Journal of the Acoustical
 Society of America, Volume 72, Issue 6 (1982): 1788—1803.

NOTES

CALL FOR ARTICLES
If your experience or research has produced information that could be useful to others,
CrossTalk can get the word out. We are specifically looking for articles on software-

related topics to supplement upcoming theme issues. Below is the submittal schedule for
three areas of emphasis we are looking for:

Software Engineering Tools and the Processes They Support
Nov/Dec 2014 Issue

Submission Deadline: June 10, 2014

Software Education Today
Jan/Feb 2015 Issue

Submission Deadline: Aug 10, 2014

Test and Diagnostics
Mar/Apr 2015 Issue

Submission Deadline: Oct 10, 2014

Please follow the Author Guidelines for CrossTalk, available on the Internet at
<www.crosstalkonline.org/submission-guidelines>. We accept article submissions on

software-related topics at any time, along with Letters to the Editor and BackTalk. To see
a list of themes for upcoming issues or to learn more about the types of articles we’re

looking for visit <www.crosstalkonline.org/theme-calendar>.

http://www.plasticsurgery.org
http://www.cosmeticplasticsurgerystatistics.com
http://www.guardian.co.uk/news/datablog/2011/jul/22/plastic-surgery-medicine
http://www.guardian.co.uk/news/datablog/2011/jul/22/plastic-surgery-medicine
http://www.nextavenue.org/article/2012-01/your-computer-killing-your-eyes
http://www.nextavenue.org/article/2012-01/your-computer-killing-your-eyes
http://www.nextavenue.org/article/2012-01/see-light-prevent-eyestrain-while-computer
http://www.nextavenue.org/article/2012-01/see-light-prevent-eyestrain-while-computer
http://www.healthycomputing.com/office/setup/keyboard
http://www.crosstalkonline.org/submission-guidelines
http://www.crosstalkonline.org/theme-calendar

CrossTalk—May/June 2014 25

THE IMMUTABLE LAWS OF SOFTWARE DEVELOPMENT

Andrew Mellinger, SEI

Abstract. We live in world that will always be full of problems. Changing conditions
and advances in science and current solutions are constantly providing even more
opportunities daily. While these areas may share similarities to previous problems,
the essential fact that they have not been solved means that creativity is required
to provide a new solution. It is this need for creativity that prohibits machine and
algorithms from dealing with this issue and that we will need a programmer to
translate these solutions into executable form.

Programming
Will Never
Be Obsolete

degree to which they directly interact with code. Programming
is the activity that is closest to the code, while engineering is
generally the farthest. Programming is where the developer
picks and chooses from the available technologies, patterns,
accumulated practices, techniques and their experience to “best”
satisfy the complex interaction of requirements.

It is this fundamental interaction with the code that
differentiates the actual act of programming from other
activities. Programming should be not conflated with the
physical act of typing, but equated with the “last mile” of actually
coding, or expressing the intent in an executable language.
Some would argue that this is simply a translation process,
but for anyone who has worked on a project of substantial
size, it is much more. In simple natural language translation the
input and outputs of both are at the same semantic level. For
example, if I am translating “My hovercraft is full of eels” from
English to Swedish, I am trying to say the exact same thing in
both languages. In programming there is a change of semantic
level. For example, the requirement may be to “support undo”
which implies a variety of user interface interaction points,
interactive behaviors, and changes to storage semantics. One
may argue that undo is a complicated concept and should not
be handed to a “programmer” but in practice projects frequently
hand problems of this complexity to a developer, or the person
who is touching the code. Modern frameworks have a lot of
infrastructure to support complex patterns like undo, but there
are still a wide variety of decisions to be made by the developer
with regards to the domain specifics.

Eras in Technology
Technologies rise and fall in popularity, and while they drive

business growth they also require a tremendous amount of
programming. New technologies arrive with a bang and drive the
economy for some period of time through tooling, employment,
and products. These periods, or “eras,” vary in size, length, and
overall impact. Eras overlap with those of other technologies
such as different languages, software platforms, hardware
architectures, peripherals, and development methods that
draw an incredible amount of innovation. Consider the iPhone,
which was introduced in 2007 and opened up new economic
and technological markets. At that time there was a huge
demand for Objective-C/Cocoa programmers and people who
understood the special nuances of mobile device interaction
and their interfaces. The iPhone impact had a ripple effect
through the tech industry and ushered in Android technology,
which introduced an increased demand for Android/Java
programming. Then the tablet arrived and created a tablet/
phone hybrid tsunami.

During each technological era we see cutting edge
technologies move from the inventors and innovators to
early adopters and eventually adoption by the masses. Most
successful eras possess similar qualities such as a wealth of
new ideas, financial investment, fierce competition, and general
uncertainty. How does a developer live through this cycle?
We are bombarded by a wealth of new technologies touted
by vendors, researchers and volunteer communities. Which
do we choose to learn? What do we follow? It is impossible to

Programming Is and Always Will Be Important
We have all heard the argument that programming will be-

come obsolete. Notions like “it is a dead end career” or “salaries
will drop” are constantly plaguing the viability of the field. A
quick web or periodical search will return articles on the topic
from at least as early as 1984, and there are new ones being
posted every day. They range from scholarly articles such as,
“Can fifth-generation software replace fallible programmers?” to
modern blog posts that cut to the chase, “Is Programming Really
as Future Proof a Profession as People Think?” [1] [2].

The issue is raised for a variety of reasons, some of which
are honest and some are disingenuous. I prefer to focus on the
genuine concerns of developers, technologists, and academics
that the end of programming and their careers will be brought
on by automating programming tasks or the end of a particular
technology on which they depend. I will ignore disreputable claims
that the problem can be solved by adopting a certain vendor’s
technologies or getting particular platform certifications.

Often, people will see a decline in a particular technology or
method and will prophesize the fall of programming generally,
rather than as it pertains to the specific technology. The need
for programming may decline for programmers near the end of
a specific technology’s lifecycle, but the general technological
challenges are moving targets, and therefore, we will always
have new problems.

When discussing programming, some people are referring
to the act of typing in the code, and some mean the entire
software development lifecycle. This article includes all aspects
of development and will use development (developer) and
programming (programmer) synonymously. Programming,
development, and engineering are highly related activities but
focus on different dimensions of the overall software production
process. The difference between these high level activities is the

26 CrossTalk—May/June 2014

THE IMMUTABLE LAWS OF SOFTWARE DEVELOPMENT

review, much less understand every language, framework, tool
or platform that arrives and we need to choose some that keep
us fresh and might help our current job. At some point in each
technological era, the cutting edge becomes not so sharp and
the leaders are identified. This is the time period that makes it
easier to choose which technologies you should learn and adopt.
Eventually, the era progresses to the point where the technology
area enters the mainstream. This is when we typically see the
publication of books on the subject, and finally the emergence
of the “standard” technologies, protocols, or methods.

Over time these technologies become commonplace when
point-and-click tools, or off the shelf packages that are suitable
for a vast majority of the instances. As is a programmer’s nature,
when we see something that is “routine” we write a script or app
or framework to do it faster, cheaper, and better. This is when
you will see a decrease in the need for the specialized skills and
training of a programmer. However, this will also usher in its own
set of doomsayers and charlatans. What is becoming “obsolete”
or in less demand is the need for a particular set of skills, not for
technology problem solvers.

The Programmer’s Role
When I interview people for programming positions, I divide

them into two categories: programmers who focus on a particular
technology and programmers who focus on the underlying
principles of technology. A programmer that advertises themselves
as an “insert-favorite-technology-here developer” instead of as a
“software developer” is more likely to learn one or two skills the
market needs and work exclusively within those roles. I refer to
this type of programmer as a “technician” as opposed to a “general
purpose developer.” The technicians are often the people who
argue that their favorite technology is the solution to all of your
problems. While they may be masters at that technology (or a
handful of them), their fate is inevitably tied to it. Do not get me
wrong, these can be tremendously creative, talented, and smart
people, but they have a very limited focus. When that technology
declines they will find themselves having difficulty finding work and
will blame it on the fact that “programming is dying” when in reality
they have not stayed relevant.

General purpose developers are not tied to a technology,
they have tied to technology. They get bored working with just
one technology, which is good. This drives them to attempt to
automate things and make technology cheaper, faster, and
better. These developers are ready to move to new languages
or platforms as they become available because they are not
focused on one technology. Development requires decision
making and creativity, which are two things we cannot automate.
Granted, general developers may become focused (sometimes
obsessively so) on a technology for a while, but eventually
find the need to tie their work to a general computing and
technology problem. The ability for programming generalists
to be creative and apply fundamental programming principles
to build new technologies is the cornerstone that continues to
make them cutting-edge and essential to business growth.

Fundamentally, computers are good at doing what we tell
them to do. This means that someone must understand what

we want them to do in the first place. A software developer’s
fundamental job is to take knowledge and make it “executable”
or “actionable.” The job also requires discovery of this knowledge
through requirements definition, usability studies, domain
analysis and prototyping. Software architecture, design, and
coding all require a significant amount of analysis, reasoning,
and decision making. Consider that so many companies want
their developers to provide “revolutionary” products, and we can
see that creativity will be a requirement for years to come.

Essentials of Programming
We will not run out of problems to solve. Whether they are core

research problems or applying some set of solutions to a particular
job, we need to look at what the essential qualities of programming
are and why they will persevere. Even if we create a solution to a
problem, the solution itself is likely to create new problems.

In “No Silver Bullet—Essence and Accident,” Fred Brooks
argues that software development is so challenging that it will
require human intellect for a long time due to four fundamental
qualities: complexity, conformity, changeability and invisibility [3].
These qualities have not changed since he wrote the article over
25 year ago, and do not seem likely to change. It is these same
qualities that we are trying to use technology to solve, but it is
technology that keeps moving the problem ahead of our solutions.

On the implementation side alone, as we continue to discover
and learn more, we will always need someone to translate that
knowledge from the domain into something executable. We will
always need someone to fill that gap as there will always been
that point where a person can make an executable representation
but where it is not routine enough to automate. We will always
be encountering new problems and the sheer nature that they
are new problems means they have not been solved. Certainly,
many problems in that class may have been solved by many long
nights by developers, but not the general problem itself. Even
when reusable patterns exist such as a framework, technicians
will be required to encode a specific instance such as a particular
website or cloud instance for that problem.

When we take all of this into consideration, programming as a
creative work will cease to be needed when we have automated
all other creative knowledge work. We are more likely to make
lawyers, insurance salesman, or politicians obsolete before
programmers. One could argue that in the very far future once
we have discovered everything and can finally automate the very
last thing, that last job will be for a programmer.

Being a Developer in the Future
So what will programming be like in the future? At its core,

it will be like it is now. Developers will work to understand the
domain, do general problem solving and knowledge creation and
then instruct machines on how to execute these solutions. They
will need all the skills of the general developer and some under-
standing of their domain. And they will need to be able to learn
and adapt. Marc Andreessen argued in “Why Software Is Eating
the World” that as more and more things include a software
component, general software developers will always have new
problems to tackle [4].

CrossTalk—May/June 2014 27

THE IMMUTABLE LAWS OF SOFTWARE DEVELOPMENT

What are the next possible technology areas? A quick glance at
the Gartner Hype Cycle can help us prepare [5]. Mobile and cloud
technologies are well underway, but that space is very broad and
deep with tremendous needs of usability, security, and big data.
We have barely scratched the surface with autonomy, ubiquitous
computing and the broad application of 3D printing; much less
the ones further out such as nanotechnology or biotechnology.
Some of these are not computing problems, at least how we
know it now, but will certainly require “programming” of some
sort. One can peruse modern science fiction to see how a
programmer’s world might be different in the years to come.

We live in a world that will always be full of problems. Chang-
ing conditions and advances in science and current solutions are
constantly providing even more opportunities daily. While these
areas may share similarities to previous problems, the essen-
tial fact that they have not been solved means that creativity is
required to provide a new solution. It is this need for creativity that
prohibits machine and algorithms from dealing with this issue and
that we will need a programmer to translate these solutions into
executable form. On the other hand, the specific technologies
will change as we routinize these tasks and climb the abstraction
ladder. Because of this, specific programming and programmers
may become obsolete, but new problems will always require new
solutions and general programmers to implement them.

Disclaimer:
Copyright 2013 Carnegie Mellon University

This material is based upon work funded and supported by
the Department of Defense under Contract No. FA8721-
05-C-0003 with Carnegie Mellon University for the operation of
the Software Engineering Institute, a federally funded research
and development center.

Any opinions, findings and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect
the views of the United States Department of Defense.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY
AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE
MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY
OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT
MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

This material has been approved for public release and
unlimited distribution.

Carnegie Mellon® is registered in the U.S. Patent and
Trademark Office by Carnegie Mellon University.

DM-0000806

ABOUT THE AUTHOR
Andrew Mellinger is a member of the
technical staff at the SEI. His passion for
computing started at age 12 when he wrote
his first commercial piece of software for
the company where his father worked. He
currently focuses on data intensive scalable
computing, security informatics, cloud
computing, and adaptive and heterogeneous
architectures.

Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh, PA 15213-2612
Phone: 412-268-5800
Toll-free: 1-888-201-4479
<www.sei.cmu.edu>

REFERENCES
1. Philips, R. Can fifth-generation software replace fallible programmers?
 Computerworld, v 18, n 29, 1D/27-30, 16 July 1984
2. Perry, Jon; Kupper, Ted Is Programming Really as Future Proof a Profession
 as People Think? Accessed November 2013
 http://declineofscarcity.com/?p=2557
3. Brooks, Frederick P. No Silver Bullet: Essence and Accidents of Software
 Engineering. IEEE Computer, vol. 20, pp 10-19, 1987
 <http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp>
4. Andreessen, Marc. Why Software Is Eating The World August 2011. <http://online.
 wsj.com/news/articles/SB10001424053111903480904576512250915629460>
5. Gartner, Inc. Last accessed November 2013

http://declineofscarcity.com/?p=2557
http://www.sei.cmu.edu
http://www.gartner.com/technology/research/methodologies/hype-cycle.jsp
http://online.wsj.com/news/articles/SB10001424053111903480904576512250915629460
http://online.wsj.com/news/articles/SB10001424053111903480904576512250915629460

28 CrossTalk—May/June 2014

THE IMMUTABLE LAWS OF SOFTWARE DEVELOPMENT

For instance, if there is a relationship between quality, cost
and schedule, then which one is the best independent variable
to use in managing the contract? There are three choices:

• cost as an independent variable
• schedule as an independent variable
• quality as an independent variable

Which is the best to use? How do we answer that question?
In what follows a specific simple model is explored to dem-

onstrate how to answer this question. The concepts generalize
for more complex models. The chosen model is causal rather
than empirical. That is an important distinction because causal
models more easily identify how specific actions drive results in
the overall project performance. That makes clear that program
decisions are controlling the program by directly addressing
causes to produce predictable results.

Mathematical Foundations
For linear functions, the choice of which variable to use is a

matter of convenience. Not so for curves and more complex
functions. It is important that the dependent variable be well
behaved when represented as a function of the independent
variables. First of all, one should pick an independent variable
for which the dependent function is single valued, and sec-
ondly the dependent variable should be well conditioned with
respect to the independent variable—it should change smooth-
ly and proportionally to small changes of the independent
variable. For one-dimensional functions of a single variable, the
answer is described by the slope of the function; the function
should not have spikes and other singularities near the point of
optimum performance.

The example model analyzed here is a simple model for a
single sequential process flow with a series of developmental
tasks that affect the quality and cost of the end product in a
traceable way. For more complex situations, it is necessary to
consider the condition number.3 The condition number is the
ratio of the maximum to minimum eigenvalues of the matrix of
the first derivatives of the dependent functions with respect to
the independent variables—the Jacobian Matrix. (This is a direct
application of the inverse function theorem and the definition of
condition number for linear systems.)

Schedule is too complex to discuss at the necessary level
of detail; it would easily take a whole book, so it will not be
treated directly here. Heuristically, for small enough changes
in the independent variables, schedule can behave simply. To
see this, consider a staffing curve consisting of intervals with
constant staffing. Fixed costs will be irrelevant to the marginal
analysis that follows. Since marginal cost for applied labor is
roughly schedule times labor rate, we can conclude that Cost
and Schedule have a more or less piecewise linear relationship
and are thus more or less interchangeable in a sufficiently
small neighborhood of the operating point. Of course that
does not mean that schedule is easy to manage over the life
of the project because that simplification does not help when
changes become large or discontinuous such as when the

Bob McCann, Lockheed Martin Aeronautics

Abstract. Many of the behaviors and adverse outcomes that we see in software-
intensive programs are the result of “misaligned incentives” between the goals of the
individuals involved and those of the larger organization. These interact and play out
in recurring dynamics that are familiar to both software developers and managers, but
which are still poorly understood. By characterizing the forces within these dynamics
explicitly in the form of the “acquisition archetypes” described in this paper we can
come to understand the underlying mechanisms that cause these problems, and
identify mitigations to help mitigate and prevent them.

Identifying Good
Independent Variables
for Program Control

Abstract
There is an important distinction between program control

and program tracking. Control is predictive and proactive using
a causal production model that clearly identifies input variables.
Tracking is outcome based and decisions based on tracking are
reactive and uses output measures. This article analyzes one
such causal model and uses it to identify the limits of control
(what you can and cannot accomplish with the identified control).
The purpose here is to demonstrate how to pick a good control
variable from the set of variables derivable from the model.

Introduction
To set expectations, the purpose of this article is to design

a better brick not to build a subdivision. In what follows, it is
important to distinguish control variables from tracking and
oversight metrics. Tracking and oversight metrics are always after
the fact, lagging indicators. Control variables are always predictive
variables—specifically ones that are open to adjustment. It is
also important to distinguish causal models from empirical ones.
Causal models make a clear quantitative link between causes
and effects while empirical models show general trends without
regard to causality and detailed understanding of production
processes. Causal models are useful for controlling individual
process flows. Empirical models are generally useful for bounding
the cost and schedule estimates for proposals before the detailed
production processes have been chosen or designed.

Given what we know about delivering products and services
using defined, repeatable processes1, how do we pick the best
controls for the project? Surprisingly, the answer comes from
basic mathematical concepts. Answer: Pick the variables with
the best condition numbers, but what does that mean? The idea
is that the process output should be single valued and behave
smoothly with respect to small changes in the control variables;
in short the process output measure should be a smooth math-
ematical function of the inputs2. This article will demonstrate
the application of that principle to a simple causal cost-benefit
model.

CrossTalk—May/June 2014 29

THE IMMUTABLE LAWS OF SOFTWARE DEVELOPMENT

workflow on a PERT network shifts from one critical path to
another. In general, it takes sophisticated analysis using a
robust professional quality-scheduling tool such as Primavera or
Artemis to manage the critical path and the most likely near-
critical paths of the project’s PERT Network. That complexity
often obscures the simple relationship that follows from looking
at the relationship between cost and quality for individual
process flows.

How Does Quality Qualify?
What about quality? With respect to quality, in the example

model, marginal cost can be expressed as a linear function of
defect injection rate4 and a non-linear function of document review
preparation rate.5 When plotted as a function of preparation rate, it
is clear that the function has a single minimum6, see Figure 1. This
choice meets the criteria identified above.

However, expressing quality as a function of cost is generally
double valued and has a point of infinite slope at the cost mini-
mum (the Functional inverse near points with a vertical slope is
very poorly conditioned). Clearly, per Figure 2 and starting from
the right, there is a region with two possible operating points—
one with high quality and one (more likely) with lower quality.
Then there is a point with a single optimal operating point and
vertical slope, and last there is a region with no solutions. Clearly
using cost as the independent variable creates a situation that
is poor from the program control perspective—a multivalued
relationship on the high cost side of the optimum cost point,
a point of infinite condition number at the point of optimum
performance, and a region with no stable solution on the lower
side of the cost optimum. Programs managed by cost control
while under cost pressure have a clear risk of driving off the cliff
into chaos.

Please remember that program control is not the same
as progress tracking. For example using Earned Value to
track progress against budget and Earned Schedule to track
progress against schedule both clearly have value but cannot
be effective program controls at the task level on individual
process flows because Earned Value is a non-causal tracking
model. Managing the quality control variable (document review
preparation rate) is a much more effective approach to program
control for individual process flows at the task level.

Conclusion
Thus, for the example cost-benefit model for a single

process flow, we can conclude that of the three discussed, cost,
schedule and quality, the best independent variable is quality
as represented by the document review preparation rate. This
is an example of what kind of analysis supports the decision of
what control parameter to use proactively (leading indicator) in
program control. The basic requirement is a quantitative, causal
model with measurable, adjustable parameters for the known
causes of variation rather than an empirical descriptive scaling
model. The ones with the best functional behavior are the ones
to use. Heuristically in the following figures, the right answer
smiles and the other turns everything on its side and sticks its
nose into chaos where it doesn’t belong.

Disclaimers:
Copyright 2013 Lockheed Martin. Non-Export Controlled.

Releasable to Foreign Persons. Non-Proprietary Information.

0	

2	

4	

6	

8	

10	

12	

0	 0.5	 1	 1.5	 2	 2.5	 3	 3.5	

Co
st
	

Document	 Review	 Preparation	 Rate	 (1/Quality)	

Cost	

Cost	

Cost	 is	 a	 well	 behaved	 function	 of	 Quality	 because	 	
each	 preparation	 rate	 speci@ies	 a	 unique	 predictable	 cost	

0	

0.5	

1	

1.5	

2	

2.5	

3	

3.5	

0	 2	 4	 6	 8	 10	 12	

D
oc
um

en
t	 R
ev
ie
w
	 P
re
pa
ra
ti
on
	 R
at
e	
(1
/Q
ua
lit
y)
	

Cost	

Document	 Review	
Preparation	 Rate	

Prep	 Rate	 (1/Quality)	
Quality	 is	 a	 poorly	 behaved multivalued function	 with	 Cost	 as	 the	 independent	
variable	 	 because	 Cost	 generally	 does	 not	 specify	 a	 unique	 preparation	 rate	

Low	 Quality	 Branch	

High	 Quality	 Branch	

Two	 Solutions:	
Expect	 Low	 Quality	

Results	

No	 Solutions:	
Chaotic	 	

Performance	

Unique	 	
Optimum	

Figure 1 Cost as a Function of Document Review Preparation Rate
(Dimensionless Scales)

Figure 2 Document Review Preparation Rate as Related to Cost
(Dimensionless Scales)

30 CrossTalk—May/June 2014

THE IMMUTABLE LAWS OF SOFTWARE DEVELOPMENT

ABOUT THE AUTHORS
Bob McCann is a staff systems engineer
at Lockheed Martin Aeronautics in Fort
Worth, Texas. He is currently an Institute
of Electrical and Electronics Engineers
Certified Software Development
Professional and has nearly 20 years of
experience in computational physics and
high performance computing including
nine years at Princeton Plasma Physics
Laboratory working in the U.S. Department
of Energy-controlled fusion program, as
well as about 10 years experience in design
and development of relational databases
of various kinds. Mr. McCann has served
as a member of the Lockheed Martin IS&S
Metrics Process Steering Committee and
currently works on improving systems
engineering processes, methods, and
metrics. He has also studied Aikido since
1982 and has taught Aikido for 20 years.

He has a Bachelor of Arts in physics
with a concentration in mathematics
from Shippensburg University, a Master
of Science in physics from University of
Maryland, a Master of Science in computer
science from Southwest Texas State
University, and a Master of Science in
computer systems management/software
development management at the University
of Maryland University College.

Lockheed Martin Aeronautics
P.O. Box 748, Mail Zone 2893
Fort Worth, Texas 76101
Phone: 817-935-4037
Fax: 817-935-5272
E-mail: bob.mccann@lmco.com

1. Process based organizations can be very predictable and deliver high quality
 products and services at low cost. Such organizations can use an assessment tool
 such as the CMMI Institute’s Capability Maturity Model Integrated to understand
 how well they are organized and how effective that structure can be (can do
 everything it needs to do). However, measuring performance is the organization’s
 responsibility and is not an explicit part of the assessment model.
 <http://cmmiinstitute.com>
2. See <http://en.wikipedia.org/wiki/Function_(mathematics)>: In mathematics
 <http://en.wikipedia.org/wiki/Mathematics>, a function <http://en.wikipedia.
 org/wiki/Function_(mathematics)#cite_note-1> is a relation <http://
 en.wikipedia.org/wiki/Binary_relation> between a set <http://en.wikipedia.org/
 wiki/Set_(mathematics)> of inputs and a set of permissible outputs with the
 property that each input is related to exactly one output.
3. Please follow the hyperlinks to see a full development of the mathematical concepts
 where that understanding is a bit rusty.
4. Ron Radice, “High Quality, Low Cost Software Inspections,” Paradoxicon Publishing,
 2001. This 14 chapter, 478 page book provides a firm foundation for using
 semi-formal review of intellectual work products, documents in general and code
 in particular, as an effective program control.
5. See p. 32 for a derivation of the cost function: Robert T. McCann, Cost-Benefit
 Analysis of Quality Practices <http://www.amazon.com/Cost-Benefit-Analysis-
 Quality-Practices-Robert/dp/0769546595/ref=sr_1_2?s=books&ie=UTF8&qid=
 1332876341&sr=1-2> Note that this IEEE Ready Note is a compilation
 and extension of three Crosstalk articles:
• Robert McCann, “How Much Code Inspection is Enough?” CrossTalk, July 2001
• Robert McCann, “When is it Cost Effective to use Formal Software Inspections?”
 CrossTalk, March 2004
• Robert McCann, “The Relative Cost of Interchanging, Adding, or Dropping Quality
 Practices,” CrossTalk, June 2010
6. Ibid, Figure 3-2, p. 34

NOTES

mailto:bob.mccann@lmco.com
http://cmmiinstitute.com
http://en.wikipedia.org/wiki/Function_
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Function_
http://en.wikipedia.org/wiki/Function_
http://en.wikipedia.org/wiki/Binary_relation
http://en.wikipedia.org/wiki/Binary_relation
http://en.wikipedia.org/wiki/Set_
http://en.wikipedia.org/wiki/Set_
http://www.amazon.com/Cost-Benefit-Analysis-Quality-Practices-Robert/dp/0769546595/ref=sr_1_2?s=books&ie=UTF8&qid=1332876341&sr=1-2
http://www.amazon.com/Cost-Benefit-Analysis-Quality-Practices-Robert/dp/0769546595/ref=sr_1_2?s=books&ie=UTF8&qid=1332876341&sr=1-2
http://www.amazon.com/Cost-Benefit-Analysis-Quality-Practices-Robert/dp/0769546595/ref=sr_1_2?s=books&ie=UTF8&qid=1332876341&sr=1-2

CrossTalk—May/June 2014 31

THE IMMUTABLE LAWS OF SOFTWARE DEVELOPMENT

5. Inability to scale software engineering methods even for
medium size systems

6. Lack of understanding of the impact of variation in
individual productivity

7. Absence of work place democracy and joy in work
Unless the software engineering professional community be-

gins to systematically address these persistent problems, costs
and risks to society will continue to increase [4].

The Immutable Laws of Software Development
Part of the reason for the persistent problems can be

attributed to common misconceptions about managing the
software work [5]. Organizations are either unaware of or are
not willing to change practices to deal with the immutable laws.

I have listed some of the immutable laws and described the
impact of each of the immutable laws on an organization’s ability
to deliver very high quality software solutions on predictable cost
and schedule. Where applicable, I have provided data from our
company’s projects to illustrate many of the laws.

• The number of development hours will be directly
proportional to the size of the software product.

While this is obvious, many projects do not estimate the
size of the product before making a commitment for cost, and
schedule. The implication of this law is that if an organization
does not maintain a history of previous projects including the
size of the product delivered and the effort in staff hours, the
organization will make cost and schedule commitments with
no relationship to the organization’s historic capability. The
cost and schedule commitment will be a guess based on the
organization’s desire to capture the business and not on what
the organization can actually deliver. Which leads to the next law.

• When acquirers and vendors both guess as to how long
a project should take, the acquirers’ guess will always win.

In the beginning, neither the customer nor the developer knows
how big the project is or how long it should take and at what cost.
As Watts used to point out tongue in cheek, customers want their
product now at zero cost. Customers usually have to deal with time-
to-market pressures and they require the product in time frames
that are arbitrary and unrealistic for the software team to produce
a product that works. The developers now have a choice to make.
They can try to guess what it would take to win the business. Or
as rational management would require, elicit enough of the project
requirement to be able to make a conceptual design, estimate the
size, and use organization historic data to predict development time
and cost. The TSP institutionalizes this behavior in the TSP team
launch process in which all the developers participate in estimating
and planning the project. The result is that teams make realistic and
aggressive commitment that the team can meet. The implication of
this law is that when faced with arbitrary and unrealistic schedule
pressures, developers should have the skills to make a plan before
making the commitment and the conviction to defend it. Otherwise,
the customers’ arbitrary and unrealistic schedule demand will
become the team’s commitment. Management should trust the
team to develop an aggressive and realistic schedule, and not
commit teams to a date that the team cannot meet. This leads to
the next law.

Girish Seshagiri, Advanced Information Services Inc.
Abstract. As the saying goes, “If it passes test, it must be OK.” Common miscon-
ceptions about managing software inhibit changes to the way software projects are
planned, audited and assured for cost, schedule, and quality performance. This article
describes the immutable laws of software development as articulated by SEI Fellow
Watts Humphrey and based on the author’s considerable professional experience
in managing software technical teams. The author describes the impact of each of
the immutable laws on an organization’s ability to deliver very high quality software
solutions on a predictable cost and schedule. The author provides data from his
company’s projects to illustrate many of the laws.

Common Misconceptions and
The Immutable Laws of Software

“If it passes test,
it must be OK”

Introduction
After retiring from IBM, Watts Humphrey made an

“outrageous commitment” to change the way software
applications development services are acquired, sold and
delivered. In addition to the CMM®, Watts was the principal
architect of the Team Software Process (TSP) and the Personal
Software Process (PSP) [1, 2, 3]. My company AIS was one
of the early adopters of TSP and PSP. I was fortunate to
work closely with Watts and built AIS’s software development
business making quality the number one goal.

After listening to many of Watts’s presentations, and aug-
mented by my personal experience in managing more than 200
software technical teams, I compiled a list of the immutable laws
of software development. In this article, I discuss the implica-
tions of the laws and what acquirers, development management,
and software teams need to be aware of to ensure consistent
delivery of very high quality software systems and services on a
predictable cost and schedule. I illustrate many of the laws with
examples from AIS projects.

Software Engineering’s Persistent Problems
Software Engineering like other engineering professions has

had a beneficial impact on society. Arguably, the high standard
of living in today’s interconnected world is not possible without
advances in software and software engineering. And yet there
is ample evidence to suggest that software engineering as a
profession has not been able to solve major persistent problems:

1. Exponential rise in cybersecurity vulnerabilities due to
defective software

2. Unacceptable cost, schedule, and quality performance
of Enterprise Resource Planning (ERP) and legacy systems
modernization projects

3. Cost of finding and fixing software bugs (i.e. scrap and
rework) as the number one cost driver in software projects

4. Arbitrary and unrealistic schedules leading to a culture of
“deliver now, fix later”

32 CrossTalk—May/June 2014

THE IMMUTABLE LAWS OF SOFTWARE DEVELOPMENT

• When management compresses schedule arbitrarily,
the project will end up taking longer.

It is unfortunate that otherwise rational managers do
not realize that the defect potential in a project increases
disproportionately to schedule compression as many studies
have shown. In one study of data from a large number of
projects, a 20% schedule compression had the effect of
increasing defects during development by 66%. [6]. The logical
reason is that when teams do not have the time to do the job
right, they end up skipping the quality steps and try to meet an
impossible schedule in a code and test mode which ends up
taking longer. This leads to the next law.

• When poor quality impacts schedule, schedule
problems will end up as quality disasters.

This is a classic pattern in major software project failures.
For instance, in the case of Healthcare.gov, one can speculate
that the contractor teams were working to meet a deadline
they knew was impossible to meet. The teams probably did not
employ the quality practices they knew they should use. (In fact,
some of the contractors were appraised at high CMMI® Maturity
levels.) Instead they probably went through increasingly long
cycles of code, test, and rework. Because the amount of rework
due to poor quality is unpredictable, the schedule problem gets
progressively worse. The team was forced to deliver poor qual-
ity product on the committed date, thus turning the schedule
problem into a world famous quality disaster. Healthcare.gov is
not the first such spectacular software project failure, nor will it
be the last, as seen in the next law.

This is also borne out by AIS’s early history from 1988 – 1992.
The company was not profitable because our projects were
not predictable. The projects always seemed to be on schedule
through code complete and before the start of integration, sys-
tem, and acceptance tests. Due to the poor quality, teams spent
significant amounts of time in test and rework. People worked
long hours, and heroic efforts were needed to deliver on the
committed date. The customer acceptance test phase was not a

positive experience for either the customer or the team.
I realized that we had to change the way we managed the

software work. What we needed was constancy of purpose with
quality as the number one goal. Shown below is the schedule
performance of AIS teams due to the improvement initiative
I sponsored in 1992 based on the Capability Maturity Model
(CMM) and later the TSP/PSP [7].

• Those that do not learn from poor quality’s adverse
impact on schedule, are doomed to repeat it.

The state of software practice will be much better for cost,
schedule, and quality performance if only the c-level executives
realize that poor quality performance is the root cause of
most software cost and schedule problems. Remember SAM.
gov, USAjobs.gov, and (ThriftSavingsPlan) TSP.Gov? These
were noteworthy for cost and schedule overruns, the defects
encountered in production and the long time it took to fix
them, greatly inconveniencing the users of these applications.
The government was doomed to repeat the experience in
Healthcare.gov. This is not to single out government IT projects.
Just that government projects get adverse publicity when
they fail. It is probably not unreasonable to speculate that the
commercial world is not immune to such quality disasters as
documented in reports such as the Chaos report [8].

• The less you know about a project during
development, the more you will be forced to know later.

The implication of this law is that project teams need precise,
accurate and timely information throughout development, to
consistently deliver very high quality products on predictable
cost and schedule. As Fred Brooks pointed out “Projects get to
be one year late, one day at a time.” When projects rely on the
monthly status report as the only means of communicating what
is happening in the project, they do not know enough to take
timely corrective actions. When those projects fail, management
relies on postmortems and audits to find out what went wrong.

In modernizing one of the largest databases in government,
an AIS team collected and reported precise and accurate data in
the weekly team status meeting. The team reviewed the project’s
documented goals weekly to make sure the team is on track to
meet them. The team also reviewed the status of risk mitigation
actions on the top 5 or 7 risks. The team made decisions weekly
based on performance metrics that matter, including but not
limited to plan vs. actual data on staff hours, earned value, defects
injected, defects removed, and efficiency of early defect removal
through personal reviews and inspections.

In many projects, one of the major causes for schedule
slippage is because team members’ actual hours on task are
less than planned hours, which leads to the next law.

• In a 40 hour work week, the number of task hours for
each engineer will stay under 20, unless steps are taken to
improve it.

In estimating project schedules, teams typically do not
consider the hours spent by team members on non-project
tasks. In many organizations, the actual number of hours
devoted to project tasks is on average less than 20 hours in
a 40 hour work week. The implication of this law is that only
management can take actions to improve the number of weekly
task hours by providing improved office layout, minimizing

Figure 1: AID Schedule Deviation Control Chart – Development Phases

THE IMMUTABLE LAWS OF SOFTWARE DEVELOPMENT

The Immutable Laws of

Software Development
1. The number of development hours will be directly proportional to the size of the

software product
2. When acquirers and vendors both guess as to how long a project should take, the

acquirers’ guess will always win
3. When management compresses schedule arbitrarily, the project will end up

taking longer
4. When poor quality impacts schedule, schedule problems will end up as quality

disasters
5. Those that don’t learn from poor quality’s adverse impact on schedule, are doomed

to repeat it
6. Team morale is inversely proportional to the degree of arbitrariness of the schedule

imposed on the team
7. Schedule problems are normal; management actions to remediate will make

them worse
8. Management actions based on metrics not normalized by size will make the

situation worse
9. Estimating bias will be constant unless steps are taken to eliminate it
10. The less you know about a project during development, the more you will be forced

to know later
11. In a 40 hour work week, the number of task hours for each engineer will stay under

20, unless steps are taken to improve it
12. The earliest predictor of a software product’s quality is the quality of the development

process through code complete
13. When test is the principal defect removal method during development, corrective

maintenance will account for the majority of the maintenance spend
14. The number of defects found in production use will be inversely proportional to the

percent of defects removed prior to integration, system, and acceptance testing
15. The number of defects found in production use will be directly proportional to the

number of defects removed during integration, system, and acceptance testing
16. The amount of technical debt is inversely proportional to the length of the agile sprint
17. Success of software process improvement depends on the degree of convergence

between the organization’s official, perceived and actual processes
18. The return on investment in software process improvement is inversely proportional

to the number of artifacts produced by the software engineering process group
19. Insanity is doing the same thing over and over and firing the project manager or the

contractor when you don’t get the results you expected

CrossTalk—May/June 2014 33

Figure 2: The Immutable Laws of Software Development

34 CrossTalk—May/June 2014

THE IMMUTABLE LAWS OF SOFTWARE DEVELOPMENT

number of meetings etc. But the engineers have to record their
time accurately including interruptions, to make management
aware of low task hour utilization and the causes. In AIS
projects, PSP trained engineers record time precisely and
accurately and report task completions and earned value weekly.

• The earliest predictor of a software product’s
quality is the quality of the development process
through code complete.

Software products are usually built from a large number of
small components that are individually designed, coded, and
tested. The PSP enables the engineers to build very high quality
components through personal reviews and team inspections
of the component’s design and code artifacts. PSP trained
engineers compile data on their personal process by recording
size, time, and defect data on the components they build. By
analyzing the component development process data, teams can
determine the likelihood of the component having defects in
downstream integration, system, and acceptance testing. The
adverse impact on project schedule due to test and rework
cycles in integration, system, and acceptance testing can be
estimated before integration testing begins. AIS teams have
a goal of more than 90% of the components to be error-free
in integration, system, and acceptance testing. The impact of
this law is that putting poor quality products into test will have
adverse impact on the project’s schedule and cost.

• When test is the principal defect removal method
during development, corrective maintenance will account
for the majority of the maintenance spend.

The implication of this and the following two laws is that
putting poor quality product into test and relying solely on
test for defect removal, has adverse cost implications beyond
development. The biggest consequence is that as more defects
are found in production use, organizations spend a very high
percentage of the maintenance dollars in fixing bugs (i.e. correc-
tive maintenance) instead of spending for the more beneficial
enhancements and new features (i.e. perfective and adaptive
maintenance). According to Watts, one of the software miscon-
ceptions is “if it passes test, it must be OK” [5].

• The number of defects found in production use will be
inversely proportional to the percent of defects removed
prior to integration, system, and acceptance testing .

• The number of defects found in production use will
be directly proportional to the number of defects removed
during integration, system, and acceptance testing.

The impact of these two laws is that early defect removal
through personal reviews and team inspections, will result in
high quality product (smaller percentage of defects remaining in
the product) going into integration, system, and acceptance test
which in turn will result in even higher quality product going into
production. Conversely, putting a poor quality product (majority
of defects remaining in the product) into integration, system,
and acceptance test will result in excessive unplanned rework.
What comes out of test will be a patched up product which in
production use will uncover more defects to fix, thus consuming
most of the maintenance dollars for fixing and keeping it running.

• Success of software process improvement depends
on the degree of convergence between the organization’s
official, perceived and actual processes.

In every organization, there are usually three processes:
1. The official process, usually designed by the

organization’s software process engineering group, which
describes the process the project teams should follow in their
software projects.

2. The perceived process, which is what the software teams
think how they do software work.

3. The actual process, which is how the teams actually work.
The implication of the law is that if the organization standard

process is very different from the way the projects actually
work, improving the standard process will be of little value.
Project teams will continue to work the way they have in
the past. In AIS, when we launched the continuous process
improvement initiative, we first documented how the software
teams were actually doing the software work. We used Watts
Humphrey’s Managing the Software Process book to establish
a common vocabulary of process and process improvement. We
empowered the engineers to make lots of small changes to the
process by submitting simple but effective Process Improvement
Proposals (PIPs). To-date AIS engineers have submitted
more than 1400 PIPS of which more than 900 have been
implemented. External SEI-authorized lead appraisers have
appraised AIS’s process maturity capability at CMMI Maturity
Level 5 in 2007 and again in 2010 [7].

• The return on investment in software process
improvement is inversely proportional to the number of
artifacts produced by the software engineering process group.

The implication of this law is that if the process artifacts
are produced by the software engineering process group and
not the development teams, the artifacts may have little or no
relationship to the actual work being done. The organization may
pass maturity level appraisals without ever changing engineering
behavior. Such organizations seldom produce very high quality
products on predictable cost and schedule.

• Insanity is doing the same thing over and over and
firing the project manager or the contractor when you don’t
get the results you expected.

This is a variation on the oft-used definition of insanity.
The implication is that while people are extremely important,
changing the people without changing the way the software
work is managed is not likely to produce the expected results.

Conclusion
The relentless pressure to achieve a first-to-market

advantage, has had the unfortunate side effect of developers
more focused on meeting unrealistic schedule commitments
than producing high quality software. We now have “deliver now,
fix later” software development culture [9].

If the senior executives of software organizations under-
stand the immutable laws and their impact, they will initiate the
changes that are needed to consistently produce very high qual-
ity software on a predictable cost and schedule.

CrossTalk—May/June 2014 35

THE IMMUTABLE LAWS OF SOFTWARE DEVELOPMENT

Disclaimer:
CMMI® and CMM® are registered in the U.S. Patent and

Trademark Office by Carnegie Mellon University

ABOUT THE AUTHOR
Girish Seshagiri is a globally recognized
subject matter expert and thought
leader in software assurance, software
quality management, software process
improvement, and modern methods
of managing knowledge work. He is a
reputed conference speaker, coach, and
instructor. He is the executive sponsor of
AIS’s continuous process improvement
resulting in the company’s receiving IEEE
Computer Society Software Process
Achievement Award and Capability Maturity
Model Integration (CMMI) Maturity Level 5
certification. He is the author of the white
paper “Emerging Cyber Threats Call for
a Change in the ‘Deliver Now, Fix Later’
Culture of Software Development.”

Girish has an MBA (Marketing), from
Michigan State University.

E-mail: girish.seshagiri@advinfo.net
Phone: 703-426-2790

REFERENCES
1. Humphrey, Watts S. PSP: A Self-Improvement Process for Software Engineers.
 Addison-Wesley Pearson Education, 2005.
2. Humphrey, Watts S. TSP: Leading a Development Team. Addison-Wesley
 Pearson Education, 2006.
3. Humphrey, Watts S. TSP: Coaching a Development Team. Addison-Wesley
 Pearson Education, 2006.
4. Seshagiri, Girish “Is the Two-Week Agile Sprint, the Worst Software Idea Ever?
 - Management Issues in Software Assurance and Information Security.” CSIAC
 Webinar, October 30, 2013.
5. Humphrey, Watts S. Managing the Software Process. Addison-Wesley, 1989.
6. Donald M. Beckett and Douglas T. Putnam. “Software Quality, Reliability, and
 Error Prediction.” STN 13-1 (April 2010)
7. Seshagiri, Girish. “High Maturity Pays Off. It is hard to believe, unless you
 do it.” CrossTalk (January/February 2012)
8. CHAOS Manifesto 2013: Think Big, Act Small. The Standish Group
 International Inc.
9. Seshagiri, Girish. “Emerging Cyber Threats Call for a Change in the ‘Deliver
 Now, Fix Later’ Culture of Software Development.” White Paper (September 2013)

mailto:girish.seshagiri@advinfo.net

36 CrossTalk—May/June 2014

UPCOMING EVENTS

CrossTalk—May/June 2014 37

UPCOMING EVENTS

The Blockbuster Conference on Software Testing and Analysis & Review
May 4-9, 2014
Orlando, Fl
http://stareast.techwell.com

The CMMI Conference: SEPG North America 2014
6-7 May 2014
Washington, DC
http://cmmiinstitute.com/thecmmiconference2014

2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines
11-13 May 2014
Boston, MA
http://www.fccm.org

IBM Edge 2014
19-23 May 2014
The Venetian, Las Vegas
http://www-03.ibm.com/systems/edge

Better Software Conference West
June 1-6, 2014
Las Vegas, NV
http://bscwest.techwell.com

Summer 2014 Software & Supply Chain Assurance (SSCA) Working Group Sessions
24-26 June 2014
McLean, VA
https://buildsecurityin.us-cert.gov/swa

Federated Events on Component-Based Software Engineering and Software Architecture
30 Jun to 04 Jul 2014
Marcq-en-Bareul, France
http://comparch2014.eu

The 26th International Conference on Software Engineering and Knowledge Engineering
1-3 July 2014
Hyatt Regency, Vancouver, Canada
http://www.ksi.edu/seke/seke14.html

Upcoming Events
Visit <http://www.crosstalkonline.org/events> for an up-to-date list of events.

http://www.crosstalkonline.org/events
http://stareast.techwell.com
http://cmmiinstitute.com/thecmmiconference2014
http://www.fccm.org
http://www-03.ibm.com/systems/edge
http://bscwest.techwell.com
https://buildsecurityin.us-cert.gov/swa
http://comparch2014.eu
http://www.ksi.edu/seke/seke14.html

38 CrossTalk—May/June 2014

UPCOMING EVENTSUPCOMING EVENTS

To subscribe to CrossTalk, visit
www.crosstalkonline.org and click
on the subscribe button.

SUBSCRIBE TODAY!

http://www.crosstalkonline.org

CrossTalk—May/June 2014 39

Yes, yes, I know. The theme for this issue is “Immutable Laws
of Software Development.” Not quite the same as my title. But
then, I was struggling for the right topic to write about, and a
black lab and a breadbox intervened.

See, we have Molly, a slightly brain-damaged black lab, which
my wife rescued back in 2007 before she met me (or, as she
oddly refers to it, “the good old days”). Molly had distemper as
a puppy. The SPCA wanted to put her down. My wife, having
already fallen in love with her, was against the idea. Against all
odds (and with much help from the vet), Molly survived, with few
physical side effects. Mentally, her brain is permanently stuck
in puppy mode. Molly feels that anything on the floor is legally
hers, and that anything within reach on the kitchen counter
counts as “on the floor.” Leave a loaf of bread sitting out, and it
disappears with amazing rapidity. To keep Molly at bay, my wife
and I decided to order two rather large breadboxes. When the
breadboxes arrived, one was broken.

I called the company and spoke to a very nice customer
representative, who quickly apologized, ordered us a
replacement, and simply asked us to carefully discard the
damaged item—no need to return it. I was chatting with the
customer service representative while she was completing the
process. She apologized twice to me for the amount of time
it was taking, and mentioned, “you have no idea how old this
computer system is!” I laughed, told her what I did for a living,
and laughingly said, “Are you still running Windows XP?” She
laughed back, and replied, “Would you believe MS-DOS?”

I thought she was kidding. Nope. They boot Windows XP,
which runs a driver that apparently maps a database of several
FAT32 file systems into a set of virtual FAT6 files, and then use
command.com to open a MS-DOS window and run a batch file
to load a program that was written back in the early 1990s. And,
to quote the customer service representative, “it works just fine.
It meets our needs.”

In February 2004, my friend and colleague Theron Leishman
and I published a Backtalk column entitled “Laws of Software
Motion.” [1] In that column, we discovered several laws of soft-
ware development by comparing them to Newton’s “Laws of
Motion.” Newton’s first law is that “An object in uniform non-accel-
erated motion (or at rest) will remain in the same state of motion
unless an outside force acts upon it.” We countered with Cook-
Leishman’s First Law – “Any software intensive program not given
adequate force (motivation) will degrade and cease to progress.”

Here is a very successful high-end cooking equipment
company, with a presence both physical (world-wide) and online.
They are using software that was custom-written for them over
20 years ago – and it still meets their needs! Why change to
Java from gosh-knows-what? If your company’s software meets
your needs, and the cost of keeping it running “as it is” is less
than the cost of redevelopment, well then, keep on truckin’. It is
called “making a profit”! Sure, you might have to write “glue code”
to keep the software working on modern hardware through the
years, but it is cheaper than rewriting all the software!

To make software work for 20+ years, you have to do a
lot of adaptive maintenance. In the DoD we have quite a few
legacy systems that are well over 20 years old. Many of them
are interactive, real-time, database-oriented, and interface
with customers. If you have never taken on the task of legacy
systems maintenance, it’s a different world. It takes a lot (and I
mean a lot) of adaptive maintenance to keep them going.

But somehow, we manage to create immutable systems in
spite of the “immutable laws.” B-52s still fly (and have been for
60 years). 1960s 70s, and 80s large-scale legacy systems
still function. The hardware ages, the hardware gets replaced.
Peripherals become obsolete, replace them with new peripherals.
We have gone from tapes to floppies (8”, 5 1/4”, and 3 ½”), USBs,
CDx, DVD, and now the cloud. And yet, the systems still work.

There is little thrill in working as hard as you can just to keep
the system running, pretty much like it was running yesterday, and
the month before, and the year before. It is like Alice and the Red
Queen in Through the Looking Glass: “Well, in our country,” said
Alice, still panting a little, “you would generally get to somewhere
else—if you run very fast for a long time, as we have been doing.”
“A slow sort of country!” said the Queen. “Now, here, you see, it
takes all the running you can do, to keep in the same place.”

It is relatively easy to graduate with a degree in engineering
or computer science and develop applications in Java, Objective
C, C#, Ruby, .Net, Pearl, or Python. Try becoming fluent in
languages of yesteryear, and then transitioning to development
frameworks and mindsets from over a quarter of a century ago.
Having your college friends laugh at you when you tell them you
still program in Jovial, Fortran, or Cobol.

Maintenance programmers, it is your turn. We do not
appreciate you enough. Take a bow.

David A. Cook, Ph.D.
(and former maintenance programmer)
Stephen F. Austin State University
cookda@sfasu.edu

(Reference)
1. http://www.crosstalkonline.org/storage/issue-

archives/2004/200402/200402-Cook-2.pdf.
Every author yearns to reference himself or herself sooner

or later. I feel MUCH better now.

Laws of
Immutable
Software

BACKTALK

To subscribe to CrossTalk, visit
www.crosstalkonline.org and click
on the subscribe button.

SUBSCRIBE TODAY!

mailto:cookda@sfasu.edu
http://www.crosstalkonline.org/storage/issue-archives/2004/200402/200402-Cook-2.pdf
http://www.crosstalkonline.org/storage/issue-archives/2004/200402/200402-Cook-2.pdf
http://www.crosstalkonline.org/storage/issue-archives/2004/200402/200402-Cook-2.pdf

CrossTalk thanks the
above organizations for
providing their support.

https://buildsecurityin.us-cert.gov/swa/about
http://www.navair.navy.mil
http://www.309smxg.hill.af.mil

	Front Cover
	Table of Contents
	From the Sponsor
	Collecting Large Biometric Datasets
	The Problem of Prolific Process
	Acquisition Archetypes
	Combating the Inevitable Aging of Software Developers
	Programming Will Never Be Obsolete
	Identifying Good Independent Variables for Program Control
	If it passes test, it must be OK
	Upcoming Events
	BackTalk
	Back Cover

