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Final Report for W81XWH-10-1-0790 
TITLE:  Global Genomic Analysis of Prostate, Breast and Pancreatic Cancer 
PRINCIPAL INVESTIGATOR: Dr. Richard M. Myers                                               
 

 

Introduction 
The goal of this project is to use state-of-the-art functional genomics assays to provide an 
unprecedented depth of information about the molecular defects that occur in three types of 
cancer that occur frequently in military personnel, specifically prostate, breast and pancreatic 
cancer.  With a more comprehensive and detailed understanding of these cancers, we hope to 
decrease the burden of these diseases in military personnel and the general population by 
identifying biomarkers that will increase the rate and sensitivity of early detection and that 
predict which treatments will be most effective in certain subtypes of disease, and by identifying 
pathways and molecular defects that can be targeted by novel therapeutics.  To achieve these 
goals, we are working with collaborators at Stanford University and the University of Alabama at 
Birmingham, who are providing de-identified frozen tumor specimens, along with detailed 
clinical data, from individuals with these cancers.  After macrodissection of each sample to 
provide separated tumor and nearby non-tumor tissues, along with pathological analyses to 
ensure that each type is indeed separated, we extract nucleic acids (RNA and DNA) from each 
sample, while saving a portion of the intact tissues if enough is present.  We then perform 
multiple functional genomic assays, as well as detailed genetic analyses, by new "next-gen" 
DNA sequencing methods in an effort to gain key insights into the molecular defects that 
contribute to these cancers.  These assays include DNA methylation analysis, mRNA profiling, 
and microRNA profiling.  When analyzed together, these data can provide a broad picture of the 
gene regulatory defects present in tumors that can be used to classify disease states and 
identify pathways that are frequently altered during carcinogenesis.  We are making significant 
headway in implementing this large-scale analysis of clinical samples, and our earliest analyses 
reveal striking tumor-specific molecular defects.  Analysis of these large genome-wide datasets 
is ongoing and we are confident that we will continue to identify novel clinically relevant 
molecular features in these diseases. 

 

 

Body 
Our research program, supported by W81XWH-10-1-0790, involves applying new high-
throughput genomic techniques to increase our understanding of the molecular basis of three 
types of cancer that are of critical importance to the military, their families, and civilians.  We are 
applying these approaches to study the genetics and genomics of prostate, breast and 
pancreatic cancer, as well as to the differential responses of women with breast cancer to new 
experimental drug treatments.  Our goals are to identify genetic, epigenetic and genomic 
biomarkers for these diseases that can be used for accurate and subtype-specific diagnosis, for 
prognosis of individuals at any stage of the diseases, for determining the most effective 
treatment regime, and, ultimately, for the development of new and more effective therapies.  To 
accomplish these goals, we are developing and applying new ultrahigh-throughput DNA 
sequencing technologies ("next-gen sequencing") to probe at an unprecedented level of detail 
and comprehensivity the genomes of the tumors and matching non-tumor tissues from 
individuals with these cancers.  During this project, we are using these approaches to measure, 
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on a genome-wide scale, the mRNA, microRNA, DNA methylation in tumors and non-tumor 
tissues from at least 50 individuals with each cancer. 

A brief summary of this progress is listed here.  In Year 1, we: 1) obtained IRB approval and 
material transfer agreements, and identified clinical sources, for the tissues needed for the 
project from our two major collaborating institutions; 2) developed protocols and the 
infrastructure to macrodissect the tumor and non-tumor tissues from study participants; 3) 
began macrodissection on the breast and pancreatic cancer samples; 4) performed DNA 
methylation profiling in prostate cancer and breast cancer; 5) developed protocols and 
performed mRNA profiling on 28 breast cancer cell lines; 6) developed and quality-control 
tested an optimized method for measuring and interpreting microRNAs; 7) began development 
of a protocol for performing our genomic assays in formalin-fixed paraffin embedded (FFPE) 
tissues, which will allow us to access larger collections of relevant patient samples and bypass 
obstacles presented by the macrodissection of frozen tissues; and 8) designed and tested a 
suite of computational algorithms that allow efficient analysis of DNA methylation profiles as 
measured by sequencing (the RRBS method described in our proposal). 

In Year 2, we: 1) homogenized and isolated nucleic acids from 79 pancreas and 86 breast 
samples; 2) constructed RRBS libraries for pancreas and breast cancer; 3) constructed RNA-
seq libraries for prostate, pancreas and breast cancer; 4) identify DNA methylation signatures 
associated with subtype in breast cancer, biochemical recurrence in prostate cancer and novel 
tumor subtypes in pancreatic cancer; 5) developed computational pipelines to align the 50 
million RNA-seq reads from each sample to the genome, assign them to transcripts or compile 
reads at un-annotated regions into a novel gene prediction, and produce normalized expression 
values for each gene; 6) analyzed gene expression signatures associated with subtype in breast 
cancer, biochemical recurrence in prostate cancer and tumorigenesis in pancreatic cancer; 7) 
performed microRNA-seq on 28 breast cancer cell lines; 8) implemented a computer program to 
identify fusion genes from RNA-seq data and identified read-through fusion transcripts 
significantly associated with breast cancer, as well as a fusion transcript significantly expressed 
in pancreatic tumors. 

 

1)  Year 1  
 

a) Sample accrual and macrodissection 
In Year 1 we identified, obtained and macrodissected clinical specimens for each cancer type: 

i)  Prostate cancer: Our collaborator at Stanford University, Dr. James Brooks, a urologist, 
surgeon and expert in prostate and kidney cancer genomics, has provided us with genomic 
DNA from 73 macrodissected prostate tumor tissues and 63 normal prostate tissues, mostly 
from the same individual patients.  We also obtained total RNA for our mRNA and microRNA 
analyses from a subset of these individuals (70 tumor samples and 36 normal samples).  

ii)  Breast cancer:  For the breast cancer retrospective study of young women (<50 years old) 
with ER+ HER2- breast cancer, we have received 72 samples from 48 patients.  

iii)  Breast cancer clinical trial:  We obtained tumor biopsy specimens from a breast cancer 
clinical trial.  This trial is a study of the clinical response of ER+ breast cancer to treatment with 
a combination of letrozole and bevacizumab. We received 32 tumor biopsies obtained at 
different time-points during the course of treatment of 19 patients that can be used to monitor 
the molecular response to treatment.   This study will be the first of its kind to perform next-gen 
functional genomics assays from biopsies obtained during a clinical trial, an extremely important 
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goal for understanding and predicting which patients will respond to this treatment regime in the 
future.  

iv)  Pancreatic cancer samples:  Pancreatic cancer is often diagnosed in late stages of the 
disease, and tumor resection is a high-risk procedure, so collections of research tissue 
specimens are exceedingly rare.  We have identified a cohort of 100 frozen pancreatic tissue 
specimens through our collaborators at UAB. After macro-dissection we received 52 tumors and 
27 matched non-tumor tissues. 

v) We obtained 28 breast cancer cell lines from our collaborators at UAB that were established 
from patient tumors and represent diverse breast cancer subtypes. These samples can be used 
to define molecular profiles of breast cancer subtypes without the residual adjacent normal cell 
populations that remain even after careful macrodissection of primary tumors. Furthermore, 
these cell lines have been evaluated for sensitivity to several chemotherapeutic regimes, and 
the molecular features that correlate with response to treatment in this pre-clinical model will 
likely be relevant in primary tumors as well. 

 
b)  Progress on DNA methylation profiling 

We are using a combination of two complementary methods to obtain detailed DNA methylation 
profiles of the samples in all of our studies.  These are Reduced Representation Bisulfite 
Sequencing (RRBS; Meissner et al., 2008), which uses next-gen sequencing of bisulfite-treated 
genomic DNA, and a method from Illumina called the Methyl450 assay, which also relies on 
bisulfite treatment, but uses single-base sequencing on an array to quantitate methylation at 
specific CpG residues.  This combination of RRBS and Methyl450 is valuable because the 
methods measure, at a quantitative level, the fraction of methylation at 700,000 and 450,000 
CpGs, respectively, with only a very small amount of overlap (fewer than 4%) between the two 
methods.  Further, RRBS can detect genetic variants as well as non-CpG cytosine methylation 
in the regions it assays, and the Methyl450 assay tests more than 3,000 genes not covered by 
RRBS (Sandoval et al., 2011).  Together, these assays provide a broad picture of the 
methylation differences between tumor and normal tissues, and allow us to detect specific CpGs 
with disease-associated methylation changes.   

i)  Breast cancer cell line methylation 

We spent part of Year 1 improving the DNA methylation profiling methods, simplifying and 
hardening the library preparation steps, and learning to multiplex samples in the next-gen 
sequencing step to decrease costs and increase throughput. We performed RRBS on 28 breast 
cancer cell lines, and obtained quantitative DNA methylation for 796,861 CpG loci across the 
genome.   We found that a large subset of CpGs have highly variable DNA methylation across 
these breast cancer cell lines.  We performed unsupervised hierarchical clustering of 10,000 
CpGs with the most variable DNA methylation across cell lines, and found that these CpGs 
divided the cell lines into clades/clusters that correlated with Luminal or Basal subtypes as 
defined by gene expression and immunohistochemistry (see Figure 1 in Supporting Data, at the 
end of this document).  We continued to use this dataset in the breast cancer analyses 
performed in Year 2 which involved integrating them with other molecular, phenotypic, and 
pharmacological response data to better understand the consequences of these drastically 
different methylation profiles between breast cancer cell lines.  
 

ii)  Prostate cancer DNA methylation 

During Year 1, we used the Methyl450 assay to quantitate DNA methylation in our initial set of 
prostate cancer samples (73 primary prostate tumor tissues and 63 benign-adjacent prostate 
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tissues).  Our analysis so far has shown that tumor and normal tissues can be easily separated 
based on DNA methylation patterns.  Principal Component Analysis (PCA) performed on the 
approximately 450,000 CpGs distinguishes most normal tissues from tumor tissues, and 
suggests that the DNA methylation patterns between tumor tissues are more diverse than DNA 
those patterns between normal tissues, as seen from the increase in distances between each 
tumor sample in the PCA plot compared to the normal samples (Figure 2, Supporting Data).  
Unsupervised hierarchical clustering of the data supports the PCA data; we observed two main 
clusters, one consisting mostly of tumor tissues (64T/1N), and one consisting mostly of normal 
tissues (62N/9T).  We discovered ~220,000 CpGs that have significantly different methylation 
patterns between normal and tumor prostate tissue samples by using several different 
parametric and nonparametric statistical analyses.  The majority of these aberrantly methylated 
CpGs (66.4%) are hypermethylated in the tumor tissue samples compared with the normal 
tissue sample.  Focusing on the CpGs with 10% or greater standard deviation, ~37,000 CpGs 
had methylation scores that were significantly different between normal and tumor.  Chi-squared 
analysis suggests that there is no specific region of the genome where these significant CpGs 
are located, but rather, CpGs that are differentially methylated between normal and tumor 
prostate tissue are distributed throughout the genome.  Future analysis will determine other 
characteristics of these significant CpGs, such as whether they are preferentially located within 
CpG islands.  

An important question in prostate cancer biology is whether specific genomic or genetic features 
drive a prostate tumor to be aggressive.  Unsupervised hierarchical clustering of the 12,000 
most variable CpGs within the tumor tissues alone show distinctive clusters with pockets of 
unique methylation patterns (Figure 3, Supporting Data).  We are interested in understanding 
how these different methylation patterns within the tumor population correlate with the clinical 
data associated with these samples, such as the patients Prostate Specific Antigen (PSA) score 
and the Gleason grade of the tumor. Preliminary statistical analysis on the prostate tumor 
samples with integrations of downstream clinical data suggests that the methylation patterns of 
CpGs within the coding regions of a subset of genes (i.e., in the gene "bodies", as opposed to 
the flanking regions of genes) correlate with specific clinical covariates.  We are currently 
continuing to integrate clinical data into our statistical analyses to understand what molecular 
differences may be associated with distinct prostate tumor phenotypes.  

 

c)  Progress in mRNA profiling  
As we discussed in our initial application, the use of next-gen sequencing to analyze mRNA 
gene expression patterns (RNA-seq) has many substantial advantages over microarray 
methods that use hybridization.  RNA-seq is much more accurate, providing quantitative 
measures of mRNAs over a very wide dynamic range.  It identifies both known and unknown 
mRNAs, as well as all isoforms, including different spliced versions, different 5' ends, and 
different 3' ends.  It identifies allele-specific or allele-biased mRNA expression, as well as 
versions of mRNAs that have been edited.  We have used RNA-seq in a variety of projects, and 
we and others have found many examples of new findings that were not observed with older 
methods.  Thus, RNA-seq is an important method to apply to the cancer studies we are 
performing in this project. 

The mRNA-seq protocol typically used in our laboratory requires 5 µg total RNA, using a 
protocol developed as part of the ENCODE Project by our collaborators led by Dr. Barbara Wold 
(Mortazavi et al., 2008).  Early in this TATRC cancer project, we realized that the total RNA 
yields from our macrodissected tumor specimens were likely to be too low for such a large 
requirement. Thus, during Year 1 of this project as well as part of our ENCODE work, we 
worked on protocols for mRNA-seq that could provide accurate and complete quantification of 
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the transcriptome from smaller amounts of starting total RNA.  We developed a new method  for 
making next-gen sequencing libraries for mRNA-seq from very tiny amounts small amounts of 
total RNA (Gertz et al., 2011, Appendix A).  We tested this new protocol on the 28 breast cancer 
cell lines.  During this test, we learned that to obtain reproducible measurements of gene 
expression from small quantities of total RNA (as low as 10 ng), it was critical to normalize the 
amount of cDNA used in the library construction.  We also used this dataset to begin developing 
the bioinformatics pipeline for analyzing mRNA-seq from cancer samples, including the 
implementation of an analytic approach for detecting viral RNA in human cancer samples.  The 
results of the preliminary data analysis are described below, demonstrating that mRNA-seq can 
accurately distinguish breast cancer subtypes.   

From producing and analyzing mRNA-seq data on the 28 breast cancer cell lines, we obtained 
gene expression measurements for 32,062 human transcripts.  In all our RNA-seq experiments, 
we collect at least 25 million pairs of 50bp next-gen sequencing reads per sample to ensure 
reproducible measurements with a large dynamic range to quantitate subtle expression 
differences.  We determined the correlation coefficient between the expression values for each 
pair of samples, and then clustered the samples based upon their correlations to each other 
(Figure 4, Supporting Data).   We found that the samples clustered into major clades, and were 
representative of different breast cancer subtypes, with luminal samples clustering together, and 
basal samples clustering together.  Interestingly, these gene expression clusters indicate that 
there are subgroups within the basal and luminal subtypes, and we are investigating these 
further to determine whether these divisions correlate with other molecular, phenotypic or 
pharmacologic parameters.  We also developed quality control metrics for each library, including 
checking for concordance between RNA-seq expression values for the HER2, ER, and PR 
genes and immunohistochemical measurements of these standard biomarkers.  In addition to 
aligning to human transcripts, we also developed a bioinformatics pipeline to detect viral mRNA 
that may be expressed in tumors.  We were able to detect two viruses, SV40 and a polyoma 
virus, in two different cell lines.  We are further investigating these viruses and their possible 
origins, and believe that this tool will be valuable for determining whether primary tumors from 
patients contain these viruses.  This collection of mRNA-seq data from breast cancer cell lines 
has been a great test-set as we expand our informatics pipeline to include the detection of novel 
transcripts, SNPs and mutations. 

Once we were satisfied that our protocol was robust and could be use with the small quantities 
of total RNA obtained from macrodissected tumor specimens, and found that it accurately 
distinguishes cancer specific differences in gene expression, we began performing mRNA-seq 
for our first prostate cancer cohort (73 prostate tumors and 63 non-tumor controls). Given the 
exciting findings that we have obtained with RNA-seq from a modest number of cell lines, we 
believe that it is likely that examining these larger sets of tumors and non-tumor samples will 
provide new insights into each type of cancer. 

 

d)  Progress in microRNA profiling  
It is clear that microRNAs, while a relatively recent discovery, are key regulators and play 
important roles in a large number of biological processes.  As part of this TATRC cancer project, 
we are measuring microRNAs in each of the tumor and non-tumor samples for each of the 
cancers we are studying.   

During the first part of Year 1, we tested a variety of protocols for generating microRNA libraries 
for next-gen sequencing, and eventually developed our own protocol.  We focused first on 
making libraries that would allow one microRNA sample to be sequenced per "lane" on the 
Illumina next-gen sequencing machine.  Sequencing several such libraries showed that this 
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method is accurate and reproducible at quantifying microRNA levels from human tissues.  There 
are ~1,733 identified human microRNA in the mirBase database, and, with our library and 
sequencing method, we are detecting ~700-900 unique known microRNAs per library, 
depending on tissue type (Langmead et al., 2009). In early in Year 2, we improved this method 
so that we can barcode and multiplex-sequence several samples per Illumina sequencing lane, 
thus reducing costs for microRNA sequencing.  

 
e)  Development of methods to use FFPE tissues for our cancer genomics studies 
The vast majority of cancer specimens obtained in hospitals across the country are preserved 
as Formalin-Fixed Paraffin Embedded (FFPE) specimens for pathological examination, and are 
more readily available for research than frozen samples.  An additional benefit is that FFPE 
specimens can be dissected at room temperature without the expensive cryo-preservation 
equipment or specialized pathology training required for frozen dissection.  Unfortunately, this 
method of perseveration, while well-suited to classic pathology and immunohistochemistry, 
causes fragmentation of the DNA and RNA used in genomics studies (Medeiros et al., 2007).  In 
Year 1 we investigated whether the fragmentation of the DNA and RNA is compatible with our 
current assay protocols.  We obtained five FFPE tumor specimens, including breast, prostate 
and pancreatic cancer, and tested DNA and RNA extraction from these tissues.  We also tested 
RRBS, mRNA-seq and microRNA-seq library construction on these specimens.  We obtained 
very preliminary data that suggested our protocols were compatible with fragmented DNA and 
RNA from FFPE specimens should we pursue acquisition of these types of samples. 
 
f) Development and improvement of computational algorithms for analyzing genomic and 
genetic data based on next-gen sequencing 
Before this TATRC project started, we had built an automated computational pipeline to collect, 
transfer, and store next-gen DNA sequencing data and perform the initial primary analysis on 
them, including base calling, quality score determination, alignment to the genome sequence, 
and basic quality control metrics.  While we have continually upgraded this part of the pipeline, 
particularly as our throughput has increased, it is stable and robust, and can handle the large 
datasets that we are generating for this and other projects.  However, the downstream, 
biological interpretation of the data types that we are generating in this project require much 
more extensive and complex analysis, and each data type requires specifically-designed 
analysis tools.  These algorithmic suites not only needed to be developed, but have required 
hardening and automation to handle the very large datasets that we are generating for this 
TATRC project.  We spent efforts in Year 1 developing many of these methods, including 
algorithms for calling and quantitating methylation data from RRBS experiments and methods 
for analyzing mRNA-seq data for these projects.  The methylation methods are now robust and 
part of our regular pipeline, and we have the beginnings of an automated method for measuring 
mRNAs and microRNAs.  However, these latter data types will require some more development 
of the analysis pipeline, particularly to allow the quantitation of different mRNA isoforms by 
RNA-seq.  This development is ongoing and will likely require another half-year before they are 
fully implemented.   

 

2)  Year 2 
In Year 2, we learned that we would not receive funding for subsequent years, so we focused 
our efforts on processing and analyzing the samples and data for aspects of the project that 
were initiated in Year 1.  
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a) Genomic Analysis of Breast Cancer 
In Year 1 we sequenced the transcriptome (RNA-seq) to measure gene expression differences 
between the 28 breast cancer cell lines and performed reduced representation bisulfite 
sequencing (RRBS) to detect genome-wide DNA methylation differences between the 28 breast 
cancer cell lines. In Year 2 we developed computational pipelines to align the 50 million RNA-
seq reads from each sample to the genome, assign them to transcripts or compile reads at un-
annotated regions into a novel gene prediction, and produce normalized expression values for 
each gene. We also refined our computational analysis of DNA methylation to identify regional 
differences in methylation, in addition to querying individual CpGs for significance.  The panel of 
28 breast cancer cell lines that we first used this analysis on includes several subtypes including 
TNBC basal A, TNBC basal B, HER2 positive basal-like, HER2 luminal-like and ER+ luminal 
breast cancer cell lines.  The genome wide functional genomics data in these cell lines allows 
us to identify differences between subtypes of breast cancer and to identify genomic signatures 
associated with sensitivity and resistance to various therapeutics that have been tested on 
these cell lines. We used linear regression to identify DNA methylation and gene expression 
differences that were associated with sensitivity to 75 different therapeutic compounds, 
quantified as IC50 values, from several recent publications (Oliver et al., 2012, Heiser et al., 
2012).   Strikingly, the same gene sets were associated with response to multiple drugs, 
indicating common pathways of resistance to different types of chemotherapy.  We are further 
investigating these pathways to determine if combinations of different therapeutics that target 
resistance associated pathways can lead to increased sensitivity. In particular we were 
interested in determining genomic signatures that are associated with sensitivity to TRA-8, a 
monoclonal antibody to the death receptor developed by our collaborators at UAB that is 
effective at reducing cell proliferation in basal breast cancer.  We identified 456 CpGs whose 
DNA methylation was significantly associated with sensitivity to TRA-8 (FDR < 0.05), and 328 
genes whose expression was significantly associated with sensitivity to TRA-8 (FDR < 0.05).  
Both of DNA methylation and gene expression associated with TRA-8 sensitivity occur at genes 
that are involved in cell adhesion (p <3.39e-02).   We are investigating the role of cell adhesion 
molecules in modifying the accessibility of cell surface receptors to antibody therapy. 

The genome-wide analysis of gene expression and DNA methylation allowed us to investigate 
other molecular differences across the 28 diverse cell lines.   Paired-end RNA-seq data 
provides the opportunity to identify fusion genes, which play a significant role in the 
development and progression of several types of cancer, particularly hematological 
malignancies.   To determine if the breast cancer cell lines harbor fusion genes, we analyzed 
the RNA-seq data with ChimeraScan, a computer program designed to detect fusion genes 
from RNA-seq data by identifying transcripts containing sequence from two different genes (Iyer 
et al., 2011).  From this analysis we determined that RNA transcripts composed of sequences 
from two adjacent genes occur frequently in breast cancer cell lines. Read-through fusion 
transcripts such as these were recently associated with prostate cancer progression, so we 
focused our analysis on this type of defect in breast cancer.  We determined how many of these 
fusion transcripts were detected in our other RNA-seq datasets from TNBC primary tumors, and 
estrogen receptor positive primary tumors, as well as normal control tissues. We identified three 
read-through fusion transcripts that were significantly associated with breast cancer and that 
occur frequently across breast cancer samples. Western blots performed on the breast cancer 
cell lines harboring the fusion transcripts suggest that they are translated into fusion proteins. 
We have prepared a manuscript describing this discovery (Appendix B).  

The genome-wide DNA methylation and gene expression data from diverse breast cancer cell 
lines also provides the opportunity to explore gene regulatory mechanisms responsible for the 
large-scale gene expression differences that define breast cancer subtypes. Targeting the 
master regulators responsible for the transcriptional programs in each subtype could be an 
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effective targeted therapy. We found that genome-wide DNA methylation signatures recapitulate 
the breast cancer subtype classifications.  We hypothesized that intergenic loci that are 
specifically unmethylated in each subtype are active regulatory regions, and that transcription 
factors binding to these loci are master regulators of the subtype-specific gene expression 
signatures.  To test this hypothesis, we compared intergenic loci that are specifically 
unmethylated in luminal breast cancer cell lines with hundreds of ChIP-seq datasets publicly 
available from the ENCODE Project. Regulatory regions that are specifically unmethylated in 
luminal breast cancer cell lines were significantly enriched for transcription factor binding sites 
for estrogen receptor and its cofactors FOXA1 and GATA3.  These transcription factors are 
known to be master regulators of the luminal gene expression signature and are highly effective 
drug targets for luminal breast cancer.  We repeated this process to identify potential master 
regulators in TNBC cell lines, a subtype with no effective targeted therapy.  We found that 
glucocorticoid receptor (GR) and STAT3 transcription factor binding sites were enriched at 
unmethylated regulatory regions associated with the TNBC expression signature.  We are 
performing ChIP-seq in TNBC cell lines and luminal cell lines to confirm the binding the 
transcription factors GR and STAT3 near genes with TNBC-associated expression. Four cell 
lines of each subtype were used to prepare dexamethasone-induced and untreated control cells 
for these studies.  We are also testing small molecule inhibitors of both factors to determine 
whether they specifically inhibit TNBC cell proliferation. Representative cell lines were selected 
from TNBC (basal A and B) and luminal subtypes for in vitro cell viability assays to assess the 
effects of inhibitors of STAT3 (SI3-201) or GR (mifepristone). These transcription factors, GR 
and STAT3 could be promising therapeutic targets for inhibiting the transcriptional network 
driving TNBC proliferation.  This investigation demonstrates the power of integrating data from 
genome-wide functional genomics assays to uncover the master regulators of gene expression 
signatures associated with breast cancer subtypes. 

In Year 1 we had obtained frozen tumor tissue specimens from 48 young women with ER+ 
HER2- breast cancer. We also obtained frozen tumor tissue specimens from 19 post-
menopausal women with ER+ HER2- breast cancer.  In Year 2 we successfully isolated nucleic 
acids from these samples and performed RNA-seq and RRBS on the samples.   We are in the 
process of comparing these samples to identify gene expression and DNA methylation 
signatures that differ between ER+ HER2- breast tumors that occur in pre and post-menopausal 
women.  We are also comparing these samples to 46 triple negative breast cancer (TNBC) 
tumors that we analyzed as part of another study. This comparison will allow us to identify age 
related molecular differences in breast cancer that are independent of subtype.   In addition we 
have analyzed the DNA methylation differences between ER+ primary tumors and TNBC 
primary tumors to determine if the subtype specific methylation signatures that we identified in 
the breast cancer cell lines are recapitulated in primary tumors.  We confirmed that the subtype 
associated methylation differences in primary tumor support the hypothesis that STAT3 and GR 
binding sites are differentially methylated between subtypes, and demonstrated that ER+ 
primary tumors have overall significantly more methylation.  We are further investigating the 
global hypermethylation of ER+ primary tumors to determine how similar the methylated loci are 
to those found in the hypermethylator phenotype reported in colorectal cancer and gliomas.    
This is an exciting finding and suggests there are global epigenetic differences between these 
types of breast cancers, and may indicate that DNA methylation inhibitors may be affected 
therapeutic strategies in this subset of breast cancers.  

 
b) Genomic Analysis of Prostate Cancer 
In Year 2 of the TATRC project, we continued our analysis of the DNA methylation patterns in 
prostate cancer. One important question in the prostate cancer field is whether there are 
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biomarkers that can distinguish aggressive prostate cancer from non-aggressive prostate 
cancer. We integrated the DNA methylation data from the prostate tumor tissues with patient 
clinical information using linear regression models, in order to determine whether there were 
methylation signatures that were associated with specific patient clinical information, such as 
Gleason grade of the tumor or patient PSA score. We discovered methylation patterns at 
specific CpG loci that associated with biochemical recurrence in a linear regression model. 
Biochemical recurrence is defined as a rise in the level of prostate specific antigen (PSA) in the 
bloodstream after a radical prostatectomy, and is a first indicator of potential clinical recurrence 
of prostate cancer. Currently, clinicians use Gleason grade to assess prognosis of the disease 
and risk assessment tools such as CAPRA-S (Cancer of the Prostate Risk Assessment Post-
Surgical), developed at UCSF, to determine whether a patient has a high likelihood of 
undergoing recurrence after radical prostatectomy (Cooperberg et al., 2011).  We tested these 
CpG methylation patterns in logistic regression and plotted the results in Receiver Operating 
Characteristic (ROC) curves, which are used to evaluate the sensitivity and specificity of 
diagnostic and prognostic tests by comparing the number of true positives versus the number of 
false positives that are classified at different thresholds (Zou et al., 1997).  This analysis 
provided very promising results demonstrating that combining this methylation signature with 
patient clinical information sensitively and specifically anticipates which patients will 
biochemically recur. We are currently working towards validating these results in other prostate 
tissues, and we are continuing analysis of the prostate methylation patterns.  

In Year 2 of the TATRC project, we initiated experiments to study RNA transcript expression 
patterns in prostate cancer. We constructed and sequenced RNA-seq libraries using RNA 
isolated from 81 of the136 prostate tissues used in the DNA methylation studies – 55 from 
prostate tumor tissues and 26 from benign-adjacent prostate tissues, representing 17 matched 
pairs. Resultant sequencing reads were run through the computational pipeline that we 
developed in Year 1, and we are currently analyzing this data. Thus far, out of the ~51,000 
known coding and non-coding RNA transcripts in the genome, we have found ~500 transcripts 
that are significantly associated with biochemical recurrence. We are currently analyzing these 
transcripts to understand what cellular pathways are being enriched in these significantly 
expressed transcripts. We have also identified ~7,000 novel RNA transcripts across these 
prostate tissues. Novel transcripts are defined as transcripts that are expressed from un-
annotated regions of the genome that have not previously been described as being regions 
containing genes. Through statistical analysis, we have found that ~70 of these novel transcripts 
are significantly associated with biochemical recurrence. We are particularly interested in the 
novel transcripts that are only being expressed in the prostate tumor tissues, as they may 
produce aberrant protein products that might serve as biomarkers for recurrence, or may serve 
as a novel target for prostate cancer therapeutics. We have also utilized a program called 
Chimerascan in order to identify chimeric transcripts in prostate cancer. When comparing the 
benign-adjacent tissues to the prostate tumor tissues, we confirmed the presence of the 
previously identified TMPRSS2-ERG fusion gene (Tomlins et al., 2005). We also identified other 
putative chimeras associated with prostate cancer using chimerascan, and we will be 
performing additional experiments to understand what role these fusions may play in prostate 
cancer etiology.  

 

c) Genomic Analysis of Pancreatic Cancer 
We originally proposed to study pancreatic cancer in Year 5 of the TATRC funding cycle, as 
given the progressive nature of this disease, identifying patient samples for this study is a 
challenge. However, in Year 1 of TATRC, we identified a cohort of 100 pancreatic tissues 
through our collaborations with the Pancreatic SPORE at the University of Alabama at 
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Birmingham. Given our advances in the efficiency and throughput of our genomic assays 
through technical development of our protocols, we decided to move the pancreatic cancer 
study forward in our TATRC timeline. In Year 1, one of our collaborators at the University of 
Alabama at Birmingham, Dr. William Grizzle, worked to macrodissect the pancreatic tumor 
tissue cohort in order to enrich for the tumor cell population. Early in Year 2 of TATRC, we 
obtained 52 macrodissected pancreatic tumor tissues, as well as 27 patient-matched uninvolved 
pancreatic tissues. These tissues were homogenized in our lab, and both DNA and RNA were 
extracted from the resultant lysate. After confirming the integrity of the nucleic acids through 
quality control assays, we constructed both RNA-seq libraries and Reduced Representation 
Bisulfite Sequencing libraries in order to study RNA expression and DNA methylation patterns in 
these pancreatic tissues.  

Through analysis of the RRBS data, we have found that DNA methylation patterns can 
distinguish pancreatic tumor tissues from patient-matched uninvolved pancreatic tissues. 
Through statistical tests, we have discovered ~80,000 CpG loci that are significantly different 
between pancreatic tumor tissue and uninvolved pancreatic tissues, and we are currently 
working to understand the pathways that are being affected by these epigenetic alterations. 
Interestingly, when we cluster ~3,000 CpGs that have the most divergent methylation patterns 
between the tumor tissues and the uninvolved tissues, we see methylation patterns in the tumor 
tissues that may be indicative of pancreatic tumor subtypes.  

Analysis of the RNA-seq data has uncovered that out of the ~51,000 known RNA transcripts in 
the human genome, ~20,000 of these transcripts have altered expression patterns in the 
pancreatic tumor tissues. Out of these ~20,000 RNA transcripts, ~55% are protein-coding 
RNAs, ~6% are small, regulatory non-coding RNAs, ~6% are long non-coding RNAs, and the 
remainder are pseudogenes and other non-coding transcripts. Analysis is ongoing to 
understand the cellular pathways that are enriched within these altered transcripts – we hope to 
uncover novel targets for pancreatic cancer therapeutics. Across the pancreatic tissues, we 
have discovered ~12,000 novel transcripts, being expressed from regions of the genome that 
are currently un-annotated. Of those ~12,000 novel transcripts, ~5,500 are significantly 
differently expressed between the pancreatic tumor tissues and the uninvolved pancreatic 
tissues. We are especially interested in the ~3,000 transcripts that are only expressed in the 
tumor tissues, as we hope these will ultimately express a protein that might be targetable by 
novel therapeutics for pancreatic cancer. We have also begun Chimerascan analysis of the 
pancreatic tissues, and we are excited to report that we have found two pancreatic tumor-
specific chimeric transcripts. One of the pancreatic tumor specific chimeric transcripts that we 
have identified has previously been identified in both ovarian and breast cancer, so we are 
interested in performing additional experiments in order to understand how this particular 
transcript may be playing a role in pancreatic cancer.  

Defining subtypes of different types of cancers, such as breast cancer, have proven important 
for informing clinical patient care. We see evidence for subtypes of pancreatic cancer in both the 
DNA methylation data and the RNA-seq data – specifically, we see evidence in our data that 
validate the three pancreatic cancer subtypes that were published by the Gray lab last year 
(Collisson et. al, 2011). We are continuing analysis to see if our RNA-seq data can aid in further 
clarifying and defining these subtypes of pancreatic cancer. Furthermore, we are working on 
integration of the DNA methylation data and the RNA-seq data, and we hope this will provide 
biomarkers for these different subtypes of pancreatic cancer, and potentially provide information 
on how these three subtypes might best be treated in the clinic.  
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Key Research Accomplishments 
• identified sources and obtained IRB and institutional material transfer agreements for 

matched normal and tumor tissues for breast, prostate and pancreatic cancers. 

• completed pathological analyses and macrodissection to enrich tumor cells from normal 
surrounding tissue for all three cancer tissue types. 

• completed DNA methylation analysis on breast cancer cell lines, frozen prostate tissues, 
frozen breast tissues, and frozen pancreatic tissue. 

• developed a high-throughput RNA-seq protocol. 

• completed RNA-seq for breast cancer cell lines, frozen prostate tissues, frozen breast 
tissues, and frozen pancreatic tissue.  

• developed a multiplex microRNA sequencing protocol, and performed microRNA-seq on 28 
breast cancer cell lines. 

• developed a suite of computational algorithms that allow efficient automated analysis of 
DNA methylation profiles, RNA-seq. 

• identified  DNA methylation and gene expression signatures associated with breast cancer 
cell line sensitivity to therapeutics 

• identified 3 read-through fusion transcripts significantly associated with breast cancer in 
breast cancer cell lines and primary tumors 

• identified gene expression and DNA methylation signatures associated with breast cancer 
subtypes that implicate transcription factors in controlling subtype specific transcriptional 
program that are potential therapeutic targets 

• identified hypermethylation signature specific to ER+ breast cancer 

• identified DNA methylation and gene expression signatures associated with biochemical 
recurrence in prostate cancer patients 

• identified DNA methylation and gene expression signatures associated with distinct 
pancreatic cancer subtypes 

• identified two pancreatic tumor specific chimeric transcripts 

 
 
Reportable Outcomes 
A manuscript that describes the improved library protocol for RNA-seq experiments was 
accepted for publication in Genome Research (Appendix A).  We presented a poster describing 
the DNA methylation data and preliminary analysis from the prostate samples at the AGBT 2012 
conference(Appendix C). We prepared and submitted a manuscript describing the discovery of 
read-through fusion transcripts in breast cancer (Appendix B).  
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Conclusions 
The genomic analysis of breast, prostate and pancreatic cancer that we performed for this 
project led to several novel discoveries related to tumor formation, disease recurrence, and 
treatment sensitivity.  The loci and pathways identified using these genome-wide approaches 
could serve as valuable diagnostic and prognostic biomarkers.   In addition to predicting clinical 
outcome for individual patients, this information can lead to the identification of biochemical 
pathways that can be targeted by therapeutics that may lead to more effective treatments in the 
future.  We are pursuing alternative funding mechanisms to support the further investigation of 
the promising biomarkers and candidate therapeutic targets identified in this study. 
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Supporting Data 
 

Figure 1: DNA methylation in 28 breast cancer cell lines. Unsupervised hierarchical clustering 
of the 10,000 CpGs with the most variable DNA methylation across breast cancer cell lines. 
Yellow: full methylation.  Blue: no methylation.  Breast cancer cell lines exhibit distinct patterns 
of DNA methylation that distinguish the luminal and basal subtypes of breast cancer. 
 

 
 

 

Figure 2:  Principal Components Analysis (PCA) of DNA methylation patterns from 450,000 
CpGs distinguishes prostate tumor (red) and benign-adjacent prostate (green)  tissue samples. 
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Figure 3:  Unsupervised hierarchical clustering of ~12,000 most variable CpGs from prostate 
tumor tissue samples.  Each column across the top is one individual's prostate tumor, and each 
of the 12,000 CpGs are on the vertical axis.  Yellow: full methylation.  Blue: represents no 
methylation.  
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Figure 4:  mRNA-seq in breast cancer.  The correlation coefficient of the expression values 
between all pairs of breast cancer cell lines is displayed in this heatmap. Green and yellow 
represent highly correlated samples, and blue and cyan represent weakly correlated samples.  
The similarity of expression values corresponds to similar breast cancer subtypes. The 
dendogram on the left shows the similarity between the expression in the basal subtype samples 
and the expression signature shared by the luminal subtype samples. 

	  

       
	  
	  
	  
	  
List of personnel that received pay from this research effort: 
Richard Myers 
Greg Barsh 
Devin Absher 
Shawn Levy 
Katherine Varley 
Marie Cross 
Tracy Eggleston 
Barbara Pusey 
Scott Newberry 
Brittany Lasseigne 
Stephanie Parker 
Alan You 
Tatsuya Uechi 
Joshua Nielson 
Todd Burwell 
Preti Jain 
 

 
 



 
18 

Appendices 
The following appendices are attached to this document in order: 

 

Appendix A:  A manuscript that describes the improved library protocol for RNA-seq 
experiments was accepted for publication in Genome Research  

 

Appendix B:  A manuscript describing the discovery of read-through fusion transcripts in breast 
cancer. 

 

Appendix C:  An abstract describing the DNA methylation data and preliminary analysis from the 
prostate samples submitted to the AGBT 2012 conference.  
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Method

Transposase mediated construction
of RNA-seq libraries
Jason Gertz,1 Katherine E. Varley,1 Nicholas S. Davis,1 Bradley J. Baas,2 Igor Y. Goryshin,2

Ramesh Vaidyanathan,2 Scott Kuersten,2 and Richard M. Myers1,3

1HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA; 2Epicentre (An Illumina Company), Madison, Wisconsin

53713, USA

RNA-seq has been widely adopted as a gene-expression measurement tool due to the detail, resolution, and sensitivity of
transcript characterization that the technique provides. Here we present two transposon-based methods that efficiently
construct high-quality RNA-seq libraries. We first describe a method that creates RNA-seq libraries for Illumina se-
quencing from double-stranded cDNA with only two enzymatic reactions. We generated high-quality RNA-seq libraries
from as little as 10 pg of mRNA (~1 ng of total RNA) with this approach. We also present a strand-specific RNA-seq library
construction protocol that combines transposon-based library construction with uracil DNA glycosylase and endonu-
clease VIII to specifically degrade the second strand constructed during cDNA synthesis. The directional RNA-seq li-
braries maintain the same quality as the nondirectional libraries, while showing a high degree of strand specificity, such
that 99.5% of reads map to the expected genomic strand. Each transposon-based library construction method performed
well when compared with standard RNA-seq library construction methods with regard to complexity of the libraries,
correlation between biological replicates, and the percentage of reads that align to the genome as well as exons. Our
results show that high-quality RNA-seq libraries can be constructed efficiently and in an automatable fashion using
transposition technology.

[Supplemental material is available for this article.]

RNA-seq is a powerful technique that allows for sensitive digi-

tal quantification of transcript levels (Mortazavi et al. 2008;

Nagalakshmi et al. 2008). It enables the detection of noncanonical

transcription start sites (Liu et al. 2011) as well as termination sites

(Wang et al. 2008), alternative splice isoforms (Wang et al. 2008;

Jiang and Wong 2009), transcript mutations/editing (Rosenberg

et al. 2011), and allelic biases in transcript abundance (Pickrell et al.

2010). Methods that preserve the strand from which the transcript

originated also allow for the identification of antisense transcrip-

tion (He et al. 2008; Perkins et al. 2009), which can play a role in

post-transcriptional regulation. Because of the power of RNA-seq

and the prevalence of aberrant gene-expression patterns in many

diseases, there is a growing need to construct libraries efficiently

from low starting amounts of RNA in a high-throughput and re-

producible fashion.

Ultra-high throughput, ‘‘next-generation’’ DNA sequencing

library construction is a time-consuming process that typically has

some sample loss at each step. A recent advance in library con-

struction is the use of transposases to randomly integrate se-

quencing adapters into the DNA of interest (Adey et al. 2010). This

approach creates sequencing-ready DNA libraries in a few steps

with minimal hands-on time. The resulting libraries exhibit even

coverage across the human genome when constructed from low

amounts of genomic DNA (Adey et al. 2010). Transposon-based

library construction has also been successfully applied to pyrose-

quencing of the RNA genomes of strains of simian hemorrhagic

fever virus (Lauck et al. 2011). The success of transposon-based

genomic library construction for genomic analyses suggests that

it should be possible to use transposases to construct high-quality

RNA-seq libraries.

Recently, several techniques developed for constructing RNA-

seq libraries which maintain the transcript strand-of-origin were

evaluated (Levin et al. 2010). Each protocol had varying levels of

strand specificity, library complexity, and reproducibility. One of

the overall best methods tested involved incorporating uracil into

the second cDNA strand. The strand is subsequently degraded

specifically by treatment with uracil DNA glycosylase and endo-

nuclease VIII, which leaves only sequence reads that map to the

strand-of-origin of each transcript (Parkhomchuk et al. 2009). The

application of transposases to construct strand-specific RNA-seq

libraries is an appealing approach for efficiently creating RNA-seq

libraries with maximal information.

Here we describe the development of a transposon-based

method for RNA-seq library construction, called Tn–RNA-seq. The

method is fast and requires only two steps and two purifications

after cDNA is made. The protocol is fully automatable and is

compatible with robotics. We also extend and modify the trans-

posase-based RNA-seq method to create directional RNA-seq li-

braries capable of preserving the strand information from which

the transcript originated.

Results

Efficient transposition-based RNA-seq library construction

The strategies of each protocol are outlined in Figure 1. To construct

nondirectional standard RNA-seq libraries, we prepared double-

stranded (ds) cDNA from fragmented mRNA (Mortazavi et al. 2008).

The ds cDNA was end-repaired, A-tailed, ligated to sequencing

adapters, and amplified (Fig. 1A). For the nondirectional trans-

poson-based RNA-seq method (Tn–RNA-seq), mRNA was not frag-

3Corresponding author.
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Article published online before print. Article, supplemental material, and pub-
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mented before cDNA synthesis. Instead, we incubated the ds cDNA

with a transposome (hyperactive Tn5 transposase bound to syn-

thetic 19-bp mosaic end-recognition sequences appended to Illu-

mina sequencing adapters) (Adey et al. 2010) to simultaneously

fragment and attach adapters (Fig. 1B). Because the transposome is

a mixture containing two different sequences (shown in red and

yellow in Fig. 1B), it can insert in either orientation, resulting in

a nondirectional library. During the transposition process, only the

transferred strand of each transposon end is covalently linked to the

target DNA. Due to the staggered fashion of the transposition, a 9-bp

gap between the nontransferred strand and the target DNA is cre-

ated. Extension synthesis from the target DNA into this gap, fol-

lowed by copying of the attached transposon end by strand dis-

placement, creates the 39 adapter sequence. Suppression PCR (Rand

et al. 2005) is then used to select for templates with heterologous

adapters. During PCR, index barcodes can be added to allow for the

mixing of multiple samples in one sequencing lane. Following pu-

rification, PCR products are ready for single-end or paired-end se-

quencing with custom sequencing primers.

The entire process is automatable and feasible in 96-well

plates, making large-scale Tn–RNA-seq library construction with

robotics an appealing combination. Standard RNA-seq library

construction (Mortazavi et al. 2008) requires multiple enzymatic

reactions between cDNA synthesis and the final PCR step, com-

pared with the one reaction with the Tn–RNA-seq method we

describe here (Fig. 1B). The Tn–RNA-seq protocol cuts down sig-

nificantly on sample preparation time and could yield higher

quality RNA-seq libraries by minimizing sample loss during mul-

tiple reactions and purifications.

We constructed RNA-seq libraries with the standard method

and the Tn–RNA-seq method to compare library quality. We

extracted high-quality total RNA (RNA integrity number of 9.5 on

an Agilent Bioanalyzer) from the human endometrial adenocar-

cinoma cell line ECC-1 (Mo et al. 2006), and purified ECC-1 mRNA

by using poly(A) selection on magnetic beads. Two biological

replicates were used for each method with a starting amount of 50

ng of ECC-1 mRNA. Each library was sequenced on one lane of an

Illumina GAIIx using a custom sequencing primer specific to the

transposon end to generate an average of 28 million pass-filter 36-

bp reads. We used multiple metrics to assess quality of each library.

The results are shown in Table 1 (see Methods for details on cal-

culations) and some typical examples are presented in Figure 2 and

Supplemental Figure S5. The libraries were evaluated on how well

they aligned to exons, their complexity, and their biological re-

producibility. In each of these categories, the Tn–RNA-seq protocol

showed similar performance to the standard protocol, indicating

that high-quality RNA-seq libraries can be constructed using trans-

position technology.

We also evaluated 59 and 39 bias in each library by calculating

the relative coverage across transcripts. Figure 3 shows that the Tn–

RNA-seq libraries show a subtle depletion in coverage at the 10%-

most 59 ends of transcripts. This depletion is due to the nature of

the transposon-based library construction. To sequence the ends of

transcripts, a transposase would have to integrate one transposon

near the very end of the transcript and that transposon would have

to be in the correct orientation with the sequencing primer facing

toward the 39 end of the transcript. Even in this case, only se-

quencing reads generated from one strand would map to the most

59 end of the transcript. Depletion is not seen on the 39 end of the

transcript, which is most likely due to the presence of the poly(A)

tail, which gives the transposase extra substrate to integrate the

transposon. The depletion of 59 ends is seen across all sizes of

transcripts (Supplemental Fig. S2), and when analyzed on a base-

pair scale, corresponds to a more than twofold depletion in cov-

erage of the first 50 nt of the transcript relative to the standard

method (Supplemental Fig. S3). We observed a subtle reduction in

the number of short transcripts, <200 nt, which were detectable

with the Tn–RNA-seq approach. We found that 396 short tran-

scripts were detectable with the standard approach and 348 short

transcripts were detectable with the Tn–RNA-seq method, which

represents a 12% reduction in the number of short transcripts

detected. It is important to point out that the higher alignment

percentage to exons of the Tn–RNA-seq method, compared with

the standard protocol, may be due to the depletion of 59 ends,

Figure 1. RNA-seq methods overview. (A) In the standard adapter ligation RNA-seq library construction protocol, double-stranded cDNA made from
fragmented mRNA is subjected to end repair, dATP addition, adapter ligation, size selection, and PCR. (B) For the Tn–RNA-seq method described here,
double-stranded cDNA is incubated with transposome (transposase complexed with transposon) and then undergoes PCR. (C ) In the directional RNA
ligation approach (standard directional), poly(A)-selected mRNA is fragmented with heat and end repaired. 39 and then 59 adapters are ligated onto single-
stranded RNA before reverse transcription, followed by PCR. (D) The directional Tn–RNA-seq library construction described here starts with double-
stranded cDNA, in which the second strand synthesized contains uracils instead of thymines. cDNA synthesis is followed by transposition of sequencing
adapters, gap fill-in/ligation, USER digestion, and PCR. P5 and P7 correspond to Illumina cluster generation primers. R1 identifies the sequencing primer
and cR1 indicates custom sequencing primer. (9) Reverse complement.
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because observed 59 ends of transcripts may differ from RefSeq

annotations. While there is a slight depletion in coverage at the 59

end of transcripts, the impact on library quality and expression

measurements (discussed below) is negligible.

To determine whether the Tn–RNA-seq protocol produces

data indicating the same gene-expression levels as does the stan-

dard protocol, we calculated RPKM (reads per kilobase per million

aligned reads) (Mortazavi et al. 2008) values for each RefSeq gene

(see Methods). The results are shown in Figure 4. The Pearson cor-

relation (r) between log base 2 of RPKM values from the standard

and Tn–RNA-seq protocols is 0.959. The Spearman rank correlation

(r), which is more appropriate given the overall distribution of

RPKM values, is 0.979. The high correlation in expression values

indicates that the Tn–RNA-seq protocol allows for efficient con-

struction of high-quality RNA-seq libraries while maintaining the

integrity of transcript measurements.

Consistent Tn–RNA-seq libraries constructed from low
amounts of input mRNA

We next sought to establish whether the Tn–RNA-seq method is

robust to differing amounts of starting material and determine the

amount of mRNA required to construct a reliable RNA-seq library.

To test library construction with lower starting amounts of mRNA,

we constructed seven Tn–RNA-seq libraries with between 10 ng

and 1 pg of mRNA. The yield of Tn–RNA-seq library construction

was dependent on the amount of mRNA that was used. Libraries

made with between 10 and 0.5 ng of mRNA yielded ;600 ng of

DNA, while libraries constructed with <100 pg of mRNA yielded

between 30 and 100 ng of DNA.

The quality metrics for each Tn–RNA-seq library are displayed

in Supplemental Table S1. All six libraries made from between 10

ng and 10 pg of mRNA had at least 72% of aligned reads map to

known transcripts, while the library made from 1 pg of mRNA had

62% of aligned reads map to known transcripts. Library complexity

also remained high for all libraries except for the library constructed

with 1 pg of mRNA (Fig. 5A). In general, Tn–RNA-seq libraries made

with 10 pg or more of mRNA exhibited consistent quality measures,

showing that high-quality RNA-seq libraries can be constructed

with the transposon-based method from as little as 10 pg of mRNA,

which represents ;1 ng of total RNA or ;200 cell equivalents.

We also examined whether expression measurements were

consistent across different amounts of starting materials (Supple-

mental Fig. S4). We found that all libraries made from at least 10 pg

of mRNA were very consistent with the libraries constructed from

50 ng of mRNA. For all libraries except for the library made with 1

pg of mRNA, the rank correlation of ex-

pression measurements with the 50 ng of

mRNA library exceeded 0.96 (Fig. 5B).

Library insert size is influenced by

the amount of mRNA used; smaller

amounts of starting material result in

smaller insert sizes (Supplemental Fig.

S1). This is due to the relative ratio of

target DNA to transposome, since the

transposase does not enzymatically turn

over in these reactions. Based on these

observations, it may be possible to alter

the insert size by changing the concen-

tration of transposase relative to the

amount of mRNA. Our results indicate

that transposon-based library construction can be used on limiting

amounts of mRNA as low as 10 pg.

Strand-specific transposon-based RNA-seq
library construction

A limitation of the above-mentioned transposon-based approach

is that the transposition reaction is inherently nondirectional. This

means that the resulting cDNA is captured without regard to the

original transcript strand information. To create libraries that

preserve strand information we adapted a previously described

approach to specifically mark one strand of cDNA by incorporating

Table 1. RNA-seq library construction comparison in ECC-1

Protocol

Reads
aligned to
genome

Percent of aligned
reads that map to
RefSeq transcripts Complexity

Biological
Replicate

Correlation
(Pearson)

Biological
Replicate

Correlation
(Spearman)

Standard Rep1 18,347,613 73.7% 85.77% 0.983 0.986
Standard Rep2 9,218,462 74.3% 85.79%
Tn–RNA-seq Rep1 22,945,616 81.3% 89.08% 0.955 0.986
Tn–RNA-seq Rep2 18,513,940 85.1% 85.20%
Directional Tn–

RNA-seq Rep1
20,474,907 74.5% 81.60% 0.981 0.988

Directional Tn–
RNA-seq Rep2

25,848,260 72.5% 81.43%

Figure 2. The directional Tn–RNA-seq method exhibits complete
strand specificity. Aligned reads for the standard, Tn–RNA-seq, and di-
rectional Tn–RNA-seq method are displayed for three genomic loci. Reads
mapping to the positive strand are shown in orange and reads mapping
to the negative strand are shown in blue. Arrows indicate the direction of
transcription for each RefSeq gene.
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dUTP during the second-strand synthesis (Parkhomchuk et al.

2009). We modified the Tn–RNA-seq method to accommodate

uracil-containing cDNA and preserve the stranded information

content of the samples. After adapters were attached, the combi-

nation of uracil DNA glycosylase (UDG) and endonuclease VIII

(Endo VIII) degraded the second strand, leaving only the first

strand of cDNA, which is the reverse complement of the original

transcript.

After first-strand cDNA synthesis from 50 ng of ECC-1 mRNA,

we treated the reaction with a nucleotide phosphatase to remove

nucleotides, since free nucleotide contamination in the second-

strand reaction would result in a decrease in strand specificity. The

reaction was then column purified and used for second-strand

cDNA synthesis in the presence of a nucleotide mix containing

dUTP instead of dTTP.

Purified uracil-containing double-stranded cDNA was then

incubated with a single transposome containing a unique se-

quence (P5), which is appended to the 59 end of the transferred

strand (Fig. 1D, shown in green). After transposition, DNA frag-

ments contain the P5 sequence at the 59 ends of both strands of

cDNA. The nontransferred strand is replaced with a modified oli-

gonucleotide containing a different sequence (P7) appended to the

59 end (Fig. 1D, shown in blue) and the 9-bp gap is filled in and

ligated to the template. Because the cDNA is marked, the uracil-

containing second strand can be removed prior to PCR by treating

the cDNA library with UDG and Endo VIII. The surviving frag-

ments are then amplified and enriched using Phusion DNA poly-

merase, which is very inefficient at extending templates that

contain uracils, providing an additional level of strand specificity

(Greagg et al. 1999). We sequenced 36 bases of these final libraries

from a single end on an Illumina GAIIx using a custom sequencing

primer specific to the P5-containing transposon end. This di-

rectional library method (directional Tn–RNA-seq) is designed to

produce all sequencing tags oriented 39–59 relative to the original

RNA transcripts.

We observed striking strand specificity in the genomic

alignments produced from these libraries (Fig. 2). ACTB, one of the

highest expressed genes in ECC-1, is shown in Figure 2, top, and we

found that all reads map to the expected strand. Determining

strand specificity can help to disambiguate some genes; for example,

Figure 3. Transposon-based libraries show expected depletion of coverage at 59 ends of transcripts. The percentage of coverage (y-axis), averaged
across all transcripts is plotted as a function of distance across the transcripts (x-axis). 0% corresponds to the 59 ends and 100% corresponds to the 39 ends
of transcripts.

Figure 4. Expression values are consistent between standard RNA-seq library construction and transposon-based RNA-seq library construction in ECC-
1. (A) Scatterplot showing expression values for standard RNA-seq library construction (y-axis) and the Tn–RNA-seq library construction (x-axis). The
Pearson correlation between the standard and Tn–RNA-seq protocols is 0.959, and the Spearman rank correlation is 0.979. (B) Scatterplot displaying
expression values for standard RNA-seq library construction (y-axis) and the directional Tn–RNA-seq library construction (x-axis). The Pearson correlation
between the standard and directional Tn–RNA-seq protocols is 0.934, and the Spearman rank correlation is 0.959. (C ) Scatterplot displaying expression
values for Tn–RNA-seq library construction (x-axis) and the directional Tn–RNA-seq library construction (y-axis). The Pearson correlation between the
Tn–RNA-seq and directional Tn–RNA-seq protocols is 0.971, and the Spearman rank correlation is 0.953.
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SLC4A5 (Fig. 2, bottom). When measured by nondirectional RNA-

seq, SLC4A5 appears expressed because of reads mapping to the 39

end of the gene. However, strand-specific RNA-seq shows that these

reads originate from the antisense strand, not the coding strand, and

represent either antisense transcription or read-through of the 39

end of MTHFD2, a gene 39 and oriented opposite to the SLC4A5

gene.

To determine the overall strand specificity of the directional

Tn–RNA-seq method, we calculated the percentage of reads map-

ping to the expected strand of RefSeq genes. We found that in both

replicates >99.4% of reads map to the expected strand (99.5% and

99.4% for individual replicates). This is likely an underestimate

of the strand specificity of the method, as there is expected to be

some antisense transcription as well as alternative 59 and 39 UTR

boundaries (as may be the case with SLC4A5) that are not repre-

sented in the RefSeq annotations. This level of strand specificity is

in the same range as the most strand-specific methods analyzed by

Levin et al. (2010) in yeast, indicating that the directional Tn–RNA-

seq method exhibits a degree of strand specificity that is compa-

rable to the most specific methods available.

The coverage across the length of transcripts for the di-

rectional Tn–RNA-seq RNA-seq libraries yields an interesting pat-

tern. We observed substantial depletion at the 59 end of transcripts

and increased coverage at the 39 end of transcripts compared with

the standard RNA-seq library construction protocol. This pattern

can be explained by the strand specificity of the directional Tn–

RNA-seq method. Strand-specific reads in these libraries should

always sequence from the 39 end toward the 59 end of the transcript.

This would cause depletion in coverage at the 59 end, because two

transposition events near the 59 end would be required to sequence

the 59�most portion of the transcript. The 39 end harbors an over-

abundance of reads compared with the standard method because,

regardless of where the transposon is integrated, the 39 most trans-

poson will be the sequencing primer that generates the sequence

read.

While the directional Tn–RNA-seq method yields highly

strand-specific libraries, we also wanted to assess the quality of the

libraries using the same metrics discussed above. Table 1 shows

that the directional Tn–RNA-seq libraries have similar levels of

reproducibility, complexity, and alignability. The complexity of

the directional Tn–RNA-seq libraries is lower compared with the

standard and nondirectional Tn–RNA-seq libraries. We believe that

this is due in part to a reduction in the number of possible align-

ment locations. The number of possible unique genome mapping

locations, which includes the strand that the read matches, is cut

by half in the directional Tn–RNA-seq libraries due to the strand

specificity. Overall, these results show

that our directional Tn–RNA-seq protocol

results in high-quality strand-specific

RNA-seq libraries that preserve transcript

measurements (Fig. 4B,C).

To compare the directional Tn–RNA-

seq with a standard directional RNA-seq

protocol, we created strand-specific RNA-

seq libraries using single-stranded RNA

ligation (Lister et al. 2008), similar to the

Illumina TruSeq small RNA protocol

(Fig. 1C; see Methods). We created strand-

specific libraries from universal human

reference RNA (Novoradovskaya et al.

2004) using both methods to compare

performance. For each library, we calcu-

lated the percentage of reads mapping to the expected strand of

RefSeq genes. Similar strand specificity was observed with each

protocol. The library constructed with the standard directional ap-

proach exhibited 99.46% of reads mapping to the expected strand,

and the library constructed with the directional Tn–RNA-seq

method had 99.51% of reads mapping to the expected strand. We

next analyzed expression measurements from the directional li-

braries and found a high correlation (rank correlation: 0.96) between

the two methods (Supplemental Fig. S6). These results indicate that

the directional Tn–RNA-seq method maintains the same strand

specificity of a standard method, and that expression measurements

are also consistent between directional approaches.

Discussion
We have described two techniques for constructing RNA-seq li-

braries that are based on the introduction of sequencing adapters

by transposition into double-stranded cDNA. The first method de-

scribed is an efficient method for creating strand ambiguous libraries

that requires only one enzymatic step to go from double-stranded

cDNA to fragments ready to be amplified before sequencing. We

found that libraries constructed in this manner performed as well as

libraries made using the more laborious standard adapter ligation-

based approach. We also found that that the transposon-based ap-

proach yielded high-quality RNA-seq libraries that preserved tran-

script measurements with as low as 10 pg of mRNA. This reduction

in required starting material for RNA-seq library construction pro-

vides the opportunity to create reproducible RNA-seq libraries from

rare cell types or small samples. The transposon-based RNA-seq

approach is an attractive option for RNA-seq library construction

because of the protocol’s efficiency and efficacy. This is especially

true for labs preparing a large number of samples, with or without

robotics, because the library preparation starting from poly(A) se-

lection takes <8 h to complete.

We also present a method that preserves the strand-of-origin

for each transcript sequenced. Knowing the strand orientation of

the transcripts can lead to interesting findings about transcript

structure (Core et al. 2008; He et al. 2008; Seila et al. 2008). The

strand specificity of the directional Tn–RNA-seq method comes

from specific digestion of the second cDNA strand combined with

novel transposome modifications to control the attachment of

specific sequences to the template cDNA. The directional method

is more time consuming than the nondirectional transposon-

based method, but it provides additional information while

maintaining a high level of complexity and reproducibility. The

strand specificity is near complete at 99.5% and similar to the best-

Figure 5. Tn–RNA-seq libraries constructed from as low as 10 pg of mRNA are high quality and show
highly correlated expression levels. (A) Library complexity, calculated as the number of different
alignment positions in a random set of 1 million aligned reads divided by 1 million, is shown for libraries
made with between 50 ng and 1 pg of mRNA. (B) Rank correlations of expression measurements be-
tween the library constructed with 50 ng of mRNA and every other Tn–RNA-seq library are displayed.
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published methods in yeast (Levin et al. 2010) and to our results

using an RNA ligation approach.

While both transposon-based RNA-seq library construction

techniques exhibit high-quality sequencing results, there is a sub-

tle depletion of sequence near the 59 ends of transcripts that is

more pronounced with the directional method. This depletion is

expected and unavoidable for directional Tn–RNA-seq due to the

nature of the transposition and strand specificity. This depletion at

the 59 ends of transcripts could be lessened by modifying the

protocol to sequence toward the 39 end of the transcript as opposed

to toward the 59 end of the transcript in the protocol presented.

The nondirectional Tn–RNA-seq library construction is ame-

nable to large-scale library construction and automation. Because

every enzymatic step is followed by magnetic bead purification

(Hawkins et al. 1994), the full library construction protocol can

easily be applied to a 96-well plate format, where steps can be

completed with robotics. The protocol also allows for multiplex

sequencing of samples (Smith et al. 2010). Molecular barcodes can

be added during the final PCR step by using different primers,

which can result in a significant cost savings. Since the transposase

binds to a particular sequence, the sequencing adapters intro-

duced are different from the standard Illumina adapters. Therefore,

the Tn–RNA-seq libraries need to be mixed with a custom primer

to be sequenced, but otherwise require no special experimental

or computational accommodations. Both transposase-based ap-

proaches to constructing RNA-seq libraries that are described in

this work provide an efficient and streamlined workflow to achieve

high-quality characterization of the transcriptome comparable to

the current more laborious methods.

Methods

Cell culture and mRNA isolation
The human endometrial cancer cell line ECC-1 was grown in
RPMI-1640 (Invitrogen) supplemented with 10% fetal bovine se-
rum (Hyclone) and 1% penicillin-streptomycin (Invitrogen). Two
separate growth replicates were used to assess biological replica-
tion. To isolate total RNA, we used the Animal Tissue RNA Isolation
kit (Norgen) with ;5 million cells scraped from a 100-mm cell
culture dish. The samples are DNase treated during the purifica-
tion, which is important because genomic DNA contamination
can be efficiently made into sequencer-ready molecules during the
transposition step. Universal human reference RNA was purchased
from Agilent. After total RNA was purified, mRNA was enriched
using the Dynabeads mRNA Purificaiton Kit (Invitrogen) with the
following modifications. The beads were washed twice, instead of
once, with Wash Buffer B before each elution. Each sample went
through two rounds of binding, washing, and elution. Samples
were eluted in 20 mL of Tris-HCL elution buffer during the final
elution. All RNA and DNA concentrations were measured with
a Qubit fluorometer (Invitrogen).

Standard RNA-seq library construction

Standard library construction was performed as previously de-
scribed (Mortazavi et al. 2008). For each biological replicate, 50 ng
of mRNA was used for each library.

Tn–RNA-seq library construction

Primer and adapter sequences for both transposon-based protocols
can be found in Supplemental Table S2. To make cDNA, 1 mL (3 mg)
of random hexamers (Invitrogen) was added to poly(A)-selected

mRNA in a volume of 20 mL of Tris-HCL elution buffer and in-
cubated at 65°C for 5 min, then placed on ice. First-strand cDNA
synthesis was performed by adding 4 mL of First Strand Buffer
(Invitrogen), 2 mL of 100 mM DTT (Invitrogen), 0.5 mL of RNaseOUT
(Invitrogen), and 1 mL of Superscript II (200 U/mL, Invitrogen),
and incubating the mix at 25°C for 12 min, 42°C for 50 min,
then 70°C for 15 min. The second strand of cDNA was filled-in
by adding 16 mL of water, 5 mL of 103 second Strand Buffer (500 mM
Tris-HCl at pH 7.8, 50 mM MgCl2, 10 mM DTT), 3 mL of 10 mM
dNTPs (New England Biolabs—NEB), 1 mL of RNase H (10 U/mL,
Invitrogen), and 5 mL of DNA Polymerase I (10 U/mL, Invitrogen)
to the first-strand reaction on ice, and then incubating at 16°C for
2.5 h. The cDNA was purified with AMPure beads (Beckman Coulter)
according to the manufacturer’s instructions and eluted in 15 mL
of EB (Qiagen).

To incorporate sequencing adapters, we combined the puri-
fied cDNA with 4 mL of TA buffer (33 mM Tris-acetate at pH 7.5, 66
mM potassium acetate, 10 mM magnesium acetate, and 0.5 mM
DTT) and 0.2 mL of Nextera Enzyme (Epicentre) on ice and in-
cubated at 55°C for 5 min, and then placed the sample on ice. We
added 30 mL of QG buffer (Qiagen) to stop the transposase reaction
and purified the DNA with 90 mL of AMPure beads, eluting in 22 mL
of EB. To PCR amplify the fragments, we added 25 mL of Nextera
PCR buffer, 1 mL of 503 Nextera Primer Cocktail, 1 mL of Nextera
Adapter 2, and 1 mL of Nextera PCR enzyme (Epicentre) to the
purified fragments for a total volume of 50 mL. The reaction was
incubated at 72°C for 3 min, then at 95°C for 30 sec, followed by 15
cycles of 95°C for 10 sec, 62°C for 30 sec, and 72°C for 3 min. We
purified the PCR amplicons with 90 mL of AMPure beads per the
manufacturer’s instructions and eluted in 32 mL of EB. We se-
quenced libraries at a concentration of 6 pM on an illumina GAIIx
sequencer with a custom sequencing primer designed to anneal to
the transposon sequence. Libraries constructed with <10 ng of
mRNA were barcoded and sequenced on an Illumina HiSeq 2000
with a custom sequencing primer and custom index primer. For
optimal sequencing results, we found that using 75 ng or less of
double-stranded cDNA in the transposition reaction is important.
Using larger amounts of cDNA can lead to insert sizes of >1000 bp
that do not sequence well.

Directional Tn–RNA-seq library construction

To construct the first strand of cDNA, 50 ng of mRNA in a volume
of 20 mL were added to 1 mL (3 mg) of random hexamers (Invi-
trogen), heated to 65°C for 5 min, and placed directly on ice. Then,
6 mL of 5x first strand buffer, 1 mL of 100 mM DTT, 1 mL of 10 mM
dNTPs [NEB], 0.5 mL of RNaseOUT [Invitrogen], 0.5 mL of Actino-
mycin D [120 ng/mL, Sigma], and 1 mL of Superscript III [200 U/mL,
Invitrogen] were added to mRNA/primer mix at room temperature.
The reaction was then incubated at 40°C for 90 min and heat
inactivated at 70°C for 15 min. The reaction was cooled to 37°C
and 1 mL of RNase H (10 U/mL, Invitrogen) and 1 mL of NTPhos (20
U/mL, Epicentre) were added. The reaction was incubated at 37°C
for 30 min, then heat inactivated at 75°C for 15 min. The first-
strand cDNA was purified with the QIAquick PCR Purification
kit (Qiagen) per the manufacturer’s instructions and eluted in
25 mL of EB (Qiagen). It was then purified further with a prepared
G50 Sephadex column (USA Scientific) to ensure removal of
unincorporated dNTPs.

The second strand of cDNA was created by mixing 25 mL
of the previously purified single-stranded cDNA, 13 mL of water,
5 mL of NEBuffer 2, 2 mL of 25 mM dNTPs (with dUTP instead of
dTTP), 1 mL of random hexamers, and 4 mL of Klenow exo- (5 U/mL,
NEB). The reaction was incubated at 37°C for 30 min. The second-
strand synthesis product was purified using the MinElute PCR
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Purification kit (Qiagen) per the manufacturer’s instructions and
eluted in 15 mL of EB.

To add sequencing adapters to the double-stranded cDNA, 15
mL of cDNA product, 4 mL of TA buffer (33 mM Tris-acetate at pH
7.5, 66 mM potassium acetate, 10 mM magnesium acetate, and 0.5
mM DTT), and 1 mL of directional Tn–RNA-seq Enzyme mix (Epi-
centre, beta test material) were mixed together on ice. They were
gently vortexed and incubated at 55°C for 5 min. A 30-mL aliquot
of QG buffer (Qiagen) was added immediately after the reaction
finished. The reaction was cleaned up with 90 mL of AMPure Beads
according to the manufacturer’s instructions (Beckman Coulter)
and eluted in 11 mL of EB. The 11 mL of purified DNA was mixed
with 4 mL of Replacement Oligo (Epicentre, beta test material) and
4 ml of Fill-in Reaction Buffer (Epicentre, beta test material) and
incubated at 45°C for 1 min, then 37°C for 30 min. A 1-mL aliquot
of Gap Filling Enzyme (Epicentre, beta test material) was added and
incubated at 37°C for an additional 30 min. The reaction was
cleaned up with 36 mL of AMPure beads according to the manu-
facturer’s instructions and eluted in 26 mL of EB.

To digest the second strand of cDNA, the 26-mL purified DNA
was added to 3 mL of T4 DNA Ligase buffer (NEB) and 1 mL of USER
enzyme mix (1 U/mL, NEB). The reaction was incubated at 37°C for
30 min and the cDNA was purified with 54 mL of AMPure beads
according to the manufacturer’s instructions and eluted in 25 mL of
EB. To amplify the fragments, 25 mL of USER-treated DNA was
added to 1 mL of directional Tn–RNA-seq PCR Primer 1 and 1 mL of
directional Tn–RNA-seq Primer 2 (Epicentre, beta test material) and
27 mL of Phusion PCR mix (NEB). The mix was incubated at 95°C
for 2 min, then 18 cycles of 94°C for 10 sec, 60°C for 30 sec, and
72°C for 3 min were performed. The PCR amplicons were purified
with 97 mL of AMPure beads according to the manufacturer’s in-
structions and eluted in 32 mL of EB. Libraries were sequenced on
an Illumina GAIIx at a concentration of 6 pM.

Standard directional RNA-seq library construction

Poly(A)-selected Universal Human Reference RNA (Agilent) was
heated for 8 min at 94°C in 1x fragmentation buffer (40 mM Tris-
Acetate at pH 8.1, 100 mM KOAc, 30 mM MgOAc) and purified
using an RNeasy MinElute Kit (Qiagen). The purified and frag-
mented RNA was treated with 1 mL of Antarctic Phosphatase (5U/
mL; NEB) for 30 min at 37°C, and then heat killed for 5 min at 65°C.
The samples were then incubated with 2 mL of T4 Polynucleotide
Kinase (2U/mL; Epicentre) and 0.7 mM ATP for 30 min at 37°C,
followed by purification using an RNeasy MinElute kit (Qiagen).
The end-repaired RNA was then ligated and amplified using the
Illumina TruSeq small RNA kit. This involves sequential ligation of
39 and 59 adapters, followed by reverse transcription and PCR to
amplify the completed libraries. Material of the expected size was
purified from free adapter product using AMPure Beads.

Data analysis

Every sequence library was trimmed to only analyze the first 36
bases in order to make the results comparable. To assess library
quality, the sequence reads from each library were aligned to
the GRCh37/hg19 build of the human genome using bowtie
(Langmead et al. 2009) with the –m 1 option, to guarantee unique
mapping. Complexity was measured for each library by taking
a random set of 1 million aligned reads and determining how
many different alignment start positions (including strand in-
formation) were represented. The number of different alignment
start positions was then divided by 1 million to calculate com-
plexity. The percentage of aligned reads that map to RefSeq tran-
scripts was determined by comparing bowtie alignments against

the human genome to RefSeq transcript coordinates. The strand
specificity of directional Tn–RNA-seq libraries was calculated by
determining what percentage of reads that aligned to RefSeq
transcripts map to the expected strand in the RefSeq annotation.
Note that based on the library construction strategy, transcripts
originating from the positive strand should generate sequencing
reads that map to the negative strand with the directional Tn–RNA-
seq method. In the standard directional approach, transcripts orig-
inating from the positive strand should generate reads that map to
the positive strand.

To calculate expression levels in each library, sequence reads
were aligned to a sequence database of all spliced RefSeq transcripts
using Bowtie (Langmead et al. 2009) with the following parame-
ters: -n 2 -k 1 -m 10, which allow reads to align to multiple tran-
scripts in order to capture different isoforms. The number of reads
aligning to each transcript was multiplied by 1 million, then di-
vided by the length of the transcript in kilobases times the total
number of aligned reads to calculate RPKM values. All correlation
analysis was performed in R. All Pearson correlations were mea-
sured between log base 2 of RPKM values. Coverage across tran-
scripts was calculated by counting the number of reads that align at
each position in a RefSeq transcript and dividing the position by
the number of base pairs of the full-length transcript.

Data access
The sequencing data and expression measurements from this
study have been submitted to the NCBI Gene Expression Omnibus
(GEO) (http://www.ncbi.nlm.nih.gov/geo/) under accession no.
GSE32307.
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Errata

Genome Research 22: 134–141 (2012)

Transposase mediated construction of RNA-seq libraries
Jason Gertz, Katherine E. Varley, Nicholas S. Davis, Bradley J. Baas, Igor Y. Goryshin,
Ramesh Vaidyanathan, Scott Kuersten, and Richard M. Myers

On page 139 of the above-mentioned article, the sentence beginning on the second line of the second column
is missing data and should read as follows:

First-strand cDNA synthesis was performed by adding 4 mL of First Strand Buffer (Invitrogen), 2 mL of 100 mM
DTT (Invitrogen), 0.5 mL of RNaseOUT (Invitrogen), 1 mL of 10 mM dNTPs (NEB), and 1 mL of Superscript II
(200 U/mL, Invitrogen), and incubating the mix at 25°C for 12 min, 42°C for 50 min, then 70°C for 15 min.

The authors apologize for any confusion this may have caused.

Genome Research 19: 1429–1440 (2009)

Clusters and superclusters of phased small RNAs in the developing inflorescence of rice
Cameron Johnson, Anna Kasprzewska, Kristin Tennessen, John Fernandes, Guo-Ling Nan,
Virginia Walbot, Venkatesan Sundaresan, Vicki Vance, and Lewis H. Bowman

The 22-nt small RNA that is predicted to set phasing of the phased 24-mer clusters was incorrectly denoted as
miR2775 in two places in the paper (pages 1436 and 1437) and in two places in the Supplemental Material
(pages 1 and 60, Supp. Fig. 6 and legend). The correct name for this miRNA is miR2275.

The authors apologize for any confusion this may have caused.
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Abstract: 

Recurrent chromosomal rearrangements that create fusion genes with oncogenic 
activity represent powerful biomarkers and drug targets, classically in 
hematologic cancers and sarcomas, and more recently in prostate, lung and 
breast cancer.  As improved technologies enable whole transcriptome 
sequencing, fusion transcripts created by splicing mRNAs from two different 
genes have been identified in the absence of DNA rearrangement.  Read-
through fusion transcripts that result from the splicing of two adjacent genes in 
the same coding orientation are particularly prevalent chimeric RNAs, and 
specific fusion transcripts have recently been associated with cellular proliferation 
and disease progression in prostate cancer.  Here we report the discovery of 
read-through fusion transcripts in breast cancer using paired-end RNA 
sequencing (RNA-seq) of 168 breast samples, including breast cancer cell lines, 
triple negative breast cancer primary tumors, estrogen receptor positive breast 
cancer primary tumors, non-neoplastic breast tissue, and a collection of other 
normal human tissue controls.  We identified three recurrent read-through fusion 
transcripts that are associated with breast cancer (IL17RC-CRELD1, SCNN1A-
TNFRSF1A, and CTSD-IFITM10), and Western blots indicated they are 
translated into fusion proteins in breast cancer cells.  Read-through fusion 
transcripts between adjacent genes with different biochemical functions 
represent a new type of recurrent molecular defect in breast cancer that warrant 
further investigation as potential biomarkers and therapeutic targets. 

 

Introduction: 

Fusion genes with oncogenic activity were first identified in hematologic 
malignancies, where chromosomal translocations frequently join two genes that 
result in an aberrant protein product (1, 2).  These fused genes have been 
valuable prognostic markers and therapeutic targets (3).  The therapeutic value 
of identifying fusion genes is exemplified by the development of selective 
inhibitors targeted to the ABL kinase involved in the BCR-ABL fusion that is 
present in 95% of patients with chronic myelogenous leukemia (1, 2, 4).  Most 
recurrent fusion genes have been identified in leukemias, lymphomas, and soft 
tissue sarcomas where cytogenetic approaches to detect chromosomal 
aberrations using spectral karyotyping, fluorescent in situ hybridization, and flow 
cytometry have been developed (5).  Cytogenetic approaches to detect fusion 
genes in the more common forms of cancer, epithelial tumors, are hampered by 
the poor chromosome morphology, complex karyotypes, and cellular 
heterogeneity that typify these tumors, although it has been posited that fusion 
genes are likely drivers of oncogenesis in these tumors as well (3, 5, 6).  Until 
recently, the most prevalent recurrent fusion genes identified in breast cancer 
were the ETV6-NTRK3 fusion in secretory breast carcinoma, a rare subtype of 
infiltrating ductal carcinoma (7) and the MYB-NFIB fusion in adenoid cystic 
carcinomas, another rare form of breast cancer (8).  Recently, genome-wide 
microarray profiling, whole genome sequencing and whole transcriptome 
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sequencing have made it possible to systematically identify fusion genes in solid 
tumors.  With these methods, recurrent fusions that contribute to malignancy 
have been identified in prostate cancer (e.g. TMPRSS2 fused to ETS family 
transcription factors (9-11)), in lung cancer (EML4-ALK (12)), and in breast 
cancer (MAST kinases fused to NOTCH family genes (13)).  New technologies 
and informatics approaches are enabling the identification of recurrent fusion 
genes in more common epithelial cancers that may serve as valuable biomarkers 
and drug targets (13-19). 

In addition to fusion genes created by genomic rearrangements, fusion 
transcripts created by cis- and trans-splicing of mRNA, in the absence of a DNA 
rearrangements, have been detected by sequencing cDNA clone libraries and 
performing RNA-seq (20).  These chimeric RNAs have been detected at low 
levels in expressed sequence tag (EST) libraries (21-23) and low levels across 
benign and malignant samples (6, 20, 24). One particularly prevalent class of 
chimeric RNAs involves adjacent genes in the same coding orientation that are 
spliced together to form an in-frame chimeric transcript that spans both genes.  In 
recent literature, these have been referred to as read-through gene fusions, 
transcription-induced chimeras, co-transcription of adjacent genes coupled with 
intergenic splicing (CoTIS), or conjoined genes.  Several of these read-through 
fusion transcripts have been identified specifically in prostate cancer and are 
associated with cellular proliferation and disease progression (25-33).  Recurrent 
read-through transcripts have not yet been characterized in breast cancer.  We 
used paired-end RNA-seq to identify recurrent read-through gene fusions in 
breast samples, and determined that three recurrent read-through fusion 
transcripts were associated with breast cancers.  We quantified the percentage 
of transcript that is involved in each fusion and demonstrated the presence of 
protein products for these fused genes using Western blots. 

 

Results and Discussion: 

While recent studies have reported recurrent fusion genes in breast cancer that 
are the result of genomic rearrangements (13, 15, 16, 18, 34), read-through 
fusion transcripts in breast cancer have not been previously reported.  We 
performed RNA-seq (35) on a total of 168 human samples, including 28 breast 
cancer cell lines, 42 fresh frozen triple negative breast cancer (TNBC) primary 
tumors, 42 fresh frozen estrogen receptor positive (ER+) breast cancer primary 
tumors, 21 fresh frozen non-neoplastic breast tissue samples that were adjacent 
to TNBC tumors, 30 fresh frozen non-neoplastic breast tissue samples that were 
adjacent to ER+ breast tumors, and five fresh frozen normal breast tissue 
samples that were collected from cancer-free patients during reduction 
mammoplasty procedures.  We also downloaded RNA-seq data from 13 non-
neoplastic human tissues collected by the Illumina Human Body Map 2.0 project, 
which includes adipose, brain, breast, colon, heart, kidney, liver, ovary, prostate, 
skeletal muscle, testes, thyroid and white blood cells (15).  We used the 
ChimeraScan software package to identify read-through transcripts in the RNA-
seq data (36). 
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We identified 17 candidate read-through fusion transcripts that were supported 
by at least 10 read-pairs that connect adjacent genes and at least one read that 
spanned the fusion junction in more than two breast cancer samples.  We 
determined that six fusions were also detected in one or more of the non-
neoplastic tissues from the Illumina Human Body Map 2.0 project and three 
transcripts were assigned to pairs of putative transcripts whose boundaries are 
not well defined.   The remaining eight transcripts are breast tissue-specific read-
through fusion transcripts. Read-through fusion transcripts with fusion junction-
spanning reads are depicted in Figure 1, and the number of fusion junction-
spanning reads in each sample is reported in Supplemental Table 1.  For each of 
the eight fusion transcripts, we determined how many samples had at least one 
fusion junction-spanning read out of a collection of breast cancer cell lines, TNBC 
primary tumors, ER+ primary tumors, normal uninvolved tissue adjacent to each 
primary tumor type, and cancer-free normal tissue from reduction mammoplasty 
procedures (Table 1). To determine which read-through fusion transcripts were 
associated with breast cancer we used Fisher’s Exact test to identify fusions that 
were significantly overrepresented in the breast cancer samples compared to the 
non-cancer breast samples (Table 1). Five of the read-through fusion transcripts 
were found at high frequency in normal breast tissue and were not significantly 
associated with breast cancer (KLF16-REXO1, VAX2-ATP6V1B1, 
LOC100132832-CCDC146, MFGE8-HAPLN3, and CACNG4-CACNG1; Table 1).  

Three read-through fusion transcripts were significantly associated with breast 
cancer (IL17RC-CRELD1, SCNN1A-TNFRSF1A and CTSD-IFITM10; Fisher’s 
Exact Test p-values in Table 1).  Two of these breast cancer associated fusion 
transcripts were detected across breast tumors but were also detected at a lower 
frequency in normal uninvolved tissue that was adjacent to the primary tumors 
(IL17RC-CRELD1, and SCNN1A-TNFRSF1A) (Table 1).  The breast tumors 
underwent macro-dissection to enrich for tumor cells; however, the adjacent 
normal uninvolved tissue was not dissected. Pathologists used a quality control 
section to diagnose the uninvolved tissue, but the specimen could have had 
infiltrating tumor cells or tumor exosomes containing mRNA deeper within the 
specimen. Neither of these fusions was detected in the cancer-free normal breast 
tissues from reduction mammoplasty procedures, suggesting that the low 
frequency of these fusions in the normal uninvolved tissue adjacent to tumors 
could be due to field defects.  One fusion transcript, CTSD-IFITM10, was 
identified exclusively in breast cancer samples.  All three of the breast cancer 
associated fusions were present in both ER+ and TNBC, and while they are 
present in different frequencies between the breast cancer subtypes, none are 
exclusive to a particular subtype.  The breast cancer associated read-through 
fusion transcript are frequent events; 50% (14/28) of the breast cancer cell lines, 
43% (18/42) of the TNBC primary tumors, and 24% (10/42) of the ER+ breast 
cancer primary tumors contained at least one of the three fusions. 

All three of the breast cancer associated read-through fusion transcripts are 
spliced together using the last splice donor from the 5′ gene partner and the first 
splice acceptor in the 3′ gene partner, skipping the last exon of the 5′ gene 
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partner and the first exon of the 3′ gene partner (Figure 1).  In each case, this 
results in splicing together nearly the full-length transcripts for both genes.  
Normally the 5′ fusion partner’s transcript should be terminated by cleavage of 
the nascent transcript followed by polyadenylation (37).  These read-through 
fusion transcripts have not been cleaved at the 5′ partner gene’s polyadenylation 
signal and the 5′ partner gene’s terminal exon splice acceptor site has been 
skipped to allow splicing between the adjacent genes.  It is increasingly evident 
that the processes of transcription, splicing, 3′ transcript cleavage, and 
polyadenylation are coupled (38).  One possible explanation for the generation of 
read-through fusion transcripts is that the 5′ partner gene’s terminal exon was 
skipped because of a mutation at the splice acceptor site, which could hinder 
formation of the 3′-terminal exon-definition complex and subsequent 
cleavage/polyadenylation.  If this were to occur, then the next available splice 
acceptor site would be at the 3′ partner gene’s 2nd exon, consistent with the 
observed splice junctions.  To test this notion, we PCR-amplified 200 bp 
surrounding the 5′ fusion partner gene’s skipped splice acceptor site from DNA of 
cell lines with and without the fusion transcripts and sequenced the amplicons on 
an Illumina MiSeq machine.  We did not identify any mutations at or near the 
splice acceptor sites associated with the presence of the fusion transcripts.  We 
did observe both alleles of heterozygous SNPs at expected frequencies, so 
deletion of the splice sites is also unlikely. Because the processes of 
transcription, splicing, 3′ transcript cleavage, and polyadenylation can act both 
synergistically and competitively (38), it is possible that the kinetics of 
transcription at these loci is disrupted in breast cancer cells in a way that allows 
the formation of read-through fusion transcripts. 

To determine if the expression level of each fusion partner gene was correlated 
with the presence of the fusion, we quantified the sequencing read depth for the 
canonical transcripts and fusion transcripts. In each of the samples containing 
fusion junction-spanning reads, we calculated the fraction of reads near the 
fusion junction that include sequence from the fusion transcript rather than the 
un-fused canonical transcripts (Figure 2a).  In each case, the fraction of reads 
from the 3′ fusion partner that is involved in the fusion is significantly higher than 
the fraction of reads from the 5′ fusion partner that is participating in the fusion 
(Mann Whitney test:  IL17RC vs CRELD1 p<0.0001, SCNN1A vs TNFRSF1A p = 
0.0247, and CTSD vs IFITM10 p <0.0001).  This indicates that a larger proportion 
of the transcription of the 3′ partner is created from read-through transcripts, and 
the promoter of the 5′ fusion partner likely regulates this expression.  We 
examined the expression of the 5′ fusion partner in samples with and without 
evidence of the fusion transcript. We found that there was no difference in 
expression levels of IL17RC, SCNN1A or TNFRSF1A between samples with and 
without the fusion, indicating that the expression level of the 5′ gene partner is 
not associated with the presence of these fusions nor was the expression level of 
the 5′ gene partner associated with our power to detect the fusion (Figure 2b).  
The presence of the fusion transcripts is independent of the expression level of 
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the partner genes suggesting that other factors are responsible for their creation 
and regulation. 

All three of the breast cancer associated read-through fusion transcripts we 
identified involved genes that encode membrane proteins.  These proteins’ 
functions rely on their correct placement in the membrane and correct 
participation in protein complexes. IL17RC is a single-pass type I membrane 
protein that binds the proinflammatory cytokines, IL-17A and IL-17F (39).  It is 
fused to CRELD1, a membrane protein that contains an epidermal growth factor-
like domain and is thought to function as a cell adhesion molecule (40).  
SCNN1A is an alpha subunit of nonvoltage-gated, amiloride-sensitive, sodium 
channels (41).  It is fused to TNFRSF1A, a tumor necrosis factor-alpha receptor 
that activates NF-kappaB, mediates apoptosis, and regulates inflammatory 
responses (42).  CTSD is a lysosomal aspartyl protease that also functions as a 
secreted protein that binds membrane receptors and has previously been 
associated with breast cancer (43).  It is fused to IFITM10, a member of a family 
of membrane proteins that are induced by interferon and are involved in cell 
proliferation and cell adhesion (44).  All of these read-through fusion transcripts 
join genes that have disparate functions, suggesting that a fused protein could 
impair normal function in breast cancer. 

We predicted the length of the fusion protein based upon the location of the inter-
gene splicing, and used Western blots with an antibody raised against one of the 
native partner proteins to determine whether a protein of the predicted fusion size 
could be detected in cell lysates from cell lines with and without RNA transcript 
evidence of the fusion.  We observed specific Western blots of the targeted 
protein at the expected canonical size and detected protein at the predicted 
fusion size specifically in the cell lines with the fusion transcripts, and not in cell 
lines without the fusions for all three of the breast cancer associated read-
through fusion transcripts (Figure 3).  The cell line with the most fusion-spanning 
reads was positive for the fusion in all three Western blots, and in the case of the 
SCNN1A-TNFRSF1A, the cell line with the second highest number of fusion-
spanning reads, was also positive by Western blot.  These results suggest that 
the breast cancer associated read-through fusion transcripts are translated into 
fusion proteins. 

To our knowledge, this is the first report of recurrent read-through fusion 
transcripts associated with breast cancer.  Significant effort has been devoted to 
identifying gene expression and DNA mutations in breast cancer, and this reports 
adds aberrant mRNA read-through fusions to the list of molecular defects 
associated with the disease.  Three recurrent fusion transcripts were associated 
with breast cancer, and for each of these, Western blots provided evidence of 
fusion proteins.  The breast cancer associated read-through fusions involved 
membrane proteins, and represent exciting candidate biomarkers and potential 
therapeutic targets for further investigation.  Future work to elucidate the 
mechanisms leading to the read-through transcription, mis-splicing, and loss of 
polyadenylation that create these fusions is also warranted to determine whether 
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a defect in the regulation of these processes is responsible for these aberrant 
transcripts. 

 

Materials and methods: 

Cell lines and tissues: 

The 28 breast cancer cell lines were cultured as described previously (45).  De-
identified fresh frozen breast cancer specimens, fresh frozen breast tissue 
adjacent to tumors, and fresh frozen breast tissue specimens from reduction 
mammoplasty procedures were obtained from the University of Alabama at 
Birmingham’s Comprehensive Cancer Center Tissue Procurement Shared 
Facility.  The specific aliquots of specimens provided for research were chosen 
based on their quality control by board certified pathologists. After identification 
by quality control, the normal uninvolved breast tissue aliquots were not further 
macro-dissected.  The breast tumor specimens were macro-dissected by the 
pathologists at the Tissue Procurement Shared Facility to enrich for tumor cell 
content and remove adjacent normal tissue.  The frozen breast tissue specimens 
were weighed, transferred to a 15 mL conical tube containing ceramic beads, 
and RLT Buffer  (Qiagen) plus 1% BME was added so that the tube contained 35 
uL of buffer for each milligram of tissue.  The conical tubes containing tissue, 
ceramic beads and buffer were then shaken in a MP Biomedicals FastPrep 
machine until the tissue was visibly homogenized (90 seconds at 6.5 meters per 
second).  The homogenized tissue was stored at -80°C.  

RNA-seq: 

Total RNA was extracted from 5 million cultured cells or 350 uL of tissue 
homogenate (equivalent to 10 mg of tissue) using the Norgen Animal Tissue 
RNA Purification Kit (Norgen Biotek Corporation).  Cell lysate was treated with 
Proteinase K before it was applied to the column and on-column DNAse 
treatment was performed according to the manufacturer’s instructions.  Total 
RNA was eluted from the columns and quantified using the Qubit RNA Assay Kit 
and the Qubit 2.0 fluorometer (Invitrogen).  RNA-seq libraries for each sample 
were constructed from 250 ng total RNA using the polyA selection and 
transposase-based non-stranded library construction (Tn-RNA-seq) described 
previously (35).  RNA-seq libraries were barcoded during PCR using Nextera 
barcoded primers according to the manufacturer (Epicentre).  The RNA-seq 
libraries were quantified using the Qubit dsDNA HS Assay Kit and the Qubit 2.0 
fluorometer (Invitrogen) and three barcoded libraries were pooled in equimolar 
quantities for sequencing.  The pooled libraries were sequenced on an Illumina 
HiSeq 2000 sequencing machine using paired-end 50 bp reads and a 6 bp index 
read, and we obtained at least 50 million read pairs from each library.  
ChimeraScan 0.4.5a was used to align and identify fusion transcripts in each of 
the sequencing libraries using default parameters (36).  To quantify the 
expression of each fusion partner, we used TopHat v1.4.1 (46) with the options –
r 100 --mate-std-dev 75 to align 50 million RNA-seq read pairs, and used 
GENCODE version 9 (47) as a transcript reference.  Gene expression values 
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(Fragments Per Kilobase of transcript Per Million reads, FPKMs) were calculated 
for each GENCODE transcript using Cufflinks 1.3.0 with the –u option (48). 

Splice junction DNA sequencing: 

Genomic DNA was isolated from 12 breast cancer cell lines using 5 million 
cultured cells per cell line and the Qiagen DNeasy Kit.  PCR amplification of 200 
bp surrounding the terminal exon splice acceptor site that is skipped in the 
formation of the read-through fusion transcripts were performed in 50 uL 
reactions containing 5 ng genomic DNA, 0.5 uM Forward PCR primer, 0.5 uM 
Reverse PCR primer, 5 units Platinum Taq DNA Polymerase (Invitrogen), 1x 
PCR Buffer with 2 mM MgCl2, 0.5 mM each dNTP, and 0.5 M Betaine.  These 
reactions were denatured at 98°C for 1 minute then thermocycled (30 cycles of 
95°C for 30 seconds and 62°C for 3 minutes) and held at 4°C.  The PCR 
products were purified using Agencourt AMPure XP beads (Beckman Coulter).  
The PCR products were quantified using the Qubit dsDNA HS Assay Kit and the 
Qubit 2.0 fluorometer (Invitrogen).  Equimolar quantities of each of the eight PCR 
products were pooled into 12 pools, one for each cell line. Illumina sequencing 
libraries were prepared for each of the 12 pools of PCR products using Nextera 
according to the manufacturer’s instructions (Epicentre).  The 12 libraries were 
quantified using the Qubit dsDNA HS Assay Kit and the Qubit 2.0 fluorometer 
(Invitrogen). Equimolar quantities of each library were pooled and diluted to 10 
nM and sequenced using single-end 50 bp reads and a 6 base index read on the 
Illumina MiSeq sequencer.  We obtained 6 million sequencing reads in total 
covering all 8 amplicons in each of the 12 breast cancer cell lines.  Variants were 
identified by the GATK software on BaseSpace (Illumina) and BAM files were 
downloaded and inspected manually using IGV 2.0 (49). 

Western blots: 

Breast cancer cell pellets containing 2.5 million cells were lysed by adding 100 
uL RIPA Buffer (1x PBS, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS and 
Roche protease inhibitor cocktail) and passing the solution through a 21-gauge 
needle.  The lysed cells were then centrifuged at 16,000 rcf for 15 minutes at 
4°C, and the supernatant was collected and protein was quantified using the 
Qubit Protein Assay Kit and the Qubit 2.0 fluorometer (Invitrogen).  Twenty 
micrograms of protein extract was loaded into a BioRad 12% SDS-
polyacrylamide gel in 1x Tris/Glycine Buffer (BioRad).  Magic Marker (Invitrogen) 
was used as a protein standard.  The gel electrophoresis rig was partially 
immersed in an ice bath while it ran for 1.5 hours at 125 V.  Proteins were 
transferred to a nitrocellulose membrane using the iBlot system (Invitrogen) for 7 
minutes at 20 V.  The membranes were washed (1x PBS with 0.05% Tween 20) 
and incubated in blocking buffer for 60 minutes (1x PBS with 0.05% Tween 20 
and 5% w/v Instant Nonfat Dry Milk).  The membranes were then incubated with 
primary antibody overnight at 4°C (1x PBS with 0.05% Tween 20, 1% w/v Instant 
Nonfat Dry Milk, and 500 ng/mL primary antibody) followed by three 10 minute 
washes (1x PBS with 0.05% Tween 20).  The following primary antibodies from 
Santa Cruz Biotechnology were used: CRELD1 sc-99364, CTSD sc-37438, and 
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TNFRSF1A sc-8436.  The membrane was then incubated with secondary 
antibody (1x PBS, 0.05% Tween 20, 1% Instant Nonfat Dry Milk, and a 1:4,000 
dilution of horseradish peroxidase (HRP) conjugated goat anti-mouse secondary 
antibody (Thermo Scientific)).  The membrane was then washed (1x PBS with 
0.05% Tween 20) and incubated for 5 minutes in a substrate solution of equal 
parts stable peroxide and luminol/enhancer (SuperSignal West Femto 
Chemiluminescent Substrate, Thermo Scientific).  The membranes were then 
imaged for chemiluminescence. 
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Tables and Figure Legends: 

Table 1. Read-through fusion transcripts detected in breast samples. For 
each fusion transcript the number of samples containing junction-spanning reads 
is listed.  Read-through fusion transcripts that are significantly associated with 
breast cancer are shaded in pink and p-values are listed in the last column.  

Fusion 
Transcripts 

Breast 
Cancer 

Cell 
Lines 
(N=28) 

TNBC 
Primary 
Tumors 
(N=42) 

ER+ 
Breast 
Cancer 
Primary 
Tumors 
(N=42) 

Normal 
Uninvolved 

Tissue 
Adjacent to 

TNBC 
(N=21) 

Normal 
Uninvolved 

Tissue 
Adjacent to 
ER+ Breast 

Cancer 
(N=30) 

Cancer-Free 
Reduction 

Mammoplasty 
Breast Tissue 

(N=5) 

Human 
Body 
Map 

(N=13)

Cancer vs. 
Normal 
Fisher’s 

Exact Test 
p-value 

 
KLF16-REXO1 7 (25%) 18 (43%) 16 (38%) 14 (67%) 15 (50%) 2 (40%) 0 (0%) 0.1699* 

VAX2-
ATP6V1B1 6 (21%) 8 (19%) 4 (10%) 4 (19%) 3 (10%) 2 (40%) 0 (0%) 0.3711 

LOC100132832 
-CCDC146 2 (7%) 11 (26%) 5 (12%) 5 (24%) 3 (10%) 1 (20%) 0 (0%) 0.3711 

MFGE8-
HAPLN3 4 (14%) 23 (55%) 4 (10%) 4 (19%) 7 (23%) 1 (20%) 0 (0%) 0.0794 

CACNG4-
CACNG1 2 (7%) 2 (5%) 12 (29%) 1 (5%) 3 (10%) 0 (0%) 0 (0%) 0.0600 

IL17RC-
CRELD1 3 (11%) 11 (26%) 4 (10%) 3 (14%) 1 (3%) 0 (0%) 0 (0%) 0.0306 

SCNN1A-
TNFRSF1A 10 (36%) 3 (7%) 5 (12%) 1 (5%) 1 (3%) 0 (0%) 0 (0%) 0.0039 

CTSD-IFITM10 7 (25%) 9 (21%) 5 (12%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) < 0.0001 

* More prevalent in non-cancer samples. 
 
 
Figure Legends: 
 
Figure 1.  Read-through fusion transcripts identified in breast samples. 
Eight read-through fusion transcripts were detected in more than two breast 
samples using paired-end RNA-seq.  These read-through fusions were breast-
tissue specific, and not detected in other non-neoplastic human tissues 
sequenced by the Illumina Human Body Map 2.0 project.  The exon structure of 
the 5′ gene partner is depicted in green, and the exon structure of the 3′ gene 
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partner is depicted in red.  The fusion transcripts use endogenous splice sites 
and black lines indicate which exons flank the fusion junction to result in the 
chimeric transcript. RNA-seq reads that span the fusion junction are depicted 
above the gene models and the sequence from the 5′ partner is in green text and 
the sequence from the 3′ partner is in red text.  The intergenic chromosomal 
distance between the fusion partners is denoted in kilobase pairs (kbp).  The five 
read-through fusion transcripts depicted in a, b, c, d and e were detected in both 
breast cancer specimens and non-cancer breast tissue.  Three read-through 
fusion transcripts significantly associated with breast cancer are depicted in f, g 
and h. 
 
Figure 2. Expression of fusion partners for breast cancer associated read-
through fusion transcripts. a) We computed the fraction of reads near the 
fusion junction that include sequence from the fusion transcript rather than the 
un-fused canonical transcript.  The fraction of fusion transcript reads for 5′ fusion 
partners are indicated in green and the 3′ fusion partners are denoted in red. 
Mean and standard error of the mean are depicted in black.  Less than 20% of 
the 5′ fusion partners’ transcripts have the fusion sequence, indicating that most 
of the transcripts from the 5′ fusion partners are not fused.  A significantly larger 
fraction of the 3′ fusion partners’ transcripts contain the fusion sequence.  This 
indicates that the expression of the 3′ fusion partner is composed of a large 
fraction of fusion transcript driven by the 5′ fusion partner’s promoter.  b) There is 
no difference in the expression levels (Fragments Per Kilobase of transcript Per 
Million reads; FPKMs) of the 5′ fusion partner between samples with or without 
the read-through fusion transcript (labeled Fused and Not Fused, respectively). 
Mean and standard error of the mean are depicted in black.   This indicates that 
increased expression of the 5′ fusion partner is not sufficient to induce read-
through fusion transcripts, and that lower expression of the 5′ partner is not 
associated with our power to detect the read-through fusion transcripts. 
 
Figure 3. Western blots of three breast cancer associated fusion proteins.  
We performed Western blots using antibodies raised to one of the fusion partner 
proteins for the three breast cancer associated fusion transcripts.  For each 
candidate fusion, we ran cell lysates from two cell lines with RNA-seq reads 
spanning the fusion junction and one cell line without RNA-seq reads spanning 
the fusion junction.  In each blot, the canonical/native size of the targeted protein 
was detected in each cell line, and a band at the predicted fusion protein size 
was detected in the cell line with the most RNA-seq fusion-spanning reads 
(IL17RC-CRELD1 in SUM-149, CTSD-IFITM10 in MCF7, and SCNN1A-
TNFRSF1A in HCC1954).  A band corresponding to the size of the predicted 
fusion protein was also detected in the cell line with the second most RNA-seq 
fusion transcript reads for the SCNN1A-TNFRSF1A fusion (SUM-102).  None of 
the cell lines without RNA-seq evidence of the fusion transcript produced fusion 
protein-sized bands.  
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Appendix C 
 
Genome-wide DNA methylation and RNA-seq analysis of tumor and normal 
prostate tissue for biomarker discovery 
 
Marie K. Cross1, Katherine E. Varley1, Jason Gertz1, Nick S. Davis1, Devin M. 
Absher1, James D. Brooks2, and Richard M. Myers1 

 
1HudsonAlpha Institute for Biotechnology, Huntsville, AL 
2Stanford University, Palo Alto, CA 
  
Prostate tumors frequently exhibit altered DNA methylation and gene expression 
patterns when compared to adjacent normal tissue. These disease-specific 
changes are promising candidate biomarkers due to their specificity and the 
sensitive detection of methylated DNA in peripheral fluids. There is a clear need 
to identify novel, noninvasive biomarkers for the diagnosis and prognosis of 
prostate cancer. Current diagnostic tools for prostate cancer lack the sensitivity 
and specificity required for the detection of very early prostate lesions and 
diagnosis ultimately relies on an invasive biopsy. Once prostate cancer is 
diagnosed, there are no available prognostic markers for prostate cancer that 
provide information on how aggressively the tumor will grow. Therefore, more 
intrusive therapeutic routes are often chosen that result in a drastic reduction in 
the quality of life for the patient, even though the majority of prostate tumors are 
slow growing and non-aggressive. To identify prognostic biomarkers that can be 
used to molecularly distinguish patients with less aggressive tumors, we have 
collected data on DNA methylation patterns at more than 450,000 CpG loci in 
prostate tumor tissues and patient-matched normal prostate tissues using large-
scale hybridization-based technology. We are currently performing reduced 
representation bisulfite sequencing (RRBS) on these prostate samples, which will 
provide DNA methylation status for an additional ~1,000,000 CpGs. Preliminary 
analysis has demonstrated that tumor and normal can be easily separated based 
on DNA methylation patterns and analysis is ongoing to identify CpGs that have 
prognostic value. We are presently sequencing RNA isolated from these prostate 
samples, which will provide detailed information on gene expression in both 
normal and tumor prostate tissue. We hope that the integration of these data sets 
with clinical follow-up data will allow us to identify candidate diagnostic and 
prognostic biomarkers on a genome-wide scale. 
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