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Research Objectives:  The project objective is to demonstrate a system with selective 

automation, which estimates human mental workload and modulates the use of 

automation to maintain the mental workload of the operator within a desired range.  This 

system will estimate workload from projected task load, modifying the interface to 

provide a stable workload.  The workload estimate will be updated based upon 

physiology feedback from the operator. The demonstrator will ideally include 1) 

demonstration of an interactive workload-adaptive interface;  2) Tuned learning 

algorithms that can learn the user’s workload response and automation preferences 

with minimal operator interaction; and 3) A robust method for estimating human mental 

workload from system generated tasks. 

Technical Summary: First year focused primarily on designing the interactive workload 

adaptive interface.  To this end, an initial design method was developed to formalize the 

design of the adaptive interface.  Additionally, an initial experiment was conducted 

which indicated the ability to learn user behavior when interacting with the system, 

which inspired a concept for adapting the workload adaptive interface based upon user 

behavior.  This line of research is being continued through an ongoing experiment.  

Finally, a pair of experiments were conducted which provided more insight into the use 

of physiology metrics for tuning the workload-adaptive interface.  This work resulted in 

one journal article, in review, and three conference papers, one of which has recently 

been awarded Best Human Factors Paper at the Industrial and Systems Engineering 

Research Conference. 

Our research has already provided a new adaptive automation design model, allowing 

system designers the ability to visually and systematically evaluate the placement of 

adaptive automation within a system network.  Further, this method can help the 

designer to isolate the tasks, which require human decision making, ideally permitting 
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tasks to be automated which do not require human decisions. The Space Navigator 

platform designed using the model, has allowed us (and future researchers) to simplify 

data gathering from human participants. The resulting automation system will allow for 

research into how similarity and difference of actions between a human-machine team 

affect the overall performance of the system. The final experimental data will provide 

several areas of further research including trust in automation, training improvement, 

workload reduction (actual and perceived), and task load switching. 

Design Framework 

An interactive environment was created which was derived from an open source routing 

game (Beebe and Beebe, 2010).  To facilitate the design, it was necessary to develop a 

more comprehensive method for the design of adaptive automation systems.  An 

overview of the process is shown in Figure 1.  An original description of this process is 

provided in Appendix C.  As shown, the design process begins with establishing the 

overall goal(s) of the system and decomposing these goals into functions and 

subfunctions until each sub-function can be reasonably allocated to a man or machine 

(Steps 1 through 3), as is common in man-machine interface design.  Next, a function 

relationship diagram is developed as indicated in Step 4.   This function relationship 

diagram clearly depicts the interdependencies among and the sequencing of the leaf-

level functions from the function decomposition.  Note that in this process, we clearly 

differentiate the terms “function” from “task” with function referring to unallocated 

processes that must be accomplished to fulfill the goal and “task” referring to the steps 

which must be performed by an allocated entity (e.g., man or machine) to accomplish 

the functions. 

The framework, relies upon a revised version of a task allocation diagram originally 

devised by Price (Price, 1985) to create an initial allocation of tasks to a man or 

machine as shown in Figure 2.  This figure permits classification of functions into tasks 

that can be performed best by man, machine, or as tasks that can be performed nearly 

equally by either entity. With this in mind, tasks are initially allocated to the more 

capable entity, step 5 in the process of Figure 1.  However, tasks that can performed 

equally by either entity are originally classified to be adaptively allocated.  A task 

relationship diagram is then developed from the function relationship diagram by 

replicating the functions as tasks, but applying color and patterns for each task, which 

code the initial allocation to create an initial task relationship diagram.  The framework 

further acknowledges that edges between two tasks within the task relationship 

diagram, where one task is allocated to a man and the other to a machine, include a 

pair of inherent tasks.  These inherent tasks arise as one entity must convey 

information, which the other entity must receive.  These inherent tasks are also depicted 

within the task relationship diagram. 
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Figure 1.  Automation Design Framework Process Diagram 

 

The resulting task relationship diagram then permits the designer to visualize a number 

of important design tradeoffs.  Specifically, the number tasks to be adapted will be 

shown through color-coding and the number of disconnected adaptive nodes indicates 

the number of unique adaptive states, which the system must be designed to 

accommodate.  Therefore, large numbers of disconnected adaptive nodes indicate a 

large number of unique states and added system complexity.  Highly interconnected 

groups of functions can be clustered into groups.  The allocation of these clusters to a 

single entity also helps to reduce the complexity and the interdependence of the 

entities.  The task handoffs between any two entities are also clearly indicated and 

handoffs, which require the exchange of complex information, can further be coded to 

help the designer understand that these exchanges should be considered for 

elimination.  Areas of the diagram, which contain single connections between clusters of 

nodes, indicate groups of tasks that have few dependencies and therefore provide an 

advantageous location for a handoff between a man and a machine. Further, the 

number of inherent tasks can be high for a given design, prompting a redesign of the 
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resulting diagram.  Through this visualization, the designer is able to loop among the 

process steps shown in Figure 1, to derive a desirable task relationship diagram.   

 
Figure 2.  Depiction of Tasks (T1-T9) based upon the ability of a man or machine to complete the task.  Note the 

shaded region indicate tasks desirable for adaptive allocation as they can be performed nearly equally well by 

man and machine.  

Figure 3 shows an example task relationship diagram created during the design of the 

adaptive interface.  Inherent tasks, which stem from the need for communication 

between the human and machine, are explicitly shown through the square C/P nodes. 

Allocation is shown through hash marks within the task nodes.  Desired allocation 

based upon the initial allocation, while not shown in this monochrome figure, could be 

indicated through color coding.   It is notable that operator workload is not explicitly 

captured at this time within the task relationship diagram.  Research to be conducted 

during the coming year will extend this method to further include human workload within 

the allocation process.  An initial experiment and workload model development using 

the US Army Research Laboratory’s Improved Performance Research Integration Tool 

are currently underway. 



 

  6 

 
Figure 3. Example Task Relationship Diagram.  Nodes containing diagonal hash marks are allocated to the user, 

vertical hash marks indicate adaptive nodes.  C/P nodes represent inherent tasks where information must be 

communicated and perceived as control is passed from the human to machine or vice versa. 

 

Learning Algorithms 

We created an environment for investigating adaptive automation. The resulting system 

is a tablet-based game called Space Navigator where the operator draws trajectories on 

the screen to interact with the system. The Space Navigator environment resembles a 

multi-UAV routing operation. In which UAVs are tasked to the operator, and the operator 

must route the UAVS to a specified destinations without colliding with other UAVs 

and avoiding danger zones. The Space Navigator environment is an open-source 

system that can be easily ported to different types of devices that includes several data 

gathering for user responses, and the NASA TLX to measure workload. A secondary 

goal of the designed system was to simplify the data collection process by "gamifying" 
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the system (Hamari, Koivisto, and Sarsa 2014). By being a game and open source, it 

provides a means for others to extend the work we are doing. 

 A similarity measure similar to Modified Hausdorff Distance (Atev, Masoud, and 

Papanikolopoulos 2006), called Windowed Hausdorff Distance, has been developed in 

order to compare trajectories of different lengths. Coupling this similarity measure with 

the player profiling system will form the base of an adaptive automation system to play 

Space Navigator.  

A recently completed data-collection experiment has facilitated the creation of a game-

play database.  Preliminary results confirm that a player-by-player discernment is not 

feasible, but that player profiles can be created to discern between larger groups of 

players with specific tendencies. An unsupervised learning system will be used to 

cluster users. The learning will use an agglomerative clustering algorithm, and a Fisher 

score supervised feature selection algorithm to determine what defines different clusters 

of users. The efforts to complete the player profiling system will be completed over the 

summer of 2014. 

The next step in determining how similarity of action affects human-machine system 

performance is to create a computational system to mimic human game-play patterns. 

The objective of this study is to see to what extent we can distinguish between specific 

players of the game. Presently, we are working to take the game-play database and use 

it to create a player profiling system. 

The resultant system and experiments based on it will allow us to answer the question: 

"How does the similarity or dissimilarity of the automated aid's task performance to that 

of the operator affect the overall human-machine team's performance?" 

Workload Estimation and Physiology Indication 

Research was conducted to develop physiology measures, which could be used to 

estimate workload for individuals and ideally adjust workload estimates as a function of 

task load.  We conducted a pair of studies towards’ this end.   

In a first study, described in detail in Appendix D, electrocardiography measures were 

recorded while each of 13 participants performed tasks using MAT-B with one of four 

task loads, ranging from a medium task load to a high task load (Splawn and Miller, 

2013).  The high task load within this experiment was purposefully design to present the 

operator with conditions, which were practically impossible for participants to complete 

with an exceptional level of performance.  Various heart-related metrics, including heart 

rate, high and low frequency heart rate variability (hfhrv, lfhrv), standard deviation of NN 

intervals (SDNN) and the coefficient of variation of the R-R interval (CVRR).  

Additionally, the difference in heart rate and hfhrv with a baseline value were also 
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calculated.  This research indicated that the hfhrv, SDNN, heart rate delta from baseline 

and the hfhrv delta from baseline are correlated with task load.  Additionally, a linear 

model of performance in terms of response time, heart rate delta, hfhrv delta and the 

hfhrv accounted for 55% of the variance in NASA TLX ratings of perceived workload.  

This model indicated that a combination of appropriately selected heart rate measures 

with response time measures could inform a system as to the relative workload of a 

user. 

In a second study, described in detail in Appendix E, participants were exposed to a 40 

minute, difficult vigilance task (Jeroski, et al, 2014).  In addition to electrocardiography, 

cerebral oximetry and electrooculography were performed.  Heart rate measures, 

cerebral oxygen values and blink rates were correlated with performance.  CVRR was 

shown to be significantly correlated with task performance and cerebral oxygen level 

was negatively correlated with task performance.  Analysis of this data is ongoing and 

additional physiology metrics will be explored. 

Together these two studies demonstrate the use of physiology metrics to gauge 

workload and performance.  Results from these two studies will be used to formulate a 

real-time physiology metric to be incorporated into the final system design. 

 
Funding Summary by Cost Category – Be Specific (by FY, $K): 

Funding Utilized ($K) Starting FY (Actual) FY+1 (Estimated) FY+2 (Estimated) 

Non-Military 
Government 
Personnel Costs 

$17,240.61 $30,670 

 
$31,591 

In-house Contractor 
Costs 

$0.00   

Travel (Be Specific) $0.00 $5000 $5000 

Training (Be 
Specific) 

   

Supplies $3480.67 $2500 $2500 

Other Expenses (Be 
Specific) 

Equipment $5669.12 
Incr. Cost   $1657.70 

Equipment    $2500 
Incr. Cost      $2290 

Equipment    $2500 
Incr. Cost      $2345 

Total Resource 
Requirements 

 
$28048.10 

 
$42,960 

 
$43,936 
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Appendix A:  In House Activities 
 
 

Personnel: 
Name     Degree Discipline   Involvement 
Air Force Employees: 
 Michael Miller   PhD  Sys Engr., Human Factors  (1/12) 
 Gilbert Peterson  PhD  
 LtCol Brent Langhalls PhD  IT Systems   
 Capt. Jason Bindewald M.S. 
 Justine Jeroski  M.S.  Sys Engr, Human Factors  (3/4) 
 Lt. Mark Harris  B.S.  Sys Engr, Human Factors  (1/10) 
 
On-site Contractors: 
 N/A 
 
Visitors:  
 N/A 
 
Publications: 
Published in Peer Reviewed Journals, Books, etc:  
 
N/A 
 
Published in Un-reviewed Literature (e.g., Technical Proceedings):  
 
Splawn, J. and Miller M.E. (2013) Prediction of perceived workload from task performance 
and heart rate measures, Proceedings of the Human Factors and Ergonomics Society, San 
Diego, CA. 
 
Accepted/Submitted for Publication:  
 
Bindewald, J.M., Miller, M.E. and Peterson, G.L. (in review).  A method for rationalizing 
allocation for systems employing adaptive automation.  International Journal of Human-
Computer Studies. 
 
Jeroski, J., Miller, M.E., Langhals, B. and Tripp, L. (in press). Impact of Vigilance Decrement 
upon Physiology Measures.  Proceedings of the Industrial and Systems Engineering 
Research Conference, Montreal, CA. (Awarded Best Paper - Human Factors). 
 
Invention Disclosures and Patents Granted:  
 
N/A 
 
Invited Lectures, Presentations, Talks, etc:  
 
N/A 
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Professional Activities (editorships, conference & society committees, etc):  
 
Chair Special Session on Adaptive Automation, Industrial and Systems Engineering 
Research Conference, Montreal, CA. 
 
Paper Review Committee, Industrial and Systems Engineering Research Conference, 
Montreal, CA 
 
Paper Review Committee, Human Factors and Ergonomics Conference, Chicago, IL 
 
Honors Received (include lifetime honors such as Fellow, Honorary, Doctorates, etc—also 
state year elected:  
 
N/A 
 
Extended Scientific Visits From and To Other Laboratories: 
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Appendix B:  Technology Assists, Transitions, or Transfers—Detailed Listing 
 

Task Title Performance 
Period 

AFOSR 
Program 
Manager 

TD Performer 
(PI and org) 

Customer 
(name, 

organization, 
email, & 
phone) 

N/A     

     
Table Contd.     

Research 
Result 

(scientific 
statement) 

Application 
(technical 

benefits and/or 
customer use; 

include and 
underline 
military 

applications 
first) 

From To Application 

     

     

 
Transitioned From: 

AFRL=L; Industry = I; Academia = A 
 

Transition To: 
Industry = I 

Air Force 6.2 or 6.3 = AF; 
Other AF, DOD, Government, etc. = O 

 
Application 

Product (New or Improved) = Pd; 
Process (New or Improved) = Pc; 

Other = O (please specify) 
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method for rationalizing allocation for systems employing adaptive automation.  
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Abstract

Systems have been proposed in which the level of automation adapts in real-
time to maintain engagement of the human operator while preventing operator
overload. Unlike traditional systems that allocate functions to either the human
or the machine, adaptive automation varies the allocation of functions during
system operation. Designing these systems requires designers to consider issues
not present during static system development. To assist in adaptive automation
system design, this paper presents a design process model for determining how
to allocate functions to the human, machine, or dynamically between the two.
An illustration of the process demonstrates the potential complexity inherent in
adaptive automation systems and how the process model aids in understanding
this complexity during early stage design.

Keywords: Adaptive Automation, Function Allocation, Man-Machine
Allocation, Network, Interaction Design

1. Background

Consumer, commercial, and government systems increasingly apply automa-
tion, particularly in systems which involve time critical decisions and actions.
These systems include manufacturing plant process control (Itoh et al., 1999;
Valente et al., 2010; Valente and Carpanzano, 2011), aircrew and air traffic
control (Prevot et al., 2008), and remotely piloted or controlled vehicles (Para-
suraman and Wickens, 2008; Parasuraman et al., 2009; Kidwell et al., 2012).
Automation can improve the performance of systems without increasing man-
power requirements by allocating routine tasks to automated aids, improving
safety through the use of automated monitoring aids, and reducing the overall

∗Corresponding author. Tel.: +1 937 255 3636 x6129; fax: +1 937 656 7061
Email addresses: Jason.Bindewald@afit.edu (Jason M. Bindewald),
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cost or improving productivity of systems (Rouse, 1981). Additionally, au-
tomation can permit removal of the operator from particularly undesirable or
dangerous environments (Nakazawa, 1993), increasing the safety and reducing
stressors placed upon the operator.

Unfortunately, automation system designers have limited ability to project
future events, and are often unable to adapt when unforeseen circumstances occur.
As such, utilization of a human operator who can adapt to these unforeseen
circumstances to provide system resilience is desirable (Woods and Cook, 2006).
With the inclusion of a human operator, other problems often arise. Some
include operator over-reliance on automation (Itoh, 2011), operators placing
inappropriate levels of trust in the automation (Dzindolet et al., 2003; Lee
and See, 2004; Merritt et al., 2012), or operators losing situation awareness to
preclude appropriate recovery from automation failures (Itoh, 2011). Further,
as operators are not performing active control of the system, they may not
practice the knowledge necessary to operate the system and can suffer from skill
atrophy (Kirwan, 2005). As a result, adaptive automation systems have been
proposed to maintain user engagement, without overloading operators (Rouse,
1977).

Automation is the capability “to have a computer carry out certain functions
that the human operator would normally perform” (Parasuraman et al., 2000).
Which entity performs a given task helps determine whether to automate a
task or not. There are many types of tasks, and consequently, several forms
of automation. The categories of automation can include, “the mechanization
and integration of the sensing of environmental variables; data processing and
decision making; mechanical action; and ‘information action’ by communication
of processed information to people” (Sheridan and Parasuraman, 2005).

According to Merriam-Webster’s Dictionary, the definition of adapt is “to
make fit (as for a new use) often by modification” (Merriam-Webster, 2013). In
this regard, adaptation can be useful in helping to move between the different
types of automation, and between different levels and stages of automation.
Since a dynamic approach to automated decision-making was proposed by Rouse
(1981, 1977), the field has adopted the terms adaptive automation and adaptive
systems to define the idea of an automated system that can adapt to a changing
environment.

Within published research, the definition of adaptive automation has been
subject to debate. Most authors would agree that levels or types of automation
change in an adaptive system. For example, Dorneich et al. (2012) define
adaptive systems as those “allowing the system to invoke varying levels of
automation support in real time during task execution, often on the basis of its
assessment of the current context...invoking them only as needed”. This view
of adaptive automation places the onus of determining the current automation
state on the system. However, others have shown that even the determination
of who ‘adapts’ the system (e.g., the system, the operator, etc.) can fall on a
sliding scale (Parasuraman and Wickens, 2008).

Within the current context, a system is a combination of hardware, software,
and human operators that work together to accomplish one or more goals. As the
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focus of the paper is system design, the term machine refers to the combination
of all hardware and software within the system with which the human operator
interacts. The term task load describes the number and difficulty of tasks assigned
to human operators, to which they must respond. These tasks can be explicitly
or implicitly imposed within the operational context of the system–the system
might require the operator to make a selection, requiring an explicit action.
However, to make this selection, the operator will need to gather appropriate
information from the system or environment and make decisions, each of which
are implicit task demands.

The term workload refers to the perceived impact of the task demand placed
upon the operator’s mental or physical resources and workload corresponds to the
utilization of these resources. The operator will perceive the effect on workload
level, and therefore, perceived workload corresponds to the user’s perception of
the degree to which their mental or physical resources are fully utilized. The
variability in the task load imposed upon an operator–and the workload the
operator experiences–originates from a number of sources. In addition to the
variance of performance due to explicitly defined workload, the performance of
the human operator–and therefore the impact of a given task load upon their
perceived workload–may vary due to inherent factors such as fatigue, stress level,
motivation, and training level (MacDonald, 2003; Reid and Nygren, 1988). As
such, the ability of a human operator to respond to tasks imposed upon them
varies over time (Colombi et al., 2012).

This research investigates the impact of explicit and inherent task load to
provide a process model for the design of adaptive automation systems. The
resulting function-to-task design process model creates a set of visual diagrams
enabling designers to better allocate tasks between human and machine. This is
achieved through a set of five analysis tools allowing designers to identify points
within a function network where the transitions between human and machine
entities can facilitate adaptive automation. This paper proceeds as follows.
Section 2 reviews the design processes currently in place for adaptive automation
systems. Section 3 presents the function-to-task design process model. Section 4
illustrates the function-to-task design process model through a system design
iteration.

2. Designing Adaptive Automation Systems

Discussions on the design of manned systems as a tool to aid allocation of
functions or tasks between a human operator and a machine often cite Fitts’s
list (Fitts et al., 1951). Fitts et al discussed tasking the machine to perform
routine tasks that require high speed and force, computational power, short-term
storage, or simultaneous activities. Fitts et al further propose leveraging the
human’s flexibility, judgment, selective recall, and inductive reasoning to improve
system robustness to unforeseen circumstances. Fitts et al also acknowledge the
limitation of humans to correctly employ these capabilities when overloaded due
to excessive task demands or to maintain alertness and employ these capabilities
when not actively participating in system control.
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One may consider the allocation of functions between man and machine within
a system as a multi-objective optimization, wherein designers optimize some
combination of performance, safety, and robustness as a function of the tasks
allocated to each component. The limitations of system and human capability
shape this optimization, with a significant component of human capability
quantified in terms of human workload. Adaptive automation system design
assumes that the number and difficulty of tasks performed will vary over time,
and the tasks allocated to the human or machine need to vary to provide the
human operator with an appropriate workload.

Figure 1 illustrates this concept, which depicts a two-dimensional space which
arranges tasks, T1-T9, based on how well a human operator or the machine
can perform them under reasonable task load. As shown, performance by either
system can range from unsatisfactory through excellent (Price, 1985). We should
allocate tasks, such as T1 or T8–which one entity (human or machine) can
perform more satisfactorily, than the other entity–to the better performing entity.
However, any task that either entity can perform beyond the point of satisfactory
performance, we can reasonably allocate to either human or machine.

If there was no constraint on resources, one could then maximize performance
of the overall system by allocating tasks below the 45 degree line to the human
and tasks above this line to the machine. However, resource constraints force a
shift in the location of this line. For instance, assuming workload limits on human
performance and unbounded machine resources might induce the designer to shift
the dividing line lower in the plot, decreasing human workload and allocating
additional tasks to the machine. On the other hand, if users’ performances
improve by increasing their engagement with the system, one may wish to raise
the dividing line and allocate more tasks to the human. Therefore, adaptive
automation effectively requires the system to permit this allocation line to shift
up and down within this plot, allocating fewer or greater numbers of tasks to
the human operator. Of course, this strategy assumes that bandwidth does not
constrain the machine.
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Figure 1: Task Allocation in Adaptive Automation (Adapted from (Price, 1985)).
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2.1. Automation Taxonomies

Taxonomies for adaptive automation have been proposed to accommodate
the complex design space present in many of the systems. Feigh et al. (2012)
indicate that modifying the allocation of tasks among humans or machines can
affect operator workload. However, modification of task scheduling, interaction
required between the operator and other system elements, or the content of any
interaction can also affect operator workload. Although not explicitly captured,
these modifications may involve systems with multiple machines or multiple
humans (Calleja and Troost, 2005).

Considering the interaction between an individual operator and a machine,
Parasuraman et al. (2000) proposed a model for describing levels of automation
that builds upon the work of Sheridan and Verplank (1978) to discern between
the types and levels of automation. The model delineates the types of tasks
performed based on the four-stages of human information processing: sensory
processing, perception/working memory, decision making, and response selection.
Within these four stages, they take the ideas Sheridan and Verplank propose
and codify them further into a 10-point scale describing the levels of automation,
ranging from “1. The computer offers no assistance; human must take all
decisions and actions” all the way to “10. The computer decides everything, acts
autonomously, ignoring the human.”

Alternatively, Endsley (1999) propose four core human functions that a system
could automate independently of one another, including: monitoring, generating
alternatives, selecting alternatives, and implementing the selected alternative.
This framework assigns each of these four tasks to either the human or machine
(or both in some cases) and enumerates the level of automation between fully
autonomous and fully human-implemented, providing a two-dimensional space
over which to define automation. Each of these classification schemes permits
the differentiation between intermediate levels of automation, explicitly defining
which human task a given level automates. Each model aids the creation
and classification of automation states for tasks the human or machine can
perform, helping the system designer determine “what” to automate and “to
what extent”(i.e. level of automation). Although designers can apply “level of
automation” models to any system employing automation, they are important in
systems employing adaptive automation as they permit the designer to determine
what part of and how to automate a task so that changes in automation level
can be clearly described.

Although the adaptive automation taxonomy Feigh et al. (2012) propose
does not fully overlap the automation taxonomies provided by either Parasuram
Parasuraman et al. (2000) or Endsley (1999), the taxonomies are not independent
of one another. Feigh et al uniquely highlight the fact that not all tasks
are time critical, and systems can reprioritize them during periods of peak
workload. They also discuss the allocation of tasks between humans and machines–
alluding to various levels for automation of tasks that include selection or
implementation of alternatives. Additionally, they contend that automation
of generating alternatives and monitoring requires automatically generated
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information displayed to the human operator, forcing a change in the interaction
and content of interaction. Each of these methods, therefore provides a different
way to classify and consider the effect of changes in autonomy on operator
workload.

2.2. Trigger Taxonomies

In adaptive automation systems, the designer not only decides which tasks to
automate, they must decide how to trigger or initiate changes in automation. A
common source of human error occurs when an operator assumes that a system
is operating in a different mode than it is truly operating. It has been suggested
that the designer give complete flexibility and control over task automation
determination to the human supervisor (Parasuraman and Wickens, 2008).
Unfortunately, in a time constrained environment, making and indicating this
decision to the system requires time and increases operator workload. Therefore,
considering other possible triggers for changes in automation provides value.

Feigh et al. (2012) proposes five general classes of potential triggers, including
operator-based: based on some overt (e.g., human selection) or covert (e.g.,
a rise in heart rate, indicating a stress response) human input; system-based:
based on the current system state (e.g., the presence of an excessive queue of
tasks awaiting user response); environment-based: based on the current state
of the environment or a specific event; task- and mission-based: based on the
initialization/completion of milestones; and spatiotemporal: based on time or
location of the system. As a number of potential triggers exist, the designer must
select from among a large number of triggers to determine when to change the
automation level. To increase the level of automation, the designer may apply
different triggers or levels of triggers than to decrease the level of automation.

2.3. Human-Machine Interaction

The need to provide effective communication between the human and machine
impedes human interaction with automated systems. In some cases–such as
flight control automation–the design of this interaction can have life-or-death
consequences (Geiselman et al., 2013; Kaber et al., 2001). Unfortunately, this
interaction can become increasingly complex in systems employing adaptive
automation. William Rouse’s analysis of human-machine interaction within a
dynamic system is a seminal article in this field (Rouse, 1981). Rouse shows the
different forms of communication with the system as a set of five interaction loops.
The first two loops, in which it is possible that no communication is required,
represented manual control and completely automated control. In the third loop,
wherein he coins the term overt communication, the human and machine opera-
tors of a system directly communicate information about their tasks. The human
operator must take explicit actions to control the machine, and the machine must
explicitly provide information. The human operator must consciously read, listen
to, or otherwise receive this information. The last two loops represent more sub-
tle communication which typically occurs among humans; covert communication,
with the fourth loop representing covert human to machine communication and
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the fifth covert machine-to-human communication. Information communicated
indirectly–which might include state information–characterizes covert commu-
nication. The timeliness of a response from a teammate, where hesitancy in
response signals uncertainty and fast authoritative response indicates certainty,
provides an example of covert communication.

Unfortunately, communication errors occur between human operators and ma-
chines as the machine can fail to communicate critical state information (Geisel-
man et al., 2013), let alone the information leading to the selection of a critical
state, or less direct information, such as the certainty of this information. Re-
cent research focuses on improving covert communication from the human to
the machine through the use of psychophysiological measures, such as elec-
troencephalography (EEG), electrocardiography (ECG) , electrodermal activity
(EDA), electromyography (EMG) (Dorneich et al., 2012; Byrne and Parasura-
man, 1996; Haarmann et al., 2009) or behavioral measures, such as eye gaze
patterns. Such measures have the “potential to yield real-time estimates of
mental state” (Byrne and Parasuraman, 1996), thus allowing the machine to
gain information regarding the state of the human operator.

The infeasibility of communicating all automated tasks from a machine to a
human aside, the human in an automated system requires enough information
to permit appropriate situational awareness. Since the human operator assumes
control in the event of a mishap or in order to make a critical decision, the human
needs an understanding of the current system and environment state. Several
research efforts devote effort toward finding an appropriate balance between
providing enough information for situation awareness and overloading the human
operator with information (Wickens, 2008; Endsley, 1999; Kaber et al., 2001;
Sheridan and Parasuraman, 2005; Manzey et al., 2012; Parasuraman et al., 2008).
Systems can present some information more effectively using visual, auditory,
tactile or other human senses. Further, all communication will affect the user’s
workload, potentially resulting in overload conditions. However, the relationship
between how humans attend to, receive, process, and act upon information
creates complexity, and the interaction influences the human operator’s perceived
workload (Wickens, 2008).

The types of feedback given influence the resulting system. For example,
Manzey et al demonstrate that users are much more likely to develop a proper
level of trust with a system when the system gives them negative feedback loops
rather than positive ones (Manzey et al., 2012). Further issues such as how to
design a system to manage interruptions in a socially acceptable manner, and
analyzing the positive and negative consequences of automating the interruption
management task (Dorneich et al., 2012) are important. The idea of etiquette
flows naturally into the concept of trust, directly impacting the human operator’s
trust of the system.

While the design of the human-machine interface can be complex, this
interface requires grounding in an understanding of the information that the
human operator and the machine must communicate to facilitate task completion.
The importance of this information necessitates its presentation in a way that
does not overload the operator and recognizes the fact that the human operator

7



will not necessarily receive all information the system provides.

3. Function-to-Task Design Process Model

We now explain how the previous adaptive automation design techniques can
be augmented to emphasize explicit and inherent task load. The function-to-task
process model for the design of adaptive automation systems is presented here
to create a set of visual diagrams enabling designers to better allocate tasks
between human and machine. The goal of this process is to enable designers
by providing a set of analysis tools to identify points within a function network
where the transitions between human and machine entities are advantageous for
adaptive automation.

The literature recognizes that most functions are made up of sub-functions
that are completed in a temporal sequence (Ross, 1977). Although the terms
function and task are sometimes applied interchangeably (Bye et al., 1999) and
multiple definitions exist (Concepts and Group, 1998), clear differentiation of
these terms leads to a better understanding of the proposed process model.
Here, we define a function as an action that an element or elements of a system
performs to accomplish the desired goals or to provide the desired capability. A
function is delineated from a task as the function is not allocated to an entity.
A task is allocated to a specific entity and represents the actions necessary for
the entity to perform the function. Tasks can be explicit, in that the function
indicates them; or implicit, in that they are not required by the function but are
necessary to enable the entity to perform the function.

The literature on adaptive automation relies on different types or levels
of automation. However, adaptive automation levels are often spoken of in
continuous terms, which can be thought of metaphorically as a radio volume
dial, that increases or decreases an “amount” of automation. However, in the
proposed model, the channel selection dial provides a more fitting metaphor
as it permits the selection of discrete states. Each function consists of several
atomic functions. Atomic functions are functions that can only be performed
by a single cognitive entity. Further decomposition of an atomic function is not
possible, making the determination of automation state a discrete decision. A
channel dial serves as a better analogy than a volume dial as each automation
state consists of some set of atomic functions.

With these definitions, we now turn our attention to a proposed process
model for allocation of functions to entities (e.g., human or machine) and a
progression to a task relationship diagram. This process model allows a designer
to make informed decisions relating to automation design, particularly in the case
of adaptive automation. Figure 2 graphically depicts the function-to-task design
process model. The function-to-task process usually proceeds in a linear fashion,
as indicated by the solid bold arrows in Figure 2. In some cases, completing
steps in the process will force the design back to a previous step for revisions;
likely locations for revision steps are indicated by the dashed arrows in Figure 2.
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Figure 2: The Function-to-Task Design Process Model, depicting the developmental flow and
typical revision loops necessary for design refinement.

3.1. Step 1: Determine Over-Arching Goal

The first step in the proposed process model, the designer determines the
goal(s) of the system. The over-arching goal should answer the question, “What
is the system trying to achieve?” Any predetermination as to how the task
must be accomplished should be excluded. For example, a goal to “obtain milk
through a purchase,” contains no pre-conceived notion of how to purchase the
milk. The overall goal should be distilled to only its essential elements–those
requirements that are unavoidable. For example, obtaining milk is a less exclusive
goal than purchasing milk. However, broadening the goal beyond solutions under
serious consideration is counter-productive (e.g., we would not expand the goal
of purchase milk unless we would consider alternate methods of obtaining milk).

3.2. Step 2: Identify High-Level Functions

The second step is to identify the functions that must be performed to achieve
the goal(s). The question to answer at this stage is, “How do we achieve the over-
arching goal?” The functions at this stage should be high-level, and–depending
on the goal–could consist of only one function. During the successive iterations
of function decomposition, these high-level functions are decomposed until they
reach the atomic function level. Consequently, all functionality for which the
system must account falls under a high-level function. At this point, the designer
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assigns no performing entity to each function. Therefore, the high-level functions
must be defined such that they can be allocated to any available entity.

3.3. Step 3: Decompose Functions

Functions are composed of sub-functions in a modular or hierarchical fashion.
The complexity of a given function depends on the number and interrelationships
of its sub-functions. When choosing how to automate a function, two components
of the function are significant: (1) the lowest level functions (e.g., atomic
functions) that make up the larger function and (2) the relationships among
these atomic functions.

All non-atomic functions are composed of lower-level functions. There are
many proposed methods for decomposing a function, including Integrated Com-
puter Aided Manufacturing Definition for Function (IDEF) Modeling (Buede,
2011). The designer should perform decomposition until functions are indivisible
between multiple cognitive entities, resulting in atomic functions. For example, if
a human can perform part of a proposed “atomic function,” while a second part
is assigned to another human–or even a machine–that function is not yet atomic.
In practice, decomposing each function to the point where it is indivisible is not
necessary, but instead the designer should decompose each function to the point
at which it is impractical to allocate a portion of a function to two separate
entities. With system evolution, it may be necessary to readdress the function
decomposition as functions which are impractical to allocate to separate entities
may change as technology evolves.

The actions taken in Step 3 repeatedly address the question, “Can more
than one entity perform function x?” For the purposes of system representation,
step three should produce a set of nodes. Although it can be useful to use
graphical depictions of the atomic functions (such as IDEF diagrams that
maintain knowledge of the hierarchical decomposition (Cheng-Leong et al.,
1999)) one must take care when naming the functions to insure that multiple
instances of the same atomic function are named commonly without assigning
multiple, different functions with a common name.

3.4. Step 4: Construct Function Relationship Diagram

Once all atomic functions are identified, the action of building the uninstan-
tiated functions into tasks begins with exploring the relationships of the atomic
functions. In order to complete a function, a subset of its atomic functions must
be completed in a pre-arranged order. These relationships are depicted in a
function relationship diagram (FRD) wherein the atomic functions represent
nodes and the information transferred between nodes by the connecting edges.

Each set of atomic functions can have two possible relationships: one function
relies on another (i.e. the completion or product of one task directly influences
the other) or the functions are independent of each other. At this point, one
might argue for the inclusion of concurrently performed tasks. However, if the
set of functions remaining after decomposition are truly atomic in nature, then
concurrent tasks will involve the iterative exchange of information between the
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two functions. Therefore, a loop (arrows flowing in both directions) between the
two functions can represent the relationship.

Multiple arrows (elements of information) may flow into or out of a given
node. If an atomic function does not connect to other members of the higher-level
function from which it was derived, the function decomposition should be re-
addressed, as this condition violates the rules of the function decomposition. The
diagram at this point should not involve the instantiation of function performers
(i.e. it is still a function relationship diagram and not a task diagram).

3.5. Step 5: Instantiate functions to tasks

In step five, the system designer allocates each function to a cognitive entity:
human or machine. Specific instances of humans and machines are not assigned–
we are concerned only that a human or machine is performing the function, not
which human or machine performs it. This step sets a baseline for the states of
automation.

The first step in task instantiation involves induced assignments. Some
constraint may mandate the instantiation of a specific function–or set of functions–
to a specific entity. Induced assignments can come from rules, capabilities,
available resources, or other avenues, but must be addressed no matter the reason
for their inclusion. These are assigned first, before any other instantiations are
made. Examples of induced functions include decision nodes in systems where
humans hold final decision authority, or a complex calculation that a human is
incapable of performing and a machine must perform.

Once the induced assignments are made, the designer can address the more
flexible assignments. The adaptive automation task allocation model discussed
in Section 2 enables the determination of which tasks to assign to a human or
machine. By using the model demonstrated in Figure 1, tasks can be assigned
to the entity capable of performing the function with maximum proficiency.
Although this model may provide insight into which function nodes to instantiate
to which entity, it can also draw attention to nodes that are not clearly favored
to one entity or the other. Consideration of these tasks is then warranted in
later stages when adaptive allocation is addressed.

The TRD should indicate each node as human or machine, with distinction
for those nodes that are induced assignments. A task relation diagram (TRD)
that demonstrates the flow of information from one entity to another results
from step five.

3.6. Step 6: Separate Inherent Tasks

At this stage, all functions have been allocated to entities. The resulting
TRD consists only of explicit tasks the atomic functions specify. Completion
of the task allocation necessitates the specification of inherent tasks. Inherent
tasks are those tasks that present themselves as the product of a specific task
instantiation. However, these inherent tasks can also result from the interactions
between the explicit tasks or specific resources available to the system.

The information exchange between entities during a task handoff is the
primary source of inherent tasks. Once the designer assigns a task to either a
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machine or human, a set of new complexities emerge through the task relationship
diagram: task handoffs. Figure 3 demonstrates the four types of task handoffs
possible: human to human, human to machine, machine to human, and machine
to machine.

Human

MachineHuman

Human

Machine

MachineMachine

Human

Figure 3: The four possible cognitive handoff types between two entities.

However, the most important types of task handoffs are those that cross
between human and machine. A human-to-machine or machine-to-human task
handoff requires two inherent tasks that are not present in the underlying
functions: (1) formatting and communicating the information by the losing
entity and (2) perception of the information by the gaining entity.

Communication of information requires the current performing entity to
format the information such that the next entity understands it. For example, a
machine that just completed a movie recommendation search task must ensure
that it communicates the recommended films to the human before the human can
complete the subsequent movie selection task (i.e., displays this information on a
screen). On the other end, perception involves the next task performer’s ability
to obtain and interpret the information communicated to permit subsequent
task completion. It’s important to make the inherent task nodes in the task
relationship diagram visually distinctive. This distinction permits complex task
relationships to become more apparent. Step six produces a complete TRD
similar to that produced by the previous step, but including both explicit and
inherent tasks.

At this point, the designer may find it useful to reiterate through the process
to ensure that the diagram truly represents the desired process and system. After
this stage, an initial allocation exists. Modeling or prototyping tools can then
be used to determine if the human or humans assigned to operate within the
system are capable of performing the tasks required from them during typical
system operation while having high enough workload to remain engaged with the
system. If not, steps five and six are revised until the design attains a desired
level of workload. To reduce workload, for example, the human can give a task
involved within a complex relationship within the TRD to the machine.
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3.7. Step 7: Define Adaptive Automation States

The inherent tasks of communication and perception, provide one of the most
important steps in designing an automation system, due to the complexity they
add to a system. When the designer adds adaptive automation to the system,
an understanding of cognitive task handoffs is crucial. The selection of a set of
atomic tasks–or groups of tasks–in the TRD to become adaptive nodes makes
the automation adaptive, by identifying nodes that can switch between human
and machine instantiation based on some pre-defined trigger. The TRD aids in
identifying potentially useful locations for adaptive nodes.

Selecting a given node as an adaptive node, based on the TRD, adds com-
plexity to the overall system. Figure 4 shows an updated version of Figure 3,
wherein all possible relationships are represented when at least one of the nodes
is an adaptive node.

Human/ 
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Machine

Human/ 

Machine

Human/ 

Machine
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Machine

Human
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Machine

Machine

Figure 4: The four possible cognitive handoff types between two entities.

As a node switches from static human or machine to adaptive, the number
of handoff types needed approximately doubles for each outgoing connection.
Figure 5 illustrates this principle, where the number of handoff types present
in the entire diagram goes from four in the original to seven in the resultant
diagram. Furthermore, changing only one node from ‘Machine’ to ‘Human or
Machine’ achieves this increase.

Step seven finalizes the definition of adaptive nodes, and the TRD aids
analysis. Five analysis tools include: determining the number of possible states,
node clustering, task handoff analysis, branch counting, and inherent task load
comparison. By iterating through these tools, an adaptive automation system
emerges.

3.7.1. Number of possible states

Once the designer selects adaptive nodes, they must readdress the complexity
and handoffs created through the selection. One way to look at complexity

13



involves determining the number of possible automation states. For each adaptive
automation node in the relationship graph, two possible states exist: human
and machine. Therefore, the number of possible states equals 2x, where x is the
number of adaptive nodes in the current design. For example, the model on the
left of Figure 5 contains one possible state, while the model on the right contains
two.

3.7.2. Node clustering

Functions clustered based upon the degree of the edges in and out of a
given node tend to provide similar or highly inter-related functions. Therefore,
automation of the cluster as a group can often be achieved with greater effect
than just automating one function in the group. Conversely, the designer could
also instantiate all of the tasks in a cluster to a human, since the cognition
will not need to change. An example of this would be in piloting an aircraft.
Although takeoff function contains many lower level functions, there are many
complex groups of functions within it that naturally group together to ensure
a proper amount of situational awareness–provided through the right kinds of
feedback.

3.7.3. Task handoffs

One way the TRD can help analyze the designed system is through an
analysis of the task handoffs, specifically the number of different-entity handoffs.
In each possible case where a machine hands off to a human or human to a
machine, count one handoff. In the case where a node is set as adaptive, this
implies that a handoff from an adaptive node to another adaptive node counts
twice, while an adaptive to non-adaptive node handoff will counts once. This
handoff count suggests the number of nodes where cognitive load shifts from
one entity to another. By focusing on these nodes, potential bottlenecks appear
due to certain handoff tasks taking place more often than at other locations.
Highlighting all of these tradeoffs allows the system designer to visualize the

Human
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Machine
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Machine

Machine

Figure 5: Complexity added to automation design considerations by changing the cognitive func-
tion operator from a hard assignment (machine) to an adaptive assignment (human/machine).
The number of functional handoff types doubles for each handoff involved.
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locations where inherent tasks–specifically those associated with communication
and perception, as described in Section 3.6–reside.

3.7.4. Branch counting

Branch counting refers to the idea of determining the number of other atomic
tasks to which one specific atomic task connects. A task that influences or is
influenced by a large number of tasks makes automation more difficult. Tasks
that have large branch counts can often make good candidates for node clustering.
Conversely, single branches within a TRD can often indicate good places to put
adaptive nodes, as the inherent task load will (likely) be smaller.

3.7.5. Inherent task load comparison

An inherent task load comparison provides another way to analyze the
effectiveness of different designs. This consists of a comparison of the relationship
diagrams created when the TRD instantiates one function as a human task versus
when the TRD instantiates the same function as a machine task. The main
difference that will most likely arise in this type of comparison is the number of
tasks that are added or subtracted due to a specific instantiation. A comparison of
the two instantiations, helps to visually communicate inherently understandable
design decisions.

4. Function to Task Process Illustrated

The design of an automated route creation game–titled Space Navigator,
shown in Figure 6–inspired by others in the genre such as Harbor Master (Imangi
Studios, L.L.C., 2011), Flight Control (Firemint Party, Ltd., 2011), and Martian
Control (Beebe and Beebe, 2010) illustrates the proposed function-to-task process
model. The game involves spaceships appearing on a computer screen that a
player must select and drag to a specific destination planet, while avoiding
obstacles and acquiring point bonuses. The game consists of a ten-minute
session, during which the goal is to score as many points as possible. The player
can earn positive points in two ways: landing a spaceship on its destination
planet and “picking up” a randomly appearing alien (i.e. the ships path traverses
over the alien’s location on the screen). The player loses points in two ways:
permitting two ships collide (the ships are also destroyed) and permitting a
spaceship to enter a no-fly zone. No-fly zones are rectangles that appear and
disappear at random intervals and points are lost for every second the ship
remains in the zone. Ships appear at random intervals and can come into the
screen from any direction.

Within this game, the player’s workload varies with changes in the rate of
appearance of spaceships, aliens and no-fly zones, as well as the number of plan-
ets. The system employs adaptive automation to permit the player to effectively
increase points when the number of active entities–planets, spaceships, aliens,
no-fly zones–increases beyond a rate that the player can control. The time and
location that entities appear are selected randomly based upon probability dis-
tributions and are thus not available to the automation system. The automation
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Figure 6: Screenshot from an instance of the Space Navigator game.

system can aid the player based upon temporally-available information but has
no knowledge of future events. Further, the system has limited processing power
and is capable of determining routing information for entities, but determines
the route for a single entity at a time. Once the performing entity selects a
route, the automation might identify an impending collision and recommend a
change in route information. However, this example assumes that the human
player must permit a change in any route once an initial route is established.

4.1. Goals and Functions

To fulfill Step 1, we ask the question “What are we trying to achieve?” For
this game, the goal is to score the most possible points in the allotted time. The
high-level functions of the game then represent the way that points are scored.
Four high-level functions become apparent:

1. Land a spaceship on its destination planet.

2. Pick up an alien.

3. Avoid collisions with other spaceships.

4. Avoid traversing no-fly zones.

Answering the question, “Can we further divide function x?” can help decompose
these four functions. After asking the question we obtain the following list of
atomic functions:

1. Function 1: Move spaceship to intended target planet.

• Determine the best ship to draw route.

• Identify destination planet of selected ship.

• Identify if ships have routes already.

• Create a set of possible routes.

• Select a route.
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• Draw a line from selected ship to destination.

2. Function 2: Pick up aliens

• Identify all available, non-selected aliens.

• Identify destination planet of selected ship.

• Determine if route change to pick up alien is worth points gained.

• Determine if selected ship has a route already.

• Adjust route to pick up alien.

3. Function 3: Avoid other spaceships

• Detect likely collisions.

• Identify destination planet of selected ship.

• Determine if selected ship has a route already.

• Determine if route change to avoid collision is worth points gained

• Adjust route to avoid collisions.

4. Function 4: Avoid no-fly zones

• Identify no-fly zones.

• Identify ships headed toward a no-fly zone.

• Identify destination planet of selected ship.

• Determine if selected ship has a route already.

• Determine if no-fly zone traversal is worth lost points.

• Adjust route around no-fly zone.

This atomic function list demonstrates two important concepts previously dis-
cussed in Section 3.3: the circumstance-specific nature of atomic functions and
the overlap of specific atomic functions. For the Space Navigator game, the
atomic functions listed above could be considered more complex functions de-
pending on your interpretation of the process. For example, under the avoid
no-fly zones high-level function, the atomic function “Determine if no-fly zone
traversal is worth lost points” could be considered a non-atomic function made
up of sub-functions such as determine the number of potential points lost, deter-
mine amount of time added, determine increased collision likelihood, etc. The
FRD retains this function as an atomic function as a human could somewhat
intuitively weight the costs of traversing a no-fly zone, taking into account
extenuating circumstances. The second concept is that atomic functions appear
in multiple locations within the hierarchy. For example, the atomic function
“identify destination planet of selected ship” appears in all high-level functions
and is the same function in all cases.
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Figure 7: Functional relationship diagram of the Space Navigator game.

4.2. Construct Functional Relationship Diagram

We now produce the functional relationship diagram. We analyze each
unique atomic function in relation to all of the other functions and assigned
relationships (independent or reliant) based upon the transfer of information
from one function to another. The end result of this relationship mapping is the
function relationship diagram shown in Figure 7. Two concepts are illustrated
well in this diagram.

First, there are a few instances where multiple higher-level functions contain
the same atomic function (e.g. “identify destination planet of selected ship”).
Only one node in the functional relationship diagram represents these functions.
However, these functions interact with many different functions. The “identify
destination planet of selected ship” function directly influences three separate
functions. Therefore, functions that overlap multiple higher-level functions pro-
vide potential bottlenecks in the relationship diagram. That is, the information
these functions produce must be available to any human or machine entity to
permit subsequent functions’ performance.

Secondly, relationships that seem compartmentalized in the function decom-
position can appear highly interconnected in the relationship diagram. The
four high-level functions identified for the Space Navigator game are separated
distinctly in the functional decomposition in Section 4.1. However, when they
are placed into relationship with each other, the sub-functions provide a system
that cannot be easily divided along the lines of the previously defined high-level
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functions. This change in perspective can also influence a different understanding
of the high-level functions themselves. It may be the case that the high-level
functions can be defined differently based on their structure in the functional
relationship diagram. This demonstrates why we must continually refine the
design of the system and readdress previously completed steps as needed.

4.3. Determine Function Allocation

The design goal in this example is to apply automation to aid the user when
interacting with this game where the assumed default state is that the human
operator will perform all functions. Therefore, the goal of the function allocation
in this particular example is to identify alternate automation states. Referring to
Figure 7, one can see that the functions in the center of the diagram are highly
inter-connected. This interconnection implies that the human and machine
would need to exchange significant amounts of information if elements within
this region of the figure were divided between these entities. However, other
elements near the periphery of the diagram are not as highly interconnected. As
a result, allocation of many of these elements to the machine are likely to result
in less need for communication between the human and machine.

Based on this analysis and the performance of the human and machine,
Figure 8 represents a potential task allocation and resulting task relationship
diagram. In the diagram, tasks that the human controls are shown in blue and
those in red are alternatively allocated to the machine. As discussed earlier, the
“C/P” nodes are also shown, indicating the need for the entity performing the
function near the “C” node to perform the inherent task of formatting information
for display to the receiving entity and the need for the entity performing the
function near the “P” node to perform the inherent task of perceiving and
interpreting the information to enable performance of the function.

4.4. Show Inherent Tasks

Because of the selected function allocation, there are several task handoffs
from human to machine and vice versa as the C/P nodes indicate. Some of the
communication/perception chains are inconsequential, like communicating from
the machine to human if a specific spaceship has a route already–as a simple path
is already drawn between entities to aid transfer of this information. However,
others are more difficult. For example, communicating the destination planet
for all ships to a human can be simple, but it is important and perhaps difficult
to ensure perception. If the ships are color-coded to align with a specific planet,
this task is simple for most people when few entities are available. However, it
becomes increasingly difficult as the number of entities increase and in some cases
impossible for certain individuals (e.g., those who are color blind). Therefore, it
is not only needed to communicate the information, but to confirm the transfer
of critical information to insure a handoff.
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Figure 8: Task relationship diagram of the Space Navigator game, where blue nodes have been
allocated to the human and red to the machine. The C/P nodes represent nodes where a task
handoff from machine to human or vice versa and a communication-perception task must take
place.

4.5. Create Adaptive Automation

Finally, we apply adaptive automation to the TRD. Figure 9 shows how
the process changes after adaptive automation nodes are selected. The most
important areas to address in the adaptive automation process for the Space
Navigator game were the node clustering, branch counting, and inherent task
load counting. Node clustering in this example was used to convert a large block
of tasks as one larger task. The purple box surrounding the adaptive atomic
tasks represents a clustering of the tasks into a larger “ship selection” task. This
node cluster was not evident without the TRD, as the functional decomposition
was performed based on ways that reach the goal (i.e. score points). The node
clustering was aided first by counting branches. It was obvious that the “Select
best ship to move” node as well as all the “weigh if...” nodes contained high
branch counts. However, the boundary around the cluster was placed such that
each crossing contained only one crossed branch. The “ID Destination planet
of selected ship” node only has one exiting branch, as it will communicate the
information to the human for the purpose of all ensuing tasks in the same way.

An inherent task comparison shows that there was a slight change based on
the inherent tasks added in comparison to the TRD in Figure 8. The “Select
best ship to move” node now has a “C/P” node coming out of it. However, by
clustering the nodes as selected in Figure 9, when all nodes are set to machine,
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Figure 9: Task relationship diagram of the Space Navigator game, where blue nodes have been
allocated to the human, red to the machine, purple as adaptive automation nodes. The C/P
nodes represent nodes where a task hands off from machine to human or vice versa and a
communication-perception task must take place.

there will be fewer inherent tasks added than with the original set of nodes.

5. Conclusions

The presented function-to-task design process model creates a set of visual
diagrams enabling designers to better allocate tasks between human and machine.
This is achieved through a set of five analysis tools allowing designers to identify
points within a function network where the transitions between human and
machine entities can facilitate adaptive automation. This paper proceeds as
follows. Section 2 reviews the design processes currently in place for adaptive
automation systems. Section 3 presents the function-to-task design process
model. Section 4 illustrates the function-to-task design process model through a
system design iteration.

This paper presents an investigation of the effects of explicit and inherent
task load to provide a design process model for adaptive automation systems.
The resulting function-to-task design process model demonstrates that adaptive
automation requires the dynamic allocation of discrete functions to the human
or machine rather than adjusting the degree of automation on a continuum.
Further, the process model demonstrates that reallocation of functions imposes
a change in implied tasks to permit the proper exchange of information between
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the performing entities. As such, reallocation of a function implies a change in
information flow between the machine and human and this change requires the
user to perform tasks which require cognitive and physical resources to obtain
and communicate this information. The function-to-task design process model
prescribes the steps necessary to create the function relationship diagram and
task relationship diagram, enabling designers to better allocate tasks between
human and machine. These allocation improvements are achieved through a set
of five analysis tools that allow designers to identify points within a function
network where the transitions between human and machine entities enable
adaptive automation.

It has been previously suggested that each of these elements of information
are necessary to support allocation (Wright et al., 2000), although they are often
represented in separate diagrams. Within adaptive automation system design,
this representation is particularly important as it permits the depiction of not
only explicit but inherent tasks necessary for the conveyance of information
between cognitive entities. Consideration of the information available in the
task relationship diagrams when performing task allocation permits the designer
to understand and potentially reduce the volume or complexity of information
exchange between a human and machine. This tool may also help to reduce
unwanted redundancy between the functions the human and the machine perform
by clarifying the form of the information necessary to facilitate human decision
making.
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To improve operator efficiency and effectiveness, designers increasingly apply automation to allocate tasks 

once performed by human operators to the system.  Unfortunately, these systems are often complex, 

potentially imposing increased mental task load on the operator, or placing the operator in a supervisory 

role where they can become overly dependent on automation.  A proposed solution is adaptive automation, 

which increases automation when an operator is overloaded, and disabled as the operator has spare mental 

capacity.  Changes in performance and physiological measures have shown promise in triggering changes 

in automation levels.  However, the literature lacks well-documented or consistently supported measures 

for mental workload prediction.  The present work sought to define a model which could predict perceived 

workload as a function of performance and heart rate measures by imposing various levels of task loading 

on a group of individuals while monitoring their performance, recording their heart rate information with 

an electrocardiogram and obtaining subjective estimates of mental workload.  Heart rate (HR) and several 

heart rate variability (HRV) measurements where significantly affected by Task Load.  This paper 

describes a linear regression model for predicting participants’ perceived workload as a function of a 

proposed summary performance metric and HR measures.     

 

 

INTRODUCTION 

 

 Present Air Force (AF) systems are generally more 

complex and require the operator to perform more tasks than 

previous systems.  This description is true for Remotely 

Piloted Aircraft (RPA.  These aircraft are now one of the most 

demanded capabilities that the USAF presents to the Joint 

Force (USAF, 2009), having undergone explosive growth 

despite their complexity.  Specifically the complexity of 

battlefield operations is increasing as new technologies to 

address changing threats. Often, operators can still function at 

an optimum level; however, if the task load becomes too great 

operator performance can suffer (de Waard, 1996).  

Consequently, technologies and techniques are needed to 

assist RPA operators in maintaining optimal performance. 

 One possible method of aiding operators is through 

adaptive automation (AA).  AA is “a system of controlling 

flexibly and dynamically the allocation of tasks between 

human operators and computer systems in complex multi-task 

environments” (Tattersall & Fairclough, 2003).  Adaptive 

automation abandons the fixed allocation of tasks between 

machine and operator in favor of adjusting this allocation 

during system operation (Parasuraman & Hancock, 2008).  

These systems seek to balance mental workload, maintain 

maximum operator situational awareness, permit the operator 

to maintain cognitive skills, and help the operator to gain trust 

in the automation (Parasuraman and Byrne, 2003).  

Parasuraman discusses five methods to trigger this 

automation, which include: critical events, operator 

performance, operator physiological assessment, operator 

modeling, and a hybrid of these techniques (Parasuraman, 

2003). The two techniques that have shown promise in 

triggering changes in adaptive automation within several 

studies are operator performance and physiological measures 

(Parasuraman, 2003).  However, research which has explored 

these measures has not provided robust, repeatable models of 

human mental workload as a function of these variables. 

 Throughout the years, human factors engineers have 

employed many techniques to quantify and measure workload.  

These techniques vary greatly, from purely subjective 

questionnaires (of which there are many), that require the 

participant to measure their own perceived workload, to 

objective physiological measures such as cardiovascular 

responses, oculometry, galvanic skin response, and fMRI 

(Booher, 2003).  In particular, cardiovascular measurements 

(HR and HRV) have shown correlation with mental workload 

levels in many studies (Averty, Athenes, Collet, & Dittmar, 

2002; de Waard, 1996; Wickens & Hollands, 2000).  

Unfortunately, combined models, which permit prediction 

based upon performance and heart rate measures, are not 

readily available.  As a result, the present study develops a 

model to predict workload as a function of task performance 

and heart rate measures.  This model should provide a trigger 

for automation in future AA studies.  

 

BACKGROUND 

 

 To implement adaptive automation to balance mental 

workload, it is important to understand mental workload and 

methods to measure it.  There are several definitions of 

workload in the literature, but the underlying theme is that 

mental workload is the amount of mental effort needed to 

accomplish a task or goal.  One definition determines 

workload to be “the amount of cognitive or attentional 

resources being expended at a given point in time” (Booher, 

2003), while another states, “Workload is a general term used 

to describe the cost of accomplishing task requirements for the 

human element of man-machine systems” (Tsang & Vidulich, 

2003).   These definitions each focus on the resources 

expended by the operator of the system at a given time or 

under a time constraint.  Inherent in these definitions is the 



need to measure mental effort on an ongoing basis throughout 

the operator’s shift.  While one might directly observe 

physical workload, the measurement of mental workload often 

requires indirect means.  These indirect measures include 

performance on primary or secondary tasks, subjective 

measures, or electrophysiological measures (Booher, 2003). 

 Primary task performance measures involve assigning an 

operator one or more tasks, placing emphasis on the speed and 

accuracy of the most important task.  While these measures 

are useful and can be collected continuously to assess 

workload level, most real world environments require the 

operator to perform multiple, often disjoint tasks, which must 

be summarized to determine overall task performance.  

 Parasuraman and colleagues applied primary task 

performance to trigger changes in level of automation within 

adaptive automation systems (Parasuraman, Cosenzo, & De 

Visser, 2009).  This study required the operator to interact 

with an unmanned, ground-vehicle, control station to perform 

simultaneous tasks.  These tasks included completing specific 

actions at various waypoints depending on the situation, as 

well as  acknowledging their call sign if presented, and 

responding to a situation awareness probe.  Finally, the 

operators were asked to respond to a change detection task and 

hit the space bar when they noticed a change.  The operator’s 

performance for this final task was used to determine whether 

or not automation should be invoked.  The results showed that 

the adaptive automation increased performance on only the 

final task, but it reduced the participants’ subjective 

assessment of workload. 

Appropriate physiological measures are also appealing as 

a potential trigger as these measures do not negatively 

influence performance (Wickens & Hollands, 2000).  These 

measures provide continuously gathered data, and the 

measures often correlate with workload.  The literature 

demonstrates that many physiological can provide a reliable 

indication of workload.  However, this research will primarily 

focus on cardiovascular measures. Heart-rate variability 

(HRV) is a specific cardiovascular measure that often 

correlates with workload.  It has been stated that; “In general 

HRV decrease is more sensitive to increases in workload than 

heart rate (HR) increase” (de Waard, 1996).  Many studies 

have found that HRV is sensitive to a number of different 

difficulty manipulations (de Waard, 1996).   

 HRV has also been applied to trigger automation. 

Parasuraman conducted a study in which two groups of 

participants used a modified version of MAT-B, called 

EICAS-MAT, for 90-minute sessions.  The session was 

divided into three consecutive phases of high, low, and high 

difficulty with adaptive automation being provided for the 

high difficulty phases for one group; however, this automation 

was only triggered when heart rate variability (HRV) was 

reduced below a specific point (Parasuraman, 2003). The 

second group did not receive any aid from the automation, 

regardless of their heart rate measures.  The results showed 

that the adaptive group had higher HRV, which is indicative of 

lower workload, and that their tracking performance was 

superior to the control group (Parasuraman, 2003).  While this 

study did not discuss the operators’ performance on the 

remaining three three tasks within this simulated envrionment, 

one might assume  that their was no difference between 

groups in those tasks and that adaptive automation employing 

HRV was successful in reducing workload and improving task 

performance. 

 Although HRV shows promise as a predictor of workload 

for adaptive automation, it is not the only potential cardiac 

measure. Further, HRV and related measures have limitations.  

Unfortunately, HRV responds to both mental workload and 

physical workload (de Waard, 1996; Novak, Mihelj, & Munih, 

2010).  Additionally, HRV is difficult to compute in real-time 

and can be sensitive to noise.  Another limitation of all cardiac 

measures is the operator’s acceptance, as ECG connections 

can be uncomfortable for day-to-day missions.  However, 

several techniques have been discussed to remotely measure 

heartbeat using imaging devices (Kamshilin, Miridonov, 

Teplov, Saarenheimo, & Nippolainen, 2011), which may 

eliminate this concern in the long term. 

 Other cardiovascular measures include SDNN, which is 

the standard deviation of the inter-beat intervals (IBIs), 

CVRR, which is the SDNN divided by the average IBI value.  

Both of these measures have shown correlation with task loads  

(Kawakita, Itoh, & Oguri, 2010).  Some of these measures 

recognize that heart rate can vary significantly between 

individuals and, therefore, require that a baseline, e.g., the 

research must establish a measure of resting heart rate.  

 One might consider combining primary task performance 

measures and physiological assessment to form an integrated 

method for mental workload assessment since each measure 

responds to mental workload.  

 

METHODS 

 

Participants 

 

 Thirteen participants participated in this study, including 

4 females and 9 males.  The average age was 25 years, and all 

were in good health.  The participants included volunteer 

military and government civilian personnel.  Approximately 

half of the participants completed one of two medium 

workload conditions.  Half of each of these subgroups 

experienced a different baseline condition. 

 

Equipment 

 

 Participants interacted with the Air Force Multi-Attribute 

Test Battery (AF_MATB), running on a laptop computer.  The 

AF_MATB, provided a method to manipulate an operator’s 

task load and impose different levels (high, med, low) mental 

workload (Miller, 2010).  The original MATB software has 

become a mainstay for psychological research regarding 

cognitive workload and the most recent version (Version 2.4), 

which was employed in this study, has been updated to be 

compatible with modern operating systems (Miller, 2010).  

Participants used a standard laptop keyboard in addition to a 

USB joystick to perform the given tasks.   

 The AF_MATB requires the operator to perform four 

simultaneous tasks that simulate tasks analogous to those a 

flight crewmember would encounter.  Tasks include system 

monitoring, tracking, communication, and resource allocation.  



System monitoring consists of monitoring four gauges and 

two lights, to which the participant provides corrective action 

via the keyboard.  A joystick controlled the cursor in the 

tracking task.  The objective of the tracking task is to keep the 

unstable crosshairs within a designated rectangular target area.  

Communication requires the participant to listen for the 

appropriate call sign and change the frequency for one of four 

channels via the keyboard.  For the resource allocation task, 

participants are responsible for turning on/off eight pumps to 

maintain a desired level (2500 +/- 300 for this research) in two 

main tanks in a constantly changing environment.      

Integrated within AF_MATB is a subjective workload 

assessment scale, specifically the NASA Task Load Index 

(TLX).  This subjective workload scale has been used in 

studies as an effective means to measure subjective impression 

of workload (Stanton, 2005). The six components of the 

NASA TLX scale, which are used to form an aggregate 

measurement of workload, are mental demand, physical 

demand, temporal demand, performance, effort, and 

frustration.  A BIOPAC 150 with ECG 100C amplifier 

measured the electrical signals associated with the beat of the 

human heart.  

 

Procedure 

 

 Participants read and signed the informed consent 

document.  The participants attached the ECG leads to their 

chest under supervision of a trained experimenter having the 

same gender as the participant and reapplied any clothing.  

The participant then sat in front of the workstation and the 

experiment attached the ECG leads to the amplifier.  The first 

group of participants completed the baseline by simply 

relaxing and performing a set of calming mental exercises.  

However, the baseline recordings were not reliable and often 

resulted in HRV values that were smaller than HRV values 

obtained for the low workload conditions.  As a result, the 

second group of participants viewed a series of natural images 

during baseline recording.  These images were selected to 

induce relaxation for a broad range of participants 

(Fedorovskaya et al., 2001). 

 The AF_MATB test scenarios began after completion of 

the baseline measurements, beginning with 15 minutes of 

training, during which the participant interacted with the 

system and received positive guidance from the experimenter.  

After this training, participants self determined whether to 

continue training or proceed with the experiment.  Once the 

participants were comfortable with the software, they 

completed three, five-minute AF_MATB sessions at high, 

medium, and low difficulty levels.  By randomizing the 

difficulty levels, the experimenters attempted to minimize 

learning effects.  When each session ended, the participant 

completed the NASA TLX subjective workload questionnaire.  

The participant completed this sequence a second time. The 

participants were debriefed and the experiment terminated. 

 

Data Collection and Analysis Preview 

 

 The AF_MATB software recorded and output all 

performance data.  This data includes the response times to 

errors for the system-monitoring task and the communications 

task, but shows the root mean square (RMS) time for the other 

two tasks.  However, as it was the goal of the experiment to 

correlate overall performance with the subjective workload 

values, the participant’s performance on the four individual 

task scores need to be combined into a single score for each 

task load level.  Calculation of the ratio of the time each 

measure was in the correct state to the time it could have been 

in the correct state served as the performance score (Splawn, 

2013).  Note that this process collapses performance on all 

tasks to a single score, rather than relying only on the 

performance of a single task as is common in the literature. 

AF_MATB collects the subjective workload data input by 

the participants and converts it to the NASA TLX weighted 

workload level (WWL), which is the participant’s composite 

score for perceived mental workload.  An ANOVA was 

performed on the WWL to determine if it is an effective 

method to accurately measure the operator’s perceived mental 

workload; i.e., if it was sensitive to the changes in task load 

that were imposed during the experiment. 

 Analysis of the cardiac measures involved 

AcqKnowledge version 4.0 from BIOPAC .  This software 

allows the data to be filtered, automatically locates the ECG 

waveforms, identifies their peak R waves, and then runs 

analysis to compute heart rate and the different spectral 

components of heart rate variability (HRV), including low and 

high frequency components (LF, HF).  Calculating SDNN and 

CVRR relied on the inter-beat intervals (IBIs) created in this 

software.  The analysis included calculating HR delta and 

HRV delta.  Calculation of these values included determining 

the difference between the heart rate or low frequency 

component of HRV for a workload condition and the baseline 

value.  Analysis included computing ANOVAs to determine 

the cardiac measure(s) indicative of workload level . 

 

 ANALYSIS, RESULTS, AND DISCUSSION 

 

 The first measure investigated was the subjective 

workload (WWL), which is the weighted worked level 

calculated from the NASA TLX questionnaire.  To determine 

if it was an accurate measure of the task load, six WWL scores 

were computed for each participant, one for each of the three 

workload levels, and each level was repeated, resulting in 78 

samples.  Analysis applied JMP software using the Residual 

Maximum Likelihood (REML) method to compute ANOVAs.  

Any value p-value less than 0.05 was assumed significant. 

 The results showed that the task load had a significant 

effect on WWL (F(3,25)=31.386, p<=0.0001).  Performing a 

pair wise comparison with a Tukey’s honestly significant 

difference (HSD) test shows that there is a significant 

difference between all task load levels except the two medium 

levels.  Figure 4 shows workload level as a function of task 

load.  As shown in this figure, the subjective estimate of 

workload (WWL) increased from 44.63 to 57.12 to 62.71 to 

74.71 as the task load increased from the low through the high 

condition.   The WWL appears stable since it was not 

significantly different between participants or runs.  



 

Figure 4: WWL by Task Load 

 The next measure investigated was the effect of task load 

on performance score.  The JMP results show that both task 

load (F(3,24)=12.53, p<=0.0001) and run number 

(F(1,13)=12.14, p<=0.0039) had a significant effect on 

performance scores.  A Tukey’s HSD test showed that there 

was a significant difference in performance scores between 

low task load and the higher medium and high task loads, and 

that the performance for the high task load condition is 

significantly lower than the performance score for the lower 

medium and low task loads.  There was no significant 

difference between the performance scores for the two 

medium levels of task load.  The average performance score 

decreased from 0.65 to 0.57 to 0.55 to 0.48 as the task load 

increased from the low through the high condition.  The 

average performance scores also increased 5 percent between 

runs.  This may indicate that the participants would have 

benefitted from additional training.   

 The random effect of participant produced more variance 

for performance scores than it did for the WWL scores.  This 

makes sense, as some participants will be more inclined to 

performing these types of tasks, while others may struggle 

greatly even with low task loads.  These differences produce 

large variances in performance scores between participants 

making it difficult to point to a specific performance score as 

being indicative of high mental workload for a participant. 

 Heart rate measure analysis included applying the 

previously stated method for conducting ANOVAs.  Table 1 

summarizes the results of the analysis.  Heart rate was 

significantly affected by task load (F(3,24)=6.34, p<=0.0026); 

however, it was only significant between the low and high task 

loads, which indicates that heart rate may only be able to 

discriminate between task loads with more extreme 

differences.   

 Performing the analysis on HRV (LF) yielded significant 

effects for task load (F(3,23.43)=6.98, p<=0.0016) and run 

number (F(1,12.76)=5.2951, p<=0.0389).  The HRV (LF) 

value was highest at the low task load and lowest at the 

highest task load, which was expected. However, the two 

medium levels were neither significantly different from each 

other nor from the low or high levels.  This may be because 

the medium levels have half the number of data points and 

because participants, who introduce a high level of variance to 

the ANOVA model, only completed one of the medium levels.   

  

Task load had a significant effect on the HF component of 

HRV, the SDNN, the HRV delta, and the HR delta.  

Additionally, the run number and the interaction of run 

number with task load had a significant effect on HRV (HF).  

Each of these measures showed trends similar to those seen 

for HR and HRV (LF).  The CVRR measure did not show 

significant differences based on any of the fixed effects.   

 Analysis of the heart rate measures reveals some 

interesting trends.  First all measures, except for CVRR, were 

significantly different for the low and high task loads, but 

were not significantly different with regard to the medium task 

loads.  The responses for these task loads had significant 

variance.  For some participants they followed the expected 

trends (i.e. HRV decreased as task load increased and HR 

increased with task load); however, for some participants the 

heart rate measures for medium task load did the opposite.   

 To determine which measures would be most appropriate 

for predicting a participant’s perceived workload it was 

decided to use the Weighted Workload Level as the response 

since it represents the participant’s perceived workload.  The 

first step was to look at the correlations and partial 

correlations (the correlation with respect to all other 

correlations) between each measure and determine which 

attributes correlated most strongly with WWL.  Analysis 

revealed a higher correlation of WWL with the performance 

than any of the heart rate measures.  The partial correlations 

showed that HR delta from baseline showed the next highest 

correlation.   

 By building a linear regression model with WWL as the 

response and performance score and HR delta as the predictor 

variables the resulting    value is 0.21 and the    adjusted is 

0.189, meaning that at most these two variables account for 

18.9 percent of the variation in WWL.  Exploration included 

applying stepwise regression to search for an improved model.  

The resulting model added HF as a predictor variable within 

the model, yielding an Adjusted    value of 0.21.   
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Table 1: Heart Rate Measures with Significant Effects 

HR 

Measure 

Significant 

Effects 

F Statistic P-value 

HF 

Task Load 

Run 

Task Load x 

Run  

F(3,22.6)=3.8279 

F(1,15.77)=6.988 

F(3,28.58)=3.3093 

0.0235 

0.0179 

0.0341 

SDNN Task Load F(3,23.39)=3.53 0.0305 

CVRR None Not significant Not 

significant 

HRV Delta  Task Load F(3,23.4)=3.72 0.0254 

HR Delta Task Load F(3,23.7)=6.298 0.0027 



 Because the HR delta was chosen for each model, the data 

was also investigated with only the participants who had a 

more controlled baseline reading (participants 8-13).  The 

stepwise regression of the model included WWL as the 

response variable and performance score, HR delta, HRV 

delta, and HF as predictor variables.  The resulting model had 

a    value of 0.61 and an Adjusted    value of 0.55, which is 

a significant increase compared to the previous model, 

indicating the importance of a controlled baseline. 

   

Discussion 

  

 The analysis included applying ANOVAs to explore the 

relationship between changes in task load and multiple heart 

rate measures, performance scores, and subjective workload 

scores.  Changes in task load resulted in significant changes 

for each of these measures with the exception of CVRR.  

Regression models were also constructed to predict subjective 

workload levels, and by using the data from the subjects with 

more accurately controlled baseline data, an Adjusted    

value of 0.55 was achieved.  The findings show promise in 

applying performance scores and various heart rate measures 

to estimate subjective workload and trigger automation in 

systems. 

 While most of the results were consistent with the 

background literature, a couple differences were apparent.  In 

two studies, a significant correlation existed between CVRR 

and mental workload (Verwey & Veltman, 1996; Kawakita, 

Itoh, & Oguri, 2010).  However, the current study found no 

significant effects for this measure.  An interesting note is that 

each of the previous studies involved driving tasks, which may 

have a different effect on the various measures.  Another 

interesting result pertained to the HRV (LF) measure.  While 

this research indicated that it was sensitive to high and low 

task load differences, it was no more sensitive than other 

measures as in other studies (de Waard, 1996). 

One interesting finding for this research came from the 

HR delta and HRV delta results.  Both of these measures 

showed results similar to the other heart rate measures when 

performing the ANOVAs.  However, when investigating 

potential regression models to predict WWL, these measures 

had a more significant effect than the other heart rate 

measures.  Because the regression model is applied across 

participants, a delta measurement may provide a more 

accurate method to trigger adaptive automation.  

 

CONCLUSION 

 

This research investigated the concept of using various 

performance and heart rate measures to estimate workload 

with the goal of triggering adaptive automation.  Research has 

shown that adaptive automation can increase overall 

performance, and that certain heart rate measures are 

indicative of an operator’s mental workload. A human-

participants experiment was developed to better understand 

how various heart rate measures and performance measures 

could be used in adaptive automation.  The results suggested 

that certain measures can be used to distinguish between task 

loads, and that a combination of performance and cardiac 

measures can be used to model an operator’s perceived mental 

workload.   
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Abstract 

 
Despite a long history of vigilance research, the relationship between the vigilance decrement and a broad range of 

physiology measures has not been fully documented.  In an attempt to address this gap, an experiment was designed 

in which participants detected critical signals displayed at random during a 20-minute simulated air traffic control 

vigilance task.  In addition to collecting performance data, cerebral oximetry and electrocardiography were utilized 

to collect a range of physiological signals from participants including heart rate, heart rate variability, and cerebral 

oxygenation levels in the right and left frontal areas of the brain.  The physiology data when correlated with the 

decrement indicated by the performance data demonstrated a potential relationship between these measures.  This 

research has implications for using physiology measures to determine the onset of human vigilance decrement to 

institute compensatory measures. 

 

Keywords 
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1. Introduction 
Throughout history people have evolved technology, bringing about more complex and advanced systems that can 

perform tasks and operations faster and more accurately than before.  As a result, tasks that once required physical 

and cognitive effort to perform can now be performed by systems through automation [1, 2].  With these 

advancements the role of the individual has changed from one of active involvement to one of passive supervision 

[3, 4].  As these systems are potentially fallible, human operators are left to scan information created by these new 

systems, to monitor their status and act only when an infrequent, but critical event, such as a system failure or 

emergency, arises [3].  Thus vigilance, or the ability to maintain attention and alertness over prolonged periods of 

time while monitoring for rare stimuli among frequently occurring stimuli, is required [2, 5-8]. 

 

Whereas it is relatively easy for people to be briefly attentive to a series of predictable events, maintaining attention 

to unpredictable events over a long period of time is difficult, especially when the events also have a low probability 

of occurrence. This decline in performance over time is known as the vigilance decrement [5, 7, 9].  The vigilance 

decrement typically appears within the first 15 minutes of watch, but depending on the nature of the task and the 

demand required, it could appear as rapidly as 5 minutes [5, 10].  Additionally, the vigilance decrement affects both 

novice and expert users [3]. As a result, automated human-machine systems, which have obvious benefits in the 

work place, have created problems related to over-reliance and waning vigilance [11].   

 

The presence of the vigilance decrement has been well documented; however, the underlying cause of this 

performance decline is subject to debate.  Currently, there are two competing theories, the mindless, boredom or 

under-load theory, and the resource, mental fatigue or over-load theory.  Initially the under-load theory was 

developed with the belief that the vigilance decrement was caused by a decline in arousal or attention to a 

monotonous task.  This theory hypothesizes that vigilance task participants’ minds would wander, leading them to 

think thoughts unrelated to the task causing distraction, which eventually would lead to lack of awareness of the 

critical signals and decreasing detection rate [3, 7, 12, 13].  More recently a new theory has proposed that vigilance 
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tasks are difficult, stressful, and impose substantial demands on the information-processing resources of the 

individual.  The resource theory proposes that the vigilance decrement is instead due to a decline in available 

attentional resources.  Observers during vigilance tasks are required to make many decisions under uncertain 

conditions without rest.  The continuous nature of this task does not allow for time to replenish resources.  As a 

result mental resources become depleted over time, reducing the critical signal detection rates [3, 7, 9, 13]. 

 

As the concepts of vigilance and the vigilance decrement have developed and evolved, interest in research on this 

topic has gained momentum.  This research is further motivated by the existence of vigilance tasks in a variety of 

military, industrial and medical settings, specifically the areas of air traffic control, cockpit monitoring, industrial 

process/quality control, airport baggage inspection, long-distance driving, robotic manufacturing, and cytological 

screening [3, 4].  Starting in the early twentieth century, individuals such as Henry Head who first described 

vigilance in brain injured patients and Norman Mackworth who studied vigilance during World War II using the 

famous “Clock Test” had began to quantify the source of decreased performance during vigilance tasks [3, 7, 10, 

13].  The field expanded as researchers investigated human attention during vigilance tasks and human performance 

with a variety of different systems [3].  Studies of vigilance emerged with a variety of different characteristics 

including, multiple difficulty levels, event rates, task durations, stimuli types, and discrimination types, each with a 

unique experiment, but a similar goal [5]. 

 

Recently the field has begun to employ physiology measures to gain new perspectives into the causes of the 

vigilance decrement.  While many physiological measures of the vigilance decrement have been examined and 

analyzed, there has been no agreement on a preferred method that clearly identifies loss of vigilance in every 

individual and in a variety of situations.  Previous studies of vigilance using physiology measures have included one 

or more techniques to explore signals from the parts of the body such as the brain, eyes, heart, and skin [2, 4, 6, 14-

16].  The focus of this study was to employ two of the most prevalent and readily available techniques, cerebral 

oximetry and electrocardiography (ECG) to further the understanding of the relationship between signals from the 

human body and the vigilance decrement.  

 

Many studies have used cerebral blood oxygen saturation (rSO2) using cerebral oximetry to quantify a vigilance 

decrement.  There have been reasonably consistent results reported even with a variety of possible experimental 

factors.  Most studies have found that a decline in performance is paralleled with an increase in oxygen saturation [2, 

17]; however, others have found no significant changes in oxygen saturation values with time-on-task [6, 16].  

Greater activity in the right over the left cerebral hemisphere has been reported for easier vigilance tasks, while a 

bilateral activation in oxygen saturation across the two hemispheres have been reported for more difficult vigilance 

tasks [2, 6, 15, 16]. 

 

An electrocardiogram (ECG) is a recording of the electrical activity of the heart over a period of time.  It can be used 

to measures an individual’s heart rate and heart rate variability and has been used in numerous studies to assess 

mental workload.  Specifically heart rate variability (HRV) has been shown to have an inverse correlation with 

mental workload [12, 18].  Monitoring heart rate data during a vigilance task could therefore help to understand the 

amount of mental effort and whether the vigilance decrement is due to low mental effort (mindless theory) or instead 

due to a high mental effort (resource theory) [12]. 

 

The purpose of this study is to detect and quantify the vigilance decrement using well known methods as to establish 

control data to compare for further changes in experimental procedure.  Additionally, this study plans to make direct 

comparisons between the effects of a variety of physiology measures with changes in performance all recorded 

during the same vigilance task.  

 

2. Method 
 

2.1 Participants 
The participants enrolled in this study were volunteers from military and civilian employees of Wright Patterson Air 

Force Base.  All participants had normal or corrected-to-normal visual acuity as verified using a SLOAN Multiple 

Group Near Vision Testing Card from Precision Vision and normal depth perception as determined using a TNO test 

for stereoscopic vision from Laméris Instrumenten b.v.  Of the 33 participants, 21 were male and 12 were female.  

They ranged in age from 22 to 40 years with a mean of 28 years (SD = 5.1).  And they included a representative 
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sample of individuals, with 29 right-handed, 3 left-handed, and 1 neutral-handed participants, based upon the results 

of the Edinburgh Handedness Survey [19].   

 

2.2 Apparatus and Equipment. 

A Metronaps EnergyPod, shown in Figure 1, allowed for containment of the participant during the experiment.  The 

pod is 212.19 cm long, 145.73 cm tall, and the dome of the pod is 121.91 cm wide.  The shield built into the pod 

functioned to prevent participants from becoming distracted by outside stimuli.  The pod also permitted participants 

to sit in a relaxed and comfortable position throughout the experiment. 

 

  
 

Figure 1: The pad and blanket situated inside the pod while the shield is open and closed. 

 

Participants wore two sensors connected to a Somanetics Invos Cerebral Oximeter 5100B as shown in Figure 2.  

This system uses near-infrared spectroscopy technology to continuously and noninvasively measure blood oxygen 

saturation levels in the frontal areas of the left and right hemispheres of the brain.  The near-infrared sensors were 

positioned and secured to the forehead of each participant using an adjustable headband.  Care was taken to avoid 

the sinus cavities and any hair that might interfere with the signal.  Both sensors were cleaned and tested for an 

effective reading between all participants. 

 

  
 

Figure 1: Somanetics Invos Cerebral Oximeter 5100B (left) and participant wearing adjustable headband and EOG 

electrodes (right). 

 

A BIOPAC
©
 150 was used to perform electrocardiography (ECG).  Electrodes worn on the participant’s chests were 

attached to the BIOPAC hardware system containing an ECG amplifier for measuring the electrical signals 

associated with the beat of the human heart.  The BIOPAC
©
 system with electrodes are shown in Figure 3.  The 

BIOPAC
©
 hardware system fed the signals into data acquisition software, AcqKnowledge®, where they were 

recorded and saved. 
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Figure 2: BIOPAC
©
 hardware system showing placement of ECG electrodes. 

 

2.3 Procedure 

All participants performed the task individually in a quiet, windowless laboratory.  Each participant was given an 

informed consent to read and sign prior to the experimental session.  After completion of the consent form, the 

participant’s visual acuity and depth perception were evaluated.  Additionally their handedness was determined as 

right, left, or neutral using the Edinburgh Handedness Inventory.  This data was recorded along with the 

participant’s age and gender. 

 

An in-depth description of the simulated air traffic control vigilance task was read and examples of critical and 

neutral signals were shown to each participant.  The task involved a random presentation on a computer screen of 

three concentric circles with four arrows between the two outermost circles as shown in Figure 4.  Participants 

viewed approximately 30 displays/min and each display remained on the screen for 1 second.  The configuration of 

the four arrows between the two outer most circles changed each time the display was updated. Displays showing 

arrows aligned in a potential collision path were considered critical events and warranted an overt response from the 

participants.  Participants indicated a critical event by pressing a finger mouse held in their dominant hand.  Displays 

that showed arrows aligned in a non-collision path or safe path were considered neutral events and required no overt 

response from the participants.  Examples of possible critical event displays and neutral event displays are shown in 

Figure 4.  The software package was programmed to display 10 critical events randomly within each 10 minute 

portion of the 20-minute vigilance task, providing signal probability per period of 0.133 percent.   

 

 

 
 

 

Figure 3: Possible critical event and neutral event displays from the simulated air traffic control vigilance task. 

 

Prior to the beginning of the practice and test sessions, the participants were asked to sit in the pod and the cerebral 

oximeter and ECG sensors were fit to the appropriate areas of their face and body.  All sensors were connected to 

their corresponding hardware and the resulting signals were tested to determine correct setup and sensor placement.  

Cerebral oximetry data was sampled at 0.2 Hz and recorded in a text file by HyperTerminal communication 

Neutral Event (Safe) 

Stimuli 

 

Clockwise Flight Paths 

 

Counter-clockwise Flight Paths 

Critical Event (Collision Path) 
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software.  The ECG data was sampled at a frequency of 1000 Hz and recorded by the BIOPAC AcqKnowledge® 

software.  A thermoelectric blanket was placed over the body of the participant and used to modulate the 

temperature of the participants in a subsequent set of trials, not discussed in this paper.  A 48.26 cm (19 inch) 

computer monitor, used for displaying the vigilance task, was then mounted at eye-level inside the pod, 

approximately 60 cm from the participant.   

 

Before the vigilance task test session, participants were given a 5-minute practice session, after which their hit and 

false alarm rate were calculated and feedback was given.  Once the practice period was completed, participants 

began the 20-minute simulated air traffic control task.  Custom software recorded the participant’s response to every 

display throughout the vigilance task.  Additionally, the communicator program and BIOPAC AcqKnowledge® 

software continued to record all physiology data.  The data for this study was terminated at the 20-minute mark and 

the results were compiled and backed up to a secure computer.   An additional period was then completed where the 

participants continued the vigilance task during which the temperature of the thermoelectric pad and blanket was 

modulated.  However, the data associated with the temperature change is not reported in this paper.  Finally, all the 

physiology sensors were removed from the participants and they were permitted to exit the pod.   

 

2.4 Data Analysis 

This experiment was conducted to demonstrate the vigilance decrement over a 20-mintue trial of a vigilance task 

and to look for trends in the physiology data that mirrored the decline in performance.  As more workplaces rely on 

automated human-machine systems, sustained vigilance and the methods that detect vigilance has become 

increasingly important.  Therefore the correlation of physiology data with the vigilance decrement provides potential 

methods for automated detection of vigilance loss. 

 

A well-known and previously used vigilance task [4, 17], a simulated air-traffic control task, was chosen for the 

participants to complete.  For each event, three types of responses were recorded during the experiment: a hit, which 

is a response during a critical signal; a miss, which is no response during critical signal; and a false alarm, which is a 

response during a neutral signal.  All other events were neutral signals with no responses.  From this data, the 

percent correct detection or hit rate and the false alarm rate were looked at for each participant individually and for 

the collective pool of participants.   

 

To effectively compare the physiology measures across participants, a baseline period needed to be determined for 

each measure.  Previous studies have used a 5-minute period prior to the task session to calculate a baseline for 

cerebral activity [2, 6, 16, 17, 20].  However, this baseline may not be available in the operational domain, thus a 

more easily used baseline was determined.  Cerebral oxygen saturation values recorded during the first 2 minutes of 

the vigilance task were averaged and used as a baseline.  A percent change from the baseline was calculated for each 

recorded value using the following equation, %Change = ((Recorded Value – Baseline) / Baseline) * 100.  An 

average percent change for both the left and right hemispheres was calculated for each of the remaining 2 minute 

periods.   

 

Heart rate (HR) and heart rate variability (HRV) were both also analyzed as a percent change from a baseline.  Heart 

rate was calculated from the electrocardiogram (ECG) data by identifying the location and counting the number of 

the R wave peaks present during normal cardiac function.  The heart rate baseline for the ECG was calculated by 

averaging the number of R waves over the first 2 minutes of the first vigilance task period.  A percent change from 

the baseline was calculated using the average HR for each of the remaining 2 minute periods with the following 

equation, %Change = ((Average for 2 Minute Period – Baseline) / Baseline) * 100.  One component of heart rate 

variability was determined by calculating the R – R Interval (RRI), or the time between each R wave.  The standard 

deviation of these RRIs, known as SDNN, was calculated and then divided by the average RRI value to determine 

the coefficient of variation of R-R (CVRR).  The same baseline technique and CVRR calculation was used to 

determine the values for each of the remaining 2 minute periods. 

 

Repeated measures ANOVAs were applied to determine the statistical differences in performance scores, cerebral 

oximetry values, and heart rate measures between the baseline period and each of the additional nine 2 minute 

periods.  Bonferroni post-hoc tests were conducted if an overall significant difference in means was found to 

determine where those differences occurred.  A Greenhouse-Geisser correction was applied when the assumption of 

sphericity was violated.  The level of significance having a probability of 0.05 was established a priori.  All 

calculations were completed using MATLAB R2012a and SPSS Statistics 18.0.  
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3. Results 
 

3.1 Performance 

Performance was assessed in terms of the percentage of correct detections (or hit rate) and false alarms.  A repeated 

measures ANOVA indicated a statistically significant effect for percent correct detections over time, F(9, 288) = 

2.133, p = 0.027.  This data is displayed in Figure 5.   

  
 

Figure 4: Mean percent correct detection (left) and mean false alarm rate (right) over periods of watch on the 

vigilance task.  Bold lines indicated linear trends and error bars indicate plus and minus standard error of the mean. 

  

A repeated measure ANOVA determined that there was no significant effect of percentage of false alarms (or false 

alarm rate) over time.  A trend line showed a relatively stable rate over time and throughout the task, the number of 

false alarms was very low.  This data is also displayed in Figure 5. 

  

3.2 Cerebral Oximetry 

A repeated measures ANOVA with a Greenhouse-Geisser correction indicated a statistically significant effect of 

cerebral oximetry values over time, F(3.989, 123.645) = 3.073, p = 0.019 and a significant effect between percent 

rSO2  change values for right and left hemispheres, F(1, 31) = 4.539, p = 0.041.  A trend line was added to the data 

to show the overall decline over time.  This data is displayed in Figure 6.  

 

3.3 Heart Rate 

Heart rate measures from the ECG data included heart rate (HR) and heart rate variability (HRV).  A repeated 

measures ANOVA determined that a significant decrease was present between time periods for percent HR change; 

F(8, 256) = 7.093, p = 0.0000.  Post hoc tests using the Bonferroni correction revealed that there was a significant 

decline from period 2 to periods 8 (p = 0.007) and 9 (p = 0.008) and period 3 to periods 8 (p = 0.007) and 9 (p = 

0.007).  The data is displayed in Figure 7.    

 

A repeated measures ANOVA with a Greenhouse-Geisser correction indicated there was a significant increase 

between time periods for percent HRV (CVRR) change; F(5.724, 183.177) = 3.407, p = 0.004.  Post hoc tests using 

the Bonferroni correction revealed that there was a significant increases from period 2 to periods 5 (p = 0.044) and 8 

(p = 0.029).  The data is also displayed in Figure 7.       
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Figure 5: Mean oxygen saturation scores for the left and right hemispheres over the period of watch.  Oxygen 

saturation scores are based upon percent change relative to baseline.  Bold lines indicated linear trends and error bars 

indicate plus and minus one standard error of the mean. 

 

  
 

Figure 6: Mean percent heart rate (HR) change and percent heart rate variability (HRV) over the period of watch.  

Heart rate measures are based upon percent change relative to baseline.  Error bars indicate plus and minus one 

standard error of the mean. 

 

3.4 Correlations with Vigilance 

A Pearson product-moment correlation was run to determine if there was a relationship between vigilance, or 

percent correct detections and any of the physiology measures.  The component of HRV, coefficient of variation of 

R-R (CVRR) showed a significant result.  All other measures were not significantly correlated with percent correct 

detections (hit rate).  Additionally, all the physiology measures were significantly correlated with each other, as 

expected, considering all were measures related to blood flow.  The correlation table is displayed in Table 1. 

 

 

 

 

2-4 4-6 6-8 8-10 10-12 12-14 14-16 16-18 18-20
0.5

1

1.5

2

2.5

3

3.5

Time on Task (Minutes)

P
e

rc
e

n
t 
rS

O
2

 C
h

a
n

g
e

 

 

Left

Right

2-4 4-6 6-8 8-10 10-12 12-14 14-16 16-18 18-20
-6

-5.5

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

Time on Task (Minutes)

P
e

rc
e

n
t 
H

R
 C

h
a

n
g

e

2-4 4-6 6-8 8-10 10-12 12-14 14-16 16-18 18-20
-25

-20

-15

-10

-5

0

5

Time on Task (Minutes)

P
e

rc
e

n
t 
H

R
V

 C
h

a
n

g
e

 (
C

V
R

R
)



Jeroski, Miller, Langhals, and Tripp 

Table 1: Correlation Table.  Correlation values that are * are significant at the 0.05 level (2 – tailed). 

 

 Hit Rate Left rSO2 Right rSO2 Heart Rate CVRR 

Hit Rate 1     

Left rSO2 .341 1    

Right rSO2 .538 0.928* 1   

Heart Rate .544 0.760* .895* 1  

CVRR -.740* -.737* -.831* -.823* 1 

4. Discussion 
Given that the advancement and increased complexity of systems has changed the role of the individual from active 

involvement to passive supervision within select fields; the need to maintain attention or vigilance over prolonged 

periods of time has become critical for success [1-3].  This requirement has found its way into the jobs of air traffic 

controllers, unmanned aerial system operators, TSA inspectors, and medical screening technicians [3, 4].  Therefore, 

determining a method to monitor the sustained attention of these individuals and intervene when a vigilance 

decrement occurs could improve overall task performance and reduce errors.   

 

The fact that cerebral oxygen saturation levels increased during the first 10 minutes of the vigilance task (periods 1 

to 4), suggests that increased processing demands on the brain called for increased oxygen supply to the tissue.  

High demand cognitive function activities cause more neurons to fire in the brain which burns glucose.  A by-

product of this activity is carbon dioxide (CO2).  An increase in CO2 leads to vasodilatation, which results in 

increased blood flow to the region to remove the unwanted by-products [17, 21], and therefore an increase in 

available oxygen levels.  As observed, from the 10 minute point, cerebral oxygen saturation levels then begin to 

decrease.  This phenomenon could result from decreasing demand for blood flow, which occurs as available 

resources reach their maximum capacity.  As participants’ resources are depleted, their ability to perform the 

vigilance task diminishes.  Less demand on cognitive function then results in the opposite effect, which causes a 

decrease of blood flow and less oxygen present [17].  This result fits well with the resource model of vigilance and 

shows cerebral oxygen saturation provides an index of utilization of information-processing resources during 

sustained attention [22].  

 

Greater percent rSO2 changes were seen in the left over the right hemispheres; however, there was no significant 

interaction between period and hemisphere, signifying bilateral activation.  Difficult to discriminate targets and 

quick display rates [5], along with a lower percent correct detection rate (77 to 81 percent), would qualify this task 

as difficult.  Therefore, it can be expected that the vigilance task initially placed increased processing demands on 

the brain in line with other difficult vigilance tasks.  Previous research has suggested that increasing task difficulty 

induces a processing strategy change, from unilateral toward bilateral activation [2, 6, 15, 16].  

 

The ECG calculated measures also showed results in line with resource theory.  Percent heart rate (HR) and heart 

rate variability (HRV) change both changed significantly over periods of watch.  HR results showed a negative 

percent change initially from the baseline and then decreases further with time on task.  HR was positively 

correlated with vigilance; however not significantly.  These findings are in line with previous studies that have 

positive correlations between heart rate and performance scores [23]; however, others have reported negative 

correlations or no significant effects either way [4, 24].  The component of heart rate variability (CVRR) in contrast, 

showed a statistically significant negative correlation with vigilance performance.  This agrees with previous 

research, that is, HRV has been shown to have inverse correlation with mental workload [12, 18].  Participants were 
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engaged initially in correctly detecting all critical signals; however, as time progressed their physiology signals 

changed in relation to the decline in performance.   

 

5. Conclusion 

The results from this 20-minute vigilance study can add further information to the field of vigilance research with 

the goal of being able to identify a vigilance decrement in individuals to enable counter measures to be deployed.  

Ideally, the deployment of such countermeasures will permit the user to achieve greater success during tasks and 

activities requiring sustained attention.  A variety of characteristics such as duration length, type of task, event rates, 

and modality could have had an effect on the results of this study; however, the physiology findings were similar to 

previous research and pointed to the resource model theory of vigilance.  Percent correct detections or hit rate 

decreased over time and a significant decrement was determined at the 17-18 minute mark, in range of when a 

decrement is usually seen.  Cerebral oximetry data showed a change from increasing to decreasing percent rSO2 

change at this point in the experiment.  Heart rate measures also changed significantly near this point in the 

experiment.  This data can add to the field of vigilance research and provide a controlled measure for this task and 

these physiology signals from which future research can be conducted.  
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