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Abstract—Today’s business processes are more connected
than ever before, driven by the ability to share the right
information with the right partners at the right time. While
this interconnectedness and situational awareness is crucial to
success, it also opens the possibility for misuse of the same
capabilities by sophisticated adversaries to spread attacks and
exfiltrate or corrupt critical sensitive information. We have been
investigating means to analyze behaviors of actors and assess
trustworthiness of information to support real-time cyber security
decision making through a concept called Behavior-Based Access
Control (BBAC). The work described in this paper focuses on
the statistical machine learning techniques used in BBAC to
make predictions about the intent of actors establishing TCP
connections and issuing HTTP requests. We discuss pragmatic
challenges and solutions we encountered in implementing and
evaluating BBAC, discussing (a) the general concepts underlying
BBAC, (b) challenges we have encountered in identifying suitable
datasets, (c) mitigation strategies to cope with shortcomings in
available data, (d) the combination of clustering and support vec-
tor machines for performing classification at scale, and (e) results
from a number of scientific experiments. We also include expert
commentary from Air Force stakeholders and describe current
plans for transitioning BBAC capabilities into the Department of
Defense together with lessons learned for the machine learning
community.

I. PROBLEM OF INTEREST

In current enterprise environments, information is becoming
more readily accessible across a wide range of interconnected
systems. However, trustworthiness of actors is not explicitly
measured as part of the quality of information, allowing actors
to operate unaware of how the latest security events may have
impacted the trustworthiness of the information and the peers
involved. This leads to situations where information producers
give documents to untrustworthy consumers and consumers
use information from non-reputable documents or producers.

This work was sponsored by the Air Force Research Laboratory (AFRL).
Distribution A. Approved for public release; distribution unlimited (Case
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While cyber security monitoring systems have significantly
evolved over the last decade, these systems still face a number
of limitations. First, currently deployed monitoring solutions
tend to be signature-based and narrowly focused on specific
parts of the overall systems. Examples include the Snort [1]
network intrusion detection system or the Host Based Intrusion
Detection System (HBSS) [2]. This leaves more sophisticated
attacks unhandled, such as 0-day attacks for which signatures
are unknown, or insider attacks that require correlation across
systems and layers. Second, current access control is based on
static policies that tie cryptographic credentials to attributes
that are used by access control rules. Dynamic events, such
as subversion of credentials (e.g., theft of a Common Access
Card [3]) or changes in actor behaviors (e.g., insiders perform-
ing illegitimate actions within their privilege realm), are not
addressed at all, leaving systems vulnerable for a considerable
period. Finally, vast amounts of audit data are collected within
enterprise environments in the form of server logs which could
potentially play a role in access decisions, but this data is
typically only used for offline forensics, leading to a situation
where “later is too late.”

Analysis of observable behaviors for the purpose of estab-
lishing trust models has been a rich research area in cyber
security. Chandola et al. present a good survey covering
anomaly detection work performed in the past decade [4]. A
rich set of literature also exists on spotting behavior differences
for the purpose of insider detection [5]. At the network level, a
concept called Behavior-Based Network Access Control (BB-
NAC) performs clustering to identify network behavior profiles
[6]. Machines are admitted to the network only if their profiles
are deemed normal by their closest cluster of behavior. BB-
NAC faces many of the same challenges that Behavior-Based
Access Control (BBAC) does, but BBAC faces additional chal-
lenges associated with performing analysis at multiple layers,
including the network layer, application layer, and document
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layer. Multiple efforts have looked at analysis of application-
level behaviors. Examples include the use of machine learning
techniques by Ma et al. to predict whether or not HTTP
requests are benign [7]. Multiple efforts have investigated
the use of behaviors for authentication. Shi et al. use the
behavior of cell phone usage to determine whether a cell
phone has been lost and thereby changed owner [8]. Similar
to BBAC, this work uses machine learning to learn a normal
model of usage. However, no direct integration with access
control functionality is provided. A recent DARPA (Defense
Advanced Research Projects Agency) program called Active
Authentication is also trying to significantly advance the state
of the art in authentication frameworks for computer users by
employing Artificial Intelligence techniques to determine the
identity of the user based on observed behavior at multiple
layers and time horizons.

The concepts and technologies developed as part of BBAC
strive to overcome current limitations by means of three
concepts that together enable accurate calculation of trust-
worthiness by virtue of reasoning over observables related
to actors. First, BBAC combines explicit rule-based signa-
tures of behaviors with statistical learning methods to derive
effective and accurate classifiers that work well in dynamic
environments. Rule-based systems excel at capturing subject
matter expert knowledge and providing justification about
trust value changes to operators. Statistical learning algo-
rithms can successfully overcome problems associated with
combining trust values assigned by different rules by learning
the combination functions and adjusting them over time as
environments change. Second, BBAC integrates trust assess-
ments with existing access control schemes in a way that is
guaranteed not to weaken existing policies. This not only helps
with certification and accreditation found in government cyber
environments, but also enables us to manage inaccuracies and
uncertainties inherent in our trust assessment algorithms in
a way that enhances the overall accuracy of access decisions.
Third, BBAC is based on a multi-stage processing pipeline that
spans multiple layers and separates heavy-duty computations,
e.g., classifier training, from online event processing and inline
interactions during access control checks. To scale up to
enterprise regimes, BBAC combines clustering analysis with
statistical classification in a way that maintains an adjustable
number of classifiers, one per cluster.

The resulting impact of BBAC is to fix a major short-
coming of current cyber security mechanisms. Once authen-
ticated, actors currently can operate with impunity within
their authorization realms and, beyond audit trails, there is
no systemic way to dynamically detect suspicious behavior
and modulate access rights. BBAC diminishes the risk of
misplaced trust, increases mission reliability and assurance,
and deters abuse of authorized privileges. Similar in nature
to credit card companies that monitor transactions in real-
time and can preemptively block accounts, BBAC analyzes
observable behaviors on a number of different layers in real-
time to check for intricate trends that would otherwise go
unnoticed. This enables BBAC to stop penetration of cyber

attacks and exfiltration of sensitive data, e.g., stolen credit card
or medical records, as they occur.

II. DATA PREPARATION

To ensure that BBAC is grounded in reality and can be
used by cyber security operators to automate some of their
tasks, we conducted a study looking at the types of data that
are commonly available and used in enterprise environments
today. We identified the following types of raw data: Network
flows, containing IP addresses and ports of sources and des-
tinations, timestamps, duration, and size, and HTTP requests,
including URLs and HTTP headers.

This allows us to leverage logs from existing intrusion
detection systems and services rather than introducing new
mechanisms for collecting observables, which would face
significant deployment cost and could add additional vulner-
abilities to systems. While we were able to get access to
gigabytes of data from these two sources, we encountered a
number of problems.

Reluctance to share data before the value of analysis is
clear. It seems as if the groups with the biggest need for
advanced threat detection techniques are the ones who are
least willing to offer data sets. There are multiple reasons
for this. First, logs and audit records relevant for security
analysis are generally very sensitive, as events frequently
contain identifying information that can lead to breaches of
privacy and complete sanitization of that information can be
quite difficult. In addition, data providers might damage their
reputation by giving out aggregate information showing that
they are vulnerable to cyber threats. In essence, we face a
chicken and egg problem with data providers only willing
to give out data if the use of that data can be assessed and
validated upon distribution time. This becomes a non-starter
for R&D efforts that are looking to work and experiment with
the data to evaluate new ideas.

Granularity mismatch. The behavior based analysis tech-
niques we are investigating work best with data that has a rich
context and feature space. What is needed is a large amount
of granular data to do statistical inference. When looking at
existing repositories, e.g., PREDICT [9], and deployed Host
Based Intrusion Detection Systems (HIDSs), we encountered
two different problems. First, in the case of PREDICT, we
found examples of labeled attack instances, but they were very
narrow in scope (packet captures), leading to few features,
and only representative of a small number of specific attacks.
Second, in the case of HIDSs, we found that we only had ready
access to data preprocessed by correlator nodes. Getting access
to more granular information, e.g., involving access patterns of
processes on end-systems, would require installing software on
end-systems or even recompiling applications (to map memory
regions etc.), both of which raise practical concerns.

Lack of ground truth. To evaluate behaviors at the TCP
level, we obtained a large dataset of BRO [10] network traces
from the BBN network. One immediate problem is that very
little can be linked to actual confirmed attacks, leading to the



(a) Significant Spike (b) Unexpected Connections

(c) Pattern Interruption (d) Slow and Steady

(e) Hide within Noise

Fig. 1. Simulated Attack Behaviors visible at the TCP layer. Blue lines indicate normal behavior and red lines indicate simulated attack behavior.

situation in which a large part of the traffic needs to get labeled
as unsuspicious.

Size of available data sets. Real-world cyber security data
sets tend to be rather large, producing hundreds of gigabytes
of data per day even for smaller companies with less than
1000 actors.

Independence of data sets. Since BBAC performs analysis
at multiple different system layers, we not only need access
to data from sensors at these layers but the data in each layer
needs to be linked to the other layers to represent a consistent
picture of observables.

We developed a number of approaches to dealing with
the various data problems. There is no proven claim about
coverage or even success associated with the strategies at this
point other than getting us over our immediate data hurdles.

Substitute simulation for ground truth. To address lack of

ground truth concerns, we simulated a number of different
attacks variants and observables based on how we would
exfiltrate data or spread attacks at the TCP level if we were
adversaries ourselves. This led to the development of the
following randomized attacks (see Figure 1 for a visualiza-
tion): Category 1: Significant spike. Significant consistent
increase in outbound connections. Category 2: Unexpected
connections. These attacks show outbound activity where
there never was any, e.g., a server that has never made out-
bound requests suddenly making outbound requests. Category
3: Pattern Interruption. Many hosts follow a regular pattern
(e.g., servers fetching updates at regular intervals). The attacks
cause interruptions in those patterns. Category 4: Slow and
steady. Slight increase over normal values, should still be
detectable, though with lower accuracy. Category 5: Hide
within the noise. These attacks form a control case, as BBAC



Fig. 2. TCP and HTTP features used to train our classifiers.

should not be able to detect them.
While the multi category attack simulations help with attack

realism, concerns remain that the defenses we put in place are
limited by our understanding of the attacks. Improving ground
truth would be ideal, e.g., by tying the simulated attacks more
directly to actual cyber events, such as the Stratfor Hack [11].
Another part of dealing with this problem is focusing on data
that has ground truth. One such example is HTTP requests
taken from black lists of known bad URLs.

Focus on realistically observable information. To address
granularity issues, we focused analysis on data that is easily
observable without new software or modifying end systems.
We use the packet sniffer logs both for extracting features
about TCP connections and HTTP requests.

Combine clustering with cloud computing to scale up.
By first clustering, then training the SVM, cloud compute
resources will enable scaling as the classifier for each cluster
can be trained separately.

Splicing in attacks into normal traffic. To address the
problem of independence between data sets, we developed an
approach for injecting malicious URLs into request streams of
benign hosts.

Red Teaming the feature space. We used Collaborative Red
Teaming as an efficient means to get independent validation
of claims about cyber defense in the past [12], [13]. To
address concerns associated with attacks development, we
devised simulation environments that enable fault injection and
modeling of attacks at the feature level, thereby reducing the
cost of attack development and allowing coverage over a wider
range of attacks in feature space.

As a result of these mitigation strategies, we converted the
raw observables into feature sets in a way that is not only
reproducible but also can be directly hooked into deployed
systems. The resulting features are summarized in Figure 2.

The reason for organizing network flow statistics (displayed
at the bottom of Figure 2) by time of day and day of week
is the understanding that behavior patterns differ over time
and hence need to be represented in BBAC. Furthermore,
aggregating the statistics into hourly bins seemed to provide a
good trade off between spotting meaningful differences with-
out getting lost in details. Our future work includes varying
the size of the bins. For example, summarizing data into 15

minute bins and then aggregating the bins to summarize data
over an hour or several hours. Binning allows us to look for
patterns more easily but may also delay detection as data is
binned. Differentiating between incoming and outgoing flows
allows us to detect changes in patterns where servers (mostly
incoming) turn into desktops (mostly outgoing). Changes in
the location of peers (whether on the intranet, DMZ, or
extranet), distribution of unique peers, size, and duration of
flows might signal attacks, e.g., a machine that usually mostly
communicates with internal machines all of a sudden reaching
to many external machines and sending a large amount of
traffic outbound.

For the HTTP data we collect similar features to Ma
et al. [7] as shown in Figure 2. We have the following
HTTP features: URL (also broken into parts: protocol, host,
server, sub-domain, domain, path, query, reference), number
of slashes in the URL, and number of queries in the URL.
We also have access to the source id (an id that anonymizes
the source IP address), source port, destination ip and port,
date, user agent, method (e.g., GET, POST), referrer, mime
type, MD5, status code and message. Additionally we have a
feature for whether the host is an IP address or a string. We
created a local WHOIS database [14] to pull in information
about the age of a domain (features include: whether our local
cache has the WHOIS information, whether the creation and
expiration date is available and how long since/until the record
was created/expires in days and months). We added WHOIS
features about the domain age as many attacks use newly
registered domains, e.g., for command and control servers.

To simulate HTTP attacks we used malicious URL feeds
from http://www.phishtank.com, http://www.squidguard.org/
and http://dsi.ut-capitole.fr/blacklists/. Our attack data consists
of normal HTTP requests with the URL replaced with a known
malicious URL. We make the assumption that all URLs in our
dataset from BBN are normal traffic based on conversations
with the BBN network administrators who did not observe any
attacks during this period. One of our next steps is to simulate
additional attack vectors or signatures, such as information in
the user agent header field.

III. MACHINE LEARNING TECHNIQUES

The goal of this work is to analyze the outbound HTTP
requests and TCP connections that machines make to deter-
mine whether a machine has been compromised or an attack
is executing. The theory behind this is that changes in the
outbound traffic patterns could be indicative of insider data
exfiltration, bots calling home, or an attack spreading. The
features and methods we are using are primarily not novel
(KMeans clustering and SVM SMO classifiers available in the
Weka API [15]). The novelty stems from the exploration of
how these classifiers perform using features from a deployed
intrusion detection system on real enterprise data, the use of
domain experts to synthesize attack data, and the combination
of a clustering pre-processing step to both improve scalability
and reduce false positives.



A. Clustering

We used the KMeans algorithm with KMeans++ initializa-
tion using the Weka API to cluster the host TCP data. The
goal of the clustering is not to blindly create clusters – rather
we want to create clusters based on aspects of a computer’s
behavior. Servers should be in different clusters than desktop
machines. An administrative assistant is probably accessing
different websites with different frequencies than a developer
who is using cloud compute resources. By placing these
machines into different clusters, we can learn what “normal”
is for each one. Our intuition is that these clusters will map to
different categories of machines (e.g., severs or desktops, web
servers or web crawlers) allowing for improved classification
rates and in particular fewer false positives. Multiple classifiers
should be able to pick up behavior changes that a single
classifier could not. For example, an attack vector might
communicate using Twitter messages [16] – an infected server
that only pulls in a nightly update would be very suspicious
if it started using Twitter, however using Twitter is much less
suspicious for a desktop machine.

We explored cluster sizes from 2 to 60 and performed
clustering on what we call single instance data for each
host. The single instance represents means and variances of
the incoming and outgoing connections for each host and
includes the total number of connections during work and non-
work hours, and the average and standard deviation for both
connection duration and size. We found that the cluster sizes
generated by this approach exhibited a power law distribution.
This distribution implies that there are several larger groups of
machines with similar behavior and then many smaller groups
with similar behavior. Unfortunately clustering machines in
this way does not tell us how similar the groups are to each
other. Our future work includes clustering using a combination
of KMeans and decision trees to be able to describe the
characteristics that a cluster of machines shares. To prevent
overtraining, we want clusters that have a reasonably large
number of machines, as opposed to clusters that only contain
single machines. Ultimately, we clustered into 60 clusters,
using the top 10 or 20 largest clusters along with a final cluster
with all remaining hosts (for a total of 11 or 21 clusters total).

B. Supervised Learning

For the supervised learning approaches, we used support
vector machines (SVMs) [17], using the SVM SMO [18]
classifier via the Weka API. We selected it based on perfor-
mance, efficiency, and availability of an easy-to-use, robust
implementation.

The goal of SVMs is to find a hyperplane that separates a
set of positive examples from a set of negative examples with
maximum margin, using the dot product between two vectors.
In many cases, using a non-linear classifier can outperform a
linear approach. When this is so, a kernel function mapping
the features to a higher dimensional space is useful. For most
experiments, we used an RBF kernel with a gamma values
between 0.01 and 100 (representing the width of the Gaussian).
Varying gamma was one way to reach different points on the

ROC curve. Training a support vector machine (finding the
hyperplane with the maximum margin) requires solving or
approximating a large quadratic programming (QP) problem.
The SMO method decreases this training time by breaking
down the QP problem into smaller problems containing only
two Lagrange multipliers that can be solved analytically.

Some difficulties we experienced with this approach in-
cluded mixed accuracy results based on the construction of the
training set, the vast array of parameters available for tuning,
and the fact that training times grow non-linearly with the
number of observed hosts.

IV. EMPIRICAL RESULTS

For both the TCP and HTTP data we replaced the BBN
IP addresses with an integer identification number (we will
refer to this feature as the host). This was done to preserve
the anonymity of the BBN users. As we plan to combine
our handling of the TCP and HTTP data, the identification
numbers are the same in both data sets for the same IP address.

A. TCP data

Our generated attacks for TCP traffic create a spike in traffic
with randomized start times, peak spike levels, and durations,
for all hosts based on each host’s original data (so far we
have only tested with category 1 attacks). The values for these
parameters were chosen from an uniform random distribution
within a bounded range of values. Our classifier setup is
described in Section III-B; we evaluated classifier accuracy
using and RBF kernel, c (half log increments from 0.01 to
100), gamma (half log increments from 0.01 to 100), and a
Weka spread subsample filter with values between 1 and 2 to
compensate for more normal data than suspicious data.

There are two ways to train on this TCP data: a) split by
host id by putting all the data from some hosts into the training
set and all of the data from the other hosts into the test set,
or b) split by instance by separating some data from each
host into the training set and some into the test set. These
two separations will train classifiers for two situations: a) the
classifier is being trained to detect attacks for new hosts it has
never seen data from before, or b) the classifier is being trained
to detect attacks for hosts when it has seen both normal and
attack data for that host before.

We measured accuracy by determining the True Positive
(TP) rate, which measures the percentage of instances for
which an attack instance got correctly classified as suspicious
behavior, and the False Positive (FP) rate, measuring the
percentage of instances for which a normal instance got
incorrectly classified as suspicious behavior.

Not surprisingly when we tried a), our results were not good
– although with some classifier settings (e.g., RBF kernel, C =
0.5, gamma = 1, spreadsubsample = 1.2) we could detect
a few attacks accurately (25% TP, 0% FP). In essence this
classifier is just learning a high threshold for traffic that will
always be an attack – this technique will not work for more
complex attacks (e.g., category 5: Hide within the noise) or
for different spike sizes that are not as easily detected.



Using splitting technique b), we were able to achieve
significantly higher TP rates (92%) but also higher FP rates
(20%) with parameter settings C = 10, gamma = 5, and
spreadsubsample = 1.2. We could detect many attacks, but
also had a high incidence of false alarms. Alternatively we
could achieve lower rates – TP of 34%, FP of 0% with C = 5,
gamma = 0.01, spreadsubsample = 2.

Neither of these approaches is ideal as a deployed system
must be able to detect both attacks in new hosts a) and
deviations from past observed behavior b). Clustering and
more narrowly targeted classifiers for each cluster may be
able to accomplish both objectives: detect more attacks with
lower false positive rates, as well as handle previously unseen
hosts. Overall our goal is to be able to train a set of classifiers
using different parameters and then intelligently select the best
classifier for the circumstances the classifier will be operating
in (e.g., high TP rate might be more important than a low FP
rate if stopping all attacks is critical, while the opposite might
be true if unrestricted access is critical).

As described in Section III-A we formed 11 or 21 clusters
in this initial experiment. We then trained a classifier for each
cluster using a subset of our data for each host in the cluster.
This data included all features broken out by hour-of-day and
day-of-week. In order to test that the KMeans++ clustering
was effective, we compared the results with forming random
clusters and analyzed the results using the Wilcoxon signed-
rank test. The TP rates for the KMeans++ clustering were
greater than the random clustering (Z = 11.004, p < 0.001).
However, the FP rates were not significantly different (Z =
0.369). Although further analysis is needed, an initial exam-
ination shows that in cases where KMeans++ significantly
improves the TP rate, the FP rate is also improved. Figure 3
shows the best 11-cluster results for both clustering methods.
Further improvements to the TP and FP rates may be possible
by adjusting the SVM parameters for each cluster instead of
using the same parameters for all clusters.

B. HTTP

We want to analyze our collected HTTP data to accurately
identify malicious URLs. We envision the tool that results
from this work operating in a proxy between the user and the
Internet. This proxy could operate in different modes: either
blocking suspicious requests, or allowing suspicious requests
but notifying an administrator. Depending on operating con-
ditions, it could be more critical to allow all traffic unless
obviously bad (very low FP rate), or be conservative and block
all traffic that was not clearly safe (very high TP rate). As such,
trading off TP and FP rates in different situations is critical in
this domain. In a typical week 17 million URLs are accessed
in our medium-sized company. Even a 0.1% error rate that
led to manual review would result in over 2000 URLs per day
(1.7 per minute), a rate that is quickly infeasible.

The HTTP contains many string-based features, which are
not compatible with SVMs. We tested different feature and
filter combinations to determine how to best construct the
HTTP classifier, including varying string conversation, feature
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Fig. 3. True positive (left) and false positive (right) rates for the best
11 cluster results for both random (solid blue) and KMeans++ (red stripes)
clustering.

subsets, and inclusion of WHOIS data. Our classifier was
always a SMO classifier with a linear poly-kernel (exponent
of 1) and a C of 1. We found that using an individual
word vector for each string feature and using the WHOIS
data provided the best result. So far we have been able to
identify malicious URLs successfully with a rate of 99.6%
with good URLs incorrectly classified as malicious at a rate
of 1.0%. The classification time for a given URL is 45 ms
with a standard deviation of 5 ms. Classification at this speed
would be acceptable for an inline, real-time system. Retrieving
WHOIS data in a real-time system needs to be done carefully
– we have a local database of cached WHOIS data. We have
found that using WHOIS information is important as many
attacks utilize newly registered domains. Our method does not
use as many features or the same dataset as [7], however the
numbers are comparable (the best algorithm in Ma achieved
about a 1.5% cumulative error rate).

C. Future work

Our future work includes several approaches to increasing
accuracy. We plan to combine the TCP and HTTP data (we
can correlate based on host). Additionally we will attempt
to identify more ground truth information about each host –
for example whether it is a server or a desktop machine. We
believe this will help us make more accurate clustering deci-



sions and improve accuracy. We have obtained the countries
that correspond to IP addresses, and our initial investigation
indicates that this could be a valuable features, however our
experiments do not yet include this feature. We plan to explore
additional selection techniques for clusters, for example taking
into account cluster similarity when selecting clusters.

V. EXPERT COMMENTARY

The US Department of Defense (DoD) requires successful
balancing between the ability to share information to those
who need it with the responsibility to protect that information
from those that should not have access. Information sharing
includes access among many parties to successfully complete
mission objectives. The inability to access critical information,
as well as the as inappropriate release of critical information,
could put mission success and the lives of our warfighters at
risk. The dichotomy of information sharing drives the access
control methodologies used in many operational systems to-
day.

Automated machine learning systems, such as the one
described in this paper, provide the ability to increase the
granularity and precision of access control without unachiev-
able degrees of manual intervention. These systems show
great promise to improve both the flexibility and security of
operational systems by adapting to factors such as behavior or
need. While the static access control processes in use today are
well known and widely implemented, many of their failings
are well documented. For instance, the extreme difficulty in
appropriately sharing information with unanticipated users, or
reducing the damage that could be done by trusted users who
choose to behave maliciously.

These same abilities are potentially useful in more areas,
such as deciding what information is releasable to others who
normally would not have access to the information processing
capabilities the information resides within. Given that future
missions are more likely to involve many members who
may also be within joint or coalition environments, a more
efficient capability to appropriately share information with
these partners becomes even more critical.

VI. POTENTIAL INFUSION

The DoD clearly recognizes cyber space as an operational
domain in its own right, with cyber warfare missions executing
to protect the national security goals. The DoD Strategy for
Operating in Cyberspace [19] is the first DoD unified strategy
for cyberspace and presents a new way forward for DoD’s
military, intelligence, and business operations. The strategy
identifies five strategic initiatives that define a road map for
the DoD to operate effectively and securely in cyberspace.
Strategic initiative 2 specifically focuses on employing new
defense operation concepts to protect DoD networks and
systems based on the observation that intrusions might not
always be prevented at network boundaries, and that advanced
cyber capabilities need to be developed to support detection
and mitigation of malicious activities performed on internal
DoD networks by insiders.

BBAC contributes to the vision put forth by DoD seniors by
providing increased real-time situational awareness in cyber
space. Incidents such as Cablegate [20] show the impact of
failing to catch data exfiltration attacks while they occur,
leading to situations where checking audit records later is too
late. In addition, advanced persistent threats posed by foreign
nation states, e.g., as described in [21], demonstrate the level of
sophistication outsiders can bring to bear to profit from cyber
espionage. While BBAC is still in an early R&D development
cycle and its prototype capabilities are only at a Technology
Readiness Level of 2, it has shown the promise of significantly
increasing work factors of such actors. The current BBAC
prototype system was successfully shown to a number of
DoD cyber security stake holders at the demonstration floor of
the National Security Agency (NSA) Information Assurance
Symposium (IAS) 2012, and spiked the interest of a number of
potential transition partners. We currently see multiple avenues
for increasing the Technology Readiness Level of BBAC to a
point where it can be used operationally to increase defensive
cyber capabilities within the DoD.

The first opportunity is to infuse BBAC into cyber secu-
rity monitoring performed within the DoD. BBAC’s use of
machine learning is particularly promising in dealing with an
increase in the sophistication of attacks that is expected to oc-
cur as the result of more consistent roll out and deployment of
traditional security processes and protections, e.g., continuous
monitoring and patching using the Secure Content Automation
Protocol (SCAP) [22]. The combination of clustering and
SVMs at multiple data layers promises to identify suspicious
behaviors at scale, with high accuracy, and at an operation
tempo that keeps up with rapidly executing attacks.

The second transition opportunity is centered around cross
domain information sharing within the US or between the US
and its allied partners. In that context, BBAC can be used as
a service to perform behavior-based filtering on cross domain
flows in a scalable and secure way.

VII. LESSONS FOR THE ML COMMUNITY

While security has been a domain where there has been
considerable success for learning (from spam detection to
Google safe browsing), it is crucial to consider how the
learning algorithm will fit into the greater system. In a real
world system, the results of the learning algorithm must be
acted upon by programs or humans and the system must be
retrained periodically with new data. Real world adversaries
will attempt to evade or subvert the algorithm.

For a variety of reasons, it is difficult to get real attack data.
However, merely training on noisy, normal data is insufficient.
Therefore, it is important to work with domain experts that can
help synthesize realistic attack data.

Real world traffic is heterogeneous, so using clustering as a
pre-processing step shows promise for scalability and reducing
false positives.

Ultimately, we believe that learning can have a real impact
on cybersecurity in general and behavior-based access control
in particular. However, we believe that most of the advances



that will result in real impact will be improving the training
(data set creation), feature engineering, and situating the learn-
ing algorithm in the overall system, rather than the learning
algorithm in particular. However, because of this fact, robust
improvements to precision are likely to be most important to
this space as high false positive rates can limit the utility of
these systems.

The BBAC concept and algorithms described in this paper
represent an important step in increasing the sophistication of
cyber defenses to a point where we can discuss the possibilities
of catching and mitigating sophisticated cyber attacks in real-
time. The prototype implementations for analyzing network
flows and web requests have served us well to demonstrate
the concepts to DoD information assurance professionals and
spurred interest from the community by showing concrete
benefits of the system in terms that cyber operators can
understand.

Going forward, we have a number of tasks aimed at improv-
ing the scalability and realism of BBAC. First, we have started
to base the system design on a streaming cloud environment,
using Storm [23] for performing distributed and fault-tolerant
real-time computation. Storm is capable of processing millions
of streaming tuples per second per node, enabling BBAC to
scale up to DoD enterprise monitoring scenarios. Second, we
will continue to engage transition partners for data sets, with a
special focus of getting overlapping data sets. This will enable
us to validate BBAC’s capabilities of analyzing combinations
of event streams from different sources at different system
layers. Finally, we will define services and user interfaces for
managing the training and classification activities to the point
where they can be used by cyber operators. It is our belief
that getting feedback from the hands-on use of the system by
actual operators is critical to its adoption.
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