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1. Introduction 

Autonomous agents have been increasingly used for military operations (e.g., casualty 

extraction, explosive detection and disposals, reconnaissance and surveillance, supply 

transportation, building clearing, and firefighting), search and rescue, transportation safety, space 

exploration, farming, and many other purposes yet to emerge (Barnes and Evans, 2010; 

Greenemeier, 2010; Jones and Schmidlin, 2011; “Morals and the Machine,” 2012; Murphy and  

Burke, 2010; Osborn, 2011; Purdy, 2008; Singer, 2010). As these agents become more 

sophisticated and independent, it is critical for their human counterparts to understand their 

behaviors, the reasoning process behind those behaviors, and the expected outcomes to properly 

calibrate their trust in the systems and make appropriate decisions (de Visser et al., 2014; Lee 

and See, 2004). Indeed, past studies have shown that human operators sometimes question the 

accuracy and effectiveness of agents’ actions due to the operators’ difficulties understanding the 

state/status of the agent (Bitan and Meyer, 2007; Seppelt and Lee, 2007; Stanton et al., 2007) and 

the rationales behind the behaviors (Linegang et al., 2006). These limitations can be substantial 

impediments to overall system and task performance.  

Lee and See (2004) identified three antecedents for trust development in the context of human-

agent interaction: purpose, process, and performance. The purpose factor deals with the degree to 

which the agent-driven automation is being used according to the designer’s intent. For example, 

an operator should understand his/her unmanned vehicle’s current purpose, such as threat 

detection along a route. The process factor deals with the question of whether the algorithm of 

the automated system is appropriate for a given task. For example, in an unmanned vehicle, the 

underlying algorithm could be governing whether the system only monitors a given area or 

actually identifies threats within a certain distance, and the operator should understand the uses 

and limitations of the agent based on the integrity of its process. The performance factor deals 

with system reliability, predictability, and capability. For example, the operator should know that 

the unmanned vehicle tends to be unreliable in a certain terrain environment but can effectively 

communicate with the command center and accurately mark threats with a laser pointer. Lee 

(2012) proposed that to increase system transparency to the operator, the system’s 3Ps (purpose, 

process, and performance), as well as the history of the 3Ps, should be visible to the operator. 

However, the presentation should be in a simplified form (e.g., integrated graphical displays) so 

the operator is not overwhelmed by the additional information he/she needs to process (Cook and 

Smallman, 2008; Neyedli et al., 2011; Tufte, 2001). 
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2. SAT Model 

We propose a model of agent transparency to support operator situation awareness (SA) of the 

mission environment involving the agent, the SA-based Agent Transparency (SAT) (figure 1), 

based on the theory of SA (Endsley, 1995), the Beliefs, Desires, Intentions (BDI) Agent 

Framework (Rao and Georgeff, 1995), Lee’s 3Ps described previously (Lee, 2012), and other 

relevant previous work (Chen and  Barnes, 2012a, 2012b; Chen and  Barnes, 2014; Cring and  

Lenfestey, 2009; Lyons and Havig, in press). According to Endsley (1995), SA is “a state of 

knowledge” of “the state of a dynamic environment” (p. 36). It has three levels, to include (1) 

perception of basic elements, (2) comprehension of those elements’ meaning when taken as a 

whole, and (3) the ability to project the system’s status in the near-term based on that 

comprehension. We have defined agent transparency as the descriptive quality of an interface 

pertaining to its abilities to afford an operator’s comprehension about an intelligent agent’s 

intent, performance, future plans, and reasoning process. From Endsley’s model we borrowed the 

concept of identifying features of the environment necessary for global SA. Endsley’s model 

refers to cognitive requirements for different levels of global SA whereas the SAT model refers 

to transparency requirements to understand the intelligent agent’s task parameters, logic, and 

predicted outcomes. 

 

Figure 1. SA-based Agent Transparency model. 

At the first level of the SAT model, the operator is provided with the basic information about the 

agent’s current state and goals, intentions, and proposed actions. At the second level, the operator 

is provided information about the agent’s reasoning process behind those actions and the 
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constraints/affordances that the agent considers when planning those actions. At the third level, 

the operator is provided with information regarding the agent’s projection of the future state, 

such as predicted consequences, likelihood of success/failure, and any uncertainty associated 

with the aforementioned projections.  

Incorporating all three levels should allow an operator to gain understanding of an agent’s 

reasoning process behind its actions and help the operator make informed decisions as to whether 

he or she should intervene. Additionally, the SAT model differs from Endsley’s (1995) SA 

model in that not all three levels may be absolutely necessary to achieving transparency—they 

are simply different aspects. In Endsley’s model, SA is the cumulative result of the levels while 

transparency may not be. For example, in a time-sensitive situation, the operator may only need 

to know the agent’s proposed actions (level 1) and the projected outcome (level 3) to make a 

sufficiently informed decision. We will now discuss operator trust and workload in autonomous 

systems through the lens of the SAT model. 

3. Implications for Operator Trust and Workload 

Automation reliability strongly influences an operator’s attitude toward the automation, which in 

turn affects their level of trust (Hancock et al., 2011; Lee and See, 2004; Parasuraman and Riley, 

1997; Schaefer et al., in press). This then affects whether the operator will decide to use the 

automation, which is also known as the automation usage decision (AUD) (Beck, et al., 2007). 

Inappropriate levels of trust relative to the automation’s reliability rate result in improper 

automation use. According to Parasuraman and Riley (1997), overtrusting automation results in 

automation misuse, in which an operator may become complacent and overrely on the 

automation. Automation overreliance is damaging to SA and results in accidents as operators 

may fail to monitor the system properly. This leads both to errors of omission (failing to notice a 

problem because the automation did not alert the operator) and commission (following the 

automation when there are indicators that it is incorrect). Lee and See (2004) refer to this as 

overtrust. Automation disuse stems from a lack of trust in the automation, most likely due to a 

high false alarm rate (Parasuraman and Riley, 1997). Proper automation use, then, is made 

possible as a result of awareness and understanding of the automation’s reliability and other 

relevant factors (i.e., transparency) resulting in the development of an appropriate level of trust, 

which Lee and See (2004) refer to as calibrated trust. Including the appropriate level of 

information in the interface should increase agent transparency. This promotes the development 

of proper trust calibration, which results in an appropriate automation usage decision. Ultimately, 

this improves operator performance. This relationship illustrated in figure 2.
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Figure 2. Relationship between transparency and performance. 

The relationship between the automation’s accuracy and the AUD can be analyzed in terms of 

Signal Detection Theory (SDT) (Green and Swets, 1966). A signal can be defined as every time 

the automation makes or executes its own suggestion and is accurate, and the operator either 

accepts that decision or does not opt to override the automation’s execution strategy. When the 

automation is making a correct suggestion, accepting the automation’s suggestion is akin to a hit. 

When the automation is wrong but the operator accepts the suggestion anyway, it is a false 

alarm. Failing to use the automation when it is correct would be a miss while not using the 

automation when it was wrong would be a correct rejection. 

Another way to evaluate the AUD is to consider reliance and compliance. Meyer et al. (in press) 

define reliance and compliance as types of trust in terms of the response to a binary alert. 

Compliance is “the degree to which the binary cue, when it is present, causes the operator to act 

in accordance to the cue” (Meyer, et al., p. 1), while reliance is “the degree to which operators 

dare to avoid taking precautions when the binary indicator does not point to a signal.” 

Essentially, compliance means taking action based on a cue while reliance is not doing anything 

in the absence of an alert.  

In the AUD scenario, reliance occurs when the operator trusts the automation to alert them if 

there is a problem; otherwise they will not take any independent actions or override the 

automation’s suggestions or actions. Compliance occurs when a decision must be made and the 

operator chooses to go along with the automation. We would like to think of reliance and 

compliance in a somewhat novel way, especially since not all instances of whether an operator 

will rely on an agent will be based on alerts. Reliance can be considered as the number of 

sources an operator uses to make a decision—to include the agent—while compliance is whether 

the operator chooses to adhere to the agent’s suggestion or proposed plans. For example, if an 

operator only uses the agent to make decisions, rather than consulting outside sources such as 

intelligence reports, they have high reliance, but if they do not tend to carry out the agent’s 

suggested course of action, they have low compliance. Conversely, when an operator uses 

multiple sources to make decisions it is considered low reliance, but if he/she complies with the 

agent’s input without much modification when it is adopted it is considered high compliance. 

See table 1 for a representation of AUD in terms of usage, trust, SDT, and compliance. Only 

compliance is described because, in this context, automation usage implies relying on the 

automation to provide recommendations and then choosing to comply.
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Table 1. Automation usage decision matrix. 

 

State of 

Automation 
Operator AUD Usage

a
 Trust

b
 SDT

c
 Compliance

d
 

Accurate Accepts Proper use Calibrated trust Hit Appropriate compliance 

Accurate 

Overrides, 

incorrectly 

adjusts 

Disuse Distrust Miss 
Inappropriate  

noncompliance 

Inaccurate 
Overrides, 

correctly adjusts 
Proper disuse Calibrated trust 

Correct 

rejection 

Appropriate  

noncompliance 

Inaccurate Accepts Misuse Overtrust False alarm Inappropriate compliance 

Inaccurate 

Overrides, 

incorrectly 

adjusts 

Error Error Error Erroneous noncompliance 

aParasuraman and Riley, 1997; bLee and See, 2004; cGreen and Swets, 1966; dadapted from Meyer et al., in press. 

 

The goal of using transparent interfaces is to achieve both high rates of proper use when 

automation is accurate and high rates of proper disuse when it is not. Rates of disuse, misuse, and 

errors should be much lower if the interface is transparent. Knowledge of the system’s 

unreliability will shape an operators trust in the agent (Lee and See, 2004). Overtrusting a system 

will increase the likelihood of automation misuse, and undertrusting a system will increase the 

likelihood of automation disuse (Parasuraman and Riley, 1997; Lee and See, 2004). It is 

important to be clear: it is not expected that trust will increase with transparency. For example, 

revealing more information should make a person trust the interface less if the operator 

understands it to be not reliable. Therefore, it is likely that high levels of agent transparency will 

result in appropriate trust calibration (e.g., low levels of trust when the automation is unreliable, 

high levels when it is perfectly reliable, and moderate levels when it is somewhat unreliable), 

which will then result in appropriate AUDs. We will now address how to support agent 

transparency through various user interface design. 

 

4. Supporting Transparency Through User Interface Design 

Automation transparency has been characterized by observability, directability, adaptability, and 

broadening (DePass et al., 2011; Scott et al., 2009; Truxler et al., 2012). Observability refers to a 

shared frame of reference for the automation and operator. Directability refers to allowing the 

operators to modify assumptions and guide problem solving via multiple mechanisms. 

Adaptability refers to supporting incremental commitment of resources and reserving degrees of 

freedom to accommodate changes. Broadening refers to enabling operators to compare multiple 

solutions in a “what if” mode. These four elements should be included in the user interface to 

promote transparency. Increasing the level of transparency, however, requires including more 
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information in an interface. This has implications for operator workload. As the level of 

information increases, operator workload should also increase as the operator will have to read 

and process more visual information than if less had been provided. This can be mitigated, in 

part, by offloading some complex computation by calculating projections of success—a part of 

level 3 SAT—for the operator. Still, Lee (2012) proposed that integrated displays of 

transparency information may further reduce workload.  

4.1 Information Visualization 

Transparency information in the form of both text and images can be integrated into an interface 

through what is known as information visualization, which has been defined as “the use of 

computer-supported, interactive, visual representations of abstract data in order to amplify 

cognition” (Card et al., 1999, p. 7), and its goal is to support user understanding of the presented 

information (Heer et al., 2010). Visualizations may be interpreted from a top-down perspective, 

also known as conceptually driven processing. An individual applies their previous knowledge, 

experiences, and motivations to how they interpret a given information visualization. Previous 

research in understanding the interpretation of instructions and symbols indicates that individuals 

who are familiar with the task of interpreting designs perform much more efficiently than those 

who are unfamiliar with such tasks (Tang et al., 2008). This is also found when examining task 

performance between novice users and experts (Charness, 1981). Charness noticed that the 

difference between novice chess players and experts was that experts were able to remember 

different search strategies and patterns, thereby relying more on predefined schema. A schema is 

an understanding of the general aspects of a given stimulus or situation (D’Andrade, 1995; 

Kellogg, 1995). It is through practice and experience that these schemata are developed, which 

results in the development of a situational mental model. These mental models help us to 

describe and predict the world around us (Rouse and Morris, 1986). Relying on preexisting 

schemata helps operators develop the mental model for the new data represented in the 

information visualization. 

The Ecological Interface Design (EID) strategy minimizes workload by relying on top-down 

processing and existing schemata. EID is used to build interpretation affordances into interfaces, 

eschewing convention in favor of intuition so that information is quickly understood. It achieves 

this by using information visualization to “map such abstract properties—and their tightly 

coupled relationships across system components, processes, and operational goals—to readily 

perceived visual characteristics of interface display elements (e.g., the thickness, angular 

orientation, or color of a line; the size or transparency of an icon)” (Kilgore and Voshell, in 

press, p. 3). The effectiveness of EIDs for human-agent interaction has been investigated in 

several studies (Cummings and Bruni, 2010; Furukawa et al., 2004; Furukawa and Parasuraman, 

2003; Kirlik, 1995; Seppelt and Lee, 2007; Vicente and Rasmussen, 1990; Vicente and 

Rasmussen, 1992; Vicente, 2002; Woods, 1991). In these studies, EIDs have been used to 

graphically portray the capabilities and limitations of the agent, intent of the agent, and quality of  
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plan revisions proposed by the agent. These studies consistently found that EIDs were effective 

in supporting operators’ understanding of agents’ behavior as well as predictions of agents’ 

future behaviors and, thereby, promoting proper operator trust calibration. 

Kosara et al. (2003) noted that one of the distinguishing points of information visualization is 

that it can convey the meaning of data without necessarily relying on an existing mental model. 

At the very fundamental, bottom-up level, Bertin (1983) attempted to create a classification 

structure for the various symbolic elements that result in responses from the visual system, which 

he denoted as marks. Healey et al. (1996) described mark combinations as preattentive cues, 

which are those items that can be cognitively processed prior to attending to a specific stimulus. 

A cue has characteristics that allow it to stand apart from the area around it (Heer et al., 2010; 

Treisman, 1985). Examples of preattentive cues that are relevant to this work are: number, 

length, closure, hue, size, and curvature. Kossyln (1989) developed recommendations for how to 

turn marks into chart data. Marks need to be individualized, unique, and distinguishable. There 

also should be a direct mapping between a mark and an interpretation of a piece of data. Even 

high-density data in combination with simple, clear graphics provide complete and 

understandable information (Guttormsen, 2012).  

Top-down mental models combined with the preattentive cues from bottom-up processing shape 

how an individual assesses and understands his/her situation. In an automated agent’s interface, 

well-designed information visualizations promote transparency and result in properly calibrated 

trust. Both top-down and bottom-up processing can help guide designers as to how particular 

visualizations should be designed, but the SAT model can be used to determine specifically what 

types of visualizations should be incorporated in an agent’s interface to make it more transparent. 

The SAT model delineates several specific pieces of information that can be visualized to 

support each level of understanding. In the following, specific types of information that support 

each level of SAT are listed, and for each type of information, the relevant information 

visualization literature has been reviewed and examples provided.  

4.2 Displaying Uncertainty Information 

Prediction is an important criterion for understanding plans developed by intelligent agents. A 

disconnect between the intent of the operator and the predicted outcome should signal the 

operator to consider alternate plans. To further complicate matters, in complex environments, 

outcomes are rarely deterministic, and operators must assess the relative uncertainty of options as 

well as their expected outcomes. Decisionmaking in uncertainty is difficult, and there is strong 

evidence that humans use a variety of heuristics and rules of thumb to rapidly assess probabilities 

in real world situations that may lead to satisfactory solutions or in other cases to erroneous 

conclusions (Kahneman and Klein, 2009; Wickens and Hollands, 2000). A famous example is 

the so-called Monty Hall (of “Let’s Make a Deal” television show) problem: the contestant picks 

which of three doors (1/3 probability each) has the prize behind it. When the contestant chooses 

a door, Monty (not so helpfully) opens one of the remaining two doors that does not have the 
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prize behind it and gives the contestant a chance to switch. Most often, contestants stay with the 

original choice assuming that the two remaining unopened doors are equally probable. In fact, 

contestants are better served by switching doors because the remaining unchosen door actually 

has a two-thirds probability of success—Monty always opened the non-prize door, thus there is 

still a two-thirds chance for the remaining unchosen door to have the prize behind it. Johnson-

Laird et al. (1999) indicated that the Monty Hall example is not an isolated phenomenon; there 

are a number of “probability illusions” that deceive even well-educated participants. In general, 

they conclude that humans use an incorrect mental model of the processes generating the 

probabilities, tending to give less weight to possible negative outcomes (Johnson-Laird et al., 

2004). The illusions are strong, and it is difficult to convince participants that the normative 

solutions are correct. Probability estimates are also influenced by stereotypes and human biases 

(Tversky and Kahneman, 1974), inability to enumerate possible outcomes (Rottenstreich and 

Tverky, 1997), overconfidence (Fischhoff et al., 1997), context of the information (Moldoveanu 

and Langer, 2002), and emotional responses to possible losses (Barnes et al., 2011).  

Kahneman and Tversky’s (1979) research on Prospect Theory demonstrated that supplying 

humans with veridical probabilities does not overcome cognitive biases. Prospect Theory posits 

two important human errors: (1) extreme probabilities in either direction are misinterpreted (see, 

also, Gonzalez and Wu, 1999) and (2) humans interpret probabilities in terms of their loss/gain 

values. The same information expressed in terms of a loss led to different decisions than its 

complement, probability of success. Decisions framed in terms of loses resulted in risk-seeking 

behaviors; that is, humans avoid taking a sure loss in the present rather than opting for a possible 

more severe loss in the future. Given the same decision framed in terms of success, humans are 

risk-averse and more likely to choose the sure thing rather than a riskier option with a higher 

payoff in the future. A current example is climate change; even with overwhelming evidence of 

change, humans are reluctant to make necessary reforms now (sure loss in terms of money) even 

though the consequences of waiting could be catastrophic (future loss). 

Recent research indicates that loss aversion is a more general phenomenon than Prospect Theory 

because (1) loss aversion affects nonrisky decisions as well as risky ones, (2) neurophysiological 

recordings of loss information in the amygdala suggest emotional reactions to loss, and (3) there 

is evidence that processing is less effective for loss information (Barnes et al., 2011; Nygren, 

1997; Shafir and Tversky, 1995). The misinterpretation of extreme probabilities is exacerbated 

by the scales used. For example, an increase of 0.95 to 0.99 appears slight but an increase of 19:1 

odds to 99:1 odds indicates a five-fold increase even though they represent the exact same 

likelihood. There is evidence that presenting information in terms of frequencies instead of 

numerical probabilities improves Bayesian predictions (Gigerenzer and Hoffrage, 1995); 

however, other researchers have found that the cognitive illusions previously mentioned are not 

improved by frequency interpretations of uncertainty (Griffin and Buehler, 1999).  
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A number of experimenters found evidence that spatial representations and graphic displays of 

uncertainty improved decision accuracy, but not in all cases, and graphic displays did not 

ameliorate loss aversion affects (Barnes et al., 2011; Kirschenbaum and Arruda, 1994). 

Interestingly, Israeli and American researchers found instances when probability assessment 

degraded performance compared with verbal cues for making normative choices related to bets 

about the outcome of basketball games (Erev et al., 1993). However, in a different context,  

Bass et al. (2013) found that graphical uncertainty information was an effective addition to 

aircraft status and predictive information for automated air traffic control. The additional 

information was presented in terms of noise information (mean and standard deviation as 

represented by color-coding and symbology) around key automation strategies (speed and 

heading as represented by projected path overlays) indicating the inherent uncertainty involved 

as limits. This was more effective than just presenting the automated system’s scalar probability 

estimate or presenting the estimate and the logic underlying the estimate. However, Bass et al. 

(2013) also found that while providing information about environmental uncertainty through the 

use of colors and symbology is beneficial, adding projected path information to the display does 

not significantly increase accuracy. In this case, more information was not necessarily better. 

Although the literature is anything but clear as to the best way to represents uncertainty, a 

number of general principles were suggested: 

• Numerical probabilities are confusing and alternative representations of uncertainty such as 

confidence limits or ranges should be considered (Bass et al., 2013; Erev et al., 1993; 

Gigerenzer and Hoffrage, 1995). 

• Graphical representations are easier for humans to process than numerical representations 

in order to gauge relative uncertainty values (Kirschenbaum and Arruda, 1994; Wickens 

and Hollands, 2000). 

• In military situations, outcomes should be presented in terms of mission success instead of 

possibility of mission failure (Barnes et al., 2011; Nygren, 1997; Shafir and Tversky, 

1995). 

• Especially for extreme values and to counteract cognitive biases and illusions, users need 

specialized training to better understand the import of predictions and their uncertainty 

representations (Johnson-Laird et al., 1999; Wickens and Hollands, 2000)   

4.3 User Interface Designs for Agent Transparency 

4.3.1 Level 1 – Basic Information 

The visualization of level 1 information includes the agent’s purpose (the current goal), process 

(the agent’s intent, planning process, and the agent’s current progress), current performance, and 

status. This may include rudimentary details about the agent’s planning process such as what 

routes it may wish to take. A common method of conveying basic planning information involves 
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a top-down view of a map with a route overlay. For example, in FLEX-IT, which is a prototype 

unmanned vehicle control interface, potential paths are displayed using a dashed line on top of a 

map of the operating environment (Calhoun et al., 2012). These dashed lines become solid once 

the plan has been confirmed by the operator.  

4.3.2 Level 2 – Rationale 

While level 1information describes the what, level 2 information conveys the why. The 

visualization of level 2 information is based on a constraint-driven reasoning process. This can 

be conveyed through a representation of resource limitations, constraints/affordances 

(environmental, situational, vehicular, etc.), feasibility, risk, trade-offs between alternatives, and 

history of past performance. 

The use of lines overlaid on a map is often beneficial when considering spatial relationships and 

restrictions, such as no-fly zones and impassable terrain features, but is less useful for abstract 

constraint information related to the planning process (Kilgore and Voshell, in press). For 

example, for an interface supporting supervisory control of multiple unmanned vehicles, Kilgore 

and Voshell suggested representing time-to-target information across several different vehicles 

through icon size, where the vehicles that will arrive the fastest to the target location are the 

largest relative to the other icons in the set. Kilgore and Voshell also gave the example of where 

mission fit for the task can be represented by opacity (see figure 3). These interface elements 

allow the operator to select the appropriate assets and deploy them in a more timely fashion 

because the user can quickly identify which unmanned vehicles are appropriately equipped and 

can be most quickly be summoned without having to gather the various types of information 

from multiple sources and locations. An operator may understand at a glance why the agent 

suggested sending one vehicle over another that was closer to the target. Without the added 

information represented through icon opacity, the operator would not have understood that the 

obvious choice—the closest vehicle—did not have the capabilities needed for the task. 

 

Figure 3. Time to target and capabilities can be represented through icon size and opacity. 

(Reprinted with permission from Kilgore and Voshell [in press]).  
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Resource limitations affecting the agent’s decisionmaking process can be visualized through an 

icon array. This will help an operator understand why certain assets were chosen by the agent. 

For fuel management, Kilgore and Voshell (in press) suggested using an icon array that 

represents the total fuel capabilities with different blocks and color-shading cues representing 

how different aspects of the plan impact fuel levels. In their example, the sum of all of the 

squares in the array represents the total amount of fuel capacity while different color sets of 

blocks represent the amount of fuel required for different plans in chronological order. Fuel 

reserves are represented by gray blocks and a bright red line dictates the directive-driven refuel 

line. When new plans are being considered, the fuel required may be represented within the array 

as a new set of highlighted blocks. If the fuel consumed by the new plan forces resource usage 

below the refuel line, this will be conveyed to the operator by turning the projected fuel blocks 

below that bright red line. This would allow operators to assess the impact of the agent’s 

suggested plan in terms of resource usage. 

4.3.3 Level 3 – Outcomes 

The visualization of level 3 information focuses on the projection to future states (e.g., expected 

outcomes, probabilities of success with a confidence interval) as well as limitations (e.g., 

reliability, likelihood of error, history of past performance). Level 3 information is essential for 

improving human-agent teaming outcomes. In domains like autonomous-system management, 

the environmental context strongly affects the automation’s accuracy. For example, Neyedli  

et al. (2009) found that a transparent interface that revealed automation reliability resulted in 

more appropriate reliance. Therefore, when appropriate, information about dynamic system 

confidence and the contextual nature of automation reliability should be conveyed to the operator 

(Atoyan et al., 2006; Dong and Hayes, 2012; McGuirl and Sarter, 2006; Seong and Bisantz, 

2008). Cummings and Bruni (2010) suggested caution when using visualization tools for mixed-

initiative multivariate planning tasks, especially when cost functions vary greatly in their 

sensitivity to changes in the variables of the plan. Operators’ decisionmaking may be prone to 

errors when dealing with more-sensitive functions due to their difficulty in determining the true 

costs of different plan options. Proper uses of information visualization techniques can help 

operators make sense of information and thereby enhance their SA of their mission/tasking 

environments (Robertson et al., 2009).  

Brust-Renck et al. (2013) described multiple different ways risk can be represented depending on 

the context. Similar to EID, their method of visualization was based on fuzzy-trace theory, in 

which communicating the gist of the message rather than the exact numbers is beneficial for 

communicating risks to patients in the medical domain. For example, shaded maps can be used 

to represent level of risk across a geospatial area; pairs of bar graphs can represent the relative 

differences between two magnitudes and show incremental benefit (Brust-Renck et al., 2013).  
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Rather than traditional, number-based representations of automation reliability, Rovira et al. (in 

press) explored the utility of graphical representations. The contextual information of interest 

included “asset travel time, asset exposure to threats and weather, and target coverage” (Rovira 

et al., p. 3). Reliability for each contextual factor was influenced by aspects such as sensory 

quality as affected by environmental conditions and age of information (e.g., older information 

degrades reliability). Rather than providing a numerical value for each regarding reliability of 

that contextual information, colors were used where green indicated a fully reliable source, 

yellow indicated a semi-reliable source, and red indicated deteriorated reliability. Rovira et al.’s 

study required that participants rely on both the contextual information and information provided 

by a scheduler display. They found that, in high task demand conditions, those using the 

contextual automated decision aid had less of a performance decrement than those who used the 

automated decision aid without it. They believed that these results suggested that, in the cases in 

which perfect automation reliability is unachievable, providing contextual information regarding 

the automation algorithm’s reliability improved decisionmaking.  

A unique approach to displaying multiple types of risk information in one unique icon is a 

Dynamic ICON (DICON) (deVisser et al., 2014). De Visser et al. created a decision support 

system that uses multiple panels, colors, positions, and the various combinations of these 

variables in their DICON design. These panels represent various stages of perceived 

trustworthiness and actual trustworthiness to inform the user of actual calibrated trust. The 

DICON packed five levels of trust evidence into one design to provide one simple “at a glance” 

representation of uncertainty and trust. These five levels include the current support and known 

risk, current best assumption and net risk, disagreement about risk, incompleteness of 

information about risk, and quality of evidence. Colors were used to represent various levels of 

trust from green (trust), black (miscalibration), and red (resolution). This approach has two 

potential drawbacks. First, there are too many potential combinations of variables to remember 

and retrieve quickly from memory, thus requiring a steep learning curve. Second, two or more 

configurations may be nearly identical except for one small change in one of the variables, 

lending itself to confusion or an incorrect assessment of the DICON.  

This section focused on how transparency can be incorporated into interfaces by considering the 

different levels of the SAT Model. The following sections present applied examples of 

transparency display design in human-robot interaction contexts. The studies are part of projects 

under the Department of Defense Autonomy Research Pilot Initiative.  
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5. Example: Autonomous Squad Member 

As technology continues to develop in support of military operations, there is a research push 

toward investigation of unmanned systems and the relationship of human-agent teams (Barnes 

and Evans, 2010). There are several efforts throughout the armed forces, such as the U.S. Army’s 

Robotics Collaborative Technology Alliance (U.S. Army Research Laboratory, 2011) and the 

U.S. Office of Naval Research’s Maneuver Thrust Program (2013), that are aimed at human-

agent collaboration. The Autonomous Squad Member (ASM) project aims to increase agent 

participation in dismounted soldier reconnaissance efforts by placing emphasis on a complex 

scenario where an agent suddenly has to assess the situation (i.e., a firefight has broken out), 

reason, and act accordingly. The concept of supporting complex dynamic missions is consistent 

with the Unmanned Ground Systems Roadmap, which highlighted the need for autonomous 

systems in combat logistic patrols, support for dismounts, and reconnaissance (Robotic Systems 

Joint Program Office, 2012).  

The research approach of the ASM project begins with semantic understanding, which takes the 

perceptual data in the environment and develops it into an organized format that the agent can 

use to comprehend and anticipate the world around it. Following this, the agent needs to weigh 

the environmental and vehicular constraints and convey that to the operator. These constraints 

are generated from a goal reasoning framework called Goal Driven Autonomy (GDA), which 

takes the actions of an agent needed to navigate and generates a series of states (where it is 

currently and where it wants to go), actions (the various activities that can be used to progress 

toward the goal state), and events that occur in the environment and the system needs to adjust to 

(Aha et al., 2011). The events generated by GDA are then passed to the transparency module, 

where the ASM project implements the tenants of the SAT. By examining each level 

individually, informational content can be created to support the right amount of information at 

the appropriate time.  

5.1 SAT Level 1 

In level 1, the ASM is trying to convey what is going on currently and what it is trying to achieve 

by accomplishing its goals (i.e., task decomposition). In this state, the ASM is receiving 

information from the operator, interpreting its meaning, and developing a series of actions to 

reach the end goal state, as well as accomplishing any goals that occur while reaching the end 

goal. The information requirements of task decomposition also coincide with Endsley’s (1995) 

model for stage 1 SA, as it is the need to understand a list of proposed actions that the user 

intends to accomplish. Task decomposition content also matches with Lee’s (2012) 3Ps: (1) for 

purpose, it identifies the goals and objectives that need to be accomplished, (2) for process, the  
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ASM demonstrates planning by laying out the desired objectives and execution by confirming 

that these plans are feasible given its technical capabilities, and (3) the ASM will be assessing its 

performance in understanding the operator’s instructions. 

Another example where SAT level 1 is used is during Task Sequence Identification (TSI), in 

which the ASM provides the Soldier with a current status of task completion in terms of mission 

goals. This can occur concurrently with other activities of the squad, such as moving to the next 

reconnaissance point. During the TSI, the operator assesses whether the ASM is acting in 

accordance to intent for the ASM. If this is true, the function of the operator is purely 

monitoring. However, if there are discrepancies, they can be identified quickly and efficiently. It 

will also serve as a benchmark for the route selection/mission plan that the ASM developed. 

5.2 SAT Level 2 

Using SAT level 2, the user interface needs to show the reasoning process of the ASM as well as 

explain the constraints that exist for the environment. In essence, the ASM needs to reason about 

its process of reasoning. This is also known as the ASM’s metacognition, the concept of which 

represents a person’s understanding of what thought processes are going on within oneself 

(Flavell, 1976). In this context, metacognition refers to where the ASM provides input as to what 

types of information it is missing in order for the ASM to perform at its optimal level in a given 

state. For example, if the ASM wanted to traverse an area, it would need to first determine where 

the potential areas are to protect it from enemy fire. If, due to the nature of the terrain or the stream 

of information received, it did not have that information, it would need to notify the operator.  

One way to notify is to incorporate simple graphical designs called pictograms, simple drawings 

used to convey a specific action or activity that an end user must take. Dowse et al. (2010) found 

that visuals that were simple, had a clear focus, and reflected familiar life experiences were 

successful at conveying information. The authors argued that pictograms should be used only to 

clarify a process or convey a complete message. Therefore, the development of graphical 

elements to support is being explored from both a separate representations for variables as well 

as integrated visualizations. 

In the current research, the ASM user interface expresses environmental and vehicular 

information through one of three types of information: needs, hazards, and affordances. Each one 

of these types of information has a different icon style that is overlaid onto a Google Earth view 

of potential navigation routes. For example, a blue icon with a cell tower signifies that the ASM 

is in need of more information about signal strength. It may be the case that the ASM needs 

continued connectivity to continue functioning and wants confirmation from the operator that the 

signal will be present.  

The hazard icon warns the operator that if the ASM travels to a particular area, there is a possible 

stressor on the ASM state. The ASM may get overheated if it travels across an area due to rough 

terrain. An affordance is the opposite of a hazard, so that it helps improve the performance of the 
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ASM. A green eye icon indicates that there are no restrictions to the line of sight for the ASM. 

This is important since one of the primary methods of information gathering for the ASM is 

visual stimuli. 

5.3 SAT Level 3 

SAT level 3 is leveraged when the ASM begins to help the operator to understand what might 

happen given potential limitations. The ASM assists the operator by providing a visual display 

demonstrating the existing data trends so far, an analysis of resource expenditure rates, and an 

understanding based on what is known about the remainder of the mission. The ASM must 

analyze all the data it has collected up to this point and use that data to make predictions. It can 

also use previous scenario outcomes to increase its understanding if that knowledge is available. 

By consistently increasing the size of its reference model (i.e., learning from behavior) it can 

produce more informed results. 

Lomas and Chevalier (2012) developed a projection system where a robotic entity was able to 

respond to questions asked to it in terms of understandable reasoning/projections of future state. 

Even though the projections were rooted in mathematical models, it was important to provide 

users with focused answers to facilitate better communication as to not just what the information 

was but why the entity believed it to be so. It is not sufficient to provide only information to the 

user; why this information is valuable and how this will change the final outcome is also of 

important. It is this that helps raise the SAT model beyond traditional user-centered design (a 

tool for someone to use) versus an intelligent agent to collaborate with. 

In the development of level 3, there is a focus on two primary aspects: projection and 

uncertainty. For the projection image design, the work of Smallman and Cook (2013) served as 

the foundation. This work incorporates the idea of a trendicon, which is an integrated variable 

that represents more than one quantity using basic perceptual principles; for example, using 

triangles to show increasing and decreasing quantities and color to code overall system  

state/health. With regard to uncertainty visualization, several principles are developed from the 

work of MacEachren et al. (2012). These include more opacity to represent uncertainty, 

increased distance from center to represent uncertainty, smaller size to represent uncertainty, and 

icon disorganization to represent uncertainty. Through the combination of these two factors, the 

goal is to help the operator understand how confident the agent is related to information about its 

future state. 
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6. Example: Intelligent Multi-UxV Planner With Adaptive Collaborative 

/Control Technologies 

Future capabilities of unmanned systems include reducing the ratio of operators to vehicles. 

Rather than manually controlling unmanned vehicles, this will require a single operator to 

assume a supervisory role over multiple heterogeneous unmanned vehicles (UxVs). Successful 

implementation of such a strategy involves increased agility, workload management, and 

optimized human-automation teaming. This may be achieved through advanced automation 

capabilities involving cooperative control planning algorithms (CCAs), machine learning (ML), 

and advanced intelligent agents (IAs). The goal of the Intelligent Multi-UxV Planner with 

Adaptive Collaborative/Control Technologies (IMPACT) project is to develop a prototype 

interface for supervisory control of UxVs that incorporates these systems.  

Given increasing amounts of supervisory control supported by IMPACT, workload is inherently 

inflated. To address this, an effective adaptable interface through which operator-automation 

teams interact should use the human delegation approach (Calhoun et al., 2012). The human 

delegation approach incorporates natural language instructions (e.g., simple, spoken commands) 

provided by the supervisor to subordinates based on shared mental models (Calhoun et al., 

2012). The human delegation approach minimizes workload as it is an easy to use, quick, and 

natural mode of interaction for the operator. IMPACT facilitates the human delegation approach 

in human-autonomy interaction by incorporating a Playbook system (Calhoun et al., 2012). 

Playbook was developed by Miller et al. (2005) and encompasses a set of templates for common, 

preplanned yet easily modifiable maneuvers, known as plays, from a shared database that can be 

quickly activated (“called”) using short commands that are often verbal (Miller et al., 2005; 

Calhoun et al., 2012). In IMPACT, the system may suggest a play or the operator may call one. 

Once a play has been called, the CCA, ML, and IA work together to develop a plan. When 

making decisions about whether to use the plan generated by the autonomy, the operator needs to 

understand the decisionmaking process executed by these advanced, interconnected systems 

(Rovira et al., in press). Increased transparency will help operators better understand the 

capabilities of the system, thus contributing to more-informed, better decisionmaking, which 

then results in higher rates of proper automation use based on properly calibrated trust, 

culminating in overall improved performance (Parasuraman and Riley, 1997; Lee and See, 2004; 

Beck et al., 2007; Rovira et al., in press). The SAT model can be used to provide guidance as to 

what sort of information should be visualized in the IMPACT interface to support the operator’s 

understanding of how the different autonomous systems generated a given plan.  
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6.1 SAT Level 1 

Recall that level 1 information pertains to basic details about the plan, such as goals, intent, and 

planning. For IMPACT, pertinent level 1 information includes the current system status, the 

assets’ health, the current goal of the play, the assets’ role in the current plan, and basic route 

planning information. For example, system status information may include the relevant maps for 

the operational area, sensor feed information, weather reports, alerts, and threat conditions 

(Kilgore and Voshell, in press). When an automated system is making decisions and is 

transparent, accurate system status information must be present so that operators can check the 

factors related to the plan development to the known system state to confirm whether the 

automation is accurate (Rovira et al., in press). For example, to visualize threat condition, a 

shaded map, as suggested by Brust-Renck et al. (2013), can be used as an overlay on top of the 

overhead map or in a separate window solely for conveying threat information when pertinent. 

As another example, vehicle health information should include information pertaining to 

available fuel, current speed, altitude, and current time on station (Kilgore and Voshell, in press). 

One strategy for conveying this information to the operator is representational analysis, where 

different variables and representations are identified, based on the task hierarchy, and placed into 

context, i.e., displayed relative to data limits or ranges (Zhang and Norman, 1994). Examples 

include using a tachometer with a red area for maximum revolutions per minute for speed or 

remaining fuel out of total fuel capacity (Kilgore and Voshell, in press). 

6.2 SAT Level 2 

Level 2 information represents the rationale behind the currently selected plan. In IMPACT, this 

takes the form of delivering information about constraints/affordances within the context of the 

plan, specifically regarding asset capabilities, available resources, and environmental  

constraints/affordances.  

Regarding asset capabilities, information should be present about the vehicle’s speed, agility, 

rate of fuel consumption, range based on fuel, sensor capabilities, autonomous behavior 

capabilities, communications latencies, and expected communications drop-out incidence 

(Kilgore and Voshell, in press). Rather than solely using a drill-down menu to display specific 

values, which increase operator workload as they need to be held in memory as the menu will 

disappear once the operator moves off of it, capabilities in reference to the plan can be visually 

displayed in terms of suitability through relative icon size where the larger asset icons indicate 

better fit for achieving the current plan based on asset-specific capabilities (Kilgore and Voshell, 

in press).  

In the event of dropped communications between the operator and the asset, the system must 

visualize where the communications were lost (a large red X on the vehicle route, perhaps with a 

small label that states “comms lost” and lists the time), where the asset was going (a dashed line 

with a similar red X on the destination), where it was programmed to go when communications  
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were lost (a new dashed line with an arrow to indicate that this is the new route), and where it 

will reroute to once communications are restored (a solid circle to represent the new destination 

connected to the new dashed line) (Kilgore and Voshell, in press).  

Available resources, such as fuel, should be visualized within the context of the plan. This will 

help an operator understand why certain assets were chosen by the automated systems. For fuel 

management, Kilgore and Voshell (in press) suggested using an icon array that represents the 

total fuel capabilities, with different blocks and color-shading cues to represent how different 

aspects of the plan impact fuel levels.  

6.3 SAT Level 3 

Level 3 information provides the operator an understanding of the expected outcomes. In 

IMPACT, this includes time to complete objectives, limitations, and probability of success for 

achieving the play’s goals. 

A timeline view with each asset on its own line with a sized-based representation of the time 

required for completing given plans and subtasks within plans could be used to represent the 

amount of time to complete objectives. Such a display would also allow for a visual confirmation 

of asset availability in the context of all plans and allow an operator to determine whether the 

chosen plan fits the needs of mission parameters.  

The limitations and reliability of the automated system must be made apparent to the operator so 

that he/she can make an informed judgment as whether to accept the automation’s suggestion  

(e.g., if the last weather report is very old, it may no longer be accurate and render some plan 

options outdated). As Rovira et al. (in press) suggested, this can be achieved by a color-coded list 

of reliability for the different factors’ the system uses to generate its plans (i.e., the factors 

constraining the automation’s decision discussed in level 2). If given a variety of plan options, 

understanding the reliability of the factors influencing the automation’s decision helps the 

operator project the likelihood of mission success. Confidence data can also be tied to the icons 

on the map, such as where wide margins around projected paths indicate execution uncertainty 

(de Visser et al., 2014). 

 

7. Summary 

In this report, we have provided a model and framework as a foundation for transparent 

interfaces via our SAT model. We have also provided examples of transparent interfaces that are 

consistent with SAT model principles as well as applied examples. It is suggested that the 

research community focus future efforts on empirical comparisons of effective transparent 

interface designs to compile guidelines for designers of future autonomous systems. The effects 
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of display transparency should also be investigated in multiple domains to assess whether results 

are context-specific. The additional information provided by transparent displays may also 

introduce additional workload to the user, so investigations as to the effects of transparent 

displays on workload should also be performed. 
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