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Abstract 

This research develops an Aviation Distance Estimation and Route Planning Tool 

(ADERPT) that finds least-cost aircraft routing from a designated departure airfield to an 

arrival airfield for the purposes of mission cost estimation and pre-mission planning.  The 

model network consists of 43 Army airfields and 426 airports in the Contiguous United 

States (CONUS) with Department of Defense contract fuel.  Using the A-Star algorithm 

and considering aircraft fuel range, ground speed, and refueling time, we determine the 

refuel locations that result in the most efficient route.  Considering the use of both 

distance and travel time, we compare our model’s performance with Dijkstra’s algorithm, 

a greedy heuristic, and existing cost-estimation techniques.  The ADERPT also examines 

the use of a grid-based network for obstacle avoidance in route planning and provides a 

proof of concept for its potential use as a mission planning tool.   
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AIRCRAFT ROUTE OPTIMIZATION USING THE  

A-STAR ALGORITHM  

 

I. Introduction 

Background 

 Army aviation assets have been in high demand over the last ten years.  Operation 

Iraqi Freedom, New Dawn, Enduring Freedom, and other operations have stretched the 

capabilities of rotary-wing aircraft to the maximum.  Due to the need for increased 

helicopters in combat environments, deployed Combat Aviation Brigades (CABs) are 

often directed to leave aircraft in-theater as Stay-Behind Equipment (SBE) when they 

redeploy to their home station.  This creates the added problem of having to replenish the 

redeploying unit with aircraft at home-station for training, mission support, and real-

world missions.   

 The United States Army Forces Command (FORSCOM) is responsible for 

determining how this replenishment of aircraft occurs, selecting aircraft from other units 

to be transferred to the redeploying unit.  The transferred aircraft are flown to the new 

duty station by either the losing or gaining unit, with FORSCOM funding the cost of the 

aircraft movement.  In the fiscally-constrained environment of today’s military, the 

FORSCOM G-4 Aircraft Distribution section and G3/5/7 Aviation Division are required 

to provide estimates for the cost of all aircraft transfers. 

 Current cost estimate techniques use an approximated flight time between the 

losing and gaining duty station.  The approximated flight time is based on straight line 

distance and is multiplied by a “cost factor” to produce a cost estimate for the flight.  The 

cost factor incorporates fuel cost, as well as parts and consumables costs.  The 
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FORSCOM G-4 Aircraft Distribution section is responsible for generating aircrew TDY 

cost estimates for all aircraft movements.  This is currently done by comparing future 

required aircraft movements to completed movements and their associated duration and 

Temporary Duty (TDY) costs. 

Problem Statement 

This research attempts to improve current cost estimation techniques by 

developing an Aviation Distance Estimation and Route Planning Tool (ADERPT) that 

incorporates the use of the A-Star routing algorithm to find an optimum route between 

the losing and gaining airfield.  The algorithm considers aircraft constraints (maximum 

distance before refueling), aviator constraints (maximum flight hours per day), and 

potential obstacles to the flight path (Restricted Operating Zones).  The model includes 

all Contiguous United States (CONUS) Army Airfields and all CONUS  Defense 

Logistics Agency (DLA) approved contract fuel locations (DLA, 2013). 

Scope and Contribution 

The ADERPT provides an expedient method of producing accurate flight 

distances and travel times between all CONUS Army Airfields and contract fuel 

locations.  The route optimization distance and travel time calculations can be used to 

estimate fuel and TDY costs.  The ADERPT runs on software common to DOD computer 

systems (Microsoft Excel) and processing times are short (less than one second).  The 

route optimization tool could also provide value to aircrews and air mission planners.  

The program quickly identifies efficient fuel stops between a departure and arrival 

location, which can be used to assist with cross-country flight planning. 
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Overview 

Chapter 2 of this document will provide a review of existing literature related to 

routing problems and use of the A-Star algorithm.  Chapter 3 outlines the proposed 

methodology for finding optimum routes for aircraft movement cost estimation and pre-

mission planning. Chapter 4 provides analysis and results of the implementation of the 

algorithm, and compares it to other approaches to the routing problem.  Chapter 5 

provides a summary of this research, discusses the limitations of the model, and proposes 

recommendations for future research. 
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II. Literature Review 

Path-finding Applications 

The process of path-finding over a network develops a route from a starting node 

to a target node that minimizes “cost” while avoiding obstacles.  How cost is defined can 

vary depending on the goal of the path-finder.  Cost could be distance, time, fuel 

expended, or a combination of any number of factors that we seek to minimize by 

planning an efficient route.   

Path-finding algorithms can also be used to find optimum or near optimum routes 

between multiple points while considering obstacles and constraints.  The application of 

these algorithms is very diverse.  Vehicle GPS navigation devices make use of such 

algorithms to provide drivers with efficient directions (Jenkins 2007).  Military combat 

simulations such as the Close Combat Tactical Trainer use path-finding algorithms to 

move Soldiers and vehicles across a simulated battle space (Beeker 2004).  Finally, path-

finding algorithms are used for Artificial Intelligence (AI) in strategy video games, to 

smartly move computer-controlled elements through their environments (Stout 1997). 

Data and Notation 

 Path-finding algorithms operate using a mathematical “graph” which is simply the 

set of nodes (sometimes referred to as vertices) that exist in the search space, or area in 

which we are examining.  A graph could be represented as a grid, as shown in Figure 1, 

where each cell is a node and the arcs are implied to connect any node i  to node j  such 

that j  is adjacent to i .  Figure 2 shows another example of a graph in which cities are 

represented as node and the roads connecting cities are arcs which are assigned weights 
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based on the distance, time, fuel cost, etc. between the two nodes.  The weight of an arc 

could also be calculated using combinations multiple units of measure.  The arcs in 

Figure 1 are unweighted and represented by the lines connecting cells (for simplicity, 

only the arcs surrounding the start node are shown).  The arcs in Figure 2 are shown as 

lines connecting the cities and are weighted by distance (miles) and time. 

 
Figure 1.  Example of a graph composed of grid cells.  The green cell represents the 

start node, and red cell represents the target node. 

 

 
Figure 2.  Network representing the transportation/road system in Southeastern 

Texas (taken from http://origin-ars.els-cdn.com/content/image/1-s2.0-

S0360835213001459-gr5.jpg). 
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There are numerous algorithms used in path-finding.  We first discuss, in detail, 

two common algorithms:  Dijkstra’s Shortest Path Algorithm, and the A-Star Algorithm, 

and then discuss several applications of these algorithms. 

Dijkstra’s Shortest Path Algorithm 

 Dijkstra’s algorithm is one of the earliest algorithms for finding an optimum path 

from a start node to a target node.  Dijkstra’s algorithm works by separating nodes into 

two lists: those that have been visited, and those that have not been visited (Dijkstra 

1959).  The algorithm begins at the starting node with all nodes on the unvisited list and, 

iteratively, the node with the lowest cost path to it is removed from the list and placed on 

the visited list.  The lowest cost to all nodes is initially set as infinite to indicate that the 

node has not been visited and to allow the first path to reach the node to become, at least 

temporarily, the best route to that node.  The first node placed on the visited list is the 

starting node (usually with a cost of zero).  The algorithm then examines all nodes 

reachable from the starting node (referred to as “neighbor nodes”) and selects the lowest 

cost option as the current node.  The current node is then moved to the visited list, it’s 

neighbor nodes are evaluated and assigned costs.  The algorithm then selects the 

unvisited node with the lowest cost as the current node.  As the number of visited nodes 

expands, the forward-most edge of the explored space is referred to as the frontier.   

Exploration continues until the target node is placed on the visited list, at which 

point the algorithm ends.  Since the algorithm always examines the lowest cost path first, 

a more efficient route to the target node cannot exist (Beeker 2004).  Dijkstra’s algorithm 

assigns a “pointer” to each node which indicates the “parent” node that resulted in the 
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lowest cost route to the node.  Once the algorithm arrives at the target node, we can use 

the pointers to retrace back to the starting node along the optimal path. 

 We simplify Figure 2 into a 7N   node network shown in Figure 3, where each 

node represents a city and the value on each arc represents miles.  Using this network, we 

demonstrate the processing of Dijkstra’s algorithm using Dallas as the start node and San 

Antonio as the target node. 

 
Figure 3.  Simplified road network used in example of Dijkstra’s algorithm (arc 

costs are shown in miles). 

 

 Table 1 shows the 7 iterations required to add the target node to the visited list.  

The algorithm begins at iteration 1 with the set of visited nodes empty and selects node 1 

as the current node since it has the lowest cost (0).  Iteration 2 evaluates the two neighbor 

nodes that can be reached from node 1 (nodes 2 and 4), selects the node with the lowest 

cost (node 2), and records the parent ID for the route (node 1).  The algorithm iterates 

until iteration 7 in which the goal node is designated as the current node.  We then use the 

parent ID “pointers” to retrace the path from the goal node to the start node and 

determine the least cost path to be the path travelling through nodes 7, 6, 4, and 1. 
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Table 1.  Example of the iterations of Dijkstra’s algorithm applied to the network 

shown in Figure 3. 

 
 

The computational complexity of the original Dijkstra’s algorithm is 
2

( )O N  

(Cormen, Leiserson, and Rivest 1990).  As the number of nodes N  increases, Dijkstra’s 

algorithm proves to be less efficient than other algorithms.  Dijkstra’s algorithm is not a 

directed algorithm, meaning it does not give preference to nodes that move closer to the 

target node (Rabin 2002).  Dijkstra’s simply searches outward from the starting node, 

finding the least cost route to each node until the target node is found.   Figure 4 shows 

that this search method explores areas of the search space that are unlikely to produce 

optimal solutions.  With search spaces and more complex path-finding problems, this can 

result in long processing times. 

 
Figure 4.  Three progressive stages of Dijkstra’s algorithm using a grid-based graph 

A-Star Algorithm. 

 

 The A-Star algorithm was first presented by Hart, Nilssen, and Raphael in 1968 as 

the combination of a mathematical and heuristic approach to find a least cost path from a 

Iteration Unvisited Visited Current Neighbors 1 2 3 4 5 6 7

1 {1,2,3,4,5,6,7} {} (0, -) (∞, -) (∞, -) (∞, -) (∞, -) (∞, -) (∞, -)

2 {2,3,4,5,6,7} {1} 1 {2,4} (33, 1) (∞, -) (95, 1) (∞, -) (∞, -) (∞, -)

3 {3,4,5,6,7} {1,2} 2 {3,4} (188, 2) (95, 1) (∞, -) (∞, -) (∞, -)

4 {3,5,6,7} {1,2,4} 4 {3,6} (188, 2) (∞, -) (195, 4) (∞, -)

5 {5,6,7} {1,2,3,4} 3 {5,6} (293, 3) (195, 4) (∞, -)

6 {5,7} {1,2,3,4,6} 6 {5,7} (293, 3) (272, 6)

7 {5} {1,2,3,4,6,7} 7

Node                                                                                                                           

(distance, parent node)
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starting node to a target node (Hart, et al. 1968).  A-Star builds upon the approach of 

Dijkstra’s algorithm, but incorporates a heuristic to direct the search toward the target 

node.   

The combination of the mathematical and heuristic approaches proves significant.   

While heuristics can generally not guarantee a lowest cost path, Dijkstra’s algorithm can.  

And while Dijkstra’s algorithm expands out from the starting node in all directions, a 

heuristic focuses the search and can converge on the target node much quicker.  The 

combination results in the ability of the A-Star algorithm to guarantee a least cost path, if 

one exists, and finds it searching the smallest number of nodes possible (Hart, et al. 

1968). 

 If ( )f n  is the lowest cost path to the target node through node n : 

 ( ) ( ) (n)f n g n h   (1) 

Where 

n  is the current node, 

( )g n  is the actual cost of the path from the starting node to the current node, and 

( )h n  is the actual cost of the path from the current node to the target node. 

The A-Star algorithm calculates an estimate of ( )f n , denoted '( )f n  based on 

estimated costs for ( )g n  and ( )h n , using the following equation: 

 '( ) '( ) '( )f n g n h n   (2) 

where: 

'( )g n  is the estimated cost of the path from the starting node to the current node, and 

'( )h n  is the estimated cost of the path from the current node to the target node. 
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The algorithm evaluates nodes within the search space to minimize ( )f n .  In this 

evaluation function ( )g n  by itself is equivalent to performing Dijkstra’s algorithm.  We 

would begin our undirected search at the starting node and expand out to nodes that 

minimize path cost, but do not necessarily move us closer to the target node.  It is the 

addition of the heuristic component, ( )h n , that helps direct the search toward the target 

node.  The heuristic serves as an estimation function, estimating the cost for reaching the 

target from each node that is evaluated (Beeker 2004).    

The term “heuristic” is derived from the Greek word “heuriskein,” which means 

“to discover” (Zanakis and Evans 1981).  Operations Researchers have long used 

heuristic procedures to reduce the search space in problem-solving activities (Tonge, 

1961).  Heuristics effectively seek to find good solutions to difficult problems in a 

reasonable amount of computational time.  There are many situations when the 

implementation of a heuristic is useful.  One such situation is when a heuristic improves 

the performance of an optimizer by providing starting solutions or when the heuristic 

guides the search thereby reducing the number of candidate solutions (Zanakis and Evans 

1981).  Hart, Nilsson, and Raphael (1968) exploit this benefit by integrating a heuristic 

function into their algorithm.  Figure 5 shows a comparative study done by Sathyaraj, et 

al. (2008) of the computational time of Dijkstra’s algorithm and the A-Star algorithm as 

the number of nodes in a network increase.   
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Figure 5.  Computation time comparison of A-Star vs. Dijkstra’s algorithm 

(Sathyaraj, et al. 2008). 

 

A-Star does not dictate the type of heuristic to use in the algorithm.  Instead, the 

heuristic can be formulated and tailored to the needs of the user.  An important property 

of the heuristic is admissibility.  A heuristic is considered “admissible” if the estimated 

cost of reaching the target node is always less than the actual cost, for all nodes.  That is 

if '( ) ( )h n h n n N    (Beeker 2004).  An A-Star algorithm containing an admissible 

heuristic guarantees an optimum path, if one exists, while an inadmissible heuristic does 

not. 

The processing time of the A-Star algorithm is significantly influenced by the 

type of heuristic used in the evaluation function (Soltani, et al. 2003).  A gross 

underestimation of ( )h n  causes the algorithm to search a broader space, resulting in 

longer processing times.  A heuristic that overestimates ( )h n  does not guarantee an 

optimal solution, but can provide a “good” solution quickly (Patel 2011).   

Two commonly used heuristics for '( )h n , Euclidean distance and Manhattan 

distance, illustrate the role the heuristic plays in the search.  Euclidean distance uses the 

Pythagorean Theorem to generate a “straight line distance” between two nodes.  It can be 
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applied to our city/road network to generate a cost estimate from node 2 to the target 

node as shown in Figure 6(b).  Euclidean distance produces an admissible heuristic since 

there can be no shorter path between two nodes.  Manhattan distance is commonly used 

in grid-based graphs and estimates the distance to the target node by counting only 

vertical and horizontal moves.  This heuristic is inadmissible since a shorter path to the 

target node exists.  Figure 6(a) shows a Manhattan distance heuristic applied to our grid-

based graph problem. 

 

Figure 6.   (a) Manhattan distance heuristic from the start node to the target node           

(b) Euclidean distance heuristic from node 2 to the target node. 

 

Aside from the guiding heuristic, the A-Star algorithm operates very much like 

Dijkstra’s algorithm, evaluating nodes and maintaining open and closed lists of visited 

and unvisited nodes.  The algorithm also maintains pointers to track the parent of each 

node.  The A-Star pseudocode shown in Figure 7 was originally written by James 

Matthews in his article Basic A-Star Pathfinding Made Simple (2002). 
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 1. Let P  = the start node 

 2. Assign ( )f n , ( )g n , and ( )h n  values to P  

 3. Add P  to the Open list 

 4. Let B = the best node from the Open list (lowest ( )f n value) 

  If B  is the goal node, then quit – a path has been found 

  If Open list is empty, then quit – a path cannot be found 

 5. Let 
iC = all valid nodes connected to B  

  Assign ( )f n , ( )g n , and ( )h n  values to 
iC  

  Check whether 
iC  is on the Open or Closed list 

   If so, check to see if ( )f n  is lower 

    If so, update the path 

   Else, add 
iC  to the Open list 

 6. Return to step 4 

    

 

 

Route Optimization and Obstacle Avoidance Applications 

 Previous work related to path-finding and obstacle avoidance has been applied to 

aviation route planning.  Szczerba, et al. (2000) developed a Sparse A-Star Search (SAS) 

route planner which seeks to minimize a cost array while meeting certain constraints.  

Szczerba, et al. (2000) utilize a grid-based graph and incorporate a Map Cost (MC) array 

which can combine “cost layers” such as the terrain, threat exposure, and weather 

associated with each grid cell.  This Map Cost, along with a flight distance cost are used 

to compute each actual cost, ( )g n , and estimated cost, h'( )n , as the algorithm progresses.  

The Map Cost array allows a search for a route that not only seeks to minimize the 

distance travelled, but also considers other factors that may impact the ability of an 

aircrew to successfully complete a flight. 

  The SAS route planner also incorporates constraints in the algorithm that can 

prevent infeasible routes.  Szczerba, et al. (2000) discuss a route distance constraint 

which prevents routes from exceeding the fuel capacity of an aircraft, an approach angle 

Figure 7.  A-Star Pseudocode (Matthews 2002). 
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constraint which prevents routes from approaching the destination airfield at an angle that 

is not aligned with the runway, and a turn angle constraint which prevents turns that 

would exceed the maximum angle of bank of an aircraft (Szczerba, et al. 2000). 

 The U.S. Army Research Laboratory (ARL) developed the Aviation Weather 

Routing Tool (AWRT) to efficiently plan manned and unmanned aircraft routes while 

avoiding hazardous weather (Jameson, Knapp, and Measure 2009).  AWRT uses the A-

Star algorithm and a grid-based graph which includes a weather cost for each grid cell 

based on the presence of adverse weather conditions at that location.  The AWRT 

operates in four dimensional space (3-D and time) and allows the user to input a risk 

tolerance that effects the likelihood that the planned route will traverse through adverse 

weather conditions. 

Conclusion 

There are numerous approaches to finding an efficient route for a single entity to 

travel between two points.  Our proposed model combines some of the techniques 

outlined in this chapter to conduct sequential iterations of the A-Star algorithm using 

network-based and grid-based graphs to find an optimal flight route between two 

locations while avoiding known obstacles and conforming to a set of constraints. 
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III. Methodology 

Introduction 

The Aviation Distance Estimation and Route Planning Tool (ADERPT) provides 

two primary functions: route optimization and obstacle avoidance.  The route 

optimization portion of the model seeks a least cost route from a starting location to an 

ending location by selecting refuel locations that minimize the total route distance or 

travel time while considering multiple constraints.  The obstacle avoidance portion uses a 

grid-based network and seeks an optimum route from a starting location to an ending 

location avoiding obstacles along the flight route.  The user can choose to implement 

only one of the functions, or can implement them both in series.   

Distance Calculations 

 All geographic coordinates used in the model are latitude/longitude coordinates 

expressed in Decimal Degrees (DD).  To account for the spherical curvature of the earth, 

we use great-circle distance calculations as outlined in AFR 51-40, Air Navigation 

(Departments of the Air Force and Navy 1983).   

 1

1 2 1 2 2 160*cos [sin *sin cos *cos *cos( )d L L L L       (3) 

Where 

d  is the great-circle distance between two coordinates. 

1L  and 2L are the departure and arrival latitude, respectfully. 

1  and 2 are the departure and arrival longitude, respectfully. 
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Route Optimization 

Overview 

The Route Optimization portion of the model generates an optimum route 

between two locations by selecting refuel locations that minimize the total distance of the 

route.  The network consists of 439 nodes representing 43 CONUS Army Airfields and 

396 airports with contract fuel available.  Figure 8 shows a map displaying the location of 

all 439 nodes.   

 
Figure 8.  Map of 439-node network. 

 

Each arc in the network represents the great-circle distance between two nodes.  

These arc distances are pre-processed and stored in a distance matrix to reduce 

processing time.  Arc lengths which exceed the user-selected aircraft maximum fuel 

range are eliminated from consideration as the algorithm searches for an optimum route.  

A portion of the distance matrix is shown in Figure 9.   
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Figure 9.  A portion of the pre-processed distance matrix showing nodes 1-15.  Row 

and column numbers represent node numbers. 

 

Model Assumptions 

 The route optimization model assumes the aircraft travels at a constant Ground 

Speed (GS).  It does not account for acceleration during departure or deceleration during 

approach.  The model assumes the aircrew will be able to navigate the assigned route 

without deviating due to inclement weather, Air Traffic Control (ATC) instructions, or 

other possible reasons.  The calculated route distances are based on “straight-out” 

departures and “straight-in” arrivals and no distance is added for any required departure 

or arrival procedures.  We also assume fuel is always available at all airports included in 

the model and do not consider refuel hours of operation.  Finally, the model assumes the 

user factors in fuel consumption during start-up and ground taxi when inputting the max 

fuel range. 

Inputs 

 The user selects the starting location and ending location from a dropdown list 

that includes 43 CONUS Army Airfields and 396 airfields with contract fuel available.  
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The user also enters the maximum distance allowed before refueling, the planned ground 

speed, and the time required to refuel.  Like Zeisler’s (2000) Intra-Theater Airlift Model, 

these inputs allow for adaptable application across various aircraft Mission-Design Series 

(MDS) with different fuel ranges, cruise airspeeds, and refueling times.  Additionally, it 

allows the user to tailor the fuel range to a specific flight profile; a Visual Flight Rules 

(VFR) flight profile requires aviators to plan a 20-minute fuel reserve into the flight while 

an Instrument Flight Rules (IFR) flight profile requires a 30-minute fuel reserve 

(Department of the Army 2008).  Finally, the user has the option to search for a route that 

minimizes the total flight distance between the starting and ending location or to search 

for a route that minimizes the total travel time.  While distance minimization requires no 

further explanation, the method for minimizing travel time is explained in the following 

section. 

Model Procedure 

 The route optimization – Distance Minimization A-Star algorithm (DMA-Star) 

begins by collecting the start and target nodes from the user input form.  The start node is 

then added to the open list.  The algorithm then uses the pre-processed distance matrix to 

identify all feasible successor nodes (refuel locations that are closer than the user-defined 

maximum distance before refueling), adds them to the open list, and calculates '( )g n , 

'( )h n , and '( )f n for each.  The model selects the node with the lowest '( )f n value and 

designates it as the current node.  The algorithm then iterates, identifying all feasible 

successor nodes and terminates when the goal node is designated as the current node.  If 

the goal node has not been reached and the open list contains no nodes, the model 

produces an error message indicating that an optimum solution could not be found. 



19 

 The route optimization –Time Minimization A-Star algorithm (TMA-Star) model 

is structured the same way as the DMA-Star model, with two modifications.  First, the

'( )g n values of '( )h n , and '( )f n  are in units of time (in hours) instead of distance.  To 

accomplish this, the algorithm divides '( )g n  and '( )h n by the estimated ground speed of 

the flight. 

The second deviation from the DMA-Star model is that the user-defined ground 

time required to refuel is incorporated into time minimization model.  The resulting 

formula is: 

 '( ) 1'( ) 2'( ) 1'( )f n g n g n h n    (4) 

 
( )

1'( )
g n

g n
GS

  

 2'( ) *g n FS RT  

 
'( )

1'( )
h n

h n
TAS

  

where: 

1'( )g n  is the estimated flight time of the route from the starting node to node n , 

GS  is the planned Ground Speed of the flight (in knots), 

2'( )g n  is the estimated flight time of the route from the starting node to node n , 

FS  is the number of fuel stops required to arrive at node n , 

RT  is the total ground time required to refuel the aircraft (in hours), 

and 

1'( )h n  is the estimated flight time of the route from the node n  to the target node. 
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Outputs 

 When the goal node is designated as the current node, the algorithm exits the loop 

and retraces the route path from the goal node to the start node using the Parent ID 

property of each node.  The model then displays a table listing the refuel locations in 

sequential order, along with the distance and flight time of each flight leg, the total 

distance of the route, the total flight time of the route (not including ground time during 

refueling), and the total administrative time of the route (including ground time during 

refueling).  Table 2 shows an example of the Route Optimization program output. 

 The inclusion of total flight time and total time in the output are important when 

considering aircrew flight time and duty day constraints.  Aviation unit Standard 

Operating Procedures (SOPs) and Composite Risk Management (CRM) tools normally 

include limit aviators on the number of flight hours allowed per day, and the length of the 

duty day (Department of the Army, 1999).  Considering these limitations while reviewing 

the “total flight time” and “total time” outputs of the route optimization model allows a 

mission planner to anticipate the location(s) in which an aircrew may need to Remain 

Over Night (RON).  This also allows FORSCOM Aviation Distribution personnel to 

anticipate the number of days required to complete the flight, and forecast TDY costs 

accordingly. 



21 

Table 2.  Example of the Route Optimization output of a flight originating from 

New Hanover International Airport and terminating at McClellan Airfield.  The 

refuel time is 1 hour, as reflected in the Admin Time. 

 

Obstacle Avoidance 

Overview 

 The Obstacle Avoidance portion of the model uses a grid-based node network to 

generate a route between two locations that avoids obstacles and considers areas that are 

undesirable for flight.  We define an obstacle as an area through which flight is prohibited 

or not feasible.  Examples of obstacles are Restricted Operating Zones (ROZ’s), 

Prohibited Airspace, and Restricted Airspace.  Undesirable areas create an inconvenience 

or increased risk to flight.  Examples of undesirable areas are Class-B Airspace, Military 

Operations Areas (MOA’s), and urban areas.  The code used in this portion of the model 

is an adaptation of the two-dimensional path-finding program developed by Volpi (2005). 

 The model utilizes the latitude/longitude coordinate system to create a grid-based 

node system in Microsoft Excel that is a tessellation of the contiguous United States.  

Each column represents one-tenth of a degree of longitude, each row represents one-tenth 

of a degree of latitude, and each cell represents a node.  The dimensions of the map are 

designated using the extreme points of the contiguous United States as shown in Table 3.   
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Table 3.  Extreme points of the contiguous United States that define the corners of 

the tessellated grid network used in the obstacle avoidance model. 

 
 

These extreme points result in a map space with dimensions 260 x 590, creating a total of 

153,400 nodes. 

 Obstacles can be added to the map by coloring the cells corresponding with the 

obstacle location black.  The algorithm identifies and “ignores” cells colored black, 

effectively eliminating these nodes from begin evaluated or added to the open list.  

Undesirable areas can be added to the map by entering a “map cost” into the cell(s) of the 

map that correspond with the geographical location of the undesirable area.  A map cost 

assigned to a node represents the distance, in NMs, that is added to the route if it travels 

through that node.    As the algorithm evaluates a node with a map cost assigned, it adds 

the map cost to the node’s '( )f n  score, encouraging the algorithm to find a route that 

avoids the undesirable area.  Figure 10 shows an area in the Northwestern-most area of 

the map space that contains nodes designated as obstacles and undesirable areas. 

Extreme Point Location Latitude Longitude

Westernmost Cape Alava, WA 48.16 -124.73

Easternmost W. Quoddy Head, MA 44.81 -66.95

Northernmost Northwest Angle, MN 49.38 -95.15

Southernmost Ballast Key, FL 24.52 -81.96
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Figure 10.  Map space in Northwest portion of contiguous U.S. with rectangular 

obstacle vic (24.4ºN, -124.6 ºW) and undesirable area vic (25.0 ºN, -124.4 ºW). 

 

Model Assumptions 

The obstacle avoidance model assumes that the desire to avoid a given area can be 

converted into a map cost (distance).  We also assume that all obstacles and undesirable 

areas extend from the ground to an infinite altitude, and cannot be avoided vertically.  

Finally, we include the assumption that all turns can be executed as planned and make no 

limitation on turn radius in the model. 

Inputs 

The user selects a starting and ending location from the same dropdown list of 

Army Airfields and contract fuel locations as in the Route Optimization program.  

Obstacles and undesirable areas are inputted directly to the map space by the user. 

 

 

-125.0 -124.9 -124.8 -124.7 -124.6 -124.5 -124.4 -124.3 -124.2 -124.1 -124.0 -123.9 -123.8 -123.7 -123.6 -123.5 -123.4 -123.3 -123.2 -123.1

24.0

24.1

24.2

24.3

24.4

24.5

24.6

24.7

24.8

24.9 5 5 5

25.0 5 10 10

25.1 5 5

25.2 5

25.3 5

25.4

25.5

25.6

25.7
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Model Procedure 

 The model first collects the start and target nodes from the user input form, and 

adds the start node to the open list.  The algorithm then identifies the feasible successor 

nodes (the eight adjacent nodes, ignoring those nodes designated as obstacles), adds them 

to the open list, and calculates '( )g n , '( )h n , and '( )f n  scores for each using the formula 

below.  

 '( ) '( ) '( ) '( )f n g n l n h n    (5) 

where: 

'( )g n  is the estimated cost of the path from the starting node to node n , 

 '( )l n  is the map cost assigned to node n  and 

'( )h n  is the estimated cost of the path from node n  to the target node. 

The model selects the node with the lowest value of '( )f n  and designates it as the 

current node.  The algorithm then iterates and terminates when the goal node is 

designated as the current node.  If the goal node has not been reached and the open list 

contains no nodes, the model produces an error message indicating that an optimum 

solution could not be found. 

Output 

The algorithm exits the search when the goal node is designated as the current 

node and, in the same method as the Route Optimization program, it retraces the route 

from the goal node to the start node using the Parent ID property of each node.  As it 

retraces the route, the program calculates and adds the distance between node coordinates 

using Great Circle Distance.  The program outputs the total distance of the route (in 
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NMs) and generates a visual depiction of the route.  Figure 11 shows the output from the 

Obstacle Avoidance model for a route between North Platte, Nebraska and Columbia, 

Missouri that considers obstacles and undesirable areas. 

 
Figure 11.  Obstacle avoidance program output of a route from North Platte to 

Columbia.  Obstacles are black, undesirable areas are numbered, and the route is 

shown in orange. 
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IV.  Results  

Route Optimization 

To evaluate the route optimization model, we run the algorithm on all 96,141 

possible start and end node combinations.  We use a maximum fuel range of 300 NMs 

and eliminate 10,874 iterations in which the start node is less than 300 NMs from the 

target node (a route which does not require a fuel stop).  We test the remaining 85,267 

iterations using the DMA-Star algorithm, TMA-Star algorithm, Dijsktra’s algorithm, and 

a greedy heuristic and compare the results from each, focusing on route distance, route 

time, number of fuel stops, and processing time.   

A portion of the iterative results for the three algorithms are shown in Appendix 

B, with aggregated results shown in Table 4.  We can see from Table 4 that, since both 

the DMA-Star algorithm and Dijkstra’s algorithm guarantee optimality, their average 

distance and average number of fuel stops are equivalent.  Since the A-Star algorithm 

uses a heuristic to narrow its search space, the average processing time and number of 

nodes explored is reduced substantially from Dijsktra’s algorithm.   

Table 4.  Averaged results of route optimization iterations using the Distance 

Minimization A-Star algorithm, Dijkstra’s algorithm, and the greedy heuristic. 

 Avg. 

Distance 

(NMs) 

Avg. Total 

Time           

(Hrs) 

Avg. Number of 

Fuel Stops 

Avg. Processing 

Time    

(Seconds) 

DMA-Star  999 10.8 3.7 .06 

TMA-Star 1011 10.3 3.2 .59 

Dijkstra’s Algorithm 999 10.8 3.7 1.17 

Greedy Heuristic 1039 10.6 3.2 .02 

 

Table 4 also shows that while the greedy heuristic does not usually generate the 

shortest route, it does produce routes that average fewer fuel stops than those found using 
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the DMA-Star algorithm and Dijkstra’s algorithm.  One extreme case that illustrates this 

disparity is the route from Albert J. Ellis Airport, North Carolina to Page Municipal, 

Arizona.  Figure 12(a) shows the route found by the DMA-Star algorithm.  While the 

route distance is minimized at 1,648 NMs, the route includes 9 fuel stops, resulting in a 

total travel time of 20.8 hours (assuming 1 hour ground time to refuel).  Figure 12(b) 

shows the route found by the greedy heuristic.  The route length is 1,730 NMs (82 NMs 

longer than the optimum), but only requires 5 fuel stops and a total travel time of 17.4 

hours.  In Figures 12(a)/(b) and all similar subsequent figures, dots shown on the maps 

represent refuel stops along the route. 

 

 
Figure 12(a).  DMA-Star generated route from Albert J. Ellis Airport, North 

Carolina to Page Municipal, Arizona. 

 

 
 

Figure 12(b).  Route found using the greedy heuristic from Albert J. Ellis Airport, 

North Carolina to Page Municipal, Arizona. 
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The greedy heuristic does not always produce routes with shorter travel times, 

however.  The route combination that results in the greatest difference in route distance 

between the DMA-Star and the greedy heuristic is the route between Pease Air Force 

Base, New Hampshire and Roberts Field, Oregon.  Figure 13(a) shows the route found 

using the greedy heuristic, which includes 10 fuel stops and travels 2,705 NMs in 29.3 

hours.  Comparatively, the route found by the DMA-Star algorithm shown in Figure 

13(b) is 484 miles shorter, 4.4 hours faster, with 1 less fuel stop. 

 
Figure 13(a).  Route found by the greedy heuristic between Pease Air Force Base 

and Roberts Field. 

 
Figure 13(b).  DMA-Star generated route between Pease Air Force Base and 

Roberts Field. 

 

Comparing the DMA-Star model with the TMA-Star model, we find that using 

time as the cost we seek to minimize essentially “weights” the cost of the route’s distance 

and the cost of increased ground time due to fuel stops.  This results in routes that are 
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slightly longer than optimum, but fewer fuel stops, on average, resulting in lower total 

travel times. 

Table 5.  Comparison of DMA-Star and TMA-Star results. 

 Avg. 

Distance 

(NMs) 

Avg. Total 

Time           

(Hrs) 

Avg. Number of 

Fuel Stops 

Avg. Processing 

Time    

(Seconds) 

Distance Minimization 

A-Star 
1077.6 3.7 4.1 .06 

Time Minimization    

A-Star 
1085.5 3.2 3.5 .59 

 

The greatest example of the disparity in total time occurs with the route between 

Lancaster, California and Jacksonville, North Carolina.  As shown in Figures 14(a) and 

14(b), the TMA-Star model finds a route that is 4 miles longer than the route found by the 

DMA-Star model, but includes 4 fewer fuel stops and saves 3.97 hours of total time.   

 
Figure 14(a).  Route between Lancaster and Jacksonville using the DMA-Star 

model. 

 
Figure 14(b).  Route between Lancaster and Jacksonville using the TMA-Star 

model. 
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We now compare the optimum routes between the departure and arrival locations 

found using the TMA-Star route optimization model to the straight line distances used by 

FORSCOM for cost estimation.  Table 6 shows a relatively small average difference 

between the two methods of distance estimation.   

Table 6.  Comparison of averaged results of distance estimates using the Time 

Minimization A-Star algorithm and straight line distance. 

Estimation Method Average Distance (NMs) 

TMA-Star Route 1011.6 

Straight Line Distance 996.1 

 

While the straight line distance method generally provides acceptable distance 

estimates of feasible route distances, this is not always the case.  The route between Key 

West International Airport, Florida and Brownsville South Padre International Airport, 

Texas provides the best example of a gross underestimation of route distance by using 

straight line distance.  As shown in Figure 15, a direct route between the two airports is 

not possible (using a max fuel range of 300 NMs).  Because of this, the straight line 

distance method underestimates the route distance by 295 NMs (35 percent) when 

compared to the feasible route found using the TMA-Star algorithm. 

 

 
Figure 15.  Route between Key West and Brownsville using the TMA-Star model. 
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Obstacle Avoidance 

 To evaluate the obstacle avoidance model, we randomly select 100 start nodes 

and 100 corresponding target nodes.  To prevent excessive processing times we replace 

node pairings that result in a straight line distance longer than 300 NMs until all 100 node 

pairings have a straight line distance of 300 NMs or less.  The map space used for testing 

contains no obstacles or undesirable areas.  Testing using the A-Star algorithm, Dijkstra’s 

algorithm, and a greedy heuristic produces the individual results shown in Appendix B 

and the aggregated results in Table 7.  The A-Star algorithm and Dijsktra’s algorithm 

both produce optimum routes, but the A-Star algorithm finds the route in a fraction of the 

time Dijsktra’s takes and searches a much smaller space.  The greedy heuristic performs 

well, generating routes within approximately 2 percent of optimum. 

Table 7.  Averaged results of 100 randomly selected obstacle avoidance iterations 

using the A-Star and Dijkstra’s algorithms and the greedy heuristic. 

 Avg. Distance 

(NMs) 

Avg. Number of 

Nodes Explored 

Avg. Processing 

Time (Seconds) 

A-Star Algorithm 200.52 284.96 .17 

Dijkstra’s Algorithm 200.52 4195.18 28.59 

Greedy Heuristic 204.01 31.93 .01 

 

Figures 16 and 17 provide a visual comparison of the search area used by 

Dijkstra’s algorithm and the A-Star algorithm and show the effectiveness of the heuristic 

in guiding A-Star’s search toward the target node.  While Dijkstra’s algorithm expands 

the search in all directions, the directed A-Star search is concentrated on improving areas. 
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Figure 16.  Obstacle avoidance route from Greer, SC to Wilmington, NC using 

Dijkstra’s algorithm.  The start node is shown in green, target node in red, route in 

orange, and explored nodes in grey. 

 

 
Figure 17.  Obstacle avoidance route from Greer, SC to Wilmington, NC using the 

A-Star algorithm. 
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V.  Conclusions and Future Research 

In today’s fiscally constrained military environment, accurate cost estimation and 

efficient use of resources are predominant concerns. The ADERPT is effective in quickly 

finding efficient flight routes and is a useful tool for cost estimation and air mission 

planning.  While current distance estimation procedures employed by FORSCOM are in 

most cases sufficient, testing showed that the straight line distance estimation technique 

grossly underestimated the length of a feasible route on multiple occasions, and by as 

much as 78 percent.  The Time Minimization A-Star model’s (TMA-Star) use of time as 

“cost” results in routes that simultaneously minimize flight distance and fuel stops.  This 

approach is more consistent with aircrew mission planning, and results in routes that 

minimize TDY costs.   

One limitation of the route optimization model is that it does not maximize the 

route distance traveled within the limitations of aircrew daily flight hour and duty day 

restrictions.   Future efforts could focus on a multicriteria optimization approach to 

address this issue. 

The proposed obstacle avoidance model provides a proof of concept for the use of 

a grid based network in routing aircraft around obstacles.  The A-Star algorithm proved 

superior to the other methods tested in terms of route distance and processing time.  The 

obstacle avoidance model concept has potential for use as both a route planning tool as 

well as a dynamic, in-cockpit, navigation aid.  Future work should translate the model to 

a more applicable programming language, and improve both the shape and resolution of 

the tessellation.    
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Appendix A:  Model Guide 

Overview 

Upon opening the model, ensure you click “Enable” on the alert banners at the top of the 

screen.  

 

The model home screen provides a description of the model functions and user inputs.  

Click the “Begin Application” button to start the program. 

 

Route Optimization 

A pop-up window allows the user to select the desired program.  Click the “Route 

Optimization” button to continue. 
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Users can input the departing and arriving airports using International Civil Aviation 

Organization (ICAO) airport code, or by using the airfield name.  Click on the desired 

option. 

 

The user is then prompted to enter the departing and arriving airports using the selected 

method.  The airports can be selected from the dropdown menus, or typed in the text box. 

 

The next user input window provides the user with two types of route optimization to 

choose from.  Choosing “Minimize Distance” will select fuel stops that result in the 
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shortest possible route.  The “Minimize Fuel Stops” results in a route that may not be the 

shortest distance, but requires the fewest number of fuel stops to reach the destination. 

 

The final user input window asks the user to enter the maximum distance allowed 

between fuel stops.  The user enters this distance as a number in the text box and clicks 

on the enter button. 

 

After inputting the max fuel range, the model executes the appropriate algorithm and 

displays the route information as shown in the screen shot below.  The user then has the 

option to return to the model home screen, exit the program, or view a map of the route. 
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Clicking on “Map Refuel Locations” will display the map shown in the figure below.  To 

use this function, the user must have internet access.  To display the route, first delete any 

coordinates contained in the white box on the left side of the map.   

 

Then right click in the white box and select “paste.”  Finally, click the “Regenerate” 

button located below the white box. 

 

The map then displays the route with red dots identifying the starting airport, all refuel 

locations, and the destination airport as shown in the figure below. 
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The user can click and drag on the map to move around the map space.  Additionally, 

adjusting the mouse scroll wheel allows the user to zoom in on desired areas as shown in 

the figure below. 

 

  



39 

Obstacle Avoidance 

A pop-up window allows the user to select the desired program.  Click the “Obstacle 

Avoidance” button to continue. 

 

Users can input the departing and arriving airports using International Civil Aviation 

Organization (ICAO) airport code, or by using the airfield name.  Click on the desired 

option. 

 

The user is then prompted to enter the departing and arriving airports using the selected 

method.  The airports can be selected from the dropdown menus, or typed in the text box.  

Click “Enter” when finished. 
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Upon clicking the “Enter” button, the obstacle avoidance algorithm will find the optimum 

route between the departing and arriving location.  A message box will be displayed with 

the route length and a visual depiction of the route will be shown. 

 

The departing location is shown in green, arriving location in red, and route in orange.   

 

To return to the home page, click the “Intro” tab at the bottom of the screen. 
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Appendix B:  Iterative Model Results 

Table 8.   Individual results of 100 randomly selected Distance Minimization Route 

Optimization iterations using the A-Star and Dijkstra’s algorithms and the greedy 

heuristic (1 of 2). 

 
 

  

Iteration Straight Line Distance

Distance Time

Nodes 

Explored

Fuel 

Stops Distance Time (Sec)

Nodes 

Explored

Fuel 

Stops Distance Time

Nodes 

Explored

Fuel 

Stops Distance

1 1859.8 0.07 13 7 1934.1 0.05 9 7 1859.8 1.89 404 7 1829.4

2 1017.6 0.06 12 4 1044.4 0.02 5 3 1017.6 1.57 330 4 1010.9

3 1244.7 0.05 11 5 1407.7 0.03 7 5 1244.7 1.98 429 5 1214.1

4 964.8 0.07 12 4 981.0 0.02 5 3 964.8 1.24 255 4 958.5

5 1611.4 0.14 32 7 1657.8 0.03 7 5 1611.4 1.37 301 7 1596.9

6 1617.2 0.12 25 7 1695.8 0.03 7 5 1617.2 2.02 435 7 1611.6

7 1153.8 0.07 13 5 1157.6 0.02 5 3 1153.8 1.23 258 5 1152.8

8 788.8 0.03 6 2 796.3 0.02 4 2 788.8 1.01 206 2 787.7

9 325.7 0.02 3 1 365.3 0.01 3 1 325.7 0.28 58 1 325.2

10 1714.9 0.08 17 8 1777.9 0.04 8 6 1714.9 1.36 296 8 1701.5

11 2108.4 0.15 33 9 2197.6 0.05 9 7 2108.4 1.89 409 9 2090.5

12 710.1 0.03 5 2 713.5 0.02 4 2 710.1 1.33 279 2 708.7

13 636.3 0.02 4 2 702.3 0.02 4 2 636.3 0.80 171 2 636.2

14 844.8 0.03 5 3 854.8 0.02 4 2 844.8 1.33 282 3 844.4

15 931.2 0.06 12 3 1017.2 0.02 5 3 931.2 1.43 299 3 929.5

16 392.4 0.02 3 1 400.0 0.02 3 1 392.4 0.60 123 1 392.0

17 915.3 0.06 11 3 957.7 0.02 5 3 915.3 1.62 345 3 912.6

18 571.2 0.02 5 2 587.2 0.02 4 2 571.2 1.01 206 2 569.5

19 474.0 0.02 4 1 478.6 0.01 3 1 474.0 0.88 178 1 473.5

20 792.8 0.03 6 3 794.2 0.02 4 2 792.8 0.64 147 3 776.7

21 587.9 0.03 5 2 588.9 0.01 3 1 587.9 1.06 218 2 585.0

22 648.4 0.05 10 3 715.9 0.02 4 2 648.4 0.88 184 3 639.0

23 325.1 0.02 3 1 325.4 0.01 3 1 325.1 0.46 92 1 325.0

24 1112.5 0.09 19 4 1178.8 0.03 6 4 1112.5 1.79 380 4 1086.1

25 1493.5 0.10 20 5 1535.3 0.03 7 5 1493.5 1.65 348 5 1492.5

26 961.7 0.03 6 3 1004.5 0.02 5 3 961.7 1.60 336 3 961.2

27 1158.2 0.04 9 4 1206.0 0.03 6 4 1158.2 1.39 290 4 1157.8

28 796.6 0.04 7 3 809.2 0.02 4 2 796.6 1.46 304 3 796.1

29 756.0 0.02 4 2 776.8 0.02 4 2 756.0 1.20 250 2 755.9

30 428.9 0.02 4 1 443.6 0.01 3 1 428.9 0.23 54 1 427.4

31 1406.6 0.09 18 6 1445.8 0.03 6 4 1406.6 1.39 293 6 1405.6

32 804.5 0.05 10 2 824.2 0.02 4 2 804.5 1.49 311 2 802.9

33 1554.2 0.07 16 6 1669.7 0.04 8 6 1554.2 1.88 406 6 1486.0

34 784.5 0.02 4 2 784.5 0.02 4 2 784.5 0.98 201 2 782.4

35 793.6 0.04 7 3 890.7 0.02 5 3 793.6 0.57 130 3 745.2

36 1189.3 0.04 8 4 1234.2 0.03 6 4 1189.3 1.75 374 4 1184.5

37 1769.9 0.08 17 8 1817.1 0.04 8 6 1769.9 1.42 310 8 1744.8

38 1025.0 0.03 6 4 1045.9 0.02 5 3 1025.0 1.61 340 4 1022.0

39 667.9 0.03 6 2 723.3 0.02 4 2 667.9 1.27 264 2 667.3

40 521.4 0.02 4 2 528.0 0.01 3 1 521.4 0.54 115 2 521.2

41 1371.2 0.05 10 5 1380.2 0.03 6 4 1371.2 1.34 282 5 1367.9

42 409.1 0.02 3 1 441.8 0.01 3 1 409.1 0.27 61 1 409.1

43 364.4 0.02 3 1 364.4 0.01 3 1 364.4 0.36 74 1 364.1

44 381.6 0.02 3 1 383.7 0.01 3 1 381.6 0.57 118 1 380.5

45 437.7 0.02 3 1 437.9 0.01 3 1 437.7 0.62 128 1 437.7

46 1079.9 0.04 9 3 1106.9 0.02 5 3 1079.9 0.77 173 3 1077.1

47 1670.4 0.12 24 6 1675.0 0.03 7 5 1670.4 1.79 389 6 1659.8

48 1951.1 0.17 33 9 2015.7 0.05 9 7 1951.1 1.92 414 9 1944.9

49 999.1 0.05 9 4 1002.0 0.02 5 3 999.1 1.51 317 4 998.3

50 557.0 0.05 9 1 562.5 0.01 3 1 557.0 0.86 176 1 553.8

A-Star Greedy Dijkstra's
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Table 9.  Individual results of 100 randomly selected Distance Minimization Route 

Optimization iterations using the A-Star and Dijkstra’s algorithms and the greedy 

heuristic (2 of 2). 

 
 

 

Iteration Straight Line Distance

Distance Time

Nodes 

Explored

Fuel 

Stops Distance Time (Sec)

Nodes 

Explored

Fuel 

Stops Distance Time

Nodes 

Explored

Fuel 

Stops Distance

51 1103.0 0.07 15 4 1103.8 0.03 6 4 1103.0 0.70 159 4 1089.4

52 628.2 0.02 4 2 656.7 0.02 4 2 628.2 0.42 87 2 628.0

53 619.1 0.02 4 2 649.9 0.02 4 2 619.1 0.96 203 2 618.8

54 1797.5 0.10 23 7 1942.2 0.04 9 7 1797.5 1.35 296 7 1763.7

55 1105.1 0.11 22 3 1131.7 0.03 6 4 1105.1 1.69 358 3 1093.9

56 1035.6 0.05 10 3 1162.7 0.03 6 4 1035.6 1.27 268 3 1028.4

57 965.8 0.04 6 3 1007.4 0.02 5 3 965.8 1.61 342 3 965.1

58 1834.1 0.09 17 8 1862.7 0.04 8 6 1834.1 1.94 415 8 1825.7

59 329.7 0.02 3 1 335.9 0.01 3 1 329.7 0.45 91 1 329.7

60 566.8 0.03 5 2 576.7 0.02 4 2 566.8 0.65 138 2 566.6

61 1335.5 0.07 14 6 1557.0 0.03 7 5 1335.5 1.91 414 6 1291.1

62 626.7 0.03 4 2 635.8 0.02 4 2 626.7 1.03 212 2 626.2

63 774.0 0.03 5 3 816.7 0.02 4 2 774.0 1.08 226 3 773.1

64 967.8 0.06 11 3 1034.6 0.02 5 3 967.8 1.32 277 3 966.3

65 1941.9 0.20 38 8 2050.2 0.04 9 7 1941.9 2.00 433 8 1929.2

66 2198.0 0.30 65 11 2440.6 0.05 10 8 2198.0 2.00 430 11 2149.8

67 847.5 0.02 5 3 872.4 0.02 5 3 847.5 0.68 148 3 847.0

68 500.1 0.02 3 1 500.1 0.01 3 1 500.1 0.47 103 1 497.9

69 1711.5 0.18 39 7 1871.1 0.04 8 6 1711.5 2.04 439 7 1684.7

70 876.4 0.05 7 3 888.8 0.02 4 2 876.4 1.54 325 3 874.9

71 993.3 0.04 8 4 1015.2 0.02 5 3 993.3 1.13 237 4 978.0

72 1348.7 0.04 8 5 1475.0 0.03 7 5 1348.7 1.38 301 5 1321.4

73 768.1 0.03 5 3 782.6 0.02 4 2 768.1 0.50 115 3 766.0

74 661.5 0.02 4 2 675.1 0.02 4 2 661.5 0.75 157 2 661.3

75 542.5 0.02 4 2 543.7 0.01 3 1 542.5 0.27 58 2 542.4

76 918.9 0.03 7 3 935.9 0.02 5 3 918.9 0.59 130 3 909.8

77 2258.8 0.16 34 10 2292.8 0.04 9 7 2258.8 1.96 422 10 2243.4

78 706.7 0.03 5 3 724.5 0.02 4 2 706.7 0.54 123 3 703.6

79 1136.7 0.05 10 4 1190.6 0.03 6 4 1136.7 1.41 298 4 1116.9

80 587.9 0.07 13 2 607.9 0.02 4 2 587.9 1.06 218 2 571.4

81 788.3 0.05 9 3 797.0 0.02 4 2 788.3 1.25 261 3 787.1

82 1196.2 0.04 8 4 1208.8 0.02 6 4 1196.2 0.89 201 4 1195.6

83 1294.8 0.08 17 5 1359.6 0.03 7 5 1294.8 1.70 363 5 1273.5

84 685.8 0.02 5 2 685.8 0.02 4 2 685.8 0.32 73 2 547.4

85 876.5 0.06 13 3 881.3 0.02 5 3 876.5 1.52 318 3 872.3

86 879.7 0.04 8 3 1006.9 0.02 5 3 879.7 0.57 132 3 873.3

87 1258.3 0.07 13 5 1293.1 0.03 6 4 1258.3 1.50 315 5 1256.3

88 1298.4 0.10 20 6 1346.2 0.03 6 4 1298.4 1.93 411 6 1290.3

89 1454.0 0.05 10 5 1468.7 0.03 7 5 1454.0 1.43 313 5 1398.3

90 437.0 0.02 3 1 438.8 0.01 3 1 437.0 0.25 59 1 419.6

91 1153.1 0.05 10 4 1176.2 0.02 5 3 1153.1 1.34 282 4 1151.9

92 1121.1 0.04 7 4 1133.6 0.02 5 3 1121.1 1.47 318 4 1120.4

93 982.8 0.05 10 5 1000.7 0.02 5 3 982.8 1.41 296 5 981.5

94 498.2 0.03 5 1 512.7 0.01 3 1 498.2 0.78 157 1 497.8

95 675.8 0.05 9 2 700.5 0.02 4 2 675.8 0.82 172 2 673.6

96 1120.9 0.06 12 4 1167.9 0.03 6 4 1120.9 1.48 309 4 1118.9

97 916.5 0.05 11 3 1057.7 0.02 5 3 916.5 0.45 105 3 903.4

98 1376.5 0.04 8 5 1461.4 0.03 7 5 1376.5 1.75 373 5 1371.6

99 1322.9 0.06 12 6 1388.6 0.03 7 5 1322.9 0.83 187 6 1294.1

100 1003.5 0.03 6 3 1012.2 0.02 5 3 1003.5 1.01 221 3 1001.1

A-Star Greedy Dijkstra's
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Table 10.  Comparison of DMA-Star route distances and straight line distance 

estimations (1 of 2). 

 
 

  

Iteration Straight Line Distance

Distance (NMs)

Fuel 

Stops Distance (NMs) NMs %

1 1859.8 7 1829.4 30.47 1.67%

2 1017.6 4 1010.9 6.75 0.67%

3 1244.7 5 1214.1 30.60 2.52%

4 964.8 4 958.5 6.35 0.66%

5 1611.4 7 1596.9 14.45 0.90%

6 1617.2 7 1611.6 5.57 0.35%

7 1153.8 5 1152.8 0.97 0.08%

8 788.8 2 787.7 1.05 0.13%

9 325.7 1 325.2 0.50 0.15%

10 1714.9 8 1701.5 13.38 0.79%

11 2108.4 9 2090.5 17.91 0.86%

12 710.1 2 708.7 1.39 0.20%

13 636.3 2 636.2 0.05 0.01%

14 844.8 3 844.4 0.38 0.04%

15 931.2 3 929.5 1.73 0.19%

16 392.4 1 392.0 0.35 0.09%

17 915.3 3 912.6 2.71 0.30%

18 571.2 2 569.5 1.74 0.31%

19 474.0 1 473.5 0.42 0.09%

20 792.8 3 776.7 16.15 2.08%

21 587.9 2 585.0 2.97 0.51%

22 648.4 3 639.0 9.33 1.46%

23 325.1 1 325.0 0.16 0.05%

24 1112.5 4 1086.1 26.35 2.43%

25 1493.5 5 1492.5 1.03 0.07%

26 961.7 3 961.2 0.44 0.05%

27 1158.2 4 1157.8 0.45 0.04%

28 796.6 3 796.1 0.49 0.06%

29 756.0 2 755.9 0.06 0.01%

30 428.9 1 427.4 1.49 0.35%

31 1406.6 6 1405.6 1.00 0.07%

32 804.5 2 802.9 1.61 0.20%

33 1554.2 6 1486.0 68.24 4.59%

34 784.5 2 782.4 2.08 0.27%

35 793.6 3 745.2 48.33 6.49%

36 1189.3 4 1184.5 4.73 0.40%

37 1769.9 8 1744.8 25.11 1.44%

38 1025.0 4 1022.0 2.99 0.29%

39 667.9 2 667.3 0.63 0.09%

40 521.4 2 521.2 0.20 0.04%

41 1371.2 5 1367.9 3.26 0.24%

42 409.1 1 409.1 0.00 0.00%

43 364.4 1 364.1 0.27 0.07%

44 381.6 1 380.5 1.13 0.30%

45 437.7 1 437.7 0.00 0.00%

46 1079.9 3 1077.1 2.81 0.26%

47 1670.4 6 1659.8 10.58 0.64%

48 1951.1 9 1944.9 6.20 0.32%

49 999.1 4 998.3 0.76 0.08%

50 557.0 1 553.8 3.18 0.57%

A-Star Difference
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Table 11.  Comparison of DMA-Star route distances and straight line distance 

estimations (2 of 2). 

 
  

Iteration Straight Line Distance

Distance (NMs)

Fuel 

Stops Distance (NMs) NMs %

51 1103.0 4 1089.4 13.57 1.25%

52 628.2 2 628.0 0.23 0.04%

53 619.1 2 618.8 0.36 0.06%

54 1797.5 7 1763.7 33.76 1.91%

55 1105.1 3 1093.9 11.23 1.03%

56 1035.6 3 1028.4 7.24 0.70%

57 965.8 3 965.1 0.70 0.07%

58 1834.1 8 1825.7 8.42 0.46%

59 329.7 1 329.7 0.01 0.00%

60 566.8 2 566.6 0.20 0.04%

61 1335.5 6 1291.1 44.44 3.44%

62 626.7 2 626.2 0.55 0.09%

63 774.0 3 773.1 0.91 0.12%

64 967.8 3 966.3 1.58 0.16%

65 1941.9 8 1929.2 12.70 0.66%

66 2198.0 11 2149.8 48.17 2.24%

67 847.5 3 847.0 0.53 0.06%

68 500.1 1 497.9 2.18 0.44%

69 1711.5 7 1684.7 26.79 1.59%

70 876.4 3 874.9 1.51 0.17%

71 993.3 4 978.0 15.24 1.56%

72 1348.7 5 1321.4 27.24 2.06%

73 768.1 3 766.0 2.08 0.27%

74 661.5 2 661.3 0.15 0.02%

75 542.5 2 542.4 0.09 0.02%

76 918.9 3 909.8 9.03 0.99%

77 2258.8 10 2243.4 15.40 0.69%

78 706.7 3 703.6 3.12 0.44%

79 1136.7 4 1116.9 19.81 1.77%

80 587.9 2 571.4 16.57 2.90%

81 788.3 3 787.1 1.21 0.15%

82 1196.2 4 1195.6 0.52 0.04%

83 1294.8 5 1273.5 21.32 1.67%

84 685.8 2 547.4 138.34 25.27%

85 876.5 3 872.3 4.22 0.48%

86 879.7 3 873.3 6.38 0.73%

87 1258.3 5 1256.3 1.95 0.16%

88 1298.4 6 1290.3 8.04 0.62%

89 1454.0 5 1398.3 55.66 3.98%

90 437.0 1 419.6 17.43 4.15%

91 1153.1 4 1151.9 1.19 0.10%

92 1121.1 4 1120.4 0.67 0.06%

93 982.8 5 981.5 1.31 0.13%

94 498.2 1 497.8 0.48 0.10%

95 675.8 2 673.6 2.13 0.32%

96 1120.9 4 1118.9 2.07 0.19%

97 916.5 3 903.4 13.13 1.45%

98 1376.5 5 1371.6 4.89 0.36%

99 1322.9 6 1294.1 28.78 2.22%

100 1003.5 3 1001.1 2.40 0.24%

A-Star Difference
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Table 12.  Results of 100 obstacle avoidance iterations using A-Star and Dijkstra’s 

algorithms and the greedy heuristic (1 of 2). 

 
 

Iteration

Distance 

(NMs) Time (Sec)

Nodes 

Explored

Distance 

(NMs) Time (Sec)

Nodes 

Explored

Distance 

(NMs) Time (Sec)

Nodes 

Explored
1 233 0.11 277 245 0.02 43 233 38.94 5218

2 162 0.03 128 166 0.00 25 162 3.91 1834

3 200 0.10 268 200 0.01 34 200 14.95 3621

4 264 0.31 472 264 0.01 39 264 40.84 6226

5 68 0.00 13 68 0.00 13 68 0.21 380

6 61 0.00 19 61 0.00 11 61 0.12 287

7 110 0.01 61 110 0.00 16 110 0.82 806

8 203 0.07 213 209 0.00 31 203 14.80 3486

9 274 0.31 503 274 0.01 47 274 53.51 6984

10 269 0.59 719 269 0.01 34 269 57.70 7341

11 146 0.00 24 154 0.00 24 146 2.32 1418

12 281 0.22 403 281 0.01 52 281 64.88 7684

13 56 0.00 13 56 0.00 8 56 0.05 182

14 211 0.18 383 211 0.00 29 211 19.38 4163

15 63 0.00 23 63 0.00 9 63 0.13 295

16 285 0.39 566 291 0.01 42 285 40.10 6127

17 280 0.27 471 280 0.01 44 280 52.37 6961

18 252 0.44 616 252 0.01 32 252 38.46 6044

19 24 0.00 3 24 0.00 3 24 0.00 28

20 248 0.01 49 266 0.01 49 248 41.57 6187

21 251 0.50 663 253 0.01 37 251 44.97 6445

22 260 0.24 430 260 0.01 46 260 43.67 6391

23 288 0.63 754 294 0.01 39 288 69.84 8017

24 276 0.20 386 280 0.01 39 276 36.79 5817

25 46 0.00 13 46 0.00 8 46 0.04 155

26 159 0.04 138 165 0.01 24 159 5.20 2153

27 233 0.32 511 245 0.01 50 233 32.66 5636

28 146 0.03 137 152 0.00 25 146 4.18 1863

29 228 0.17 370 232 0.01 31 228 20.36 4323

30 74 0.00 30 74 0.00 13 74 0.25 434

31 196 0.16 357 196 0.01 25 196 14.60 3674

32 214 0.09 250 218 0.01 32 214 12.14 3305

33 222 0.09 254 222 0.00 34 222 15.36 3554

34 242 0.10 261 242 0.01 38 242 19.00 4212

35 234 0.08 228 242 0.01 37 234 16.75 3924

36 136 0.03 122 136 0.01 20 136 2.94 1585

37 240 0.18 375 240 0.01 42 240 31.68 5379

38 258 0.01 51 270 0.01 51 258 49.16 6755

39 196 0.02 78 204 0.00 32 196 8.21 2696

40 288 0.05 170 287 0.01 47 288 39.45 5924

41 267 0.47 649 273 0.01 36 267 51.70 6915

42 168 0.05 182 172 0.00 23 168 5.68 2245

43 262 0.22 414 262 0.01 47 262 46.38 6544

44 240 0.17 354 240 0.01 36 240 27.56 5103

45 266 0.62 695 266 0.01 34 266 56.10 7120

46 245 0.48 635 251 0.01 41 245 61.40 7543

47 124 0.01 76 124 0.00 19 124 1.30 1038

48 14 0.00 2 14 0.00 2 14 0.00 2

49 34 0.00 7 34 0.00 5 34 0.01 63

50 328 0.49 650 328 0.02 59 328 122.13 10398

GreedyA-Star Dijkstra's
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Table 13.  Results of 100 obstacle avoidance iterations using A-Star and Dijkstra’s 

algorithms and the greedy heuristic (2 of 2). 

 
 

 

Iteration

Distance 

(NMs) Time (Sec)

Nodes 

Explored

Distance 

(NMs) Time (Sec)

Nodes 

Explored

Distance 

(NMs) Time (Sec)

Nodes 

Explored
51 165 0.09 262 165 0.00 21 165 7.95 2647

52 304 0.27 466 304 0.01 47 304 48.27 6758

53 158 0.05 191 158 0.00 21 158 4.98 2118

54 181 0.06 205 181 0.01 32 181 10.88 3002

55 153 0.05 191 153 0.00 21 153 4.42 1931

56 266 0.44 618 278 0.01 50 266 79.40 8450

57 300 0.34 523 304 0.01 42 300 54.47 7150

58 230 0.15 339 242 0.01 37 230 23.80 4653

59 108 0.02 89 108 0.00 15 108 1.21 999

60 271 0.37 559 271 0.01 41 271 48.10 6548

61 202 0.13 321 206 0.01 27 202 13.68 3506

62 288 0.02 57 306 0.01 57 288 78.79 8432

63 320 0.56 690 320 0.02 55 320 99.23 9612

64 184 0.03 120 196 0.01 35 184 11.64 3273

65 328 0.43 601 328 0.02 50 328 96.56 9557

66 166 0.04 161 166 0.01 23 166 4.94 2111

67 158 0.08 231 158 0.00 20 158 6.52 2388

68 251 0.25 425 251 0.01 43 251 35.32 5797

69 222 0.14 322 234 0.01 36 222 21.00 4392

70 172 0.04 157 172 0.00 26 172 5.03 2089

71 68 0.00 13 74 0.00 13 68 0.21 379

72 210 0.20 402 210 0.01 27 210 19.17 4172

73 156 0.01 71 156 0.01 30 156 6.04 2339

74 33 0.00 6 33 0.00 6 33 0.01 71

75 273 0.57 707 273 0.01 36 273 58.16 7350

76 68 0.00 11 68 0.00 11 68 0.21 273

77 140 0.00 23 144 0.00 23 140 2.04 1309

78 173 0.05 179 185 0.01 31 173 8.55 2754

79 74 0.01 35 74 0.00 10 74 0.22 405

80 296 0.31 470 296 0.01 45 296 43.43 6402

81 180 0.09 257 184 0.00 24 180 8.88 2800

82 124 0.02 95 124 0.00 17 124 1.65 1168

83 198 0.05 179 198 0.00 31 198 8.59 2751

84 202 0.05 164 210 0.01 32 202 8.89 2859

85 84 0.00 30 88 0.00 13 84 0.25 431

86 54 0.00 9 58 0.00 9 54 0.05 169

87 125 0.02 96 131 0.00 22 125 2.30 1389

88 128 0.00 25 140 0.00 25 128 2.75 1535

89 278 0.18 359 278 0.01 52 278 62.70 7645

90 344 0.65 751 362 0.02 61 344 132.66 11311

91 222 0.37 565 222 0.01 36 222 43.17 6277

92 300 0.27 471 300 0.01 46 300 47.39 6591

93 288 0.06 170 296 0.01 47 288 38.48 5919

94 236 0.09 251 244 0.01 37 236 17.60 3957

95 190 0.02 74 190 0.00 31 190 7.00 2489

96 308 0.66 780 308 0.01 41 308 82.91 8496

97 312 0.32 515 316 0.01 44 312 62.02 7612

98 326 0.52 669 338 0.01 58 326 110.12 10194

99 308 0.01 61 326 0.02 61 308 101.78 9683

100 102 0.01 64 108 0.00 18 102 1.03 890

GreedyA-Star Dijkstra's
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Appendix C:  VBA Code 

Route Optimization 

‘The Route Optimization program uses the A-Star algorithm to find fuel stops between a departure and 

arrival airfield that minimize the route cost (distance or time – depending on user selection). 

 

Option Explicit 

Public Arriving_Airfield As String 

Public Departure_Airfield As String 

Public StartNum As Integer 

Public EndNum As Integer 

Public Cancel1 As Boolean 

Public MaxRange As Long 

Public True_AS As Double 

Public RefuelTime As Double 

Public Type Node 

Num As Integer 

ParID As Integer 

ScoreF As Double 

ScoreG1 As Double 

ScoreG2 As Double 

ScoreH As Double 

Open As Boolean 

Closed As Boolean 

 

End Type 

 

Sub RouteOptimizationAdmin() 

 

Call Clear_RouteOptimization  'Clears existing route information 

Worksheets("Intro").Select 

Input_Selection.Show  'Shows Departure/Arrival Point data entry form 

 

If Cancel1 = True Then  'Returns to the homepage if user clicks "cancel" 

Call Return_to_Homepage 

Exit Sub 

End If 

 

End Sub 

 

Sub Clear_RouteOptimization() 

'This subroutine clears existing route information from the "Route" sheet 

 

Sheets("Route").Select 

Range("A2:L100").Select 

Selection.ClearContents 

Range("A1").Select 

 

End Sub 

 

Sub A_StarDistOptimization() 

'This sub serves as the main framework for the Route Optimization A-Star algorithm 

 

Dim i As Integer 

Dim j As Integer 

Dim k As Integer 

Dim NumNodes As Integer  'Number of Nodes in distance matrix 

 

Dim CurNode As Node  'Current Node being evaluated from 

Dim TestNode As Node 

Dim BestNode As Node 

Dim StartNode As Node 

Dim GoalNode As Node 

Dim Openlist(1 To 439) As Node 

 

Application.ScreenUpdating = False 

Max_Fuel_Range.Show 

Airspeed.Show 

Refuel_Delay.Show 

 

StartNode.Num = StartNum 

StartNode.ParID = 0 

StartNode.ScoreF = 0 
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StartNode.ScoreG1 = 0 

StartNode.Closed = False 

StartNode.Open = True 

 

GoalNode.Num = EndNum 

CurNode = StartNode 

NumNodes = 439 

 

' Add the start node to the open list 

Openlist(StartNode.Num) = StartNode 

Openlist(StartNode.Num).Open = True 

 

While CurNode.Num <> GoalNode.Num 

Call Check_Open_Set(i, Openlist, NumNodes)  'Check to make sure the open list is not empty 

Call Get_the_Best_Node(i, NumNodes, CurNode, BestNode, Openlist)  'Find the node with the best F-Score 

If CurNode.Num = GoalNode.Num Then 'If the current node is the goal node, exit the loop 

GoalNode = CurNode 

Call Build_the_Route(StartNode, GoalNode, Openlist, True_AS) 

End If 

 

'Remove current node from open list and add to the closed list 

Openlist(CurNode.Num).Open = False 

Openlist(CurNode.Num).Closed = True 

 

'Calculate F/G scores for all "neighbors" 

For j = 1 To NumNodes 

If Worksheets("Distance Matrix").Cells(CurNode.Num, j) <= MaxRange And CurNode.Num <> j Then 

TestNode.Num = j 

TestNode.ParID = CurNode.Num 

TestNode.ScoreG1 = CurNode.ScoreG1 + Worksheets("Distance Matrix").Cells(CurNode.Num, TestNode.Num) 

TestNode.ScoreH = Worksheets("Distance Matrix").Cells(TestNode.Num, GoalNode.Num) 

TestNode.ScoreF = TestNode.ScoreG1 + TestNode.ScoreH 

TestNode.Open = True 

TestNode.Closed = False 

 

'If the neighbor has not been evaluated, add it to the open list 

If Openlist(TestNode.Num).Open = False And Openlist(TestNode.Num).Closed = False Then 

Openlist(TestNode.Num) = TestNode 

Openlist(TestNode.Num).Open = True 

End If 

 

'If the neighbor is on the open list, but this is a better path through it, update the parameters 

If Openlist(TestNode.Num).Open = True Then 

If TestNode.ScoreF < Openlist(TestNode.Num).ScoreF Then 

Openlist(TestNode.Num) = TestNode       'Updated Node(j) with the best route and parent ID to reach it 

End If 

End If 

 

'If the neighbor is on the closed list, but this is a better path through it, update the parameters 

and put it back on the open list 

If Openlist(TestNode.Num).Closed = True Then 

If TestNode.ScoreF < Openlist(TestNode.Num).ScoreF Then 

Openlist(TestNode.Num) = TestNode       'Updates Node(j) with the best route and parent ID to reach it 

Openlist(TestNode.Num).Closed = False 'Removes the node from the closed list 

Openlist(TestNode.Num).Open = True 'Places the node back on the open List 

End If 

End If 

End If 

Next j 

Wend 

 

Sheets("Route").Select 

 

End Sub 

 

Sub Get_the_Best_Node(i, Num As Integer, Cur As Node, Best As Node, Openlist() As Node) 

'This subroutine designates the node with the best F-Score as the current node 

 

Dim NumNodes As Integer 

Dim BestNode As Node 

Dim CurNode As Node 

 

NumNodes = 439 

 

'Set the BestNode.ScoreF = Big M 

Best.ScoreF = 10000 

 

'Cycles through all nodes to find the node with the lowest F-Score 

For i = 1 To NumNodes 
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If Openlist(i).Open = True Then 

If Openlist(i).ScoreF < Best.ScoreF Then 

Best.ScoreF = Openlist(i).ScoreF 

Cur = Openlist(i) 

End If 

End If 

Next i 

 

End Sub 

 

Sub Check_Open_Set(i, Openlist() As Node, NumNodes) 

'This subroutine returns an error message if there are no nodes in the Open List 

 

Dim Test As Integer 

 

'Cycles through all nodes, exits loop after finding a node on the open list 

For i = 1 To NumNodes 

If Openlist(i).Open = True Then 

Test = 1 

Exit For 

End If 

Next i 

 

'Generates error code if there are no nodes on the open list 

If Test = 0 Then 

Exit Sub 

MsgBox "Error" 

End If 

 

End Sub 

 

Sub Build_the_Route(Start As Node, Goal As Node, Openlist() As Node, True_AS) 

'This subroutine retraces the optimum route from Goal Node to Start Node 

 

Dim k As Integer 

Dim Route(1 To 439) 

 

'Assigns the goal node number to the first entry in the "Route" array 

k = 1 

Route(k) = Goal.Num 

 

'Continues entering route node numbers into "Route" array until reaching the start node 

k = 2 

While Openlist(Route(k - 1)).Num <> Start.Num 

Route(k) = Openlist(Route(k - 1)).ParID 

k = k + 1 

Wend 

 

Call Output_Route(Route(), k, True_AS) 

 

End Sub 

 

Sub Output_Route(Rte(), k As Integer, True_AS) 

'This subroutine enters the route information into the "Route" output sheet 

 

Dim i As Integer 

Dim FuelStops As Integer 

 

i = 2 

k = k - 1 

 

'Enters data for departure location into "Route" sheet 

While i = 2 

Worksheets("Route").Cells(i, 1).Value = "Start Point" 

Worksheets("Route").Cells(i, 2).Value = Rte(k) 

Worksheets("Route").Cells(i, 3).Value = Worksheets("Refuel Locations").Cells((Rte(k) + 1), 2) 

Worksheets("Route").Cells(i, 4).Value = Worksheets("Refuel Locations").Cells((Rte(k) + 1), 3) 

Worksheets("Route").Cells(i, 5).Value = Worksheets("Refuel Locations").Cells((Rte(k) + 1), 4) 

Worksheets("Route").Cells(i, 6).Value = Worksheets("Refuel Locations").Cells((Rte(k) + 1), 5) 

Worksheets("Route").Cells(i, 7).Value = Worksheets("Refuel Locations").Cells((Rte(k) + 1), 6) 

Worksheets("Route").Cells(i, 8).Value = 0 

Worksheets("Route").Cells(i, 9).Value = 0 

Worksheets("Route").Cells(i, 10).Value = 0 

Worksheets("Route").Cells(i, 11).Value = 0 

Worksheets("Route").Cells(i, 12).Value = 0 

k = k - 1 

i = i + 1 

Wend 
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'Enters data for all fuel stops into "Route" sheet 

While k > 1 

Worksheets("Route").Cells(i, 1).Value = "Fuel Stop " & i - 2 

Worksheets("Route").Cells(i, 2).Value = Rte(k) 

Worksheets("Route").Cells(i, 3).Value = Worksheets("Refuel Locations").Cells((Rte(k) + 1), 2) 

Worksheets("Route").Cells(i, 4).Value = Worksheets("Refuel Locations").Cells((Rte(k) + 1), 3) 

Worksheets("Route").Cells(i, 5).Value = Worksheets("Refuel Locations").Cells((Rte(k) + 1), 4) 

Worksheets("Route").Cells(i, 6).Value = Worksheets("Refuel Locations").Cells((Rte(k) + 1), 5) 

Worksheets("Route").Cells(i, 7).Value = Worksheets("Refuel Locations").Cells((Rte(k) + 1), 6) 

Worksheets("Route").Cells(i, 8).Value = Worksheets("Distance 

Matrix").Cells(Worksheets("Route").Cells(i, 2).Value, Worksheets("Route").Cells(i - 1, 2).Value) 

Worksheets("Route").Cells(i, 9).Value = Worksheets("Route").Cells(i - 1, 9).Value + 

Worksheets("Route").Cells(i, 8).Value 

Worksheets("Route").Cells(i, 10).Value = (Worksheets("Route").Cells(i, 8).Value) / True_AS 

Worksheets("Route").Cells(i, 11).Value = Worksheets("Route").Cells(i - 1, 11).Value + 

Worksheets("Route").Cells(i, 10) 

Worksheets("Route").Cells(i, 12).Value = Worksheets("Route").Cells(i - 1, 12).Value + 

Worksheets("Route").Cells(i, 10).Value + RefuelTime 

k = k - 1 

i = i + 1 

Wend 

 

'Enters data for arrival location into "Route" sheet 

Worksheets("Route").Cells(i, 1).Value = "Destination" 

Worksheets("Route").Cells(i, 2).Value = Rte(k) 

Worksheets("Route").Cells(i, 3).Value = Worksheets("Refuel Locations").Cells((Rte(k) + 1), 2) 

Worksheets("Route").Cells(i, 4).Value = Worksheets("Refuel Locations").Cells((Rte(k) + 1), 3) 

Worksheets("Route").Cells(i, 5).Value = Worksheets("Refuel Locations").Cells((Rte(k) + 1), 4) 

Worksheets("Route").Cells(i, 6).Value = Worksheets("Refuel Locations").Cells((Rte(k) + 1), 5) 

Worksheets("Route").Cells(i, 7).Value = Worksheets("Refuel Locations").Cells((Rte(k) + 1), 6) 

Worksheets("Route").Cells(i, 8).Value = Worksheets("Distance 

Matrix").Cells(Worksheets("Route").Cells(i, 2).Value, Worksheets("Route").Cells(i - 1, 2).Value) 

Worksheets("Route").Cells(i, 9).Value = Worksheets("Route").Cells(i - 1, 9).Value + 

Worksheets("Route").Cells(i, 8).Value 

Worksheets("Route").Cells(i, 10).Value = (Worksheets("Route").Cells(i, 8).Value) / True_AS 

Worksheets("Route").Cells(i, 11).Value = Worksheets("Route").Cells(i - 1, 11).Value + 

Worksheets("Route").Cells(i, 10) 

Worksheets("Route").Cells(i, 12).Value = Worksheets("Route").Cells(i - 1, 12).Value + 

Worksheets("Route").Cells(i, 10).Value 

 

End Sub 

 

Sub A_StarTimeOptimization() 

'This sub serves as the main framework for the Route Optimization A-Star algorithm minimizing time 

 

Dim i As Integer 

Dim j As Integer 

Dim k As Integer 

Dim NumNodes As Integer  'Number of Nodes in distance matrix 

 

Dim CurNode As Node  'Current Node being evaluated from 

Dim TestNode As Node 

Dim BestNode As Node 

Dim StartNode As Node 

Dim GoalNode As Node 

Dim Openlist(1 To 439) As Node 

 

Application.ScreenUpdating = False 

Max_Fuel_Range.Show 

Airspeed.Show 

Refuel_Delay.Show 

 

StartNode.Num = StartNum 

StartNode.ParID = 0 

StartNode.ScoreF = 0 

StartNode.ScoreG1 = 0 

StartNode.ScoreG2 = 0 

StartNode.Closed = False 

StartNode.Open = True 

 

GoalNode.Num = EndNum 

CurNode = StartNode 

NumNodes = 439 

 

' Add the start node to the open list 

Openlist(StartNode.Num) = StartNode 

Openlist(StartNode.Num).Open = True 

 

While CurNode.Num <> GoalNode.Num 
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Call Check_Open_Set(i, Openlist, NumNodes)  'Check to make sure the open list is not empty 

Call Get_the_Best_Node(i, NumNodes, CurNode, BestNode, Openlist)  'Find the node with the best F-Score 

If CurNode.Num = GoalNode.Num Then 'If the current node is the goal node, exit the loop 

GoalNode = CurNode 

Call Build_the_Route(StartNode, GoalNode, Openlist, True_AS) 

End If 

 

'Remove current node from open list and add to the closed list 

Openlist(CurNode.Num).Open = False 

Openlist(CurNode.Num).Closed = True 

 

'Calculate F/G scores for all "neighbors" 

For j = 1 To NumNodes 

If Worksheets("Distance Matrix").Cells(CurNode.Num, j) <= MaxRange And CurNode.Num <> j Then 

TestNode.Num = j 

TestNode.ParID = CurNode.Num 

TestNode.ScoreG1 = CurNode.ScoreG1 + (Worksheets("Distance Matrix").Cells(CurNode.Num, TestNode.Num) / 

True_AS) 

TestNode.ScoreG2 = CurNode.ScoreG2 + RefuelTime 

TestNode.ScoreH = (Worksheets("Distance Matrix").Cells(TestNode.Num, GoalNode.Num)) / True_AS 

TestNode.ScoreF = TestNode.ScoreG1 + TestNode.ScoreG2 + TestNode.ScoreH 

TestNode.Open = True 

TestNode.Closed = False 

 

'If the neighbor has not been evaluated, add it to the open list 

If Openlist(TestNode.Num).Open = False And Openlist(TestNode.Num).Closed = False Then 

Openlist(TestNode.Num) = TestNode 

Openlist(TestNode.Num).Open = True 

End If 

 

'If the neighbor is on the open list, but this is a better path through it, update the parameters 

If Openlist(TestNode.Num).Open = True Then 

If TestNode.ScoreF < Openlist(TestNode.Num).ScoreF Then 

Openlist(TestNode.Num) = TestNode       'Updated Node(j) with the best route and parent ID to reach it 

End If 

End If 

 

'If the neighbor is on the closed list, but this is a better path through it, update the parameters 

and put it back on the open list 

If Openlist(TestNode.Num).Closed = True Then 

If TestNode.ScoreF < Openlist(TestNode.Num).ScoreF Then 

Openlist(TestNode.Num) = TestNode       'Updates Node(j) with the best route and parent ID to reach it 

Openlist(TestNode.Num).Closed = False 'Removes the node from the closed list 

Openlist(TestNode.Num).Open = True 'Places the node back on the open List 

End If 

End If 

End If 

Next j 

Wend 

 

Sheets("Route").Select 

 

End Sub 

Obstacle Avoidance 

‘The Obstacle Avoidance program uses a grid-based network and uses the A-Star algorithm to find an 

optimal path while avoiding obstacles and considering undesirable areas.  The code used in this 

portion of the model is an adaptation of the two-dimensional path-finding program developed by 

Leonardo Volpi (2005). 

 

Public StartRow As Integer 

Public StartCol As Integer 

Public EndRow As Integer 

Public EndCol As Integer 

Public Departure_Airfield As String 

Public Arriving_Airfield As String 

Public Cancel As Boolean 

Public Cancel2 As Boolean 

 

Sub ObstacleAvoidanceAdmin() 

Dim myRange As Range 

Dim WallColor 

Dim i As Long, j As Long, k As Long, N As Long, M As Long, NM As Long 

Dim myMap(), PathStart(), PathEnd(), Path(), ErrMsg, Score, Stat 

 

Application.ScreenUpdating = False 
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'Show Departure/Arrival Point data entry form 

Input_Selection.Show 

 

If Cancel2 = True Then 

Call Return_to_Homepage 

Exit Sub 

End If 

 

Set myRange = Range("B2:VT262") 

WallColor = 1  'black for unwalkable ground" 

 

N = 262 

M = 592 

 

'Load obstacle and "undesirable area" information into myMap 

ReDim myMap(1 To N + 1, 1 To M + 1) 

With myRange 

For i = 1 To N 

For j = 1 To M 

If .Cells(i, j).Interior.ColorIndex = WallColor Then 

myMap(i + 1, j + 1) = -1 

Else 

myMap(i + 1, j + 1) = .Cells(i, j) 

End If 

Next j 

Next i 

End With 

 

i = 3 

 

StartLat = Application.WorksheetFunction.VLookup(StartNum, Sheets("Refuel 

Locations").Range("A2:F440"), 5, False) 

StartLon = Application.WorksheetFunction.VLookup(StartNum, Sheets("Refuel 

Locations").Range("A2:F440"), 6, False) 

EndLat = Application.WorksheetFunction.VLookup(EndNum, Sheets("Refuel Locations").Range("A2:F440"), 5, 

False) 

EndLon = Application.WorksheetFunction.VLookup(EndNum, Sheets("Refuel Locations").Range("A2:F440"), 6, 

False) 

 

StartRow = ((50 - StartLat) * 10) + 2 

StartCol = ((StartLon + 125) * 10) + 2 

EndRow = ((50 - EndLat) * 10) + 2 

EndCol = ((EndLon + 125) * 10) + 2 

 

Worksheets("Map").Activate 

Cells(StartRow, StartCol).Select 

With Selection.Interior 

.Pattern = xlSolid 

.PatternColorIndex = xlAutomatic 

.Color = 5296274 

.TintAndShade = 0 

.PatternTintAndShade = 0 

End With 

 

Cells(EndRow, EndCol).Select 

With Selection.Interior 

.Pattern = xlSolid 

.PatternColorIndex = xlAutomatic 

.Color = 255 

.TintAndShade = 0 

.PatternTintAndShade = 0 

End With 

 

ReDim PathStart(1 To 2), PathEnd(1 To 2) 

PathStart(1) = StartRow 

PathStart(2) = StartCol 

PathEnd(1) = EndRow 

PathEnd(2) = EndCol 

 

'Start A-Star Algorithm 

Call Pathfinder_A_star(myMap, PathStart, PathEnd, Path, ErrMsg, Stat) 

 

If ErrMsg <> "" Then 

MsgBox ErrMsg, vbCritical 

Exit Sub 

End If 

 

End Sub 
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Option Explicit 

 

Public Type Node 

Row As Integer     'row of the actual node 

Col As Integer     'column of the actual node 

ParID As Integer   'parent node 

ScoreF As Integer  'Score F (total cost) 

ScoreG As Integer  'Score G (Cost of the path done) 

ScoreH As Integer  'Score H (Estimated cost of the path to do) 

Closed As Boolean  'indicates if the node is in the closed list 

End Type 

Public Dist As Long 

Public NodesExplored As Long 

Dim Openlist() As Node 

Dim TargetNode As Node 

 

Sub Pathfinder_A_star(Map(), PathStart(), PathEnd(), Path(), ErrMsg, Optional Stat) 

Dim i As Long, c As String, j As Long, k As Long, N As Long, M As Long, NM As Long 

Dim Msg As String, k_best As Long, k1 As Long, k2 As Long, Nrow As Long, Ncol As Long 

Dim Goal As Boolean, ris As Boolean 

Dim CurrNode As Node 

Application.ScreenUpdating = False 

On Error GoTo Error_handler 

N = UBound(Map, 1) 

M = UBound(Map, 2) 

NM = N * M 

ReDim Openlist(NM) 

'load starting point 

Openlist(1).Row = PathStart(1) 

Openlist(1).Col = PathStart(2) 

'load ending point 

TargetNode.Row = PathEnd(1) 

TargetNode.Col = PathEnd(2) 

 

'A-star algorithm begins 

ErrMsg = "" 

k1 = 1 

Call Compute_Score(Openlist(k1), Map) 

Do 

Call PickUp_TheBest_Node(k_best) 

If k_best = 0 Then 

ErrMsg = "Sorry, unable to find the path" 

Exit Sub 

End If 

'switch the best node to the close list 

k2 = k2 + 1 

Openlist(k_best).Closed = True 

Nrow = Openlist(k_best).Row 'Update the current node (Nrow/Ncol) to the best node that was selected 

(k_best) 

Ncol = Openlist(k_best).Col 

NodesExplored = NodesExplored + 1 

'searches for each adjacent node 

For i = Nrow - 1 To Nrow + 1 

For j = Ncol - 1 To Ncol + 1 

If i > 0 And i <= N And j > 0 And j <= M Then 

'check if the node is walkable 

If Map(i, j) >= 0 And (i <> Nrow Or j <> Ncol) Then 

ris = False 

If Not ris Then 

'check if it is still open 

k = getNode(i, j) 

If k > 0 Then 

If Not Openlist(k).Closed Then 

'verify if the new score is better 

CurrNode.Row = i 

CurrNode.Col = j 

CurrNode.ParID = k_best 

Call Compute_Score(CurrNode, Map) 

If CurrNode.ScoreF < Openlist(k).ScoreF Then 

Openlist(k) = CurrNode 

End If 

End If 

Else 

'New node. Add it to the open list 

CurrNode.Row = i 

CurrNode.Col = j 

CurrNode.ParID = k_best 

c = Worksheets("Map").Cells(CurrNode.Row, CurrNode.Col).Address(False, False) 
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Range(c).Select 

 

Call Compute_Score(CurrNode, Map) 

k1 = k1 + 1 

Openlist(k1) = CurrNode 

'check if it is the target node 

If i = TargetNode.Row And j = TargetNode.Col Then 

Goal = True 

k2 = k2 + 1 

Openlist(k1).Closed = True 

Exit Do 

End If 

End If 

End If 

End If 

End If 

Next j, i 

Loop  'main loop 

 

Call Highlight_Path(k1) 

 

End Sub 

 

Private Function getNode(Nrow, Ncol) 

Dim k As Long 

getNode = 0 

Do 

k = k + 1 

If Openlist(k).Col = 0 Then Exit Do 

If Openlist(k).Col = Ncol And Openlist(k).Row = Nrow Then 

getNode = k 

End If 

Loop 

End Function 

 

Private Sub PickUp_TheBest_Node(k_best As Long) 

'Look for the lowest F cost square on the open list. 

Dim ScoreMin As Long, k As Long, k_min As Long 

 

Do 

k = k + 1 

If Openlist(k).Col = 0 Then Exit Do 

If Not Openlist(k).Closed Then 

If k_min = 0 Or ScoreMin >= Openlist(k).ScoreF Then 

ScoreMin = Openlist(k).ScoreF 

k_min = k 

End If 

End If 

Loop 

k_best = k_min 

End Sub 

 

Private Sub Compute_Score(P As Node, Map) 

'computes the score of the p-th node 

Dim L As Long, di As Long, dj As Long 

 

If P.ParID > 0 Then 

'take the score G of its parent 

L = Map(P.Row, P.Col) 

If L < 0 Then L = 100000 

P.ScoreG = Openlist(P.ParID).ScoreG 

If Openlist(P.ParID).Row = P.Row Or Openlist(P.ParID).Col = P.Col Then 

P.ScoreG = P.ScoreG + 5 + L 

Else 

P.ScoreG = P.ScoreG + 7.5 + L 

End If 

End If 

 

'Straight Line Distance Heuristic 

di = ((P.Row - TargetNode.Row) * 5) ^ 2 

dj = ((P.Col - TargetNode.Col) * 5) ^ 2 

P.ScoreH = Sqr(di + dj) 

 

'global score 

P.ScoreF = P.ScoreG + P.ScoreH 

 

End Sub 

 

Sub Highlight_Path(k1) 
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Dim i As Integer 

Dim k As Integer 

Dim c As String 

 

'count the path-length 

i = k1: k = 0 

Do 

k = k + 1 

i = Openlist(i).ParID 

Loop Until i = 0 

 

'build the path 

ReDim Path(1 To k, 1 To 2) 

Dim Lt1 As Double 

Dim Lt2 As Double 

Dim Ln1 As Double 

Dim Ln2 As Double 

Dim rngZoom As Range 

 

i = k1 

k = 0 

 

Do 

k = k + 1 

Path(k, 1) = Openlist(i).Row 

Path(k, 2) = Openlist(i).Col 

If Openlist(i).Row <> StartRow Or Openlist(i).Col <> StartCol Then 

If Openlist(i).Row <> EndRow Or Openlist(i).Col <> EndCol Then 

c = Worksheets("Map").Cells(Openlist(i).Row, Openlist(i).Col).Address(False, False) 

Range(c).Select 

With Selection.Interior 

.Pattern = xlSolid 

.PatternColorIndex = xlAutomatic 

.Color = RGB(254, 191, 78) 

.TintAndShade = 0 

.PatternTintAndShade = 0 

End With 

End If 

End If 

'Calculate the distance traveled by the path 

 

If k > 1 Then 

Lt1 = Cells(Path(k, 1), 1) 

Lt2 = Cells(Path((k - 1), 1), 1) 

Ln1 = Cells(1, Path(k, 2)) 

Ln2 = Cells(1, Path((k - 1), 2)) 

End If 

 

Dist = Dist + Application.WorksheetFunction.Acos(Cos(Application.WorksheetFunction.Radians(90 - Lt1)) 

* Cos(Application.WorksheetFunction.Radians(90 - Lt2)) + Sin(Application.WorksheetFunction.Radians(90 

- Lt1)) * Sin(Application.WorksheetFunction.Radians(90 - Lt2)) * 

Cos(Application.WorksheetFunction.Radians(Ln1 - Ln2))) * 3440.065 

 

i = Openlist(i).ParID 

 

Loop Until i = 0 

 

MsgBox "The total distance is " & Dist & "  NMs" 

Range("A1").Select 

 

End Sub 
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