

AIRCRAFT ROUTE OPTIMIZATION USING THE

A-STAR ALGORITHM

THESIS

Garret D. Fett, Major, USA

AFIT-ENS-14-M-06

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the United

States Government. This material is declared a work of the U.S. Government and is not

subject to copyright protection in the United States.

AFIT-ENS-14-M-06

AIRCRAFT ROUTE OPTIMIZATION USING THE

A-STAR ALGORITHM

THESIS

Presented to the Faculty

Department of Operational Sciences

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Operations Research

Garret D. Fett, BS

Major, USA

March 2014

DISTRIBUTION STATEMENT A.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENS-14-M-06

AIRCRAFT ROUTE OPTIMIZATION USING THE

A-STAR ALGORITHM

Garret D. Fett, BS

Major, USA

Approved:

____//signed//________________________ 6 Mar 2014

Raymond R. Hill, PhD (Chairman) Date

____//signed//________________________ 7 Mar 2014

Sarah G. Nurre, PhD (Member) Date

iv

AFIT-ENS-14-M-06

Abstract

This research develops an Aviation Distance Estimation and Route Planning Tool

(ADERPT) that finds least-cost aircraft routing from a designated departure airfield to an

arrival airfield for the purposes of mission cost estimation and pre-mission planning. The

model network consists of 43 Army airfields and 426 airports in the Contiguous United

States (CONUS) with Department of Defense contract fuel. Using the A-Star algorithm

and considering aircraft fuel range, ground speed, and refueling time, we determine the

refuel locations that result in the most efficient route. Considering the use of both

distance and travel time, we compare our model’s performance with Dijkstra’s algorithm,

a greedy heuristic, and existing cost-estimation techniques. The ADERPT also examines

the use of a grid-based network for obstacle avoidance in route planning and provides a

proof of concept for its potential use as a mission planning tool.

v

Acknowledgments

 I would like to express my sincere gratitude to my thesis advisors, Dr. Raymond

Hill and Dr. Sarah Nurre for their knowledge and guidance during my time at AFIT.

Thanks also to my sponsor, specifically MAJ Jaysen “Dwight” Yochim and the

FORSCOM G4 Aviation Distribution section for providing the foundation for this work

and for taking the time to offer assistance and feedback.

Further thanks to all my peers who helped me throughout my studies, especially

Capt. Chris Jones for his VBA expertise! Finally, a special thanks to my wife and family

for enduring some sleepless nights and frustrating days. I would not have made it

through the last 18 months without your unceasing encouragement and support.

 Garret D. Fett

vi

Acknowledgments

Page

Abstract .. iv

Acknowledgments.. vi

List of Figures .. viii

List of Tables ... ix

I. Introduction ..1

Background...1

Problem Statement..2

Scope and Contribution ..2

Overview ..3

II. Literature Review ..4

Path-finding Applications ...4

Data and Notation ...4

Dijkstra’s Shortest Path Algorithm ..6

A-Star Algorithm ..8

Route Optimization and Obstacle Avoidance Applications13

Conclusion ..14

III. Methodology ..15

Introduction ..15

Distance Calculations ...15

Route Optimization ..16

Obstacle Avoidance ..21

IV. Results...26

Route Optimization ..26

vii

Obstacle Avoidance ..31

V. Conclusions and Future Research ..33

Appendix A: Model Guide..34

Overview ..34

Route Optimization ..34

Obstacle Avoidance ..39

Appendix B: Iterative Model Results ...41

Appendix C: VBA Code ...47

Route Optimization ..47

Obstacle Avoidance ..51

Bibliography ..56

viii

List of Figures

Page

Figure 1. Example of a grid-based graph. .. 5

Figure 2. Transportation network shown as a graph. ... 5

Figure 3. Simplified road network used in example of Dijkstra’s algorithm 7

Figure 4. Dijkstra’s algorithm using a grid-based graph ... 8

Figure 5. Computation time comparison of A-Star vs. Dijkstra’s algorithm................... 11

Figure 6. Manhattan and Straight Line Distance Heuristics .. 12

Figure 7. A-Star Pseudocode ... 13

Figure 8. Map of 439-node Route Optimization Network ... 16

Figure 9. Route Optimization Distance Matrix.. 17

Figure 10. Example of Obstacle Avoidance model map costs .. 23

Figure 11. Obstacle voidance program output ... 25

Figure 12. Comparison of Route Optimization using DMA-Star vs Greedy heuristic 27

Figure 13. Second comparison of Route Optimization using DMA-Star vs Greedy

heuristic .. 28

Figure 14. Comparison of Route Optimization using DMA-Star vs TMA-Star.............. 29

Figure 15. Route between Key West and Brownsville using the TMA-Star model 30

Figure 16. Obstacle Avoidance model using Dijkstra’s algorithm 32

Figure 17. Obstacle Avoidance model using the A-Star algorithm. 32

ix

List of Tables

Page

Table 1. Example of the iterations of Dijkstra’s algorithm ..8

Table 2. Example of the Route Optimization output table ...21

Table 3. Extreme points of the contiguous United States ...22

Table 4. Averaged results of Route Optimization iterations using the DMA-Star

algorithm, TMA-Star algorithm, Dijkstra’s algorithm, and a greedy heuristic26

Table 5. Route Optimization comparison of DMA-Star and TMA-Star results29

Table 6. Route Optimization comparison the TMA-Star algorithm and straight line

distance ...30

Table 7. Obstacle Avoidance model comparison of averaged performance31

Table 8. Route Optimization model comparison – individual results (1 of 2)41

Table 9. Route Optimization model comparison – individual results (2 of 2).42

Table 10. Comparison of A-Star and straight line distance estimations (1 of 2)43

Table 11. Comparison of A-Star and straight line distance estimations (2 of 2)44

Table 12. Obstacle Avoidance model comparison – individual results (1 of 2)45

Table 13. Obstacle Avoidance model comparison – individual results (2 of 2)46

1

AIRCRAFT ROUTE OPTIMIZATION USING THE

A-STAR ALGORITHM

I. Introduction

Background

 Army aviation assets have been in high demand over the last ten years. Operation

Iraqi Freedom, New Dawn, Enduring Freedom, and other operations have stretched the

capabilities of rotary-wing aircraft to the maximum. Due to the need for increased

helicopters in combat environments, deployed Combat Aviation Brigades (CABs) are

often directed to leave aircraft in-theater as Stay-Behind Equipment (SBE) when they

redeploy to their home station. This creates the added problem of having to replenish the

redeploying unit with aircraft at home-station for training, mission support, and real-

world missions.

 The United States Army Forces Command (FORSCOM) is responsible for

determining how this replenishment of aircraft occurs, selecting aircraft from other units

to be transferred to the redeploying unit. The transferred aircraft are flown to the new

duty station by either the losing or gaining unit, with FORSCOM funding the cost of the

aircraft movement. In the fiscally-constrained environment of today’s military, the

FORSCOM G-4 Aircraft Distribution section and G3/5/7 Aviation Division are required

to provide estimates for the cost of all aircraft transfers.

 Current cost estimate techniques use an approximated flight time between the

losing and gaining duty station. The approximated flight time is based on straight line

distance and is multiplied by a “cost factor” to produce a cost estimate for the flight. The

cost factor incorporates fuel cost, as well as parts and consumables costs. The

2

FORSCOM G-4 Aircraft Distribution section is responsible for generating aircrew TDY

cost estimates for all aircraft movements. This is currently done by comparing future

required aircraft movements to completed movements and their associated duration and

Temporary Duty (TDY) costs.

Problem Statement

This research attempts to improve current cost estimation techniques by

developing an Aviation Distance Estimation and Route Planning Tool (ADERPT) that

incorporates the use of the A-Star routing algorithm to find an optimum route between

the losing and gaining airfield. The algorithm considers aircraft constraints (maximum

distance before refueling), aviator constraints (maximum flight hours per day), and

potential obstacles to the flight path (Restricted Operating Zones). The model includes

all Contiguous United States (CONUS) Army Airfields and all CONUS Defense

Logistics Agency (DLA) approved contract fuel locations (DLA, 2013).

Scope and Contribution

The ADERPT provides an expedient method of producing accurate flight

distances and travel times between all CONUS Army Airfields and contract fuel

locations. The route optimization distance and travel time calculations can be used to

estimate fuel and TDY costs. The ADERPT runs on software common to DOD computer

systems (Microsoft Excel) and processing times are short (less than one second). The

route optimization tool could also provide value to aircrews and air mission planners.

The program quickly identifies efficient fuel stops between a departure and arrival

location, which can be used to assist with cross-country flight planning.

3

Overview

Chapter 2 of this document will provide a review of existing literature related to

routing problems and use of the A-Star algorithm. Chapter 3 outlines the proposed

methodology for finding optimum routes for aircraft movement cost estimation and pre-

mission planning. Chapter 4 provides analysis and results of the implementation of the

algorithm, and compares it to other approaches to the routing problem. Chapter 5

provides a summary of this research, discusses the limitations of the model, and proposes

recommendations for future research.

4

II. Literature Review

Path-finding Applications

The process of path-finding over a network develops a route from a starting node

to a target node that minimizes “cost” while avoiding obstacles. How cost is defined can

vary depending on the goal of the path-finder. Cost could be distance, time, fuel

expended, or a combination of any number of factors that we seek to minimize by

planning an efficient route.

Path-finding algorithms can also be used to find optimum or near optimum routes

between multiple points while considering obstacles and constraints. The application of

these algorithms is very diverse. Vehicle GPS navigation devices make use of such

algorithms to provide drivers with efficient directions (Jenkins 2007). Military combat

simulations such as the Close Combat Tactical Trainer use path-finding algorithms to

move Soldiers and vehicles across a simulated battle space (Beeker 2004). Finally, path-

finding algorithms are used for Artificial Intelligence (AI) in strategy video games, to

smartly move computer-controlled elements through their environments (Stout 1997).

Data and Notation

 Path-finding algorithms operate using a mathematical “graph” which is simply the

set of nodes (sometimes referred to as vertices) that exist in the search space, or area in

which we are examining. A graph could be represented as a grid, as shown in Figure 1,

where each cell is a node and the arcs are implied to connect any node i to node j such

that j is adjacent to i . Figure 2 shows another example of a graph in which cities are

represented as node and the roads connecting cities are arcs which are assigned weights

5

based on the distance, time, fuel cost, etc. between the two nodes. The weight of an arc

could also be calculated using combinations multiple units of measure. The arcs in

Figure 1 are unweighted and represented by the lines connecting cells (for simplicity,

only the arcs surrounding the start node are shown). The arcs in Figure 2 are shown as

lines connecting the cities and are weighted by distance (miles) and time.

Figure 1. Example of a graph composed of grid cells. The green cell represents the

start node, and red cell represents the target node.

Figure 2. Network representing the transportation/road system in Southeastern

Texas (taken from http://origin-ars.els-cdn.com/content/image/1-s2.0-

S0360835213001459-gr5.jpg).

6

There are numerous algorithms used in path-finding. We first discuss, in detail,

two common algorithms: Dijkstra’s Shortest Path Algorithm, and the A-Star Algorithm,

and then discuss several applications of these algorithms.

Dijkstra’s Shortest Path Algorithm

 Dijkstra’s algorithm is one of the earliest algorithms for finding an optimum path

from a start node to a target node. Dijkstra’s algorithm works by separating nodes into

two lists: those that have been visited, and those that have not been visited (Dijkstra

1959). The algorithm begins at the starting node with all nodes on the unvisited list and,

iteratively, the node with the lowest cost path to it is removed from the list and placed on

the visited list. The lowest cost to all nodes is initially set as infinite to indicate that the

node has not been visited and to allow the first path to reach the node to become, at least

temporarily, the best route to that node. The first node placed on the visited list is the

starting node (usually with a cost of zero). The algorithm then examines all nodes

reachable from the starting node (referred to as “neighbor nodes”) and selects the lowest

cost option as the current node. The current node is then moved to the visited list, it’s

neighbor nodes are evaluated and assigned costs. The algorithm then selects the

unvisited node with the lowest cost as the current node. As the number of visited nodes

expands, the forward-most edge of the explored space is referred to as the frontier.

Exploration continues until the target node is placed on the visited list, at which

point the algorithm ends. Since the algorithm always examines the lowest cost path first,

a more efficient route to the target node cannot exist (Beeker 2004). Dijkstra’s algorithm

assigns a “pointer” to each node which indicates the “parent” node that resulted in the

7

lowest cost route to the node. Once the algorithm arrives at the target node, we can use

the pointers to retrace back to the starting node along the optimal path.

 We simplify Figure 2 into a 7N  node network shown in Figure 3, where each

node represents a city and the value on each arc represents miles. Using this network, we

demonstrate the processing of Dijkstra’s algorithm using Dallas as the start node and San

Antonio as the target node.

Figure 3. Simplified road network used in example of Dijkstra’s algorithm (arc

costs are shown in miles).

 Table 1 shows the 7 iterations required to add the target node to the visited list.

The algorithm begins at iteration 1 with the set of visited nodes empty and selects node 1

as the current node since it has the lowest cost (0). Iteration 2 evaluates the two neighbor

nodes that can be reached from node 1 (nodes 2 and 4), selects the node with the lowest

cost (node 2), and records the parent ID for the route (node 1). The algorithm iterates

until iteration 7 in which the goal node is designated as the current node. We then use the

parent ID “pointers” to retrace the path from the goal node to the start node and

determine the least cost path to be the path travelling through nodes 7, 6, 4, and 1.

8

Table 1. Example of the iterations of Dijkstra’s algorithm applied to the network

shown in Figure 3.

The computational complexity of the original Dijkstra’s algorithm is
2

()O N

(Cormen, Leiserson, and Rivest 1990). As the number of nodes N increases, Dijkstra’s

algorithm proves to be less efficient than other algorithms. Dijkstra’s algorithm is not a

directed algorithm, meaning it does not give preference to nodes that move closer to the

target node (Rabin 2002). Dijkstra’s simply searches outward from the starting node,

finding the least cost route to each node until the target node is found. Figure 4 shows

that this search method explores areas of the search space that are unlikely to produce

optimal solutions. With search spaces and more complex path-finding problems, this can

result in long processing times.

Figure 4. Three progressive stages of Dijkstra’s algorithm using a grid-based graph

A-Star Algorithm.

 The A-Star algorithm was first presented by Hart, Nilssen, and Raphael in 1968 as

the combination of a mathematical and heuristic approach to find a least cost path from a

Iteration Unvisited Visited Current Neighbors 1 2 3 4 5 6 7

1 {1,2,3,4,5,6,7} {} (0, -) (∞, -) (∞, -) (∞, -) (∞, -) (∞, -) (∞, -)

2 {2,3,4,5,6,7} {1} 1 {2,4} (33, 1) (∞, -) (95, 1) (∞, -) (∞, -) (∞, -)

3 {3,4,5,6,7} {1,2} 2 {3,4} (188, 2) (95, 1) (∞, -) (∞, -) (∞, -)

4 {3,5,6,7} {1,2,4} 4 {3,6} (188, 2) (∞, -) (195, 4) (∞, -)

5 {5,6,7} {1,2,3,4} 3 {5,6} (293, 3) (195, 4) (∞, -)

6 {5,7} {1,2,3,4,6} 6 {5,7} (293, 3) (272, 6)

7 {5} {1,2,3,4,6,7} 7

Node

(distance, parent node)

9

starting node to a target node (Hart, et al. 1968). A-Star builds upon the approach of

Dijkstra’s algorithm, but incorporates a heuristic to direct the search toward the target

node.

The combination of the mathematical and heuristic approaches proves significant.

While heuristics can generally not guarantee a lowest cost path, Dijkstra’s algorithm can.

And while Dijkstra’s algorithm expands out from the starting node in all directions, a

heuristic focuses the search and can converge on the target node much quicker. The

combination results in the ability of the A-Star algorithm to guarantee a least cost path, if

one exists, and finds it searching the smallest number of nodes possible (Hart, et al.

1968).

 If ()f n is the lowest cost path to the target node through node n :

 () () (n)f n g n h  (1)

Where

n is the current node,

()g n is the actual cost of the path from the starting node to the current node, and

()h n is the actual cost of the path from the current node to the target node.

The A-Star algorithm calculates an estimate of ()f n , denoted '()f n based on

estimated costs for ()g n and ()h n , using the following equation:

 '() '() '()f n g n h n  (2)

where:

'()g n is the estimated cost of the path from the starting node to the current node, and

'()h n is the estimated cost of the path from the current node to the target node.

10

The algorithm evaluates nodes within the search space to minimize ()f n . In this

evaluation function ()g n by itself is equivalent to performing Dijkstra’s algorithm. We

would begin our undirected search at the starting node and expand out to nodes that

minimize path cost, but do not necessarily move us closer to the target node. It is the

addition of the heuristic component, ()h n , that helps direct the search toward the target

node. The heuristic serves as an estimation function, estimating the cost for reaching the

target from each node that is evaluated (Beeker 2004).

The term “heuristic” is derived from the Greek word “heuriskein,” which means

“to discover” (Zanakis and Evans 1981). Operations Researchers have long used

heuristic procedures to reduce the search space in problem-solving activities (Tonge,

1961). Heuristics effectively seek to find good solutions to difficult problems in a

reasonable amount of computational time. There are many situations when the

implementation of a heuristic is useful. One such situation is when a heuristic improves

the performance of an optimizer by providing starting solutions or when the heuristic

guides the search thereby reducing the number of candidate solutions (Zanakis and Evans

1981). Hart, Nilsson, and Raphael (1968) exploit this benefit by integrating a heuristic

function into their algorithm. Figure 5 shows a comparative study done by Sathyaraj, et

al. (2008) of the computational time of Dijkstra’s algorithm and the A-Star algorithm as

the number of nodes in a network increase.

11

Figure 5. Computation time comparison of A-Star vs. Dijkstra’s algorithm

(Sathyaraj, et al. 2008).

A-Star does not dictate the type of heuristic to use in the algorithm. Instead, the

heuristic can be formulated and tailored to the needs of the user. An important property

of the heuristic is admissibility. A heuristic is considered “admissible” if the estimated

cost of reaching the target node is always less than the actual cost, for all nodes. That is

if '() ()h n h n n N   (Beeker 2004). An A-Star algorithm containing an admissible

heuristic guarantees an optimum path, if one exists, while an inadmissible heuristic does

not.

The processing time of the A-Star algorithm is significantly influenced by the

type of heuristic used in the evaluation function (Soltani, et al. 2003). A gross

underestimation of ()h n causes the algorithm to search a broader space, resulting in

longer processing times. A heuristic that overestimates ()h n does not guarantee an

optimal solution, but can provide a “good” solution quickly (Patel 2011).

Two commonly used heuristics for '()h n , Euclidean distance and Manhattan

distance, illustrate the role the heuristic plays in the search. Euclidean distance uses the

Pythagorean Theorem to generate a “straight line distance” between two nodes. It can be

12

applied to our city/road network to generate a cost estimate from node 2 to the target

node as shown in Figure 6(b). Euclidean distance produces an admissible heuristic since

there can be no shorter path between two nodes. Manhattan distance is commonly used

in grid-based graphs and estimates the distance to the target node by counting only

vertical and horizontal moves. This heuristic is inadmissible since a shorter path to the

target node exists. Figure 6(a) shows a Manhattan distance heuristic applied to our grid-

based graph problem.

Figure 6. (a) Manhattan distance heuristic from the start node to the target node

(b) Euclidean distance heuristic from node 2 to the target node.

Aside from the guiding heuristic, the A-Star algorithm operates very much like

Dijkstra’s algorithm, evaluating nodes and maintaining open and closed lists of visited

and unvisited nodes. The algorithm also maintains pointers to track the parent of each

node. The A-Star pseudocode shown in Figure 7 was originally written by James

Matthews in his article Basic A-Star Pathfinding Made Simple (2002).

13

 1. Let P = the start node

 2. Assign ()f n , ()g n , and ()h n values to P

 3. Add P to the Open list

 4. Let B = the best node from the Open list (lowest ()f n value)

 If B is the goal node, then quit – a path has been found

 If Open list is empty, then quit – a path cannot be found

 5. Let
iC = all valid nodes connected to B

 Assign ()f n , ()g n , and ()h n values to
iC

 Check whether
iC is on the Open or Closed list

 If so, check to see if ()f n is lower

 If so, update the path

 Else, add
iC to the Open list

 6. Return to step 4

Route Optimization and Obstacle Avoidance Applications

 Previous work related to path-finding and obstacle avoidance has been applied to

aviation route planning. Szczerba, et al. (2000) developed a Sparse A-Star Search (SAS)

route planner which seeks to minimize a cost array while meeting certain constraints.

Szczerba, et al. (2000) utilize a grid-based graph and incorporate a Map Cost (MC) array

which can combine “cost layers” such as the terrain, threat exposure, and weather

associated with each grid cell. This Map Cost, along with a flight distance cost are used

to compute each actual cost, ()g n , and estimated cost, h'()n , as the algorithm progresses.

The Map Cost array allows a search for a route that not only seeks to minimize the

distance travelled, but also considers other factors that may impact the ability of an

aircrew to successfully complete a flight.

 The SAS route planner also incorporates constraints in the algorithm that can

prevent infeasible routes. Szczerba, et al. (2000) discuss a route distance constraint

which prevents routes from exceeding the fuel capacity of an aircraft, an approach angle

Figure 7. A-Star Pseudocode (Matthews 2002).

14

constraint which prevents routes from approaching the destination airfield at an angle that

is not aligned with the runway, and a turn angle constraint which prevents turns that

would exceed the maximum angle of bank of an aircraft (Szczerba, et al. 2000).

 The U.S. Army Research Laboratory (ARL) developed the Aviation Weather

Routing Tool (AWRT) to efficiently plan manned and unmanned aircraft routes while

avoiding hazardous weather (Jameson, Knapp, and Measure 2009). AWRT uses the A-

Star algorithm and a grid-based graph which includes a weather cost for each grid cell

based on the presence of adverse weather conditions at that location. The AWRT

operates in four dimensional space (3-D and time) and allows the user to input a risk

tolerance that effects the likelihood that the planned route will traverse through adverse

weather conditions.

Conclusion

There are numerous approaches to finding an efficient route for a single entity to

travel between two points. Our proposed model combines some of the techniques

outlined in this chapter to conduct sequential iterations of the A-Star algorithm using

network-based and grid-based graphs to find an optimal flight route between two

locations while avoiding known obstacles and conforming to a set of constraints.

15

III. Methodology

Introduction

The Aviation Distance Estimation and Route Planning Tool (ADERPT) provides

two primary functions: route optimization and obstacle avoidance. The route

optimization portion of the model seeks a least cost route from a starting location to an

ending location by selecting refuel locations that minimize the total route distance or

travel time while considering multiple constraints. The obstacle avoidance portion uses a

grid-based network and seeks an optimum route from a starting location to an ending

location avoiding obstacles along the flight route. The user can choose to implement

only one of the functions, or can implement them both in series.

Distance Calculations

 All geographic coordinates used in the model are latitude/longitude coordinates

expressed in Decimal Degrees (DD). To account for the spherical curvature of the earth,

we use great-circle distance calculations as outlined in AFR 51-40, Air Navigation

(Departments of the Air Force and Navy 1983).

 1

1 2 1 2 2 160*cos [sin *sin cos *cos *cos()d L L L L     (3)

Where

d is the great-circle distance between two coordinates.

1L and 2L are the departure and arrival latitude, respectfully.

1 and 2 are the departure and arrival longitude, respectfully.

16

Route Optimization

Overview

The Route Optimization portion of the model generates an optimum route

between two locations by selecting refuel locations that minimize the total distance of the

route. The network consists of 439 nodes representing 43 CONUS Army Airfields and

396 airports with contract fuel available. Figure 8 shows a map displaying the location of

all 439 nodes.

Figure 8. Map of 439-node network.

Each arc in the network represents the great-circle distance between two nodes.

These arc distances are pre-processed and stored in a distance matrix to reduce

processing time. Arc lengths which exceed the user-selected aircraft maximum fuel

range are eliminated from consideration as the algorithm searches for an optimum route.

A portion of the distance matrix is shown in Figure 9.

17

Figure 9. A portion of the pre-processed distance matrix showing nodes 1-15. Row

and column numbers represent node numbers.

Model Assumptions

 The route optimization model assumes the aircraft travels at a constant Ground

Speed (GS). It does not account for acceleration during departure or deceleration during

approach. The model assumes the aircrew will be able to navigate the assigned route

without deviating due to inclement weather, Air Traffic Control (ATC) instructions, or

other possible reasons. The calculated route distances are based on “straight-out”

departures and “straight-in” arrivals and no distance is added for any required departure

or arrival procedures. We also assume fuel is always available at all airports included in

the model and do not consider refuel hours of operation. Finally, the model assumes the

user factors in fuel consumption during start-up and ground taxi when inputting the max

fuel range.

Inputs

 The user selects the starting location and ending location from a dropdown list

that includes 43 CONUS Army Airfields and 396 airfields with contract fuel available.

18

The user also enters the maximum distance allowed before refueling, the planned ground

speed, and the time required to refuel. Like Zeisler’s (2000) Intra-Theater Airlift Model,

these inputs allow for adaptable application across various aircraft Mission-Design Series

(MDS) with different fuel ranges, cruise airspeeds, and refueling times. Additionally, it

allows the user to tailor the fuel range to a specific flight profile; a Visual Flight Rules

(VFR) flight profile requires aviators to plan a 20-minute fuel reserve into the flight while

an Instrument Flight Rules (IFR) flight profile requires a 30-minute fuel reserve

(Department of the Army 2008). Finally, the user has the option to search for a route that

minimizes the total flight distance between the starting and ending location or to search

for a route that minimizes the total travel time. While distance minimization requires no

further explanation, the method for minimizing travel time is explained in the following

section.

Model Procedure

 The route optimization – Distance Minimization A-Star algorithm (DMA-Star)

begins by collecting the start and target nodes from the user input form. The start node is

then added to the open list. The algorithm then uses the pre-processed distance matrix to

identify all feasible successor nodes (refuel locations that are closer than the user-defined

maximum distance before refueling), adds them to the open list, and calculates '()g n ,

'()h n , and '()f n for each. The model selects the node with the lowest '()f n value and

designates it as the current node. The algorithm then iterates, identifying all feasible

successor nodes and terminates when the goal node is designated as the current node. If

the goal node has not been reached and the open list contains no nodes, the model

produces an error message indicating that an optimum solution could not be found.

19

 The route optimization –Time Minimization A-Star algorithm (TMA-Star) model

is structured the same way as the DMA-Star model, with two modifications. First, the

'()g n values of '()h n , and '()f n are in units of time (in hours) instead of distance. To

accomplish this, the algorithm divides '()g n and '()h n by the estimated ground speed of

the flight.

The second deviation from the DMA-Star model is that the user-defined ground

time required to refuel is incorporated into time minimization model. The resulting

formula is:

 '() 1'() 2'() 1'()f n g n g n h n   (4)

()

1'()
g n

g n
GS



 2'() *g n FS RT

'()

1'()
h n

h n
TAS



where:

1'()g n is the estimated flight time of the route from the starting node to node n ,

GS is the planned Ground Speed of the flight (in knots),

2'()g n is the estimated flight time of the route from the starting node to node n ,

FS is the number of fuel stops required to arrive at node n ,

RT is the total ground time required to refuel the aircraft (in hours),

and

1'()h n is the estimated flight time of the route from the node n to the target node.

20

Outputs

 When the goal node is designated as the current node, the algorithm exits the loop

and retraces the route path from the goal node to the start node using the Parent ID

property of each node. The model then displays a table listing the refuel locations in

sequential order, along with the distance and flight time of each flight leg, the total

distance of the route, the total flight time of the route (not including ground time during

refueling), and the total administrative time of the route (including ground time during

refueling). Table 2 shows an example of the Route Optimization program output.

 The inclusion of total flight time and total time in the output are important when

considering aircrew flight time and duty day constraints. Aviation unit Standard

Operating Procedures (SOPs) and Composite Risk Management (CRM) tools normally

include limit aviators on the number of flight hours allowed per day, and the length of the

duty day (Department of the Army, 1999). Considering these limitations while reviewing

the “total flight time” and “total time” outputs of the route optimization model allows a

mission planner to anticipate the location(s) in which an aircrew may need to Remain

Over Night (RON). This also allows FORSCOM Aviation Distribution personnel to

anticipate the number of days required to complete the flight, and forecast TDY costs

accordingly.

21

Table 2. Example of the Route Optimization output of a flight originating from

New Hanover International Airport and terminating at McClellan Airfield. The

refuel time is 1 hour, as reflected in the Admin Time.

Obstacle Avoidance

Overview

 The Obstacle Avoidance portion of the model uses a grid-based node network to

generate a route between two locations that avoids obstacles and considers areas that are

undesirable for flight. We define an obstacle as an area through which flight is prohibited

or not feasible. Examples of obstacles are Restricted Operating Zones (ROZ’s),

Prohibited Airspace, and Restricted Airspace. Undesirable areas create an inconvenience

or increased risk to flight. Examples of undesirable areas are Class-B Airspace, Military

Operations Areas (MOA’s), and urban areas. The code used in this portion of the model

is an adaptation of the two-dimensional path-finding program developed by Volpi (2005).

 The model utilizes the latitude/longitude coordinate system to create a grid-based

node system in Microsoft Excel that is a tessellation of the contiguous United States.

Each column represents one-tenth of a degree of longitude, each row represents one-tenth

of a degree of latitude, and each cell represents a node. The dimensions of the map are

designated using the extreme points of the contiguous United States as shown in Table 3.

22

Table 3. Extreme points of the contiguous United States that define the corners of

the tessellated grid network used in the obstacle avoidance model.

These extreme points result in a map space with dimensions 260 x 590, creating a total of

153,400 nodes.

 Obstacles can be added to the map by coloring the cells corresponding with the

obstacle location black. The algorithm identifies and “ignores” cells colored black,

effectively eliminating these nodes from begin evaluated or added to the open list.

Undesirable areas can be added to the map by entering a “map cost” into the cell(s) of the

map that correspond with the geographical location of the undesirable area. A map cost

assigned to a node represents the distance, in NMs, that is added to the route if it travels

through that node. As the algorithm evaluates a node with a map cost assigned, it adds

the map cost to the node’s '()f n score, encouraging the algorithm to find a route that

avoids the undesirable area. Figure 10 shows an area in the Northwestern-most area of

the map space that contains nodes designated as obstacles and undesirable areas.

Extreme Point Location Latitude Longitude

Westernmost Cape Alava, WA 48.16 -124.73

Easternmost W. Quoddy Head, MA 44.81 -66.95

Northernmost Northwest Angle, MN 49.38 -95.15

Southernmost Ballast Key, FL 24.52 -81.96

23

Figure 10. Map space in Northwest portion of contiguous U.S. with rectangular

obstacle vic (24.4ºN, -124.6 ºW) and undesirable area vic (25.0 ºN, -124.4 ºW).

Model Assumptions

The obstacle avoidance model assumes that the desire to avoid a given area can be

converted into a map cost (distance). We also assume that all obstacles and undesirable

areas extend from the ground to an infinite altitude, and cannot be avoided vertically.

Finally, we include the assumption that all turns can be executed as planned and make no

limitation on turn radius in the model.

Inputs

The user selects a starting and ending location from the same dropdown list of

Army Airfields and contract fuel locations as in the Route Optimization program.

Obstacles and undesirable areas are inputted directly to the map space by the user.

-125.0 -124.9 -124.8 -124.7 -124.6 -124.5 -124.4 -124.3 -124.2 -124.1 -124.0 -123.9 -123.8 -123.7 -123.6 -123.5 -123.4 -123.3 -123.2 -123.1

24.0

24.1

24.2

24.3

24.4

24.5

24.6

24.7

24.8

24.9 5 5 5

25.0 5 10 10

25.1 5 5

25.2 5

25.3 5

25.4

25.5

25.6

25.7

24

Model Procedure

 The model first collects the start and target nodes from the user input form, and

adds the start node to the open list. The algorithm then identifies the feasible successor

nodes (the eight adjacent nodes, ignoring those nodes designated as obstacles), adds them

to the open list, and calculates '()g n , '()h n , and '()f n scores for each using the formula

below.

 '() '() '() '()f n g n l n h n   (5)

where:

'()g n is the estimated cost of the path from the starting node to node n ,

 '()l n is the map cost assigned to node n and

'()h n is the estimated cost of the path from node n to the target node.

The model selects the node with the lowest value of '()f n and designates it as the

current node. The algorithm then iterates and terminates when the goal node is

designated as the current node. If the goal node has not been reached and the open list

contains no nodes, the model produces an error message indicating that an optimum

solution could not be found.

Output

The algorithm exits the search when the goal node is designated as the current

node and, in the same method as the Route Optimization program, it retraces the route

from the goal node to the start node using the Parent ID property of each node. As it

retraces the route, the program calculates and adds the distance between node coordinates

using Great Circle Distance. The program outputs the total distance of the route (in

25

NMs) and generates a visual depiction of the route. Figure 11 shows the output from the

Obstacle Avoidance model for a route between North Platte, Nebraska and Columbia,

Missouri that considers obstacles and undesirable areas.

Figure 11. Obstacle avoidance program output of a route from North Platte to

Columbia. Obstacles are black, undesirable areas are numbered, and the route is

shown in orange.

26

IV. Results

Route Optimization

To evaluate the route optimization model, we run the algorithm on all 96,141

possible start and end node combinations. We use a maximum fuel range of 300 NMs

and eliminate 10,874 iterations in which the start node is less than 300 NMs from the

target node (a route which does not require a fuel stop). We test the remaining 85,267

iterations using the DMA-Star algorithm, TMA-Star algorithm, Dijsktra’s algorithm, and

a greedy heuristic and compare the results from each, focusing on route distance, route

time, number of fuel stops, and processing time.

A portion of the iterative results for the three algorithms are shown in Appendix

B, with aggregated results shown in Table 4. We can see from Table 4 that, since both

the DMA-Star algorithm and Dijkstra’s algorithm guarantee optimality, their average

distance and average number of fuel stops are equivalent. Since the A-Star algorithm

uses a heuristic to narrow its search space, the average processing time and number of

nodes explored is reduced substantially from Dijsktra’s algorithm.

Table 4. Averaged results of route optimization iterations using the Distance

Minimization A-Star algorithm, Dijkstra’s algorithm, and the greedy heuristic.

 Avg.

Distance

(NMs)

Avg. Total

Time

(Hrs)

Avg. Number of

Fuel Stops

Avg. Processing

Time

(Seconds)

DMA-Star 999 10.8 3.7 .06

TMA-Star 1011 10.3 3.2 .59

Dijkstra’s Algorithm 999 10.8 3.7 1.17

Greedy Heuristic 1039 10.6 3.2 .02

Table 4 also shows that while the greedy heuristic does not usually generate the

shortest route, it does produce routes that average fewer fuel stops than those found using

27

the DMA-Star algorithm and Dijkstra’s algorithm. One extreme case that illustrates this

disparity is the route from Albert J. Ellis Airport, North Carolina to Page Municipal,

Arizona. Figure 12(a) shows the route found by the DMA-Star algorithm. While the

route distance is minimized at 1,648 NMs, the route includes 9 fuel stops, resulting in a

total travel time of 20.8 hours (assuming 1 hour ground time to refuel). Figure 12(b)

shows the route found by the greedy heuristic. The route length is 1,730 NMs (82 NMs

longer than the optimum), but only requires 5 fuel stops and a total travel time of 17.4

hours. In Figures 12(a)/(b) and all similar subsequent figures, dots shown on the maps

represent refuel stops along the route.

Figure 12(a). DMA-Star generated route from Albert J. Ellis Airport, North

Carolina to Page Municipal, Arizona.

Figure 12(b). Route found using the greedy heuristic from Albert J. Ellis Airport,

North Carolina to Page Municipal, Arizona.

28

The greedy heuristic does not always produce routes with shorter travel times,

however. The route combination that results in the greatest difference in route distance

between the DMA-Star and the greedy heuristic is the route between Pease Air Force

Base, New Hampshire and Roberts Field, Oregon. Figure 13(a) shows the route found

using the greedy heuristic, which includes 10 fuel stops and travels 2,705 NMs in 29.3

hours. Comparatively, the route found by the DMA-Star algorithm shown in Figure

13(b) is 484 miles shorter, 4.4 hours faster, with 1 less fuel stop.

Figure 13(a). Route found by the greedy heuristic between Pease Air Force Base

and Roberts Field.

Figure 13(b). DMA-Star generated route between Pease Air Force Base and

Roberts Field.

Comparing the DMA-Star model with the TMA-Star model, we find that using

time as the cost we seek to minimize essentially “weights” the cost of the route’s distance

and the cost of increased ground time due to fuel stops. This results in routes that are

29

slightly longer than optimum, but fewer fuel stops, on average, resulting in lower total

travel times.

Table 5. Comparison of DMA-Star and TMA-Star results.

 Avg.

Distance

(NMs)

Avg. Total

Time

(Hrs)

Avg. Number of

Fuel Stops

Avg. Processing

Time

(Seconds)

Distance Minimization

A-Star
1077.6 3.7 4.1 .06

Time Minimization

A-Star
1085.5 3.2 3.5 .59

The greatest example of the disparity in total time occurs with the route between

Lancaster, California and Jacksonville, North Carolina. As shown in Figures 14(a) and

14(b), the TMA-Star model finds a route that is 4 miles longer than the route found by the

DMA-Star model, but includes 4 fewer fuel stops and saves 3.97 hours of total time.

Figure 14(a). Route between Lancaster and Jacksonville using the DMA-Star

model.

Figure 14(b). Route between Lancaster and Jacksonville using the TMA-Star

model.

30

We now compare the optimum routes between the departure and arrival locations

found using the TMA-Star route optimization model to the straight line distances used by

FORSCOM for cost estimation. Table 6 shows a relatively small average difference

between the two methods of distance estimation.

Table 6. Comparison of averaged results of distance estimates using the Time

Minimization A-Star algorithm and straight line distance.

Estimation Method Average Distance (NMs)

TMA-Star Route 1011.6

Straight Line Distance 996.1

While the straight line distance method generally provides acceptable distance

estimates of feasible route distances, this is not always the case. The route between Key

West International Airport, Florida and Brownsville South Padre International Airport,

Texas provides the best example of a gross underestimation of route distance by using

straight line distance. As shown in Figure 15, a direct route between the two airports is

not possible (using a max fuel range of 300 NMs). Because of this, the straight line

distance method underestimates the route distance by 295 NMs (35 percent) when

compared to the feasible route found using the TMA-Star algorithm.

Figure 15. Route between Key West and Brownsville using the TMA-Star model.

31

Obstacle Avoidance

 To evaluate the obstacle avoidance model, we randomly select 100 start nodes

and 100 corresponding target nodes. To prevent excessive processing times we replace

node pairings that result in a straight line distance longer than 300 NMs until all 100 node

pairings have a straight line distance of 300 NMs or less. The map space used for testing

contains no obstacles or undesirable areas. Testing using the A-Star algorithm, Dijkstra’s

algorithm, and a greedy heuristic produces the individual results shown in Appendix B

and the aggregated results in Table 7. The A-Star algorithm and Dijsktra’s algorithm

both produce optimum routes, but the A-Star algorithm finds the route in a fraction of the

time Dijsktra’s takes and searches a much smaller space. The greedy heuristic performs

well, generating routes within approximately 2 percent of optimum.

Table 7. Averaged results of 100 randomly selected obstacle avoidance iterations

using the A-Star and Dijkstra’s algorithms and the greedy heuristic.

 Avg. Distance

(NMs)

Avg. Number of

Nodes Explored

Avg. Processing

Time (Seconds)

A-Star Algorithm 200.52 284.96 .17

Dijkstra’s Algorithm 200.52 4195.18 28.59

Greedy Heuristic 204.01 31.93 .01

Figures 16 and 17 provide a visual comparison of the search area used by

Dijkstra’s algorithm and the A-Star algorithm and show the effectiveness of the heuristic

in guiding A-Star’s search toward the target node. While Dijkstra’s algorithm expands

the search in all directions, the directed A-Star search is concentrated on improving areas.

32

Figure 16. Obstacle avoidance route from Greer, SC to Wilmington, NC using

Dijkstra’s algorithm. The start node is shown in green, target node in red, route in

orange, and explored nodes in grey.

Figure 17. Obstacle avoidance route from Greer, SC to Wilmington, NC using the

A-Star algorithm.

33

V. Conclusions and Future Research

In today’s fiscally constrained military environment, accurate cost estimation and

efficient use of resources are predominant concerns. The ADERPT is effective in quickly

finding efficient flight routes and is a useful tool for cost estimation and air mission

planning. While current distance estimation procedures employed by FORSCOM are in

most cases sufficient, testing showed that the straight line distance estimation technique

grossly underestimated the length of a feasible route on multiple occasions, and by as

much as 78 percent. The Time Minimization A-Star model’s (TMA-Star) use of time as

“cost” results in routes that simultaneously minimize flight distance and fuel stops. This

approach is more consistent with aircrew mission planning, and results in routes that

minimize TDY costs.

One limitation of the route optimization model is that it does not maximize the

route distance traveled within the limitations of aircrew daily flight hour and duty day

restrictions. Future efforts could focus on a multicriteria optimization approach to

address this issue.

The proposed obstacle avoidance model provides a proof of concept for the use of

a grid based network in routing aircraft around obstacles. The A-Star algorithm proved

superior to the other methods tested in terms of route distance and processing time. The

obstacle avoidance model concept has potential for use as both a route planning tool as

well as a dynamic, in-cockpit, navigation aid. Future work should translate the model to

a more applicable programming language, and improve both the shape and resolution of

the tessellation.

34

Appendix A: Model Guide

Overview

Upon opening the model, ensure you click “Enable” on the alert banners at the top of the

screen.

The model home screen provides a description of the model functions and user inputs.

Click the “Begin Application” button to start the program.

Route Optimization

A pop-up window allows the user to select the desired program. Click the “Route

Optimization” button to continue.

35

Users can input the departing and arriving airports using International Civil Aviation

Organization (ICAO) airport code, or by using the airfield name. Click on the desired

option.

The user is then prompted to enter the departing and arriving airports using the selected

method. The airports can be selected from the dropdown menus, or typed in the text box.

The next user input window provides the user with two types of route optimization to

choose from. Choosing “Minimize Distance” will select fuel stops that result in the

36

shortest possible route. The “Minimize Fuel Stops” results in a route that may not be the

shortest distance, but requires the fewest number of fuel stops to reach the destination.

The final user input window asks the user to enter the maximum distance allowed

between fuel stops. The user enters this distance as a number in the text box and clicks

on the enter button.

After inputting the max fuel range, the model executes the appropriate algorithm and

displays the route information as shown in the screen shot below. The user then has the

option to return to the model home screen, exit the program, or view a map of the route.

37

Clicking on “Map Refuel Locations” will display the map shown in the figure below. To

use this function, the user must have internet access. To display the route, first delete any

coordinates contained in the white box on the left side of the map.

Then right click in the white box and select “paste.” Finally, click the “Regenerate”

button located below the white box.

The map then displays the route with red dots identifying the starting airport, all refuel

locations, and the destination airport as shown in the figure below.

38

The user can click and drag on the map to move around the map space. Additionally,

adjusting the mouse scroll wheel allows the user to zoom in on desired areas as shown in

the figure below.

39

Obstacle Avoidance

A pop-up window allows the user to select the desired program. Click the “Obstacle

Avoidance” button to continue.

Users can input the departing and arriving airports using International Civil Aviation

Organization (ICAO) airport code, or by using the airfield name. Click on the desired

option.

The user is then prompted to enter the departing and arriving airports using the selected

method. The airports can be selected from the dropdown menus, or typed in the text box.

Click “Enter” when finished.

40

Upon clicking the “Enter” button, the obstacle avoidance algorithm will find the optimum

route between the departing and arriving location. A message box will be displayed with

the route length and a visual depiction of the route will be shown.

The departing location is shown in green, arriving location in red, and route in orange.

To return to the home page, click the “Intro” tab at the bottom of the screen.

41

Appendix B: Iterative Model Results

Table 8. Individual results of 100 randomly selected Distance Minimization Route

Optimization iterations using the A-Star and Dijkstra’s algorithms and the greedy

heuristic (1 of 2).

Iteration Straight Line Distance

Distance Time

Nodes

Explored

Fuel

Stops Distance Time (Sec)

Nodes

Explored

Fuel

Stops Distance Time

Nodes

Explored

Fuel

Stops Distance

1 1859.8 0.07 13 7 1934.1 0.05 9 7 1859.8 1.89 404 7 1829.4

2 1017.6 0.06 12 4 1044.4 0.02 5 3 1017.6 1.57 330 4 1010.9

3 1244.7 0.05 11 5 1407.7 0.03 7 5 1244.7 1.98 429 5 1214.1

4 964.8 0.07 12 4 981.0 0.02 5 3 964.8 1.24 255 4 958.5

5 1611.4 0.14 32 7 1657.8 0.03 7 5 1611.4 1.37 301 7 1596.9

6 1617.2 0.12 25 7 1695.8 0.03 7 5 1617.2 2.02 435 7 1611.6

7 1153.8 0.07 13 5 1157.6 0.02 5 3 1153.8 1.23 258 5 1152.8

8 788.8 0.03 6 2 796.3 0.02 4 2 788.8 1.01 206 2 787.7

9 325.7 0.02 3 1 365.3 0.01 3 1 325.7 0.28 58 1 325.2

10 1714.9 0.08 17 8 1777.9 0.04 8 6 1714.9 1.36 296 8 1701.5

11 2108.4 0.15 33 9 2197.6 0.05 9 7 2108.4 1.89 409 9 2090.5

12 710.1 0.03 5 2 713.5 0.02 4 2 710.1 1.33 279 2 708.7

13 636.3 0.02 4 2 702.3 0.02 4 2 636.3 0.80 171 2 636.2

14 844.8 0.03 5 3 854.8 0.02 4 2 844.8 1.33 282 3 844.4

15 931.2 0.06 12 3 1017.2 0.02 5 3 931.2 1.43 299 3 929.5

16 392.4 0.02 3 1 400.0 0.02 3 1 392.4 0.60 123 1 392.0

17 915.3 0.06 11 3 957.7 0.02 5 3 915.3 1.62 345 3 912.6

18 571.2 0.02 5 2 587.2 0.02 4 2 571.2 1.01 206 2 569.5

19 474.0 0.02 4 1 478.6 0.01 3 1 474.0 0.88 178 1 473.5

20 792.8 0.03 6 3 794.2 0.02 4 2 792.8 0.64 147 3 776.7

21 587.9 0.03 5 2 588.9 0.01 3 1 587.9 1.06 218 2 585.0

22 648.4 0.05 10 3 715.9 0.02 4 2 648.4 0.88 184 3 639.0

23 325.1 0.02 3 1 325.4 0.01 3 1 325.1 0.46 92 1 325.0

24 1112.5 0.09 19 4 1178.8 0.03 6 4 1112.5 1.79 380 4 1086.1

25 1493.5 0.10 20 5 1535.3 0.03 7 5 1493.5 1.65 348 5 1492.5

26 961.7 0.03 6 3 1004.5 0.02 5 3 961.7 1.60 336 3 961.2

27 1158.2 0.04 9 4 1206.0 0.03 6 4 1158.2 1.39 290 4 1157.8

28 796.6 0.04 7 3 809.2 0.02 4 2 796.6 1.46 304 3 796.1

29 756.0 0.02 4 2 776.8 0.02 4 2 756.0 1.20 250 2 755.9

30 428.9 0.02 4 1 443.6 0.01 3 1 428.9 0.23 54 1 427.4

31 1406.6 0.09 18 6 1445.8 0.03 6 4 1406.6 1.39 293 6 1405.6

32 804.5 0.05 10 2 824.2 0.02 4 2 804.5 1.49 311 2 802.9

33 1554.2 0.07 16 6 1669.7 0.04 8 6 1554.2 1.88 406 6 1486.0

34 784.5 0.02 4 2 784.5 0.02 4 2 784.5 0.98 201 2 782.4

35 793.6 0.04 7 3 890.7 0.02 5 3 793.6 0.57 130 3 745.2

36 1189.3 0.04 8 4 1234.2 0.03 6 4 1189.3 1.75 374 4 1184.5

37 1769.9 0.08 17 8 1817.1 0.04 8 6 1769.9 1.42 310 8 1744.8

38 1025.0 0.03 6 4 1045.9 0.02 5 3 1025.0 1.61 340 4 1022.0

39 667.9 0.03 6 2 723.3 0.02 4 2 667.9 1.27 264 2 667.3

40 521.4 0.02 4 2 528.0 0.01 3 1 521.4 0.54 115 2 521.2

41 1371.2 0.05 10 5 1380.2 0.03 6 4 1371.2 1.34 282 5 1367.9

42 409.1 0.02 3 1 441.8 0.01 3 1 409.1 0.27 61 1 409.1

43 364.4 0.02 3 1 364.4 0.01 3 1 364.4 0.36 74 1 364.1

44 381.6 0.02 3 1 383.7 0.01 3 1 381.6 0.57 118 1 380.5

45 437.7 0.02 3 1 437.9 0.01 3 1 437.7 0.62 128 1 437.7

46 1079.9 0.04 9 3 1106.9 0.02 5 3 1079.9 0.77 173 3 1077.1

47 1670.4 0.12 24 6 1675.0 0.03 7 5 1670.4 1.79 389 6 1659.8

48 1951.1 0.17 33 9 2015.7 0.05 9 7 1951.1 1.92 414 9 1944.9

49 999.1 0.05 9 4 1002.0 0.02 5 3 999.1 1.51 317 4 998.3

50 557.0 0.05 9 1 562.5 0.01 3 1 557.0 0.86 176 1 553.8

A-Star Greedy Dijkstra's

42

Table 9. Individual results of 100 randomly selected Distance Minimization Route

Optimization iterations using the A-Star and Dijkstra’s algorithms and the greedy

heuristic (2 of 2).

Iteration Straight Line Distance

Distance Time

Nodes

Explored

Fuel

Stops Distance Time (Sec)

Nodes

Explored

Fuel

Stops Distance Time

Nodes

Explored

Fuel

Stops Distance

51 1103.0 0.07 15 4 1103.8 0.03 6 4 1103.0 0.70 159 4 1089.4

52 628.2 0.02 4 2 656.7 0.02 4 2 628.2 0.42 87 2 628.0

53 619.1 0.02 4 2 649.9 0.02 4 2 619.1 0.96 203 2 618.8

54 1797.5 0.10 23 7 1942.2 0.04 9 7 1797.5 1.35 296 7 1763.7

55 1105.1 0.11 22 3 1131.7 0.03 6 4 1105.1 1.69 358 3 1093.9

56 1035.6 0.05 10 3 1162.7 0.03 6 4 1035.6 1.27 268 3 1028.4

57 965.8 0.04 6 3 1007.4 0.02 5 3 965.8 1.61 342 3 965.1

58 1834.1 0.09 17 8 1862.7 0.04 8 6 1834.1 1.94 415 8 1825.7

59 329.7 0.02 3 1 335.9 0.01 3 1 329.7 0.45 91 1 329.7

60 566.8 0.03 5 2 576.7 0.02 4 2 566.8 0.65 138 2 566.6

61 1335.5 0.07 14 6 1557.0 0.03 7 5 1335.5 1.91 414 6 1291.1

62 626.7 0.03 4 2 635.8 0.02 4 2 626.7 1.03 212 2 626.2

63 774.0 0.03 5 3 816.7 0.02 4 2 774.0 1.08 226 3 773.1

64 967.8 0.06 11 3 1034.6 0.02 5 3 967.8 1.32 277 3 966.3

65 1941.9 0.20 38 8 2050.2 0.04 9 7 1941.9 2.00 433 8 1929.2

66 2198.0 0.30 65 11 2440.6 0.05 10 8 2198.0 2.00 430 11 2149.8

67 847.5 0.02 5 3 872.4 0.02 5 3 847.5 0.68 148 3 847.0

68 500.1 0.02 3 1 500.1 0.01 3 1 500.1 0.47 103 1 497.9

69 1711.5 0.18 39 7 1871.1 0.04 8 6 1711.5 2.04 439 7 1684.7

70 876.4 0.05 7 3 888.8 0.02 4 2 876.4 1.54 325 3 874.9

71 993.3 0.04 8 4 1015.2 0.02 5 3 993.3 1.13 237 4 978.0

72 1348.7 0.04 8 5 1475.0 0.03 7 5 1348.7 1.38 301 5 1321.4

73 768.1 0.03 5 3 782.6 0.02 4 2 768.1 0.50 115 3 766.0

74 661.5 0.02 4 2 675.1 0.02 4 2 661.5 0.75 157 2 661.3

75 542.5 0.02 4 2 543.7 0.01 3 1 542.5 0.27 58 2 542.4

76 918.9 0.03 7 3 935.9 0.02 5 3 918.9 0.59 130 3 909.8

77 2258.8 0.16 34 10 2292.8 0.04 9 7 2258.8 1.96 422 10 2243.4

78 706.7 0.03 5 3 724.5 0.02 4 2 706.7 0.54 123 3 703.6

79 1136.7 0.05 10 4 1190.6 0.03 6 4 1136.7 1.41 298 4 1116.9

80 587.9 0.07 13 2 607.9 0.02 4 2 587.9 1.06 218 2 571.4

81 788.3 0.05 9 3 797.0 0.02 4 2 788.3 1.25 261 3 787.1

82 1196.2 0.04 8 4 1208.8 0.02 6 4 1196.2 0.89 201 4 1195.6

83 1294.8 0.08 17 5 1359.6 0.03 7 5 1294.8 1.70 363 5 1273.5

84 685.8 0.02 5 2 685.8 0.02 4 2 685.8 0.32 73 2 547.4

85 876.5 0.06 13 3 881.3 0.02 5 3 876.5 1.52 318 3 872.3

86 879.7 0.04 8 3 1006.9 0.02 5 3 879.7 0.57 132 3 873.3

87 1258.3 0.07 13 5 1293.1 0.03 6 4 1258.3 1.50 315 5 1256.3

88 1298.4 0.10 20 6 1346.2 0.03 6 4 1298.4 1.93 411 6 1290.3

89 1454.0 0.05 10 5 1468.7 0.03 7 5 1454.0 1.43 313 5 1398.3

90 437.0 0.02 3 1 438.8 0.01 3 1 437.0 0.25 59 1 419.6

91 1153.1 0.05 10 4 1176.2 0.02 5 3 1153.1 1.34 282 4 1151.9

92 1121.1 0.04 7 4 1133.6 0.02 5 3 1121.1 1.47 318 4 1120.4

93 982.8 0.05 10 5 1000.7 0.02 5 3 982.8 1.41 296 5 981.5

94 498.2 0.03 5 1 512.7 0.01 3 1 498.2 0.78 157 1 497.8

95 675.8 0.05 9 2 700.5 0.02 4 2 675.8 0.82 172 2 673.6

96 1120.9 0.06 12 4 1167.9 0.03 6 4 1120.9 1.48 309 4 1118.9

97 916.5 0.05 11 3 1057.7 0.02 5 3 916.5 0.45 105 3 903.4

98 1376.5 0.04 8 5 1461.4 0.03 7 5 1376.5 1.75 373 5 1371.6

99 1322.9 0.06 12 6 1388.6 0.03 7 5 1322.9 0.83 187 6 1294.1

100 1003.5 0.03 6 3 1012.2 0.02 5 3 1003.5 1.01 221 3 1001.1

A-Star Greedy Dijkstra's

43

Table 10. Comparison of DMA-Star route distances and straight line distance

estimations (1 of 2).

Iteration Straight Line Distance

Distance (NMs)

Fuel

Stops Distance (NMs) NMs %

1 1859.8 7 1829.4 30.47 1.67%

2 1017.6 4 1010.9 6.75 0.67%

3 1244.7 5 1214.1 30.60 2.52%

4 964.8 4 958.5 6.35 0.66%

5 1611.4 7 1596.9 14.45 0.90%

6 1617.2 7 1611.6 5.57 0.35%

7 1153.8 5 1152.8 0.97 0.08%

8 788.8 2 787.7 1.05 0.13%

9 325.7 1 325.2 0.50 0.15%

10 1714.9 8 1701.5 13.38 0.79%

11 2108.4 9 2090.5 17.91 0.86%

12 710.1 2 708.7 1.39 0.20%

13 636.3 2 636.2 0.05 0.01%

14 844.8 3 844.4 0.38 0.04%

15 931.2 3 929.5 1.73 0.19%

16 392.4 1 392.0 0.35 0.09%

17 915.3 3 912.6 2.71 0.30%

18 571.2 2 569.5 1.74 0.31%

19 474.0 1 473.5 0.42 0.09%

20 792.8 3 776.7 16.15 2.08%

21 587.9 2 585.0 2.97 0.51%

22 648.4 3 639.0 9.33 1.46%

23 325.1 1 325.0 0.16 0.05%

24 1112.5 4 1086.1 26.35 2.43%

25 1493.5 5 1492.5 1.03 0.07%

26 961.7 3 961.2 0.44 0.05%

27 1158.2 4 1157.8 0.45 0.04%

28 796.6 3 796.1 0.49 0.06%

29 756.0 2 755.9 0.06 0.01%

30 428.9 1 427.4 1.49 0.35%

31 1406.6 6 1405.6 1.00 0.07%

32 804.5 2 802.9 1.61 0.20%

33 1554.2 6 1486.0 68.24 4.59%

34 784.5 2 782.4 2.08 0.27%

35 793.6 3 745.2 48.33 6.49%

36 1189.3 4 1184.5 4.73 0.40%

37 1769.9 8 1744.8 25.11 1.44%

38 1025.0 4 1022.0 2.99 0.29%

39 667.9 2 667.3 0.63 0.09%

40 521.4 2 521.2 0.20 0.04%

41 1371.2 5 1367.9 3.26 0.24%

42 409.1 1 409.1 0.00 0.00%

43 364.4 1 364.1 0.27 0.07%

44 381.6 1 380.5 1.13 0.30%

45 437.7 1 437.7 0.00 0.00%

46 1079.9 3 1077.1 2.81 0.26%

47 1670.4 6 1659.8 10.58 0.64%

48 1951.1 9 1944.9 6.20 0.32%

49 999.1 4 998.3 0.76 0.08%

50 557.0 1 553.8 3.18 0.57%

A-Star Difference

44

Table 11. Comparison of DMA-Star route distances and straight line distance

estimations (2 of 2).

Iteration Straight Line Distance

Distance (NMs)

Fuel

Stops Distance (NMs) NMs %

51 1103.0 4 1089.4 13.57 1.25%

52 628.2 2 628.0 0.23 0.04%

53 619.1 2 618.8 0.36 0.06%

54 1797.5 7 1763.7 33.76 1.91%

55 1105.1 3 1093.9 11.23 1.03%

56 1035.6 3 1028.4 7.24 0.70%

57 965.8 3 965.1 0.70 0.07%

58 1834.1 8 1825.7 8.42 0.46%

59 329.7 1 329.7 0.01 0.00%

60 566.8 2 566.6 0.20 0.04%

61 1335.5 6 1291.1 44.44 3.44%

62 626.7 2 626.2 0.55 0.09%

63 774.0 3 773.1 0.91 0.12%

64 967.8 3 966.3 1.58 0.16%

65 1941.9 8 1929.2 12.70 0.66%

66 2198.0 11 2149.8 48.17 2.24%

67 847.5 3 847.0 0.53 0.06%

68 500.1 1 497.9 2.18 0.44%

69 1711.5 7 1684.7 26.79 1.59%

70 876.4 3 874.9 1.51 0.17%

71 993.3 4 978.0 15.24 1.56%

72 1348.7 5 1321.4 27.24 2.06%

73 768.1 3 766.0 2.08 0.27%

74 661.5 2 661.3 0.15 0.02%

75 542.5 2 542.4 0.09 0.02%

76 918.9 3 909.8 9.03 0.99%

77 2258.8 10 2243.4 15.40 0.69%

78 706.7 3 703.6 3.12 0.44%

79 1136.7 4 1116.9 19.81 1.77%

80 587.9 2 571.4 16.57 2.90%

81 788.3 3 787.1 1.21 0.15%

82 1196.2 4 1195.6 0.52 0.04%

83 1294.8 5 1273.5 21.32 1.67%

84 685.8 2 547.4 138.34 25.27%

85 876.5 3 872.3 4.22 0.48%

86 879.7 3 873.3 6.38 0.73%

87 1258.3 5 1256.3 1.95 0.16%

88 1298.4 6 1290.3 8.04 0.62%

89 1454.0 5 1398.3 55.66 3.98%

90 437.0 1 419.6 17.43 4.15%

91 1153.1 4 1151.9 1.19 0.10%

92 1121.1 4 1120.4 0.67 0.06%

93 982.8 5 981.5 1.31 0.13%

94 498.2 1 497.8 0.48 0.10%

95 675.8 2 673.6 2.13 0.32%

96 1120.9 4 1118.9 2.07 0.19%

97 916.5 3 903.4 13.13 1.45%

98 1376.5 5 1371.6 4.89 0.36%

99 1322.9 6 1294.1 28.78 2.22%

100 1003.5 3 1001.1 2.40 0.24%

A-Star Difference

45

Table 12. Results of 100 obstacle avoidance iterations using A-Star and Dijkstra’s

algorithms and the greedy heuristic (1 of 2).

Iteration

Distance

(NMs) Time (Sec)

Nodes

Explored

Distance

(NMs) Time (Sec)

Nodes

Explored

Distance

(NMs) Time (Sec)

Nodes

Explored
1 233 0.11 277 245 0.02 43 233 38.94 5218

2 162 0.03 128 166 0.00 25 162 3.91 1834

3 200 0.10 268 200 0.01 34 200 14.95 3621

4 264 0.31 472 264 0.01 39 264 40.84 6226

5 68 0.00 13 68 0.00 13 68 0.21 380

6 61 0.00 19 61 0.00 11 61 0.12 287

7 110 0.01 61 110 0.00 16 110 0.82 806

8 203 0.07 213 209 0.00 31 203 14.80 3486

9 274 0.31 503 274 0.01 47 274 53.51 6984

10 269 0.59 719 269 0.01 34 269 57.70 7341

11 146 0.00 24 154 0.00 24 146 2.32 1418

12 281 0.22 403 281 0.01 52 281 64.88 7684

13 56 0.00 13 56 0.00 8 56 0.05 182

14 211 0.18 383 211 0.00 29 211 19.38 4163

15 63 0.00 23 63 0.00 9 63 0.13 295

16 285 0.39 566 291 0.01 42 285 40.10 6127

17 280 0.27 471 280 0.01 44 280 52.37 6961

18 252 0.44 616 252 0.01 32 252 38.46 6044

19 24 0.00 3 24 0.00 3 24 0.00 28

20 248 0.01 49 266 0.01 49 248 41.57 6187

21 251 0.50 663 253 0.01 37 251 44.97 6445

22 260 0.24 430 260 0.01 46 260 43.67 6391

23 288 0.63 754 294 0.01 39 288 69.84 8017

24 276 0.20 386 280 0.01 39 276 36.79 5817

25 46 0.00 13 46 0.00 8 46 0.04 155

26 159 0.04 138 165 0.01 24 159 5.20 2153

27 233 0.32 511 245 0.01 50 233 32.66 5636

28 146 0.03 137 152 0.00 25 146 4.18 1863

29 228 0.17 370 232 0.01 31 228 20.36 4323

30 74 0.00 30 74 0.00 13 74 0.25 434

31 196 0.16 357 196 0.01 25 196 14.60 3674

32 214 0.09 250 218 0.01 32 214 12.14 3305

33 222 0.09 254 222 0.00 34 222 15.36 3554

34 242 0.10 261 242 0.01 38 242 19.00 4212

35 234 0.08 228 242 0.01 37 234 16.75 3924

36 136 0.03 122 136 0.01 20 136 2.94 1585

37 240 0.18 375 240 0.01 42 240 31.68 5379

38 258 0.01 51 270 0.01 51 258 49.16 6755

39 196 0.02 78 204 0.00 32 196 8.21 2696

40 288 0.05 170 287 0.01 47 288 39.45 5924

41 267 0.47 649 273 0.01 36 267 51.70 6915

42 168 0.05 182 172 0.00 23 168 5.68 2245

43 262 0.22 414 262 0.01 47 262 46.38 6544

44 240 0.17 354 240 0.01 36 240 27.56 5103

45 266 0.62 695 266 0.01 34 266 56.10 7120

46 245 0.48 635 251 0.01 41 245 61.40 7543

47 124 0.01 76 124 0.00 19 124 1.30 1038

48 14 0.00 2 14 0.00 2 14 0.00 2

49 34 0.00 7 34 0.00 5 34 0.01 63

50 328 0.49 650 328 0.02 59 328 122.13 10398

GreedyA-Star Dijkstra's

46

Table 13. Results of 100 obstacle avoidance iterations using A-Star and Dijkstra’s

algorithms and the greedy heuristic (2 of 2).

Iteration

Distance

(NMs) Time (Sec)

Nodes

Explored

Distance

(NMs) Time (Sec)

Nodes

Explored

Distance

(NMs) Time (Sec)

Nodes

Explored
51 165 0.09 262 165 0.00 21 165 7.95 2647

52 304 0.27 466 304 0.01 47 304 48.27 6758

53 158 0.05 191 158 0.00 21 158 4.98 2118

54 181 0.06 205 181 0.01 32 181 10.88 3002

55 153 0.05 191 153 0.00 21 153 4.42 1931

56 266 0.44 618 278 0.01 50 266 79.40 8450

57 300 0.34 523 304 0.01 42 300 54.47 7150

58 230 0.15 339 242 0.01 37 230 23.80 4653

59 108 0.02 89 108 0.00 15 108 1.21 999

60 271 0.37 559 271 0.01 41 271 48.10 6548

61 202 0.13 321 206 0.01 27 202 13.68 3506

62 288 0.02 57 306 0.01 57 288 78.79 8432

63 320 0.56 690 320 0.02 55 320 99.23 9612

64 184 0.03 120 196 0.01 35 184 11.64 3273

65 328 0.43 601 328 0.02 50 328 96.56 9557

66 166 0.04 161 166 0.01 23 166 4.94 2111

67 158 0.08 231 158 0.00 20 158 6.52 2388

68 251 0.25 425 251 0.01 43 251 35.32 5797

69 222 0.14 322 234 0.01 36 222 21.00 4392

70 172 0.04 157 172 0.00 26 172 5.03 2089

71 68 0.00 13 74 0.00 13 68 0.21 379

72 210 0.20 402 210 0.01 27 210 19.17 4172

73 156 0.01 71 156 0.01 30 156 6.04 2339

74 33 0.00 6 33 0.00 6 33 0.01 71

75 273 0.57 707 273 0.01 36 273 58.16 7350

76 68 0.00 11 68 0.00 11 68 0.21 273

77 140 0.00 23 144 0.00 23 140 2.04 1309

78 173 0.05 179 185 0.01 31 173 8.55 2754

79 74 0.01 35 74 0.00 10 74 0.22 405

80 296 0.31 470 296 0.01 45 296 43.43 6402

81 180 0.09 257 184 0.00 24 180 8.88 2800

82 124 0.02 95 124 0.00 17 124 1.65 1168

83 198 0.05 179 198 0.00 31 198 8.59 2751

84 202 0.05 164 210 0.01 32 202 8.89 2859

85 84 0.00 30 88 0.00 13 84 0.25 431

86 54 0.00 9 58 0.00 9 54 0.05 169

87 125 0.02 96 131 0.00 22 125 2.30 1389

88 128 0.00 25 140 0.00 25 128 2.75 1535

89 278 0.18 359 278 0.01 52 278 62.70 7645

90 344 0.65 751 362 0.02 61 344 132.66 11311

91 222 0.37 565 222 0.01 36 222 43.17 6277

92 300 0.27 471 300 0.01 46 300 47.39 6591

93 288 0.06 170 296 0.01 47 288 38.48 5919

94 236 0.09 251 244 0.01 37 236 17.60 3957

95 190 0.02 74 190 0.00 31 190 7.00 2489

96 308 0.66 780 308 0.01 41 308 82.91 8496

97 312 0.32 515 316 0.01 44 312 62.02 7612

98 326 0.52 669 338 0.01 58 326 110.12 10194

99 308 0.01 61 326 0.02 61 308 101.78 9683

100 102 0.01 64 108 0.00 18 102 1.03 890

GreedyA-Star Dijkstra's

47

Appendix C: VBA Code

Route Optimization

‘The Route Optimization program uses the A-Star algorithm to find fuel stops between a departure and

arrival airfield that minimize the route cost (distance or time – depending on user selection).

Option Explicit

Public Arriving_Airfield As String

Public Departure_Airfield As String

Public StartNum As Integer

Public EndNum As Integer

Public Cancel1 As Boolean

Public MaxRange As Long

Public True_AS As Double

Public RefuelTime As Double

Public Type Node

Num As Integer

ParID As Integer

ScoreF As Double

ScoreG1 As Double

ScoreG2 As Double

ScoreH As Double

Open As Boolean

Closed As Boolean

End Type

Sub RouteOptimizationAdmin()

Call Clear_RouteOptimization 'Clears existing route information

Worksheets("Intro").Select

Input_Selection.Show 'Shows Departure/Arrival Point data entry form

If Cancel1 = True Then 'Returns to the homepage if user clicks "cancel"

Call Return_to_Homepage

Exit Sub

End If

End Sub

Sub Clear_RouteOptimization()

'This subroutine clears existing route information from the "Route" sheet

Sheets("Route").Select

Range("A2:L100").Select

Selection.ClearContents

Range("A1").Select

End Sub

Sub A_StarDistOptimization()

'This sub serves as the main framework for the Route Optimization A-Star algorithm

Dim i As Integer

Dim j As Integer

Dim k As Integer

Dim NumNodes As Integer 'Number of Nodes in distance matrix

Dim CurNode As Node 'Current Node being evaluated from

Dim TestNode As Node

Dim BestNode As Node

Dim StartNode As Node

Dim GoalNode As Node

Dim Openlist(1 To 439) As Node

Application.ScreenUpdating = False

Max_Fuel_Range.Show

Airspeed.Show

Refuel_Delay.Show

StartNode.Num = StartNum

StartNode.ParID = 0

StartNode.ScoreF = 0

48

StartNode.ScoreG1 = 0

StartNode.Closed = False

StartNode.Open = True

GoalNode.Num = EndNum

CurNode = StartNode

NumNodes = 439

' Add the start node to the open list

Openlist(StartNode.Num) = StartNode

Openlist(StartNode.Num).Open = True

While CurNode.Num <> GoalNode.Num

Call Check_Open_Set(i, Openlist, NumNodes) 'Check to make sure the open list is not empty

Call Get_the_Best_Node(i, NumNodes, CurNode, BestNode, Openlist) 'Find the node with the best F-Score

If CurNode.Num = GoalNode.Num Then 'If the current node is the goal node, exit the loop

GoalNode = CurNode

Call Build_the_Route(StartNode, GoalNode, Openlist, True_AS)

End If

'Remove current node from open list and add to the closed list

Openlist(CurNode.Num).Open = False

Openlist(CurNode.Num).Closed = True

'Calculate F/G scores for all "neighbors"

For j = 1 To NumNodes

If Worksheets("Distance Matrix").Cells(CurNode.Num, j) <= MaxRange And CurNode.Num <> j Then

TestNode.Num = j

TestNode.ParID = CurNode.Num

TestNode.ScoreG1 = CurNode.ScoreG1 + Worksheets("Distance Matrix").Cells(CurNode.Num, TestNode.Num)

TestNode.ScoreH = Worksheets("Distance Matrix").Cells(TestNode.Num, GoalNode.Num)

TestNode.ScoreF = TestNode.ScoreG1 + TestNode.ScoreH

TestNode.Open = True

TestNode.Closed = False

'If the neighbor has not been evaluated, add it to the open list

If Openlist(TestNode.Num).Open = False And Openlist(TestNode.Num).Closed = False Then

Openlist(TestNode.Num) = TestNode

Openlist(TestNode.Num).Open = True

End If

'If the neighbor is on the open list, but this is a better path through it, update the parameters

If Openlist(TestNode.Num).Open = True Then

If TestNode.ScoreF < Openlist(TestNode.Num).ScoreF Then

Openlist(TestNode.Num) = TestNode 'Updated Node(j) with the best route and parent ID to reach it

End If

End If

'If the neighbor is on the closed list, but this is a better path through it, update the parameters

and put it back on the open list

If Openlist(TestNode.Num).Closed = True Then

If TestNode.ScoreF < Openlist(TestNode.Num).ScoreF Then

Openlist(TestNode.Num) = TestNode 'Updates Node(j) with the best route and parent ID to reach it

Openlist(TestNode.Num).Closed = False 'Removes the node from the closed list

Openlist(TestNode.Num).Open = True 'Places the node back on the open List

End If

End If

End If

Next j

Wend

Sheets("Route").Select

End Sub

Sub Get_the_Best_Node(i, Num As Integer, Cur As Node, Best As Node, Openlist() As Node)

'This subroutine designates the node with the best F-Score as the current node

Dim NumNodes As Integer

Dim BestNode As Node

Dim CurNode As Node

NumNodes = 439

'Set the BestNode.ScoreF = Big M

Best.ScoreF = 10000

'Cycles through all nodes to find the node with the lowest F-Score

For i = 1 To NumNodes

49

If Openlist(i).Open = True Then

If Openlist(i).ScoreF < Best.ScoreF Then

Best.ScoreF = Openlist(i).ScoreF

Cur = Openlist(i)

End If

End If

Next i

End Sub

Sub Check_Open_Set(i, Openlist() As Node, NumNodes)

'This subroutine returns an error message if there are no nodes in the Open List

Dim Test As Integer

'Cycles through all nodes, exits loop after finding a node on the open list

For i = 1 To NumNodes

If Openlist(i).Open = True Then

Test = 1

Exit For

End If

Next i

'Generates error code if there are no nodes on the open list

If Test = 0 Then

Exit Sub

MsgBox "Error"

End If

End Sub

Sub Build_the_Route(Start As Node, Goal As Node, Openlist() As Node, True_AS)

'This subroutine retraces the optimum route from Goal Node to Start Node

Dim k As Integer

Dim Route(1 To 439)

'Assigns the goal node number to the first entry in the "Route" array

k = 1

Route(k) = Goal.Num

'Continues entering route node numbers into "Route" array until reaching the start node

k = 2

While Openlist(Route(k - 1)).Num <> Start.Num

Route(k) = Openlist(Route(k - 1)).ParID

k = k + 1

Wend

Call Output_Route(Route(), k, True_AS)

End Sub

Sub Output_Route(Rte(), k As Integer, True_AS)

'This subroutine enters the route information into the "Route" output sheet

Dim i As Integer

Dim FuelStops As Integer

i = 2

k = k - 1

'Enters data for departure location into "Route" sheet

While i = 2

Worksheets("Route").Cells(i, 1).Value = "Start Point"

Worksheets("Route").Cells(i, 2).Value = Rte(k)

Worksheets("Route").Cells(i, 3).Value = Worksheets("Refuel Locations").Cells((Rte(k) + 1), 2)

Worksheets("Route").Cells(i, 4).Value = Worksheets("Refuel Locations").Cells((Rte(k) + 1), 3)

Worksheets("Route").Cells(i, 5).Value = Worksheets("Refuel Locations").Cells((Rte(k) + 1), 4)

Worksheets("Route").Cells(i, 6).Value = Worksheets("Refuel Locations").Cells((Rte(k) + 1), 5)

Worksheets("Route").Cells(i, 7).Value = Worksheets("Refuel Locations").Cells((Rte(k) + 1), 6)

Worksheets("Route").Cells(i, 8).Value = 0

Worksheets("Route").Cells(i, 9).Value = 0

Worksheets("Route").Cells(i, 10).Value = 0

Worksheets("Route").Cells(i, 11).Value = 0

Worksheets("Route").Cells(i, 12).Value = 0

k = k - 1

i = i + 1

Wend

50

'Enters data for all fuel stops into "Route" sheet

While k > 1

Worksheets("Route").Cells(i, 1).Value = "Fuel Stop " & i - 2

Worksheets("Route").Cells(i, 2).Value = Rte(k)

Worksheets("Route").Cells(i, 3).Value = Worksheets("Refuel Locations").Cells((Rte(k) + 1), 2)

Worksheets("Route").Cells(i, 4).Value = Worksheets("Refuel Locations").Cells((Rte(k) + 1), 3)

Worksheets("Route").Cells(i, 5).Value = Worksheets("Refuel Locations").Cells((Rte(k) + 1), 4)

Worksheets("Route").Cells(i, 6).Value = Worksheets("Refuel Locations").Cells((Rte(k) + 1), 5)

Worksheets("Route").Cells(i, 7).Value = Worksheets("Refuel Locations").Cells((Rte(k) + 1), 6)

Worksheets("Route").Cells(i, 8).Value = Worksheets("Distance

Matrix").Cells(Worksheets("Route").Cells(i, 2).Value, Worksheets("Route").Cells(i - 1, 2).Value)

Worksheets("Route").Cells(i, 9).Value = Worksheets("Route").Cells(i - 1, 9).Value +

Worksheets("Route").Cells(i, 8).Value

Worksheets("Route").Cells(i, 10).Value = (Worksheets("Route").Cells(i, 8).Value) / True_AS

Worksheets("Route").Cells(i, 11).Value = Worksheets("Route").Cells(i - 1, 11).Value +

Worksheets("Route").Cells(i, 10)

Worksheets("Route").Cells(i, 12).Value = Worksheets("Route").Cells(i - 1, 12).Value +

Worksheets("Route").Cells(i, 10).Value + RefuelTime

k = k - 1

i = i + 1

Wend

'Enters data for arrival location into "Route" sheet

Worksheets("Route").Cells(i, 1).Value = "Destination"

Worksheets("Route").Cells(i, 2).Value = Rte(k)

Worksheets("Route").Cells(i, 3).Value = Worksheets("Refuel Locations").Cells((Rte(k) + 1), 2)

Worksheets("Route").Cells(i, 4).Value = Worksheets("Refuel Locations").Cells((Rte(k) + 1), 3)

Worksheets("Route").Cells(i, 5).Value = Worksheets("Refuel Locations").Cells((Rte(k) + 1), 4)

Worksheets("Route").Cells(i, 6).Value = Worksheets("Refuel Locations").Cells((Rte(k) + 1), 5)

Worksheets("Route").Cells(i, 7).Value = Worksheets("Refuel Locations").Cells((Rte(k) + 1), 6)

Worksheets("Route").Cells(i, 8).Value = Worksheets("Distance

Matrix").Cells(Worksheets("Route").Cells(i, 2).Value, Worksheets("Route").Cells(i - 1, 2).Value)

Worksheets("Route").Cells(i, 9).Value = Worksheets("Route").Cells(i - 1, 9).Value +

Worksheets("Route").Cells(i, 8).Value

Worksheets("Route").Cells(i, 10).Value = (Worksheets("Route").Cells(i, 8).Value) / True_AS

Worksheets("Route").Cells(i, 11).Value = Worksheets("Route").Cells(i - 1, 11).Value +

Worksheets("Route").Cells(i, 10)

Worksheets("Route").Cells(i, 12).Value = Worksheets("Route").Cells(i - 1, 12).Value +

Worksheets("Route").Cells(i, 10).Value

End Sub

Sub A_StarTimeOptimization()

'This sub serves as the main framework for the Route Optimization A-Star algorithm minimizing time

Dim i As Integer

Dim j As Integer

Dim k As Integer

Dim NumNodes As Integer 'Number of Nodes in distance matrix

Dim CurNode As Node 'Current Node being evaluated from

Dim TestNode As Node

Dim BestNode As Node

Dim StartNode As Node

Dim GoalNode As Node

Dim Openlist(1 To 439) As Node

Application.ScreenUpdating = False

Max_Fuel_Range.Show

Airspeed.Show

Refuel_Delay.Show

StartNode.Num = StartNum

StartNode.ParID = 0

StartNode.ScoreF = 0

StartNode.ScoreG1 = 0

StartNode.ScoreG2 = 0

StartNode.Closed = False

StartNode.Open = True

GoalNode.Num = EndNum

CurNode = StartNode

NumNodes = 439

' Add the start node to the open list

Openlist(StartNode.Num) = StartNode

Openlist(StartNode.Num).Open = True

While CurNode.Num <> GoalNode.Num

51

Call Check_Open_Set(i, Openlist, NumNodes) 'Check to make sure the open list is not empty

Call Get_the_Best_Node(i, NumNodes, CurNode, BestNode, Openlist) 'Find the node with the best F-Score

If CurNode.Num = GoalNode.Num Then 'If the current node is the goal node, exit the loop

GoalNode = CurNode

Call Build_the_Route(StartNode, GoalNode, Openlist, True_AS)

End If

'Remove current node from open list and add to the closed list

Openlist(CurNode.Num).Open = False

Openlist(CurNode.Num).Closed = True

'Calculate F/G scores for all "neighbors"

For j = 1 To NumNodes

If Worksheets("Distance Matrix").Cells(CurNode.Num, j) <= MaxRange And CurNode.Num <> j Then

TestNode.Num = j

TestNode.ParID = CurNode.Num

TestNode.ScoreG1 = CurNode.ScoreG1 + (Worksheets("Distance Matrix").Cells(CurNode.Num, TestNode.Num) /

True_AS)

TestNode.ScoreG2 = CurNode.ScoreG2 + RefuelTime

TestNode.ScoreH = (Worksheets("Distance Matrix").Cells(TestNode.Num, GoalNode.Num)) / True_AS

TestNode.ScoreF = TestNode.ScoreG1 + TestNode.ScoreG2 + TestNode.ScoreH

TestNode.Open = True

TestNode.Closed = False

'If the neighbor has not been evaluated, add it to the open list

If Openlist(TestNode.Num).Open = False And Openlist(TestNode.Num).Closed = False Then

Openlist(TestNode.Num) = TestNode

Openlist(TestNode.Num).Open = True

End If

'If the neighbor is on the open list, but this is a better path through it, update the parameters

If Openlist(TestNode.Num).Open = True Then

If TestNode.ScoreF < Openlist(TestNode.Num).ScoreF Then

Openlist(TestNode.Num) = TestNode 'Updated Node(j) with the best route and parent ID to reach it

End If

End If

'If the neighbor is on the closed list, but this is a better path through it, update the parameters

and put it back on the open list

If Openlist(TestNode.Num).Closed = True Then

If TestNode.ScoreF < Openlist(TestNode.Num).ScoreF Then

Openlist(TestNode.Num) = TestNode 'Updates Node(j) with the best route and parent ID to reach it

Openlist(TestNode.Num).Closed = False 'Removes the node from the closed list

Openlist(TestNode.Num).Open = True 'Places the node back on the open List

End If

End If

End If

Next j

Wend

Sheets("Route").Select

End Sub

Obstacle Avoidance

‘The Obstacle Avoidance program uses a grid-based network and uses the A-Star algorithm to find an

optimal path while avoiding obstacles and considering undesirable areas. The code used in this

portion of the model is an adaptation of the two-dimensional path-finding program developed by

Leonardo Volpi (2005).

Public StartRow As Integer

Public StartCol As Integer

Public EndRow As Integer

Public EndCol As Integer

Public Departure_Airfield As String

Public Arriving_Airfield As String

Public Cancel As Boolean

Public Cancel2 As Boolean

Sub ObstacleAvoidanceAdmin()

Dim myRange As Range

Dim WallColor

Dim i As Long, j As Long, k As Long, N As Long, M As Long, NM As Long

Dim myMap(), PathStart(), PathEnd(), Path(), ErrMsg, Score, Stat

Application.ScreenUpdating = False

52

'Show Departure/Arrival Point data entry form

Input_Selection.Show

If Cancel2 = True Then

Call Return_to_Homepage

Exit Sub

End If

Set myRange = Range("B2:VT262")

WallColor = 1 'black for unwalkable ground"

N = 262

M = 592

'Load obstacle and "undesirable area" information into myMap

ReDim myMap(1 To N + 1, 1 To M + 1)

With myRange

For i = 1 To N

For j = 1 To M

If .Cells(i, j).Interior.ColorIndex = WallColor Then

myMap(i + 1, j + 1) = -1

Else

myMap(i + 1, j + 1) = .Cells(i, j)

End If

Next j

Next i

End With

i = 3

StartLat = Application.WorksheetFunction.VLookup(StartNum, Sheets("Refuel

Locations").Range("A2:F440"), 5, False)

StartLon = Application.WorksheetFunction.VLookup(StartNum, Sheets("Refuel

Locations").Range("A2:F440"), 6, False)

EndLat = Application.WorksheetFunction.VLookup(EndNum, Sheets("Refuel Locations").Range("A2:F440"), 5,

False)

EndLon = Application.WorksheetFunction.VLookup(EndNum, Sheets("Refuel Locations").Range("A2:F440"), 6,

False)

StartRow = ((50 - StartLat) * 10) + 2

StartCol = ((StartLon + 125) * 10) + 2

EndRow = ((50 - EndLat) * 10) + 2

EndCol = ((EndLon + 125) * 10) + 2

Worksheets("Map").Activate

Cells(StartRow, StartCol).Select

With Selection.Interior

.Pattern = xlSolid

.PatternColorIndex = xlAutomatic

.Color = 5296274

.TintAndShade = 0

.PatternTintAndShade = 0

End With

Cells(EndRow, EndCol).Select

With Selection.Interior

.Pattern = xlSolid

.PatternColorIndex = xlAutomatic

.Color = 255

.TintAndShade = 0

.PatternTintAndShade = 0

End With

ReDim PathStart(1 To 2), PathEnd(1 To 2)

PathStart(1) = StartRow

PathStart(2) = StartCol

PathEnd(1) = EndRow

PathEnd(2) = EndCol

'Start A-Star Algorithm

Call Pathfinder_A_star(myMap, PathStart, PathEnd, Path, ErrMsg, Stat)

If ErrMsg <> "" Then

MsgBox ErrMsg, vbCritical

Exit Sub

End If

End Sub

53

Option Explicit

Public Type Node

Row As Integer 'row of the actual node

Col As Integer 'column of the actual node

ParID As Integer 'parent node

ScoreF As Integer 'Score F (total cost)

ScoreG As Integer 'Score G (Cost of the path done)

ScoreH As Integer 'Score H (Estimated cost of the path to do)

Closed As Boolean 'indicates if the node is in the closed list

End Type

Public Dist As Long

Public NodesExplored As Long

Dim Openlist() As Node

Dim TargetNode As Node

Sub Pathfinder_A_star(Map(), PathStart(), PathEnd(), Path(), ErrMsg, Optional Stat)

Dim i As Long, c As String, j As Long, k As Long, N As Long, M As Long, NM As Long

Dim Msg As String, k_best As Long, k1 As Long, k2 As Long, Nrow As Long, Ncol As Long

Dim Goal As Boolean, ris As Boolean

Dim CurrNode As Node

Application.ScreenUpdating = False

On Error GoTo Error_handler

N = UBound(Map, 1)

M = UBound(Map, 2)

NM = N * M

ReDim Openlist(NM)

'load starting point

Openlist(1).Row = PathStart(1)

Openlist(1).Col = PathStart(2)

'load ending point

TargetNode.Row = PathEnd(1)

TargetNode.Col = PathEnd(2)

'A-star algorithm begins

ErrMsg = ""

k1 = 1

Call Compute_Score(Openlist(k1), Map)

Do

Call PickUp_TheBest_Node(k_best)

If k_best = 0 Then

ErrMsg = "Sorry, unable to find the path"

Exit Sub

End If

'switch the best node to the close list

k2 = k2 + 1

Openlist(k_best).Closed = True

Nrow = Openlist(k_best).Row 'Update the current node (Nrow/Ncol) to the best node that was selected

(k_best)

Ncol = Openlist(k_best).Col

NodesExplored = NodesExplored + 1

'searches for each adjacent node

For i = Nrow - 1 To Nrow + 1

For j = Ncol - 1 To Ncol + 1

If i > 0 And i <= N And j > 0 And j <= M Then

'check if the node is walkable

If Map(i, j) >= 0 And (i <> Nrow Or j <> Ncol) Then

ris = False

If Not ris Then

'check if it is still open

k = getNode(i, j)

If k > 0 Then

If Not Openlist(k).Closed Then

'verify if the new score is better

CurrNode.Row = i

CurrNode.Col = j

CurrNode.ParID = k_best

Call Compute_Score(CurrNode, Map)

If CurrNode.ScoreF < Openlist(k).ScoreF Then

Openlist(k) = CurrNode

End If

End If

Else

'New node. Add it to the open list

CurrNode.Row = i

CurrNode.Col = j

CurrNode.ParID = k_best

c = Worksheets("Map").Cells(CurrNode.Row, CurrNode.Col).Address(False, False)

54

Range(c).Select

Call Compute_Score(CurrNode, Map)

k1 = k1 + 1

Openlist(k1) = CurrNode

'check if it is the target node

If i = TargetNode.Row And j = TargetNode.Col Then

Goal = True

k2 = k2 + 1

Openlist(k1).Closed = True

Exit Do

End If

End If

End If

End If

End If

Next j, i

Loop 'main loop

Call Highlight_Path(k1)

End Sub

Private Function getNode(Nrow, Ncol)

Dim k As Long

getNode = 0

Do

k = k + 1

If Openlist(k).Col = 0 Then Exit Do

If Openlist(k).Col = Ncol And Openlist(k).Row = Nrow Then

getNode = k

End If

Loop

End Function

Private Sub PickUp_TheBest_Node(k_best As Long)

'Look for the lowest F cost square on the open list.

Dim ScoreMin As Long, k As Long, k_min As Long

Do

k = k + 1

If Openlist(k).Col = 0 Then Exit Do

If Not Openlist(k).Closed Then

If k_min = 0 Or ScoreMin >= Openlist(k).ScoreF Then

ScoreMin = Openlist(k).ScoreF

k_min = k

End If

End If

Loop

k_best = k_min

End Sub

Private Sub Compute_Score(P As Node, Map)

'computes the score of the p-th node

Dim L As Long, di As Long, dj As Long

If P.ParID > 0 Then

'take the score G of its parent

L = Map(P.Row, P.Col)

If L < 0 Then L = 100000

P.ScoreG = Openlist(P.ParID).ScoreG

If Openlist(P.ParID).Row = P.Row Or Openlist(P.ParID).Col = P.Col Then

P.ScoreG = P.ScoreG + 5 + L

Else

P.ScoreG = P.ScoreG + 7.5 + L

End If

End If

'Straight Line Distance Heuristic

di = ((P.Row - TargetNode.Row) * 5) ^ 2

dj = ((P.Col - TargetNode.Col) * 5) ^ 2

P.ScoreH = Sqr(di + dj)

'global score

P.ScoreF = P.ScoreG + P.ScoreH

End Sub

Sub Highlight_Path(k1)

55

Dim i As Integer

Dim k As Integer

Dim c As String

'count the path-length

i = k1: k = 0

Do

k = k + 1

i = Openlist(i).ParID

Loop Until i = 0

'build the path

ReDim Path(1 To k, 1 To 2)

Dim Lt1 As Double

Dim Lt2 As Double

Dim Ln1 As Double

Dim Ln2 As Double

Dim rngZoom As Range

i = k1

k = 0

Do

k = k + 1

Path(k, 1) = Openlist(i).Row

Path(k, 2) = Openlist(i).Col

If Openlist(i).Row <> StartRow Or Openlist(i).Col <> StartCol Then

If Openlist(i).Row <> EndRow Or Openlist(i).Col <> EndCol Then

c = Worksheets("Map").Cells(Openlist(i).Row, Openlist(i).Col).Address(False, False)

Range(c).Select

With Selection.Interior

.Pattern = xlSolid

.PatternColorIndex = xlAutomatic

.Color = RGB(254, 191, 78)

.TintAndShade = 0

.PatternTintAndShade = 0

End With

End If

End If

'Calculate the distance traveled by the path

If k > 1 Then

Lt1 = Cells(Path(k, 1), 1)

Lt2 = Cells(Path((k - 1), 1), 1)

Ln1 = Cells(1, Path(k, 2))

Ln2 = Cells(1, Path((k - 1), 2))

End If

Dist = Dist + Application.WorksheetFunction.Acos(Cos(Application.WorksheetFunction.Radians(90 - Lt1))

* Cos(Application.WorksheetFunction.Radians(90 - Lt2)) + Sin(Application.WorksheetFunction.Radians(90

- Lt1)) * Sin(Application.WorksheetFunction.Radians(90 - Lt2)) *

Cos(Application.WorksheetFunction.Radians(Ln1 - Ln2))) * 3440.065

i = Openlist(i).ParID

Loop Until i = 0

MsgBox "The total distance is " & Dist & " NMs"

Range("A1").Select

End Sub

56

Bibliography

Beeker, Emmet. "Potential error in the reuse of Nilsson's a algorithm for path-finding in

military simulations," The Journal of Defense Modeling and Simulation:

Applications, Methodology, Technology 1, no. 2 (2004): 91-97.

Defense Logistics Agency Website. “Into Plane Contract Information System (IPCIS),”

https://ports.energy.dla.mil/ip_cis/ipcis.htm. 20 August 2013

Departments of the Air Force and Navy. Flying Training, Air Navigation. Air Force

Regulation (AFR) 51-40. Washington: HQ USAF, 15 March 1983.

Department of the Army. Army Aviation Accident Prevention Program. DA Pamphlet

(DA PAM) 385-90. Washington: HQ USA, 28 August 2007.

Department of the Army. Aviation Flight Regulations. Army Regulation (AR) 95-1.

Washington: HQ USA, 15 November 2008.

Dijkstra, Edsger W. "A note on two problems in connexion with graphs," Numerische

mathematik 1, no. 1 (1959): 269-271.

Hart, Peter E., Nils J. Nilsson, and Bertram Raphael. "A formal basis for the heuristic

determination of minimum cost paths," Systems Science and Cybernetics, IEEE

Transactions on 4, no. 2 (1968): 100-107.

Jameson, Terry C., David I. Knapp, and Ed Measure. “A Weather Routing Tool for

Unmanned and Manned Aircraft Systems,” ARMY RESEARCH LAB WHITE

SANDS MISSILE RANGE NM, 2009.

Jenkins, Marcus. "Introduction to Route Calculation," NAVTEQ Network for

Developers, (2007).

Leiserson, Charles E., Ronald L. Rivest, and Clifford Stein. “Introduction to algorithms,”

Edited by Thomas H. Cormen. The MIT press, (2001).

Matthews-Generations, James. "Basic A* pathfinding made simple," AI Game

Programming Wisdom (2002): 105.

 Sathyaraj, B. Moses, Lakhmi C. Jain, Anthony Finn, and S. Drake. "Multiple UAVs path

planning algorithms: a comparative study." Fuzzy Optimization and Decision

Making 7, no. 3 (2008): 257-267.

57

Soltani, Amir R., Hissam Tawfik, John Yannis Goulermas, and Terrence Fernando. "Path

planning in construction sites: performance evaluation of the Dijkstra, A*, and GA

search algorithms," Advanced Engineering Informatics 16, no. 4 (2002): 291-303.

Stout, Bryan. "Smart moves: Intelligent pathfinding," Game developer magazine10

(1996): 28-35.

Szczerba, Robert J., Peggy Galkowski, I. S. Glicktein, and Noah Ternullo. "Robust

algorithm for real-time route planning." Aerospace and Electronic Systems, IEEE

Transactions on 36, no. 3 (2000): 869-878.

Volpi, Leonardo. “A-Star Pathfinder in Visual Basic.” Excerpt from unpublished article.

http://digilander.libero.it/foxes/Plot/Pathfinder_%20Astar.pdf. 24 August 2013.

Zanakis, Stelios H., and James R. Evans. "Heuristic “optimization”: Why, when, and how

to use it," Interfaces 11, no. 5 (1981): 84-91.

Zeisler, Nicholas J. “A Greedy Multiple-Knapsack Heuristic for Solving Air Mobility

Command’s Intratheater Airlift Problem,” MS thesis, AFIT/GOR/ENS/00M-21.

School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson

AFB OH, March 2000.

58

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or
any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate

for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that

notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY)

27-03-2014
2. REPORT TYPE

Master’s Thesis
3. DATES COVERED (From — To)

Sep 2012-Mar 2014

4. TITLE AND SUBTITLE

Aircraft Route Optimization using the A-Star Algorithm
5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Fett, Garret D., MAJ
5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology
Graduate School of
2950 Hobson Way
WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION REPORT
NUMBER

AFIT-ENS-14-M-06

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

POC: MAJ Jaysen Yochim, jaysen.yochim@us.army.mil
US Army Forces Command G4 Aviation Distribution
4700 Knox St.
Fort Bragg, NC 28310
(910) 570-6468

10. SPONSOR/MONITOR’S ACRONYM(S)

FORSCOM

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Distribution statement A:
Approved for public release; distribution unlimited
13. SUPPLEMENTARY NOTES

This material is declared a work of the U.S. Government and is not subject to copyright protection from the United
States.
14. ABSTRACT

This research develops an Aviation Distance Estimation and Route Planning Tool (ADERPT) that finds
least-cost aircraft routing from a designated departure airfield to an arrival airfield for the purposes of mission cost
estimation and pre-mission planning. The model network consists of 43 Army airfields and 426 airports in the
Contiguous United States (CONUS) with Department of Defense contract fuel. Using the A-Star algorithm and
considering aircraft fuel range, ground speed, and refueling time, we determine the refuel locations that result in
the most efficient route. Considering the use of both distance and travel time, we compare our model’s
performance with Dijkstra’s algorithm, a greedy heuristic, and existing cost-estimation techniques. The ADERPT
also examines the use of a grid-based network for obstacle avoidance in route planning and provides a proof of
concept for its potential use as a mission planning tool.

15. SUBJECT TERMS

Optimization, Routing Algorithms, Vehicle Routing, Heuristics, VBA, A-Star Algorithm, Dijkstra’s Algorithm, Greedy
Heuristic, Army, Aircraft
16. SECURITY CLASSIFICATION OF: 17. LIMITATION

OF ABSTRACT

UU

18. NUMBER
OF PAGES

68

19a. NAME OF RESPONSIBLE PERSON

Dr. Raymond R. Hill, AFIT/ENS

a.
REPORT

U

b.
ABSTRACT

U

c. THIS
PAGE

U

19b. TELEPHONE NUMBER (Include Area Code)

(937) 785-3636 ext 7469

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

