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INTRODUCTION 
 

Many veterans with chronic illness following deployment to the 1991 Gulf War appear to 

have a chronic encephalopathy associated epidemiologically with exposure to cholinesterase-

inhibiting chemicals during deployment.
1
  In past research we used principal components factor 

analysis to identify a large nucleus of these veterans whose symptoms suggest a unique 

encephalopathic illness with at least 3 phenotypic variants: syndrome 1 (impaired cognition), 

syndrome 2 (confusion-ataxia) and syndrome 3 (central neuropathic pain).
2
  Syndrome 2, which 

has repeatedly been shown to be the most disabling,
3,4

 has been linked epidemiologically with 

exposure to low-level nerve agent during the 1991 Gulf War.
5,6

 This Factor case definition, 

which is a subset of the CDC case definition, has been validated by structural equation modeling 

in 3 validation samples.
4
 We recently completed a large nested case-control study in a 

population-representative sample of Gulf War veterans which identified objective autonomic,
7
 

electroencephalographic,
8,9

 and neuroimaging
10,11

 measures of brain dysfunction in those 

meeting the Factor case definition and a strong gene-environment interaction of Gulf War illness 

(GWI) with the PON1 gene and having heard nerve gas alarms in the war.
6
  This strong finding 

with a candidate gene indicates a high likelihood that an unbiased genomewide gene-expression 

study in this sample would identify group differences useful in diagnosis and treatment.  Thus, 

we proposed to study gene expression in the same veteran sample, comprised of two separate 

samples suitable for hypothesis development and validation.  The Developmental Sample 

comprises 59 veterans selected as a nested case-control sample from a larger study of a Naval 

Reserve construction battalion that we have studied extensively since 1995,
2,5,12

 and the 

Replication Sample comprises 93 Gulf War-era veterans selected randomly as a nested case-

control sample from a nationwide telephone interview survey of a random sample of Gulf War-

era veterans, the U.S. Military Health Survey (USMHS).
4
  The objective of this study was to 

identify differences in gene expression profiles of the human transcriptome expressed in 

peripheral blood mononuclear cells (PBMCs) associated with the validated Factor case definition 

of GWI in a population-representative sample of Gulf War-era veterans to identify new targets 

for rational development of new diagnostic and treatment approaches.   
 

BODY 

 

I. The sample of Gulf War veterans 

 

 Two previously published papers that describe the validation of the Factor case 

definition,
4
 and the selection and composition of the two subsamples

7
 are provided in Appendix 

A of this report.  From our archival tissue bank, we located frozen whole blood in PAXgene 

tubes from 145 members of the Developmental and Replication samples and transferred them to 

the UT Southwestern Genomics and Microarray Core Laboratory for processing of mRNA.   

 

II. Laboratory Procedures Carried Out 

 

Isolation and quality assessment of RNA. All procedures were performed in the IIMT 

UT Southwestern Genomic and Microarray Core using standard protocols 

(http://microarray.swmed.edu/). Briefly, total RNA was extracted from whole blood obtained in 

PAXgene tubes following the manufactures’ protocol for manual extraction (PAXgene Blood 

RNA Kit Handbook 2). Adequate amounts of RNA were extracted from the PAXgene tubes of  
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144 of the 145 samples.   

Isolated total RNA was 

quantified by absorbance at 

260 nm and quality assessed 

using an Agilent 

Bioanalyzer.  All 244 

mRNA samples had Nano 

drop absorbance ratios >1.9.  

All but 2 samples had RNA 

integrity number (RIN) 

values ≥7.0; the 2 samples 

falling below this standard, 

having RIN values of 6.7 

and 6.8, were excluded, 

leaving 142 RNA samples 

for sequencing and 

bioinformatics analysis 

(Table 1). Isolated RNA 

was aliquoted in storage 

buffer and stored at -80°C 

until use.   

 

 Preparation of transcriptome sequence dataset. All procedures were performed by 

personnel in the IIMT UT Southwestern Genomics and Microarray Core using standard 

protocols. More detailed information about these procedures is available on our website 

(http://genomics.swmed.edu/). Briefly, 1 µg aliquots of total RNA were used for the preparation 

of RNA-SEQ libraries using standard Illumina protocols and TruSeq indexed adaptors. 

Sequencing libraries were quantified by picogreen, and quality and size distributions were 

determined by Bioanalyzer analysis. The indexed samples were processed for sequencing in 

groups of 4 (7 pM loaded), and individual groups were sequenced on a HISEQ 2000 flow cell 

lane using a single-end 50 bp protocol. Approximately 30 million reads were obtained.  Real 

time run quality assessment indicated that all samples yielded high quality sequence (>90% 

Q30). After the completion of the sequencing run, samples were demultiplexed using standard 

algorithms in the Genomics and Microarray Core and processed into individual sample Illumina 

single read sequence files.  

 

 Primary alignment and analysis of transcriptome sequence dataset. Sample sequence 

datasets were processed initially using CLC-Biosystems Genomic Workbench following our 

established bioanalytical pipeline for RNA-SEQ data (http://genomics.swmed.edu/). Briefly, 

sequence data from each sample was initially processed and trimmed for quality and 

subsequently processed through the RNA-SEQ alignment module of CLC-Biosystems (details 

available through http://www.clcbio.com/) using the most current human reference genome 

(HG19) from NCBI. The output of this analysis is: 1) sequence data imported into CLC-

Biosystems; 2) trimmed sequence data ready for analysis 3) aligned sequence data set with 

interactive table containing quantitation of message levels (i.e., RPKM, unique reads, “putative 

exons”, etc); and 4) quantitative data for isoform expression for annotated isoforms relative 

Table 1. Sample sizes of Gulf War-era veterans from whom sufficient 

high-quality mRNA was available for study of gene expression  

 

Extensively phenotyped 

independent samples  

Case definition  

Develop-

mental 

sample* 

Validatio

n sample* Total 

Syndrome 1 (impaired cognition)    9 19 28 

Syndrome 2 (confusion-ataxia) 17 22 39 

Syndrome 3 (central neuropathic pain) 11 20 31 

Controls (No GWI) 14 30 44 

     Deployed controls 333337 3333315 3333322 

     Non-deployed controls 333337 3333315 3333322 

Total subjects 51 91 142 

*The developmental sample was selected from an epidemiologic study of a 

Naval Reserve construction battalion,
12

 and the validation sample from a 

national survey of a random sample of Gulf War-era veterans.
4
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expression levels. For comparative studies of gene expression among the individual samples, the 

table containing extensive quantitative data for all genes and isoforms was exported as an Excel 

file for bioinformatics analysis.  

 

III. Bioinformatics statistical analysis of mRNA gene expression 

 

 The statistical analysis, still in progress, has so far involved two phases: the analysis of 

group differences in RNA levels of hypervariably expressed (HVE) target genes, and an IPA 

(Ingenuity Pathway Analysis) analysis for group differences in upstream regulator genes.  The 

statistical techniques used represent among the most statistically powerful approaches currently 

available to identify group differences in gene expression. 

 

A. Analysis for Group Differences in HVE Target Genes   

 

The first approach has involved analysis of the Developmental Sample first to identify 

the group of HVE target genes and then to analyze the HVE target genes to identify individual 

target genes with significantly different expression between the syndrome groups and the control 

group that replicates in the Replication Sample.  In Appendix B we have included 2 published 

papers giving a detailed explanation of the methods of HVE target gene analysis
13,14

 but will 

summarize them briefly here.  HVE target gene analysis, developed and popularized by our 

collaborator Dr. Igor Dozmorov,
13-16

 exploits the idea that genes responsible for a disease 

process and thus expressed differentially in ill and well groups will show greater variability in 

the total population than genes not involved in the disease process (which will show low 

variability).
15

 This idea is exploited to greatly reduce the loss of statistical power from the 

multiple-comparisons corrections necessary to avoid type I errors.  

 

After all mRNA gene expression values are normalized to a mean of 0 and SD of 

1 and residualized by subtraction from the group mean, a group of genes with low 

variability is constructed by iteratively excluding genes with expression variability 

greater than 2 standard deviations (SD) of the mean of all genes until no further 

exclusions result.  The group of low-variability genes remaining is called the Reference 

Group, and the group of genes that were excluded is called the HVE Target Gene 

Group.  Of the approximately 33,309 genes found to be expressed in PBMCs in this 

study, we found 6,034 to be HVE genes, a percentage well within the expectation.
14,15

 

Since there are many causes for high variability (e.g., very low expression, methodologic 

perturbation, etc.
15

), most of the HVE genes are not involved in the disease process.  The 

following steps are to separate these from likely disease-related genes. 

 

1. To identify group differences in gene expression we next performed a standard 2-

group t-test of the normalized residual gene expression of each gene in the HVE 

Target Gene Group between a syndrome group and the control group, using the 

usual significance threshold of p < 0.05.  This identifies group differences 

uncorrected for multiple comparisons, thus containing virtually all true group 

differences (high sensitivity) but many false positives (low specificity) as well.   
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2. The distribution of each HVE target gene found in step 1 to differ significantly 

from the control group is then compared with the distribution of the expression 

means of all genes in the Reference Group with an associative t-test having a 

modified Bonferroni multiple-comparisons-corrected threshold of p < 1/N where 

N is the number of HVE target genes to be evaluated (associative analyses).  This 

multiple-comparisons correction eliminates the false positives, but the fact that 

the comparison is with the distribution of the mean residual expression of the very 

large number of genes in the Reference Group counteracts the loss of power from 

the multiple-comparisons correction.
13

 

 

3. Leave-one-out cross-validation analysis is then applied to each surviving gene’s 

group difference analysis to exclude genes whose expression passed the tests in 

steps 1 and 2 due to bias from high or low outliers. 

 

4. Finally, the ratio of gene expression in the syndrome and control groups is 

calculated to exclude statistically significant but biologically trivial differences. 

 

This statistical approach has been shown to identify useful group differences in gene expression 

that are not detected by the type of traditional group comparisons used in genomewide 

association studies.
14

 

 Results of this first step in the analysis has thus far been negative, that is, although a 

number of genes were found to differ significantly between any of the 3 syndrome groups and 

the control group, none proved replicable from the Developmental Sample to the Replication 

Sample.  Specifically, in the comparison between syndrome 1 and the control group in the 

Developmental sample we found 32 target genes significantly up-regulated in syndrome 1 and 4 

significantly down-regulated; in syndrome 2 versus controls, we found 2 genes significantly up-

regulated and none down-regulated; and in syndrome 3, we found none to be significantly up- or 

down-regulated.  However, none of these significant group differences was replicated in the 

Replication sample, so they were all rejected, yielding negative results for the first step of the 

analysis. (See next step for addressing this problem in the Conclusion section below.) 

 

B. Analysis for Group Differences in Upstream Regulator Genes   

 

The second approach of the analysis involved a search for evidence among the expression 

of many HVE target genes for patterns that indicate abnormal up- or down-regulation of 

regulator genes upstream from the target genes.  This type of analysis, performed with the 

Ingenuity Pathway Analysis (IPA) software, is necessary because most often the changes in 

expression of regulator genes is so small that, although they may alter the expression of many 

downstream target genes, their own expression is changed too little to be detected.  The IPA 

software system contains constantly updated information from the scientific literature showing 

the patterns of downstream target gene expression changes produced by up- or down-regulation 

of all known regulator genes.  It also contains powerful pattern-recognition algorithms that 

recognize patterns of expression of target genes that identify specific alterations of normal 

expression of regulator genes.  IPA analysis is explained more fully at 

http://www.ingenuity.com.  
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Step 1. Identifying gene subgroups to 

control for regulator gene instability.  One 

possible reason for not finding group differences 

in gene expression in the initial analyses is that 

the disease may have been caused by 

environmental exposures that caused regulator 

genes to become unstable so that their effects 

fluctuate back and forth.  Our first step in the 

IPA analysis then was to analyze the gene 

expression data for evidence of instability in 

gene regulation, that is, for subgroups of 

subjects within the 4 clinical groups where one 

subgroup of subjects shows strong up-regulation 

of a group of target genes and another subgroup 

shows strong down-regulation of the same target 

genes.  This phenomenon can be seen when 

some pathology causes instability of a regulator 

gene so that its function fluctuates between up-

regulation and down-regulation.  In such a 

circumstance, a study of blood drawn at a single 

point in time will show approximately half the 

subjects with up-regulation of the downstream 

target genes and the other half with down-

regulation of the same genes, with some in 

between.  With the effects on gene expression 

going in opposite directions tends to average 

away the differences so that no differential effects 

are seen. 

To detect instability of regulator genes, 

we analyzed the HVE target genes by two cluster 

analysis techniques: correlative clustering and F-

means clustering.
14

 The largest cluster attained a size (number of genes having a similar 

expression profile across all participating samples) that significantly exceeded that which would 

have been obtained by chance (according to simulation experiments). This cluster was composed 

2 sets of target genes whose expression levels varied inversely; that is, when one of these sets of 

target genes was up-regulated, the other set tended to be down-regulated, and vice versa (Figs. 1 

and 2).  The samples were then divided into 2 subgroups: samples showing up-regulation of 

gene set 1 and down-regulation of gene set 2 were classified into Patient Subgroup A; and 

samples showing down-regulation of gene set 1 and up-regulation of gene set 2 were classified 

into Patient Subgroup B (Fig. 1).  The resulting subgroup designation A and B was then 

introduced into the IPA analyses as the equivalent of an interaction term, thus allowing the 

identification of genes differentially expressed in either direction due to instability of regulator 

genes.  An example of the results is shown in Fig. 2. 

Fig.  1.  Normalized residual expression (vertical 

axis) of genes of the largest cluster in 18 

representative syndrome 2 subjects (horizontal 

axis).  The lines represent different genes separated 

into gene sets 1 and 2. The vertical red line 

separates sample subgroup A (up-regulated in top 

set of genes in the cluster and down-regulated in 

the bottom set of genes in the cluster) and subgroup 

B (vice versa). 

Sample subgroup A Sample subgroup B

Gene set 1

Gene set 2
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Fig. 2. Heat map of gene expression illustrating the comparative groups resulting from the 

cluster analysis.  The comparative groups in this example include a group of well controls 

and the syndrome 2 subjects of the Developmental Sample, each stratified into the A and B 

subgroups on the basis of the predominant direction of residual gene expression (see Fig. 

1).  The vertical axis lists the genes of the predominant cluster arranged by a dendrogram 

(tree diagram) generated by the cluster analysis.  The heat scale shows gene expression 

maximally up-regulated in red and maximally down-regulated in green, with black being 

neither up- nor down-regulated.  Subjects are numbered sequentially along the horizontal 

axis within the 3 comparison groups. 

 

Step 2. Identifying individual differentially expressed target genes within stability-

controlled subgroups.  Using the same approach as in section IIIA above, we reran the analyses 

to identify individual HVE target genes differentially expressed between the syndrome 2 subjects 

in Patient Subgroup A compared with controls and then in Patient Subgroup B compared with 

controls in the Developmental Sample and accepted those genes as truly differentially expressed 

that were verified by the same analyses in the Replication Sample (see the significantly 

differentially expressed genes in the last column in Table 2 below).   

 

Step 3. Identifying upstream regulator genes potentially responsible for the patterns of 

differential expression of the individual target genes.  The expression levels of target genes 

identified in Step 2 were entered into the IPA Upstream Regulator Analysis software and 

analyzed to identify their potential upstream regulator genes.  This analysis was run separately 

for the target genes identified in Patient Subgroups A and B in the Developmental and the 

Replication samples, thus yielding 4 sets of results.  Table 2 summarizes the regulator genes that 

Controls Patient subgroups of Syndrome 2

(well Gulf War veterans) Subgroup A                Subgroup B

Individual veterans

15  16  17  18  19  20  21  22  23   24  25  26  27  28  29  30  311    2    3    4     5    6    7    8    9   10  11  12  13 14
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showed significantly different patterns of gene expression in the A and B Patient Subgroups of 

the syndrome 2 group compared with the control group, which were identified in the 

Developmental Sample and verified in the Replication Sample. These differences were identified 

by the following two statistical tests: Proper Regulation and Enrichment analyses, shown as 

columns 5 and 6 in Table 2. 

 

 Analysis of the “proper regulation” of the targets uses a bias-corrected z score 

to test for activation of the regulator gene [indicated by up-regulation (red in Fig. 2) of 

targets positively regulated by a given regulator gene and down-regulation (green) of 

target genes negatively regulated by it] or inhibition of the regulator gene [indicated by 

down-regulation (green) of targets positively regulated by a given regulator gene and up-

regulation (red) of target genes negatively regulated by it].  The bias correction refers to 

constraining the z test for the direction of control (activation or inhibition) of particular 

target gene by a particular regulator gene established in the scientific literature. For 

example, in the first line of Table 2, the bias-corrected z score for identification of the 

STAT3 regulator gene was z = 1.88 for syndrome 2 versus the control group, indicating 

that a significant proportion of the target genes for STAT3 were included in our selection 

of HVE target genes and that most of them showed changes in expression in the direction 

consistent with reports of STAT3 regulation in the scientific literature.   

 In the enrichment method, we compared the proportion of the target genes 

within the list of our HVE genes with the proportion in the total list of all genes in the 

array.  For example, in the first line of Table 2, the analysis identified a difference in 

gene expression between the syndrome 2 and the control group of the target genes for the 

regulator gene, STAT3, with an enrichment p value of p = 1.15E-03.   

    

 Of great interest is that the identified regulator genes that replicated in the Developmental 

and Replication Samples were the same in the A and B subgroups, although they showed 

opposite directions of control over their target genes (Table 2).  This finding suggests that 

environmental exposures rendered these regulator genes unstable, so that they are exerting 

exaggerated effects that vacillate in direction, the particular direction observed here being merely 

what was captured in a single observation.  If so, this predicts that a second measurement from 

these same individuals would show the same list of significant regulator genes but randomly 

differing in direction of the effects—a prediction that can be tested by measuring gene 

expression again in another blood sample from some of the subjects.   

 The pathway diagrams shown in Fig. 3, panels A-D, portray the relationships between 

each regulator gene, identified in this analysis, and its downstream target genes.   
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Patient 

subgroup

Upstream 

Regulator gene

Molecule 

Type

Predicted 

Activation 

State

Bias-

corrected 

z-score

Enrichment

p-value of 

overlap Target molecules in dataset

A STAT3 transcription 

regulator

Activated 1.883 1.15E-03 ADM, ARG1, CFLAR, CXCR2, FFAR2, IL4R, IL6R, ITGAM (includes 

EG:16409), NAMPT, RAB27A, SOD2, STAT3

CEBPA transcription 

regulator

Activated 2.270 4.43E-03 ACSL1, ANPEP, ARG1, CD7, FCAR, ICAM2, IL6R, ITGAM (includes 

EG:16409), RAB31, S100A8, SOD2

STAT6 transcription 

regulator

Activated 2.060 3.21E-02 ACSL1, ARG1, BCL6, CRIP1, IL4R, LTB

MYC transcription 

regulator

Inhibited -2.266 1.45E-02 ACTN1, ADM, ARG1, BCL6, CFLAR, CRIP1, DDX3X, FAM129A, 

HSPB1, ITGAM (includes EG:16409), NME2, PTEN, SDCBP, SOD2, 

SPARC, T IMP2 (includes EG:21858)

MYCN transcription 

regulator

Inhibited -2.698 6.86E-02 EEF1D, NME2, RPL18, RPL28, SPARC, T IMP2 (includes EG:21858)

B MYCN transcription 

regulator

Activated 4.975 2.12E-18 NPM1, RPL12, RPL13, RPL18, RPL18A, RPL23A, RPL24, RPL29 

(includes EG:367874), RPL37, RPL37A, RPL38 (includes 

EG:3355144), RPL39 (includes EG:25347), RPL7, RPL8, RPS13, 

RPS15, RPS16, RPS19, RPS2, RPS27, RPS3, RPS4X, RPS5

MYC transcription 

regulator

Activated 3.301 1.42E-03 ARHGAP25, CFLAR, NPM1, RHOB, RPL13, RPL32, RPL38 (includes 

EG:3355144), RPL7, RPS13, RPS15A, RPS16, RPS19, RPS27, 

RPS4X, SOD2

STAT3 transcription 

regulator

Inhibited -2.133 1.16E-02 C5AR1, CCR1, CFLAR, CXCR2, IL6R, PECAM1, SOD2, STAT3

CEBPA transcription 

regulator

Inhibited -2.553 1.35E-02 ALOX5AP, CCR1, CSF3R, IL6R, LITAF, MNDA, RGS2 (includes 

EG:19735), SOD2

NFkB (complex) complex Inhibited -2.098 4.40E-02 CFLAR, FPR2, KDM6B, LITAF, PECAM1, RNF19B, SOD2, TNFAIP2, 

TNFRSF10C

A STAT3 transcription 

regulator

Activated 2.587 2.81E-06 ADM, CFLAR, CXCR2, FFAR2, IL4R, NAMPT, PROK2, SOD2, STAT3

CEBPA transcription 

regulator

Activated 2.91E-02 ACSL1, ANPEP, ICAM2, SOD2

STAT6 transcription 

regulator

Activated 1.938 4.11E-03 ACSL1, BCL6, CRIP1, IL4R

MYC transcription 

regulator

Inhibited -2.280 2.52E-05 ACTN1, ADM, BCL6, CFLAR, CRIP1, FAM129A, NME2, PTEN, 

SDCBP, SOD2, SPARC

B MYCN transcription 

regulator

Activated 3.582 3.92E-11 RPL18, RPL18A, RPL23A, RPL29 (includes EG:100039782), RPL37, 

RPL37A, RPL39 (includes EG:100361661), RPL7, RPL8, RPS16, 

RPS2, RPS27, RPS4X

MYC transcription 

regulator

Activated 1.667 6.88E-03 ARHGAP25, CFLAR, IFI35, RHOB, RPL32, RPL7, RPS16, RPS27, 

SOD2

STAT3 transcription 

regulator

Inhibited -2.039 4.30E-05 C5AR1, CCR1, CFLAR, CXCR2, IFI35, IL6R, PECAM1, SOD2, STAT3

CEBPA transcription 

regulator

Inhibited -2.260 4.95E-06 ALOX5AP, CCR1, CSF3R, IL6R, LITAF, MNDA, MT2A, PTAFR, RGS2 

(includes EG:19735), SOD2

NFkB (complex) complex Inhibited -2.361 3.30E-03 CFLAR, FPR2 (includes EG:100426968), KDM6B, LITAF, PECAM1, 

SOD2, TNFAIP2, TNFRSF10C

Developmental Sample

Replication Sample

Table 2. Identification of upstream regulator genes from the patterns of their target genes differentially expressed in patient subgroups of syndrome 2 vs controls

Note: Other regulator genes (not shown) were statistically significant in the analysis but did not replicate across the developmental and replication samples.
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Fig. 3. Pathway diagrams showing patterns of downstream genes controlled by regulator genes 

and found to be differentially expressed within patient subgroups A and B of syndrome 2 

compared with the control group in the Developmental Sample and the Replication Sample.  

Green symbols are up-regulated and red ones are down-regulated.  Full size versions of the 4 

pathway diagrams are reproduced in Appendix C. 

A. Patient subgroup A in Developmental Sample

(PaTFd.jpg)

D. Patient subgroup B in Replication Sample

(PbbTFdnew.jpg)

C. Patient subgroup A in Replication Sample

(PaaTFd.jpg)

B. Patient subgroup B in Developmental Sample

(PbTFd.jpg)
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KEY RESEARCH ACCOMPLISHMENTS 
 

• Obtained human subjects protection approval from the HSRRB. 

 

• Located the PAXgene blood samples for processing. 

 

• Extracted high quality mRNA from the PAXgene blood samples. 

 

• Produced mRNA sequenced libraries for each of the samples. 

 

• Sequenced the PRMC transcriptome for each sample. 

 

• In the analysis we first identified high variably expressed (HVE) genes and produced a Reference 

Group of low expressed genes to increase power of multiple comparison-corrected analyses. 

 

• Analyzed the HVE genes for differential expression of single genes that replicate; the initial 

analysis was negative due to high background variation from variable WBC differential counts. 

 

• Completed cluster analysis that identified 2 groups of subjects with mirror-image gene expression 

patterns, suggesting instability of upstream regulator genes in the Syndrome 2 group. 

 

• Completed IPA Upstream Regulator Analysis of the Syndrome 2 group vs controls that identified 

in the Development Sample apparent differential function of 6 regulator genes from the gene 

expression levels of downstream target genes known to be controlled by these regulators and 

reproduced the findings in the Replication Sample. 

 

• Began the literature reviews to interpret these findings. 

 

• Have undertaken further analyses to identify differentially expressed single genes by controlling 

for differences in WBC differential counts. 

 

 

 

REPORTABLE OUTCOMES 
 

• Created a large RNA-seq database containing the sequencing information on all PBMC 

genes in the 144 research subjects studied 

 

• Created a gene expression database containing the gene expression levels of all PBMC 

genes in the 144 research subjects studied. 

 

• Submitted a new grant proposal to CDMRP to increase the sensitivity of gene expression analysis 

by collecting LPS- and acetylcholine-stimulated blood samples from the same groups of subjects 

in the present study and separating the different types of WBCs for separate RNA-seq analysis. 
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CONCLUSION 
 

Under DoD funding for this project, we successfully completed the laboratory work, 

yielding excellent quality mRNA and sequencing data and performed the planned analyses  The 

IPA Upstream Regulator Analysis identified patterns of differential up- and down-regulation 

between the syndrome 2 group and controls that implicate instability in several transcription 

regulator genes in the syndrome 2 group of subjects, most prominently the STAT3 regulator 

gene.  These group differences survived the multiple comparisons correction, were replicable 

between our Development and Replication samples, and closely conformed to the regulator-

target gene networks described in the literature.  The knowledgebase of the IPA software, which 

reflects a thorough synthesis of scientific literature, indicates that the implicated regulator-target 

pathways have been shown in past studies to be involved in general inflammation, 

neurodegeneration, brain ischemia, neuronal injury, encephalomyelitis, post-infective chronic 

fatigue syndrome, and neuroinflammation—all neuropathologic conditions with similarities to 

pathologic processes thought to underlie GWI.   

Next Steps.  The lack of significant, replicable group differences in expression of single 

genes may be due to any or a combination of the following: 1) the mRNA extracted from the 

PAXgene tubes in our sample of subjects contains a very high degree of background variability 

of gene expression due to wide inter-subject variation in the WBC differential count; 2) 

instability of regulator genes produces fluctuating up- and down-regulation; or 3) the lack of 

genomic correlates of Gulf War illness.    

We have noticed a high degree of background variation in gene expression in these 

PBMCs from peripheral blood samples—greater than we would see, say, in gene expression data 

from tissue samples—that is likely to be obscuring subtle group differences.  This excessive 

background variation is probably due mostly to the fact that PBMCs represent a mixture of RNA 

from the 12 different cell types of WBCs (e.g., B lymphocytes, T lymphocytes, monocytes, 

neutrophils, etc.) found in routinely collected whole blood and the wide inter-individual 

differences in the distribution of these cell types (WBC differential count).  After finding these 

negative results in the initial analysis, we designed 2 ways of overcoming the problem. 

First, due to concerns that the large differences in WBC differential counts among the 

subjects increased variation and reduced the power of the analysis, we performed initial re-

analyses of the gene expression data, this time standardizing the expression values by the 

subjects’ WBC differential distributions.  Our initial attempts at this identified 10-15 genes that 

survive the multiple-comparisons correction and are replicable between the two samples, but the 

funding for this award was exhausted before we could complete this analysis.  We plan, 

however, to pursue this with non-DoD funds after the expiration of this grant.   

Second, in future studies this can be definitively overcome, and far more powerfully, by 

stimulating the whole blood with lipopolysaccharide (LPS) or acetylcholine (ACh) and then 

separating the WBCs of the buffy coat into pure suspensions of individual cell types, such as 

lymphocytes, neutrophils or monocytes, before stopping RNA synthesis and extracting the RNA 

for sequencing.  Pharmacologic stimulation has been shown to identify group differences in gene 

expression not demonstrable without stimulation,
17

 and isolation of pure cell types has also been 

shown to increase the ability to show group differences.
18,19

  Since there were insufficient 

resources in the present grant budget to undertake this step, we proposed this approach in a new 

grant submission in the 2012 round of grant solicitations from CDMRP.  Given the findings we 

have made in this phase of the study, we are optimistic that combining pharmacologic 

stimulation and isolation of pure cell types will identify group differences in gene expression 
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among the 3 syndrome groups and the control group that can be used to make objective clinical 

diagnoses of Gulf War illness variants.  Since our proposal for funding this additional approach 

was not funded, we plan to pursue it with non-DoD funding. 

 “So What Section.”    Our provisional finding of an apparent instability in the STAT3 

regulatory gene in the Syndrome variant 2 group vs controls, which proved replicable across the 

2 study samples, suggests an explanation for the higher rate of brain cancer in Gulf War veterans 

compared with non-deployed veterans.
20,21

 Specifically environmental exposure to chemical 

toxicants, particularly low-level nerve agents,
22,23

 may have damaged the STAT3 gene or other 

genes that regulate or stabilize its function.  STAT3 is a well studied oncogene, linked to brain 

cancer among many,
24

 and thus, instability in its function could increase the risk of developing 

brain cancer.  Were this to be confirmed, ongoing research into countering the oncogenic effects 

of STAT3
24

 could lead to prevention or treatment of brain cancers in Gulf War veterans and 

chemically exposed military personnel in general. 

 The lack of success of our initial analyses to identify a gene, or group of genes, whose 

expression levels distinguish cases from controls and differentiate among the 3 syndrome variant 

groups indicates the need for further statistical analyses of this dataset, applying additional 

approaches to identify discriminant functions that might serve as diagnostic tests for Gulf War 

illness.  Failing that, new studies should be undertaken with pharmacologic stimulation of gene 

expression to increase the chances of successful discrimination. 
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 Introduction 

 A substantial proportion, perhaps 25%  [1] , of veterans 
of the 1991 Persian Gulf War continue to experience a 
pattern of symptoms that has become known as ‘Gulf 
War illness’. Initial investigations of ill soldiers in units 
reporting high rates of illness by military medical teams 
soon after the war documented a list of symptoms, most 
prominently chronic fatigue, memory/attention prob-
lems, personality change and body pain, which began 
during or soon after the war. Finding little evidence of 
diagnosable physical or psychiatric illness, including 
posttraumatic stress disorder, initial medical investiga-
tions were unable to define the illness and thus drew no 
clear associations with environmental conditions in the 
war  [2, 3] . Subsequent medical examinations of tens of 
thousands of veterans in military and US Department of 
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Veterans Affairs (VA) Persian Gulf War registries like-
wise yielded no case definition of the illness and thus no 
evidence of etiology  [4] .

  Subsequently, a study in a US Navy reserve battalion 
that served in the Gulf War used principal components 
factor analysis to identify unique symptom patterns sug-
gesting at least 3 primary syndrome variants comprising 
a definable Gulf War illness  [5] . The syndrome variants 
were strongly associated with different sets of self-report-
ed environmental exposures  [6] ; objective testing identi-
fied different patterns of altered brain biochemistry and 
function associated with the syndrome variants  [7] , and 
confirmatory factor analysis of the survey questionnaire 
reproduced the factor structure in a replication sample of 
primarily US Army veterans  [8] . Since the case definition 
was developed and validated in relatively small samples, 
however, the acceptance of the case definition has been 
limited by questions of external validity. 

  This article describes the design, implementation
and primary findings of the US Military Health Sur-
vey (USMHS), a computer-assisted telephone interview 
(CATI) survey designed to test prestated validation hy-
potheses in a large statistically representative sample of 
the US military population at the time of the 1991 Gulf 
War. Evidence that would support its validity would in-
clude finding a good fit of the latent factor structure to 
the symptom data of the Gulf War veteran population, 
low prevalence of veterans meeting the case definition in 
the nondeployed military population and substantially 
higher prevalence in the deployed population, and a 
strong inverse association with measures of health-relat-
ed quality of life.

  Materials and Methods 

 The Factor Case Definition 
 To enable research, one of the authors (R.W.H.) developed a 

survey questionnaire of typical symptoms of ill Gulf War veterans 
soon after the war expressly to derive a case definition  [5] . Since 
the illness resembled many psychiatric diseases in being com-
posed of patterns of symptoms without objective signs or labora-
tory findings, the survey questionnaire was designed to be ana-
lyzed by a two-stage principal components factor analysis to re-
solve ambiguities in common symptom complaints and detect 
symptom patterns that might represent illness variants linked to 
specific environmental exposures. Similar approaches have been 
used to define psychiatric diseases listed in the Diagnostic and 
Statistical Manual of Mental Disorders, fourth edition  [9] . The 
investigators administered the questionnaire in controlled group 
settings to 249 members of a naval reserve battalion deployed to 
the 1991 Gulf War  [3] . The analysis yielded evidence of 6 unique 
symptom patterns suggestive of syndrome variants, and having 

any one of these patterns constituted an  overall factor case defini-
tion . With variants 4–6 overlapping variant 2, variants 1–3 were 
considered  primary syndrome variants  for further study  [5] .

  Syndrome variant 1 (‘impaired cognition’) was comprised of 
mild cognitive deficits, including distractibility, forgetfulness, 
depression and chronic fatigue (daytime sleepiness) – not limiting 
employment appreciably. Variant 2 (‘confusion/ataxia’) included 
reduced intellectual functioning, confusion, vertigo and disori-
entation, resulting in substantial limitations of employment. 
Variant 3 (‘central neuropathic pain’) involved chronic, wide-
spread joint and muscle pains and other sensory abnormalities 
such as paresthesias and numbness but, as with variant 1, carried 
little limitation of employment  [5] . 

  Epidemiological analysis identified strong associations of the 
3 primary syndrome variants with self-reported environmental 
exposures to different chemical toxins  [6] . Repeat administration 
of the questionnaire to 335 primarily US Army veterans of the 
1991 Gulf War replicated the principal component structure, test-
ed by confirmatory factor analysis  [8] . Subsequent studies of rep-
resentative ill veterans and well controls from the naval reserve 
battalion differentiated the 3 syndrome variants and controls on 
neuropsychological  [10, 11] , neurophysiological  [10, 12] , auto-
nomic  [13] , brain imaging  [7, 14–16]  and functional status  [17]  
measures, with abnormalities severest and most widespread in 
factor syndrome variant 2 ( table 1 ). The 4 subgroups were par-
ticularly well differentiated by a discriminant function of chang-
es in regional cerebral blood flow from a cholinergic pharmaco-
logical challenge, measured by single-photon emission computed 
tomography  [7]  ( fig. 1 ). Of particular note is that the 3 factor syn-
drome variant groups tended to deviate from the control group in 
different directions, e.g. syndrome variant 1 being abnormally 
lower than the controls and syndrome variant 2 higher, so that the 
composite of the 3 syndrome variant groups would not differ sig-
nificantly from the controls  [7]  ( fig. 1 ) – emphasizing the impor-
tance of a subclassification of the case definition.

  Main Objectives 
 The USMHS was designed primarily as a confirmatory test of 

the null hypothesis of no difference in the prevalence rates of the 
overall factor case definition between the US military personnel 
deployed to the Kuwaiti Theater of Operations (KTO) during the 
conflict and those who were medically able but were not deployed 
to the KTO (the deployable nondeployed). This required estima-
tion of the prevalence of the overall factor case definition, and the 
individual factor syndrome variant definitions, within a set of 
predetermined subgroups of interest (reporting domains). The 
KTO included Saudi Arabia, Iraq, Kuwait, Bahrain, Qatar, United 
Arab Emirates, and ships in the Persian Gulf. Secondary objec-
tives were to test the fit of a structural equation model of the fac-
tor case definition to the survey data, and to assess the association 
of the case definition with a measure of health-related quality of 
life.

  Sampling Design 
 The  sampling frame  from which the survey sample was ran-

domly selected was constructed by merging the following two da-
tabases:
  (1) The Desert Shield/Storm file and Defense Manpower Data 

Center (DMDC) Operation Mission/Contingency file (Sea-
side, Calif., USA) contained one record for each person on ac-
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Table 1.  Results (means with SEM in parentheses) of medical tests from previously published studies showing differences in overall 
physical functioning and brain function and metabolism among well veteran controls and the 3 primary syndrome variants defined 
by the factor case definition

Test Well 
veteran
controls
(n = 20)

P rimary factor syndrome variants p 
value1

( n = 5)
2
(n = 12)

3
(n = 5)

Health-related quality of life (SF-36) [17]
Physical component summary 56.1 (1.5) 41.7 (2.6) 31.0 (1.7) 34.4 (2.6) <0.001
Mental component summary 55.1 (2.4) 46.7 (4.3) 31.7 (2.8) 47.0 (4.3) <0.001

Circadian variation in parasympathetic nervous system activity
(night-day difference in high-frequency heart rate variability) 
[13]: mean, ms2 90.9 (21.3) –6.8 (15.9) 22.9 (15.3) 4.3 (19.0) <0.001

Chemical analysis of deep brain centers (N-acetylaspartate/
creatine ratio in right basal ganglia) by 1H-magnetic 
resonance spectroscopy) [14]: mean ratio 4.08 (0.13) 3.95 (0.24) 3.35 (0.11) 3.90 (0.18) 0.003

Integrity of acetylcholine receptors in brain (response of 
regional cerebral blood flow to physostigmine challenge 
measured by SPECT brain scan, least significant interval)
[7]: mean difference in rCBF, ml/mg/min –1.43 (2.93) –4.30 (5.25) 4.26 (3.5) –4.56 (5.17) 0.005

Res ults are data from a nested case-control study of 22 cases 
and 20 age-sex-education-matched controls selected from a 
1995 epidemiological survey of 249 members of a Naval Reserve 
construction battalion deployed in the combat zone of the 1991 
Persian Gulf War [5]. The studies were performed in 1998 with 
the subjects residing in the General Clinical Research Center at 

the University of Texas Southwestern Medical Center, Dallas, 
Tex., USA. p values from 4-group ANOVA. The physical and 
mental component summary scores were calculated from the 8 
SF-36 scales as previously published [53]. Values are T scores 
with the mean of the 1998 US population approximately 50 and 
SD 10.
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  Fig. 1.  Results of a previously published  [7]  linear discriminant 
analysis to identify a subset of the deep brain regions whose mean 
normalized regional cerebral blood flow measured by single-pho-
ton emission computed tomography scanning under the baseline 
or physostigmine-stimulated condition would jointly classify 
subjects into the 4 clinical groups defined by the factor case defi-
nition. The discriminant model of normalized regional cerebral 
blood flow from 17 brain regions from either the baseline session 
or the physostigmine-stimulated session yielded 3 linear discrim-
inant functions (LD1–LD3) that best classified the subjects. The 3 
linear discriminant functions provided clear separation of the 4 
groups, with factor syndrome variant 1 in red, factor syndrome 
variant 2 in green, factor syndrome variant 3 in blue, and the con-
trol (Cn) group in black. The 3 primary syndrome variants had 
brain imaging abnormalities deviating from the control group in 
different directions so that the composite of the 3 syndrome vari-
ant groups would not differ significantly from the controls, em-
phasizing the importance of a subclassification of the case defini-
tion. Reproduced with permission from  Psychiatry Research and 
Neuroimaging   [7] . 
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tive duty, in the reserves, and in the National Guard on August 
2, 1990  [18, 19] . This file included historical data and updated 
information on characteristics such as decedent status, cur-
rent military status, and last known residence or duty station. 

 (2) The US Army Services Center for Unit Records Research da-
tabase contained records of the geographic location (longitude 
and latitude) of most military units that served in the Gulf War 
for each day during the conflict period and afterward.  
 Under a research protocol approved by the institutional review 

boards of the US Army and the authors’ research institutions, 
DMDC provided the personally identifying contact information 
for only the members of the final survey sample. A certificate of 
confidentiality protecting the privacy of the survey participants 
was obtained from the National Institute of Environmental 
Health Sciences prior to the start of data collection. 

  The  inferential population  for the USMHS comprised all Gulf 
War era veterans who were living in the 50 United States and 
Washington, D.C., at the time of data collection and who were 
physically and mentally able to complete a telephone interview. 
The inferential population was divided into two subpopulations:
  • The  deployed  subpopulation consisted of all active-duty and 

ready-reserve military personnel (including Coast Guard) 
who served in the KTO any time from August 2, 1990, through 
July 31, 1991. This was defined by the binary deployment flag 
in DMDC’s Desert Shield/Storm file updated by a series of de-
ployment questions in the CATI.  

 • The  deployable nondeployed  subpopulation consisted of the 
complement of active-duty and ready-reserve personnel serv-
ing in August 1990 in any location other than the KTO, ex-
cluding persons who were not deployable because of illness 
 (medically nondeployable) . Medically nondeployable person-
nel – identified during the interview from questions on ill-
nesses, other than pregnancy, in the 2 years before the war that 
precluded deployment – were excluded from the referent pop-
ulation to avoid the ‘healthy-warrior effect’  [20–23] . 

 Allocation and Selection of the Sample 
 The sample was allocated to ensure adequate numbers of ob-

servations in the domains hypothesized to be associated with 
symptoms of Gulf War illness. The frame was stratified into 229 
sampling strata by crossing the variables in each of the following 
three major strata.

  (1) Not deployed to KTO: 
 • Age group as of January 1, 2007 ( ! 49,  6 49 years)  [5, 18, 24]  
 • Gender  [18, 24]  
 • Race/ethnicity (non-Hispanic White, other race/ethnicity) 

 [18, 25]  
 • Military component (active duty, reserve/National Guard)  [18, 

24, 26–28]  
 • Military occupation (air flight crew, aircraft maintenance, 

army special operations, other)  [29]  

 (2) Deployed to KTO: 
 • Location on January 20, 1991  [18, 24]  
 • Age group as of  January 1, 2007 ( ! 49,  6 49 years)  [5, 18, 24]  
 • Gender  [18, 24]  
 • Race/ethnicity (non-Hispanic White, Black/other)  [18, 25]  
 • Military component (active duty, reserve/National Guard)  [18, 

24, 26–28]  

 • Military occupation (air flight crew, aircraft maintenance, 
army special operations, other)  [29]  

 • Stationed at Camp Doha, Kuwait, between July and November 
1991  [30]  

 (3) Groups for special studies: 
 • Member of a twin pair (one or both siblings deployed to KTO) 
 • Member of 24th Reserve Naval Mobile Construction Battalion 

(Seabees)  [5, 24]  
 • Parent of a child with Goldenhar complex birth defect  [31]  

 To test the confirmatory hypothesis, sample size requirements 
(before and after attrition) were estimated to detect a difference 
in syndrome prevalence of 5 percentage points for the domains 
within the deployed population and 10–15 percentage points for 
comparisons between deployed and deployable nondeployed do-
mains at a one-tailed significance level of 5% with 80% power. 
Application of a one-tailed test was justified by the prestated con-
firmatory purpose of the survey and the findings of all prior sur-
veys of Gulf War era veterans, including the pilot phase of this 
survey, of higher symptom rates in deployed than nondeployed 
samples  [18, 26–28] . Estimated prevalence rates for the domains 
used in the sample allocation were obtained from prior studies 
 [32]  and based on illnesses with definitions closely associated 
with components of the factor syndromes, e.g. symptoms of fibro-
myalgia with prevalence estimates of 18–24% in the deployed 
populations versus 9–13% in nondeployed veterans.

  To allow for the increased efficiency of hypothesis testing with 
the planned multivariable analysis, a logistic regression analysis 
of pilot survey data was performed to predict the overall factor 
case definition adjusting for age, gender, race/ethnicity and ac-
tive/reserve status resulting in an R 2  of 0.12. Using this result, a 
compression factor of 0.88 (1 – R 2 ) was applied to the expected 
variances of the prevalence rates to reflect the expected gain in 
precision produced by the model  [33] .

  The final allocation of the sample among the strata was opti-
mized with the Sample Planning Tool software developed by RTI 
for DMDC  [34] . This software uses a nonlinear algorithm satisfy-
ing the Karush-Kuhn-Tucker necessary conditions  [35]  for opti-
mally minimizing the variable costs of data collection subject to 
constraints set on the precision of the key survey estimates. The 
data collection cost model was expressed as a linear, convex func-
tion while the equality constraints were defined with respect to 
the sample design through a set of concave functions. These pa-
rameters provide the sufficient conditions needed to ensure an 
optimal allocation for the USMHS  [36, 37] . In addition to the sur-
vey design, the precision was conditioned on the actual stratifica-
tion affected by unequal stratum weighting (which increases vari-
ances of final parameter estimates) and sample inefficiencies as-
sociated with nonlocation and nonresponse. After inflating the 
allocation solution for expected response rates, a stratified ran-
dom sample of 14,817 Gulf War era veterans was selected ( fig. 2 ). 
Sample members were selected with equal probabilities within 
each design stratum. All members of the Seabees battalion and 
parents of Goldenhar children were selected for the study (cer-
tainty strata).

  Questionnaire Content 
 The CATI questionnaire comprised three modules adminis-

tered to all participants in the following order:
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  (1) The  Symptoms  module included the questions for construct-
ing the syndrome variant factors and overall factor case defi-
nition  [5, 8] , as well as supplementary symptom information 
for comparison with other research case definitions (i.e. CDC 
multisymptom illness  [38]  and modified Kansas  [18]  defini-
tions) and similar conditions (e.g. chronic fatigue syndrome, 
fibromyalgia). Medically nondeployable personnel were iden-
tified during the interview from questions on prewar illnesses 
that had precluded their deployment and were excluded from 
the referent population to avoid a ‘healthy-warrior effect’  [20–
23] . 

 (2) The  Exposure  module measured environmental and other risk 
factors related to Gulf War illness. The locations of persons 
deployed to the KTO were determined to ensure that the ef-
fects of exposure to areas with suspected chemical warfare re-
leases could be evaluated. Questionnaire skip patterns were 
used to avoid asking nondeployed participants questions 
about exposures encountered only during deployment. 

 (3) The  Family Issues  module covered health issues of the respon-
dents’ families that could possibly have resulted from war-re-
lated chemical exposures. For example, questions were includ-
ed to ascertain the numbers of pregnancies, miscarriages, still-
births, live births, birth defects and learning disabilities in 
offspring conceived by or born to the subjects and their part-
ners, as well as problems with infertility.  

 Data Collection 
 Interviewing for a pilot survey of 200 veterans randomly se-

lected from the target population occurred in 2005–2006 to test 
the CATI content and interviewing procedures and to generate 
parameters used to estimate the main study sample size. Tele-
phone interviewing for the full USMHS ran from May 22, 2007, 
through April 26, 2009, with a dormant period of no outbound 
calling between June 1 and October 27, 2008.

  Current telephone numbers of sampled veterans were initially 
sought by batch tracing of name, birth date and social security 
number through the National Change of Address file and other 
online resources. Unlocated sample members were periodically 
traced through an interactive search of multiple open and com-
mercial sources. The final unlocatable veterans were sought with 
addresses submitted with 2007 US income tax returns provided 
by the Internal Revenue Service. 

  Sample members with a locatable address were mailed a pack-
et that included the purpose of the study, the importance of their 
responses, the voluntary nature of their participation, materials 
to facilitate the interview, an endorsement letter from the Ameri-
can Legion, the internet address of a project website containing 
additional background information, a 10-dollar bill, and a prom-
ised USD 40 upon completion of the interview. Because federal 
funding of the survey precluded offering financial incentives to 
the 6% of sample members still on active military duty, they were 
offered a study-engraved pen and keychain.

  Interviewers, certified after a 4-day training course, contacted 
and interviewed sample members by telephone, primarily during 
evening and weekend hours. Average interview times varied from 
approximately 60 min for the nondeployed nonill to 2.5 h for the 
deployed ill. All participants were informed about the usual 
length of the interview and were offered multiple sessions if they 
became fatigued. Since the symptom questions appeared first in 
the interview, they should not have been affected by interview 

length or continuation sessions. Only after initial refusal conver-
sion techniques had failed, such as stressing the importance of the 
study, were non-active-duty sample members offered an addi-
tional USD 25 for a total of USD 65 to complete the survey.

  Statistical Power 
 A total of 8,020 persons, who completed at least the  Symptoms  

module, were included in the analysis file, constituting an overall 
response rate of 60.1%, using the AAPOR response rate RR4 def-
inition  [39]  ( fig. 2 ). The effective number of respondents required 
to test the main hypothesis, as estimated during the design phase 
of the study, was exceeded in all domains except for deployed fe-
males ( table 2 ). (The effective sample size is the estimated sample 
size adjusted for unequal weighting. It can be thought of as the 
sample size equivalent to that drawn by simple random sampling.) 
In spite of the shortfall, the desired power to detect a difference in 
the overall factor case definition between the deployed and non-
deployed females was achieved because of the larger than expect-
ed number of nondeployed female respondents. 

  Construction of Analysis Weights for Bias Reduction 
 We developed an analysis weight variable to correct bias from 

nonproportional sampling of strata and from inability to locate 
(nonlocation) or obtain participation (noncooperation) from vet-
erans selected into the sample. The ability to locate and to obtain 
consent for study participation from subjects exploits different 
processes in most household interview surveys  [40] . The USMHS 
process for locating veterans was largely dependent on the success 
of the tracing activities. By contrast, the likelihood of participa-

Table 2.  Effective sample sizes required for testing the association 
of the overall factor case definition with deployment

Reporting domain Deployable 
nondeployed

D eployed

target actual differ-
ence

targe t actual differ-
ence

Males1 111 591 480 111 2,903 2,792
Females1 200 174 –26 200 539 339
Age <491 111 469 358 111 1,123 1,012
Age ≥491 200 383 183 200 534 334
Non-Hispanic white1 111 537 426 111 819 708
Black/other1 298 304 6 298 344 46
Active duty1 111 422 311 111 2,597 2,486
Reservists1 200 374 174 200 1,027 827
Flight crews2 46 56 10 46 153 107
Aircraft maintenance2 46 58 12 46 198 152
Army special forces2 46 49 3 46 86 40

Eff ective sample sizes: required for comparisons of the overall 
factor case definition between deployed and deployable nonde-
ployed reporting domains at the 0.05 one-tailed significance level 
with 80% power; the target effective sample sizes were based on 
the USMHS Pilot Survey. 

1 Detectable difference of 10%. 2 Detectable difference of 15%.
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tion was likely affected by numerous factors including the sam-
pled veterans’ military experience. As a result, we constructed 
survey analysis weights by combining adjustment factors for the 
sampling design, nonlocation and nonparticipation by the follow-
ing five-step process  [41] .

   Step 1.  A survey design weight was calculated for each sample 
member as the inverse of the selection probability within the re-
spective design stratum. The design weights had the following 
form:  

  h
hi

h

Nd
n                                                                                             (1)

  where  n  h  is the number of sample members selected within stra-
tum  h  ( h  = 1, …, 229) and  N  h  is the total number of veterans on 
the sampling frame within stratum  h . The design weight  d  hi  is the 
same for every sample member in the same sampling stratum.  

  Step 2.  The design weights were first adjusted to minimize bias 
associated with nonlocation using adjustment classes defined by 
a classification and regression trees algorithm  [42]  and applied to 
data available on both located and nonlocated sample veterans. 
The classes were formed using variables such as service, service 
component and age group in addition to certain paradata vari-
ables (the complete list of variables has been withheld in accor-
dance with conditions in the Certificate of Confidentiality). The 
adjustments ( �  ̂ hi ) can be written in terms of a logistic model con-
taining the classification and regression tree adjustment classes:  
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  where  d  hi  is the design weight given in equation 1, X hi  ( l   !  1) is a 
vector of indicator variables that identify membership in one of 
the  l  adjustment classes,  � ̂  1  ( l   !  1) is a vector of estimated model 
parameters, and  L  hi  = 1 if sample member  hi  was located (zero 
otherwise). The resulting location-adjusted analysis weight is 
written as:    
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0 otherwise
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   Step 3.  A subsequent adjustment was applied to the weights to 
address any potential nonparticipation bias among sample mem-
bers who were contacted. Procedures similar to those discussed 
in step 2 resulted in the following weight adjustment: 
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   where  w  1  hi  is the adjusted weight given in equation 2,  Z  hi  ( p   !  1) 
is a vector of indicator variables that identify membership in one 
of the  p  adjustment classes,  � ̂ 2   ( p   !  1) is a vector of estimated 
model parameters, and  P  hi  = 1 if sample member  hi  was located 
 and  participated in the USMHS (zero otherwise). The weight ad-
justed for nonlocation and nonparticipation was then computed 
as: 

1
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for located sample members who
participate in the USMHS

0 otherwise
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Target population

3,700,467 US military personnel on active duty or in the
reserves or national guard on August 2, 1990

Sampling frame

3,492,407 persons

Deployed to KTO
697,127

Not deployed to KTO
2,792,235

Special studies
3,045

93,986 deceased
114,074 out of country

Stratified random sample

14,817 persons

Deployed to KTO
10,622

Not deployed to KTO
2,320

Special studies
1,875

1,268 refused
450 other noninterview

Contacted

10,172 persons
(74.9% contact rate)

Deployed to KTO
7,044

Not deployed to KTO
1,683

Special studies
1,445

Eligible

9,288 persons
(90.1% eligibility rate)

Deployed to KTO
6,409

Not deployed to KTO
1,549

Special studies
1,330

Completed CATI

8,020 persons
(60.1% response rate)

Deployed to KTO
5,699

Not deployed to KTO
1,192

Special studies
1,129

4,645 unable to contact

41 deceased

42 other ineligible

431 out of country
107 incapable
263 no phone

  Fig. 2.  Sample selection process for the USMHS. ‘Not deployed to 
KTO’ includes medically nondeployable personnel. ‘Special stud-
ies’ included twin pairs, members of the 24th Reserve Naval Con-
struction Battalion (Seabees) and parents of children with Gold-
enhar complex. Counts for subgroups are suppressed to maintain 
confidentiality according to terms of the Certificate of Confiden-
tiality. The ‘contact rate’ includes in the base the number of known 
eligible cases and the estimated number of eligible cases among 
the undetermined cases. The ‘eligibility rate’ is among sample 
members with known survey eligibility. The ‘response rate’ is the 
American Association for Public Opinion Research Response 
Rate 4 (RR4) and includes in the base the estimated number of 
eligible cases among those initially selected for the CATI phase of 
the study  [39] . 
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    Step 4.  Extreme values of  w  2  hi  (falling outside the median  8  2 
 !  interquartile range) were trimmed to ensure that excessive 
variation in the weights would not unnecessarily degrade the pre-
cision of the survey estimates.

   Step 5.  The trimmed weights were ratio adjusted to sum to the 
number of persons on the sampling frame within the key report-
ing domains ( table 2 ). The final USMHS analysis weight was con-
structed as:

   w  3  hi  =  w  2  hi   a  1  hi   a  2  hi                                                                         (4) 

  where  a  1  hi  is the weight trimming adjustment discussed in step 4 
( a  1  hi  = 1 for most responding sample members), and  a  2  hi  =  f  ( w  2  hi  
 a  1  hi ), the poststratification adjustment calculated as a function of 
the trimmed weights.  

 Classification of Syndromic versus Nonsyndromic 
 The 6 syndrome factor scales were generated by summing the 

responses to symptom questions multiplied by the scoring weights 
from the original exploratory factor analysis  [5, 8] . The resulting 
factor scales were then dichotomized, as before, at 1.5 standard 
deviations where values 1.5 and above were classified as  syndrom-
ic   [5, 8] . The cutpoint of 1.5 standard deviations, originally se-
lected from inspection of the scale distributions only  [5, 8] , was 
later found to identify syndromic groups with severer functional 
disability on the Medical Outcomes Study 36-Item Short Form 
(MOS SF-36) physical component score and mental component 
score  [17] . Persons met the overall factor case definition if they 
met any of the 6 dichotomized component definitions.

  Confirmatory Factor Analysis 
 A cross-validation approach was used to split the sample (ex-

cluding the special samples of twins, Goldenhar parents and Sea-
bees) into two halves. The halves were selected using stratified 
random sampling to ensure adequate representation of the sam-
pling strata in each half. Confirmatory factor analysis, performed 
with the M-Plus software  [43]  incorporated the sampling strata 
and analysis weights.

  Statistical Analyses 
 Individual subjects’ scores on the MOS SF-12 physical and 

mental summary scales (version 1) were calculated from the 12 
questionnaire items by the standard Medical Outcome Trust’s 
scoring algorithm, using the May 2006 SAS program (Janel Han-
mer), checked against scores published in the 2001 nationally rep-
resentative sample of the noninstitutionalized general US popula-
tion in the Medical Expenditure Panel Survey (http://meps.ahrq.
gov)  [44] . Statistical analyses of the survey data were performed 
with SUDAAN ©  programs  [45]  allowing for the complex strati-
fied random sampling design and applying the analysis weights 
to adjust for unequal selection probabilities and minimize non-
response bias. Odds ratios and standard errors of the associa-
tion of the case definition with deployment were obtained with 
SUDAAN proc rlogist, and mean SF-12 summary scores in clini-
cal groups defined by the case definition were obtained with 
 SUDAAN proc regress – both analyses controlling for age, gender 
and race/ethnicity. Seventy-one nondeployed respondents, found 
by their questionnaire responses to have been medically nonde-
ployable, were excluded from all analyses to avoid bias from the 
‘healthy-warrior effect’  [20–23] .

  Results 

 External Validity of the Factor Case Definition 
 The confirmatory factor analysis found that a parsimo-

nious structural equation model, previously developed to 
express the 3 primary syndrome factors and a second-or-
der overall Gulf War illness  [8]  ( fig. 3 ), fit the two random 
split halves of the survey database (n = 3,408 each) well 
and showed invariance of fit (forced equal loadings) across 
the two halves ( table 3 ). The goodness-of-fit statistics in-
dicated that the model fit the two random halves of the 
survey database as well as the same model fit a previous 
validation sample of US Army veterans recruited from the 
clinic of a VA medical center  [8]  ( table 3 ).

  Association with Deployment 
 The prevalence of illness by the overall factor case def-

inition was 3.98% in the nondeployed and 13.59% in the 
deployed, for a deployment odds ratio adjusted for age, 
gender and race/ethnicity of 3.87 (95% confidence inter-
val, 2.61–5.74). The deployment odds ratio was highest for 
factor syndrome variant 2 among the 6 individual factor 
syndrome variant case definitions ( table 4 ). The rate of 
the overall case definition was significantly greater in the 
deployed than the deployable nondeployed in all groups 
studied except those serving as Air Force aircraft main-
tenance ( table 4 ).

  Association with Functional Status 
 Even though the factor analysis detected nonrandom 

symptom patterns without regard to severity of illness, 
deployed veterans meeting the overall case definition and 
its component syndrome variant case definitions had sig-
nificantly lower mean functional status, adjusted for age, 
sex and race/ethnicity and the analysis weights, than the 
nonsyndromic veterans on the SF-12 physical component 
and mental component summary scales  [46]  ( table  5 ). 
The effect sizes (difference from the nonsyndromic group 
divided by the standard deviation of that group) of all 
groups meeting the case definition ranged between 1.0 
and 2.0, indicating very large losses of health-related 
quality of life in both physical and mental functioning 
 [47]  ( table 5 ).

  Discussion 

 The findings from this national survey provide evi-
dence supporting the usefulness of the original factor 
analysis-derived case definition with 3 primary variants 
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  Fig. 3.  A structural equation model of Gulf 
War illness with 3 first-order factors (syn-
drome variants), each with 4 symptom 
scales loading on it, and a second-order 
factor (overall Gulf War illness). The mod-
el was developed by a 1995 exploratory fac-
tor analysis in 249 members of a US Navy 
construction battalion  [5] , validated by a 
later confirmatory factor analysis in 335 
primarily US Army veterans from a VA 
medical center  [8] , and in the current 
study validated with population estimates 
from the 2007–2009 USMHS, excluding 
military personnel selected for special 
studies (see fig. 2). The model shown in the 
figure corresponds to model 3 validated in 
the earlier factor analysis study  [8] . 

Table 3.  Goodness-of-fit statistics for structural equation model of Gulf War illness with 3 first-order factors (syndrome variants) and 
a second-order factor (overall Gulf War illness)1, by study and sample within study

Study and sample within study Sample 
size

Goodness-of-fit statistics

SRMR RMSEA CFI TLI

Criteria for a good fit [49] ≤0.080 ≤0.060 ≥0.950 ≥0.950
Deployed US Navy Seabees battalion (developmental sample) [8] 249 0.043 0.023 0.992 0.988
Deployed US Army veterans (first validation sample) [8] 335 0.043 0.044 0.975 0.964
USMHS2

Random half 1 3,408 0.054 0.018 0.968 0.954
Random half 2 3,408 0.048 0.017 0.972 0.967
Both halves combined 6,816 0.048 0.017 0.970 0.958
Forced equal loadings across both halves 6,816 0.054 0.015 0.972 0.967

SRM R = Standardized root mean-square residual, an absolute 
fit index, analogous to R2 for a linear model, and the most sensi-
tive to misspecification of factor covariances or latent structures; 
the remaining 3 fit indexes are most sensitive to misspecification 
of factor loadings [49]. Hu and Bentler [49] reported that the com-
bination of SRMR >0.09 and root mean-square error of approxi-
mation >0.06 for rejection results in the least sum of type I and 
type II model rejection errors; RMSEA = root mean-square error 
of approximation, an absolute fit index that adjusts fit by the num-
ber of model parameters estimated to prevent large complex mod-

el structures from inflating the fit [49]; CFI = comparative fit in-
dex, a type 3 incremental fit index that estimates the improvement 
in fit over a baseline null model where all measured variables are 
uncorrelated [49]; TLI= Tucker-Lewis index (also Bentler-Bonett 
nonnormed fit index), a type 2 incremental fit index [49]. 

1 Corresponds to model 3 developed in the earlier confirma-
tory factor analysis study [8], pictured in figure 3.  2 All results are 
population estimates adjusted to correct for unequal selection 
probabilities and minimize bias from nonlocation and nonpar-
ticipation by application of the survey analysis weights.
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as a case definition for research on Gulf War illness. That 
the case definition was originally developed by factor 
analysis of symptoms in a single battalion was shown to 
fit well a validation sample drawn from ill Gulf War vet-
erans attending a VA clinic, and was associated with ob-
jective tests of illness in similarly small pilot studies sug-
gested its usefulness but left open the questions of its ex-
ternal validity. Our present findings address this question 
in 3 ways.

  First, they show that the structural equation model of 
the case definition fits well the symptom data collected in 

our survey of a stratified random sample of the Gulf War 
era US veteran population. The survey incorporated 
state-of-the-art survey techniques to ensure a representa-
tive sample of Gulf War era veterans from whom to ob-
tain reports of symptoms, exposures and family effects. 
The distribution of the factor case definition throughout 
the target population was demonstrated by showing a 
good fit of the complex syndromic structure to both ran-
dom halves of the sample with confirmatory factor anal-
ysis by structural equation modeling. The quantitative 
criteria used to indicate a good fit are evidence-based 

Table 4. A djusted odds ratio (aOR) for meeting the case definition in deployed versus deployable nondeployed populations, by case 
definition and by demographic and military characteristics

Case definition and domain Percent meeting case definition aOR 95% CI Tests of the 
prestated 
hypothesisdeployable 

nondeployed
deployed

Overall factor case definition 3.98 13.59 3.87 2.61–5.74 0.001
Factor syndrome variant case definitions

Syndrome variant 1: impaired cognition 0.59 1.76 3.33 1.10–10.10 0.033
Syndrome variant 2: confusion-ataxia 1.12 6.10 5.11 2.43–10.75 0.001
Syndrome variant 3: central neuropathic pain 1.22 4.58 4.25 2.33–7.74 0.001
Syndrome variant 4: phobia-apraxia 1.41 5.31 3.44 1.75–6.76 0.001
Syndrome variant 5: fever-adenopathy 0.98 1.78 2.06 1.02–4.12 0.042
Syndrome variant 6: weakness-incontinence 0.70 1.20 1.48 0.55–3.94 0.437

Overall factor case definition by domain
Age

<49 years 2.72 13.68 5.50 3.09–9.81 0.001
≥49 years 5.88 13.37 2.55 1.49–4.35 0.001

Gender
Male 3.23 13.40 4.27 2.65–6.90 0.001
Female 7.61 15.37 2.30 1.24–4.27 0.008

Race/ethnicity
Non-Hispanic White 3.33 9.77 3.56 2.25–5.63 0.001
Black/other 6.78 20.95 4.32 2.10–8.89 0.001

Component
Active duty 3.23 13.51 4.39 2.43–7.92 0.001
Reserve/guard 4.82 13.91 3.53 2.06–6.06 0.001

Occupation
Air flight crew 0.35 1.68 10.04 1.87–53.81 0.007
Aircraft maintenance 3.63 6.37 1.56 0.34–7.21 0.568
Army special forces 2.08 17.92 10.15 1.19–86.60 0.034

CI  = Confidence interval. All results are population estimates 
adjusted to correct for unequal selection probabilities and mini-
mize bias from nonlocation and nonparticipation by application 
of the survey analysis weights. Odds ratios adjusted for age, gender 
and race/ethnicity using the logistic regression procedure (proc 
rlogist) in SUDAAN�. The overall factor case definition is defined 

as satisfying any of the 6 factor syndrome variant case definitions. 
Factor syndrome variants 1–3 are considered the primary syn-
drome variants because factor syndrome variants 4–6 overlap 
strongly with factor syndrome variant 2, which is associated with 
the greatest reduction in functional status and the severest neuro-
psychological and neuroimaging abnormalities [7, 10–17].
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thresholds that maximize the rejection of poorly fitting 
models and the acceptance of good fitting ones  [48–50] , 
particularly the combination of the standardized root 
mean-square residual and root mean-square error of ap-
proximation fit indices  [49] . Analysis weights incorporat-
ing corrections for unequal selection probabilities among 
strata and for nonlocation and nonparticipation were ap-
plied to the structural equation model analyses to facili-
tate the unbiased estimation of inferential population pa-
rameters from the survey sample. 

  Second, we found the prevalence of veterans meeting 
the overall case definition to be low in the deployable 
nondeployed Gulf War era veteran population and ap-
proximately 4-fold higher in the deployed force, as would 
be expected from an illness caused by exposures in the 
war theater. In making this comparison, we addressed 
the well-known selection bias from the fact that only the 
healthiest soldiers are deployed to a war zone (‘healthy-
warrior effect’)  [20–23]  by omitting from analysis veter-
ans who were nondeployed because of a definable health 
problem, leaving the deployable nondeployed as the com-
parable referent group.

  Third, the case definition identified groups of de-
ployed Gulf War veterans with greatly reduced function-
al capacity typical of other serious chronic diseases, as 

measured by the MOS SF-12 functional status scales  [46, 
51] . The effect size of the difference between the groups 
meeting the case definition and those not meeting it was 
large, 1.0–2.0. According to Cohen’s rule of thumb, an ef-
fect size of 0.2 is considered a small effect, one of 0.5 a 
moderate effect and of 0.8 a large effect  [47] . The SF-36 is 
the most widely used multi-item instrument for assessing 
health-related quality of life, and the SF-12 is a short ver-
sion containing a 12-item subset that strongly predicts 
the results of the full SF-36 and that is better suited for 
large surveys. Application of the full SF-36 in a small 
sample nested in an epidemiological survey of a single 
battalion previously found that the ill Gulf War veterans 
meeting the factor syndrome case definitions had reduc-
tions in scores on the physical and mental component 
summary scores that were both statistically and medi-
cally significant  [17] . The present study confirms that 
finding in a representative population sample of deployed 
Gulf War veterans. 

  Basing a case definition on empirically derived com-
binations of symptoms shown to occur uncommonly in 
the deployable nondeployed population and far more 
commonly in the deployed population and derived from 
a relatively high cut point (1.5 standard deviations) on the 
syndrome variant factor scales, maximizes its specificity, 

Table 5.  Health-related quality of life measured by the MOS SF-12 physical and mental component summary scores in deployed Gulf 
War veterans, by the overall factor case definition and its component syndrome variant case definitions

Clinical groups defined by the case definition SF-12 physical component summary 
score

SF-12 mental component summ ary 
score

mean effect size me an effect size

Does not meet the overall case definition 47.5 (0.3) reference 54.2 (0.9) reference
Meets the overall factor case definition 34.7 (1.0) 1.3 39.5 (0.9) 1.5
Meets factor syndrome variant case definitions

Syndrome variant 1: impaired cognition 35.1 (1.6) 1.2 36.9 (1.2) 1.7
Syndrome variant 2: confusion-ataxia 34.9 (1.9) 1.3 33.8 (1.1) 2.0
Syndrome variant 3: central neuropathic pain 32.7 (1.7) 1.5 42.4 (2.3) 1.2
Syndrome variant 4: phobia-apraxia 32.8 (1.3) 1.5 35.7 (1.3) 1.9
Syndrome variant 5: fever-adenopathy 37.6 (1.5) 1.0 43.0 (1.7) 1.1
Syndrome variant 6: weakness-incontinence 31.4 (1.7) 1.6 35.9 (1.9) 1.8

Res ults are means, with standard error of the mean in paren-
theses. The two component scores are T scores with a US reference 
population mean of approximately 50 and a standard deviation of 
10. All results are population estimates adjusted to correct for un-
equal selection probabilities and minimize bias from nonlocation 
and nonparticipation by application of the survey analysis 
weights. Least squares mean and standard error of the mean were 
calculated with the linear modeling procedure of SUDAAN (proc 

regress) adjusting for age, gender and race/ethnicity, allowing for 
the complex stratified sampling design, and weighting by the 
analysis weights. Effect size is the difference in means of the nonill 
(not meeting the case definition) and ill groups divided by the 
standard deviation in the nonill group; an effect size of 0.2 is con-
sidered clinically a small effect, one of 0.5 a moderate effect and 
of 0.8 a large effect [47].
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which, by misclassifying few noncases as cases, is optimal 
for research on etiology, pathogenesis and treatment. 
However, high specificity is often accompanied by lower 
sensitivity, in this instance by excluding cases just below 
the syndrome variant factor scale cut point and ones with 
rare or unique symptom patterns. Consequently, this re-
search case definition may not prove optimal for even-
tual clinical screening, treatment and decision-making 
on service connection of disabilities, where objective bio-
logical measures may be preferable. 

  To identify such objective measures, we have selected 
two sequential nested case-control subsamples from the 
participants in this national survey for more efficient ap-
plication of expensive clinical research techniques, pur-
suing hypotheses developed in prior research on smaller 
convenience samples  [7, 10–17] . The first subsample is 
comprised of all subjects meeting the overall factor case 
definition or the modified Kansas  [18]  or CDC  [38]  case 
definitions (cases) and a random subsample of those not 
meeting any case definition (controls). These subjects 
were contacted and asked to provide a blood sample for 
banking of serum, plasma, DNA and RNA, primarily for 
testing gene-environment interactions relevant to infer-
ring the original causes and pathogenetic mechanisms of 
the illness  [25, 52, 53] . The second is a smaller random 
subsample of the cases and controls who provided a blood 
sample; they have undergone extensive clinical testing in-

cluding multimodal brain imaging, high-resolution elec-
troencephalography and other biomarker measurements 
 [15, 16] . The results of these clinical studies, to be de-
scribed in future articles, should eventually form the ba-
sis for an objective, optimally sensitive and specific dis-
ease definition for medical use developed in statistical 
samples of the target population of Gulf War veterans.
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Cholinergic Autonomic Dysfunction in Veterans
With Gulf War Illness

Confirmation in a Population-Based Sample

Robert W. Haley, MD; Elizabeth Charuvastra, RN†; William E. Shell, MD; David M. Buhner, MD;
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Background:Theauthorsofprior small studies raised the
hypothesis thatsymptomsinveteransof the1991GulfWar,
suchaschronicdiarrhea,dizziness, fatigue, andsexualdys-
function, are due to cholinergic autonomic dysfunction.

Objective:Toperformaconfirmatory testof thisprestated
hypothesis in a larger, representative sample of Gulf War
veterans.

Design: Nested case-control study.

Setting: Clinical and Translational Research Center, Uni-
versity of Texas Southwestern Medical Center, Dallas.

Participants: Representative samples of Gulf War veter-
ans meeting a validated case definition of Gulf War illness
with3variants (calledsyndromes1-3)andacontrolgroup,
all selected randomly from the US Military Health Survey.

MainOutcomeMeasures: Validated domain scales from
the Autonomic Symptom Profile questionnaire, the Com-
posite Autonomic Severity Score, and high-frequency heart
rate variability from a 24-hour electrocardiogram.

Results: The Autonomic Symptom Profile scales were sig-
nificantly elevated in all 3 syndrome groups (P�.001), pri-
marily due to elevation of the orthostatic intolerance, sec-
retomotor, upper gastrointestinal dysmotility, sleep
dysfunction, urinary, and autonomic diarrhea symptom do-
mains. The Composite Autonomic Severity Score was also
higher in the 3 syndrome groups (P=.045), especially in
syndrome 2, primarily due to a significant reduction in su-
domotor function as measured by the Quantitative Sudo-
motor Axon Reflex Test, most significantly in the foot; the
score was intermediate in the ankle and upper leg and was
nonsignificant in the arm, indicating a peripheral nerve
length–related deficit. The normal increase in high-
frequencyheart ratevariability atnightwasabsentorblunted
in all 3 syndrome groups (P� .001).

Conclusion: Autonomic symptoms are associated with
objective, predominantly cholinergic autonomic defi-
cits in the population of Gulf War veterans.

Arch Neurol. Published online November 26, 2012.
doi:10.1001/jamaneurol.2013.596

F EW MEDICAL CONDITIONS ARE

as vexing as Gulf War ill-
ness to the veterans who ex-
perience it, the physicians
who are charged with car-

ing for them, and the policy makers who
determine the institutional attitudes and
level of resources to be directed at the prob-
lem. In 1991, the US military deployed
700 000 of the highest-performing mem-
bers of the all-volunteer army to the Middle
East for a 5-week air bombing campaign
and a 5-day ground operation involving
tank battles and little traditional combat.
Yet, an estimated 25% of the force re-
turned with a chronic, often disabling ill-
ness involving symptoms of multiple or-
gan systems without obvious physical signs
or laboratory abnormalities,1 variously as-
cribed to fibromyalgia, somatization, de-
ployment stress, chronic fatigue syn-

drome, adult-onset attention-deficit
disorder, or simply multisymptom ill-
ness. Evidence from epidemiological and
clinical studies suggests a chronic neuro-
toxic encephalopathy from exposure to
cholinesterase-inhibiting chemicals.1,2 A
similar chronic illness has been de-
scribed in pesticide-exposed agricultural
workers3 and in survivors of the 1995 sub-
way sarin attack in Tokyo, Japan.4

Amongthemost troubling reportsof the
ill veterans are symptoms suggesting auto-
nomic nervous system dysfunction. These
includechronic fatigue,pathogen-freediar-
rhea, delayed gastric emptying and reflux,
dizziness, light sensitivity,night sweats,un-
refreshingsleep, sexualdysfunction,andan
unusuallyhighrateofcholecystitisandcho-
lecystectomy in atypically young male vet-
erans.1A2004studybyHaleyetal5measured
autonomic function in 21 veterans who fit
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a factorcasedefinitionof3syndromevariantsand in17vet-
eran control subjects (all male) who were matched by age,
sex, and education, drawn from an epidemiological survey
of a naval reserve unit.6 Spectral analysis of 24-hour Holter
electrocardiography demonstrated significant blunting of
the normal nocturnal increase in high-frequency heart rate
variability (HF HRV), suggesting impaired central control
ofparasympathetictone,5buttestresultsofbaroreceptorfunc-
tion, sleep architecture by polysomnography, and sensory
and motor nerve conduction were normal. Stein et al7 re-
ported reduced circadian variation in HF HRV among 12
veteransof theGulfWarmeetingamodifiedcasedefinition
of multisymptom illness8 recruited from a rheumatology
cliniccomparedwith36healthycivilianvolunteers,butHF
HRV reduction was present only in 5 female veterans and
not in 6 male veterans with usable HRV measurements. In
an evaluation of neuromuscular function in 49 ill British
Gulf War veterans and in 26 healthy controls, Sharief et al9

found no differences in quantitative test results of sensory
detectionthresholds,Valsalvaandstandingheart rateratios,
andthermoregulatorycontrolofsweating;however,24-hour
HFHRVwasnotmeasured.Noneof these studiesprovided
a thorough description of autonomic symptoms, and none
was performed among a population-representative sample
ofveteranswith the full spectrumofGulfWar illness symp-
toms. The 3 studies5,7,9 are compatible with the possibility
of a selective abnormality of central cholinergic parasym-
patheticcontrolwithpreservedsympatheticadrenergicand
cardiovagal baroreceptor function.

Therefore, we designed a study to test this prestated hy-
pothesis. We evaluated a population-representative sample
of Gulf War veterans meeting a validated case definition
of Gulf War illness, with a control group and 3 syndrome
variants representing the full spectrum of the condition.10

METHODS

STUDY DESIGN

We studied 97 Gulf War–era veterans, including 66 case veterans
with Gulf War illness and 31 control veterans. The participants,
randomlyselectedasanestedcase-controlstudybya3-stagesample
from the US Military Health Survey (Figure 1), were represen-
tative of the entire Gulf War–era veteran population (eAppen-
dix; http://www.archneurol.com). The 66 case veterans met the
standardized factor case definition of Gulf War illness, which was
previously validated in a clinical sample10 and in a large nation-
ally representative sample.12 Specifically, we studied 21 veterans
meeting the factor case definition of Gulf War syndrome 1 (im-
paired cognition), 24 veterans with syndrome 2 (confusion-
ataxia), and 21 veterans with syndrome 3 (central neuropathic
pain). The 31 control veterans included 16 who did not meet the
factor case definition of Gulf War illness but were deployed to
the Kuwaiti theater of operations (deployed controls) and 15 who
were in the military during the 1991 Gulf War but were not de-
ployed (nondeployed controls). The demographic characteris-
tics and comorbidities of the final sample are given in Table 1.

CLINICAL RESEARCH PROTOCOL

All participants were admitted to the University of Texas South-
westernMedicalCenter’sClinicalandTranslationalResearchCen-
ter located in Parkland Memorial Hospital, Dallas, where coffee

drinking and smoking were allowed to continue. All participants
gave written informed consent according to a protocol approved
by the institutional review boards of the university. Because all
the participants of this nationally representative sample traveled
toDallasforthestudy,medicationscouldnotbediscontinuedsafely
until they arrived in the Clinical and Translational Research Cen-
ter under medical supervision; therefore, medications could be
discontinued for only 24 to 48 hours (not necessarily for a full 5
half-lives)beforeautonomic testing.Whereas fullwashout iscriti-
cal for clinical testing of individual participants, potential bias-
ing effects of medication use on group comparisons were tested
by multivariable analyses. An experienced clinical psychologist
(M.M.B.) interviewedallparticipants followingadministrationof
theStructuredClinical InterviewforDSM-IV-TR (SCID)13 andthe
Clinician-AdministeredPTSD[posttraumaticstressdisorder]Scale
(CAPS).14 All investigators who performed or interpreted (E.C.,
M.M.B., S.C.H., G.I.W., and S.V.) test results were blinded to the
participants’ case-control status.

Participants initially completed the self-administered Auto-
nomic Symptom Profile (ASP) questionnaire measuring auto-
nomic symptoms, which has been validated in healthy individu-
als and in patients with autonomic failure.15 Standard weights
were applied to construct the Composite Autonomic Symptom
Scale (COMPASS) and the subscales of autonomic symptom do-
mains.15 After a 12-hour fast and abstention from alcohol and
caffeine, at 7 AM participants underwent the following objective
tests of autonomic function in an autonomic laboratory: pupil-
lometry, lacrimation test, the Quantitative Sudomotor Axon Re-
flex Test,16 heart rate response to deep breathing and Valsalva
maneuver, quantitative sensory testing of cooling and heat pain
thresholds,17 and blood pressure and heart rate response to
head-up tilt with a tilt table (Finapres Monitor; Ohmeda). De-
tails of these tests are provided in the eAppendix.

The Composite Autonomic Severity Score (CASS), a stan-
dardized semiquantitative score measuring the severity of au-
tonomic dysfunction from 0 (no deficit) to 10 (maximal defi-
cit), was calculated by combining the results of the 3 subsets
of the objective autonomic tests and adjusting to standard age
and sex. These included sudomotor (range, 0-3), cardiovagal
(range, 0-3), and adrenergic (range, 0-4) subsets.16

Twenty-four–hour Holter electrocardiography recordings,
performed at home, were digitized at high resolution, and all
QRS complexes were reviewed (Pathfinder 710; Reynolds Medi-
cal) by a skilled technician who censored aberrant complexes
and artifacts. The normal-to-normal R-R intervals in a 5-min-
ute epoch every 15 minutes were analyzed in the frequency do-
main using a fast Fourier transform algorithm based on the
Lomb-Scargle method of spectral analysis18 to produce the stan-
dard measures of HF (0.15 to �0.40 Hz), low frequency (0.04
to �0.14 Hz), and very low frequency (0.003 to �0.04 Hz) spec-
tral power, expressed in milliseconds.2 High-frequency HRV
is an index mainly of vagal parasympathetic influence on car-
diac rhythm and is reproducible over time.19,20

STATISTICAL ANALYSIS

P values are 2-tailed. The reported results were adjusted for
age, sex, and race/ethnicity (black vs other). Analyses were re-
run to test for confounding by the following covariates: smok-
ing, creatinine clearance, diagnosis of heart disease, glycated
hemoglobin level, officer rank during the war, CAPS diagno-
sis of PTSD, indicators of deconditioning (body mass index and
resting pulse rate), and SCID diagnoses of alcohol or other drug
abuse or dependence and major depressive disorder, as well as
medications the participants were taking, including anticho-
linergic medications and tricyclic antidepressants.
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RESULTS

AUTONOMIC SYMPTOMS

All 3 Gulf War illness variant groups reported signifi-
cantly more autonomic symptoms, assessed by the ASP,
than the control group (Figure 2 and Table 2). The
COMPASS scores were significantly elevated for all 3 syn-

drome groups compared with the controls and were most
elevated for syndrome 2 (Figure 2).

In the various symptom domains of the ASP (Table 2),
the syndrome 2 group had the highest autonomic symp-
tom scores, but the pattern of symptom score elevations
was similar among the 3 syndrome groups. The differ-
ences between cases and controls explained more vari-
ance (R2 � 0.20) in the orthostatic intolerance, secreto-
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Figure 1. Process for selecting the nested case-control sample of Gulf War
veterans suitable for the clinical neuroimaging study of Gulf War illness from
the population sample of the US Military Health Survey. Nondeployed control
subjects included those who were medically deployable personnel in the US
military during the Gulf War but who were not deployed to the Kuwaiti
theater of operations and did not meet any of the case definitions for Gulf
War illness. In the stage 1 and stage 2 boxes, the differences between the
total and the sum across its 5 comparative groups are due to subsyndromic
subjects or members of special strata.10 Numbers in the age by sex,
race/ethnicity, and officer rank during the war strata in each clinical group
are suppressed according to terms of the certificate of confidentiality. The 32
veterans excluded from group misclassification included 31 classified in one
of the syndrome groups whose symptoms reported on the survey were not
verified by the medical history taken by telephone and 1 classified as a
control subject who had omitted symptoms of Gulf War illness on the
survey. The 9 excluded for neurological conditions included 5 with a history
of traumatic brain injury and 1 each with cerebrovascular disease, Parkinson
disease, Guillain-Barré syndrome, and an unspecified chronic disease. The
response rate is the American Association for Public Opinion Research
response rate 4 and includes in the base the estimated number of eligible
cases among those initially selected from the sampling frame to be
contacted.11 MR indicates magnetic resonance.
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motor, upper gastrointestinal dysmotility, sleep dysfunction,
and urinary symptom domains and explained less vari-
ance (R2 � 0.20) in the pupillomotor, autonomic consti-
pation, vasomotor, male sexual dysfunction, and reflex syn-
cope symptom domains, suggesting deficits related more
to cholinergic than adrenergic autonomic systems. More-
over, the group difference on the male sexual dysfunction
subscale was mainly due to erectile dysfunction, possibly
related to parasympathetic cholinergic control, and not
ejaculatory failure, a sympathetic adrenergic function.

OBJECTIVE AUTONOMIC TESTS

On objective autonomic tests, participants with Gulf War
illness had significantly more evidence of autonomic defi-
cits than the controls (Table 3). The CASS varied sig-
nificantly across the clinical groups (P = .045) and was
higher in the syndrome 2 group than in the controls
(P = .02).

Compared with the controls, all 3 syndrome groups
showed significantly reduced distal postganglionic su-

domotor function, most significant in the foot, interme-
diate in the ankle and upper leg, and nonsignificant in the
arm, indicating nerve length–related damage to the pe-
ripheral autonomic nervous system affecting the distal
small cholinergic sudomotor fibers (Table 3). In a mul-
tivariable linear model of sudomotor function in the foot
controlling for age and race/ethnicity, the case-control
difference was significant (P = .02) and did not vary by sex
(P = .78 for group � sex interaction). Controlling for the
covariates did not alter these findings.

In contrast, no group differences were statistically sig-
nificant in tests of tear production (Schirmer test), in sym-
pathetic adrenergic function (including the blood pres-
sure responses to Valsalva maneuvers and tilt), or in any
of the pupillary measures. These results are summa-
rized in Table 3.

QUANTITATIVE SENSORY TESTS

The syndrome 2 and syndrome 3 groups had increased
cooling detection threshold, which was statistically sig-

Table 1. Demographic and Comorbidity Measures in Controls and Gulf War Illness Variant Groups

Characteristic

Nondeployed
Controls
(n = 15)

Deployed
Controls
(n = 16)

Gulf War Illness Variant Groupa

P
Valueb

Syndrome 1
(n = 21)

Syndrome 2
(n = 24)

Syndrome 3
(n = 21)

Age, mean (SD), y 51.9 (7.8) 47.8 (7.9) 48.2 (8.6) 49.8 (8.0) 51.0 (7.9) .42
Female sex, No. (%) 3 (20) 3 (19) 7 (33) 7 (29) 4 (19) .78
Black race/ethnicity, No. (%) 2 (13) 4 (25) 3 (14) 4 (17) 3 (14) .91
Officer rank during the war, No. (%) 2 (13) 2 (13) 2 (10) 1 (4) 3 (14) .80
Education scale, mean (SD) 5.5 (1.7) 5.1 (1.8) 5.8 (1.8) 4.6 (1.6) 5.0 (2.0) .30
BMI, mean (SD) 30.1 (3.2) 29.6 (4.7) 29.0 (5.0) 28.4 (4.7) 30.7 (5.8) .66
Resting pulse rate, mean (SD),

beats/min
75.9 (9.8) 75.9 (14.1) 75.4 (15.1) 73.3 (12.3) 74.4 (14.7) .80

Glomerular filtration rate from two
24-h urine samples, mean (SD)

129 (42) 132 (35) 113 (35) 125 (23) 121 (31) .65

Taking anticholinergic medications or
tricyclic antidepressants, No. (%)

1 (7) 0 2 (10) 3 (13) 1 (5) .62

Diabetes by history or glycated
hemoglobin level �7% on
admission, No. (%)

1 (7) 0 1 (5) 1 (4) 1 (5) .95

CDC definition of multisymptom
illness, No. (%)

0 0 21 (100) 24 (100) 21 (100) �.001

MOS SF-12 t score, mean (SD)
Physical component 51.5 (9.4) 51.6 (7.7) 37.8 (12.3) 26.2 (7.6) 32.4 (9.2) �.001
Mental component 57.8 (3.5) 58.4 (7.4) 34.5 (12.0) 39.6 (9.3) 45.6 (12.4) �.001

CDC definition of chronic fatigue
syndrome, No. (%)

0 0 1 (5) 2 (8) 4 (19) .19

ACR survey definition of fibromyalgia,
No. (%)

0 0 5 (24) 14 (58) 18 (86) �.001

SCID diagnosis, No. (%)
Active major depressive disorder 0 0 5 (24) 1 (4) 3 (14) .04
Active alcohol abuse or dependence 3 (20) 1 (6) 6 (29) 10 (42) 5 (24) .15
Active drug abuse or dependence

or admission urine test
2 (13) 2 (13) 4 (19) 5 (21) 1 (5) .58

CAPS diagnosis of active
posttraumatic stress disorder,
No. (%)c

0 0 8 (38) 9 (38) 5 (24) .002

Abbreviations: ACR, American College of Rheumatology; BMI, body mass index (calculated as weight in kilograms divided by height in meters squared);
CAPS, Clinician-Administered PTSD [posttraumatic stress disorder] Scale; CDC, Centers for Disease Control and Prevention; MOS SF-12, Medical Outcomes
Study 12-Item Short Form Health Survey; SCID, Structured Clinical Interview for DSM-IV-TR.

SI conversion factor: To convert glycated hemoglobin level to proportion of total hemoglobin, multiply by 0.01.
aSyndrome 1 is impaired cognition, syndrome 2 is confusion-ataxia, and syndrome 3 is central neuropathic pain.
bBy 5-group Fisher exact test or Wilcoxon rank sum test.
cAmong 22 participants with PTSD by CAPS, the inciting event was a horrifying or life-threatening experience in 7 of them.
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nificant only for the syndrome 2 group (Table 3). None
of the 3 syndrome groups differed significantly from con-
trols on the heat pain threshold.

CIRCADIAN VARIATION
IN PARASYMPATHETIC TONE

From spectral analysis of 24-hour electrocardiogram
monitoring, HF HRV increased normally at night in the
control group but not in the 3 syndrome groups
(Figure 3A and Table 4). In a repeated-measures
mixed-effects linear model of log HF HRV, the case-
control � day minus night interaction was statistically
significant (P � .001), but the 3-way interaction with
sex was not (P = .88), indicating that the loss of circa-
dian variation in the 3 syndrome groups compared with
the controls was found in both men and women veter-
ans. Controlling for the covariates did not alter these
findings.

When analyzed by group, all 3 syndrome groups
showed significant blunting or loss of the normal noc-
turnal increase (Figure 3B and Table 4). During the day,
HF HRV of the syndrome 1 group did not differ from that
of the controls, but the syndrome 2 group had signifi-
cantly lower HF HRV than the controls, and the syn-
drome 3 group had significantly higher HF HRV than the
controls, particularly during the morning hours (Figure 3B
and Table 4).

High-frequency HRV at night was moderately in-
versely correlated with the CASS index of objective au-
tonomic test results (r = −0.41, P � .001) (Figure 4A).
High-frequency HRV during the day was weakly corre-
lated with the CASS (r = −0.22, P = .04) (Figure 4B).

ASSOCIATION OF AUTONOMIC SYMPTOMS
AND OBJECTIVE TEST RESULTS

The COMPASS of all autonomic symptoms was in-
versely correlated with HF HRV and was directly corre-
lated with the CASS subscales. The correlation was high-
est with HF HRV during the day and with the CASS
sudomotor subscale, and the correlation was lowest with
the CASS cardiovagal and adrenergic subscales (Table5).

The individual symptom domains tended to be cor-
related with HF HRV or with the CASS sudomotor sub-
scale but not both (Table 5). Specifically, the vasomo-
tor, secretomotor, upper gastrointestinal dysmotility, and
pupillomotor symptom domains were most strongly cor-
related with the CASS sudomotor subscale. The ortho-
static intolerance symptom domain was also correlated
with the CASS sudomotor subscale, and it was the only
symptom domain to be significantly correlated with the
CASS adrenergic subscale. In contrast, the upper gastro-
intestinal dysmotility and sleep dysfunction symptom do-
mains were most strongly associated with HF HRV
at night, and the autonomic diarrhea, male sexual dys-
function, and urinary symptom domains were most
strongly correlated with HF HRV during the day. Of the
2 components of male sexual dysfunction, erectile dys-
function, a parasympathetic function, was highly corre-
lated with HF HRV during the day, while ejaculatory fail-
ure, an adrenergic function, was not. Like ejaculatory
failure, reflex syncope was not associated with any of the
objective autonomic measures, and these were the only
autonomic symptom domains not associated with the 3
syndrome groups (Table 2).

COMMENT

In a nested case-control sample drawn from a national sur-
vey in a large representative sample of the Gulf War–era
US military population, this study found that a well-
validated research case definition of Gulf War illness was
strongly associated with standard scales of autonomic symp-
toms and with objective tests of autonomic dysfunction.
Autonomic symptom scores and objective test results were
most abnormal compared with the controls in the syn-
drome 2 group. This reflects the findings of several prior
studies in which syndrome 2 consistently was the most dis-
abling10,21 and had the most prominent abnormalities on
various objective tests of brain function.22-29

The ASP autonomic symptom domains most strongly
associated with the case definition tended to be those re-
lated predominantly to cholinergic autonomic control,
and these symptom domains tended to be most strongly
associated with HF HRV measures or with the CASS su-
domotor subscale but not with the CASS cardiovagal or
adrenergic subscales. On the objective autonomic tests,
the 3 syndrome groups differed most from controls on
sudomotor testing (Quantitative Sudomotor Axon Re-
flex Test). The degree of difference on the Quantitative
Sudomotor Axon Reflex Test was related to peripheral
nerve length, typical of a length-dependent neuropathy
of small-caliber, unmyelinated, peripheral nerve fibers.
The increased cooling detection thresholds observed in
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Figure 2. Distribution of values on the Composite Autonomic Symptom
Scale (COMPASS) in the control subjects and in the 3 Gulf War illness
variant groups. The horizontal bars represent the mean scores. The
differences in COMPASS scores across the 4 groups are statistically
significant (R 2 = 0.59, P � .001).
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Table 3. Objective Autonomic and Quantitative Sensory Tests in Controls and Gulf War Illness Variant Groupsa

Variable

Controls,
Mean (SEM)

(n = 31)

Gulf War Illness Variant Groups,
Mean (SEM)

P
Valueb

Syndrome 1
(n = 21)

Syndrome 2
(n = 23)

Syndrome 3
(n = 21)

CASS 0.71 (0.27) 1.15 (0.32) 1.90 (0.31)c 0.57 (0.32) .045
QSART sudomotor quantitative sweat production, �L

Foot 0.79 (0.07) 0.53 (0.08)c 0.40 (0.07)d 0.55 (0.08)c .005
Ankle 1.33 (0.12) 1.16 (0.16) 0.78 (0.15)e 0.92 (0.16)c .04
Upper leg 0.90 (0.09) 0.60 (0.11) 0.49 (0.10)e 0.68 (0.10) .02
Arm 1.09 (0.14) 1.01 (0.18) 0.96 (0.16) 1.34 (0.17) .24

Schirmer test tear production at 5 min, mm 6.0 (1.2) 6.2 (1.5) 4.4 (1.4) 3.5 (1.5) .50
Ratio of expiration to inspiration for R-R intervals 1.25 (0.02) 1.23 (0.29) 1.25 (0.03) 1.24 (0.03) .78
Valsalva ratio 1.81 (0.05) 1.83 (0.64) 1.67 (0.06) 1.77 (0.06) .28
Change in systolic blood pressure from baseline

at 3-min tilt, mm Hg
0.12 (1.33) 2.70 (1.64) 0.67 (1.52) −0.13 (1.60) .64

Maximum pupillary constriction velocity, mm/sf

Left eye 4.85 (0.17) 4.71 (0.21) 4.52 (0.20) 4.95 (0.21) .69
Right eye 4.96 (0.16) 4.58 (0.20) 4.51 (0.19) 4.95 (0.21) .29

Quantitative sensory in the dominant hand
Cooling detection threshold

Just noticeable difference units 8.5 (0.7) 9.4 (0.8) 11.1 (0.8)c 10.7 (0.8) .12
Percentile 70.1 (4.4) 84.6 (5.2) 93.0 (5.0)c 86.8 (5.2) .13

Heat pain threshold
Just noticeable difference units 23.0 (0.3) 22.5 (0.4) 22.7 (0.3) 22.3 (0.3) .38
Percentile 38.7 (5.0) 27.5 (6.2) 31.1 (5.8) 27.1 (6.0) .38

Basal corticotropin level, pg/dL 28.9 (2.9) 27.7 (3.4) 23.7 (2.7) 25.9 (3.2) .49
Basal cortisol level, �g/dL 0.71 (0.08) 0.56 (0.08) 0.47 (0.06) 0.77 (0.11) .10

Abbreviations: CASS, Composite Autonomic Severity Score; QSART, Quantitative Sudomotor Axon Reflex Test.
SI conversion factors: To convert corticotropin level to picomoles per liter, multiply by 0.22; to convert cortisol level to nanomoles per liter, multiply by 27.588.
aMeans (SEMs) are standardized for age, sex, and race/ethnicity (black vs other).
bBy the Kruskal-Wallis nonparametric 4-group test.
cP � .05.
dP � .001 for difference from controls by Wilcoxon rank sum test. The sudomotor group differences remained significant after controlling for whether

participants were taking anticholinergic medications or tricyclic antidepressants.
eP � .01.
fNo significant group differences were observed in resting pupillary diameter, dilation velocity, or constriction amplitude responses to 30-millisecond or

1-second light flash.

Table 2. Scores on the Autonomic Symptom Profile Domains Among Control and Gulf War Illness Variant Groups

Autonomic Symptom
Profile Domain

Maximum
Possible Score

Reference Means
for Controls/Patients

With NAFa

Controls, Mean
(SEM) Score

(n = 31)

Gulf War Illness Variant Group,
Mean (SEM) Score

R 2c
P

Valued
Syndrome 1

(n = 21)
Syndrome 2

(n = 23)b
Syndrome 3

(n = 21)

Orthostatic intolerance 40 3.6/21.6 2.4 (1.3) 12.9 (1.6) 22.2 (1.6) 13.7 (1.6) 0.44 �.001
Secretomotor 20 0.9/6.5 0.9 (0.6) 4.7 (0.7) 6.2 (0.7) 5.2 (0.7) 0.39 �.001
Upper gastrointestinal

dysmotility
10 0.5/2.4 0.2 (0.3) 2.1 (0.4) 3.0 (0.4) 1.7 (0.4) 0.30 �.001

Urinary 20 0.8/2.9 1.0 (0.5) 3.7 (0.7) 4.0 (0.6) 4.8 (0.7) 0.25 �.001
Sleep dysfunction 15 0.8/2.4 1.5 (0.5) 4.8 (0.6) 5.0 (0.6) 4.6 (0.6) 0.24 �.001
Autonomic diarrhea 20 1.5/4.2 1.7 (1.0) 6.1 (1.2) 8.2 (1.1) 6.7 (1.2) 0.16 �.001
Pupillomotor 5 0.4/1.6 0.9 (0.3) 2.1 (0.3) 2.4 (0.3) 1.7 (0.3) 0.15 .002
Autonomic constipation 10 0.6/2.5 0.3 (0.3) 2.1 (0.4) 2.1 (0.4) 1.6 (0.4) 0.15 .002
Vasomotor 10 0.4/2.2 0.1 (0.4) 1.6 (0.5) 2.2 (0.5) 2.1 (0.5) 0.13 .006
Male sexual dysfunction 30 0.6/9.5 1.6 (1.0) 5.4 (1.2) 6.0 (1.1) 5.4 (1.2) 0.13 .009

Erectile dysfunctione 20 . . . 1.4 (0.8) 4.7 (1.0) 4.7 (0.9) 4.9 (1.0) 0.13 .01
Ejaculatory failuree 10 . . . 0.2 (0.4) 0.7 (0.5) 1.3 (0.4) 0.5 (0.5) 0.04 .24

Reflex syncope 20 0.0/0.9 0.2 (0.2) 0.2 (0.3) 1.0 (0.3) 0.2 (0.3) 0.08 .07

Abbreviation: NAF, neurogenic autonomic failure.
aPreviously published reference means for controls and patients with neurogenic autonomic failure.15

bThis value is 23 in Tables 2 and 3 because 1 participant with syndrome 2 did not complete the autonomic testing.
cPercentage of variance explained by the 4-group variable in an analysis of variance performed on the rank-transformed scores.
dBy the Kruskal-Wallis nonparametric 4-group test.
eThese are subdomains of the male sexual dysfunction domain; no separate reference values were given for them.15
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the syndrome 2 group and the syndrome 3 group and de-
scribed in a previous study30 may also reflect underlying
small-fiber impairment.

The autonomic impairment was most clearly demon-
strated in the blunting of the normal rise in HF HRV at
night. Because peripheral vagal baroreflex function was not
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Figure 3. Difference in circadian variation of parasympathetic cardiovagal tone between control subjects and 3 Gulf War illness variant groups, measured by
spectral analysis of high-frequency heart rate variability (HRV) in 5-minute epochs every hour from 24-hour Holter monitoring electrocardiography. The control
group (black circles) is compared with all cases of Gulf War illness (red diamonds) (A) and with syndrome 1 (green triangles), syndrome 2 (red squares), and
syndrome 3 (blue stars) (B). The control group showed the expected low cardiovagal tone during the day and a large increase at night. The syndrome 2 group
showed depressed tone throughout the 24-hour period, with no evidence of a nocturnal increase. Syndrome 1 and syndrome 3 showed a blunted, delayed
increase at night, and syndrome 3 had elevated tone during the day. The statistical test results of the effects in these graphs are given in Table 4.

Table 4. Difference in Circadian Variation of Parasympathetic Cardiovagal Tone Measured by 24-Hour Holter Monitoring
Among Gulf War Illness Variant and Control Groupsa

Group

Spectral Power of High-frequency HRV, Mean (SEM), ms2

P Valueb
Day,

8 AM to 9 PM
Night,

12 AM to 5 AM
Circadian Difference,

Night Minus Day

Model 1c

Controls 135 (9) 226 (19) 91 (21) �.001
Cases 131 (6) 139 (8) 8 (10) .36
Controls minus cases 5 (10) 87 (22) 83 (25) �.001

Model 2c

Controls 135 (9) 226 (19) 91 (21) �.001
Syndrome 1 133 (11) 125 (13) 8 (17) .60
Syndrome 2 106 (8) 129 (13) 23 (15) .07
Syndrome 3 160 (12) 165 (17) 4 (21) .82
Controls minus syndrome 1 2 (13) 101 (24) 99 (28) �.001
Controls minus syndrome 2 29 (11) 97 (24) 68 (27) �.001
Controls minus syndrome 3 −25 (15) 61 (27) 87 (31) .004

Abbreviation: HRV, heart rate variability.
aApparent discrepancies in reported differences are due to rounding.
bFrom repeated-measures mixed-effects linear model predicting log-transformed high-frequency HRV measured in 5-minute epochs every hour, from the fixed

effects of group, day minus night, and their interaction, with participants as random effects and the Dunnett correction for multiple comparisons. Significance was
not altered by controlling for age, sex, race/ethnicity, body mass index, officer rank during the war, glycated hemoglobin level, glomerular filtration rate, major
depressive disorder, active posttraumatic stress disorder, alcohol abuse or dependence, smoking, and anticholinergic medication or tricyclic antidepressant use.

cModel 1 (all cases combined) tests the effects seen in Figure 3A. Model 2 (cases analyzed by Gulf War illness variant group) tests the effects seen in Figure 3B.
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significantly impaired, this abnormality of circadian varia-
tion in HF HRV suggests dysfunction in the central ner-
vous system control of parasympathetic outflow. The
sample size of this study was also sufficient to demon-
strate significant, although more subtle, differences in HF
HRV among the 3 syndrome groups during the day. Mul-

tivariable statistical analyses demonstrated that the objec-
tive findings of peripheral sudomotor neuropathy and im-
paired HF HRV were not explained by smoking, creatinine
clearance, psychiatric comorbidity, diagnosis of heart dis-
ease, glycated hemoglobin level, officer rank during the
war, indicators of deconditioning (body mass index and

10

0

2000

1000

Hi
gh

-fr
eq

ue
nc

y 
HR

V 
at

 N
ig

ht

Total CASS

500

200

100

50

25

A

1 2 3 4

Spearman r = – 0.41
P < .001

5 6

10

0

1000

Hi
gh

-fr
eq

ue
nc

y 
HR

V 
Du

rin
g 

th
e 

Da
y

Total CASS

500

200

100

50

25

B

2 3 4

Spearman r = – 0.22
P = .04

5 61

Figure 4. Correlation of high-frequency heart rate variability (HRV) at night (A) and during the day (B) with the total Composite Autonomic Severity Score (CASS).
Normal R-R intervals from a 24-hour Holter monitor electrocardiogram were analyzed by spectral analysis in a 5-minute epoch each hour. For each participant, the
hourly measures of the high-frequency spectral component (0.15 to �0.40 Hz) were averaged across the nighttime hours (12 AM to 5 AM) and across the daytime
hours (8 AM to 9 PM), and both measures were log transformed. Measurements on the battery of objective autonomic tests were combined to calculate the CASS,
on which higher scores indicate greater autonomic impairment.

Table 5. Partial Spearman Rank Order Correlations of the Total COMPASS Score and Autonomic Symptom Profile Domains
With Objective, Laboratory-Based Measures of Autonomic Functiona

Variable

Spectral Power of High-frequency HRV CASS

Night,
12 AM to 5 AM

Day,
8 AM to 9 PM Total Sudomotor Cardiovagal Adrenergic

Total COMPASS score −0.20b −0.26c 0.20b 0.21d 0.10 0.11
Autonomic Symptom Profile

Domain
Orthostatic intolerance −0.17 −0.13 0.22d 0.19b 0.12 0.22d

Vasomotor −0.10 −0.14 0.14 0.22d −0.01 −0.02
Secretomotor −0.12 −0.16 0.12 0.22b −0.04 −0.01
Upper gastrointestinal

dysmotility
−0.22d −0.21d 0.28c 0.26c 0.16 0.10

Autonomic diarrhea −0.12 −0.26c 0.04 0.14 0.03 −0.13
Autonomic constipation 0.03 −0.05 0.04 0.01 0.15 0.01
Male sexual dysfunction −0.13 −0.27c 0.17 0.10 0.04 0.13

Erectile dysfunction −0.16 −0.33e 0.13 0.05 0.05 0.15
Ejaculatory failure 0.06 0.02 0.14 0.16 −0.05 −0.02

Urinary −0.12 −0.31e 0.12 0.11 0.03 0.05
Pupillomotor −0.08 −0.18b 0.15 0.23d 0.06 −0.04
Sleep dysfunction −0.23d −0.19b 0.11 0.08 0.08 0.08
Reflex syncope −0.04 0.06 0.06 0.08 0.06 0.09

Abbreviations: CASS, Composite Autonomic Severity Score; COMPASS, Composite Autonomic Symptom Scale; HRV, heart rate variability.
aPartial Spearman rank order correlations are adjusted for age, sex, and race/ethnicity (black vs other).
bP � .10.
cP � .01.
dP � .05.
eP � .005.

ARCH NEUROL PUBLISHED ONLINE NOVEMBER 26, 2012 WWW.ARCHNEUROL.COM
E8

©2012 American Medical Association. All rights reserved.

Downloaded From: http://archneur.jamanetwork.com/ by a University of Texas Southwestern Med Ctr User  on 11/26/2012



resting pulse rate), or medications the participants were
taking during the period of the study, including anticho-
linergic medications and tricyclic antidepressants.

The pattern of autonomic symptoms and objective test
findings points predominantly to dysfunction of both cen-
tral and peripheral cholinergic functions, possibly from neu-
rotoxic damage to cholinergic neurons or cholinergic re-
ceptors. This proposed explanation is compatible with prior
studies27,28 showing that, compared with control sub-
jects, regional cerebral blood flow in veterans with Gulf
War illness responds abnormally to cholinergic chal-
lenge with physostigmine, suggesting chronic alteration
of cholinergic receptors in the brain. Experiments in ro-
dents, undertaken to model the possible chronic effects
of sarin in low doses to which Gulf War veterans were ex-
posed in the war, have identified persisting alterations of
cholinergic receptors31,32 and of autonomic responses.33

These findings and this explanation are compatible
with a prior study9 of neurologic function in ill Gulf War
veterans, which found no associations with tests of ad-
renergic autonomic function and nerve conduction in-
vestigations of large-caliber peripheral nerves but gen-
erally did not test for circadian variation in HF HRV. Our
findings did not confirm the interaction of blunted cir-
cadian variation in HF HRV with sex (blunted in women
but not in men) reported by Stein et al,7 which may have
resulted from their studying a small sample drawn from
health care–seeking clients.

This study has several strengths built into the design
to avoid weaknesses in past research on Gulf War ill-
ness. In contrast to the exploratory nature of a prior study9

of autonomic function in Gulf War veterans, this study
was designed as a confirmatory test of a prestated hy-
pothesis raised by previous investigations. The robust
sample size and external validity afforded by the nested
case-control design drawn from a survey in a large popu-
lation-representative sample add greater confidence to
the findings from prior small studies7,22-28 performed in
samples from single military units or from clinic volun-
teers. Particularly important for studying a disease de-
fined by symptoms alone, the case definition of Gulf War
illness used in this study is the only one that has been
empirically validated by demonstrating a statistically good
fit in other Gulf War veteran populations.10,12 Its 3 syn-
drome variants provide homogeneous clinical groups to
maximize statistical power and represent the full spec-
trum of the illness to determine whether autonomic dys-
function spans the entire spectrum or is limited to part
of it. The extensive work by Suarez et al,15 Low,16 and Low
et al34 in developing the ASP and the CASS testing sys-
tems, used in this study, provided validated measures of
autonomic symptom domains and objective autonomic
function testing. As in a previous study of autonomic symp-
toms measured by the ASP,15 the validity of the veterans’
symptom reports was supported by correlations of the
COMPASS and its domains with the appropriate CASS sub-
scales of objective autonomic test results.

The greatest challenge in our study was the logistical
difficulty of selecting and obtaining participation in a
lengthy clinical evaluation of non–treatment-seeking vet-
erans with the full spectrum of the Gulf War illness and
representative of the population of Gulf War veterans.

To accomplish this, the cases and controls sampled from
the nationally representative US Military Health Survey
were screened by a physician (R.W.H.) who called them
by telephone to ensure correct classification on the case
definition before participants were enrolled. The medi-
cal screening found that 31 of 132 cases (23.5%) and 1
of 53 controls (1.9%) who were selected and contacted
were misclassified on the case definition. While some de-
gree of misclassification is present in any epidemiologi-
cal case definition, minimizing it through advance medi-
cal interviews greatly reduced its adverse effect on the
statistical power of this study.

The autonomic measures that differed between cases
and controls in this study may prove useful in a strategy
for clinical diagnosis of Gulf War illness. Of the objec-
tive tests used, the one showing the clearest discrimina-
tion among all 3 syndrome groups and the control group
was the measurement of circadian variation in HF HRV.
When tested with the repeated-measures mixed-effects
linear model, which appropriately manages variance of
the fixed and random effects, the group discrimination
is extremely good. However, when HF HRV measure-
ments in multiple epochs are combined to form a single
measure of nighttime HF HRV for each participant, the
resulting participant-level means display enough re-
sidual variance to reduce the usefulness in clinical diag-
nosis. Additional research should attempt to reformu-
late the measure of circadian variation in HF HRV to
reduce the variance. Measures of the central nervous sys-
tem mechanisms upstream from the autonomic dysfunc-
tion, such as neuroimaging or electroencephalography
of brain function,26-29 may also be combined with auto-
nomic testing to improve clinical diagnosis.

Perhaps the most important implications of the find-
ings are those bearing on the long-standing debate about
the nature of the Gulf War illness. These results con-
firm dysfunction among Gulf War veterans of both cen-
tral control of parasympathetic function and peripheral
cholinergic autonomic nerves, further implicating un-
derlying damage to the cholinergic components of the
central and peripheral nervous systems.
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ABSTRACT

Genome-scale microarray experiments for com-
parative analysis of gene expressions produce
massive amounts of information. Traditional
statistical approaches fail to achieve the required
accuracy in sensitivity and specificity of the
analysis. Since the problem can be resolved
neither by increasing the number of replicates nor
by manipulating thresholds, one needs a novel
approach to the analysis. This article describes
methods to improve the power of microarray
analyses by defining internal standards to
characterize features of the biological system
being studied and the technological processes
underlying the microarray experiments. Applying
these methods, internal standards are identified
and then the obtained parameters are used to
define (i) genes that are distinct in their expression
from background; (ii) genes that are differentially
expressed; and finally (iii) genes that have similar
dynamical behavior.

INTRODUCTION

Microarray technology provides a genome-wide screening
and monitoring of expression levels for thousands of genes
simultaneously, and has been extensively applied to a
broad range of biological and medical problems in order
to identify changes in expression between different
biological states. The immense amount of information
that can be obtained from microarray studies enables us
to address a variety of different research aims but still
presents a challenge for data analysis, especially in terms
of mutually exclusive parameters such as sensitivity and
specificity. Many excellent reviews have been written
on this subject (1–4). Our intention is, rather than
providing an overview of available approaches, to offer
a presentation of our methodological approaches
with the main emphasis of using internal standards
as means of robust evaluation strategy. Some of the

methods have been published at least in part, others are
completely new.
Methods based on conventional t-tests estimate the

probability (P) that a difference in gene expression
occurred by chance. If the threshold for probability
chosen as significant in the context of a small sized
experiment is applied in another microarray experiment,
it can have a high false positive rate. For example, if the
P threshold is 0.01, then even a set of random data
satisfying the null hypothesis will result in one false
positive per every 100 genes tested. A microarray
containing tens of thousands of genes will generate
hundreds of false positive results.
Two of the most popular approaches to address this

problem are to make adjustment of thresholds or to use
various combinatory calculations in order to improve
the power (sensitivity) and specificity of the statistical
conclusions. Due to its simplicity, the Bonferroni
adjustment was used frequently despite its well-known
conservativeness. The correction of P threshold by
dividing the desired significance by the total number of
statistical tests performed, ensures the achievement of a
desired false positive rate over the entire set of genes,
but conversely sets a criterion that can be too strict for
each individual gene. Specificity is gained at the expense of
sensitivity. Thus, the method does not reject hypotheses as
often as it should and therefore it lacks power. This is
of course a paradoxical situation, since the statistical
significance for each individual measurement apparently
depends on the total number of unrelated measurements.
None of the various attempts to improve Bonferroni

adjustments has helped to resolve the problem. The
most popular of such adjustments, the so called false
discovery rate (FDR) control (5,6) that has been
introduced into microarray analysis by Benjamini and
Hochberg (7) enables to estimate the measure of the
proportion of rejected null hypotheses. All genes are
ranked according to their P-values and tested against
individualized thresholds: the smallest observed P-value
is tested against the strictest threshold, and the remaining
P-values against successively more relaxed thresholds.
In other tests, e.g. in the popular significance analysis
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of microarrays (SAM) method (8,9), the use of indivi-
dualized thresholds improves the conservativeness of the
Bonferroni test, though the improvement is only partial
and often minor.
The relative difference in gene expressions computed

from replicated hybridizations provides a control for
random fluctuations, the power of which depends
essentially on the number of replicates. To improve
statistical significance of biological variation without
increasing the number of replicates, additional controls
are needed. In the aforementioned methods, like SAM,
‘instead of performing more experiments’, which are
expensive and labor intensive, Tusher et al. (8) generated
a large number of controls using re-sampling methods
such as bootstrap or permutation to estimate the
underlying distribution from the observed data.
However, generation of larger number of controls by
using combinatory approaches instead of performing
more experiments is somewhat illusory in that it does
not truly increase the amount of information being
analyzed.
Fortunately, there exists an adequate resource to

increase the power of statistical tests by using the
massive quantity of information inherently obtainable in
each microarray experiment. We introduce here an
approach in which the paired comparison of gene
expression in two different situations is accompanied by
the associative test—checking the hypothesis that each
given gene in the experimental group has common
features and can be associated with an internal standard.
Internal standard in this context is considered as a large
family of genes sharing some useful features for analysis,
which in turn are neither dependent on the particular gene
sequence nor on the level of expression, and are also not
dependent on the coordinate position in the chip.
The methodology of the evaluation described in this

communication will serve us as a stepping stone to our
further effort of using internal standards for analysis in
a statistically robust manner, functional associations
through clustering and networking genes having similar
dynamical behavior. These methods are equally applicable
to time course dynamics initiated by various treatments
and to natural variations of genes involved in essential
dynamical processes in biological systems as well.
This we intend to describe in the follow-up article
(in preparation).
Early variants of some procedures described here were

first included in the Matlab toolbox for microarray data
analysis MDAT described in Knowlton et al. (10), while
the improved and modified version exists now and is
available on request.

MATERIALS AND METHODS

Gene expression datasets

This work uses a wide spectrum of experimental data that
were only partially published.
The expression datasets were obtained with the use

different sources of mRNA and different microarray
technologies. They include Mouse Atlas 1.2 membranes

and Mouse plastic 5K arrays Human Cancer Atlas 1.2
membranes (Clontech, Palo Alto, CA). Most data were
obtained with the use of high-density microarrays.

Custom microarrays were prepared at the Oklahoma
Medical Research Foundation Microarray Core Facility
using commercially available libraries of oligonucleotides:
Human Genome Oligo Ser Version 2.0 and mouse genome
set, version 2.0 (Qiagen, Valencia, CA).

All data of recent years were obtained with the use of
Affimetrix U133 Plus 2.0 and U95 GeneChips (Human)
and Mouse genome 430 2.0 arrays, and the BedArray
technology—Illumina Sentrix� Expression BeadChip
microarrays.

Microarray data analysis

Our methods of data normalization and analysis are based
on the use of internal standards that characterize some
aspects of system behavior such as technical variability.
In general, an internal standard is constructed by
identifying a large family of similarly behaving genes.
These internal standards are used to estimate in a robust
manner those parameters that describe some state of the
experimental system such as the identification of genes
expressed distinctly from background, differentially
expressed genes and genes having similar dynamical
behavior. This will be elaborated in detail in the Results
section.

Résumé of calculations steps

Upon providing in the Result section, detailed explana-
tions and arguments about the chosen path of calcula-
tions, procedures summarizing the calculation steps are
presented in six sequential step-by-step résumés.

Step-by-step Résumé 1: individual normalization of the
microarray data to background.

Step-by-step Résumé 2: determination of parameters and
adjustment of the normalized profiles.

Step-by-step Résumé 3: two-sample data adjustment.
Step-by-step Résumé 4: multi- sample data adjustment.
Step-by-step Résumé 5: reference group of equally

expressed genes.
Step-by-step Résumé 6: gene expression analysis.

RESULTS

Statistical monitoring of weak spots

Among the most controversial aspects of the treatment
of data that are related to low-intensity signals, is the
procedure that enables to distinguish between true
(specific) hybridization signals and technological noise.
In this context, we consider the genes either as ‘expressed’
or ‘non-expressed’ though this discrimination is not based
on biological but rather on technological difference.
Depending on the sensitivity of the used technology and
on technical quality of experiments, the same low-
expression level genes could be treated in high-quality
experiments as being expressed (distinctively from
nonspecific noise), while in ‘soiled’ experiments (with
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high level of non-specific hybridizations and/or
background noise) they would fall in the category of
non-expressed genes. The importance of discrimination
of these genes is related to their different information
content for subsequent analytical procedures.

Ratio of expressed to non-expressed genes is not a
meaningful term. Ratio analysis is commonly employed
to determine expression differences between two samples.
However, any procedure that uses raw intensities to
infer relative expression is imperfect due to the fact
that accuracy is signal-level-dependent, with variations
increasing dramatically for low intensity signals
(9,11,12). Besides, only those ratios that are based on
expressed genes are meaningful. The best demonstration
of this statement could be obtained with array consisting
of duplicated spots for each gene (13). Figure 1 presents
results of such an analysis with the use of data from
Clontech membrane array (analogous results were
obtained also with Perkin-Elmer Micromax cDNA
arrays of 2400 human genes spotted in duplicates—not
shown). The histogram for the distribution of all spots
on the array is presented in Figure 1A. Ratios of
duplicated spots that should be equal to 1 with some
systematic variations are depicted in Figure 1B.
However, this appeared to be the case only for genes
expressed above certain threshold level (in this particular
set, the threshold being 3). Below this threshold, the ratios
are highly variable, demonstrating the absence of any
agreement with the duplicate expressions. It follows that
the removal of the background level spots should precede
any microarray data analysis based on the use of
expression ratios.

Technologically non-expressed genes represent non-
correlated noise. The distribution of the ratios similar to
that presented in Figure 1B could also be obtained with
expression profiles of samples from a homogenous group,
where one expects equal expression of the vast majority of
genes. Drastically distorted ratios below a certain level
of expression suggest that low levels of gene expression
lack any correlation (Figure 1C). A sharp border that
discriminates correlated expressions from non-correlated
noise is obtained when ‘sliding window’ approach for
comparison of the ratio variations (Figure 2) is used. In
the presented comparison one set is sorted, while keeping
gene association with the second set. Thereafter, an F-test
is performed for the standard deviation (SD) of ratios of
genes in the ‘window’ (the 10th lowest one is sample one)
compared with the SD of ratios of all remaining genes
with highest expression. When the window moves like a
stencil along the data stream, one obtains comparative
characteristics of ratio variability depending upon
expression level. There is a sharp border for the P-value
(probability for identity of SD in F-test) in this
dependence as shown in Figure 2B. Above this threshold,
there are all possible levels of P-values from 0 to 1 (10
sequential genes could have very similar levels of
expression when the majority of genes in homogenous
group of samples are equally expressed), however there
are no exclusions for low-expression levels, i.e. all

P-values here are close to zero indicating absence of any
correlation in the noise level expressions. The border
obtained for background noise appears to be in good
agreement with the method for obtaining the zone of
normally distributed background noise through iterative
procedure described below.

Normally distributed additive noise is a convenient internal
standard for ‘non-expressed genes’. Several methods have
been developed to select ‘non-expressed genes’ and hence
to diminish the influence of background noise. One such
solution is to ignore genes that yield low total abundance
transcripts, another one is to exclude weak spots
arbitrarily [in the work of Kooperberg et al. (11)] an
intensity cutoff was chosen such that the relative error in
ratios was <25%) and still other one is to compare spot
expressions with local background level (see Dozmorov
et al., 2004 (13) for review). Those procedures for
flagging and excluding weak spots that are not based on
robust statistical criterion remain problematic since
potentially valuable data might be discarded. This issue
is compounded by the fact that in biological systems a
number of key regulators might be expressed at low
levels presumably to ensure a tight control of the
expression of regulatory entities (14,15).
The work of Churchill et al. (14) is the first example of

solving the problem efficiently with the use of an internal
standard. The two main sources of heterogeneity in gene
expression variations are indicated in Rocke and Durbin
(16) by including the ‘additive component’, prominent at
low-expression levels, and the ‘multiplicative component’,
prominent at high-expression levels. The intensity
measurement yi, j for gene I2 I= {i1, . . . ,in} in sample
j2 J= { j1, . . . , jm} is modeled by the equation
yi,j= ai,j+(mi,j e

h+ei, j), where ai, j is the normal
background, mij is the expression level in arbitrary units,
ei, j, is the additive error term within a spot, and h is the
second error term, which represents the multiplicative
component. Gene expression data obtained with the
standard procedure of local background subtraction will
not exclude spot intensities ei, j, which present additive
noise above background levels. The distribution of the
spots with ei, j, as predominant member of intensity
depends on the array technology used and on the quality
of data. Atlas arrays (Clontech) are a good example of
high-quality membrane-based arrays exemplifying high
specificity and low levels of background. Background
spots comprise up to 50% of all spots on the array. The
nearly normal distribution of this noise can be seen in a
histogram of all intensity values (Figure 3A and B).
Parameters of this distribution were estimated with the
use of the multi-step iterative procedure.
First—the expressed genes are excluded one by one as

their values exceed the mean� 2SD of the core of non-
discarded genes. This procedure is repeated in an iterative
manner until no additional spot is excluded and the
resulting non-discarded values represent the set of non-
expressed genes (Figure 3C).
Second—the parameters of the additive noise are

estimated by non-linear fitting of a normal distribution
function to the core of non-expressed values. The
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parameters of this distribution [average (Av), SD and the
number of members] completely characterize this internal
standard of ‘absence of expression’. After that data
normalization proceeds by assigning to each experimental
value, a normalized score S using the formula S’= (S –
Av)/SD. As a result, the internal standard of the ‘absence
of expression’ has a mean of zero and SD=1 and all gene
expressions on array are presented in the SD units of this
internal standard.

The iterative procedure described above for discarding
the gene expression that alters the normality of the
background noise is efficient only with array technology
that yields a major gap between the value range of this
noise distribution and the set of values of the expressed
genes. This was the case with the data obtained with high-
quality Clontech membrane array using very sensitive
radioactive probes and ensuring that for the probe
synthesis only gene-specific primers are used. With these
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Figure 1. Ratio of the duplicated spots in the area of background noise is meaningless. (A) Localization of the normally distributed background
noise in the histogram of all microarray gene expressions using iterative exclusion procedure (see Figure 2 and explanations in text). (B) Ratio of the
expression levels of the duplicated spots demonstrates increased variability in the area of low-intensity expressions. Fragment of array with duplicated
spotting is shown in the right-upper corner. (C) Lack of correlation between the intensities of duplicated spots of low intensities. The axes present
intensities of the duplicated spots.
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measures, the distance between normally distributed
additive noise and majority of low-expressed genes in
the histogram is promoted (Figure 3A).

This is not always the case when oligo or random
primers are employed. Even in high-quality fluorescently
labeled oligonucleotide microarrays (Affimetrix), the
distribution of low-intensity noise spots might turn out
to be unsatisfactory. The right side of the distribution is
often skewed by the abundance of low-expressed genes.
This skewness of the distribution can be present even in
the histogram obtained upon application of the iterative
procedure as shown in Figure 2A. For this case, only the
left side of the histogram is used for the estimation of the
parameters of the noise distribution. A new histogram is

created substituting the right portion of the background
distribution with the mirror image of the left portion.
Curve fitting is then applied to the new histogram in
order to obtain parameters of the noise distribution
for subsequent normalization of the array data. This
approach to the characterization of the noise distribution
seems to be more adequate than attempts to approximate
the distorted distribution with artificial combination of
overlapping distributions (17,18).
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Figure 3. Procedure of normalization of the gene expression profile.
(A) The histogram of overall gene expressions fits poorly to a normal
distribution, with noticeably extended left and right tails. Values at the
left tail results from the background correction procedure, while values
at the right tail correspond to genes expressed above background.
(B) Normal probability plot demonstrates deviations from normality
in the tails of the A-distribution. (C) The results of iterative removal
of residual background spots demonstrate a good fit to normal
distribution. This histogram is used for the estimation of the parameter
of normal distribution through the non-linear least-squares curve fitting
procedure. Once the parameters of the normally distributed back-
ground noise are determined, all expression data are transformed,
yielding mean=0, SD=1 for background distribution. All gene
expressions are presented now in the SD units of the background
distribution.

Figure 2. Selection of the normally distributed background noise in the
presence of low expressed genes. (A) Histogram of the low-spot
distribution after iterative cutting off the expressed genes (see details
in text). The presence of low-expressed genes causes in some instances
skewing the right side of the background distribution even in high-
quality microarrays. For this case, only the left-portion residual after
trimming is not distorted by the presence of expressed genes. For
estimation of the parameters of the noise distribution, a new histogram
is created by substituting the right portion of the background
distribution with the mirror image of the left portion. The parameters
of the noise distribution are estimated by non-linear fitting of a normal
distribution function to this histogram. (B) The sliding window method
for estimation of the changes in correlation between gene expressions
depending on the level of expression. The F-test is performed for SD of
ratios of genes in the ‘window’ (for 10 genes with lowest expression in
sample one) compared with SD of ratios of all remaining genes with
highest expression. The appearance of the sharp decrease of the
P-values (probability for identity of SD in F-test) evidences about the
existance of the area of low expression whose variations exceeded
significantly the variations of the majority of the rest gene expressions.
The position of the sharp decrease of the P-values shows the border for
the non-correlated background noise.
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Microarray profiles with relatively low content of non-
expressed genes generate another type of problem for
localization of the background distribution. The
background level spots represent only a relatively small
portion of all spots (<30%) in these arrays, thus their
distribution is not as prominent as in the previous
examples when viewed in a histogram of all spots. The
automated iterative procedure for selection of background
described above will not locate the background
distribution. Therefore, it is necessary to perform a
special preliminary step intended to increase the area of
the background distribution and focus the iteration
procedure onto this area—initial selection of the lowest
30th percentile of data. Then, the new sub-set is
trimmed and subsequently curve fitted (see above).

Statistical significance of gene expression—signal/noise
discrimination. As we demonstrated earlier (13) the
additive noise distribution is quite homogenous over the
whole chip after the background correction procedure that
makes it possible to use weak spots from the entire chip
for estimation parameters of its distribution and use them
as a united internal standard for non-expressed genes.
Discrimination of ‘expressed’ from ‘non-expressed genes’
is based upon the use of recognized statistical criteria
instead of subjective cutoff rules. The power of this
statistical criterion is determined by the content of
the internal standard—normally several thousand
members—and this enables to use relatively high-
statistical thresholds without loss of the sensitivity of the
selection.
In a replicated experiment, genes that are expressed

distinctively above the background noise are readily
identified by paired analysis. As it is demonstrated
below, data from a replicated experiment upon proper
normalization can be used for statistical discrimination
of even very weakly expressed genes from the normally
distributed noise. Genes with low-level signals—even
within background area—could also be identified
distinctively from the background due to their higher
stability (low SD in replicate measurements).
Step-by-step Résumé 1: individual normalization of the

microarray data to background.
The mean and SD are calculated. Using these as a

starting point, data beyond +2SD above the mean are
cut and discarded. The mean and SD are recalculated
and data beyond �2SD below the mean are cut and
discarded. This trimming of outlier values above and
below is continued, further refining the SD estimate,
until no additional cuts can be made.
The rest of data are used for creation of the 10 bar

histogram of expression distribution.
Interactive curve fitting for the trimmed data is

performed. Using final trimmed data mean and SD are
estimated. Theoretical normal distribution is established
with estimated mean and SD. Using the theoretical
estimate, a non-linear least square curve fitting procedure
is performed in order to improve the SD estimate. The
quality of fitting is determined visually. If there is some
visual distortion of the right tail (proposed presence of
weak gene expression) the procedure is repeated using a

new user-defined mean (Histogram bars 1–5) and
estimating the new distribution on the bars to the left of
the chosen one.

In case of low-quality arrays with the abundance of
weak expressions distributed too close to background
noise the initial choice of the lowest 30th percentile of
data is selected to eliminate highly expressed values.
Then, the new sub-set is trimmed and subsequently
curve is fitted as described above.

Once an appropriate fit is achieved and parameters
of the normally distributed background noise is deter-
mined as m and s then all the data is Z-transformed
Z ¼ ððx� �Þ=�Þ yielding Mean=0, SD=1 for
background distribution. All gene expressions are pre-
sented now in the SD units of the background
distribution.

Finally, the data are log-transformed in such a manner
that the negative values are substituted with the log of the
minimum positive value.

The follow-up is given in the Step-by-step Résumé 2.

Data adjustment

Individual normalization of data from each chip to their
background is not sufficient for making their profiles
comparable, because first—backgrounds are often
different in different experiments, and second—there
might be several additional reasons for systemic differences
in the expression profiles that can be compensated only by
two-parametric regression procedure. This procedure is
described in details in the next section and the important
feature of it is that this procedure is based on the
comparison of potentially equivalent gene expression
correlated in compared profiles. The background non-
correlated noise could be a serious obstacle for such
procedure as it is shown in Figure 1. Knowledge of the
background distribution parameters enables to remove
the non-correlated noise from correlation adjustments.
The threshold 3SD above the mean of background
excluded the noise with excess before the final adjustment
is made.

The observed variations of the intensity of spots result
from biological changes in gene expressions and also due
to stochastic and systemic variations that occur in every
microarray experiment. In order to accurately and
precisely measure gene expression changes, it is important
to minimize systemic variations and to estimate the
contribution of stochastic variations. Systemic variations
appear due to differences in experimental conditions and
come from many sources such as procedures of sample
handling, methods of cell cultures, methods for mRNA
isolation, extraction and amplification, hybridization
conditions and labeling efficiencies, as well as due to
contamination by genomic DNA [major sources of
fluctuations in microarray experiments were listed and
discussed in several publications (19)]. The purpose of
normalization is to minimize systematic variations in the
measured gene expression levels of replicative experiment.
Once this is achieved, estimation of the parameters of the
stochastic variations the biological differences can be more
readily accomplished.
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In several excellent reviews, there were proposed
different methods of normalization that relieve us from
the necessity to discuss them in details (1–3,20). We will
note only that the two independent sources of systemic
variability in microarray data (additive and multiplicative)
need normalization procedures.

Two sample data adjustment

The regression analysis of duplicates from the same array
(Figure 1C) presents an excellent example of data having
only stochastic variations. Neither multiplicative
variations due to differences in hybridization or due to
labeling conditions nor additive variations due to non-
compensated background noise occur. Both these
sources of systemic variations are equal for duplicated
spots at the same chip. After exclusion of the area of

common non-correlated noise and log-transformation of
the data, gene pairs are presented in the scatter plot as
dots close to the straight line intercepting the origin with
slope 1. The log-transformation is the simplest one making
individual gene spots deviating from regression line
independently on the level of gene expression and which
is normally distributed. The normality can be proven
graphically (normal probability plot) or analytically—
applying Kolmogorov–Smirnov criteria.
A scatter plot of data from two independent arrays will

demonstrate additional systemic variations: ‘additive’—
due to differences in background (leading to the deviation
of the regression line from the coordinate origin; position
of the initial regression line is shown as blue straight line in
Figure 4C) and ‘multiplicative’—due to the overall
difference in the spot densities (leading to the change of
the slope of regression line)—Figure 4C. Transformation
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Figure 4. Two-sample data adjustment. (A) Histograms for the spots in two arrays. (B) Histograms for normalized to background and log-
transformed data. Normal distribution curves fitted to the truncated histograms (as in Figure 3) are shown in green. (C) Profiles of control pool
(y-axis) and patient pool (x-axis) adjusted to each other through linear regression with excluded background noise (black spots) and potential
outliers. Blue line, position of the regression line before adjustment; green line, position after adjustment. (D) Data of the plot presented in the
transformed coordinates. Right side shows the nearly normal distribution of the deviations from equity of expression. The use of the majority of
equally expressed genes as an internal standard presents opportunity to select differentially expressed genes as outliers from this standard beyond of
some statistical thresholds. These genes are shown as open circles.
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of one of these datasets will minimize this differences and
make the scatter plot similar to the one obtained for
duplicated spots where additional multiplicative and
additive differences are absent (compare Figures 1C
and 4C).
An array of gene expression profiles may be con-

ceptualized as a vector of outcomes in the scatter plot of
data. Let Yk= (Y1k,Y1k, . . . ,YJk) denote the array, where
Yjk denotes the expression of the j-th gene in the k-th
sample (j=1, 2, . . . , J; k=1, 2, . . . ,K).

Yjk ¼ @k þ �k aj þ bjxk
� �

þ "jk,

in which (aj, bj) are gene-specific additive andmultiplicative
factors, ð@k,�kÞ are the sample-specific regression
coefficients, and "jk, is used to depict variations due to all
unknown sources. Estimated regression factors are used
for overall adjustment of the expression levels in one
sample to another as ðYjk � @̂kÞ=�̂: After these adjustment
relations of the expressions in two samples presented as
Yjk=aj+bjxk are obtained where aj presents the
difference in local background and bj—multiplicative
factor. For data acquisition with local background
subtraction the aj are minimized or even disappear and a
log-transformation produces expressions differing by the
additive close to normal distribution noise log(bj) that is
an unified measure variation in gene expression essentially
unrelated to the influence of level of expression.
The described adjustment leads to maximal similarity of

expression of all genes in two arrays. This procedure,
however, will be incorrect in the presence of differentially
expressed genes, because it will aspire to make them
equally expressed also. It means that the presence of
differentially expressed genes can seriously impede the
adjustment procedure. Generally, their influence could
be minimal if they are distributed more or less
symmetrically around regression line. However, the
presence of not compensated outliers might influence the
bias adjustment drastically, especially when such
unbalanced outliers are present in the area of very high
expressions—usually area less populated with spots. These
outliers violate the assumption of normally distributed
residuals in least squares regression. They tend to pull
the least squares fit too much in their direction by
getting considerably more ‘weight’ than they deserve.
Various methods were proposed to diminish the

distorting influence of differentially expressed genes.
They were based mainly on arbitrary estimations of
permissible distances from equity line. The procedure of
revealing and down weighting could be produced on the
strong statistical basis using another internal standard—
family of equally expressed genes. Fortunately, in any
normal experiment, the majority of genes are equally
expressed, and their variations around regression line
have prominent distribution that can be elicited by the
iteration procedure described earlier for background
data analysis. Such stochastic distribution of the
deviations of gene positions looks very similar to the
distribution obtained for duplicated spots in Figure 1C.
A histogram of these deviations (Figure 4D) includes the
normal distribution with tails distorted by the presence of

differentially expressed genes that could be selected and
excluded once the parameters of the normal distribution
are determined.

The stochastic distribution of the random variations is
typically unknown. In our practice of making hundreds of
analyses using different technological platforms, we were
never confronted with a violation of the normality
assumption, nevertheless, if hypothetically the assum-
ptions of normality are violated, some non-parametric
criteria will be more reliable for making statistical
inferences—as. For example, Thomas et al. (21)
proposed to use Z-scores that is closely connected with
Wilcoxon rank sum statistics (22). Z-scores do not
require any distributional assumptions or homogeneity
of deviations. In practice, Z-scores are expected to be
similar to t-test statistics, when the distribution of
expression levels can be approximated by the normal
distribution. When these assumptions are violated,
Z-scores will differ from t-statistics and will be more
reliable for making statistical inferences.

Step-by-step Résumé 2: determination of parameters
and adjustment of the normalized profiles.

The first step is the determination of the parameters of
the background of the array—Av and SD of normally
distributed low-level expressions in array with subsequent
normalization of all expressions in array. A normalized
score, ‘S’, is obtained [S= (PV – Av)/SD], where PV is
the original pixel value for the spot, and Av and SD are
the mean and SD of the set of background spots. The
distribution of S has mean of zero and SD=1 over the
set of background genes in the normalized array. We
accept S=3SD above the mean background level as the
preliminary criterion for distinguishing expressed from
non-expressed genes. Only genes expressed above
background are used for the second step ‘adjustment’ as
described below.

The second step is the adjustment of the normalized
profiles to each other by robust regression analysis of
genes expressed above the background. This procedure
is based on the selection of equally expressed genes as a
homogenous family of genes with normally distributed
residuals defined as deviations from regression line.
The parameters of this distribution are obtained by
iterative procedures similar to the one used before for
the selection of the kernel part of normally distributed
background noise. Outliers are thereafter determined as
having deviations not associated with this internal
standard of equity in expression including thousands of
members (Figure 4D).

The follow-up is given in the Step-by-step Résumé 3.

Nonlinear regression. Linear regression analysis will be
valid only if (i) the hybridization signal is linearly
related to target concentration and (ii) the majority of
the genes expressed in both samples are expressed
equally. Bias adjustment transforms the dependence
between two samples into a simple multiplicative model
(see above). Sometimes, however such a model is
inadequate. Such cases can be identified on the scatter
plot when a straight line fits the data poorly and instead
a curved shape results. The use of straight line for
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normalization can lead to a high rate of false positive
results. A variety of approaches to normalize such gene
expression data have been proposed, including a cubic
spline transformation (23,24), and locally weighted linear
regression [Lowess; see for review Do et al. (2006) (2),
Bolstad et al. (2003) (20) and Wu (2001) (25)].

Remarkably, the assumption that non-linear transfor-
mation is always beneficial for tests for differentially
expressed genes has never been properly tested. Making
the choice in favor of the non-linear normalization
procedures, it is necessary to keep in mind that serious
problems might occur in cases where the non-linearity is
the result of non-homogenous distribution of differentially
expressed genes of opposite directions. From this pers-
pective, the non-linear transformation can be beneficial
for the adjustment of profiles of samples from a
homogenous group. However in a comparative analysis,
this method bears a definite danger of losing sensitivity of
discrimination of the differences in gene expression.

The examination of examples of non-linear distribution
of gene expression in the regression plot indicates that in
most cases essential non-linearity is present in the area of
low-gene expressions. The exclusion of the background
area and of the closely associated low-expressed genes
is able to diminish considerably the influence of such
non-linearity.

The residual essential non-linearity is an evidence of
the low quality of the technological procedure and the
best way to correct it is to avoid it in the first place.
Examination of the quality of the data from high-
throughput platforms ‘prior to interpretative analysis’ is
a critical step that will help researchers to avoid
contaminating their otherwise well-conducted study with
samples harmful to overall analysis and interpretation.

Step-by-step Résumé 3: two-sample data adjustment.

. Regression analysis of two-sample data gives residuals
(deviations from regression line) for each gene
expressed >3 (=0.477 after log-transformation) in
both samples.

. The mean and SD of all residuals are calculated. Using
these values as a starting point for data trimming as
described above, the parameters of the normal
distribution of the majority of residuals are obtained.

. The probability of belonging to the normal distribu-
tion of the majority of residuals (for equally expressed
genes) is estimated for each gene (each residual).

. Genes having probability less than 1/N (N—number of
all genes expressed >3 in both samples) are excluded
and the regression analysis for the rest of them is used
for estimation and exclusion of additive and
multiplicative factors.

. The result of adjustment can be presented in trans-
formed coordinates with indicated borders� (1/N) for
differentially expressed genes (Figure 4D).

The follow-up is given in the Step-by-step Résumé 4.

Multiple-sample data adjustment

Many of the issues that we discussed in the two-sample
case, such as bias correction, remain important for

replicate experiments, although we will not discuss them
further. Often the two-sample methods can be generalized
to handle replicate experiments. For example, we can
extend the methods for bias correction by normalizing
across a series of N samples, rather than one sample
against another. In this case, the solution involves fitting
a normalization curve in an N-dimensional space.
However, in practice, we successfully use different iterative
procedures of normalization to common averaged profile
as detailed in Figure 5. In this multi-step procedure, we
use averaged profile for bias adjustment of each individual
profile with subsequent recalculation of the averaged
profile and repetitive adjustment.
Step-by-step Résumé 4: Multi-sample data adjustment.

. Averaged profile is calculated and each sample is
adjusted to the averaged profile using robust
regression procedure described earlier for two-sample
adjustment.

. New averaged profile is calculated from transformed
profiles of the samples and the adjustment procedure is
repeated.

. Several subsequent adjustment may be necessary
for the best result, however for the data initially
normalized to background two steps of adjustment
are usually enough.

. The result of the adjustment can be presented in
transformed coordinates in form of Mean+SD of
multiplicated residuals for each gene (Figure 6A).

The follow-up is given in the Step-by-step Résumé 5.

Reference group—an internal standard for replicate
experiment

One of the problems in performing a reliable t-test from
microarray data is to obtain accurate estimates of the SDs
of individual gene measurements based on only a few
measurements. It has been, however, observed that an
overall reciprocal relationship exists between variance
and gene expression levels, and that genes expressed at
similar levels exhibit similar variance (26). Beside that,
there were obtained transformations depriving variance
dependence on the gene expression levels (27). Log-
transformation is one of the simplest examples of such
transformation. Therefore, it is possible to use this prior
knowledge to obtain more robust estimates of variance for
any gene by examining the expression levels of other genes
within a single experiment.
After normalization, the residuals from the calibration

data are used to provide prior information on variance
components in the analysis of comparative experiments.
After adjustment of the each array profile to the averaged
profile for the control group, we obtain two new standards
joined by the common name ‘reference group’.
First, all genes are represented here by their residuals

(relatively averaged profile) that after normalization and
log-transformation loose their sample dependent and
expression level dependent individualities (Figure 6A and
C). As soon as absolute majority of genes in homogenous
group are equally expressed, their residuals demonstrate
very similar to normal distribution (Figure 6E).
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Second, the residuals of these genes in the replicated
experiment could be presented as mean� SD. For the
majority of genes, their replicate variations are relatively
small and homogenous following to the standard
F-distribution. The small portion of genes having
enormously high (statistically distinctive from the rest)
variation present so called hypervariable genes (HV-
genes), whose nature was discussed elsewhere (28,29). To
get the internal standard for gene variability, HV-genes
should be excluded by iterative procedure similar to
described above (for normally distributed background
events and for normally distributed residuals of equally
expressed genes). The only difference is that in this
procedure, the F-test is used as a criterion for the exclusion
of outliers. To perform the F-test, we compare two
estimates of variance, one from the variability of
expression levels of the entire group, and the other from
the variability of the expression level of every given gene.
If the gene variability estimate is much higher than the
total-group estimate, we have evidence that the given
gene does not share the same stability as a majority of
genes and should be excluded from the reference group.

The procedure continues until no more genes could be
excluded in this manner. The result of all these exclusions
is a new internal standard—the reference group, composed
of genes expressed above background in control samples
with normal low variability of expression (as determined
by an F-test) and whose residuals approximate a normal
distribution.

Very similar standards for equity of expression and
stable variability were introduced earlier by Rocke and
Durbin (16). However, none of them were cleaned from
HV-gene contamination, with the consequence that the
standards were biased, thus decreasing significantly the
sensitivity of the criteria.

Step-by-step Résumé 5: reference group of equally
expressed genes.

In course of normalization with bias adjustment

(i) residuals as differences between final normalized
expression and the average before last adjustment
are calculated;

(ii) SD of all residuals taken together are calculated;
(iii) SD for all genes individually are calculated;
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(iv) F-test is performed on every gene to determine if
the variability is higher than that of all genes;

(v) all genes whose SD is higher than in step (ii) and/or
fail F-test are excluded;

(vi) SD for all remaining genes are recalculated;
(vii) steps (iv)–(vi) are repeated until no further genes

can be excluded

The follow-up is given in the Step-by-step Résumé 6.

Associative analysis—identification of differentially
expressed genes

The use of the reference group created in the previous
section, as an internal standard enables to carry out
differential gene expression analysis, and what is of
utmost importance, it solves the problem of mutually
exclusive characteristics of sensitivity and specificity. For
this purpose, we use an associative t-test (30) developed as
a modification of the ‘General Error Model’ (16) in which

the replicated residuals for each gene of the experimental
group are compared with the entire set of residuals from
the reference group. The null hypothesis is checked to
determine if gene expression in the experimental group is
associated with the reference group. The significance
threshold is corrected to make the appearance of false
positive determinations improbable.
Selecting differentially expressed genes relies on five

statistical steps.

. Assume Group 1 has n samples and k genes and
Group 2 has m samples and k genes. A Student’s
t-test is performed, with (n+m� 2) degrees of
freedom, in order to determine if the genes are
equally expressed.

. Then an associative t-test is performed, with
(m+k� 2) degrees of freedom to see if the gene
belongs to the group of equally expressed genes
with stabile variability. Selections passing through
both tests have high sensitivity (Student’s t-test
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with normal low threshold P< 0.05) and high
specificity (subsequent associative t-test with corrected
threshold P< 1/k excludes all false positive deter-
minations).

. Another two Student’s t-tests are used to establish the
distinction from technical noise—discrimination of
‘expressed’ from ‘non-expressed’ genes.

. Finally, the ratio of gene expressions in Groups 2 and
1 is used to help exclude statistically significant but not
biologically significant changes.

Clearly, simple discriminations based on ‘fold changes’
or ratios are insufficient for drawing proper conclusions.
But, we use foldness restrictions as an addition to the
statistical analysis of differentially expressed genes to
concentrate attention on the most prominent differences
first of all.
The t-test assumes that the replicate data have an

underlying normal distribution. This assumption is
reasonable, especially if the replicate samples are relatively
homogeneous. Note that the assumption of normality is
different in these two subsequent steps of the analysis. In
the first step—paired comparison—in most cases, we have
relatively few replicate samples and it is difficult to test for
normality having only a few data points. Therefore, we
often adopt the assumption of normality because it is hard
to prove otherwise. In the second step—associative
analysis—we use the reference group as an internal
standard and proved that after log-transformation and
exclusion of outliers with iterative procedure the rest of
residuals has a distribution whose normality is confirmed
by statistical and graphical criterions.
The two step procedure allows the use of traditional

low-level significance cutoffs (P< 0.05) at the first step
without the risk of including false positive selections.
These false positives are excluded in subsequent second
step—associative analysis having extreme statistical
power enabling to use the significance cutoff corrected to
the number of comparisons without risk to loose
sensitivity. The use of the reference group enables to
receive all benefits of the thousands replicates of technical
variations—deviations from equity—to increase statistical
power of the comparative analysis. This analysis is based
on an idea, which is opposite to the commonly held view
that large-scale array experiments suffer from
compensatory tradeoffs in sensitivity and specificity. In
fact, the procedures presented herein demonstrate that
large scale datasets are extraordinary information-rich
and provide means for discrimination of common
technical variation from individual biological variability.
More evidence of this is presented in a power analysis
(Figure 7).
Step-by-step Résumé 6: in this step, gene expression

analysis is described.

. Selection with a Student’s t-test for replicates using the
commonly accepted significance threshold of P< 0.05.
It keeps the commonly accepted sensitivity level,
however a significant proportion of genes identified
at this threshold level as differentially expressed will
be false positive determinations.

. An associative t-test in which the replicated residuals
for each gene of the experimental group are compared
with the entire set of residuals from the reference
group defined above. Ho hypothesis is checked if
gene expression in experimental group presented as
replicated residuals (deviations from averaged control
group profile) is associated with highly representative
(several hundreds members) normally distributed set of
residuals of gene expressions in the reference group.
The significance threshold is corrected to make the
appearance of false positive determinations impro-
bable. Only genes that passed through both tests
were presented in the result tables.

. Genes expressed distinctively from background were
determined by analysis of the association of each
replicated gene expression with normally distributed
background having Av=0 and SD=1. Genes
expressed distinctively from background in one group
and not distinctive from background in another group
are given as further example of differentially expressed
genes.

Data filtration and error exclusion procedures

Selection of ‘bad’ samples. The local errors in the data
acquisitions will be able to produce significant increase

Figure 7. Power analysis. Estimation of the number of microarray
experiments required to obtain reliable results from a comparison of
data from patients and controls. The sample size was estimated using
PASS 2005 (Keysville, Utah). Our experience with different array
technologies (including ‘Illumina’, which is used here) indicates that a
coefficient of variation between 0.25 and 0.5 is typical among expressed
genes. The left portion of graph demonstrates the dependence of the
power of analysis on the number of replicates for a paired T-test with a
statistical threshold of �=0.05. On the right portion of the graph,
power analysis results from an associative analysis are estimated. An
associative analysis with threshold of �=0.0001 has power comparable
with a paired T-test using a threshold of �=0.05. Results of this
analysis will be used for estimating the number of replicate experiments
required for selection of differentially expressed genes. For example 2-
to 3-fold difference can be observed with power 1� �=0.8 with a
6-replicate experiment.
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of the SD for given gene in replicated experiment. It
is possible to use the F-test for selection of such errors,
however the problem of the sensitivity/specificity alterna-
tive will prevent from accurate estimation of outliers.
At the same time, the summary estimation of such
outliers in every given sample will enable to characterize
overall quality of the array data in every chip. We propose
a simple program for the chip quality estimation. In a
homogenous group of samples for each gene in the
array, we estimate the changes in its variability by
comparing the SD of the total set of expressions with
the SD obtained after exclusion of one replicate after
another. If the F-test results in probability for no
difference being <0.05 then this gene expression in the
given sample is considered as an outlier. Finally, the
resulting outliers estimated for every sample are consi-
dered as of bad quality and are excluded from analysis.
The use of non-corrected low threshold P< 0.05 produces
massive presence of false positive selections. The sum of
these false selections should be comparable for all good
quality samples presenting internal standard of good
quality sample that can be used for statistical selection
of bad samples with significantly elevated number of
outliers. The program EFILTER produces the histogram
of the numbers of outliers in samples for the visual
inspection of the group quality.

Ranking of selections. Another method of data filtration
is based on the comparison of the results of many
differential expression analyses produced with sequential
exclusion of samples one by one to determine the
dependence of the conclusion about any selection on
the exact group’s content. This method determines the
robustness of the differential gene expression selections
and deliberates them from the influence of singular
experimental errors.

The analysis uses standard Associative Analysis
algorithms (30). The ‘leave-one-out’ approach excludes
one sample from the group—one by one until all
possible singular exclusions are produced—with
estimation of the frequency of positive selection for
every gene. This approach produces accurate ranking
estimation of the robustness for most selections.
However, it is not safe from the effect of singular errors
of measurements, because the presence of one such outlier
within any of the replicate is able to mask its difference of
expression and diminishes the rank of otherwise ideal
selection. The next modification of the procedure makes
it defended from this effect of singular errors. Note that
the exclusion of the ‘bad’ replicate and re-estimation of the
robustness of the given selection will produce results
devoid of the outlier influence. The new algorithm can
be named as ‘leave-two-out’, because includes preliminary
step—exclusion of one sample—with subsequent
application ‘leave-one-out’ procedure for the rest of the
samples in consideration. For an experiment having
total number of samples equal n (sum of samples in
both compared groups), this algorithm will produce a
set of n ranks for each excluded sample and highest of
them will be the one most independent on the worse
replicate. Compared with previous EFILTER procedure,

the TWOEX algorithm provides the opportunity to
benefit even from a relatively bad sample, incorporating
only expressions and excluding erroneous measurements.
Based on the use of standard program for associative
analysis, this algorithm enables to produce ranking
estimation with selected restriction on the minimal
expression and foldness being an adequate addition to
the standard associative analysis.

Estimation of the quality of differential expression
analyses

For the estimation of quality, we use ‘artificial’ data with
controlled differences in gene expressions. The presumably
homogenous group of samples was divided into two sub-
groups. One of them was used as a control, whereas in
another sub-group (experimental) artificial changes in
gene expressions were introduced. Towards this aim,
all data were sorted according to the averaged gene
expression in experimental group. The entire data set
was split into 1000 gene blocks, and thereafter controlled
balanced (�) changes were introduced into 20% of data of
experimental group. Within each block (1000 genes) 100
genes received positive changes—multiplied by ‘foldness’,
and 100 genes received negative changes—divided by
‘foldness’). One such block is presented in Figure 8.
After applying the analysis procedure, the resulting
number of selections is compared with true selections for
determination of the ‘Sensitivity’ and ‘Specificity’ of the
given analysis as it is shown in Figure 8.
The presented system enables to compare different

methods of data normalization, and it enables also to
estimate the role of restrictions made in course of
differential gene expression analysis. The following
designations were used in this analysis.

. Fd—‘foldness’ of controlled changes in the data;

. Fa—minimal ‘foldness’ of Associative Analysis;

. Em—minimal expression for genes selected as being
expressed distinctly from background in Associative
Analysis.

Results using data obtained with mRNA collected from
peripheral blood mononuclear cells from healthy donors
with the use of ‘Illumina microarray’ technology are
presented in Figure 9. Quality of analysis is estimated
here by the two parameters: sensitivity is determined as
a proportion of true positive selections within all
introduced changes, and specificity determined as
1—portion of false positive selections among all not
changed expressions (31).
Figure 9A demonstrates the dependence of sensitivity

and specificity in terms of the relationship between Fa
and Fd. When Fa<Fd, the Associative Analysis of
normalized data selects more that 80% of changes.
Sensitivity drops down sharp when the Fa becomes
comparable or even higher than the ‘foldness’ of
introduced changes Fd.
The number of replicates is the most essential parameter

form the output quality. Figure 9B shows a sharp decrease
of the sensitivity of analysis for the number of replicates
<4. Five to six replicates could be recommended as
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minimal size of the groups, whereas the usually used four
replicated experiments might loose up to 20% of true
differences. These numbers could vary in different
microarray technologies and with the use samples from
different sources. This result could be used as an
alternative of the standard methods for the estimation of
the power of analysis and the number of replicates
necessary to achieve desired quality of analysis. The
advantage of this approach is in the use of real data
with practically not distorted infrastructure (variations
and their distributions over expression levels) for
estimation of the quality of the future analysis.
The method presented here enables the comparison of

the quality of different types of analysis and influence of
different normalization methods. In Figure 9C, we
compared results of associative analysis with use different
methods of normalization. It appeared that the use of
our two-step normalization procedure and two popular
methods Quantile (Q) and Lowess (L) (32) produced
very comparable results except the area of highly
expressed genes (first, thousand genes with highest
expression) where quality of analysis based on the use
Q- and L-normalizations significantly worse compared

with two-step normalization presented here as it is
shown in Figure 9C. Quite obvious that the same
difference in quality was presented in comparison of our
Associative Analysis based on the use two-step
normalization and SAM analysis that used Quantile and
Loess normalizations (32; Figure 9D).

To estimate the stability of the obtained estimations,
we modified the quality analysis by using several
variants of arbitrary splitting of the total dataset to two
equal sub-groups (column permutation with subsequent
splitting). The averaged result of five permutations
presented in Figures 9A and B demonstrates relative
stability of these estimations.

DISCUSSION

Current statistical methods do not adequately address
mutually exclusive characteristics of sensitivity and
specificity in microarray experiments monitoring the
expression levels of thousands genes simultaneously. The
common practice to use low-significance thresholds
(P< 0.05) will result in a large number of false positive
selections. Attempts to increase stringency by raising the
threshold of significance above this value will cause a
compensatory decrease in sensitivity and a resultant
increase in false negative selections.

In measurements of gene expressions, the biological
component is accompanied with variations of non-
biological origin coming from a number of different
sources. Normalization reduces systemic variations,
while not affecting random variations. Common practice
is to obtain information about random variation from
replicated measurements. The number of replicates is
critical for the accuracy of estimation of random variation
and biological component as well. The use of large
numbers of replicates is able to improve the situation in
microarray experiments as well (33,34), although it can be
rather expensive and labor intensive. Fortunately, there is
a real resource to increase the power of statistical tests by
using the enormous mass of information coming from
each microarray experiments. We introduce here an
approach based on the use of internal standards—large
families of genes sharing some important features, while
not being dependent on any particular gene sequence, level
of expression, or coordinate position on the chip. Here
were discussed standards for equity in gene expression,
stability, standard for expressions below the sensitivity
of the system (standard for ‘non-expressed’ genes).
Deprived with dependence on the level of expression
elements such standards bear information about
experimental variation replicated thousands times by the
count of the elements in the standard. This is an
alternative to replications for increasing the power of
statistical criterions. The increase of the power from
such huge ‘replication’ should be tremendous.

The two main problems should be resolved before using
this approach. Is the distribution of the elements of the
internal standard normal and how to determine
parameters of this distribution? Usually, each internal
standard is contaminated with outliers. For example,
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Figure 8. Test system for determination of the sensitivity and
specificity of the differential gene expression analyses. The presumingly
homogeneous group of samples was divided to two equal sub-groups
one of which not changed used as a control and another one used as a
experimental group with introduced changes. Here is shown a fragment
of these experimental dataset with introduced positive (red) and
negative (blue) changes in the 20% portion of gene expression—left
part. Right part presents differences selected by the differential gene
expression analysis (left of the vertical axis) with indication on the
right side from the axis which of this selection is true (co-incidenting
with the artificially made selections) and which are false. The sensitivity
of selections is determined here as a proportion of true positive
selections within all produced changes, whereas a specificity determined
as a proportion of true negative selections. The fragments with artificial
changes presented here are evenly distributed along all experimental
group.
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majority of genes are equally expressed in any homo-
genous group and have a relatively small variability,
however there are always some genes that does not share
these features. Reduction of the influence of outliers is a
critical step in the analyses based on the use of internal
standards. Fortunately, this contamination with outliers is
always relatively small and can be selected and removed
with simple procedures.

The problem of normality is solved for this standard in
several different ways. The selection of the normally
distributed additive noise (background) is solved by
using only the left portion of the non-distorted part of
distribution for fitting to normal distribution. Standard
of equity of expression and standard of the stability
(reference group) appeared to have normal distribution
after exclusion of outliers in the simple iterative
procedure. It means that the rest of the distribution
obtained after sequential truncation steps was always
satisfactory fitted to the normal distribution. Even if
there is some contamination with not normally distributed
members, it is not essential and does not interfere with the
normality of the rest.

Procedures similar to associative analysis have been
previously proposed by Newton et al. (35); Rocke and

Durbin (16); Tseng et al. (36). However, there are
critical differences between these methods and ours. For
example, in Rocke and Durbin (16), all genes were used as
a reference group without exclusion of HV-genes. The
presence of HV-genes increases the SD of the residuals
in the reference group, thus reducing the power of the
associative analysis.
There were versatile assumptions about the distribution

of the background level signals and additive error term in
the literature. Rocke and Durbin (16) were the first to
suggest the use of iterative procedure for estimation
of background parameters similar to the procedure
presented here. Our approach goes one step further and
demonstrates that the apparent deviation of the additive
noise distribution from normality is produced by the
presence of the weak signals overlapping with the noise.
These results enable the skewed distribution presented in
Figure 2 to be treated as a normally distributed additive
noise distorted on its right side by the presence of low gene
expressions.
The estimation of the performance of microarray

data analysis demonstrated an advantage of the
proposed here normalization and analysis methods over
the popular normalization (Quantile, Loess) and analysis
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Figure 9. Sensitivity/specificity (Sn/Sp) characteristics of the normalization and analyses procedures. (A) Dependence of the analysis quality of the
foldness of changes in gene expression: along ordinates Fd-foldness of controlled changes of data/Fa-minimal foldness accepted for results of
differential gene expression analysis/Em=20-minimal expression above background. (B) Dependence of the analysis quality of the number of
replicates. Fd/Fa/Em=2/1.5/20. (C) Comparison of normalization methods: two-step analysis (presented above) versus Quantile normalization
versus Lowess normalization. (D) Comparison of analysis methods: associative analysis—SAM with Quantile normalization—SAM with Loess
normalization. Abscise—sensitivity and specificity of the analysis as described in text.
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(SAM) procedures. The application of the methods
presented here to various biological and clinical problems
demonstrated their ability to reveal essential features
of the systems under investigations [see for example
(28–30,37–43)], confirmed by the subsequent analysis of
signaling pathways involved, transcription factor
analysis and comparison with other publications. In
some applications, the parallel use of different approaches
to the analysis of the same data demonstrated advantage
of the internal standard based methods over others in the
selection of the gene sets reasonably associated with the
studied phenomenon [see for example Dozmorov and
Centola (2003) (30)].
Internal standard-based analysis enables to improve the

power of microarray analysis at several levels. In the next
part, we will demonstrate that the knowledge of the
parameters governed by internal standards can be used
for analysis in a statistically robust manner also for
functional associations through clustering and networking
genes having similar dynamical behavior.
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ABSTRACT

In this work we apply the Internal Standard-based
analytical approach that we described in an earlier
communication and here we demonstrate experi-
mental results on functional associations among
the hypervariably-expressed genes (HVE-genes).
Our working assumption was that those genetic
components, which initiate the disease, involve
HVE-genes for which the level of expression is un-
distinguishable among healthy individuals and indi-
viduals with pathology. We show that analysis of the
functional associations of the HVE-genes is indeed
suitable to revealing disease-specific differences.
We show also that another possible exploit of
HVE-genes for characterization of pathological
alterations is by using multivariate classification
methods. This in turn offers important clues on nat-
urally occurring dynamic processes in the organism
and is further used for dynamic discrimination of
groups of compared samples. We conclude that
our approach can uncover principally new collective
differences that cannot be discerned by individual
gene analysis.

INTRODUCTION

The microarray technology has revolutionized the study of
biology by allowing for simultaneous examination of
thousands of genes—the total genome expression profile.

However, the most exciting prospect is to characterize the
organism as a whole by defining the functional associ-
ations among their genes. It turns out that it is not
possible to visualize genetic associations in a steady
state. To understand the dynamic features of interest,
the underlying system must be stimulated to elucidate
the features of the biological regulatory networks.
A common practice in experimental biology has been to
make single, stepwise changes in one variable at a time
and to follow the system’s response as it proceeds from
an initial steady state to a final steady state.
Although such changes lead to results that are interpret-

able from a biochemical point of view, step changes do not
persistently excite the network since most of the data will
be biased because of approaching the new steady state. As
a result, many dynamic features remain unidentified, even
with extensive prior knowledge. Capturing the multivari-
ate nature of biological regulatory networks requires the
introduction of multivariate random perturbations, espe-
cially when the underlying data contain high levels of
noise. As it was shown earlier (1), random, independent
inputs enable better identification of relevant results, and
such identification is more robust to noise.
In most biological systems, random stimulations from

the environment continue throughout the life span of the
organism, and the organism persistently reacts in turn to
such random stimulations. Genes participating in this
reaction are in dynamic states. Thus, it is possible to
reveal genes displaying an extraordinarily high variability
of expression, and we call these genes ‘hypervariably
expressed genes’ or HVE-genes. It has been shown that
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even in genetically identical individuals; tissues display a
considerable degree of variation in gene expression (2).
There are multiple reasons for the extreme variability of
such genes. For example, previously unrecognized
heterogeneities could be present in the presumably homo-
genous group of samples, or there may be genes that are
involved throughout different phases of internal dynamic
processes.
Genetic diseases are often associated with the manifest-

ation of profound genetic variations. Hence, under such
conditions increased variability of some genes will be
expected, although the association of these genetic vari-
ations with transcriptional changes cannot be directly
inferred. Genes that demonstrate variability in expression
at the population level could be potential candidates for
further studies of the genetic architecture of complex traits
associated with pathology, especially if these gens display
intra-individual stability. In this context, it is interesting to
note that gene expression variability is often increased in
autoimmune pathologies and is normalized again after
successful treatment [see e.g. (3–5)].
Examples of significant increases of the proportion of

HVE-genes in various inflammatory pathologies include
lupus, rheumatoid arthritis and TNF Receptor
Associated Periodic Syndrome (TRAPS). Because
TRAPS is a rare autoinflammatory disorder caused by
mutations in the extracellular domain of the TNF
receptor superfamily 1A, one does expect to observe dif-
ferences in gene expression variability when comparing
TRAPS patients with healthy donors. Indeed when
comparing 14 TRAPS patients with a counterpart of 14
healthy donors, 124 genes displayed increased expression
variability in the samples from TRAPS patients
(Figure 2A). Many of these genes are members of the
TNF receptor pathway and are associated with inflamma-
tory processes (as shown by the Ingenuity Pathway
Analysis presented in Supplementary Figure S1). It is of
interest that among the outlined entities, Mediterranean
fever gene (MEFV) is present—a hallmark of another
close to TRAPS pathology—Mediterranean fever (6).
The most prominent problem in studying HVE-genes is

the lack of statistical methods to facilitate the selection of
HVE-genes from microarray experiments in which sample
sizes are too small to use standard statistical techniques.
Variable gene expression can be a characteristic feature of
pathology, but the lack of adequate methods for multi-
variate analysis complicates the interpretation of the
obtained results, especially regarding the reproducibility
and reliability of the established features (7,8). The
reasons behind these objections include the instability of
existing methods and sample sizes that are too small to
support the notion of reliable variability features.
We demonstrated earlier (9), that many problems of

genome-scale microarray experiments, which appeared to
be consequences of the vast amount of information, were
successfully resolved by the use of the Internal Standard
strategy. In this method information about nonspecific
variations is dissociated from the conventional behavior
of genes that share certain features, such as equity in ex-
pression, stability and distinctiveness from background
noise. Knowledge of the parameters governed by

Internal Standards is an added benefit to statistically
robust analyses of functional associations by clustering
and networking genes.

In this communication, we present the application of
the Internal Standard strategy to HVE-gene selection
and a functional analysis based on strong statistical
criteria. Rather than presenting an orderly, methodologic-
al approach, we assembled data obtained throughout
several research endeavors, and we present the actual
results from applying multivariate procedures to the
analysis of HVE-genes in both normal and pathological
processes.

Programs created for the selection and analyses of the
features of the HVE-genes are implemented in MatLab
(Mathworks, MA, USA) and available from authors
upon request.

MATERIALS AND METHODS

Gene expression data sets

This work uses a wide spectrum of experimental data. The
actual biological portion of the experiments was per-
formed in a collaborative manner separately for each
sub-project, and portions of them have already been
reported in independent publications or are in preparation
for publications. The common denominator of each of
these projects is the evaluation procedure. Expression
data sets were obtained using various sources of mRNA
and several microarray technologies. Fragmented descrip-
tions of the experimental protocols and the microarray
experiments are given in Table 1 and in the
Supplementary Data. The reason for compiling multiple
diverse biological experiments into a single paper is to
allow the output microarray data from these experiments
to be analyzed using the Internal Standard-based analysis
procedure.

Microarray data analysis

The methods used for gene expression analysis are based
on the use of Internal Standards, which are constructed by
identifying a large family of similarly behaving genes. The
application of these Internal Standards to the normaliza-
tion of microarray data and the differential analysis of
gene expression was presented in the first part of this
project (9).

The normalization procedure consists of two subse-
quent steps:

. The first step is the determination of the parameters of
the background of the array—the average (Av) and
standard deviation (SD) of normally distributed low
level expressions in an array with subsequent normal-
ization of all expressions in the array. A normalized
score, ‘S,’ is obtained [S= (PV–Av)/SD], where PV is
the original pixel value for the spot, and Av and SD
are the mean and standard deviation respectively, of
the set of background spots. The distribution of S has
zero mean and SD=1 over the set of background
genes in the normalized array. Only genes expressed
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above background (>3 SDs) are used for the second
step ‘adjustment’.

. The second step is the adjustment of the normalized
profiles to each other by robust regression analysis of
genes expressed above background. This procedure is
based on the selection of equally expressed genes as a
homogenous family of genes, with normally
distributed residuals defined as deviations from the re-
gression line. Outliers are thereafter determined as
genes having deviations not associated with this
internal standard of equity in expression, which
include thousands of members.

. For multi-sample data adjustment an averaged profile
is calculated and each sample is adjusted to the
averaged profile using the robust regression procedure
described above. A new averaged profile is calculated
from transformed profiles of the samples and the
adjustment procedure is repeated. Several subsequent
adjustment may be necessary for the best result,
however for the data initially normalized to back-
ground two steps of adjustment are usually sufficient.

One of the most important criteria in the selection of
HVE-genes and the analysis of their behavior is the choice
of the ‘Reference Group’—which is an Internal Standard
for equity in expression and for stability of the analyzed
processes (absence of variability exceeding technological
and biological noise).

Procedure for establishing the ‘Reference Group’

The Reference Group is constructed by identifying a set of
genes expressed above background level with inherently
low variability as determined by an F-test. The procedure
consists of two steps; the first step ensures that an absolute
majority of stable genes are identified, while the second
step ensures that the outliers are excluded with a simple
iterative procedure. At the beginning, all genes are repre-
sented by their residuals (relatively averaged profile),
which after normalization and log transformation lose
their sample-dependent individuality as well as their ex-
pression level-dependent individuality (Figure 1A). For
the majority of genes, the variation between replicates is
relatively small and homogenous and follows the standard
F-distribution. A small portion of genes that exhibit high
variation (statistically distinct from the rest) are the
HVE-genes. To obtain the Internal Standard for gene
variability, HVE-genes should be excluded by an iterative
procedure (9). The F-test is used as the criterion for the
exclusion of outliers, i.e. genes that exhibit an estimated
variability that is considerably higher than that that of the
total group. The total group variability is recalculated
after each exclusion step, and the procedure is repeated
until no additional genes can be excluded by this proced-
ure. The statistical threshold for the exclusion of
HVE-genes is chosen such that these exclusions are
based on an exceptional P-value (usually P< 0.05). The
completion of all the exclusion process a new Internal
Standard called the ‘Reference Group’, which is
composed of genes expressed above the background of
control samples with a low variability of expression (as
determined by an F-test) and whose residuals approximate

a normal distribution. Though not all excluded genes are
HVE-genes, we can be sure that the majority of them are
excluded and will not interfere with the estimation of par-
ameters for the rest of the analysis. The Reference Group
is further used for selection of HVE-genes and for analysis
of their functional associations in clustering and network-
ing procedures.

List of four résumés of calculations steps

Upon providing in the ‘Result’ section detailed explan-
ations and arguments about the chosen path of calcula-
tions, procedures summarizing the calculation steps are
presented in four sequential step-by-step résumés.

Step-by-step Résumé 1: Associative analysis of differ-
ences in gene expression variations.

Step-by-step Résumé 2: F-means cluster analysis of
HVE-genes co-expression.

Step-by-step Résumé 3: Correlation mosaic analysis of
HVE-genes co-expression.

Step-by-step Résumé 4: Networking procedure based on
the use of partial correlations.

RESULTS

All of the experiments described in this communication
were analyzed using the Internal Standard approach,
which has been described in our earlier paper (9), in com-
bination with other methods.

Selection of ‘hypervariably expressed genes’

Upon establishing the Internal Standard of biological sta-
bility (Figure 1A) the selection of HVE-genes was made
using strict statistical criteria. HVE genes were identified
as those for which the expression level varied significantly
(P<Po) when comparing the variability of individual
genes to the variability of the ‘Reference Group’. The
threshold Po was chosen either in a restricted manner
(Po< 1/N, where N is the number of all genes expressed
significantly differently from background noise) or in a
moderate manner (Po< 0.05), depending on the purpose
of the subsequent analysis. Choosing the threshold as
Po< 1/N (N was often more than half of all genes on
the array) can be considered to be a slight modification
of the Bonferroni correction for multiple hypothesis tests.
Such a choice excludes virtually all false positives, but
consequently loses many true positives as well. This
choice should be made when selecting HVE-genes that
are unique to any given group. In situations in which
the traditional P=0.05 is applied, many false positives
will be retained. Nevertheless, this choice can be useful
when studying HVE-genes that reproducibly appear in
several groups, cluster together or reproducibly intercon-
nect in a subsequent networking procedure. All of these
subsequent steps refine the list of HVE genes to only
those that demonstrate some reproducible features that
are probabilistically less likely to be present in false
selections.

Hyper-variations appearing from experimental errors
(the influence of dirty spots) were statistically filtered
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from this analysis by comparing the variability of the re-
siduals in a replicated group of samples with the same
variability obtained by excluding both the maximum and
minimum one at a time. A statistically significant decrease

in variability after excluding one replicate provides
evidence of a possible error in that particular replicate.
Such genes are excluded from the family of HVE-genes
as being falsely selected.

Residuals: reference group  & HV-genes

gene expression level
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Figure 1. F-means clustering procedure. (A) The standard deviations of genes from the Reference Group, with HVE-genes (red bars) included.
(B) Gene content of the cluster with seeding profile shown as a red line. (C) Deviations of genes’ profiles from the seeding profile (shown as red SD
bars) do not exceed the ranges of normal expression noise (gray-Reference Group). Abscissa: (A) and (C). The normalized gene expression level
(log10 presentation), (B) The sample numbers. Ordinate: (A) and (B) Gene expression deviations from the equity of expression; (B) Gene expression
levels in samples normalized to have zero mean (over all samples) and SD=1.
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Increased gene expression variability associated with
pathologies

In replicated microarray experiments, each gene in the
array can be characterized by two independent param-
eters: the level of expression and the variability (except
in regions of low-intensity spots that are abundantly
contaminated with highly variable background noise). In
addition to the conventional comparison of gene expres-
sion levels, it is possible to compare their variability using
strict statistical criteria. The conventional statistical
method for comparison of variability, ANOVA, encoun-
ters the same obstacles when applied to the analysis of
microarray experiments containing immense amount of
information. The conventional low statistical threshold
(P< 0.05) will produce a large output of false positive se-
lections, whereas any profound adjustments of this thresh-
old will result in the loss of sensitivity of the statistical test.
The practice of using the Internal Standard resolves this
problem with the same efficiency as was achieved for dif-
ferential gene expression analysis (9).
Selecting genes with different variabilities relies on the

next statistical steps. First, the F-test was used to identify
HVE-genes in each group of samples. Next, the differences
in their variability were determined in a paired
comparison.

Résumé 1: Differential analysis of gene expression
variability. Two groups are considered: Group 1 has
n chips and k genes, while Group 2 has m chips and k
genes.
Data is first normalized as described in the ‘Materials

and Methods’ section and presented in log-transformed
form, making the variability of the majority of genes in-
dependent of the level of their expression.

. Reference groups are created for each group of
samples (Groups1 and 2) and HVE-genes are selected
in each group as previously described. (Associative
F-tests, with m+k– 2 degrees of freedom (a ¼ 1

k), to
establish if the gene associates/belongs to the group
of stably expressed genes).

. A paired F-test is performed on the genes selected as
HVE-genes in both groups (Groups 1 and 2, compari-
son of the SDs for the same gene in two groups—with
n+m–2 degrees of freedom and threshold corrected
for the multiple hypothesis tests), to determine whether
the genes have equal SDs.

. Additional restrictions on the fold change and the
minimal average level of expression may applied. The
data are grouped into five sets:

B0: HVE-genes without differences in variability in
the case-control comparison

B1: HVE-genes having significantly higher variation
in the Experimental group

B2: HVE-genes having significantly higher variation
in the Control group

B3: Genes that exhibit the HVE property only in the
Experimental group

B4: Genes that exhibit the HVE property only in the
Control group

The ratio of SDs for HVE-genes in groups B1 and B2
was used to exclude changes that are statistically signifi-
cant but are not biologically significant. The fold change
restriction was usually applied as an addition to the stat-
istical analysis to draw attention to the most prominent
differences. Upon excluding Bo, all other groups (B1 –B4)
contain genes that exhibit some characteristic differences
in the variability of expression level when comparing ‘ex-
perimental versus control’. These genes also establish a
pathology-specific fingerprint. Unique variable genes
from the B3 group are of special importance in addressing
questions about dynamic processes associated with any
given pathology.

To understand the mechanisms behind a disease, one
should first attempt to establish whether disease-specific
differences in gene variability are the consequence or the
cause of the pathology. The superfluous variability of
normally stable genes as well as the ‘freezing’ of genes
predicted to participate in dynamically adaptive reactions
could provide clues towards the understanding of the
pathology.

Increased variability can also be of a non-genetic,
physiological nature; and one might expect that many
pathologies, such as inflammation, that are associated
with a burst of dynamic changes are also accompanied
with a considerable increase in the portion of genes that
display high variability.

Examples of significant increases in the proportion of
HVE-genes in various inflammatory pathologies include
lupus, rheumatoid arthritis and TRAPS. Because
TRAPS is a rare autoinflammatory disorder caused by
mutations in the extracellular domain of TNF receptor
superfamily 1A, differences in gene expression variability
are expected when comparing TRAPS patients with
healthy donors. Indeed, when comparing 14 TRAPS
patients with a counterpart of 14 healthy donors, 124
genes were found to display increased expression variabil-
ity in the samples from TRAPS patients (Figure 2A).
Many of these genes are members of the TNF receptor
pathway and are associated with inflammatory processes
(as shown by the Ingenuity Pathway Analysis presented in
Supplementary Figure S1). It is of interest that
Mediterranean fever gene (MEFV) is present among the
outlined entities. This gene is associated with
Mediterranean fever, a disease with similar pathology to
TRAPS (6).

Increased variability may be associated with the devel-
opment of pathology. Figure 2B presents the appearance
of uniquely variable genes in the course of the transform-
ation of endometrial cells into cancer cells by the action
of the carcinogen DMBA (7,12-dimethylbenz[a]anthra-
cene) (10).

Increased variability may also be observed in
pathologies that are less dynamic than inflammatory con-
ditions, for example, chronic pathologies that are not
associated with a burst of dynamic changes. Figure 2C
presents genes that demonstrate stable expression levels
in B cells from normal healthy donors and extreme vari-
ations in samples from patients with B cell chronic
lymphocytic leukemia (non-mutated and mutated sub-
groups) (11).
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The seemingly chaotic behavior of gene expression vari-
ation in various pathologies could in fact be a result of the
superposition of several co-expressed groups of genes. An
example of this phenomenon is presented in Figure 2D,
where a group of variable genes in Juvenile Rheumatoid
Arthritis (JRA) patients reveal closely related
co-expression patterns.

The set of genes that are uniquely expressed in any given
pathology is referred to as the ‘fingerprint’ or ‘signature’
of the particular pathology (12). We extend this definition
to refer to the set of uniquely variable genes and coin the
expression ‘functional fingerprint’.

An interesting example of a ‘functional fingerprint’ in
autoimmune pathologies was obtained using lupus prone
mice. We compared mice with the Sle1 mutation, which
makes them susceptible to the development of lupus-like
pathology, with mice possessing an additional Sles1
mutation that in turn cancels the effect of the first Sle1
mutation (13–15). We found that in B220+ cells, 35 genes
that were stable in healthy animals, became variable in

B6Sle1 mice and again reverted into stable form in
B6Sle1Sles1 mice (Supplementary Figure S2). In CD4+

cells, changes in variabilities of 150 genes was associated
with the Sle1 mutation.

F-means clustering for inferring functional
interconnections

There are diseases in which differences in HVE-genes
occur at particular stages of disease manifestation, while
no distinctive differences are evident at the onset. The only
means of revealing pathology-specific differences is
through the analysis of functional associations for such
HVE-genes. The most commonly used computational
approach to analyzing such functional associations is
cluster analysis.
F-means cluster analysis of HVE-genes is an unsuper-

vised method, in which every decision, including the selec-
tion of variable genes, the search for the optimal number
of clusters, as well as optimization of the distribution of

Figure 2. Increase in gene variability associated with different pathologies. Expression data normalized to make the overall Average=0, SD=1.
Abscissa: the sample numbers. Ordinate: the normalized expression level. mRNA for the transcription study was obtained from various samples:
(A) Samples from healthy controls (1–14) and TRAPS patients (15–28). (B) Endometrial cells: controls (1–9 and 10–18) and cells transformed to
cancer cells by DMBA (19–27 and 28–36). The results of two independent experiments are presented. (C) Samples from the B cells of healthy donors
(1–18), and B cell chronic lymphocytic leukemia patients: (19–34) un-mutated, and (35–54) mutated subgroups. (D) Whole blood samples from
healthy donors (1–20) and JRA patients (21–40).
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genes over clusters, is solved using statistical criteria. If we
know the precise differences in the gene expression levels
among the samples, we would have a ‘true’ clustering. The
residuals from the Reference Group provide an empirical
estimate of the error of the distribution, or the ‘noise’ in
the data.
F-means clustering of HVE-genes was initiated by

defining a parameter called the connectivity, which is
defined as the number of genes that vary in expression
in a similar manner as the ‘seed’ gene. Clusters then
were nucleated starting with genes of highest connectivity.
Genes of lower connectivity were included in a given
cluster if their expression levels deviated from the
seeding profile without exceeding the variation of the re-
siduals in the Reference Group based upon an F-test
(Figure 1B and C). The number of different clusters was
determined by the experimental system’s ability to distin-
guish differences exceeding random fluctuations of the
normalized residuals in the Reference Group.

Résumé 2: F-means cluster analysis of the coexpression of
HVE-genes. The clustering procedure consists of the fol-
lowing steps:

. Gene expression normalization, log-transformation
and rescaling as noted above.

. Selection of HVE-genes. Exclusion some of them
whose extreme variability was produced by the devi-
ation from stable state in only one sample to minimize
the influence of technical errors.

Determination of the connectivity, for each of these
HVE-genes. Connectivity is defined as the number of
genes whose expression patterns does not vary from the
expression pattern of a given gene within the ranges
derived from the Reference Group (based on the F-test).
The appropriate correction of threshold for the F-test
should be used to diminish the proportion of false
positive selections (Po< 1/N, N- number of HVE-genes).
HVE-genes for each group are sorted by their connect-

ivity and the clustering process begins with the genes ex-
hibiting the highest connectivity. The first cluster contains
the gene with the highest connectivity and all genes whose
deviations from the expression of this gene in each sample
have variabilities that do not exceed the variability of the
Reference Group. The next gene of higher connectivity
not belonging to the first cluster acts as the starting
point for Cluster #2, and other genes are included in this
cluster using the same criteria as in the first cluster. This
process continues until all genes are analyzed. Genes that
appeared in more than one cluster are considered to be
likely functional links among these clusters. Genes that
have zero connectivity do not belong to any cluster.
Additional restrictions on the choice of the thresholds
for statistical tests and the minimal cluster content can
be elicited from simulation experiments where the gene
expression data are replaced with random data having
the same characteristic parameters (average and
standard deviation). The use of simulated data establishes
the minimal cluster content that appears by chance at the
chosen statistical thresholds.

Three potentially different results are distinguished:

. functional associations for genes from the B4 set are
characteristic of dynamic processes that prevail under
normal conditions and are absent in pathology;

. functional associations appear under pathological con-
ditions only for genes from the B3 set, are uniquely
variable in the pathological group and are stable in the
normal control group

. functional associations for genes from the B0, B1 and
B2 sets are significantly modulated in one of the
compared groups (normal control or pathology).

Hypervariably expressed genes demonstrate similar
patterns of variations

The co-expression of HVE-genes or similarities in their
expression profiles are of particular importance to under-
standing the biological significance of these findings. The
idea that co-expression of genes revealed by the clustering
procedure implies the participation of these genes in
general biological processes was first formulated by the
group of Eisen (16). An extension of this idea is that the
same should be true for HVE-genes, whose different level
of expression can be considered as snapshots of some dy-
namical process. In contrast to temporal dynamics, the
actual shape of the cluster in the case of HVE-genes is
of lesser significance as shown in Figure 3. Even if
HVE-gene expression in each sample is consistent with
some phase of a dynamic process, the absence of informa-
tion about the real sequence of events makes the shape of
the profile useless.

Several practical examples demonstrate the consistent
characteristics of the variation in the expression levels of
the group of clustered genes. The first example was
obtained from analysis of gene expression in T lympho-
cytes from a homogenous group of mice. Figure 4 dem-
onstrates that dozens of genes with significantly high
variations in their expression levels could be gathered in
clusters. The very high content of these clusters excludes
the possibility of chance variations.

Another example of co-expression of HVE-genes was
obtained through analysis of gene expressions in samples
from TRAPS patients (Figure 5). The majority of genes in
the biggest clusters in samples from two entirely unrelated
groups—healthy controls and TRAPS patients—had iden-
tical co-expression patterns. The largest clusters in the
control group and in the group of TRAPS patients
consist of 163 and 51 genes, respectively. We applied the
same technique to F-means clustering in groups produced
from controls and patients by substituting of real data
with random values having the same averages and SD
for each gene. The largest cluster obtained in this simula-
tion procedure was 10 times smaller than the largest
cluster in the actual control group, and no genes were
found to cluster in the simulated patient group. Similar
results were found when comparing the eight largest
clusters obtained from the analysis of real and simulated
data (Figure 6).

Another example was created earlier in the course of
gene expression analysis in samples of children with
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polyarticular JRA and normal healthy controls
(27 samples altogether) (17). In this work the sizes of the
HVE-gene clusters also significantly exceeded the sizes of
clusters identified in the simulation experiment.
Additional validation of the biological meaningfulness of
partitioning HVE-genes into clusters was obtained by
analyzing of the cluster contents. The two biggest
clusters consisted exclusively of genes encoding ribosomal
proteins, while others consisted of genes encoding general
regulatory proteins, such as insulin and NF-kB, and also
of protein involved in mitochondrial protein synthesis,
proteasome and mini-chromosome maintenance DNA
replication complex. Furthermore, many co-expressed
genes shared a common function; for example genes
encoding numerous glycolytic enzymes and genes
involved in the tricarboxylic acid cycle. (17)

We have reported many other examples of employing
F-means clustering for the analysis of clinical and experi-
mental data in a series of publications (17–20).

Correlation mosaic analysis to visualize changes in
cluster associations

Both the reproducibility and significant differences in the
clustering results are usually estimated visually, or quali-
tatively. Here, we present correlation mosaic based visu-
alization of global patterns in expression data with
individually presented interconnections between patterns
and genes. This approach can be used as an independent
clustering procedure or as an addition to the completed
F-means clustering results. In this example the clustering
procedure is based on the Pearson correlation and consists
essentially of the sequence of operations used in F-means
clustering described above. The primary difference is that
instead of using deviation variability as a measure of
distance, we use a correlation coefficient. The number of
clusters and the cluster contents are determined using a
threshold that can be established in simulation experi-
ments. The output of this procedure consists of three
data sets: first, cluster allocation for all genes in the
analysis, second, connectivity parameter for each gene,
and third, matrices of correlation coefficients. Matrices
of correlation coefficients can be represented in a graph-
ical form known as a correlation mosaic, which is conveni-
ent for the visual inspection of the differences in gene
associations between cases and controls.

Résumé 3: Correlation mosaic analysis of the co-expression
of HVE-genes. The procedure consists of the following
steps:

. Normalization of gene expression and identification of
HVE-genes is conducted as in Résumé 1. HVE-gene
expression data are presented in normalized units.

. A connectivity parameter is defined for each
HVE-gene as the number of other genes whose expres-
sion profiles correlate with any given gene above the
threshold ‘tr’. The appropriate choice of threshold is
obtained in simulation experiments.

. HVE-genes in each group are sorted by their connect-
ivity, and the clustering process begins with genes of
the highest connectivity. The gene with the highest
connectivity and all genes that deviate from this
gene’s expression in each sample with variabilities
not higher than the variability of the Reference
Group comprise Cluster #1. The next gene not belong-
ing to the first cluster and genes selected as not signifi-
cantly deviating comprise Cluster #2. The process
continues until all genes are analyzed. Genes that
have zero connectivity do not belong to any cluster.

. The result is presented as a color-plot with the gene
numbers used as the coordinates along the axes, with
the same ordering G1. . .Gn used along the abscissa and
the ordinate).

. When the correlated gene associations are compared
between two groups of samples, the order of
coordinated genes is the same in both mosaics.

This correlation mosaic method was applied to the
analysis of gene expression data and cytokine multiplex
data in clinical and experimental samples (17–26). In the

Figure 3. Shapes of the HVE gene expression profiles does not have
sense. Diagrams illustrating the formation of the cluster profiles of
HVE-genes in a homogeneous group. (A) Possible assortment of nine
samples representing two dynamical processes with participation of
several genes, each of whose profiles are shown in either red or
black. (B) Variant of A in which the order of the samples is arbitrarily
changed. The exact shape of the dynamical process is lost after such
rearrangement, but the fact of gene co-expression is still evident.
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very first example a mouse model of bladder inflammation
was used to investigate the role of neurokinin 1 receptors
(NK1R) and neprilysin (NEP) in neurogenic inflamma-
tion. Cystitis was induced in wild-type mice sensitized to
human serum albumin after being challenged with the
same antigen. Microarray analysis revealed that inflam-
matory processes in wild mice-type led to a
downregulation of neprilysin expression. The most prom-
inent cluster of activator protein 1 (AP-1)-responsive
genes included neprilysin (upper portion of Figure 7). In
contrast, NK1R

�/– mice failed to mount an inflammatory
reaction and the presence of neprilysin negatively
correlated with the expression of the same gene(s) in
wild-type mice (bottom Figure 7). The switching of NEP
correlations from positive in wild-type mice to negative in
NK1R�/– mice is very convincing in this presentation.
This work (21) provided a suitable model for elucidating
the involvement of AP-1 transcription factor in bladder

inflammation and suggested a testable hypothesis regard-
ing the role of NK1R and NEP in inflammation.

. The correlation mosaic analysis also was applied to
HVE-genes in JRA data as given above. Figure 8
presents an outstanding visualization of the changes
in some gene associations with other cluster members
during the course of treatment of JRA patients.
Analysis of the healthy donor group (HD group)
reveals the presence of two highly correlated clusters
of genes. The color variation in the mosaic visualizes
the differences among the healthy donors (HD),
non-treated (AD) and treated partially-responding
(PR) patients. On closer inspection, the involvement
of genes with altered functional interconnections
within each cluster indicates that those genes are
directly involved in the pathology (17).

. These examples demonstrate that with the use of
color-coded correlation mosaics, complicated

Figure 4. F-means clustering of gene expressions in T cells from B6 mice. The six largest clusters are shown. Abscissa: cluster numbers derived from
10 samples from 10 different mice. Ordinate: the normalized expression levels. Figures in brackets: the numbers of genes in each cluster.
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Figure 5. Reproducibility of the HVE gene co-expression in two unrelated sample groups: NC (normal controls) and TP (TRAPS patients).
Normalized expression levels (ordinate) are presented against the numbers of samples in each group. Genes in the largest cluster (#1, A) in the
NC group are also co-expressed in the TP group (B). Most of the genes belong to the largest cluster (#2, D) in the TP group. Conversely, genes in the
largest cluster (#2, D) of the TP group are co-expressed in the NC group (C) and again almost entirely belong to the largest cluster of the NC group.
The second largest cluster of the NC group #1 (E) is the inversion of the #1 cluster (a) in the NC. Genes are almost entirely in the second largest
cluster (#1, F–H) of the TP group. The opposite is seen in (G and H). In contrast with the NC, Clusters #1 and #2 in the TP are not the reverse
reflections of each other.
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interdependencies between genes can be visualized and
differences between subgroups can be assessed.
Correlation clustering is not just a procedure for gene
partitioning into different compartments but is rather a
combination of clustering and networking. This
method provides a tool for quantitatively estimating
interconnections between genes within clusters.

Gene networking based on partial correlation coefficients

Gene regulatory networks have become a major focus of
interest in recent years. A number of reverse engineering
approaches have been developed to help uncover these
regulatory networks. Correlative mosaics demonstrate
the existence of closely correlated modules, which are con-
nected through positive or negative correlations. This type
of presentation seems to be in good agreement with the
widely discussed modularity of gene networks. In spite of

this agreement some caution is necessary as the relatively
high connectivities of gene clusters in correlation mosaic
analysis mostly represent the indirect influences of a small
number of regulatory elements. Information about direct
interactions gives partial correlations that in turn enable
to the distinguish of correlations between two variables
that originate through direct influence versus correlation
originated through the influence of intermediate variables.
Partial correlation excludes many possibilities and usually
significantly diminishes gene connectivity. We used this
procedure for the networking of HVE-genes (18,20,21).

Résumé 4: Networking procedure based on partial
correlations. The environmental circle for each gene is
determined as a set of genes correlated with any given
one having a correlation coefficient above threshold t1.

The matrix of partial correlation coefficients within the
environmental circle of genes is calculated. The elements
of the matrix Rij represent the partial correlation coeffi-
cients between the given gene and gene i with the removed
influence of gene j. All genes are within the given gene’s
environmental circle.

The genes Gi are considered to be causally intercon-
nected with the given gene if the row Rij of the matrix
does not have members below threshold t1, and if the
averaged value of the row is above threshold t2. A
Monte–Carlo simulation study is used to define the stat-
istical thresholds (t1 and t2) below which partial correl-
ation coefficients are likely due to chance.

One example of the networking of HVE-genes was
obtained during comparative analysis of the response to
stimulation of EBV-transformed B cells derived from SLE
patients and normal unrelated controls. Pathway Analysis
allowed us to establish model networks of functional gene
expression important for B cell signaling and elucidate
gene expression regulatory interconnections disrupted in
B cells from individuals with lupus (Dozmorov I,
Dominguez N, Sestak AL, Xu HM, Harley JB, James
JA, Guthridge JM manuscript in preparation).
Fragments of this network that include genes uniquely
activated in only one of these groups (controls or
patients) are shown in Figure 9. These unique network
fragments reproduced in two independent experiments
present functional fingerprints of activated B cells from
lupus patients and normal controls. In this context, one
should note that practically all genes uniquely activated in
normal controls (Figure 9A) are known as being
‘pro-apoptotic’, while the genes uniquely activated in B
cells from lupus patients (Figure 9B) are ‘anti-apoptotic’.
These results are in good agreement with the established
defects of B cell apoptosis in lupus patients (27).

TNF pathway modulation

In another example this networking procedure was used to
establish functional interconnections between HVE-genes
in TRAPS pathology and normal control samples.
HVE-genes demonstrating reproducible co-expression
both in control and in TRAPS patients were selected
(Supplementary Figure 3S). It is important to note that
the majority of genes belonging to the largest cluster in
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Figure 6. Contents of the eight biggest clusters in the NC and TP
groups (Figure 5) (black bars) compared with the same for the
simulated data (data obtained by substitution of the real gene expres-
sions with random values having the same SD and means for each gene
over all samples in groups).
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the control samples are also tightly clustered in the largest
cluster of the patient samples. The close similarity of the
contents of the largest clusters in two independently
produced clustering procedures supports our hypothesis
about common biological basis for such co-expression.

F-means clustering of some genes associated with the
TNF pathway are shown in Figure 10. Partial correlation
coefficients were calculated for each pair of 42 selected
genes. Two thresholds were used to select significant inter-
connections. The threshold (t1) 0.7 was used to select the
unique connections, and 0.5 was used for connections
reproduced in the networks of both groups. The results
of these calculations are presented in Figure 10A and B.
The connections obtained with this method appeared to be
consistent with current knowledge about this TNF
pathway (Supplementary Figure S4 shows the pathway
obtained with the use of Ingenuity Pathway Analysis).
Interleukin-6 (IL-6) interconnections were expected
based on the altered function of this cytokine in TRAPS
pathology (28). The appearance of the MEFV gene in the
TRAPS network is also interesting because mutations
in this gene characterize another periodic fever,
Mediterranean fever.

DISCUSSION

Microarray technology has revolutionized the study
of biology by allowing the simultaneous examination of
the expression profile of the entire genome. Gene expres-
sion profiling enables rapid analysis of thousands of
genes in parallel and has been used to establish
many disease-specific fingerprints of pathology (29–31).

Such profiling might facilitate the development of diag-
nostic strategies for complex diseases, although one has
to bear in mind that among hundreds of differentially ex-
pressed genes, only a portion might play a critical role in
pathology, while many others may have only bystander
effects. The analysis of the disease processes requires
methods that extend beyond comparing gene expression
levels. The most exciting opportunity is to characterize
pathology through changes in ‘functional associations’
among genes. Genes involved in such processes reveal
extreme variability in their expression levels, thereby un-
covering functional associations among them. As stated in
the work from the Kauffman laboratory (1), random in-
dependent inputs (as chaotic environmental perturbations
are) allow for better recognition of regulatory associ-
ations, and such identifications are more robustly resistant
to noise. These properties make HVE-genes an important
source of information about regulatory interconnections
in biological systems.
The most renowned problem in HVE-gene research is

the absence of adequate statistical methods for the selec-
tion and interpretation of HVE-genes (8). Among the
most frequently employed statistical evaluations for
HVE-genes are ANOVA methods, which are used to de-
termine the fraction of genes significantly differentially
expressed between individuals (32,33). These methods
are simple and are based on commonly understood statis-
tical principles. However, the problems of sensitivity and
specificity prevent blindfolded application of these
straightforward statistical methods to microarray
analysis without previously determined corrections to
the significance thresholds.

Figure 7. Mosaic of correlation coefficients of the HVE-genes in wild-type and NK1R–/– mice. The coordinates along axis are the numbers of genes
listed in the left box. The white lines in A indicate the borders of three clusters of tightly interconnected genes. The colored lines and spots beyond
the clusters represent positively linked genes (red) belonging to two or more clusters (Gene 5, for example), or negatively linked genes (blue). Genes
that exhibited positive correlations over time were represented in graded shades of red, and genes negatively correlated are shown in graded shades of
blue. Genes with an absence of correlation are indicated in green. Neprilysin is in the central position in the most prominent cluster found in
wild-type mice, which includes a group of AP-1 responsive genes. In contrast, the association with these genes becomes negative in NK1R–/– mice,
who fail to mount antigen induced bladder inflammation.
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Figure 8. Correlation mosaics for genes from the two largest clusters in the control group (adopted from [Jarvis ea, 2003]). The designations are the
same as in Figure 7. There is shown transformation of the mosaic created for patients group (Acute disease) to the Partial Response mosaic (patients
who have been treated with corticosteroids or other anti-inflammatory drugs), and finally to the Healthy Donors mosaic.
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To address this issue, we have successfully implemented
the Internal Standard strategy for differential gene expres-
sion analysis (9) and developed optimal power analysis,
including the estimation of replication requirements.

Although we have presented several experimental conclu-
sions within each project presented in this communication,
some of them appear to be of general validity, and in turn
they become solid attributes of gene expression analysis.

Figure 9. Networking of reproducibly variable genes after stimulation of EBV-transformed B cells from normal controls (A) and lupus patients (B).
This network is a fragment of a gene network consisting of genes uniquely activated in normal (A) or lupus patient (B) groups. The gene network
was built through the partial correlations method (as described in the ‘Materials and Methods’ section).
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We found that HVE-genes are true components of the
process of gene expression regulation. Together, HVE-
genes serve as an important source of information about
the functional connectivity of the genome and about dy-
namical processes based on this connectivity.
The high incidence of expression variability, as well as

the coherent appearance of this kind of expression,

excludes the likelihood that this behavior occurs by
chance (Figures 4–6). A striking feature of our findings
is not only that a significant portion of genes are expressed
hypervariably, but that the resulting patterns of variability
are remarkably similar. These observations enable the ap-
plication of standard clustering procedures to the analysis
with the result that the contents of such clusters exceed

Figure 10. TNF pathway. Gene interconnection in both normal control (A) and TRAPS patients (B) obtained by calculating partial correlation
coefficients. The solid lines represent positive interconnections with averaged partial correlation coefficients >0.7. The dashed lines represent inter-
connections with negative partial correlation coefficients with averaged values <–0.7. The red lines represent interconnections significantly unique in
each of the populations.
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any chance coincidences. Additional evidence supporting
the premises of our model includes the extraordinary high
reproducibility of independently derived experimental
sample groups (Figure 5 and Supplementary Figure S3).

Our finding that many genes with high expression
variabilities are associated exclusively with pathologies
while the same set of genes display stable expression in
normal samples (Figure 2) suggests the possibility that
the mentioned pathologies are associated with a loss of
control in transcriptional processes. However, this
problem is awaiting careful investigation. Another
surprising aspect of our findings is a functional relatedness
among many of the studied HVE-genes. As an example,
we point out that most genes demonstrating unique vari-
ability in the periodic fever syndrome (TRAPS) are directly
associated with inflammatory processes (Figure 2A and
Supplementary Figure S1).

In addition, almost all of the genes that are uniquely
variable in samples from lupus patients have
anti-apoptotic activity, whereas genes uniquely variable
in control samples all have distinct pro-apoptotic
activity (Figure 9). This result is in strong agreement
with the known fact that B cells of lupus patients have
defects in apoptosis (27).

Application of the networking procedure to the
HVE-genes selected from samples from TRAPS patients
and normal controls produced remarkably reproducible
associations among genes of the TNF pathway. The few
differences between the ‘pathological’ and ‘normal’
networks are consistent with the established features of
this pathology (6,34).

We are committed to the viewpoint that the biological
reality of hyper-variations in gene expression forms a solid
basis for the analysis of biological objects. For example:

. Statistically significant differences in the variabilities of
HVE-genes as compared with the majority of relatively
stable genes in an array (Figure 1A) exclude the pos-
sibility that such fluctuations are due to chance.

. Many HVE-genes have very similar expression
profiles, thereby enabling the identification of large
clusters of co-expressed genes (Figures 4 and 5). The
sizes of such clusters significantly exceed the sizes of
clusters in simulated random sets of data (Figure 6).

. Some groups of co-expressed genes are highly repro-
ducible, appearing to be only slightly altered in differ-
ent groups of samples (Figure 5 and Supplementary
Figure S3).

. The clusters of co-expressed HVE-genes present
groups of genes joined by their participation in
regular biological processes (Figures 7–9).

As we have shown in various applications, these
features of HVE-genes make them a very important
source of information regarding functional interconnec-
tions in biological systems and processes.

Various pathologies associated with the stimulation of
defense functions (e.g. inflammation and autoimmunity)
increased the proportions of the HVE-genes in compari-
son with the relatively quiet control state (Figure 2). It is
possible that an analogy with the temperature of physical

bodies could be drawn with regard to the increased
mobility of such pathologies.
Considering that HVE-genes are a presentation of

internal dynamic processes, it is possible to employ the
usual methods of analyses for these processes, including
clustering and networking approaches usually applied to
the study of temporal dynamics. Genes could be gathered
into groups of co-expressed genes by conventional cluster-
ing procedures. Such clusters contain HVE-genes
associated with common biological processes and signal-
ing pathways. Loss or change of membership in these
clusters by one or several genes could be a hallmark of
pathology-associated alterations, as demonstrated in
Figure 7.
We usually observe more than one large cluster of

HVE-genes with possible functional associations, which
substantiates the coexistence of different internal
dynamics. For example, we often observe the presence
of two large clusters with anti-correlated profiles
(Figure 5, see also Figure 2C). Such anti-correlation indi-
cates that these two dynamic processes exist not as inde-
pendent phenomena but as compensatory reactions to
mutual changes. Deviation from the stability of genes
within one group is accompanied by a corresponding
and opposite change by the genes in another cluster.
Alterations in such compensatory reactions could also
be important hallmarks of pathology.
The sum of two anti-correlated profiles is constant, and

this invariability is maintained in the coordinated vari-
ations of the profiles, i.e. the changes in one profile are
compensated by opposite changes in another. In this situ-
ation, it is possible that a more complicated form of com-
pensatory reactions, incorporating the involvement of
more than two clusters or HVE-genes with different
dynamic profiles, is occurring. Examples of such associ-
ations were obtained through linear discriminatory
analysis for the classification of sample groups. Dynamic
discriminant function analysis was developed based on the
concept that stable classification parameters (roots) can be
derived from highly variable gene-expression data (35).
We demonstrated earlier that the functional interconnec-
tions between HVE discriminatory genes can be presented
in the form of functional networks that exhibit distinct-
ive changes in pathology cases when compared to
controls (35).
In conclusion, the analysis of the coordinated behavior

of HVE-genes can resolve the very important clinical
problem of non-homogeneity in sample groups that
consist of patients with phenotypically similar syndromes.
Such discrimination and exclusion of homogeneity is es-
pecially important in characterizing the phases of path-
ology development and the changes in the course of
response to the treatment and in discriminating hidden
pathologies when a disease with common clinical charac-
teristics can include pathologies of different molecular
mechanisms.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Appendix C 
 
Diagrams illustrating the interaction of regulator-target gene 
pathways found to be differentially expressed in Syndrome 2 vs 
controls 
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Panel C. Patient subgroup A in Replication Sample

KeyKey

Transcription regulator

Enzyme

Complex

G-protein coupled receptor

Transmembrane receptor



Panel D. Patient subgroup D in Replication Sample
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