

Low Hydrogen Embrittlement (LHE) Zinc-Nickel (Zn-Ni) Qualification Test Result and Process Parameters Development

Dave Frederick, USAF Chad Hogan, USAF

August 2011

including suggestions for reducing	ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding an DMB control number.	arters Services, Directorate for Infor	mation Operations and Reports	, 1215 Jefferson Davis	Highway, Suite 1204, Arlington		
1. REPORT DATE AUG 2011	2. REPORT TYPE			3. DATES COVERED 00-00-2011 to 00-00-2011			
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER		
Low Hydrogen Embrittlement (LHE) Zinc-Nickel (Zn-Ni) Qualification				5b. GRANT NUMBER			
Test Result and Process Parameters Development				5c. PROGRAM ELEMENT NUMBER			
6. AUTHOR(S)				5d. PROJECT NU	JMBER		
		5e. TASK NUMBER					
				5f. WORK UNIT	NUMBER		
	ZATION NAME(S) AND AD h Legend Hills Drive	` '	15	8. PERFORMING REPORT NUMB	G ORGANIZATION ER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)			
				11. SPONSOR/M NUMBER(S)	ONITOR'S REPORT		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited					
13. SUPPLEMENTARY NO Focused Workshop SERDP/ESTCP.	otes o on Cadmium Plati	ng Alternatives, Au	gust 30-31, 2011,	Baltimore, M	ID. Sponsored by		
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFIC	ATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON		
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	34	RESPUNSIBLE PERSON		

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and

Report Documentation Page

Form Approved OMB No. 0704-0188

LHE Zn-Ni Background

- Boeing C-17 Program cadmium replacement research (2002-2006)
- Small Business Innovative Research (SBIR) Phase I Feasibility Study (2007-2008)
- SBIR Phase II Qualification Testing (2008-2010):

AFRL TIM 26 May 2011

- A Technical Interchange Meeting (TIM) was conducted at ASC/EN on 26 May 2011 with participants from: OO-ALC/GH, ES3, AFRL/RX, Boeing, and ASC/EN Following AFRL concerns were discussed about the Zn-Ni Phase II test report:
 - Scribe Tests (Corrosion Tests)
 - Hydrogen 'Re-'Embrittlement Tests
 - Fatigue Tests
- These were the only items in which action items were opened

- Scribe Test Action Item #1:
 - Provide 1000 hrs panel scribe data to AFRL for evaluation.
- Response:
 - Original 1000 hrs panels are not available they were tested to 5000 hrs
 - Consequently, Boeing Research & Technology (BR&T) evaluated standard carbide scribe technique and the team determined that the process is repeatable and exposes a sufficient amount of base metal to provide valid test results
 - Also, BR&T determine that the original corrosion panels were machined scribed and not carbide scribed by hand (i.e. machined scribed the preferred AFRL scribing method)
 - BR&T hand scribed panels and ran SEM EDX scans to determine
 IF they could reach the bare metal substrate; see following slides

IVD Aluminum

Cadmium

Specimen: Cadmium

Zn-Ni

Specimen: Zn-Ni, 4-10F, 0.9 ± 0.1

- Scribe Test Action Item #2:
 - Boeing to machine scribe Zn-Ni and Cd panels and test them for 1000 hours for a direct comparison
- Response:
 - Additional machined scribed Zn-Ni and Cd panels have been corrosion tested by BR&T per ASTM B 117
 - All the Zn-Ni plated panels passed the corrosion requirements called out in QQ-P-416 (no white corrosion products for 96 hours)
 - Results are shown in following slides below

Corrosion Re-Testing

Group No.	Test Specimen* Identification	Plating Material	Conversion	Plating Thickness (mils)	Primer + Topcoat	Type of Scribe	Test Duration**	Test Results
10.	BC1	Zn-Ni	Coat Type TriCr	0.6 +/- 0.15	Yes	Machined Scribe	1000 hrs	PASS
1	BC2	Zn-Ni	TriCr	0.7 +/- 0.13	Yes	Machined Scribe	1000 hrs	PASS
•	BC3	Zn-Ni	TriCr	0.7 +/- 0.1	Yes	Machined Scribe	1000 hrs	PASS
	HC1	Zn-Ni	TriCr	0.8 +/- 0.2	Yes	Machined Scribe	1000 hrs	PASS
2	HC2	Zn-Ni	TriCr	0.8 +/- 0.1	Yes	Machined Scribe	1000 hrs	PASS
	HC3	Zn-Ni	TriCr	0.8 +/- 0.2	Yes	Machined Scribe	1000 hrs	PASS
	HC4	Cd	HexCr	0.8 +/- 0.05	Yes	Machined Scribe	1000 hrs	PASS
3	HC5	Cd	HexCr	0.7 +/- 0.1	Yes	Machined Scribe	1000 hrs	PASS
	HC6	Cd	HexCr	0.5 +/- 0.1	Yes	Machined Scribe	1000 hrs	PASS
	BS1	Zn-Ni	TriCr	0.8 +/- 0.05	No	Machined Scribe	1000 hrs	PASS
4	BS2	Zn-Ni	TriCr	0.7 +/- 0.05	No	Machined Scribe	1000 hrs	PASS
	BS3	Zn-Ni	TriCr	0.8 +/- 0.05	No	Machined Scribe	1000 hrs	PASS
	HS1	Zn-Ni	TriCr	0.8 +/- 0.1	No	Machined Scribe	1000 hrs	PASS
5	HS2	Zn-Ni	TriCr	0.8 +/- 0.05	No	Machined Scribe	1000 hrs	PASS
	HS3	Zn-Ni	TriCr	0.8 +/- 0.1	No	Machined Scribe	1000 hrs	PASS
	HS4	Cd	HexCr	0.8 +/- 0.1	No	Machined Scribe	1000 hrs	FAIL
6	HS5	Cd	HexCr	0.7 +/- 0.1	No	Machined Scribe	1000 hrs	FAIL
	HS6	Cd	HexCr	0.8 +/- 0.1	No	Machined Scribe	1000 hrs	FAIL
7	BS4	Zn-Ni	None	0.8 +/- 0.1	No	Machined Scribe	1000 hrs	FAIL ****
1	BN1	Zn-Ni	None	0.7 +/- 0.1	No	No Scribe	1000 hrs	PASS ****

**** Group 7 test coupons were run without conversion coating and were not required to pass (i.e. information only)

BR&T ASTM B 117 Corrosion Test Results

BR&T IZ-C17+ Zn-Ni w/Tri CC Scribed & Painted

336 hours

672 hours

Hill AFB IZ-C17+ Zn-Ni w/Tri CC Scribed & Painted

Hill AFB LHE Cd w/Hex CC Scribed & Painted

www.ES3inc.com • 1346 South Legend Hills Dr. • Clearfield, UT 84015 Copyright @ 2011 ES3 All rights reserved

BR&T IZ-C17+ Zn-Ni w/Tri CC Scribed

www.ES3inc.com • 1346 South Legend Hills Dr. • Clearfield, UT 84015 Copyright @ 2011 ES3 All rights reserved

Hill AFB IZ-C17+ Zn-Ni w/Tri CC Scribed

336 hours

672 hours

www.ES3inc.com • 1346 South Legend Hills Dr. • Clearfield, UT 84015 Copyright @ 2011 ES3 All rights reserved

Hill AFB LHE Cd w/Hex CC Scribed

336 hours

672 hours

www.ES3inc.com • 1346 South Legend Hills Dr. • Clearfield, UT 84015 Copyright @ 2011 ES3 All rights reserved

BR&T IZ-C17+ Zn-Ni w/ No CC Unscribed & Scribed

Requirements for Chrome Reduction / Elimination; determine how the plating works without 'any' conv. coat.

Group 7 test coupons were run without conversion coating and were not required to pass (i.e. information only)

336 hours

672 hours

- 'Re-' Embrittlement Test Action Item #1:
 - Determine the reason for the poor plating on the original LHE Zn-Ni 1a.1 re-embrittlement coupons
- Response: See following slides

- The reason for the poor plating on the original LHE Zn-Ni 1a.1 reembrittlement coupons are as follows:
 - Zn-Ni tank contamination
 - Spring '09 Lab analysis showed organic contamination
 - The PVC tank liner had begun to break down and had to be replaced in the Summer '09 with a more robust grade of PVC liner.
 - Two years operating with new liner with no problems
 - Inconsistent plating in notch area
 - Specimens were chained in series when they were plated for the first series of tests
 - Now a fixture and conformal anode is used to ensure that there is uniform plating throughout the notch area
 - Also circulation has been added around the notch area during plating

Original Coupons Chained in Series

New fixture and Conformal Anode

 Additional, 3.5% salt water, re-embrittlement testing has been conducted on LHE Zn-Ni plated coupons and they all passed the ASTM 519-06 150 hour requirement

	Re Embrittlement Test Matrix						
	Test Solution						
Plating	Distilled Water @ Room Temp Tested 45% NFS for 150Hrs	3.5% Salt Water @ Room Temp Tested 45% NFS for 150Hrs	Diluted Calla 296	Dwg 9825019* Diluted Calla 602 LF Max Temp 160 °F Tested 75% NFS for 200Hrs	Concentrated Calla 296 @ Room Temp tested 45% NFS for 150Hrs	Concentrated Calla 602LF @ Room Temp tested 45% NFS for 150Hrs	
LHE Zn-Ni	Passed	Passed	Passed	Passed	Passed	Passed	
Cadmium	Passed	Failed	Passed	Passed	Passed	Passed	
IVD	Failed	Failed	Not Tested	Not Tested	Not Tested	Not Tested	

^{*}The specimens were immersed in the cleaning compound at the manufacturer's maximum recommended temperature, and appropriate cleaning concentration, for 30 minutes. Removed. Air dried and loaded to 75% NFS for 200Hrs.

- 'Re-'Embrittlement Test Action Item #2:
 - If possible, repeat the Boeing voltage potential test on plating of the original LHE Zn-Ni 1a.1 re-embrittlement coupons and compare the voltage readings to current LHE Cd and LHE Zn-Ni plated coupons. Boeing indicated that it might not be possible due to the shape and amount of surface area on the 1a.1 reembrittlement coupons. (if possible)

Response:

- An accurate corrosion potential test in salt water per ASTM G5 could not be conducted because of the following:
 - Geometry differences of the 1a.1 coupon vs. standard ASTM G5 corrosion potential test coupon
 - The 1a.1 coupons were contaminated by salt water exposure during initial re-embrittlement testing.

- 'Re-'Embrittlement Test Action Item #3:
 - Determine the quality thickness of the Cd, Zn-Ni and IVD evaluated in the salt water test.
- Response:
 - Quality and thickness of plating were unacceptable
 - See Action Item #1 addressed poor plating quality
 - Salt water testing was repeated

- Conclusion: Poor plating cause identified and corrected
- Zn-Ni testing was repeated with production plating process and passed ASTM 519 hydrogen 're-' embrittlement service environment test in 3.5% salt water

Fatigue Testing

- Fatigue Test Action Item #1:
 - Clearly document any test data that was discarded in the fatigue test plots and the supporting rational and provide it to OO-ALC/GH, AFRL/RX and ASC/EN
- Response:
 - All fatigue test data was included in the statistical analysis

Fatigue Testing

- Fatigue Test Action Item #2:
 - Provide information on the measured plating thickness on each specimen to OO-ALC/GH, AFRL/RX, and ASC/EN
- Response:
 - A conservative approach was taken when the Zn-Ni fatigue coupons were plated:
 - All Zn-Ni fatigue coupons were plated thicker than cadmium fatigue coupons (typical thickness 0.0002 - 0.0006 inches)
 - The nickel content for Dipsol Zn-Ni IZ-C17+ was closer to the upper limit (18%) of the USAF 201027456 plating specification drawing

Average Plating Thickness	(Inches)
Cadmium	0.00044
Dipsol Zn-Ni Tri CC	0.00091
Dipsol Zn-Ni Hex CC	0.00104
Atotech Zn-Ni Tri CC	0.00089
Atotect Zn-Ni Hex CC	0.00081

Fatigue Testing

- Fatigue Test Action Item #3:
 - OO-ALC/GH to engage the Landing Gear Design Industry and determine if the fatigue testing and test results per the following fatigue testing matrixes is adequate to approve the use of LHE Response:
- Goodrich Landing Gear, John Goering; when asked, "...considering the test method for comparative fatigue debit that we have conducted; would you say that you have complete, very high, high, medium or low confidence that this LHE Zn-Ni coating would not induce a greater fatigue debit than cadmium?" Response was high to very high.

Phase II Fatigue Testing

- Boeing Commercial (SDT) group evaluated the LHE Zn-Ni fatigue data and saw nothing that would alter their conclusion of the acceptability of the use of LHE Zn-Ni on high strength steel landing gear components
 - Boeing Commercial has approved LHE Zn-Ni for high strength steel and is currently installing a LHE plating line
 - Structural Design Team stated that only one stress ratio is necessary and testing at different R ratios will yield the same result.
- Dr. Andrew Halfpenny a fatigue expert, from HBN Inc., reviewed the fatigue data and determined that the LHE Zn-Ni is a suitable drop in replacement for cadmium

Phase II Fatigue Testing

- Heroux-Devtek stress group evaluated the LHE Zn-Ni fatigue data and concluded it is acceptable for use on high strength steel landing gear components
 - Heroux-Devtek has approved LHE Zn-Ni for high strength steel and is currently installing a LHE plating line
 - Stress group stated that only one stress ratio is necessary and testing at different R ratios will yield the same result
- Boeing-Long Beach, structures group, would like to see additional testing (with more R ratios)
 - ES3 conducted two different R rations during testing
 - Boeing-Long Beach did not indicate how many test, at what R ratio would be satisfactory to them

Planned Evaluation

- Prototype line in Bldg 505
- Field Performance Evaluations

Phase III Effort Prototype Process Line

Part Matrix				
Component	Part #			
C-5 MLG Stop Plate	4G11453-101B			
F-15 MLG Outer Cylinder	68A412702-1001/1002			
B-1 MLG Axle	1881B85			
F-15 MLG Lower Drag Brace	68A410792-2001			
A-10 MLG Torque Arm	19046-1			
F-16 NLG Inner Cylinder	2007644-103			
C-5 MLG Rotation Collar	4G13565-101A/-101B			
A-10 NLG Axle	18800-3			

Phase III Effort Prototype Parts

A-10 NLG Axle

A-10 MLG Torque Arm

Phase III Effort Prototype Parts

www.ES3inc.com • 1669 E. 1400 S • Clearfield, UT 84015 (801) 926-1155

Phase III Effort Prototype Parts

F-15 MLG Cylinder

F-16 NLG Inner Cylinder

F-15 MLG Lower Drag Brace

Discussion/Questions

QUESTIONS