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Abstract

Weapons release at supersonic speeds from an internal weapons bay is a highly

desirable capability. To ensure a successful release at multiple Mach numbers, the

aerodynamic environment must be well-understood and repeatable, with a robust system

for safe testing of store separation. For this reason, experimental methods were used

to investigate the characteristics of a scaled WICS bay with a length-to-depth ratio

of 4.5 at multiple Mach numbers and stagnation pressures. Three new nozzles were

designed, manufactured, and characterized for the AFIT small supersonic tunnel, yielding

freestream Mach numbers of 2.22, 1.84, and 1.43. In addition, a control valve was

reconfigured to achieve stagnation pressures as low as 1.0 psia. These nozzles were then

used in conjunction with piezosresistive pressure transducers and high-speed Schlieren

photography to capture the time-varying pressure signal and spectra of the cavity. Resonant

frequencies from these tests matched very well with analytically predicted results for

the Mach 2.3 and Mach 1.9 nozzles. The Mach 1.5 nozzle posed some difficulties for

the configuration tested due to shocks reflecting into the cavity. The Mach 2.3 nozzle

was utilized in freedrop testing of a 1:20 scaled sphere and compared to computational

simulations. The computational solution was obtained using the OVERFLOW solver

with incorporated 6DOF motion and the DDES/SST hybrid turbulence model. Analysis

of the Schlieren video generated by the experimental tests allowed direct comparison of

computational and experimental trajectories. Measured trajectories compared closely to

computational trajectories, especially for the lowest stagnation pressure settings, where

heavy Mach scaling yielded operationally relevant results, despite the small scale of the

tests.
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INFLUENCE OF MACH NUMBER AND DYNAMIC PRESSURE ON CAVITY

TONES AND FREEDROP TRAJECTORIES

I. Introduction

1.1 Motivation

Internal carriage of weapons began during World War I but was popularized in the

United States by the Martin B-10. Since then, all of the United States’ heavy bombers have

had internal weapons carriage. As the manufacturing and design of weapons and aircraft

improved, lighter aircraft have also been equipped with internal carriage capabilities. In

1977, Lockheed demonstrated the viability of a stealth aircraft with Have Blue, leading to

the production of the F-117 Nighthawk. The F-117 became the first fighter with dedicated

internal weapons bays. Since then, all new production stealth aircraft have had internal

carriage of weapons, including the F-22 and F-35.

Many of the aircraft equipped with internal carriage, including the F-22 and B-1,

have supersonic capabilities. However, current technology requires weapon releases to

be conducted at transonic speeds or below due to the volatile nature of flow in and around

weapons bays. This speed requirement causes a large increase in aircraft vulnerability. By

understanding the phenomena present in cavity flows, engineering advances may be made

that could potentially allow for the release of weapons at supersonic speeds. This ”‘full

envelope”’ release capability would drastically reduce the potential threat to US aircraft

and crew and give the US a tactical advantage over adversaries.

1.1.1 Advantages of Internal Stores.

The internal carriage of stores provides an array of tactical and operational advantages

to the warfighter. Initially, internal carriage was used for drag reduction purposes, allowing
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aircraft like the B-10, and later many other bombers, to increase their range and cruising

speed. While this trend of internal carriage has long been a staple of bomber design, only in

the past few decades has it risen to prominence among fighter aircraft. Internal carriage is

of great importance to a stealthy aircraft as the pylons, fins, guidance packages and weapon

fuselages associated with external carriage all have a significant impact on the radar cross

section of an aircraft. Additionally, the heating and aerodynamic loads associated with

external weapons carriage at high speeds can damage weapons and equipment. These

impacts are significant enough that all fifth generation US aircraft have internal weapons

carriages.

1.1.2 Disadvantages of Internal Stores.

While internal carriage provides some significant benefits, there are some critical

challenges as well. These difficulties include a weight and drag penalty, an acoustical

resonance problem, as well as store separation difficulties. While the weight and drag

penalty can be somewhat mitigated, the latter two problems are still a current area of

investigation.

With external stores, the volume dedicated to the weapons is removed after the weapon

is dropped. This results in a decrease in weight and frontal area when the stores separate

from the aircraft. Internal stores see a similar reduction in weight but do not see the same

decrease in frontal area due to the fixed volume of the weapons bay. This increased frontal

area can be largely overcome by increases in thrust and by judicious placement of aircraft

components [3].

Acoustical resonance in weapons bays is caused by the unique flowfield that flow

past a cavity creates. This flowfield results in periodic, high-amplitude pressure waves

that are detrimental to both weapon and cavity components. The fins and guidance

packages utilized by precision guided weapons, as well as the pylons, hinges, and structural

components of the weapons bay, can be sensitive to the unsteady forces produced by these
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waves. Understanding the cause and effects of this phenomenon is of utmost importance to

the effective carriage of modern weapons.

1.2 Problem Statement

The growing number of airframes utilizing internal carriage of weapons and the trend

of designing lighter and less stable weapons accentuates the unsteady and sometimes

violent nature of cavity flows. Coupling this with supersonic speeds yields an environment

that may be destructive and dangerous to weapons and airframes. Modeling this cavity

correctly, in both computational and experimental configurations, is of vital importance

to understanding the driving acoustic and aerodynamic processes and how to mitigate the

effects of these processes. Scaled drop testing is a useful tool to determine the trajectory

and pitch response of weapons in a frugal and easily iterated environment. However, it

requires a balancing of aerodynamic and inertial forces that can be difficult to achieve.

Additionally, the varying capabilities of modern aircraft ensure that accurate modeling

of weapons bays at varying supersonic speeds is an important piece of understanding the

challenges that face potential full scale store separations. By accurately and repeatably

producing multiple Mach numbers the acoustical phenomena of the cavity can be verified

and scaled drop testing can be examined for a range of realistic speeds and operating

conditions.

1.3 Research Objectives

Previous research at AFIT has led to assessments of the dynamics of an inertially

simple shape free-dropped from a cavity into Mach 3 flow through both experimental

and computational techniques. Limits on tunnel performance forced some test points to

be conducted only computationally and limited all supersonic tests to Mach 3 flow. The

objective of this research is to expand the capabilities of the AFIT small supersonic wind

tunnel through the fabrication and characterization of new supersonic nozzles for nominal
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Mach numbers of 1.5, 1.9, and 2.3. Additionally, characterization of the acoustic cavity

environment at these speeds will be conducted and compared against analytical predictions.

The secondary goal will be to utilize the capabilities gained through these tests into

freedrop testing of an inertially simple shape, the sphere. A vacuum pump will be used

in an attempt to scale dynamic pressures to the levels only attained computationally in

prior testing. This drop testing will be conducted on one or more of the new nozzles

and be complemented by computational analysis at the corresponding speed and dynamic

pressures.

A tertiary goal uses the data gained by the experimental scaled drop testing to generate

a two dimensional trajectory of the store flight in order to compare this data with the

computational data. This will allow the two methods to be verified against each other

and may provide insight on the strengths and weaknesses of each.
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II. Background

The problem of store separation from a cavity at supersonic speeds can be broken

down into three main components. These are the cavity flow features, the scaling laws

applicable to the store, and finally the correlation between these two separate disciplines

within store separation.

2.1 Cavity Flow

The ratio of length to depth (L/D) in a cavity is the primary differentiator

characterizing cavity flows. The length is measured from the leading edge to the trailing

edge of the cavity. The depth is measured from the cavity floor (or ceiling) to the freestream

flow. Figure 2.1 shows a generic rectangular cavity with geometric features labeled. The

L/D is important because it determines the basic flow structure within the cavity. A deep

cavity is one in which the L/D < 1 while a shallow cavity is one in which the L/D > 1 [4].

Similarly a cavity may be open, closed, or transitional. An open cavity is one in which

L/D < 10 while a closed cavity is one in which L/D > 13. A transitional cavity occupies

the space between the two, 10 < L/D < 13 [5]. Typically, weapons bays are classified

as shallow, open cavities and so the flow mechanics of this type of cavity is of special

importance to this investigation.

Figure 2.1: Generic rectangular cavity with important geometric features labeled
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Cavity flows produce self-sustaining oscillations which can be categorized into three

types: fluid-dynamic oscillations, fluid-resonant oscillations, and fluid-elastic oscillations.

Rockwell and Naudascher [4] provides a thorough review of the three categories. For

a weapons bay, fluid-resonant oscillations dominate the flow because the frequency of

the oscillations corresponds to a wavelength smaller than the length of the bay. These

oscillations are produced by a shear layer forming between the moving flow of the

freestream and the relatively quiescent flow within the cavity. This free shear layer

produces vortical structures, which grow with distance downstream, causing the shear

layer to widen. When the shear layer reaches the trailing edge of the cavity, it has grown

sufficiently to the point where the vortical structures impinge upon the back wall of the

cavity, leading to oscillations in the flow within the closed geometry of the cavity. This

oscillation leads to changes in pressure consistent with the frequency of the impingement

of the vortical structures. This pressure wave then propagates upstream in the low speed

environment of the cavity, forcing the initial instabilities of the shear layer to correspond

with the downstream vortical structures. When the wave reaches the upstream edge of the

cavity, it is reflected back downstream until it reaches the trailing edge once more. Here the

mass is expelled and the pressure wave reflects back towards the leading edge of the cavity,

again drawing mass into the cavity. The action of the pressure wave traveling through

the cavity and the mass exchange at the trailing edge can be thought of as a feedback

mechanism and is the primary source of the self-sustaining, highly periodic fluid-resonant

oscillations [4, 6].

In shallow cavity flows, the oscillations caused by the feedback mechansim occur at

multiple frequencies for a given Mach number. These frequencies are the Rossiter modes

and can be predicted semi-empirically by Equation 2.1, Rossiter’s original relationship

between the Strouhal number and the freestream Mach number. To create this relationship,

Rossiter assumed a constant temperature across the cavity and freestream. This limits the
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range of Mach number range over which Equation 2.1 can accurately predict the frequency

of oscillation. Heller, Holmes, and Covert [7] modified this relationship to account for

the difference in temperature, and thus speed of sound, in the cavity and the freestream,

yielding Equation 2.2. This equation yields accurate mode prediction through Mach 3. In

both equations, the values of the constants are β = 0.25 and kc = 0.57. The value kc = 0.57

was assumed by Rossiter and determined to be appropriate for thin initial boundary layers,

but should decrease as the thickness of the boundary layer increases. This value has been

accepted to provide accurate results by multiple sources [7, 8]. After determining kc, the

phase constant β was found to correspond to a quarter of one vortex wavelength, leading to

a value of 0.25, as noted above [8].

S tr =
f L
U∞

=
n − β

M∞ + 1
kc

, n = 1, 2, 3... (2.1)

S tr =
f L
U∞

=
n − β

M∞√
1+ 1

2 (γ−1)M2
∞

+ 1
kc

, n = 1, 2, 3... (2.2)

2.2 Scaling Laws

In freedrop testing, it is desirable to achieve similarity between the scaled model

and a full size test article. Specifically, similarity of geometry, mass properties, physics,

time, kinematics, and dynamics are desired. By applying non-dimensional analysis to the

governing equations for store translation (Equation 2.3), rotation (Equation 2.4), and fluid

flow in the longitudinal direction (Equation 2.5), in accordance with Figure 2.2, non-

dimensional parameters emerge that provide similarity between full scale store testing

and scaled model testing. These parameters are well known and include Mach number,

Reynolds number, Strouhal number, Froude number, Euler number, Newton number, and

the relative density [9, 10]. Unfortunately, it is impossible to match all of these conditions

for total similarity. Instead, three scaling models have been developed which are considered
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the best achievable compromise: Froude Scaling, Heavy Mach Scaling, and Light Mach

Scaling [9].

Figure 2.2: Store axis system

ẍ = − [CA cos θ + CN sin θ]
q∞S

m
+

FEJ

m
sin θ (2.3a)

z̈ = − [CN cos θ −CA sin θ]
q∞S

m
+

FEJ

m
cos θ + g (2.3b)

θ̈ =

[
Cm + Cmq

dθ̇
2V∞

]
q∞S d

I
−

FEJ xEJ

I
(2.4)

Dρu
Dt

= −
∂p
∂x

+ µ

(
∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2

)
+

1
3
µ
∂

∂x

(
∂u
∂x

+
∂v
∂y

+
∂w
∂z

)
(2.5)

Marshall [10] arrives at these three scaling schemes through the simplification of

Equation 2.3 and Equation 2.4. Specifically he makes the assumption that angular motion

is of a small enough magnitude that the normal-force and pitching-moment coefficients,

CN and Cm, vary linearly with angle of attack. This assumption also suggests that the

axial-force coefficient, CA, and pitch-damping derivative, Cmq , are constant. By further
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assuming that the flowfield vertical variations, and hence the normal-force and pitching-

moment coefficients, can be represented by incremental values of angle of attack and

pitching moment, shown in Equation 2.6, Marshall is able to effectively reduce the problem

to two dimensions, vertical translation and pitch. These equations are given in Equation 2.7.

CN = CNα

(
θ +

ż
V∞

+ ∆α

)
(2.6a)

Cm = Cmα

(
θ +

ż
V∞

+ ∆α

)
+ ∆Cm (2.6b)

z̈
g

= 1 −
[
CNα

(
θ +

ż
V∞

+ ∆α

)
cos θ −CA sin θ

]
q∞S
mg

+
FEJ

mg
cos θ (2.7a)

θ̈ =

[
Cmα

(
θ +

ż
V∞

+ ∆α

)
+ ∆Cm + Cmq

dθ̇
2V∞

]
q∞S d

I
−

FEJ xEJ

I
(2.7b)

Deslandes and Donauer [9] arrives at the scaling schemes in a slightly different

manner, by non-dimensionalizing Equation 2.5 as well as Equation 2.8, a different form

of Equation 2.3a, in order to obtain the non-dimensional parameters desired for similarity.

In the end, both approaches yield very similar results. However, the form of the scaling laws

used by Marshall is more useful for this research as it allows for transparent manipulation

of the scaled to freestream dynamic pressures.

m (u̇ + qw − rv) = −CAS q∞ − mg sin θ (2.8)

2.2.1 Froude Scaling.

The relationships between scaled and full-size quantities for Froude Scaling are

given by Equation 2.9. Froude Scaling is named because the velocity scaling given by

Equation 2.9g is derived from ensuring the full-size and scaled Froude number is equal.

This means that unless the acceleration due to gravity can be significantly increased, the
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scaled velocity will be much lower than the full-size test velocity. If compressibility effects

are negligible, then this velocity reduction is an acceptable compromise. If compressibility

effects are non-negligible, such as in transonic or supersonic flight, then scaling the velocity

is an unacceptable compromise. This makes Froude Scaling ideal for small-scale testing

when full-scale releases occur at low, subsonic Mach numbers, where compressibility is

not a factor [10].

z′ = zλ (2.9a)

θ′ = θ (2.9b)

m′ = mσν2λ2 g
g′ (2.9c)

I′ = Iσν2λ4 g
g′ (2.9d)

F′EJ = FEJσν
2λ2 (2.9e)

x′EJ = xEJλ (2.9f)

V ′∞ = V∞
√
λg′

g (2.9g)

t′ = t λ
ν

(2.9h)

2.2.2 Heavy Mach Scaling.

The relationships between scaled and full-size quantities for Heavy Mach Scaling are

given by Equation 2.10. Heavy Mach Scaling matches the flight Mach number, making

it useful for compressible flowfields, including supersonic flow. The heavy portion of

the name derives from the simplified mass and moment of inertia relationships shown

in Equation 2.11, which show that the scaled mass and moment of inertia are a function

of not only the model scale factor, λ, but also the ratio of scaled to freestream dynamic

pressures, q′∞/q∞. This relationship means that in order to match the model density to

the store density, the wind tunnel dynamic pressure, q′∞, must be significantly reduced.

If this reduction is not achieved, then the model acts much lighter than the store. If this
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reduction is achieved, the amplitude of the model’s pitch oscillations becomes larger than

normal, due to the pitch damping term being reduced by a factor of λ1/2 [10]. Despite this

pitch amplification, Heavy Mach Scaling has been shown by Deslandes and Donauer [9] to

provide the most accurate translational trajectory information for the store. For this reason

it is heavily used, though it is often difficult to achieve the high model density necessary to

scale properly.

z′ = zλ (2.10a)

θ′ = θ (2.10b)

m′ = mσν2λ2 g
g′ (2.10c)

I′ = Iσν2λ4 g
g′ (2.10d)

F′EJ = FEJσν
2λ2 (2.10e)

x′EJ = xEJλ (2.10f)

V ′∞ = V∞
√

T ′∞
T∞

(2.10g)

t′ = t
√
λ g

g′ (2.10h)

m′ = m
q′∞
q∞
λ2 (2.11a)

I′ = I
q′∞
q∞
λ4 (2.11b)

2.2.3 Light Mach Scaling.

The relationships between scaled and full-size quantities for Light Mach Scaling are

given by Equation 2.12. Light Mach Scaling matches flight Mach number, just as Heavy

Mach Scaling does, making it useful for compressible flow situations. It also seeks to

alleviate the increase in store density caused by Heavy Mach Scaling in order to create

an accurate pitch response. This is achieved by assuming that the acceleration due to
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gravity can be arbitrarily increased for the scaled experiment in the manner shown in

Equation 2.13. The compromise caused by this increase is that the vertical acceleration

is no longer accurate. This causes the vertical displacement to be too small, and while the

observed trajectory can be modified to account for this error, it is not a perfect correction.

Marshall [10] also discusses compensating Light Mach Scaling by modifying the ejection

force, and Deslandes and Donauer [9] points out that the necessarily small scale of wind

tunnel drop tests requires a very large increase in ejector force that the model may not be

able to structurally withstand. It is also important to note that while the magnitude of the

model’s pitch response is more accurate for Light Mach Scaling, the frequency content of

the response has shown to be insufficient [9].

z′ = zλ (2.12a)

θ′ = θ (2.12b)

m′ = mσλ3 (2.12c)

I′ = Iσλ5 (2.12d)

F′EJ = FEJσν
2λ2 (2.12e)

x′EJ = xEJλ (2.12f)

V ′∞ = V∞
√

T ′∞
T∞

(2.12g)

t′ = t λ
ν

(2.12h)

g′ = g
ν2

λ
(2.13)

2.3 Store Separation

Store separation has traditionally been studied from the perspective of an external store

being carried on a pylon under the wing or fuselage. This exposes the store to the freestream

flow. The freestream environment, as a generality, is also quasi-steady. This means
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that using time-averaged data to determine separation characteristics and aerodynamic

forces acting on the external store entails an acceptable level of accuracy from a time-

accurate accounting of the forces and moments. Conversely, internal store carriage exposes

the store to the resonant flow of the cavity and the turbulent flow of the shear layer in

addition to the freestream flow. The highly unsteady, volatile nature of these flow regimes

creates unpredictability in the separation characteristics which can lead to a variety of store

trajectories. Johnson, Stanek, and Grove [11] discusses this phenomenon, calling the worst

case a ”pitch bifurcation” where, depending on the cavity and shear layer environment at

the time of drop, one drop will separate properly, exiting the shear layer into the freestream

with a nose down pitch, while the other will exit the shear layer with a nose up attitude,

causing the store to climb back towards the aircraft, possibly resulting in a collision. An

illustration of this effect is shown in Figure. 2.3. Coley and Lofthouse [12] conducted 6-

DOF computational tests with a Mk.82 500-lb. bomb in several configurations within a

cavity and showed that the forces and moments acting on the store within the cavity and

within the shear layer are of a very similar spectra to the pressure oscillations within the

cavity.

The negative effects of cavity flow on stores within the cavity is well-documented.

The high unsteady pressure levels have damaged aircraft bulkheads and destroyed weapon

components [13]. The dramatic trajectory deviations now being observed are a more recent

development assisted by recent trends in aircraft and weapon design. With aircraft such

as the F-22 having the capability to supercruise, and an increased emphasis on stealth,

dropping weapons from an internal weapons bay at speeds greater than Mach 1 has become

essential to future and current aircraft. At the same time, increasing the accuracy and

controllability of weapons to reduce collateral damage has driven weapons designers to

design smaller, lighter stores that are less stable than their predecessors. The emphasis on

speed and stealth, combined with the the need for lower collateral damage has created a
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(a) Successful Release

(b) Collision

Figure 2.3: Example of Pitch Bifurcation

perfect storm of store and aircraft characteristics to drive dramatic trajectory deviations. In

the past, spoilers on the B-1, B-2, F-117, and F-22 have been used to disrupt the shear layer

and allow the store to separate successfully. These spoilers are limited to one design Mach

number for peak effectiveness and become much less effective at speeds greater than Mach

1 [13].

2.4 Computational Analysis of Cavity Flows and Store Separation

The quasi-steady nature of external store separation and the ease with which initial

conditions can be changed lends computational fluid dynamics (CFD), an enormous

advantage for certifying and analyzing store separation problems. The major limit in CFD

is computational expense. To run at small enough spatial and temporal scales to capture the

14



full spectrum of turbulence, known as Direct Numerical Simulation (DNS), is prohibitively

expensive for all but the smallest of applications. In order to decrease the expense of

CFD, larger temporal and spatial scales are used and the governing equations modified to

exclude viscous effects, or to provide an empirically based model to determine the effects

of the turbulence scales not resolved by the larger spatial and temporal scales. While this

compromise means that the results are typically less accurate, modern CFD methods for

analyzing unsteady flows are often utilized. Cavity flow simulations can provide a sufficient

level of correlation between the computational and experimental results. Another limit to

CFD is grid complexity. When a geometry has a large number of features that disrupt the

flow, the grid must be refined in the area around those features. However, when grids reach

a certain geometric complexity, the number of iterations necessary to gain convergence

causes the simulation to be too expensive. The modern CFD method of overset or chimera

gridding reduces this expense.

2.4.1 Turbulence Modeling in Cavity Flows.

Turbulence modeling is based on the decomposition of primitive flow variables into

a mean component and a fluctuating component, such as in Equation 2.14. When this

decomposition is applied to the Navier-Stokes equations, and the results are Reynolds-

Averaged, the Reynolds-Averaged Navier-Stokes (RANS) equations result [14]. The

RANS equations contain an extra term, often called the Reynolds stress, that creates a

closure problem in the equations. To account for this problem, a plethora of turbulence

models have been created, each with specific strengths and weaknesses and each adapted

best to a particular range of flow situations. Due to increases in computational power,

more accurate and generalized simulations have become possible. One example of this is

Large-Eddy Simulation (LES). LES is based on the idea that by directly simulating the

largest eddy sizes and modeling all the smaller turbulent scales, computational cost can

be reduced without sacrificing a great deal of accuracy. LES can typically be applied for
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applications an order of magnitude larger than DNS, but still requires very refined grids

and a great deal of computational expense. For this reason, hybrid RANS-LES models

have become very popular in modern CFD codes. These models use RANS equations in

the boundary layer and LES away from the wall. This results in increased accuracy over

RANS models, while keeping the cost low enough to be applicable to engineering flows.

Of these hybrid schemes, Detached Eddy Simulation (DES) is among the most popular and

is commonly used in weapons bay flows. A thorough study of turbulence models as they

relate to the spectrum and sound pressure level (SPL) of weapons bays has been conducted

by a number of authors including Nichols and Westmoreland [15], Nichols [16], Zhang et

al [5], Rizzetta and Visbal [17], and Rokita and Arieli [18]. These authors and others have

analyzed models including Baldwin-Lomax, Spalart-Almaras (SA), k − ω, Shear Stress

Transport (SST), and Delayed DES (DDES) with various corrections. By far the most

thorough of these analyses is Nichols [16], and his findings recommend the SST DDES

model for weapons bay flows.

u = u + u′ (2.14)

2.4.2 Overset Grid Techniques.

Overset gridding, also called chimera gridding, is a modern CFD technique used

to reduce the grid size and complexity necessary to resolve the flow around complex

geometries. This is achieved by using multiple overlapping grids to describe the geometry.

The main features that overset gridding adds to a CFD solver are hole-cutting, intergrid

boundary point determination, and donor point interpolation. When two grids overlap, one

grid, usually a background grid, has a “hole” cut in it. This is achieved through multiplying

the governing equation by an array of the same size as the grid containing a 1 where a cell

should be solved, and a 0 where a cell should not be solved [19]. This array is known as the

chimera array [19]. Several methods exist to create this array, including the surface normal
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vector test, the vector intersection test, and X-ray hole cutting. X-ray hole cutting is a more

modern technique that creates an optimal hole cut [19, 20].

After this array is created, the intergrid boundary points must be determined, both

for the background grid and the overlapping grid. This is known as ensuring domain

connectivity and is the primary cost associated with implementing an overset grid solver.

Both the computational and Cartesian spatial coordinates of each intergrid boundary point

must be determined in order to ensure domain connectivity. The Inside/Outside test,

gradient search method (also known as stencil walking), or spatial partitioning are all

methods of determining domain connectivity. By intelligently combining these methods,

efficient and fast methods of determining intergrid boundary points can be derived. Domain

connectivity allows an overset solution to be solved by interpolating values between a donor

grid’s boundary points and a recipient grid and back to the donor grid as necessary to

achieve convergence [19].

The complicated nature of overset gridding and the importance of carefully keeping

track of the computational and Cartesian spatial coordinates of intergrid boundary points

necessitates that overset grids currently contain only structured grids. At first glance, this

might make it seem as if overset gridding is computationally inefficient. However, the

complexity and density of a hybrid or unstructured grid necessary to resolve something

like a store in a weapons bay requires a vast amount of time to incorporate the proper grid

densities in all areas of interest. Furthermore, this grid would then only be applicable to a

single store type in this weapons bay and with the store only at a single spatial coordinate.

The most powerful advantage of overset gridding is that the overlapping grids can be easily

swapped, allowing a single background grid, such as the weapons bay, to be used in testing

a multitude of stores. Furthermore, by pairing the CFD results with a 6-degree-of-freedom

(6DOF) solver, dynamic simulations, such as the release of a weapon, can be modeled
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using the same grids for all spatial orientations of the weapon. This can be achieved simply

by modifying the chimera array and reestablishing domain connectivity.

2.4.3 OVERFLOW Solver.

The OVERFLOW 2.1 code is a three-dimensional time-marching implicit Navier-

Stokes CFD code developed by NASA [21]. Its capabilities include six degree-of-freedom

(6DOF) modeling, a variety of inviscid flux algorithms and implicit solution algorithms,

one- and two-equation turbulence models, a plethora of boundary conditions, a grid

assembly code, and collision detection and modeling. OVERFLOW uses structured overset

grid systems in two primary modes. In OVERFLOW mode, the code uses only the supplied

grids in the solution, while in OVERFLOW-D mode, the user supplies near-body grids and

the code generates Cartesian outer grids and uses the resulting product for solution.

The code contains a number of implicit solvers and includes the option to use

sub-iterations as well as Low-Mach preconditioning for some schemes. Some of the

included implicit solvers are Alternating Direction Implicit (ADI) Beam-Warming, Steger-

Warming, Lower Upper-Symmetric Gauss Seidel (LU-SGS), and Successive Symmetric

Over-Relaxation (SSOR). Flora [1] and Kraft [22] utilize the SSOR solver.

OVERFLOW has a variety of turbulence models. Included are the Baldwin-Lomax

algebraic model, the SA 1-equation transport model, the k-ω 2-equation transport model,

and the SST 2-equation transport model. Most important are the SA DES and DDES hybrid

RANS/LES and SST DES and DDES 2-equation hybrid RANS/LES models. The inclusion

of the SST DDES model and the 6DOF simulation capabilities make OVERFLOW ideal

for the task of modeling weapons bay flows.

OVERFLOW solves the full Navier-Stokes equations in a generalized coordinate

system, shown in Equation 2.15. The quantity q represents the vector of conserved

variables as shown in Equation 2.16. Equation 2.17 shows the linearized Euler implicit

form of Eq 2.15, including sub-iterations, as used by OVERFLOW. The viscous and
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inviscid fluxes are contained in the term RHS and are shown in Equation 2.18 [21]. The

OVERFLOW User’s Manual [21] contains a more detailed discussion of the code’s features

and their implementation.

∂~q
∂t

+
∂~E
∂ξ

+
∂~F
∂η

+
∂ ~G
∂ζ

= 0 (2.15)

~q = −V
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One of the most powerful tools in OVERFLOW, and what makes it so attractive for

store separation problems, is its built-in 6DOF solver. Through the use of the Scenario.xml

and Config.xml input files, the initial position, mass, and motion properties of any grid

described in the grid input file, grid.in, can be manipulated. The Config.xml file contains

information about the positions of the grids relative to each other, their initial conditions

(velocity, rotation), and their motion (stationary, prescribed, 6DOF). The Scenario.xml file

contains information about the non-dimensional mass properties of the grids, including the

mass, moments of inertia, and the gravity constant. The equations for these properties

are given in Equation 2.19. These files are used by the Geometry Manipulation Protocol

(GMP) in concert with the OVERFLOW solver to produce 6DOF motion [21].
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g∗ = g
Lre f

V2
re f

(2.19a)

m∗ =
m

ρ∞ L3
re f

(2.19b)

I∗zz =
Izz

ρ∞ L5
re f

(2.19c)
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III. Methodology

3.1 Experimental Setup

Testing was conducted at the AFIT Supersonic Variable-Density Blowdown (SVDB)

wind tunnel, detailed in 3.1.1. In order to prepare the tunnel for testing, the capabilities

of the SVDB were augmented through the production of three new supersonic nozzles, the

production of a new interface between the stagnation chamber and the nozzle section, and

the creation of a cavity fill block in order to characterize the flow from the new nozzles.

Additionally, the existing National Instruments LabView interface was modified to include

the automatic collection of frequency spectrum data.

3.1.1 Supersonic Variable-Density Blowdown Tunnel.

The SVDB tunnel is located in the AFIT high-speed aerodynamics laboratory and is

a combination pull-down and blow-down facility. Figure 3.1 graphically depicts the key

components of the tunnel, with numbers of the list below corresponding to the illustration.

Figure 3.1: Key components of AFIT SVDB wind tunnel (Not to scale; some detail not
shown)
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1. High pressure compressors - Two Ingersoll Rand® Model UP6-50PE-200 compres-

sors supply air up to 170 CFM at 180 psig.

2. Air dryers - Donaldson® Regenerative Air Dryers remove moisture from the

compressed air to prevent tunnel icing and clouding.

3. Pressure-side valve - El-O-Matic® ball type valve controls the high pressure air

supply to the tunnel.

4. Regulating valve - Pressure controlled Leslie diaphragm-type valve allows for

pressure in the stagnation chamber and test section to be altered.

5. Stagnation chamber - Cylindrical chamber conditions flow upstream of the nozzle.

Stagnation conditions are taken via a 8350C-50 Endevco® dynamic pressure

transducer and a thermocouple.

6. Faceplate - Two mesh grids smooth the flow prior to entry into the nozzle. Further

information is contained in 3.1.2.

7. Nozzle block - Various freestream Mach numbers can be discretely set using

interchangeable nozzle blocks designed nominally for Mach 1.5, 1.9, 2.3, and 3.0

flow. Further discussion of the nozzles can be found in 3.1.4.

8. Test Section - A custom acrylic test section was designed with a cavity of dimensions

6.75”’L x 1.75”’W x 1.5”’ D, yielding an L/D of 4.5. Removable sidewalls allow for

easy access to interior of test section. Further information can be found in 3.1.5.

9. Diffuser - An adjustable ramp diffuser allows control of downstream throat condition

to ensure consistent, supersonic flow in the test section.

10. Vacuum-side valve - A Butterfly type valve isolates vaccuum conditions required to

attain sub-atmospheric stagnation pressures.
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11. Vacuum pumps - A two-stage Stokes® Microvac vacuum pump draws a near vacuum

on the pull-down side of the system.

12. Vacuum tank - Tank drawn down by vacuum pumps to charge the flow through the

test section.

13. Needle Valve - Needle valve allowing precise control over low pressure side of

Regulating Valve.

14. Vacuum Regulating Valve - Ball valve that controls the amount of vacuum applied to

the low pressure side of Regulating Valve.

15. Roughing Pump - Vacuum pump that lowers Regulating valve pressure below

atmospheric. More information can be found in 3.1.3.

16. Low Pressure Transducers - Endevco® 8530C-15 piezoresistive pressure transducers.

More information can be found in 3.1.6.

17. High Pressure Transducers - Endevco® 8530C-50 piezoresistive pressure transduc-

ers. More information can be found in 3.1.6.

3.1.2 Faceplate.

The faceplate serves as an interface between the stagnation chamber and the nozzle

block. It restricts the flow to a six inch long by two-and-a-half inch wide opening and

provides flow control through the use of mesh screens. The faceplate is a one inch thick

aluminum disk nineteen inches in diameter and is secured to the stagnation chamber using

twelve one inch diameter bolts and a matching O-ring to ensure an airtight fit. The screens

are attached to the stagnation chamber side of the faceplate. The screens utilized are two

stainless steel uniform mesh screens with a bar diameter of 0.0059 inches and a spacing

of 0.0295 inches. The screens are placed 1.772 inches apart. This distance yields a

freestream turbulence of approximately two percent by the time flow reaches the second
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screen. The location of the screens on the upstream side of the faceplate allow a similar

distance between the second screen and the test section, once again yielding an approximate

freestream turbulence level of two percent by the time flow enters the nozzle block [23].

3.1.3 Regulating Valve.

The Regulating valve’s primary purpose is to ensure a steady flow of high pressure air

from the compressors to the stagnation chamber. One side of the diaphragm is connected

to the stagnation chamber while the other can be connected to multiple pressure sources.

This side of the valve will be referred to as the pressure side. Initially, the pressure side

was connected to the high pressure line via a manually operated valve. This valve was

used to apply higher than atmospheric pressure to the pressure side of the diaphragm valve,

allowing for higher than atmospheric stagnation pressures. While most effective at higher

pressures, this setup is viable down to atmospheric pressure, where the valve is entirely

closed. This corresponded with stagnation pressures no lower than 3.5 psia. In order to

drive the stagnation pressure lower, the setup described in 3.1.1 and shown in Figure 3.1

was implemented. This includes the use of a small vacuum pump connected with a series

of valves and tubes to the pressure side of the diaphragm. When the roughing pump is

switched on, it evacuates air from the first section of tube. To tightly control the pressure

applied to the diaphragm, the first section of tubing is terminated in the Vacuum Regulating

Valve described in 3.1.1. This valve is opened slightly to allow it to evacuate air from the

rest of the tubing. This results in a near vacuum on the pressure side of the diaphragm, too

low of a pressure to allow the tunnel to operate properly. To control this, the Needle Valve

described in 3.1.1 is used. This valve is connected to the pressure side line on one side

and open to atmosphere on the other. By opening the valve, air at atmospheric pressure

is introduced to the system, allowing precision control over the pressure applied to the

pressure side of the diaphragm. This setup is instrumented with an Endevco® 8530C-15
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piezoresistive pressure transducer, discussed further in 3.1.6. This low stagnation pressure

setup is shown in Figure 3.2.

Figure 3.2: Low stagnation pressure setup

3.1.4 Nozzle Block.

The current capabilities of the SVDB tunnel include a nozzle block designed to

produce Mach 3 flow. In order to investigate the effects of Mach number on Heavy
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Mach Scaling and store separation, three additional nozzles were designed to provide Mach

numbers of 1.5, 1.9, and 2.3.

The relations of flow quantities in supersonic flow are well understood, as are the

effects of shockwaves on supersonic flow. By assuming isentropic flow through a 2D

nozzle, a valid assumption if there are no shockwaves in the nozzle, then the ratio of throat

area to test section area is given by Eq 3.1. This equation fixes the throat area of the nozzle

required to reach a specific Mach number, given the test section area. Table 3.1 shows the

area ratios for the Mach numbers of interest.

A∗

A
= M

[
2

γ + 1

(
1 +

γ − 1
2

M2
)]− γ+1

2(γ−1)

(3.1)

Several methods exist to generate the curve between the throat, where the flow reaches

Mach 1, and the test section, where the flow should reach the design Mach number. Most

of these methods stem from the method of characteristics, originally put forth by Prandtl

and Buseman [24]. The general theory of this method is that an initial curve is assumed

and a final curve is determined that results in uniform and parallel flow into the test

section. To do this, the Prandtl angle for the terminal Mach number is found, νt. Then,

starting at the throat, the flow field is described by the Prandtl angle, ν, and the expansion

angle, Θ. Once this is achieved, the inflection point of the final curve is defined where

Θ + ν = νt and all expansion waves upstream of this point are reflected, while all expansion

waves downstream of this point are terminated. In this fashion, the final curve, which is

unique to the particular length, initial curve, and initial wave angles chosen, is determined.

This method is graphical and time-intensive in nature, so several other methods have

been created, both graphically and analytically, that improve upon this original method.

Puckett’s Method is an example of a more efficient graphical technique, while Foelsch’s

Method is analytical in nature and well suited to creating traditional nozzle designs [25–

27]. Modern digital computers make numerically solving the method of characteristics a
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Table 3.1: Mach Number Correlations for Isentropic Air

M p/pt A/A∗ ν µ

1.50 0.2724 1.1762 11.905 41.81

1.90 0.1492 1.5555 23.586 31.76

2.30 0.0800 2.1931 34.283 25.77

relatively simple task and many open-source programs exist to generate nozzle contours

based on these solutions.

Nozzle design is a balance between too long and too short. A minimum length nozzle,

characterized by an initial expansion angle of 1
2νt, is called so because it describes a nozzle

that is of minimum length to not produce shock waves or expansion waves outside of the

nozzle. However, minimum length nozzles can have non-uniform flow into the test section.

A nozzle design that is too long is similarly undesirable. In a long nozzle, the boundary

layer can build to undesirable thicknesses, causing unrealistic flow situations in the test

section and introducing an unwanted level of uncertainty and turbulence.

Rather than beginning with an initial curve and perform one of the nozzle contour

generation algorithms, the Air Force Research Laboratory (AFRL) Trisonic Gas Facility

(TGF) was contacted to obtain nozzle contours that were well documented and suitable

for use in the SVDB facility. By matching the contours downstream of the throat, and

hence Mach number, the new nozzles offer a means of testing at scaled down conditions

matching those of the TGF, which will provide long-term advantages to other research.

Once the contours were obtained, substantial scaling and alteration had to be performed

in order to match the specifications of the SVDB. The contours were scaled to match 1.25

inches above centerline at the downstream exit. This corresponds to the 2.5 inch height

of the test section of the SVDB when used in a symmetrical nozzle. Next, the portion of

the nozzle upstream of the throat had to be matched to the size of the SVDB. Minimal
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length difference was desired between the 14 inch Mach 3 nozzle currently in use and the

new nozzles. Initially an algorithm was created using MATLAB® which would generate a

sinusoid of sufficient period and magnitude to minimize the error between the new curve

and the contours given for the first few points upstream of the throat. This curve was then

adjoined to the data set of points describing the divergent portion of the nozzle to create

a nozzle approximately 18 inches in length. A sinusoid was chosen in order to ensure a

derivative of zero at the throat.

It was determined that for ease of use, the nozzle should be redesigned to match the

14 inch length of the current Mach 3 nozzle. This simplified the problem greatly and led

to an algorithm to solve for the amplitude and frequency necessary to create a sinusoid to

bridge the gap between the fixed length divergent portion of the nozzle and the fixed height

of the upstream portion of the SVDB. This led to a unique curve that was adjoined to the

divergent data set and outputted to a text file. The program used to generate these text files

is shown in Appendix A.

Solidworks was used to create a curve through the XY points defined in the text file

for each Mach number. This was then used to generate a 2.5 inch wide block that described

the main nozzle block for each Mach number. Side walls and attachment flanges were

created as separate parts to ease construction. After all parts were designed, an assembly

was created in order to place holes for the screws securing the side walls and flanges to the

nozzle and the completed nozzle block to the wind tunnel. O-ring grooves were cut on both

sides of the nozzle sections and both the upstream and downstream faces in order to ensure

airtight connections. The final nozzles were constructed of solid aluminum. Figure 3.3

shows the Mach 1.5 nozzle, Figure 3.4 shows the Mach 1.9 nozzle, and Figure 3.5 shows

the Mach 2.3 nozzle. More detailed drawings can be found in Appendix G.
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(a) Side (b) Top

(c) Upstream (from stagnation tank) (d) Downstream (from test section)

Figure 3.3: Multiple views of the assembled Mach 1.5 nozzle block

(a) Side (b) Top

(c) Upstream (d) Downstream

Figure 3.4: Multiple views of the assembled Mach 1.9 nozzle block
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(a) Side (b) Top

(c) Upstream (d) Downstream

Figure 3.5: Multiple views of the assembled Mach 2.3 nozzle block

3.1.5 Test Section and Cavity.

The test section is constructed of acrylic and aluminum, with removable acrylic side

walls allowing optical access to the cavity and test sections for Schlieren photography.

Figure 3.6 shows the test section installed in the tunnel with side walls attached. The test

section is 2.5 inches by 2.5 inches and is approximately 16 inches long. The cavity is a 3:8

scaled version of the Weapons Internal Carriage and Separation (WICS) bay that is built

into the top of the test section with dimensions of D = 1.5in., W = 1.75in., and L = 6.75in.,

yielding an L/D of 4.5. The cavity is configured for up to six dynamic pressure transducers,

five in the roof of the cavity and one in the back wall. Figure 3.7 shows this configuration.

In order to adapt the test section for characterization of the new nozzles, a fill block

is used. Figure 3.8 shows the fill block, which is designed to match the dimensions of the

cavity and is constructed of rapid prototyping (RP) material using an Objet® 3D printer.

The four posts are positioned to line up with the first two and last two transducer mounts
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(a) Side view

(b) Off axis view

Figure 3.6: Two views of the test section
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Figure 3.7: Location of Transducer Mounts in Cavity [1]

in the roof of the cavity. This allows the first and last post to be used to secure the fill

block to the cavity. The second post is fitted with an O-ring and a small diameter hole is

drilled through the bottom of the fill block. This serves as a static pressure port, allowing

quantitative verification of the freestream Mach number. Data is obtained in this manner

in order to facilitate rapid tunnel reconfiguration from the nozzle characterization setup

to the cavity characterization or drop test configuration. Figure 3.9 shows the fill block

installed in the test section. The fill block is designed to be interoperable with all other

tunnel configurations.

For drop testing, the fill block is removed and the center transducer mount is fitted with

a release mechanism. The release mechanism is a solenoid-driven carriage fixed to the roof

of the cavity. When a voltage is applied to the solenoid, the clamp arms of the carriage

release the store with nominally zero ejector force. Figure 3.10 shows the mechanism in

the opened and closed position. The clamp arms are manufactured using an Objet® 3D
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(a) Top view

(b) Bottom view

Figure 3.8: Two views of the fill block outside the tunnel (flow from left)
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(a) Side view w/ sidewall

(b) Off axis view w/o sidewall

Figure 3.9: Two views of the fill block installed in the test section
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(a) Closed (b) Open

Figure 3.10: Release mechanism in the open and closed positions

printer. This allows quick production of replacement parts and it was observed that using

RP material as opposed to longer lasting metal arms has the advantage of reducing the

melting of the ice models after installation in the mechanism and before being dropped.

3.1.6 Data Acquisition.

Data acquistion is conducted using two primary systems. Schlieren photography is

captured using a Photron FASTCAM-X® digital camera and postprocessed using Photron

software. Multiple frame rates are utilized to best capture the various features of the flow.

Additionally, slight changes in the refraction setup of the system allows for the resolution

of different portions of the test section, including the boundary layer upon exit from the

nozzle block.

Pressure data is collected using multiple types of Endevco® 8530C piezoresistive

pressure transducers. In the stagnation chamber, high pressure Regulating Valve setup,

and the vacuum valve, 8530C-50 transistors are used with a range of 0-50 psia. In the

test section, specifically at the 2nd and 6th locations shown in Figure 3.7, and in the

low pressure Regulating Valve setup, 8350C-15 transistors are used with a range of 0-

15 psia and greater sensitivity than the 8530C-50 transistors. The pressure transducers

were calibrated using a Martel® BetaGauge 330 hand-held pressure calibrator and the
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calibrations were uploaded into the tunnel control virtual interface. Details of the

calibrations are provided in Appendix B. Temperature data is collected using an Omega

K-Type thermocouple.

The output of these sensors is transferred to two Endevco® 136 DC differential voltage

amplifiers where a flat gain of 50 is applied to them. The signals are then transmitted to a

National Instruments® data acquisition card for transfer to the data acquisition system.

All data is then transmitted to a National Instruments® NI PXI-1042 computer running

the National Instruments® LabView software. A virtual interface run by LabView®

automates the tunnel control and the data collection processes. In parallel with this

computer, pressure data from the back wall of the cavity, the 6th position, is transmitted

to an Agilent® 35670A spectral analyzer. This analyzer is connected to the NI computer

using a GPIB to USB adapter cable. This facilitates the control of the spectral analyzer in

a LabView® virtual interface. The spectral analyzer is set to observe data between 0 and

6400 Hz and compute twenty flat-top averages at 800 lines of resolution. This results in

each average taking 125 ms, with full data being collected in 2.5 sec and then saved to

the NI computer in a file separate from the other data. The spectral analyzer is currently

triggered by hand, but could be incorporated into the existing virtual interface to function

seamlessly with the tunnel.

3.2 Experimental Methodology

3.2.1 Procedures.

Testing begins with the start-up of the vacuum pump. The two-stage nature of the

pump requires a warm-up time of approximately two minutes between stage one and stage

two to maintain optimum performance and reliability. Next, the supply valve to the tunnel

must be opened followed by the configuration of the tunnel and, finally, data collection.

Initially, verification testing of tunnel performance was conducted on the existing

Mach 3.0 nozzle, which was already installed in the tunnel. Upon completion of this
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testing, the nozzle was removed, to be replaced by the Mach 2.3 nozzle. Upon removal,

several important mechanical differences were noted between the Mach 3 nozzle and the

new set of nozzles. First, the Mach 3 nozzle included a pair of bolted on hemispherical

blocks, allowing it to fit snugly into the faceplate. The asymmetric and non-flush mounting

of these blocks and the non-flush connection of the nozzle and the mesh housing to the

faceplate spawned the creation of the new faceplate, discussed in 3.1.2, to solve this

problem. Second, the Mach 3 nozzle was designed as an asymmetric nozzle, placing its

downstream opening higher than the new nozzles, all of which were designed as symmetric

nozzles. Unfortunately, the construction of the stagnation chamber does not allow the one

inch height change necessary to mount the new nozzles to the test section. To address this

difference a rail system was designed to elevate the stagnation chamber the required one

inch and allow the stagnation chamber to slide upstream while keeping it square to the test

section. This greatly decreases the assembly time and ensures the nozzle and test section

have a flush, level, and airtight connection.

With these initial problems solved, configuring the tunnel becomes much more simple.

The desired nozzle block (M=2.3, 1.9, or 1.5) is connected to the faceplate and the test

section. Next, the Regulating valve pressure is set. This loosely correlates to the stagnation

pressure and allows a quantitative measure of the likely stagnation pressure prior to tunnel

activation. Finally, the test section is configured as desired. If nozzle characterization

testing is to be conducted, the fill block must be installed and the Schlieren adjusted to

better image the forward portion of the test section. Figure 3.9 shows the tunnel configured

for nozzle characterization. During cavity characterization, the fill block is removed and

the Schlieren must be adjusted to image the entire cavity and any unused transducer mounts

must be filled. Figure 3.6 shows the tunnel configured for cavity characterization. During

drop testing, the test section is configured in an identical manner to cavity characterization.

The ice models must first be checked and mounted within the release mechanism.
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The ice-store fabrication process takes approximately one hour. The molds are filled

and then placed in the freezer. Once solidified, the models are weighed and visually

inspected to ensure that there are no large defects and that the model weight is consistent

with averages. Multiple molds are used to increase the rate of testing.

Finally, data acquisition must be configured for the current test objectives. If nozzle

characteristics are being observed, the option to activate the release mechanism must be

disabled. For measuring cavity characteristics, the release mechanism should be disabled,

the spectral analyzer must be powered on, and its virtual interface prepared. Drop testing

requires the release mechanism to be active as well as the spectral analyzer.

Immediately before initiating a run, the Regulating valve pressure is recorded, along

with the test name. The tunnel is initiated with the virtual interface. Then, 3.5 seconds after

the run is initiated, the FASTCAM begins collecting data. At this time, the spectral analyzer

is also started. After sufficient data is collected, typical runs range from five to eight

seconds, the tunnel is shut down manually via the virtual interface. Adjustments are made

to the Regulating valve pressure, FASTCAM data is saved, and any other configuration

changes are made. Typically within fifteen minutes or less, depending on mass flow, the

vacuum pump has reduced the pressure significantly enough for another run to take place.

3.2.2 Data Reduction.

All quantitative data is saved in tab-delimited text files. This allows for easy input

and manipulation using MATLAB®. After the data is loaded into MATLAB®, the startup

transients are removed by the program. This is done by only considering the data after

the tunnel has been running for 3.4 seconds. This limit was determined empirically. At

this point, the data reduction is determined by the type of run being analyzed. For the

nozzle characterization process, the Mach number is an unknown to be determined by

Equation 3.2. In a cavity characterization run, the Mach number is assumed and the

Rossiter modes are calculated assuming this Mach number. This Mach number is set
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to be average of the freestream Mach numbers from all of the nozzle characterization

runs. Additionally, the freestream test conditions, including viscosity, Reynolds number,

temperature, density, pressure, and velocity are determined. This is done using the

Flow Con.m MATLAB® function shown in Appendix C.

M =

√√√
2

γ − 1

( pT

p

) γ−1
γ

− 1

 (3.2)

Flow Con.m is a MATLAB® function with logic to determine the type of data

reduction needed based on the input arguments. The required inputs are the filepath of

the .lvm file to be analyzed, the structure containing the loaded data, and a start time for

data reduction. The output is the data structure appended with the flow conditions as new

fields. Based on the filename, the function will either analyze Mach number or assume

Mach number, as discussed above. The other flow conditions are then calculated using

Equation 3.3. All arguments are formatted in English Engineering units using pounds as

the unit of force, feet as the unit of length, slugs as the unit of mass, and degrees Rankine

as the unit of temperature.
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(3.3d)

a∞ =
√
γRairT∞ (3.3e)

V∞ = M∞a∞ (3.3f)

Re∞ =
ρ∞V∞
µ∞

(3.3g)

To further characterize the flow exiting the nozzle, turbulent boundary layer theory is

used to approximate the boundary layer at the exit of the nozzle by utilizing the methods

put forth in McCabe [26] and Rogers and Davis [2]. To approximate the radius of curvature,

Equation 3.4 is used. Figure 3.11 shows the graph, taken from Rogers and Davis [2] used to

estimate the boundary layer thickness parameter. The process of estimating the boundary

layer thickness is automated using BL Thickness.m, shown in Appendix E. This estimate

is compared to qualitative data obtained using Schlieren photography at 16,000 frames per

second and a resolution of 320 × 32. This corresponds to 50.8 pixels per inch, allowing an

estimate of the boundary layer thickness.

ρ =
|1 + f ′2|3/2

| f ′′|
(3.4)
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Figure 3.11: Boundary Layer Thickness Parameter vs. Mach number, reprinted from
Rogers and Davis [2]

To characterize the cavity and determine whether it matches the expected Rossiter

modes, another MATLAB® function was created, Rossiter.m, shown in Appendix D.

Rossiter.m requires the structure containing the data from Flow Con.m, the desired modes,

and the cavity length as input values. It appends the data structure with an array of the

Rossiter modes as an output. The function includes logic to display an error message if the

required fields are not present in the data structure, specifically the freestream Mach and

freestream Velocity. These functions are called in a driver program, Cavity analysis.m,

which also processes the data produced by the spectral analyzer. The spectral data is

recorded in the form of RMS voltages, so it is first converted to RMS pressures using the

information from Figure B. Then this pressure data is converted to SPL using Equation 3.5.

The reference pressure used is 2.9 × 10−9 psi, which is a commonly used reference, as it

represents the threshold of human hearing. Cavity analysis.m is shown in Appendix J.
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(3.5)

The drop testing data reduction is the most involved experimental data reduction. Flow

conditions are determined via the Flow Con.m function. Trajectory data is created when

Schlieren video data taken during testing is parsed into images spaced 0.0075 seconds

apart. These images are then loaded into digitizing software by Engauge®. The axis points

are set by the corners of the cavity and the center of mass of the sphere is set as a data point.

This data is then output to a comma separated value (CSV) file. This is done by hand for

each image parsed from the video file. Automated methods of accomplishing this task were

investigated, however, the diffraction caused by the varying thicknesses of plexiglass as the

light from the Schlieren lamp passed through the test section was of sufficient severity to

impede accuracy from frame to frame. Once the CSV files were generated, trajectories

were plotted using the MATLAB® program Mult traj plot.m, shown in Appendix H.

Heavy Mach scaling data was achieved through the use of the Flow Con.m function in

conjunction with 3 other functions. These functions are mass.m, which is a look-up table

of store mass based on test number, ATMOS.m, which generates standard atmosphere data

when given an altitude, and HMS.m, which creates a structure of scaled quantities based on

the test conditions provided by Flow Con.m, the mass properties provided by mass.m, and

the standard-day properties provided by ATMOS.m. The sequencing of these functions

is contained in the driver program Drop analysis.m. Mass.m, ATMOS.m, HMS.m, and

Drop analysis.m can be found in Appendix I.

3.3 Computational Methodology

3.3.1 Grid Generation.

Previous computational efforts resulted in a functional multiblock grid based on a

grid used by Nichols to describe the WICS bay [16]. This grid consists of of two blocks,

Plate and Bay. These blocks were augmented by adding two grids to describe a sphere
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Table 3.2: Computational Domain Information

Block Name Cells Dimensions Wall Spacing (in)

1 Plate 5600000 351 × 201 × 81 2.8125 × 10−3

2 Bay 1920000 201 × 81 × 121 2.8125 × 10−2

3 Yin 140000 41 × 71 × 51 1.875 × 10−3

4 Yang 140000 41 × 71 × 51 1.875 × 10−3

of the same proportions as the experimental setup. These grids, Yin and Yang, are two

overlapping C-type grids based on the approach by Kageyama and Sato [1, 28]. In the grid

files, the cavity extends from 15.0 inches to 33.0 inches in the x-direction, 0.0 to -4.0 in the

z-direction, and from -2.0 to 2.0 in the y-direction. The experimental cavity is a 3:8 scale

version of these dimensions, so trajectory data and wall spacing was scaled to this size. The

Plate grid has a wall spacing upstream of the cavity of 0.0028 inches. The Bay grid has a

wall spacing of 0.028 inches. The spacing could be reduced within the cavity because of

lower wall shear stress [16]. The Yin and Yang grids have a wall normal grid spacing of

0.0019 inches and extend 0.19 inches from the surface of the sphere with a cell growth rate

of 1.2 [1]. Figure 3.12 shows the computational domain, with the axes oriented with x in

the streamwise direction and z aligned with the gravity vector. Table 3.2 summarizes the

grid information.

3.3.2 Boundary Conditions.

Boundary conditions in OVERFLOW are broken into groupings for each grid. The

Plate grid contains eleven boundary conditions. Figure 3.13 shows the locations of the

boundary conditions. Table 3.3 shows these boundary conditions and their corresponding

numbers from Figure 3.13. The number 3 boundary condition, the inviscid adiabatic wall,

exists to prevent any outflow across the inflow boundary and to create a uniform flow field.
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Figure 3.12: Computational Domain with detail showing Bay, Yin, and Yang grids
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Figure 3.13: Boundary Condition Locations of Plate Grid

The Bay grid has much more simple boundary conditions, with all physical boundaries

implementing a viscous adiabatic wall condition. Three artificial boundary conditions are

also defined in the Bay grid that can be used to extract pressure data from the centerline of

the cavity. These conditions, labeled as 201 in OVERFLOW, output the vector of conserved

variables at each time step for the locations specified. The three conditions specify a line

down the centerline of the cavity and running up the front face of the cavity, along the

ceiling, and down the back face of the cavity. Figure 3.14 shows this line. The Yin and Yang

grids each consist of a viscous adiabatic wall boundary condition describing the surface of

the sphere.
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Table 3.3: Plate grid Boundary Conditions

Region Type

1 Inflow (impose freestream)

2 Outflow (pure extrapolation)

3 Inviscid adiabatic wall (pressure extrapolation)

4 Viscous adiabatic wall (pressure extrapolation)

5 Viscous adiabatic wall (pressure extrapolation)

6 Viscous adiabatic wall (pressure extrapolation)

7 Viscous adiabatic wall (pressure extrapolation)

8 Farfield (Characteristic outflow w/ freestream on incoming characteristics)

9 Farfield (Characteristic outflow w/ freestream on incoming characteristics)

10 Farfield (Characteristic outflow w/ freestream on incoming characteristics)

11 Blank out region (Overlap between Plate and Bay)

Figure 3.14: Line of interest for BC201 boundary condition
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3.3.3 Initial Conditions.

Access to restarts and input files from the work of Flora [1] allowed swift progress to

be made in setting up simulations. Since Flora used simulations at Mach 3.0, the restarts

had to gradually be stepped down in speed to Mach 2.22, the experimentally determined

Mach number for the Mach 2.3 nozzle. This was done through a series of input files with

different Mach numbers and the overrunmpi script built into OVERFLOW, which allows

multiple input files to be run in succession without user manipulation. Each case was run for

500 iterations, which was determined prior to beginning the ramp down to be a sufficient

number of iterations to allow for grid sequencing and the stabilization of residuals. The

residual history for the ramp down is shown in Figure 3.15. The flow solver settings used

for this ramp down and for all subsequent tests are shown in Table 3.4. Once the proper

freestream Mach number was attained, the non-dimensional Reynolds number, freestream

temperature, and non-dimensional time step were altered to meet the flow conditions

equivalent to experimental stagnation pressures of 4.0 psia, 3.0 psia, 2.0 psia, and 1.0 psia.

Equation 3.6 shows the non-dimensional relations used and Table 3.5 shows these flow

conditions. Additionally, for dynamic runs, the Scenario.xml and Config.xml files were

altered to reflect the proper non-dimensionalized acceleration due to gravity, mass, and

moment of inertia. Equation 2.19 shows the relationships used to generate these quantities

while Table 3.6 shows the values corresponding to each stagnation pressure.

a∞ =
√
γ Rair T∞ (3.6a)

Vre f = M∞ a∞ (3.6b)

∆t∗ = ∆t
Vre f

Lre f
(3.6c)

Re∗ = Re Lre f (3.6d)
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Figure 3.15: Residuals during ramp down from Mach 3.0 to Mach 2.22

Table 3.4: OVERFLOW Solver Settings

Parameter Setting

IRHS (Numerical Method) 3rd-order HLLC Upwind Scheme

ILIMIT (Limiter) van Albada Limiter

ILHS (Numerical Method) SSOR (with subiterations)

NITWT (# of Newton subiterations) 5

FSONWT (Accuracy for subiterations) 2nd Order

NQT (Turbulence Model) SST 2-equation model

IDES (DES) DDES

FSOT (Order of turbulent convection terms) 2nd Order

VISC (Viscous terms) All viscous terms (including cross terms)
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Table 3.5: Initial Flow Parameters

Parameter Pt = 4.0 psia Pt = 3.0 psia Pt = 2.0 psia Pt = 1.0 psia

∆t (sec) 5.00 × 10−6 5.00 × 10−6 5.00 × 10−6 5.00 × 10−6

∆t∗ (sec) 0.2923 0.2923 0.2923 0.2923

Lre f (ft/grid unit) 0.03125 0.03125 0.03125 0.03125

Re∗ (grid unit−1) 2.76 × 104 2.07 × 104 1.38 × 104 6.89 × 103

T∞ ◦R 281.19 281.19 281.19 281.19

Table 3.6: Non-dimensional Mass Properties

Parameter Pt = 4.0 psia Pt = 3.0 psia Pt = 2.0 psia Pt = 1.0 psia

g∗ 3.01 × 10−7 3.01 × 10−7 3.01 × 10−7 3.01 × 10−7

m∗ 1.44 × 105 1.92 × 105 2.88 × 105 5.77 × 105

I∗zz 9.01 × 104 1.20 × 105 1.80 × 105 3.60 × 105
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IV. Results

4.1 Nozzle Characterization

For all nozzles, multiple tests were conducted at stagnation pressures ranging from

6 psia to 20 psia. The lowest setting of 6 psia corresponds to the lowest stagnation pressure

previously documented. Nozzles are referred to interchangeably by their nominal Mach

number or their experimentally determined Mach number.

4.1.1 Mach 3.0.

As an initial verification of correct tunnel operation, the pre-existing Mach 3 nozzle

was tested. Previous testing by many others found the nozzle to yield flow of Mach 2.9 and

2.94 [1, 29].

In the current study, the nominal Mach 3 nozzle is found to have an average Mach

number of 2.96 with a standard deviation of 0.06, leading to a 95% confidence interval of

[2.84, 3.08]. This was determined over four tests. Table 4.1 shows the test conditions for

each of these tests and indicates a possible minor influence on the Mach number due to

Reynolds number. Figure 4.1 shows the normalized probability density function (PDF) of

each test as well as the combined data. All of the data is weighted equally, however, some

tests result in more data due to a longer tunnel run time. This accounts for the unequal

PDF results. While each test has a normal distribution with a small standard deviation, the

result as a whole has a distinctly non-normal distribution. Possible causes of this bi- or tri-

modal distribution are a non-significant number of tests (four), a dependence on stagnation

pressure, or an outlier data point, possibly caused by a leak or other hardware problem.

Comparison of stagnation pressures with average Mach numbers for other nozzles shows

no correlation between stagnation pressure and Mach number, possibly due to reduced

sensitivity to Reynolds number.
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In addition, Schlieren photography can be used to qualitatively determine the Mach

number. Images were opened in Adobe® Photoshop CS5®, where the flat plate prior to

the cavity was used as a rule line to straighten the picture. Then, the shock angle was

determined using Photoshop’s Ruler Tool and verified using trigonometry. Figure 4.2

shows a sample Schlieren image with the lines used for verification and the angle marked.

The angle of 19.6 degrees corresponds to a freestream Mach of 2.98, consistent with the

quantitative data.

Several tests were conducted with various restrictions on the pressure-side valve,

shown in Figure 3.1. This resulted in a decrease of stagnation pressure due to insufficient

high pressure air. These tests were conducted to test whether supersonic flow could be

sustained in the tunnel at stagnation pressures lower than 6 psia. The choked flow remained

supersonic but could not sustain a constant stagnation pressure. For these reasons, these

tests were not included in the analysis of the Mach number.

Table 4.1: Flow properties for Mach 3 Nozzle Experiments

Test M∞ (x̄ ± 2σ) Pt (psia) Re∞ (ft−1) U∞ (ft/s)

1-3 Preliminary Test Runs

4 2.87 ± 0.03 15.72 2.49 × 106 2043

5 2.94 ± 0.03 8.45 1.31 × 106 2054

6 3.01 ± 0.04 6.16 9.17 × 105 2072

7 2.99 ± 0.04 6.57 9.94 × 105 2064
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Figure 4.1: Normalized PDF of Mach 3 Nozzle Tests

Figure 4.2: Qualitative determination of Mach number for Mach 3 nozzle using Schlieren
photography
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4.1.2 Mach 2.3.

The Mach 2.3 nozzle is found to have an average Mach number of 2.22 with a standard

deviation of 0.02, resulting in a 95% confidence interval of [2.18, 2.26]. Since this nozzle

had never been tested before, a greater number of tests were conducted, with eight tests

contributing to the average. The PDF of these tests, as well as the combined PDF, is

shown in Figure 4.3 while the test conditions are shown in Table 4.2. The data for this

nozzle is much more tightly grouped despite a larger range of stagnation pressures. This

is indicative of repeatability, especially since the tests took place over a range of days and

times. Qualitative analysis of Schlieren imagery yielded a Mach angle of 26.2 degrees,

which corresponds with a freestream Mach number of 2.27, verifying the quantitative data.

Figure 4.4 shows a sample Schlieren image. Differences in brightness and contrast in

Schlieren images is likely due to minor movements of the knife edge in order to better

resolve the leading edge shock. In one test run, large anomalies were observed. During

this run, the transducer leads appeared to contact the diffuser walls. After ensuring that

the wiring contacts for the transducers were free of interference, repeat tests did not show

anomalies. Therefore, the outlying results were omitted from the analysis.

The flow exiting the nozzle appears to have a relatively small boundary layer.

Analytical predictions place the boundary layer thickness between 0.088 inches and

0.111 inches, averaging 0.096 inches for the eight tests used. Schlieren data supports this

estimate. Figure 4.5 shows images from tests 7 and 8, each predicting a boundary layer

thickness of approximately 0.1 inches.
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Table 4.2: Flow properties for Mach 2.3 Nozzle Experiments

Test M∞ (x̄ ± 2σ) Pt (psia) Re∞ (ft−1) U∞ (ft/s)

1 2.23 ± 0.02 16.37 3.60 × 106 1829

2 2.22 ± 0.02 16.87 3.69 × 106 1832

3 2.23 ± 0.02 18.15 3.97 × 106 1833

4 2.22 ± 0.03 5.59 1.25 × 106 1818

5 2.24 ± 0.03 19.07 4.15 × 106 1837

6 2.23 ± 0.02 14.05 3.09 × 106 1829

7 DAQ error due to wiring

8 2.22 ± 0.02 11.84 2.63 × 106 1822

9 2.21 ± 0.03 6.22 1.40 × 106 1813

Figure 4.3: Normalized PDF of Mach 2.3 Nozzle Tests

54



Figure 4.4: Qualitative determination of Mach number for Mach 2.3 nozzle using Schlieren
photography

(a) Test: 2

(b) Test: 3

Figure 4.5: Qualitative Boundary Layer Estimation for Mach 2.22
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4.1.3 Mach 1.9.

The Mach 1.9 nozzle resulted in a tightly grouped series of PDF’s for each test, similar

to that of the Mach 2.3 nozzle. The average Mach number is 1.84 with a standard deviation

of 0.01, resulting in a 95% confidence interval of [1.82, 1.86]. Table 4.3 shows the flow

conditions of the individual runs and Figure 4.6 shows the PDF of each test as well as the

data as a whole. Five tests contributed to the average Mach. No data was collected near a

stagnation pressure of 20 psi because insufficient run times would be produced. Qualitative

analysis of Schlieren imagery provided a shock angle of 32.4 degrees, corresponding to a

freestream Mach number of 1.87, verifying the quantitative data. Figure 4.7 shows a sample

Schlieren image. Several of the tests were initially attempted with a compressor pressure

of 120 psi, but acquired data suggested that the tunnel unstarted early in those experiments.

When the compressor pressure was increased to 180 psi, the problem was prevented for

stagnation pressures up to at least 13.6 psia, and those results are presented.

Table 4.3: Flow properties for Mach 1.9 Nozzle Experiments

Test M∞ (x̄ ± 2σ) Pt (psia) Re∞ (ft−1) U∞ (ft/s)

1 1.83 ± 0.02 13.63 3.52 × 106 1652

2 Variable stagnation pressure

3-4 DAQ error due to wiring

5 1.84 ± 0.02 10.62 2.76 × 106 1648

6 1.83 ± 0.03 5.86 1.55 × 106 1635

7 1.84 ± 0.02 10.33 2.68 × 106 1650

8 1.84 ± 0.02 10.25 2.67 × 106 1648

The flow exiting the nozzle appears to have a relatively small boundary layer.

Analytical predictions place the boundary layer thickness between 0.090 inches and

56



Figure 4.6: Normalized PDF of Mach 1.9 Nozzle Tests

0.106 inches, averaging 0.096 inches for the five tests used. Schlieren data supports this

estimate. Figure 4.8 shows images from tests 7 and 8, each predicting a boundary layer

thickness of approximately 0.1 inches.
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Figure 4.7: Qualitative determination of Mach number for Mach 1.9 nozzle using Schlieren
photography

(a) Test: 7

(b) Test: 8

Figure 4.8: Qualitative Boundary Layer Estimation for Mach 1.84

4.1.4 Mach 1.5.

The nominal Mach 1.5 nozzle produced data similar in character to that of the Mach

1.9 and Mach 2.3 nozzles, but with slightly more variation. Six tests produced an average

Mach number of 1.43 with a standard deviation of 0.03 for a 95% confidence interval

of [1.37, 1.49]. Table 4.4 shows the flow conditions for the tests used in producing the

average Mach and Figure 4.9 shows the PDF of each test as well as the combined PDF.
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No data was collected for 20 psi stagnation pressure due to insufficient run times, even at

the increased compressor air pressure of 180 psi. Furthermore, the data from a stagnation

pressure of 6 psi was disregarded because tunnel conditions resulted in a normal shock that

oscillated across the static port resulting in widely varying Mach numbers clustered around

1.1. Figure 4.10 shows the time history of the Mach number for the 6 psi case, illustrating

the effect of the oscillating normal shock on the Mach number while Figure 4.11 shows

Schlieren photography of this phenomenon.

Table 4.4: Flow properties for Mach 1.5 Nozzle Experiments

Test M∞ (x̄ ± 2σ) Pt (psia) Re∞ (ft−1) U∞ (ft/s)

1 1.41 ± 0.03 14.44 3.92 × 106 1429

2 1.43 ± 0.03 15.21 4.11 × 106 1440

3 1.41 ± 0.03 10.43 2.92 × 106 1415

4 Oscillating normal shock

5 1.44 ± 0.04 10.91 3.03 × 106 1432

6 1.42 ± 0.03 11.83 3.28 × 106 1425

7 1.47 ± 0.06 14.64 3.94 × 106 1470

The flow exiting the nozzle appears to have a relatively small boundary layer.

Analytical predictions place the boundary layer thickness between 0.091 inches and

0.098 inches, averaging 0.094 inches for the six tests used. Schlieren data supports this

estimate. Figure 4.12 shows images from tests 7 and 8, each predicting a boundary layer

thickness of approximately 0.1 inches.
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Figure 4.9: Normalized PDF of Mach 1.5 Nozzle Tests
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Figure 4.10: Time History of Mach number for P0 = 6psi

Figure 4.11: Normal Shock across static port for Mach 1.5 nozzle at P0 = 6psi
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(a) Test: 1

(b) Test: 2

Figure 4.12: Qualitative Boundary Layer Estimation for Mach 1.43
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4.2 Cavity Environment

The cavity environment is characterized through the comparison of peak frequencies

of experimental pressure spectrum data with analytically predicted Rossiter modes.

Relative noise levels and the effects of Reynolds number on peak noise levels is also

examined. Additionally, flow variables are calculated using an assumed Mach number

equal to the average Mach number determined in Section 4.1 for each nozzle. Nozzles are

referred to interchangeably by their nominal Mach number and experimentally determined

Mach number.

4.2.1 Mach 3.0.

Characterization of the cavity in Mach 3 flow has already been conducted by Bjorge et

al [29] and Flora [1]. Therefore, matching the Rossiter modes seen in these previous works

will serve as verification of correct methods. Initially, peak amplitudes and broadband noise

levels of the cavity spectra were seen to be significantly different from those presented

in Flora [1]. After thorough scrutiny of both methods of data reduction, an error in

the amplitude of the sound pressure level (SPL) was discovered in Flora’s calculations.

Since most of Flora’s discussion and analysis deals with the frequency content of the

signal, which was not directly affected by the error, the data presented in Flora [1] is still

significant. After correcting this error, the amplitude of the spectra were much more closely

matched. Figure 4.13 shows the results of all cavity tests. This indicates a dependency

between noise levels and stagnation pressure that is much more visible than at other Mach

numbers. This is likely due to the higher dynamic pressures at Mach 2.96. Figure 4.14

shows each test and the calculated Rossiter modes for each test. Table 4.5 shows the flow

conditions for each of the tests.

At Mach 2.96, only the second through fifth Rossiter modes are clearly displayed.

The first mode shows only slight indications of its existence while the sixth mode does not

present at all. The third and fourth modes are presented very distinctly and correspond

63



Figure 4.13: Cavity Spectra for all Mach 2.96 Tests

Table 4.5: Flow Conditions for Mach 2.96 Cavity Tests

Test Pt (psia) U∞ (ft/s) Re∞ (ft−1)

1 20.90 2042 3.28 × 106

2 14.27 2037 2.25 × 106

3 10.95 2035 1.74 × 106

4 6.14 2027 9.85 × 105

closely to the modes predicted by Equation 2.2. The second mode is somewhat obscured

by the broadband noise and seems slightly diffused. The fifth mode presents a clear

peak but consistently shows a significant amount of deviation from the predicted Rossiter
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(a) P0 = 20.90 (b) P0 = 14.27

(c) P0 = 10.95 (d) P0 = 6.14

Figure 4.14: Rossiter modes for individual Mach 2.96 Tests

modes. The average difference between the predicted Rossiter mode and the corresponding

observed mode for the second through fifth modes is 176.48 Hz. Table 4.6 shows the

average difference between each predicted and observed mode for all tests. More detailed

tables concerning the predicted and observed Rossiter modes can be found in Appendix F.
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Table 4.6: Average Difference per Rossiter Mode for Mach 2.96

Mode Average Difference (Hz) Average % Difference

2 155.53 8.69

3 40.12 1.43

4 144.71 3.77

5 347.31 7.15

4.2.2 Mach 2.3.

The Mach 2.3 nozzle configured for cavity characterization presents the Rossiter

modes extremely well, with 6 modes presenting fully in the range from 0 to 6.4 kHz and

the 7th presenting at the very boundary of this range. Figure 4.15 shows the results of all

cavity tests. There is a small trend of decreasing SPL with decreasing stagnation pressure,

which is attributable to the lower dynamic pressure. Additionally, the 18 psia stagnation

pressure test does not follow the trend. Figure 4.16 shows each test and the Rossiter modes

calculated for each test. Due to small changes in temperature between tests, the Rossiter

modes are not constant for all tests, but the variation is quite small. Table 4.7 shows the

flow conditions for each of the tests. Mach number is assumed to be 2.22, as determined

by the nozzle characterization tests discussed in Section 4.1.

The difference between each predicted Rossiter mode and the corresponding observed

mode averages -17.03 Hz. Table 4.8 shows the average difference between each predicted

mode and the observed mode for all tests. More detailed tables concerning the predicted

and observed Rossiter modes can be found in Appendix F.
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Figure 4.15: Cavity Spectra for all Mach 2.22 Tests

Table 4.7: Flow Conditions for Mach 2.22 Cavity Tests

Test Pt (psia) U∞ (ft/s) Re∞ (ft−1)

1 Tunnel Configuration Error

2 6.37 1802 1.46 × 106

3 12.68 1813 2.86 × 106

4 8.32 1805 1.90 × 106

5 16.46 1817 3.69 × 106

6 18.01 1821 4.01 × 106

7 13.81 1814 3.11 × 106
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(a) Pt = 6.37 (b) Pt = 12.68

(c) Pt = 8.32 (d) Pt = 16.46

(e) Pt = 18.01 (f) Pt = 13.81

Figure 4.16: Rossiter modes for individual Mach 2.22 Tests

68



Table 4.8: Average Difference per Rossiter Mode for Mach 2.22

Mode Average Difference (Hz) Average % Difference

1 -185.26 -25.5

2 -55.39 -3.3

3 -52.18 -2.0

4 -28.98 -0.8

5 92.89 2.0

6 126.77 2.3
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4.2.3 Mach 1.9.

The Mach 1.9 nozzle configured for cavity characterization presents 6 modes in a

similar fashion to the Mach 2.3 nozzle, with the 7th visible at the boundary of the range of

frequencies analyzed. Figure 4.17 shows the spectra for all cavity tests at Mach 1.84. One

test, the 5 psia test, shows a noticeable decrease in SPL, however, the other tests are tightly

clustered despite variation in stagnation pressure. The lack of data at higher stagnation

pressures may be masking the true effect of decreasing stagnation pressure for this nozzle,

as 12 psia was the highest stagnation pressure tested. Figure 4.18 shows the spectra and

Rossiter modes for each test. Table 4.9 shows the flow conditions for each of these tests.

Mach number is assumed to be 1.84.

Figure 4.17: Cavity Spectra for all Mach 1.84 Tests
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(a) Pt = 5.65 (b) Pt = 6.10

(c) Pt = 10.48 (d) Pt = 12.36

Figure 4.18: Rossiter modes for individual Mach 1.84 Tests

The difference between each predicted Rossiter mode and the observed mode averaged

5.44 Hz. Table 4.10 shows the difference for each mode, averaged over the four tests used.

More detailed tables concerning the predicted and observed Rossiter modes can be found

in Appendix F.
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Table 4.9: Flow Conditions for Mach 1.84 Cavity Tests

Test Pt (psia) U∞ (ft/s) Re∞ (ft−1)

1 No frequency data collected

2 5.65 1631 1.51 × 106

3 6.10 1632 1.63 × 106

4 10.48 1644 2.74 × 106

5 12.36 1646 3.23 × 106

Table 4.10: Average Difference per Rossiter Mode for Mach 1.84

Mode Average Difference (Hz) Average % Difference

1 -157.59 -22.9

2 -53.71 -3.3

3 24.17 1.0

4 -27.95 -0.8

5 75.93 1.7

6 171.81 3.3

4.2.4 Mach 1.5.

The pressure measurements in the cavity for the Mach 1.5 nozzle show considerably

more broadband noise than a typical spectrum. The presence of a rebounded shock from the

tunnel floor and/or a normal shock disrupts the periodic oscillations, causing higher SPL’s

at lower frequencies. It also results in higher broadband noise. While most of the frequency

content is disrupted, local peaks in the SPL occur at the first two modes, with smaller local

peaks visible for some higher modes. Figure 4.19 shows all the spectra of cavity tests

at Mach 1.43. Only two stagnation pressures were tested, as discussed in Section 4.1.
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Figure 4.20 shows the spectrum of each test and the predicted Rossiter modes. Table 4.11

shows the flow conditions for each test.

Figure 4.19: Cavity Spectra for all Mach 1.43 Tests

Table 4.11: Flow Conditions for Mach 1.43 Cavity Tests

Test Pt (psia) U∞ (ft/s) Re∞ (ft−1)

1 14.62 1494 3.61 × 106

2 14.65 1494 3.61 × 106

3 10.45 1460 2.74 × 106

73



(a) Pt = 14.62 (b) Pt = 14.65

(c) Pt = 10.45

Figure 4.20: Rossiter modes for individual Mach 1.43 Tests

The first four modes are distinguishable from the noise, with an average difference

between observed and predicted modes of -176.81 Hz. The 3rd and 4th modes are

significantly attenuated, with the visibility of the third mode being questionable. Table 4.12

shows the average difference between the observed and predicted modes for each mode,

averaged across all three tests. More detailed tables concerning the predicted and observed

Rossiter modes can be found in Appendix F.
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Table 4.12: Average Difference per Rossiter Mode for Mach 1.43

Mode Average Difference (Hz) Average % Difference

1 -155.67 -23.3

2 -83.24 -5.3

3 -200.13 -8.17

4 -159.26 -3.26

4.3 Drop Testing

Drop testing was conducted in both an experimental and a computational setting. A

freestream Mach number of 2.22, in accordance with the experimentally determined Mach

number of the Mach 2.3 nozzle, was used for both cases. Stagnation pressures as low as

1.0 psia were utilized in an attempt to produce a successful release of the store from the

bay. All trajectory traces track the center of mass of the sphere. Heavy Mach Scaling was

used to determine comparable real world conditions.

4.3.1 Experimental.

Stagnation pressures of approximately 7.5 psia, 3.5 psia, and 1.0 psia were utilized

in experiments. Table 4.13 shows the flow conditions for each test. The lower stagnation

pressure of 3.5 psia was likely achieved from a better seal between the nozzle and the

other tunnel components, allowing a more complete vacuum to be drawn by the vacuum

pump. The stagnation pressure of 1.0 psia was achieved through the use of a vacuum pump

connected to the Regulating valve as discussed in 3.1.3.

Due to imperfections in the stores and the fragile nature of ice, some tests did not

produce viable video data for processing into trajectories. Those that did were tests 5, 6,

13, 15, 18, 19, 22, 23, 24, and 25. Figure 4.21 through Figure 4.30 show the X-Z plane

trajectories reduced from the Schlieren video data. Time labels are given in seconds for

each case. The trajectory calculations were terminated upon the fragmentation of the store.
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Table 4.13: Flow Conditions for Sphere Drop Tests

Test Pt (psia) U∞ (ft/s) Re∞ (ft−1) Trajectory
Data

Pressure
Data

1-2 Tunnel start blew store downstream

3 3.53 1799 8.13 × 105 X

4 DAQ Error

5 3.73 1799 8.59 × 105 X X

6 3.68 1799 8.48 × 105 X X

7 7.94 1804 1.81 × 106 X

8 Insufficient air supply

9 6.83 1804 1.56 × 106 X

10 Captive sphere to test low pt setup X

11 2.83 1823 6.28 × 105 X

12 Valve pressure too low for flow

13 1.45 1808 3.29 × 105 X X

14 Timing error X

15 1.12 1809 2.53 × 105 X X

16 1.17 1806 2.67 × 105 X

17 0.97 1806 2.21 × 105 X

18 1.05 1803 2.41 × 105 X X

19 0.93 1802 2.13 × 105 X X

20 1.30 1808 2.95 × 105 X

21 0.90 1804 2.06 × 105 X

22 1.00 1806 2.29 × 105 X X

23 0.75 1798 1.72 × 105 X X

24 1.22 1809 2.77 × 105 X X

25 1.21 1809 2.75 × 105 X X

Usually this coincided with a collision between the trailing edge of the cavity and the store,

though one, test 15 does not. The fragmentation observed in this test may be due to high

aerodynamic loading on an imperfection in the store or due to a collision with the side wall

of the cavity.
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All of the trajectories demonstrate an initial forward, −X, tendency upon the release

of the store. This phenomenon is especially present in test 5 and test 6, Figure 4.21 and

Figure 4.22. Here, the store experiences a significant −X trajectory before convecting

towards the back wall of the cavity (+X). This phenomenon was also documented in

the experimental test results of Flora [1]. These cases also exhibit a periodic vertical

component of the trajectory consistent with the store “skipping” across the shear layer

as it convects longitudinally. Due to the large forward translation and, in test 6, some

interference from the store release mechanism while convecting towards the back wall,

tests 5 and 6 take considerably longer before colliding with the back wall of the cavity

when compared to the 1 psia stagnation pressure tests.

Each of the 1 psia stagnation pressure tests displays some initial −X trajectory

component, with tests 15 and 23, Figure 4.24 and Figure 4.28, displaying the smallest

forward component. Test 13 and test 25, Figure 4.23 and Figure 4.30, display the largest

−X component. All of the 1 psia tests initially fall into and, on some occasions through,

the shear layer (+Z) before the vertical velocity reverses and results in a −Z translation,

similar to that discussed in Section 2.3. This effect varies from an extreme climb back into

the cavity as shown in test 25 (Figure 4.30) to a nearly imperceptible rise that has no real

impact on the trajectory, as shown in test 24 (Figure 4.29). As the pitch of a sphere does

not affect its lift or drag characteristics, it is likely that this rise is caused by compression

lift acting on the lower surface of the sphere in the wake of the shock wave that forms as

it exits the shear layer into supersonic flow. Figure 4.31 shows this bow shock forming on

the lower half of the sphere as it protrudes into the freestream while the upper half is still

contained in the shear layer, experiencing a lower pressure.
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Figure 4.21: X-Z Plane Trajectory for Test 5 (Pt = 3.73)

Figure 4.22: X-Z Plane Trajectory for Test 6 (Pt = 3.68)

Figure 4.23: X-Z Plane Trajectory for Test 13 (Pt = 1.45)
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Figure 4.24: X-Z Plane Trajectory for Test 15 (Pt = 1.12)

Figure 4.25: X-Z Plane Trajectory for Test 18 (Pt = 1.05)
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Figure 4.26: X-Z Plane Trajectory for Test 19 (Pt = 0.93)

Figure 4.27: X-Z Plane Trajectory for Test 22 (Pt = 1.00)
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Figure 4.28: X-Z Plane Trajectory for Test 23 (Pt = 0.75)

Figure 4.29: X-Z Plane Trajectory for Test 24 (Pt = 1.22)

81



Figure 4.30: X-Z Plane Trajectory for Test 25 (Pt = 1.21)

Figure 4.31: Bow shock on the lower half of a sphere
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4.3.2 Computational.

Computational results were obtained for conditions corresponding to 3.5, 2.0, and

1.0 psia stagnation pressures at Mach 2.22. The trajectories are shown in Figure 4.32

through Figure 4.34, with time labels given in seconds. Figure 4.32, the 3.5 psia case

clearly displays the −X initial trajectory seen in the experimental results, though to a much

lesser extent. Figure 4.33, corresponding to 2.0 psia stagnation pressure also displays this

trait, though its magnitude is nearly negligible. Figure 4.34, the 1.0 psia case, does not

display an initial trajectory in the −X direction. While all 3 trajectories contact the back

wall of the cavity, there is a clear downward trend in the location of contact as the pressure

decreases. Figure 4.35 shows the time histories of the z-component of the trajectory for

all three computational runs, with the traces representing the center of mass of the sphere.

Figure 4.35 also shows that the 1.0 psia case is the only trajectory whose center of mass

exited the cavity. All three computational trajectories also display the −Z translation that

the experimental runs displayed, with higher pressure corresponding to a larger translation.

Figure 4.32: Computational X-Z Plane Trajectory at Pt = 3.5
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Figure 4.33: Computational X-Z Plane Trajectory at Pt = 2.0

Figure 4.34: Computational X-Z Plane Trajectory at Pt = 1.0

Figure 4.36 through Figure 4.38 show the residual traces for each of the grids. For

each test, the Plate and Bay grid residuals quickly stabilize in the 10−3 and 10−4 range

respectively. This is consistent with the residual traces of Flora [1]. The Yin and Yang

grids initially stabilize in the 10−4.5 to 10−5 range, but as the simulation progresses and

the sphere interacts with the cavity shear layer, around the 10,000 iteration mark, or 0.05

seconds, the residuals rise into the 10−4 to 10−4.5 range. This phenomenon was also seen

in the work of Flora [1]. However, unlike Flora, the rise persists for the remainder of the
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Figure 4.35: Computational Z-Trajectory vs. time

simulation. This is likely due to the lower speed resulting in a wider shear layer within

the cavity, leading to a longer interaction between the sphere grids and the shear layer.

In Figure 4.36 and especially in Figure 4.38 a sharp drop in the residuals for the Yin

and Yang grids after approximately 25,000 iterations. This drop corresponds with these

grids exiting the influence of the Plate and Bay grids through the back wall of the cavity.

While OVERFLOW does have a collision modeling system, it was not enabled for these

simulations, as the period of interest is from the initial “release”’ of the sphere until its first

contact with another body.
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Figure 4.36: Residuals of Pt = 3.5 Computational Run

Figure 4.37: Residuals of Pt = 2.0 Computational Run
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Figure 4.38: Residuals of Pt = 1.0 Computational Run
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4.3.3 Trajectory Comparison.

Figure 4.39 shows the comparison of the experimental and computational trajectories

for 3.5 psia stagnation pressure. While the amount of initial +Z translation for the

computational trajectory matches the experimental results, the magnitude of initial −X

translation does not match and the −Z translation in the second half of the trajectory is

larger than that seen in either experimental run. The computational trajectory also does not

display any of the “skipping” phenomenon seen in the experimental results.

Figure 4.39: Comparison of Computational and Experimental Trajectories for Pt = 3.5

Figure 4.40 compares the experimental and computational trajectories for 1.0

psia stagnation pressure. The overall agreement between computational and experimental

results for this case is similar to that of the 3.5 psia case. While the computational trajectory

does not display an initial −X motion like all of the experimental data, it does display a

similar amount of −Z motion in the second half of the trajectory. The maximum +Z motion

predicted computationally is lower than nearly all of the experimental results, yet still of a

comparable magnitude to multiple tests, specifically tests 13, 15, and 22. It is interesting

to note that all but one of the experimental trajectories end farther towards the freestream
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than the computational case. By X = 6, Z-values corresponding to the experiments vary

from Z = 1.25 to Z = 1.75, while the computational trajectory yields Z = 1.25.

Figure 4.40: Comparison of Computational and Experimental Trajectories for Pt = 1.0

4.3.4 Heavy Mach Scaling.

Heavy Mach Scaling is achieved through the equations described in Section 2.2. The

experimental results are scaled to standard day conditions at ten, twenty, and thirty thousand

feet using a model scale factor of 0.05. Since the model density is fixed at the density of ice,

approximately 62 lb/ft3, the SVDB capabilities of scaling tunnel stagnation pressure, and

hence dynamic pressure, are used to achieve the proper scaling. Table 4.14 shows the scaled

quantities of each test and simulation to 10,000 ft standard day conditions. The resulting

average quantities for the 3.5 psia stagnation pressure are a store weight of 171.6 lb, a

dynamic pressure ratio of 0.033, and an average model density of 85.9 lb/ft3. The average

quantities for the 1.0 psia case are a store weight of 629.0 lb, a dynamic pressure ratio of

0.010, and a store density of 314.9 lb/ft3.
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Table 4.14: Sphere Heavy Mach Scaling. M=2.22, h=10,000 ft, 1/20 scale

Test Pt q′∞/q∞ Weight (lb) Density (lb/ f t3)

5 3.73 0.034 169.3 84.8

6 3.68 0.033 174.0 87.1

Pt = 3.5 3.50 0.031 195.1 97.7

Pt = 2.0 2.00 0.018 341.5 171.0

13 1.45 0.013 448.6 224.6

15 1.12 0.010 607.2 304.0

18 1.05 0.009 631.7 316.3

19 0.93 0.008 722.1 361.5

22 1.00 0.009 656.9 328.9

23 0.75 0.007 889.2 445.2

24 1.22 0.011 538.6 269.7

25 1.21 0.011 537.7 269.2

Pt = 1.0 1.00 0.009 682.9 341.9

Table 4.15 shows the scaled quantities of each test scaled to 20,000 ft standard day

conditions. The 3.5 psia tests result in an average store weight of 114.7 lb, a 0.050 average

ratio of dynamic pressures, and an average store density of 57.4 lb/ft3. Testing at 1.0 psia

results in averages of 420.3 lb for store weight, dynamic pressure ratio equal to 0.015, and

a store density of 210.4 lb/ft3.

Scaled quantities at 30,000 ft standard day conditions are shown in Table 4.16. Tests

at a stagnation pressure of 3.5 psia result in an average store weight of 74.1 lb, an average

dynamic pressure ratio of 0.077, and an average store density of 37.1 lb/ft3. The average

quantities resulting from a stagnation pressure of 1.0 psia are a store weight of 271.6 lb, a

dynamic pressure ratio of 0.023, and a store density of 136.0 lb/ft3.
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Table 4.15: Sphere Heavy Mach Scaling. M=2.22, h=20,000 ft, 1/20 scale

Test Pt q′∞/q∞ Weight (lb) Density (lb/ f t3)

5 3.73 0.050 113.13 56.6

6 3.68 0.050 116.3 58.2

Pt = 3.5 3.50 0.047 130.4 65.3

Pt = 2.0 2.00 0.027 228.2 114.2

13 1.45 0.019 299.8 150.1

15 1.12 0.015 405.7 203.1

18 1.05 0.014 422.2 211.4

19 0.93 0.012 482.5 241.6

22 1.00 0.013 438.9 219.8

23 0.75 0.010 594.2 297.5

24 1.22 0.016 359.9 180.2

25 1.21 0.016 359.3 179.9

Pt = 1.0 1.00 0.013 456.3 228.5

As the scaled altitude increases, the scaled air density decreases, more closely

approximating the wind tunnel conditions. This causes the scaling to have less effect on

the store weight and density, as seen by comparing the store weight and densities across

Table 4.14 through Table 4.16. However, at 10,000 ft, by utilizing the vacuum system to

lower the stagnation pressure to 1.0 psia, the SVDB is capable of mimicking real world

store separation conditions. This approach of aggressively scaling dynamic pressure and

achieving a heavy Mach-scaled environment at a small scale (1/20) is atypical. More

commonly, model densities are increased through the addition of heavy materials such

as lead shot and are performed at larger scales.
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Table 4.16: Sphere Heavy Mach Scaling. M=2.22, h=30,000 ft, 1/20 scale

Test Pt q′∞/q∞ Weight (lb) Density (lb/ f t3)

5 3.73 0.078 73.1 36.6

6 3.68 0.077 75.1 37.6

Pt = 3.5 3.50 0.072 84.3 42.2

Pt = 2.0 2.00 0.041 147.5 73.8

13 1.45 0.030 193.7 97.0

15 1.12 0.023 262.2 131.3

18 1.05 0.022 272.8 136.6

19 0.93 0.019 311.8 156.1

22 1.00 0.021 283.7 142.0

23 0.75 0.015 384.0 192.3

24 1.22 0.025 232.6 116.5

25 1.21 0.025 232.2 116.3

Pt = 1.0 1.00 0.021 294.9 147.6

92



V. Conclusions

5.1 Nozzle and Cavity Characterization

Understanding and controlling the conditions under which a test is performed is a

crucial first step in building a body of research. The fabrication of three nozzles at nominal

Mach numbers of 2.3, 1.9, and 1.5 presents numerous future opportunities to conduct high

speed wind tunnel testing at AFIT. While well documented contours from AFRL’s TGF

were used in building these nozzles, the small scale environment and new upstream contour

used in order to adapt the nozzles to the AFIT SVDB tunnel introduced several unknown

variables. With the replacement of the SVDB tunnel faceplate and flow straighteners, these

variables were compounded. Through quantitative and qualitative techniques, these new

nozzles were verified to conform to analytical predictions, with average Mach numbers of

2.22, 1.84, and 1.43 being determined through the use of static pressure ratios and verified

through the use of Schlieren photography. Additionally, qualitative data was obtained

from Schlieren photography indicating the boundary layer height at the nozzle exit to be

approximately 0.1 inches for all nozzles. This analysis aligns with the values predicted

through the use of turbulent boundary layer theory.

As verification of testing techniques and procedures, the existing Mach 3.0 nozzle

was tested in a similar fashion. This nozzle was found to have a freestream Mach of 2.96.

Previous research yielded a similar result. This grants further confidence to the results

obtained for the Mach 2.3, 1.9, and 1.5 nozzles.

The Mach 1.5 nozzle was determined to be of questionable use at low stagnation

pressures without modifications to the SVDB diffuser section due to a normal shock

forming in the test section. This shock is delayed through the use of higher stagnation

pressures. However, the increased mass flow associated with these higher pressures reduces

the amount of time the tunnel can be used before back pressure in the system causes the
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tunnel to unstart. Stagnation pressures up to 15.2 psia all display this normal shock at

various locations in the test section, but at 10 psia or higher, the shock is far enough

downstream in the test section to allow for pressure data to be collected.

After verifying and characterizing the flow through the test section with these new

nozzles, the acoustic cavity environment was characterized and compared to the predicted

Rossiter modes. As with the nozzle characterization, the Mach 3.0 nozzle was initially used

to verify the data collection techniques. Results obtained for this nozzle matched data from

previous research and correlated well with predicted resonant frequencies.

Subsquently, the three new nozzles were used in collecting data about the acoustic

cavity environment. The Mach 2.3 and Mach 1.9 nozzles produced spectra that correlated

extremely well with the analytically predicted Rossiter modes, showing clear resonant

peaks for the first seven modes. With the exception of the first mode, less than 10%

difference between the observed and predicted modes was recorded. The first mode showed

a clear peak, but slightly more error.

The cavity flow for the Mach 1.5 nozzle was compromised by the size of the cavity,

even at stagnation pressures up to 15 psia. The angle of the oblique shock off the leading

edge of the cavity is sufficiently steep that the shock is reflected off the lower wall of the

test section and impinges on the back wall of the cavity. Even with this large increase in

noise, several resonant peaks were detected, and the frequencies of these peaks matched

the predicted Rossiter modes.

With the completion of the nozzle characterization and the strong correlation between

the predicted and observed spectra of the cavity environment, the first goal of this research

is successfully completed. The SVDB tunnel now has the capability to conduct tests at

a range of Mach numbers with confidence in the quality of the flow and its ability to

reproduce complex aeroacoustic problems consistently.
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5.2 Store Separation

The capability to successfully release a store from a cavity, such as an internal weapons

bay, at supersonic speeds has clear tactical and operational advantages. However, the

unsteady and highly forceful nature of shallow cavity flows makes this problem especially

difficult and dangerous. To mitigate this danger, CFD simulations and experimental

freedrop testing are extensively used. While CFD simulations can be scaled to many

sizes relatively easily, they are computationally intensive because of the necessity of

a time-accurate simulation and a 6DOF motion solver. Furthermore, the turbulence

modeling may introduce some inaccuracies. Experimental freedrop testing can provide

useful information about full-scale stores, but the scaling methods needed to balance the

inertial and aerodynamic forces incorporate unavoidable compromises. Typical heavy

Mach scaling overcomes the imbalance of aerodynamic and inertial forces by increasing the

model density with lead shot or similarly heavy and destructive materials. This increases

the cost and risk associated with a freedrop test in a wind tunnel environment.

The tests performed in this research were performed with the Mach 2.3 nozzle and

sought to create a heavy Mach scaling environment not by increasing model density,

but by decreasing freestream dynamic pressure. This was accomplished by reducing

the stagnation pressure of the SVDB tunnel. Through the use of a vacuum pump,

the stagnation pressure of the tunnel can be reduced to approximately 1.0 psia while

maintaining supersonic flow of the intended Mach number. These flow conditions were

only previously attainable in a computational setting. Drop testing of an inertially simple

store, a sphere made of ice, yielded Schlieren video data that was used to create a two-

dimensional trajectory of the store as it was dropped from the cavity. Stagnation pressures

of approximately 3.5 psia and 1.0 psia were tested with multiple freedrops. The trajectories

produced by these drops was compared to computational trajectories produced using the
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OVERFLOW solver. The computational flow parameters were altered to mimic those seen

in the experimental testing.

At 3.5 psia stagnation pressure, the experimental and computational trajectories

differed noticeably. Experimentally, a large translation towards the front wall after initial

release was observed, as well as a periodic vertical translation believed to indicate the

“skipping” of the store off the shear layer separating the cavity from the freestream. The

forward translation predicted in the computational trajecory was significantly smaller,

and no “skipping” phenomenon was predicted. Despite these differences, the relative

magnitude of total vertical translation was similar between the computational and

experimental trajectories.

At 1.0 psia stagnation pressure, the experimental and computational trajectories

matched fairly closely. While the computational trajectory did not display an initial

forward motion as seen in the experimental trajectories, the initial downward translation

and subsequent upward translation correlated closely with the experimental trajectories.

The differences seen in the correlation between experimental and computational data

for the different stagnation pressures seem to suggest that when inertial forces play a

more prominent role, as in the 1.0 psia case, the computational and experimental data

correlate more closely. Another factor leading to differences between the experimental and

computational results may also be the unsteadiness inherent to cavity flow and the timing

of the release.

Heavy Mach scaling was applied to the experimental and computational results,

scaling the data to standard day conditions at multiple altitudes. By reducing the stagnation

pressure to such low levels, scaled store weights typical of modern-day weapons were

achieved. This will allow future research to utilize the low stagnation pressure setup to

obtain operationally relevant results.
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With these results, this research has satisfied both its secondary goal of directly

comparing low pressure experimental and computational results and its tertiary goal of

generating two-dimensional trajectory plots of the experimental data for further direct

comparison of trajectory data between the experimental and computational results.

5.3 Future Opportunities

The numerous hardware upgrades performed on the AFIT SVDB tunnel provide a

launching point for a significant amount of store separation research. The following

discussion provides a few areas where research could be conducted.

• Nozzle Characterization: While the freestream turbulence level and boundary

layer thickness were predicted analytically in this research, and the boundary layer

thickness qualitatively verified, a thorough characterization using PIV or hot-wire

techniques would improve the experimental control of future projects

• Flow Control: The cavity used in this research implemented no flow control devices

in an attempt to reduce peak or broadband cavity noise levels. Significant research

has already been conducted on flow control, but the AFIT SVDB tunnel now has the

capability to test more advanced flow control methods at multiple Mach numbers and

in a well understood cavity environment.

• Computational Tuning: The grids used in this research were obtained from previous

research. A full time-step study, grid-refinement study, and turbulence model

optimization with the goal of matching the spectra produced by the experimental

cavity would increase AFIT’s store separation capabilities.

• Store Separation: While heavy Mach scaling dampens pitch response, it would

still be beneficial to research the trajectories produced by a more complicated store

geometry than a sphere. Some research has been done utilizing a Mk. 82 geometry,
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but not at the low experimental pressures that can now be obtained using the SVDB

tunnel. Additionally, the release mechanism could be altered to provide an ejection

force similar to that seen in operational store separations.
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Appendix A: Nozzle Design Code

1 % Nozzle d e s i g n code , u s e s c o n t o u r s a d a p t e d from TGF
c o n t o u r s

2

3 %% C o n s t a n t s
4 c l o s e a l l ; c l e a r a l l ; c l c
5 l o a d X15 da ta . t x t
6 l o a d X19 da ta . t x t
7 l o a d X23 da ta . t x t
8

9 ymax = 1 . 2 ;
10 d i s p l a y =1; %0 f o r w r i t e , 1 f o r g raphs , o t h e r w i s e n o t h i n g
11 h e i g h t = 2 . 5 ;
12 c u r v e =0; %1 f o r f i t
13

14 %% Compute
15 f o r i =1:3
16 s w i t c h i
17 c a s e 1
18 A=X15 da ta ;
19 c a s e 2
20 A=X19 da ta ;
21 c a s e 3
22 A=X23 da ta ;
23 o t h e r w i s e
24

25 end
26

27 ymin=min (A ( : , 2 ) ) ;
28 y i n t =(ymax+ymin ) / 2 ;
29 amp=(ymax−ymin ) / 2 ;
30

31 i n d= f i n d (A ( : , 2 ) ==min (A ( : , 2 ) ) , 1 , ’ f i r s t ’ ) ;
32

33 p e r =2*(14 / h e i g h t −A( ind , 1 ) ) ;
34

35 omega=p e r / 2 / p i ;
36

37 f=amp* cos ( omega*A ( : , 1 ) )+ y i n t ;
38

39 i nd2= f i n d ( f==min ( f ) , 1 , ’ f i r s t ’ ) ;
40

41 f con= c a t ( 1 , f ( 1 : i nd2 ) ,A( i n d : end , 2 ) ) ;
42
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43 e r r o r 1 =abs ( f ( ind2 −1)−A( ind −1 ,2) ) ;
44 e r r o r 2 =abs ( f ( ind2 −2)−A( ind −2 ,2) ) ;
45

46 en d i nd= f i n d ( fcon >0 ,1 , ’ l a s t ’ ) ;
47 i nd3 ( i )=en d i nd ;
48

49 s w i t c h i
50 c a s e 1
51 M15 . amp=amp ;
52 M15 . y= y i n t ;
53 M15 .w=omega ;
54 M15 . e1= e r r o r 1 ;
55 M15 . e2= e r r o r 2 ;
56 M15 . f con= f con ;
57 c a s e 2
58 M19 . amp=amp ;
59 M19 . y= y i n t ;
60 M19 .w=omega ;
61 M19 . e1= e r r o r 1 ;
62 M19 . e2= e r r o r 2 ;
63 M19 . f con= f con ;
64 c a s e 3
65 M23 . amp=amp ;
66 M23 . y= y i n t ;
67 M23 .w=omega ;
68 M23 . e1= e r r o r 1 ;
69 M23 . e2= e r r o r 2 ;
70 M23 . f con= f con ;
71 o t h e r w i s e
72

73 end
74 end
75

76 f o r i =1:3
77 s w i t c h i
78 c a s e 1
79 f con=M15 . f con ;
80 c a s e 2
81 f con=M19 . f con ;
82 c a s e 3
83 f con=M23 . f con ;
84 o t h e r w i s e
85

86 end
87
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88 f con= c a t ( 1 , f con ( 1 : end ) , f con ( end ) * ones ( max ( ind3 )−
l e n g t h ( f con ) , 1 ) ) ;

89

90 s w i t c h i
91 c a s e 1
92 M15 . f con= f con ;
93 c a s e 2
94 M19 . f con= f con ;
95 c a s e 3
96 M23 . f con= f con ;
97 o t h e r w i s e
98

99 end
100 end
101

102 dx=X15 da ta ( 2 , 1 )−X15 da ta ( 1 , 1 ) ;
103 x =0: dx : dx *( max ( ind3 ) −1) ;
104

105

106 %% D i s p l a y
107 f o r i =1:3
108 s w i t c h i
109 c a s e 1
110 A=M15 ;
111 f i l e n a m e= ’ M15 contour . t x t ’ ;
112 s t r = ’Mach=1.5 Nozzle Contour ’ ;
113 c a s e 2
114 A=M19 ;
115 f i l e n a m e= ’ M19 contour . t x t ’ ;
116 s t r = ’Mach=1.9 Nozzle Contour ’ ;
117 c a s e 3
118 A=M23 ;
119 f i l e n a m e= ’ M23 contour . t x t ’ ;
120 s t r = ’Mach=2.3 Nozzle Contour ’ ;
121 o t h e r w i s e
122

123 end
124 i f d i s p l a y ==1
125 f i g u r e
126 p l o t ( h e i g h t *x , h e i g h t *A. f con )
127 g r i d on
128 x l a b e l ( ’ Length ( i n ) ’ )
129 y l a b e l ( ’ Dimension from C e n t e r l i n e ( i n ) ’ )
130 t i t l e ( s t r ) ;
131 a x i s ( [ 0 h e i g h t *x ( end ) 0 h e i g h t *ymax + 0 . 1 ] ) ;
132
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133 e l s e i f d i s p l a y ==0
134 f i l e I D = fopen ( f i l e n a m e , ’w’ ) ;
135 f o r j =1: l e n g t h (A. f con )
136 f p r i n t f ( f i l e I D , ’ %4.8 f %4.8 f %4.8 f \n ’ , h e i g h t *x ( j )

, h e i g h t *A. f con ( j ) , 0 ) ;
137 end
138 end
139 end
140

141 %% Curve f i t
142 x= h e i g h t *x ;
143 f o r i =1:3
144 s w i t c h i
145 c a s e 1
146 A=M15 ;
147 c a s e 2
148 A=M19 ;
149 c a s e 3
150 A=M23 ;
151 end
152 A. fcon=A. fcon * h e i g h t ;
153 i f c u r v e ==1
154 A. p6= p o l y f i t ( x ’ ,A. fcon , 6 ) ;
155 A. p8= p o l y f i t ( x ’ ,A. fcon , 8 ) ;
156 A. p10= p o l y f i t ( x ’ ,A. fcon , 1 0 ) ;
157 A. p12= p o l y f i t ( x ’ ,A. fcon , 1 2 ) ;
158 A. p14= p o l y f i t ( x ’ ,A. fcon , 1 4 ) ;
159 A. p16= p o l y f i t ( x ’ ,A. fcon , 1 6 ) ;
160

161 A. f i t 6 = p o l y v a l (A. p6 , x ) ;
162 A. f i t 8 = p o l y v a l (A. p8 , x ) ;
163 A. f i t 1 0 = p o l y v a l (A. p10 , x ) ;
164 A. f i t 1 2 = p o l y v a l (A. p12 , x ) ;
165 A. f i t 1 4 = p o l y v a l (A. p14 , x ) ;
166 A. f i t 1 6 = p o l y v a l (A. p16 , x ) ;
167

168 A. p e r r 6=max ( (A. fcon ’−A. f i t 6 ) . / A. fcon ’ ) ;
169 A. p e r r 8=max ( (A. fcon ’−A. f i t 8 ) . / A. fcon ’ ) ;
170 A. p e r r 1 0=max ( (A. fcon ’−A. f i t 1 0 ) . / A. fcon ’ ) ;
171 A. p e r r 1 2=max ( (A. fcon ’−A. f i t 1 2 ) . / A. fcon ’ ) ;
172 A. p e r r 1 4=max ( (A. fcon ’−A. f i t 1 4 ) . / A. fcon ’ ) ;
173 A. p e r r 1 6=max ( (A. fcon ’−A. f i t 1 6 ) . / A. fcon ’ ) ;
174 end
175 s w i t c h i
176 c a s e 1
177 M15=A;
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178 c a s e 2
179 M19=A;
180 c a s e 3
181 M23=A;
182 end
183 end
184

185 M15con=M15 . f con ;
186 M19con=M19 . f con ;
187 M23con=M23 . f con ;
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Appendix B: Transducer Calibrations

Figure B.1: 1-1: Cavity Front

Figure B.2: 1-2: Low Pressure Diaphragm Setup
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Figure B.3: 1-3: Stagnation Chamber

Figure B.4: 2-1: Vacuum Valve
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Figure B.5: 2-2: Cavity Back Wall

Figure B.6: 2-3: High Pressure Diaphragm Setup
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Appendix C: Flow Conditions Code

1 % F u n c t i o n t h a t c a l c u l a t e s f low p a r a m e t e r s based on f i l e
name s t r u c t u r e ,

2 % u s e s EE u n i t s o f p s i , l b / f t ˆ 3 , f t / s , deg R
3

4 f u n c t i o n [A]= Flow Con ( f i l e p a t h , A, t s t a r t )
5

6 %% C o n s t a n t s
7 gamma = 1 . 4 ;
8 R a i r =1716;
9 C1=1.458 e −6;

10 C2 =1 1 0 . 4 ;
11

12 tmp=roundn (A. d a t a ( : , 1 ) , −1) ;
13 i n d= f i n d ( tmp== t s t a r t , 1 , ’ f i r s t ’ ) ;
14 A. d a t a=A. d a t a ( i n d : end , : ) ;
15 %% Mach number and p r e s s u r e r a t i o
16 tmp= s t r f i n d ( f i l e p a t h , ’ \ ’ ) ;
17 f i l e n a m e= f i l e p a t h ( tmp ( end ) +1: end ) ;
18

19 % l o g i c t h a t d e t e r m i n e s whe the r Mach number i s assumed or
c a l c u l a t e d .

20 % Hinges on f i l e n a m e f o r m a t u s i n g word ’ s t r a i g h t ’ ( e . g .
21 % M a c h 2 3 s t r a i g h t 4 . lvm ) . Accep t s ’M’ or ’Mach ’ as f i r s t

e x p r e s s i o n .
22

23 i f i s e m p t y ( s t r f i n d ( f i l e n a m e , ’ s t r a i g h t ’ ) ) ==1 % i f ’ s t r a i g h t ’
n o t i n f i l e n a m e

24 a c t u a l M a c h = [ 2 . 9 5 7 9 , 2 . 2 2 2 6 , 1 . 8 3 5 2 , 1 . 4 2 9 4 ] ;
25 des ign Mach = [ 3 , 2 3 , 1 9 , 1 5 ] ;
26 i f f i l e n a m e ( 1 : 4 ) == ’Mach ’
27 tmp= s s c a n f ( f i l e n a m e , ’%*4s%f %*s %*f . lvm ’ ) ;
28 i n d= f i n d ( des ign Mach==tmp , 1 , ’ f i r s t ’ ) ;
29 e l s e
30 tmp= s s c a n f ( f i l e n a m e , ’%*1s%f %*s %*f . lvm ’ ) ;
31 i n d= f i n d ( des ign Mach==tmp , 1 , ’ f i r s t ’ ) ;
32 end
33 A. Mach in f=a c t u a l M a c h ( i n d ) ;
34 p r a t =(1+(gamma−1) * . 5 *A. Mach in f ˆ 2 ) ˆ ( gamma / ( gamma−1) ) ;
35 % c a l c u l a t e p r e s s u r e r a t i o o f f o f assumed Mach number
36

37 e l s e %c a l c u l a t e Mach number u s i n g p r e s s u r e r a t i o
38 f o r j =1: l e n g t h (A. d a t a )
39 V=(A. d a t a ( j , 7 ) +0 .0549) / 1 . 9 1 1 8 ;
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40 p =1.9065*V−0 . 0 1 3 ;
41 A. p r a t ( j )=A. d a t a ( j , 3 ) . / p ;
42 A. Mach ( j )= s q r t ( 2 / ( gamma−1) * (A. p r a t ( j ) ˆ ( ( gamma−1) /

gamma ) −1) ) ;
43 end
44 A. Mach in f=mean (A. Mach ) ;
45 A. Mach s td= s t d (A. Mach ) ;
46 p r a t =mean (A. p r a t ) ;
47 end
48

49 A. f i l e n a m e= f i l e n a m e ;
50

51 %% Other C a l c s
52 A. p t=mean (A. d a t a ( : , 3 ) ) ;
53 A. p t s t d = s t d (A. d a t a ( : , 3 ) ) ;
54 A. p i n f =A. p t / p r a t ;
55

56 Tt1 =(mean (A. d a t a ( : , 2 ) ) +273 .15) . * ( 9 / 5 ) ;
57 T r a t =1+(gamma−1) * . 5 *A. Mach in f ˆ 2 ;
58 A. T i n f =Tt1 / T r a t ;
59

60 A. r h o t =A. p t * 1 4 4 / ( R a i r * Tt1 ) ;
61 A. r h o i n f = A. p i n f * 1 4 4 / ( R a i r *A. T i n f ) ;
62

63 mut SI=C1 *( Tt1 * 5 / 9 ) ˆ 1 . 5 / ( Tt1 *5 /9+C2 ) ;
64 A. mut=mut SI * . 0 2 0 8 8 5 4 3 ; %c o n v e r t t o EE
65

66 mu SI=C1 *(A. T i n f * 5 / 9 ) ˆ 1 . 5 / ( A. T i n f *5 /9+C2 ) ;
67 A. mu in f=mu SI * . 0 2 0 8 8 5 4 3 ; %c o n v e r t t o EE
68

69 A. a t = s q r t ( gamma* R a i r * Tt1 ) ;
70 A. a i n f = s q r t ( gamma* R a i r *A. T i n f ) ;
71 A. V i n f=A. Mach in f *A. a i n f ;
72

73 A. R e i n f =(A. r h o i n f *A. V i n f ) /A. mu in f ;
74

75 A. q i n f =0.5*A. r h o i n f *A. V i n f ˆ 2 ;
76

77 end
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Appendix D: Rossiter Modes Code

1 % F u n c t i o n t h a t c a l c u l a t e s R o s s i t e r modes u s i n g m o d i f i e d
R o s s i t e r e q u a t i o n

2 % from H e l l e r and B l i s s ( a l l o w s improved a c c u r a c y a t
s u p e r s o n i c s p e e d s ) .

3 % I n c l u d e s l o g i c t o o u t p u t e r r o r messages i f r e q u i r e d
s t r u c t u r e f i e l d s do

4 % n o t e x i s t .
5 f u n c t i o n [A]= R o s s i t e r (A, modes , L )
6

7 %% Check t o e n s u r e r e q u i r e d f i e l d e x i s t
8 check mach= i s f i e l d (A, ’ Mach in f ’ ) ;
9 check V= i s f i e l d (A, ’ V i n f ’ ) ;

10

11 %% C a l c u l a t e R o s s i t e r modes
12 i f check mach==1 && check V==1
13 b e t a = . 2 5 ;
14 kc = . 5 7 ;
15 gamma = 1 . 4 ;
16

17 f o r i =1: l e n g t h ( modes )
18 A. S t r ( i ) =( modes ( i )−b e t a ) / ( A. Mach in f / s q r t ( 1 + . 5 * (

gamma−1) *A. Mach in f ˆ 2 ) +1 / kc ) ;
19 A. Rf req ( i )=A. S t r ( i ) *A. V i n f / L ;
20 end
21 e l s e i f check mach==0 && check V==1
22 d i s p l a y ( ’ Mach in f does n o t e x i s t i n i n p u t 1 ’ )
23 e l s e i f check mach==1 && check V==0
24 d i s p l a y ( ’ V i n f does n o t e x i s t i n i n p u t 1 ’ )
25 e l s e
26 d i s p l a y ( ’ Mach in f and V i n f do n o t e x i s t i n i n p u t 1 ’ )
27 end
28

29 end
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Appendix E: Boundary Layer Code

1 % C a l c u l a t e s Nozzle BL t h i c k n e s s based on t u r b u l e n t boundary
l a y e r t h e o r y

2

3 %% I n p u t and Mach s p e c i f i c c a l c u l a t i o n s
4 c l o s e a l l ; c l e a r a l l ; c l c
5 M nom= i n p u t ( ’ Nominal Mach Number ( no d e c i m a l s i . e .

1 5 , 1 9 , 2 3 , 3 ) : ’ ) ;
6 s w i t c h M nom
7 c a s e 15
8 t e s t s =[1 2 3 5 6 7 ] ;
9 l o a d M15 . mat %from n o z z l e d e s i g n code

10 h=min (M15 . f con ) ;
11 i n d= f i n d (M15 . f con==h , 1 , ’ f i r s t ’ ) ;
12 x ra ng e= l i n s p a c e ( 0 , 1 4 , l e n g t h (M15 . f con ) ) ;
13 x=x ra ng e ( i n d ) ;
14 fp =−2.5*M15 . amp*M15 .w* s i n (M15 .w*x ) ; %f i r s t d e r i v
15 fpp =−2.5*M15 . amp*M15 .wˆ2* cos (M15 .w*x ) ; %second d e r i v
16 rho=abs (1+ fp ˆ 2 ) ˆ 1 . 5 / abs ( fpp ) ; %r a d i u s o f c u r v a t u r e
17 R=rho / h ;
18 g =0 .195213 ; %from f i g u r e from Rogers and Davis
19 c a s e 19
20 t e s t s =[1 5 6 7 8 ] ;
21 l o a d M19 . mat
22 h=min (M19 . f con ) ;
23 i n d= f i n d (M19 . f con==h , 1 , ’ f i r s t ’ ) ;
24 x ra ng e= l i n s p a c e ( 0 , 1 4 , l e n g t h (M19 . f con ) ) ;
25 x=x ra ng e ( i n d ) ;
26 fp =−2.5*M19 . amp*M19 .w* s i n (M19 .w*x ) ;
27 fpp =−2.5*M19 . amp*M19 .wˆ2* cos (M19 .w*x ) ;
28 rho=abs (1+ fp ˆ 2 ) ˆ 1 . 5 / abs ( fpp ) ;
29 R=rho / h ;
30 g =0 .228697 ;
31 c a s e 23
32 t e s t s =[1 2 3 4 5 6 8 9 ] ;
33 l o a d M23 . mat
34 h=min (M23 . f con ) ;
35 i n d= f i n d (M23 . f con==h , 1 , ’ f i r s t ’ ) ;
36 x ra ng e= l i n s p a c e ( 0 , 1 4 , l e n g t h (M23 . f con ) ) ;
37 x=x ra ng e ( i n d ) ;
38 fp =−2.5*M23 . amp*M23 .w* s i n (M23 .w*x ) ;
39 fpp =−2.5*M23 . amp*M23 .wˆ2* cos (M23 .w*x ) ;
40 rho=abs (1+ fp ˆ 2 ) ˆ 1 . 5 / abs ( fpp ) ;
41 R=rho / h ;
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42 g =0 .265212 ;
43 c a s e {3 , 3 0 } % no rho c a l c b e c a u s e c o n t o u r n o t known
44 M nom=3;
45 t e s t s =[4 5 6 7 ] ;
46 g =0 . 3 3 1 9 ;
47 end
48

49 basename= s t r c a t ( ’C : \ Users \ J u s t i n \Documents \ T h e s i s \ R e s u l t s \
S t r a i g h t T e s t S e c t i o n \Mach ’ , . . .

50 num2s t r ( M nom ) , ’ s t r a i g h t ’ ) ;
51 t s t a r t = 3 . 4 ; %d e t e r m i n e d t h r o u g h o b s e r v a t i o n o f p r e s s u r e

t r a c e s
52

53 f o r i =1: l e n g t h ( t e s t s )
54 f i l e p a t h = s t r c a t ( basename , num2s t r ( t e s t s ( i ) ) , ’ . lvm ’ ) ;
55 A= i m p o r t d a t a ( f i l e p a t h , ’ \ t ’ , 2 3 ) ;
56

57 A=Flow Con ( f i l e p a t h , A, t s t a r t ) ;
58 % Method from Rogers and Davis / McCabe
59 Re h=A. r h o t *A. a t *h /A. mut ;
60

61 d s t h =0.026* h *(R ˆ 2 / Re h ) ˆ 0 . 2 ;
62 d t h = d s t h / g ;
63

64 dx=x ra ng e ( end )−x ;
65 Re x=A. r h o i n f *A. V i n f *dx /A. mu in f ;
66

67 d e l d =0.29* dx / ( Re x ˆ . 2 ) ;
68

69 A. d= d t h + d e l d ;
70

71 varname= s t r c a t ( ’T ’ , num2s t r ( i ) ) ;
72 a s s i g n i n ( ’ ba se ’ , varname ,A) ;
73 end
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Appendix F: Rossiter Mode Results

Table F.1: Comparison of Observed and Predicted Rossiter Modes for Mach 2.96

Test Mode Predicted (Hz) Observed (Hz) Difference (Hz)

1

2 1795.12 1926.24 131.12

3 2820.91 2865.81 44.91

4 3846.69 4013.38 166.70

5 4872.48 5224.95 352.48

2

2 1791.07 2254.14 463.07

3 2814.54 2965.08 150.54

4 3838.01 4004.02 166.01

5 4861.15 5258.96 397.48

3

2 1789.45 1818.89 29.45

3 2811.99 2807.98 -4.01

4 3834.53 3957.06 122.53

5 4857.07 5202.14 345.07

4

2 1782.49 1780.99 -1.51

3 2801.06 2770.12 -30.94

4 3819.63 3943.25 123.63

5 4838.19 5132.39 294.19
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Table F.2: Comparison of Observed and Predicted Rossiter

Modes for Mach 2.22

Test Mode Predicted (Hz) Observed (Hz) Difference (Hz)

2

1 721.50 627.01 -94.50

2 1683.51 1575.01 -108.49

3 2645.51 2579.02 -66.49

4 3607.51 3557.03 -48.49

5 4569.52 4651.03 81.52

6 5531.52 5647.04 115.52

3

1 725.91 515.82 -210.09

2 1693.79 1651.59 -42.21

3 2661.68 2611.35 -50.32

4 3629.56 3587.12 -42.44

5 4597.44 4706.89 109.44

6 5565.33 5674.65 109.33

4

1 722.54 517.08 -205.46

2 1685.92 1595.85 -90.08

3 2649.31 2578.62 -70.69

4 3612.69 3569.39 -43.31

5 4576.08 4624.16 48.08

6 5539.46 5638.93 99.46

Continued on next page
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Table F.2 – Continued from previous page

Test Mode Predicted (Hz) Observed (Hz) Difference (Hz)

5

1 727.50 543.01 -184.50

2 1697.51 1683.01 -14.49

3 2667.51 2607.02 -60.49

4 3637.52 3643.03 5.52

5 4607.52 4671.04 63.52

6 5577.52 5755.05 177.52

6

1 728.78 521.55 -207.22

2 1700.48 1696.96 -3.52

3 2672.18 2664.36 -7.82

4 3643.88 3631.77 -12.12

5 4615.58 4783.17 167.58

6 5587.29 5742.57 155.29

7

1 726.19 516.38 -209.81

2 1694.45 1620.89 -73.55

3 2662.70 2605.41 -57.30

4 3630.96 3597.92 -33.04

5 4599.21 4686.43 87.21

6 5567.47 5670.94 103.47

114



Table F.3: Comparison of Observed and Predicted Rossiter Modes for Mach 1.84

Test Mode Predicted (Hz) Observed (Hz) Difference (Hz)

2

1 685.49 538.99 -146.51

2 1599.49 1534.97 -64.51

3 2513.48 2514.96 1.48

4 3427.47 3374.94 -52.53

5 4341.46 4402.93 61.46

6 5255.46 5398.91 143.46

3

1 685.66 547.31 -138.34

2 1599.87 1535.73 -64.13

3 2514.08 2564.15 50.08

4 3428.29 3376.57 -51.71

5 4342.50 4396.99 54.50

6 5256.70 5449.41 192.70

4

1 690.99 509.97 -181.01

2 1612.30 1544.60 -67.70

3 2533.61 2507.23 -26.39

4 3454.93 3445.86 -9.07

5 4376.24 4488.48 112.24

6 5297.56 5459.11 161.56

5

1 691.50 527.01 -164.50

2 1613.51 1595.01 -18.49

3 2535.51 2607.02 71.51

4 3457.51 3459.03 1.51

5 4379.52 4455.03 75.52

6 5301.52 5491.03 189.52
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Table F.4: Comparison of Observed and Predicted Rossiter Modes for Mach 1.43

Test Mode Predicted (Hz) Observed (Hz) Difference (Hz)

1

1 673.44 538.88 -134.56

2 1571.36 1518.73 -52.64

3 2469.29 2250.57 -218.71

4 3367.21 3246.42 -120.79

2

1 673.45 514.91 -158.55

2 1571.39 1486.78 -84.61

3 2469.33 2314.66 -154.67

4 3367.27 3326.53 -40.73

3

1 658.09 484.17 -173.91

2 1535.53 1423.07 -112.47

3 2412.98 2185.96 -227.02

4 3290.43 3124.86 -165.57
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Appendix G: Detailed Drawings of Nozzle Blocks
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Figure G.1: Representative Drawing of Nozzle Block from Multiple Views (Mach 1.5)
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Figure G.3: Drawing of Mach 1.9 Nozzle Contour
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Figure G.4: Drawing of Mach 2.3 Nozzle Contour
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Appendix H: Trajectory Plotting Code

1 % P l o t s m u l t i p l e t r a j e c t o r i e s w i t h o u t t ime s tamps . Tuned f o r
1 . 0 p s i a c a s e .

2

3 c l o s e a l l ; c l e a r a l l ; c l c
4 check= e x i s t ( ’ M u l t t r a j . mat ’ , ’ f i l e ’ ) ;
5 i f check ˜=0
6 l o a d M u l t t r a j . mat
7 e l s e
8 n u m t r a j= i n p u t ( ’ Number o f t r a j e c t o r i e s : ’ ) ;
9 f o r i =1: n u m t r a j

10 [ f i l e s , p a t h ] = u i g e t f i l e ( ’ * ’ , ’ M u l t i S e l e c t ’ , ’ on ’ ) ;
11 A= [ ] ;
12 i f i s c e l l ( f i l e s )
13 i n d x =1;
14 i n d z =2;
15 i n d t =3;
16 f o r n = 1 : l e n g t h ( f i l e s )
17 d a t a = i m p o r t d a t a ( f u l l f i l e ( pa th , f i l e s { n } ) ) ;

% f u l l f i l e i n c l u d i n g p a t h
18 A( n , 1 : 2 ) =d a t a . d a t a ;
19 t ime= s s c a n f ( f i l e s { n } , ’%f %*f m23 . csv ’ ) ;
20 t l e n = l e n g t h ( s p r i n t f ( ’ %. f ’ , abs ( t ime ) ) ) ;
21 i f t l e n == 4 | | t l e n ==3
22 A( n , i n d t )= t ime * 0 . 3 / 2 0 0 0 ;
23 e l s e
24 A( n , i n d t )= t ime * 3 / 2 0 0 0 ;
25 end
26 end
27 e l s e
28 d a t a = i m p o r t d a t a ( f u l l f i l e ( pa th , f i l e s ) ) ;
29 A=[A; d a t a ] ;
30 i n d x= f i n d (A( 1 , 2 : 4 ) ==max (A( 1 , 2 : 4 ) ) ) +1;
31 i n d z = f i n d (A( 1 , 2 : 4 ) ==min (A( 1 , 2 : 4 ) ) ) +1;
32 i n d y= f i n d (A( 1 , 2 : 4 ) ==min ( abs (A( 1 , 2 : 4 ) ) ) ) +1;
33 i n d t =1;
34 A ( : , i n d z ) =(A ( : , i n d z ) +4) . * 0 . 3 7 5 ;
35 A ( : , i n d x ) =(A ( : , i n d x ) −15) . * 0 . 3 7 5 ;
36 r =0 .46875 ;
37 i n d c x= f i n d (A ( : , i n d x )+r >=6 .75 ,1 , ’ f i r s t ’ ) ;
38 i n d c z = f i n d (A ( : , i n d z )−r <=0 ,1 , ’ f i r s t ’ ) ;
39 i n d c y= f i n d ( abs (A ( : , i n d y ) )+r >=0 .75 ,1 , ’ f i r s t ’ ) ;
40
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41 i f i s e m p t y ( i n d c x ) ==0 | | i s e m p t y ( i n d c y ) ==0 | |

i s e m p t y ( i n d c z ) ==0
42 c o l l i s i o n =[ i n d c x i n d c y i n d c z ] ;
43 i n d t = f i n d ( c o l l i s i o n ==min ( c o l l i s i o n ) , 1 , ’ f i r s t

’ ) ;
44 A=A( 1 : c o l l i s i o n ( i n d t ) , : ) ;
45 end
46

47 Vref =1826 .72 ; %f t / s
48 L r e f =0 .03125 ; %f t / g r i d u n i t
49

50 A ( : , 1 ) =A ( : , 1 ) * L r e f / Vref ;
51 A ( : , 1 ) =A ( : , 1 )−A( 1 , 1 ) ;
52

53 t i =A( 1 , 1 ) ;
54 t f =A( end , 1 ) ;
55

56 A=[A ( : , i n d x ) A ( : , i n d z ) A ( : , i n d t ) A ( : , i n d y ) ] ;
57

58 end
59 varname= s t r c a t ( ’T ’ , num2s t r ( i ) ) ;
60 a s s i g n i n ( ’ ba se ’ , varname ,A) ;
61 end
62 end
63

64 %% O b j e c t s
65 cav1 = [ −5 . 6 2 5 : 0 . 0 3 7 5 : 0 ; 1 . 5 * ones ( 1 , 1 5 1 ) ] ;
66 cav2 = [ 0 : . 0 3 7 5 : 6 . 7 5 ; z e r o s ( 1 , 1 8 1 ) ] ;
67 cav3 = [ 6 . 7 5 : . 0 3 7 5 : 1 2 . 3 7 5 ; 1 . 5 * ones ( 1 , 1 5 1 ) ] ;
68 cav =[ cav1 cav2 cav3 ] ;
69 f o r i =1: l e n g t h ( n u m t r a j )
70 varname= s t r c a t ( ’T ’ , num2s t r ( i ) ) ;
71 a s s i g n i n ( ’ ba se ’ , ’A’ , e v a l ( varname ) ) ;
72

73 ymin1 =[ min ( cav ( 2 , : ) ) min (A ( : , i n d z ) ) ] ;
74 ymin1=min ( ymin1 ) ;
75 ymin2 ( i )=round ( ymin1 *4) / 4 −0 . 2 5 ;
76 ymax1=[max ( cav ( 2 , : ) ) max (A ( : , i n d z ) ) ] ;
77 ymax1=max ( ymax1 ) ;
78 ymax2 ( i )=round ( ymax1 *4) / 4 + 0 . 2 5 ;
79

80 end
81

82 ymin=min ( ymin2 ) ;
83 ymax=max ( ymax2 ) ;
84
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85 % r =0 .46875 ;
86 % c i r c x =− r : . 0 0 1 : r +0 . 0 0 1 ;
87 % c i r c z = r e a l ( s q r t ( r ˆ2 −( c i r c x ) . ˆ 2 ) ) ;
88 % m c i r c z=− c i r c z ;
89 % c i r c x = c i r c x +A( end , i n d x ) ;
90 % c i r c z = c i r c z +A( end , i n d z ) ;
91 % m c i r c z=m c i r c z+A( end , i n d z ) ;
92

93 %% Graph
94 s c r s z =g e t ( 0 , ’ S c r e e n S i z e ’ ) ;
95 f i g u r e ( ’ P o s i t i o n ’ , [ 1 0 s c r s z ( 3 ) 0 . 7 * s c r s z ( 4 ) ] )
96 s e t ( gcf , ’ P a p e r P o s i t i o n M o d e ’ , ’ a u t o ’ )
97 ho ld on
98 p l o t ( cav ( 1 , : ) , cav ( 2 , : ) , ’−k ’ , ’ LineWidth ’ , 1 . 5 )
99 p l o t ( T1 ( : , i n d x ) , T1 ( : , i n d z ) , ’− r ’ , ’ LineWidth ’ , 3 . 0 )

100 p l o t ( T2 ( : , i n d x ) , T2 ( : , i n d z ) , ’−ob ’ , ’ LineWidth ’ , 1 . 5 )
101 p l o t ( T3 ( : , i n d x ) , T3 ( : , i n d z ) , ’ .−g ’ , ’ Marke rS ize ’ , 1 5 , ’

LineWidth ’ , 1 . 5 )
102 p l o t ( T4 ( : , i n d x ) , T4 ( : , i n d z ) , ’−*c ’ , ’ Marke rS ize ’ , 7 , ’ LineWidth

’ , 1 . 5 )
103 p l o t ( T5 ( : , i n d x ) , T5 ( : , i n d z ) , ’−dm ’ , ’ LineWidth ’ , 1 . 5 )
104 p l o t ( T6 ( : , i n d x ) , T6 ( : , i n d z ) , ’−x ’ , ’ Co lo r ’ , [ 0 . 9 5 0 . 4 0 ] , ’

Marke rS ize ’ , 1 0 , ’ LineWidth ’ , 1 . 5 )
105 p l o t ( T7 ( : , i n d x ) , T7 ( : , i n d z ) , ’−+ ’ , ’ Co lo r ’ , [ . 5 0 . 9 ] , ’

LineWidth ’ , 1 . 5 )
106 p l o t ( T8 ( : , i n d x ) , T8 ( : , i n d z ) , ’−> ’ , ’ Co lo r ’ , [ 0 0 . 5 ] , ’

LineWidth ’ , 1 . 5 )
107 p l o t ( T9 ( : , i n d x ) , T9 ( : , i n d z ) , ’−< ’ , ’ Co lo r ’ , [ 0 . 5 0 ] , ’

LineWidth ’ , 1 . 5 )
108 % f o r i =1: l e n g t h ( n u m t r a j )
109 % varname= s t r c a t ( ’ T ’ , num2s t r ( i ) ) ;
110 % a s s i g n i n ( ’ base ’ , ’A’ , e v a l ( varname ) ) ;
111 %
112 % p l o t (A ( : , i n d x ) ,A ( : , i n d z ) , ’−b ’ )
113 % end
114 l e g= l e g e n d ( ’ C a v i t y ’ , ’ C o m p u t a t i o n a l ’ , ’ P t =1.45 ’ , ’ P t =1.12 ’ , ’

P t =1.05 ’ , . . .
115 ’ P t =0.93 ’ , ’ P t =1.00 ’ , ’ P t =0.75 ’ , ’ P t =1.22 ’ , ’ P t =1.21 ’

, . . .
116 ’ L o c a t i o n ’ , [ 0 . 1 0 . 5 0 . 1 0 . 1 ] ) ;
117 s e t ( l eg , ’ F o n t S i z e ’ , 1 2 ) ;
118 s e t ( gca , ’ y d i r ’ , ’ r e v e r s e ’ , ’ P o s i t i o n ’ , [ 0 . 0 4 8 0 .004 0 .942

0 . 9 9 6 ] )
119 xl im ( [ −0 . 2 5 7 . 5 ] )
120 yl im ( [ ymin 2 . 2 5 ] )
121 s e t ( gca , ’ D a t a A s p e c t R a t i o ’ , [ 1 1 1 ] , ’ YTick ’ , − 0 . 2 5 : 0 . 2 5 : 2 . 2 5 )
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122 g r i d on
123 x l a b e l ( ’X C o o r d i n a t e o f C e n t e r o f Mass ’ , ’ F o n t S i z e ’ , 1 2 )
124 y l a b e l ( ’Z C o o r d i n a t e o f C e n t e r o f Mass ’ , ’ F o n t S i z e ’ , 1 2 )
125

126 %% Save
127 s a v e g r a p h= i n p u t ( ’ Save graph t o f i l e ? ( y / n ) ’ , ’ s ’ ) ;
128 i f s a v e g r a p h== ’ y ’
129 sho r tname= s t r c a t ( ’M23 ’ , num2s t r ( n u m t r a j ) , ’ m u l t i t r a j ’ ) ;
130 p r i n t d i r = ’C : \ User s \ J u s t i n \Documents \ T h e s i s \My t h e s i s \

F i g u r e s ’ ;
131 p r i n t t o = s p r i n t f ( ’%s\\% s . png ’ , p r i n t d i r , sho r tname ) ;
132 p r i n t ( ’−dpng ’ , p r i n t t o )
133 c l o s e a l l
134 end
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Appendix I: Heavy Mach Scaling Codes

I.1 Drop analysis.m

1 % Analyzes drop t e s t d a t a from wind t u n n e l d a t a . Computes
f low c o n d i t i o n s ,

2 % a p p l i e s Heavy Mach S c a l i n g , and a v e r a g e s s c a l e d q u a n t i t i e s
3

4 %% I n p u t Data
5 c l o s e a l l ; c l e a r a l l ; c l c
6 M nom= i n p u t ( ’ Nominal Mach Number ( no d e c i m a l s i . e .

1 5 , 1 9 , 2 3 , 3 ) : ’ ) ;
7 s w i t c h M nom
8 c a s e 15
9 p r i n t ( ’No d a t a c u r r e n t l y a v a i l a b l e f o r Mach 1 . 5 ’ )

10 c a s e 19
11 p r i n t ( ’No d a t a c u r r e n t l y a v a i l a b l e f o r Mach 1 . 9 ’ )
12 c a s e 23
13 t e s t s =[5 6 ] ; %[3 5 6 7 9 1 1 ] ;
14 t e s t s 1 =[13 15 18 19 22 23 24 2 5 ] ; %[13 15 :20 21

22 :24 2 5 ] ;
15 c a s e {3 , 3 0 }
16 p r i n t ( ’ See r e s e a r c h o f F l o r a f o r Mach 3 . 0 r e s u l t s ’ )
17 end
18

19 % Fi lename form of Mach## s p h e r e # . lvm ( e . g . Mach23 sphere 7
. lvm )

20 basename= s t r c a t ( ’C : \ Users \ J u s t i n \Documents \ T h e s i s \ R e s u l t s \
Drop T e s t s \Mach ’ , . . .

21 num2s t r ( M nom ) , ’ s p h e r e ’ ) ;
22 t s t a r t = 3 . 5 ; %Dete rmined from p r e s s u r e t r a c e s , i n c r e a s e d

b e c a u s e o f low p t
23

24 f o r i =1: l e n g t h ( t e s t s )
25 f i l e p a t h = s t r c a t ( basename , num2s t r ( t e s t s ( i ) ) , ’ . lvm ’ ) ;
26 A= i m p o r t d a t a ( f i l e p a t h , ’ \ t ’ , 2 3 ) ;
27

28 A=Flow Con ( f i l e p a t h , A, t s t a r t ) ;
29

30 varname= s t r c a t ( ’T ’ , num2s t r ( i ) ) ;
31 a s s i g n i n ( ’ ba se ’ , varname ,A) ;
32

33 end
34
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35 t s t a r t 1 = 3 . 8 ; %Dete rmined from p r e s s u r e t r a c e s , i n c r e a s e d
b e c a u s e o f low p t

36 f o r i =1: l e n g t h ( t e s t s 1 )
37 f i l e p a t h = s t r c a t ( basename , num2s t r ( t e s t s 1 ( i ) ) , ’ . lvm ’ ) ;
38 A= i m p o r t d a t a ( f i l e p a t h , ’ \ t ’ , 2 3 ) ;
39

40 A=Flow Con ( f i l e p a t h , A, t s t a r t 1 ) ;
41

42 varname= s t r c a t ( ’T ’ , num2s t r ( i + l e n g t h ( t e s t s ) ) ) ;
43 a s s i g n i n ( ’ ba se ’ , varname ,A) ;
44 end
45 %% Apply S c a l i n g Laws
46 h e i g h t = i n p u t ( ’ A l t i t u d e t o s c a l e t o ( f t ) : ’ ) ;
47 lamda= i n p u t ( ’ S c a l i n g F a c t o r : ’ ) ;
48 [ T s c a l e , w, w, w, r h o s c a l e , w, w,w]=ATMOS( h e i g h t ) ;
49 f o r i =1 : ( l e n g t h ( t e s t s )+ l e n g t h ( t e s t s 1 ) )
50 varname= s t r c a t ( ’T ’ , num2s t r ( i ) ) ;
51 a s s i g n i n ( ’ ba se ’ , ’A’ , e v a l ( varname ) ) ;
52

53 A=mass (A) ;
54 S=HMS(A, lamda , r h o s c a l e , T s c a l e ) ;
55

56 varname= s t r c a t ( ’T ’ , num2s t r ( i ) ) ;
57 a s s i g n i n ( ’ ba se ’ , varname ,A) ;
58 svarname= s t r c a t ( ’S ’ , num2s t r ( i ) ) ;
59 a s s i g n i n ( ’ ba se ’ , svarname , S ) ;
60 end
61

62 %% Average S c a l e d Q u a n t i t i e s
63 Wt = [ ] ;
64 d e n s i t y = [ ] ;
65 q r a t = [ ] ;
66 f o r i =1 : ( l e n g t h ( t e s t s ) )
67 varname= s t r c a t ( ’S ’ , num2s t r ( i ) ) ;
68 a s s i g n i n ( ’ ba se ’ , ’A’ , e v a l ( varname ) ) ;
69 Wt=[Wt ; A. w e i gh t ] ;
70 d e n s i t y =[ d e n s i t y ; A. d e n s l b ] ;
71 q r a t =[ q r a t ; A. q r a t ] ;
72 end
73 Wt av=mean ( Wt ) ;
74 d e n s a v=mean ( d e n s i t y ) ;
75 q r a t a v =mean ( q r a t ) ;
76

77 Wt1 = [ ] ;
78 d e n s i t y 1 = [ ] ;
79 q r a t 1 = [ ] ;
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80 f o r i = l e n g t h ( t e s t s ) +1 : ( l e n g t h ( t e s t s )+ l e n g t h ( t e s t s 1 ) )
81 varname= s t r c a t ( ’S ’ , num2s t r ( i ) ) ;
82 a s s i g n i n ( ’ ba se ’ , ’A’ , e v a l ( varname ) ) ;
83 Wt1=[Wt1 ; A. w e i gh t ] ;
84 d e n s i t y 1 =[ d e n s i t y 1 ; A. d e n s l b ] ;
85 q r a t 1 =[ q r a t 1 ; A. q r a t ] ;
86 end
87 Wt av1=mean ( Wt1 ) ;
88 d e n s a v 1=mean ( d e n s i t y 1 ) ;
89 q r a t a v 1 =mean ( q r a t 1 ) ;
90

91 %% p r i n t
92 f o r i =1 : ( l e n g t h ( t e s t s )+ l e n g t h ( t e s t s 1 ) )
93 varname= s t r c a t ( ’S ’ , num2s t r ( i ) ) ;
94 a s s i g n i n ( ’ ba se ’ , ’A’ , e v a l ( varname ) ) ;
95 f p r i n t f ( ’ %1.3 f & %3.1 f & %3.1 f & \\\\ \n ’ ,A. q r a t ,A.

weight ,A. d e n s l b )
96 end

I.2 mass.m
1 % F u n c t i o n t h a t d e t e r m i n e s mass and MOI based on f i l e n a m e

and number . Mass
2 % i s a c a l l o u t t a b l e d e t e r m i n e d from s p r e a d s h e e t d a t a a b o u t

model mass .
3

4 f u n c t i o n [A]= mass (A)
5

6 t e s t n u m= s s c a n f (A. f i l e n a m e , ’%*4s%*2 f s p h e r e %f . lvm ’ ) ;
7

8 m= [ 1 : 1 : 2 5 ;
9 7 .575 7 . 6 7 . 3 6 7 .181 . . .

10 6 .435 6 .558 6 .928 6 .759 6 .908 . . .
11 6 .667 6 .667 6 .679 6 .581 6 .649 6 .869 . . .
12 6 .758 6 .732 6 .727 6 .786 6 .737 . . .
13 6 .695 6 .684 6 .714 6 .654 6 . 6 1 7 ] ;
14 m( 2 , : ) =m( 2 , : ) * 0 . 0 0 2 2 0 4 6 2 2 6 2 . / 3 2 . 1 7 ; %c o n v e r t t o s l u g s from

grams
15 i n d= f i n d (m( 1 , : ) == t e s t n u m , 1 , ’ f i r s t ’ ) ;
16

17 A.m=m( 2 , i n d ) ;
18

19 A. r a d i u s = 1 5 / 1 6 / 2 / 1 2 ; % d i a m e t e r t o r a d i u s t o f e e t ( from i n )
20

21 A. I =0.4*A.m*A. r a d i u s ˆ 2 ;

I.3 ATMOS.m
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1 %
********************************************************************

2 %
3 % ATMOS.m
4 %
5 % Sub− r o u t i n e t h a t , when g i v e n an a l t i t u d e , c a l c u l a t e s t h e

s t a n d a r d day
6 % c o n d i t i o n s a t t h a t a l t i t u d e u s i n g t e m p e r a t u r e , p r e s s u r e ,

and d e n s i t y
7 % r a t i o s combined wi th s e a l e v e l s t a n d a r d day c o n d i t i o n s
8 %
9 % Author : C3C J u s t i n Merr ick , 18 Nov 09

10 %
11 % I n p u t V a r i a b l e s :
12 % h = h e i g h t above s e a l e v e l ( f t )
13 %
14 % Outpu t V a r i a b l e s :
15 % T = Tempera tu r e ( deg R)
16 % t h e t a = Tempera tu r e R a t i o
17 % P = P r e s s u r e ( l b s / f t ˆ 2 )
18 % d e l t a = P r e s s u r e R a t i o
19 % rho = D e n s i t y ( s l u g s / f t ˆ 3 )
20 % sigma = D e n s i t y R a t i o
21 % mu = C o e f f i c i e n t o f V i s c o s i t y ( l b * s e c )
22 % a = Speed of Sound ( f t / s )
23 %
24 % C o n s t a n t s :
25 % gamma = 1 . 4 , c h a r a c t e r i s t i c o f a i r
26 % R = 1716 , gas c o n s t a n t f o r a i r ( ( f t * l b ) / ( s l u g *

deg R) )
27 %
28 % R e f e r e n c e s :
29 % ATMOS handou t d e t a i l i n g e q u a t i o n s t o be used
30 % MATLAB Fundamen ta l s b o o k l e t t o l e a r n how t o use loops

, e s p e c i a l l y
31 % e l s e i f s t a t e m e n t s , and t o d e t a i l f p r i n t f commands
32 %
33 % Documenta t ion :
34 % C3C P h i l l i p s p r o v i d e d p o s s i b l e problem s o l u t i o n s when

I was r u n n i n g
35 % i n t o c a l c u l a t i o n e r r o r s . C3C Gormley and I

c o l l a b o r a t e d on how b e s t
36 % t o i n p u t t h e f a i l u r e c o n d i t i o n s and what t y p e o f

l o o p s t o use .
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37 %
***********************************************************************

38 f u n c t i o n [ T , t h e t a , P , d e l t a , rho , sigma , a , mu]=ATMOS( h )
% Make ATMOS a f u n c t i o n o f i n p u t v a r . h

39 i f h<=36089
% C r e a t e t h e t a , d e l t a loop

40 t h e t a =1 −6.875*10ˆ( −6) *h ;
% t h e t a c a l c u l a t i o n

41 d e l t a = (1 −6.875*10ˆ( −6) *h ) ˆ ( 5 . 2 5 6 1 ) ;
% d e l t a c a l c u l a t i o n

42 e l s e i f 36089<h
% Apply h igh a l t i t u d e c a s e

43 t h e t a = . 7 5 1 8 9 ;
% High a l t i t u d e t h e t a c a l c u l a t i o n

44 d e l t a = .2234* exp ( 4 . 8 0 6 e−5*(36089−h ) ) ;
% High a l t i t u d e d e l t a c a l c u l a t i o n

45 end
% Close t h e t a , d e l t a loop

46 s igma= d e l t a / t h e t a ;
% C a l c u l a t e s igma

47 T= t h e t a * 5 1 8 . 7 ;
% C a l c u l a t e T , 518 .7 @ SL

48 P= d e l t a * 2 1 1 6 . 8 ;
% C a l c u l a t e P , 2116 .8 @ SL

49 rho=s igma * . 0 0 2 3 7 7 ;
% C a l c u l a t e rho , .002377 @ SL

50 mu=3.737 e −7+5.967366 e −10*(T−518 .7 ) ;
% C a l c u l a t e mu

51 a= s q r t ( 1 . 4 * 1 7 1 6 *T ) ;
% C a l c u l a t e a

I.4 HMS.m

1 % F u n c t i o n t h a t c a l c u l a t e s f u l l − s c a l e q u a n t i t i e s based on
model q u a n t i t i e s

2 % u s i n g Heavy Mach S c a l i n g
3

4 f u n c t i o n [ S]=HMS(A, lamda , rho , T )
5 S . f i l e n a m e=A. f i l e n a m e ;
6 S . T i n f =T ;
7 S . r h o i n f =rho ;
8 S . V i n f=A. V i n f * s q r t ( T /A. T i n f ) ;
9

10 S . q i n f =0.5* rho *S . V i n f ˆ 2 ;
11

12 S . q r a t =A. q i n f / S . q i n f ;
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13

14 S .m=A.m*S . q i n f /A. q i n f / lamda ˆ 2 ;
15 S . I=A. I *S . q i n f /A. q i n f / lamda ˆ 4 ;
16

17 S . Mach in f=A. Mach in f ;
18

19 S . w e i gh t=S .m* 3 2 . 1 7 ;
20 Vol =4 /3* p i * (A. r a d i u s / lamda ) ˆ 3 ;
21

22 S . d e n s i t y =S .m/ Vol ;
23 S . d e n s l b=S . w e i gh t / Vol ;
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Appendix J: Cavity Analysis Code

1 % Analyzes FFT d a t a and p r e s s u r e d a t a t o p roduce s p e c t r a and
R o s s i t e r mode

2 % c a l c u l a t i o n s / d i f f e r e n c e s
3

4 %% Im po r t d a t a
5 c l o s e a l l ; c l e a r a l l ; c l c
6

7 M nom= i n p u t ( ’ Nominal Mach Number ( no d e c i m a l s i . e .
1 5 , 1 9 , 2 3 , 3 ) : ’ ) ;

8 s a v e v a r = i n p u t ( ’ Save p i c s ? ( y / n ) : ’ , ’ s ’ ) ;
9 s w i t c h M nom %S e l e c t i o n o f t e s t s based on t e s t i n d e x

10 c a s e 15
11 t e s t s =[1 2 3 ] ;
12 c a s e 19
13 t e s t s =[2 3 4 5 ] ;
14 c a s e 23
15 t e s t s =[2 3 4 5 6 7 ] ;
16 c a s e {3 , 3 0 }
17 t e s t s =[1 2 3 4 ] ;
18 end
19 % Fi lename i n form of M## c a v i t y F F T # . lvm ( e . g .

M19 cav i ty FFT 1 . lvm )
20 b a s e n a m e f f t = s t r c a t ( ’C : \ User s \ J u s t i n \Documents \ T h e s i s \

R e s u l t s \ C a v i t y \M’ , . . .
21 num2s t r ( M nom ) , ’ c a v i t y F F T ’ ) ;
22 % Fi lename i n form of Mach## c a v i t y # . lvm ( e . g . M 2 3 c a v i t y 4

. lvm )
23 basename= s t r c a t ( ’C : \ Users \ J u s t i n \Documents \ T h e s i s \ R e s u l t s \

C a v i t y \Mach ’ , . . .
24 num2s t r ( M nom ) , ’ c a v i t y ’ ) ;
25 t s t a r t = 3 . 4 ; %Dete rmined from o b s e r v a t i o n o f p r e s s u r e t r a c e s
26

27 f o r i =1: l e n g t h ( t e s t s )
28 spec= i m p o r t d a t a ( s t r c a t ( b a s e n a m e f f t , num2s t r ( t e s t s ( i ) ) , ’ .

lvm ’ ) , ’ \ t ’ , 2 2 ) ;
29 f i l e p a t h = s t r c a t ( basename , num2s t r ( t e s t s ( i ) ) , ’ . lvm ’ ) ;
30 A= i m p o r t d a t a ( f i l e p a t h , ’ \ t ’ , 2 3 ) ;
31

32 A=Flow Con ( f i l e p a t h , A, t s t a r t ) ;
33

34 p s p e c = 1 . 5 7 4 1 ˆ 2 . * spec . d a t a ( : , 2 ) . ˆ 2 ; %Conve r t FFT d a t a
from V rms t o P

35 i n d= f i n d ( spec . d a t a ( : , 3 ) ==200 ,1 , ’ f i r s t ’ ) ;
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36 A. spec =[ p s p e c ( i n d : end ) spec . d a t a ( i n d : end , 3 ) ] ;
37

38 varname= s t r c a t ( ’R ’ , num2s t r ( i ) ) ;
39 a s s i g n i n ( ’ ba se ’ , varname ,A) ;
40

41 end
42 c l e a r A i n d spec p s p e c
43 %% C a l c u l a t e SPL
44 f o r i =1: l e n g t h ( t e s t s )
45 varname= s t r c a t ( ’R ’ , num2s t r ( i ) ) ;
46 a s s i g n i n ( ’ ba se ’ , ’A’ , e v a l ( varname ) ) ;
47

48 %p r e f a s l i m i t o f human h e a r i n g ( p s i )
49 p r a t =A. spec ( : , 1 ) . / 2 . 9 0 0 7 5 4 7 5 e −9 ˆ2 ;
50 A. s p l =10.* log10 ( p r a t ) ;
51

52 modes = 1 : 1 : 6 ;
53 A= R o s s i t e r (A, modes , 6 . 7 5 / 1 2 ) ;
54

55 a s s i g n i n ( ’ ba se ’ , varname ,A) ;
56 end
57

58 %% Graph
59 f i g u r e
60 s w i t c h M nom
61 c a s e 15
62 p l o t ( R1 . spec ( : , 2 ) , R1 . s p l , R2 . spec ( : , 2 ) , R2 . s p l , R3 . spec

( : , 2 ) , R3 . s p l )
63 l e g e n d ( s t r c a t ( ’ P { s t a g }= ’ , num2s t r ( R1 . p t ) ) , s t r c a t ( ’ P

{ s t a g }= ’ , num2s t r ( R2 . p t ) ) , . . .
64 s t r c a t ( ’ P { s t a g }= ’ , num2s t r ( R3 . p t ) ) )
65 c a s e 19
66 p l o t ( R1 . spec ( : , 2 ) , R1 . s p l , R2 . spec ( : , 2 ) , R2 . s p l , R3 . spec

( : , 2 ) , R3 . s p l , R4 . spec ( : , 2 ) , R4 . s p l )
67 l e g e n d ( s t r c a t ( ’ P { s t a g }= ’ , num2s t r ( R1 . p t ) ) , s t r c a t ( ’ P

{ s t a g }= ’ , num2s t r ( R2 . p t ) ) , . . .
68 s t r c a t ( ’ P { s t a g }= ’ , num2s t r ( R3 . p t ) ) , s t r c a t ( ’ P {

s t a g }= ’ , num2s t r ( R4 . p t ) ) )
69 c a s e 23
70 p l o t ( R1 . spec ( : , 2 ) , R1 . s p l , R2 . spec ( : , 2 ) , R2 . s p l , R3 . spec

( : , 2 ) , R3 . s p l , R4 . spec ( : , 2 ) , R4 . s p l , . . .
71 R5 . spec ( : , 2 ) , R5 . s p l , R6 . spec ( : , 2 ) , R6 . s p l )
72 l e g e n d ( s t r c a t ( ’ P { s t a g }= ’ , num2s t r ( R1 . p t ) ) , s t r c a t ( ’ P

{ s t a g }= ’ , num2s t r ( R2 . p t ) ) , . . .
73 s t r c a t ( ’ P { s t a g }= ’ , num2s t r ( R3 . p t ) ) , s t r c a t ( ’ P {

s t a g }= ’ , num2s t r ( R4 . p t ) ) , . . .
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74 s t r c a t ( ’ P { s t a g }= ’ , num2s t r ( R5 . p t ) ) , s t r c a t ( ’ P {
s t a g }= ’ , num2s t r ( R6 . p t ) ) )

75 c a s e {3 , 3 0 }
76 p l o t ( R1 . spec ( : , 2 ) , R1 . s p l , R2 . spec ( : , 2 ) , R2 . s p l , R3 . spec

( : , 2 ) , R3 . s p l , R4 . spec ( : , 2 ) , R4 . s p l )
77 l e g e n d ( s t r c a t ( ’ P { s t a g }= ’ , num2s t r ( R1 . p t ) ) , s t r c a t ( ’ P

{ s t a g }= ’ , num2s t r ( R2 . p t ) ) , . . .
78 s t r c a t ( ’ P { s t a g }= ’ , num2s t r ( R3 . p t ) ) , s t r c a t ( ’ P {

s t a g }= ’ , num2s t r ( R4 . p t ) ) )
79 end
80 xl im ( [ 2 0 0 6 4 0 0 ] )
81 yl im ( [ 1 0 0 1 5 0 ] )
82 % yl im ( [ 1 0 0 1 3 0 ] ) % Mach 3
83 x l a b e l ( ’ F requency ( Hz ) ’ )
84 y l a b e l ( ’SPL ( dB ) ’ )
85 g r i d on
86

87 f o r i =1: l e n g t h ( t e s t s )
88 varname= s t r c a t ( ’R ’ , num2s t r ( i ) ) ;
89 a s s i g n i n ( ’ ba se ’ , ’A’ , e v a l ( varname ) ) ;
90

91 f i g u r e
92 ho ld on
93 s e t ( gca , ’ F o n t S i z e ’ , 1 8 , ’ LineWidth ’ , 2 , ’ YGrid ’ , ’ on ’ )
94 p l o t (A. spec ( : , 2 ) ,A. s p l , ’ LineWidth ’ , 2 )
95 xl im ( [ 2 0 0 6 4 0 0 ] )
96 yl im ( [ 1 0 0 1 5 0 ] )
97 % yl im ( [ 1 0 0 1 3 0 ] ) % Mach 3
98 x l a b e l ( ’ F requency ( Hz ) ’ )
99 y l a b e l ( ’SPL ( dB ) ’ )

100 f o r j =1: l e n g t h (A. Rf req )
101 p l o t ( [A. Rf req ( j ) A. Rf req ( j ) ] , [ 1 0 0 1 5 0 ] , ’−k ’ , ’

LineWidth ’ , 2 )
102 end
103 l e g e n d ( ’ Spect rum ’ , ’ R o s s i t e r Modes ’ , ’ L o c a t i o n ’ , ’ Sou thwes t

’ )
104 i f s a v e v a r== ’ y ’
105 s a v e a s ( gcf , s t r c a t ( ’ m 1 5 c a v i t y ’ , num2s t r ( i ) , ’ . png ’ ) )
106 end
107 end
108

109 %% R o s s i t e r E r r o r
110 f o r i =1: l e n g t h ( t e s t s )
111 varname= s t r c a t ( ’R ’ , num2s t r ( i ) ) ;
112 a s s i g n i n ( ’ ba se ’ , ’A’ , e v a l ( varname ) ) ;
113

135



114 [ pks , i n d ]= f i n d p e a k s (A. s p l , ’ m i n p e a k d i s t a n c e ’ , 9 5 , ’ npeaks ’ ,
l e n g t h ( modes ) ) ;

115 %Might need t o change 3 rd argument ( 9 5 ) t o improve
r e c o g n i t i o n o f

116 %peaks , check by hand
117

118 f o r j =1: l e n g t h ( modes )
119 A. Rer r ( j )=A. Rf req ( j )−A. spec ( i n d ( j ) , 2 ) ;
120 end
121 A. Rea=mean (A. Re r r ) ;
122 A. Res= s t d ( abs (A. Re r r ) ) ;
123

124 varname= s t r c a t ( ’R ’ , num2s t r ( i ) ) ;
125 a s s i g n i n ( ’ ba se ’ , varname ,A) ;
126 end
127 f o r i =1: l e n g t h ( modes )
128 T o t R e r r a v g ( i ) =0;
129 R f r e q a v g ( i ) =0;
130 f o r j =1: l e n g t h ( t e s t s )
131 varname= s t r c a t ( ’R ’ , num2s t r ( j ) ) ;
132 a s s i g n i n ( ’ ba se ’ , ’A’ , e v a l ( varname ) ) ;
133

134 T o t R e r r a v g ( i )=T o t R e r r a v g ( i )+A. Rer r ( i ) ;
135 R f r e q a v g ( i )=R f r e q a v g ( i )+A. Rf req ( i ) ;
136 end
137 end
138 T o t R e r r a v g=T o t R e r r a v g . / l e n g t h ( t e s t s ) ;
139 R f r e q a v g=R f r e q a v g . / l e n g t h ( t e s t s ) ;
140 P e r c e n t R e r r =T o t R e r r a v g . / R f r e q a v g . * 1 0 0 ;

136



Bibliography

[1] Flora, T. J., Freedrop Testing and CFD Simulation of Ice Models from a Cavity into
Supersonic Flow, Master’s thesis, U.S. Air Force Institute of Technology, September
2012.

[2] Rogers, E. and Davis, B., “A Note of Turbulent Boundary Layer Allowances in
Supersonic Nozzle Design,” Tech. Rep. C.P. No. 333, Ministry of Supply, 1957.

[3] Hardy, R., Neumann, F., and Ruzicka, D., “Fighter aircraft,” June 10 1997, US Patent
5,636,813.

[4] Rockwell, D. and Naudascher, E., “Review - Self-Sustaining Oscillations of Flow
Past Cavities,” Transactions of the ASME, Vol. 100, 1978, pp. 152–165.

[5] Zhang, J., Morishita, E., Okunuki, T., and Itoh, H., “Experimental and Computational
Investigation of Supersonic Cavity Flows,” 10th International Space Planes and
Hypersonic Systems and Technologies Conference, AIAA 2001-1755, 2001.

[6] Cattafesta, L., Williams, D., Rowley, C., and Alvi, F., “Review of Active Control
of Flow-Induced Cavity Resonance,” 33rd AIAA Fluid Dynamics Conference, AIAA
2003-3567, 2003.

[7] Heller, H. H., Holmes, G., and Covert, E. E., “Flow-Induced Pressure Oscillations in
Shallow Cavities,” Tech. Rep. TR AD880496, Air Force Flight Dynamics Laboratory,
1970.

[8] Dix, R. and Bauer, R., “Engineering Model Predictions of Aeroacoustic Amplitudes
in a Weapons Cavity,” 31st AIAA Aerospace Sciences Meeting, AIAA-93-0858, 1993.

[9] Deslandes, R. M. and Donauer, S., “Scaled-Drop-Tests: WYSIWYG or not?” 48th
AIAA Aerospace Sciences Meeting, AIAA 2010-681, 2010.

[10] Marshall, J. C., Analytical Evaluation of the Limitations of the Various Scaling Laws
for Freedrop Store Separation Testing, ARO, Inc. AEDC Division.

[11] Johnson, R. A., Stanek, M. J., and Grove, J. E., “Store Separation Trajectory
Deviations Due to Unsteady Weapons Bay Aerodynamics,” 46th AIAA Aerospace
Sciences Meeting, AIAA 2008-188, 2008.

[12] Coley, C. J. and Lofthouse, A. J., “Correlation of Weapon Bay Resonance and Store
Unsteady Force and Moment Loading,” 50th AIAA Aerospace Sciences Meeting,
AIAA 2012-0415, 2012.

137



[13] Cenko, A., Deslandes, R., Dillenius, M., and Stanek, M., “Unsteady Weapon Bay
Aerodynamics - Urban Legend of Flight Clearance Nightmare,” 46th AIAA Aerospace
Sciences Meeting, AIAA 2008-189, 2008.

[14] Blazek, J., Computational Fluid Dynamics: Principles and Applications, Elsevier,
2005.

[15] Nichols, R. H. and Westmoreland, S., “Comparison of Computational Dynamics
Approaches for Simulating Weapons Bay Flows,” Journal of Aircraft, Vol. 44, No. 3,
2007, pp. 1019–1024.

[16] Nichols, R. H., “A Comparison of Hybrid RANS/LES Turbulence Models for a
Generic Weapons Bay With and Without a Spoiler,” 26th AIAA Applied Aerodynamics
Conference, AIAA 2008-6229, 2008.

[17] Rizzetta, D. P. and Visbal, M. R., “Large-Eddy Simulation of Supersonic Cavity
Flowfields Including Flow Control,” AIAA Journal, Vol. 41, No. 8, August 2003,
pp. 1452–1462.

[18] Rokita, T. and Arieli, R., “Different Approaches for Simulating the Flow inside and
near a Weapons Bay,” 30th AIAA Applied Aerodynamics Conference, 2012-3339,
2012.

[19] Meakin, R., Handbook of Grid Generation, chap. 11, CRC Press, 2005.

[20] Kim, N. and Chan, W. M., “Automation of Hole-Cutting for Overset Grids Using the
X-rays Approach,” M/s 258-2, NASA Ames Research Center.

[21] Nichols, R. H. and Buning, P. G., User’s Manual for OVERFLOW 2.1, NASA, 2nd
ed., August 2008.

[22] Kraft, N. D., “Non-Repeatability of Store Separation Trajectories from Internal
Weapon Bays due to Unsteady Cavity Flow effects - Lessons Learned from a 2D
Investigation,” 49th AIAA Aerospace Sciences Meeting, AIAA 2011-1238, 2011.

[23] Pope, S. B., Turbulent Flows, Cambridge University Press, 2000.

[24] Ferri, A., “Application of the Method of Characteristics to Supersonic Rotational
Flow,” Tech. Rep. ADB23344, NASA Langley Research Center, 1946.

[25] Crown, J. C. and Heybey, W. H., “Supersonic Nozzle Design,” Nol memorandum
10594, Naval Ordnance Laboratory, apr 1950.

[26] McCabe, A., “Design of a Supersonic Nozzle,” Tech. Rep. Reports and Memoranda
No. 3440, Ministry of Aviation, 1967.

[27] Anderson, J. D., Modern Compressible Flow: With Historical Perspective, McGraw-
Hill, 2003.

138



[28] Kageyama, A. and Sato, T., “The ’Yin-Yang Grid’: An Overset Grid in Spherical
Geometry,” Geochem. Geophys. Geosyst., 5(Q09005), 2004.

[29] Bjorge, S. T., Reeder, M. F., Subramanian, C., Crafton, J., and Fonov, S., “Flow
Around an Object Projected from a Cavity into a Supersonic Freestream,” AIAA
Journal, Vol. 43, No. 7, 2005, pp. 1465–1475.

139



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

27–03–2014 Master’s Thesis Oct 2012–Mar 2014

Influence of Mach Number and Dynamic Pressure on Cavity Tones and
Freedrop Trajectories

12Y128

Merrick, Justin D., Second Lieutenant, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB, OH 45433-7765

AFIT-ENY-14-M-36

AFRL/RQVI
2145 5th St
WPAFB, OH 45433
POC: Mr. Rudy Johnson
(937) 255 3037, rudy.johnson@wpafb.af.mil

AFRL/RQVI

12. DISTRIBUTION / AVAILABILITY STATEMENT
DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
13. SUPPLEMENTARY NOTES
This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.
14. ABSTRACT
Weapons release at supersonic speeds from an internal weapons bay is a highly desirable capability. To ensure a
successful release at multiple Mach numbers, the aerodynamic environment must be well-understood and repeatable,
with a robust system for safe testing of store separation. For this reason, experimental methods were used to investigate
the characteristics of a scaled WICS bay with a length-to-depth ratio of 4.5 at multiple Mach numbers and stagnation
pressures. Three new nozzles were designed, manufactured, and characterized for the AFIT small supersonic tunnel,
yielding freestream Mach numbers of 2.22, 1.84, and 1.43. In addition, a control valve was reconfigured to achieve
stagnation pressures as low as 1.0 psia. These nozzles were then used in conjunction with piezosresistive pressure
transducers and high-speed Schlieren photography to capture the time-varying pressure signal and spectra of the cavity.
Resonant frequencies from these tests matched very well with analytically predicted results for the Mach 2.3 and Mach
1.9 nozzles. The Mach 1.5 nozzle posed some difficulties for the configuration tested due to shocks reflecting into the
cavity. The Mach 2.3 nozzle was utilized in freedrop testing of a 1:20 scaled sphere and compared to computational
simulations. The computational solution was obtained using the OVERFLOW solver with incorporated 6DOF motion
and the DDES/SST hybrid turbulence model. Analysis of the Schlieren video generated by the experimental tests
allowed direct comparison of computational and experimental trajectories. Measured trajectories compared closely to
computational trajectories, especially for the lowest stagnation pressure settings, where heavy Mach scaling yielded
operationally relevant results, despite the small scale of the tests.
15. SUBJECT TERMS
Store Separation, Cavity Flow, Freedrop Testing, CFD, Rossiter Modes, Frequency Analysis, Dynamic Scaling, Nozzle
Design

U U U UU 159

Dr. Mark F. Reeder (ENY)

(937) 255-3636 x4530 Mark.Reeder@afit.edu


	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Introduction
	Motivation
	Advantages of Internal Stores
	Disadvantages of Internal Stores

	Problem Statement
	Research Objectives

	Background
	Cavity Flow
	Scaling Laws
	Froude Scaling
	Heavy Mach Scaling
	Light Mach Scaling

	Store Separation
	Computational Analysis of Cavity Flows and Store Separation
	Turbulence Modeling in Cavity Flows
	Overset Grid Techniques
	OVERFLOW Solver


	Methodology
	Experimental Setup
	Supersonic Variable-Density Blowdown Tunnel
	Faceplate
	Regulating Valve
	Nozzle Block
	Test Section and Cavity
	Data Acquisition

	Experimental Methodology
	Procedures
	Data Reduction

	Computational Methodology
	Grid Generation
	Boundary Conditions
	Initial Conditions


	Results
	Nozzle Characterization
	Mach 3.0
	Mach 2.3
	Mach 1.9
	Mach 1.5

	Cavity Environment
	Mach 3.0
	Mach 2.3
	Mach 1.9
	Mach 1.5

	Drop Testing
	Experimental
	Computational
	Trajectory Comparison
	Heavy Mach Scaling


	Conclusions
	Nozzle and Cavity Characterization
	Store Separation
	Future Opportunities

	Appendix A: Nozzle Design Code
	Appendix B: Transducer Calibrations
	Appendix C: Flow Conditions Code
	Appendix D: Rossiter Modes Code
	Appendix E: Boundary Layer Code
	Appendix F: Rossiter Mode Results
	Appendix G: Detailed Drawings of Nozzle Blocks
	Appendix H: Trajectory Plotting Code
	Appendix I: Heavy Mach Scaling Codes
	Drop_analysis.m
	mass.m
	ATMOS.m
	HMS.m

	Appendix J: Cavity Analysis Code
	Bibliography

